D. M. O'brien, Stable Isotope Ratios as Biomarkers of Diet for Health Research, Annu Rev Nutr, vol.35, pp.565-94, 2015.

S. H. Nash, A. R. Kristal, S. E. Hopkins, B. B. Boyer, O. 'brien et al., Stable Isotope Models of Sugar Intake Using Hair, Red Blood Cells, and Plasma, but Not Fasting Plasma Glucose, Predict Sugar Intake in a Yup'ik Study Population, J Nutr, vol.144, issue.1, pp.75-80, 2014.

K. Choy, S. H. Nash, A. R. Kristal, S. Hopkins, B. B. Boyer et al., The Carbon Isotope Ratio of Alanine in Red Blood Cells Is a New Candidate Biomarker of Sugar-Sweetened Beverage Intake, J Nutr, vol.143, issue.6, pp.878-84, 2013.

P. S. Patel, A. J. Cooper, T. C. O'connell, G. G. Kuhnle, C. K. Kneale et al., Serum carbon and nitrogen stable isotopes as potential biomarkers of dietary intake and their relation with incident type 2 diabetes: the EPIC-Norfolk study, Am J Clin Nutr, vol.100, issue.2, pp.708-726, 2014.

D. M. O'brien, A. R. Kristal, S. H. Nash, S. E. Hopkins, B. R. Luick et al., A stable isotope biomarker of marine food intake captures associations between n-3 fatty acid intake and chronic disease risk in a Yup'ik study population, and detects new associations with blood pressure and adiponectin, J Nutr, vol.144, issue.5, pp.706-719, 2014.

T. Fakhouri, A. H. Jahren, L. J. Appel, L. Chen, R. Alavi et al., Serum Carbon Isotope Values Change in Adults in Response to Changes in Sugar-Sweetened Beverage Intake, J Nutr, vol.144, issue.6, pp.902-907, 2014.

J. Mccutchan, W. Lewis, C. Kendall, and C. Mcgrath, Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur, Oikos, vol.102, pp.378-90, 2003.

N. Poupin, F. Mariotti, J. Huneau, D. Hermier, and H. Fouillet, Natural isotopic signatures of variations in body nitrogen fluxes: a compartmental model analysis, PLoS Comput Biol, vol.10, issue.10, p.1003865, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01186909

K. A. Hobson, R. T. Alisauskas, and R. G. Clark, Stable-nitrogen isotope enrichment in avian-tissues due to fasting and nutritional stress -Implications for isotopic analyses of diet, Condor, vol.95, issue.2, pp.388-94, 1993.

S. H. Adams, Emerging Perspectives on Essential Amino Acid Metabolism in Obesity and the Insulin-Resistant State, Adv Nutr, vol.2, pp.445-456, 2011.

S. Adechian, S. Giardina, D. Remond, I. Papet, D. Buonocore et al., Excessive Energy Intake Does Not Modify Fed-state Tissue Protein Synthesis Rates in Adult Rats, Obesity, vol.17, pp.1348-1355, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01173374

S. R. Anderson, D. A. Gilge, A. L. Steiber, and S. F. Previs, Diet-induced obesity alters protein synthesis: tissue-specific effects in fasted versus fed mice, Metabolism-Clinical and Experimental, vol.57, pp.347-354, 2008.

L. S. Arneson and S. E. Macavoy, Carbon, nitrogen, and sulfur diet-tissue discrimination in mouse tissues, Canadian Journal of Zoology, vol.83, pp.989-995, 2005.

D. Azzout-marniche, C. Chaumontet, N. A. Nadkarni, J. Piedcoq, G. Fromentin et al., Food intake and energy expenditure are increased in high-fat-sensitive but not in high-carbohydrate-sensitive obesity-prone rats, Am J Physiol-Reg I, vol.307, pp.299-309, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01173413

A. M. Bak, A. B. Moller, M. H. Vendelbo, T. S. Nielsen, R. Viggers et al., Differential regulation of lipid and protein metabolism in obese vs. lean subjects before and after a 72-h fast, American Journal of Physiology-Endocrinology and Metabolism, vol.311, pp.224-235, 2016.

P. Balagopal, S. Sweeten, and N. Mauras, Increased synthesis rate of fibrinogen as a basis for its elevated plasma levels in obese female adolescents, American Journal of Physiology-Endocrinology and Metabolism, vol.282, pp.899-904, 2002.

P. S. Barboza and K. L. Parker, Body protein stores and isotopic indicators of N balance in female reindeer (Rangifer tarandus) during winter, Physiol. Biochem. Zool, vol.79, pp.628-644, 2006.

E. Belloto, F. Diraison, A. Basset, G. Allain, P. Abdallah et al., Determination of protein replacement rates by deuterated water: validation of underlying assumptions, American Journal of Physiology-Endocrinology and Metabolism, vol.292, pp.1340-1347, 2007.

Y. Benjamini and Y. Hochberg, Controlling the false discovery rate: a practical and powerful approach to multiple testing, Journal of the Royal Statistical Society. Series B (Methodological, pp.289-300, 1995.

J. E. Blundell, R. J. Stubbs, C. Golding, F. Croden, R. Alam et al., Resistance and susceptibility to weight gain: Individual variability in response to a high-fat diet, Physiol Behav, vol.86, pp.614-622, 2005.

G. A. Bray and B. M. Popkin, Dietary fat intake does affect obesity!, American Journal of Clinical Nutrition, vol.68, pp.1157-1173, 1998.

R. Busch, Y. Kim, R. A. Neese, V. Schade-serin, M. Collins et al., Measurement of protein turnover rates by heavy water labeling of nonessential amino acids, Biochimica et Biophysica Acta (BBA)-General Subjects, vol.1760, pp.730-744, 2006.

J. Cacho, J. Sevillano, J. De-castro, E. Herrera, and M. P. Ramos, Validation of simple indexes to assess insulin sensitivity during pregnancy in Wistar and Sprague-Dawley rats, Am. J. Physiol. Endocrinol. Metab, vol.295, pp.1269-1276, 2008.

R. Caleyachetty, G. N. Thomas, K. A. Toulis, N. Mohammed, K. M. Gokhale et al., Metabolically Healthy Obese and Incident Cardiovascular Disease Events Among 3.5 Million Men and Women, J Am Coll Cardiol, vol.70, pp.1429-1437, 2017.

G. Cantalapiedra-hijar, I. Ortigues-marty, A. Schiphorst, R. J. Robins, I. Tea et al., Natural (15)N Abundance in Key Amino Acids from Lamb Muscle: Exploring a New Horizon in Diet Authentication and Assessment of Feed Efficiency in Ruminants, J. Agric. Food Chem, vol.64, pp.4058-4067, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01594989

G. Cantalapiedra-hijar, I. Ortigues-marty, B. Sepchat, J. Agabriel, J. Huneau et al., Diet-animal fractionation of nitrogen stable isotopes reflects the efficiency of nitrogen assimilation in ruminants, British Journal of Nutrition, vol.113, pp.1158-1169, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01133635

S. Chang, B. Graham, F. Yakubu, D. Lin, J. C. Peters et al., Metabolic Differences between Obesity-Prone and Obesity-Resistant Rats, American Journal of Physiology, vol.259, pp.1103-1110, 1990.

E. Chanseaume, C. Giraudet, C. Gryson, S. Walrand, P. Rousset et al., Enhanced muscle mixed and mitochondrial protein synthesis rates after a high-fat or high-sucrose diet, Obesity, vol.15, pp.853-859, 2007.

S. Chevalier, S. C. Burgess, C. R. Malloy, R. Gougeon, E. B. Marliss et al., The greater contribution of gluconeogenesis to glucose production in obesity is related to increased whole-body protein catabolism, Diabetes, vol.55, pp.675-681, 2006.

S. Chevalier, S. A. Burgos, J. A. Morais, R. Gougeon, M. Bassil et al., Protein and glucose metabolic responses to hyperinsulinemia, hyperglycemia, and hyperaminoacidemia in obese men, Obesity (Silver Spring), vol.23, pp.351-358, 2015.

S. Chevalier, E. B. Marliss, J. A. Morais, M. Lamarche, and R. Gougeon, Whole-body protein anabolic response is resistant to the action of insulin in obese women, The American journal of clinical nutrition, vol.82, pp.355-365, 2005.

S. R. Commerford, M. J. Pagliassotti, C. L. Melby, Y. R. Wei, E. C. Gayles et al., Fat oxidation, lipolysis, and free fatty acid cycling in obesity-prone and obesityresistant rats, American Journal of Physiology-Endocrinology and Metabolism, vol.279, pp.875-885, 2000.

S. R. Commerford, M. J. Pagliassotti, C. L. Melby, Y. R. Wei, and J. O. Hill, Inherent capacity for lipogenesis or dietary fat retention is not increased in obesity-prone rats, Am J Physiol-Reg I, vol.280, pp.1680-1687, 2001.

R. Crescenzo, F. Bianco, A. Mazzoli, A. Giacco, G. Liverini et al., Mitochondrial efficiency and insulin resistance, Front Physiol, vol.5, 2015.

G. Danaei, Y. Lu, G. M. Singh, E. Carnahan, G. A. Stevens et al., Cardiovascular disease, chronic kidney disease, and diabetes mortality burden of cardiometabolic risk factors from 1980 to 2010: a comparative risk assessment, Lancet Diabetes Endo, vol.2, pp.634-647, 2014.

S. C. Denne, G. Brechtel, A. Johnson, E. A. Liechty, and A. D. Baron, Skeletal muscle proteolysis is reduced in noninsulin-dependent diabetes mellitus and is unaltered by euglycemic hyperinsulinemia or intensive insulin therapy, J. Clin. Endocrinol. Metab, vol.80, pp.2371-2377, 1995.

T. Deschner, B. T. Fuller, V. M. Oelze, C. Boesch, J. Hublin et al., , p.222, 2012.

, stress by isotopic and elemental analysis of urine in bonobos (Pan paniscus), Rapid Commun. Mass Spectrom, vol.26, pp.69-77

J. T. Dourmashkin, G. Q. Chang, J. O. Hill, E. C. Gayles, S. K. Fried et al., Model for predicting and phenotyping at nonnal weight the long-term propensity for obesity in Sprague-Dawley rats, Physiol Behav, vol.87, pp.666-678, 2006.

E. Estornell, T. Barber, and J. Cabo, Protein-Synthesis in-Vivo in Rats Fed on LipidRich Liquid Diets, British Journal of Nutrition, vol.72, pp.509-517, 1994.

E. Estornell, J. Cabo, and T. Barber, Protein-Synthesis Is Stimulated in Nutritionally Obese Rats, J Nutr, vol.125, pp.1309-1315, 1995.

P. C. Even, N. A. Nadkarni, C. Chaumontet, D. Azzout-marniche, G. Fromentin et al., Identification of behavioral and metabolic factors predicting adiposity sensitivity to both high fat and high carbohydrate diets in rats, Front Physiol, vol.2, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01611421

R. Fernandes, M. Nadeau, and P. M. Grootes, Macronutrient-based model for dietary carbon routing in bone collagen and bioapatite, Archaeological and Anthropological Sciences, vol.4, pp.291-301, 2012.

H. Fouillet, C. Bos, C. Gaudichon, T. , and D. , Approaches to quantifying protein metabolism in response to nutrient ingestion, J Nutr, vol.132, pp.3208-3218, 2002.

B. T. Fuller, J. L. Fuller, N. E. Sage, D. A. Harris, T. C. O'connell et al., Nitrogen balance and?15N: why you're not what you eat during nutritional stress, Rapid Communications in Mass Spectrometry, vol.19, pp.2497-2506, 2005.

J. E. Galgani, C. Moro, and E. Ravussin, Metabolic flexibility and insulin resistance, American Journal of Physiology-Endocrinology and Metabolism, vol.295, pp.1009-1017, 2008.

H. G. Gasier, J. D. Fluckey, and S. F. Previs, The application of 2H2O to measure skeletal muscle protein synthesis, Nutrition & metabolism, vol.7, p.31, 2010.

P. Giesbertz, I. Padberg, D. Rein, J. Ecker, A. S. Höfle et al., , 2015.

, Metabolite profiling in plasma and tissues of ob/ob and db/db mice identifies novel markers of obesity and type 2 diabetes, Diabetologia, vol.58, pp.2133-2143

E. D. Giles, M. R. Jackman, and P. S. Maclean, Modeling Diet-Induced Obesity with Obesity-Prone Rats: Implications for Studies in Females, 2016.

D. Giugliano, A. Ceriello, and K. Esposito, The effects of diet on inflammationEmphasis on the metabolic syndrome, J Am Coll Cardiol, vol.48, pp.677-685, 2006.

R. Gougeon, J. A. Morais, S. Chevalier, S. Pereira, M. Lamarche et al., Determinants of whole-body protein metabolism in subjects with and without type 2 diabetes, Diabetes Care, vol.31, pp.128-133, 2008.

C. Guillet, I. Delcourt, M. Rance, C. Giraudet, S. Walrand et al., Changes in basal and insulin and amino acid response of whole body and skeletal muscle proteins in obese men, J. Clin. Endocrinol. Metab, vol.94, pp.3044-3050, 2009.

C. Guillet, A. Masgrau, and Y. Boirie, Is protein metabolism changed with obesity?, Curr Opin Clin Nutr, vol.14, pp.89-92, 2011.

P. Halvatsiotis, K. R. Short, M. Bigelow, and K. S. Nair, Synthesis rate of muscle proteins, muscle functions, and amino acid kinetics in type 2 diabetes, Diabetes, vol.51, pp.2395-2404, 2002.

O. T. Hardy, M. P. Czech, and S. Corvera, What causes the insulin resistance underlying obesity? Current opinion in endocrinology, diabetes, and obesity, vol.19, pp.81-87, 2012.

K. A. Hatch, M. A. Crawford, A. W. Kunz, S. R. Thomsen, D. L. Eggett et al., An objective means of diagnosing anorexia nervosa and bulimia nervosa using15N/14N and13C/12C ratios in hair, Rapid Communications in Mass Spectrometry, vol.20, pp.3367-3373, 2006.

E. A. Hobbie, Dietary protein content and tissue type control C-13 discrimination in mammals: an analytical approach, Rapid Communications in Mass Spectrometry, vol.31, pp.639-648, 2017.

J. F. Huneau, O. L. Mantha, D. Hermier, G. Galmiche, V. Mathe et al., ?15N and ?13C of proteins and amino acids are isotopic biomarkers of the metabolic orientations induced by energy restriction in obese rat

M. R. Jackman, R. E. Kramer, P. S. Maclean, and D. H. Bessesen, Trafficking of dietary fat in obesity-prone and obesity-resistant rats, American Journal of Physiology-Endocrinology and Metabolism, vol.291, pp.1083-1091, 2006.

M. R. Jackman, P. S. Maclean, and D. H. Bessesen, Energy expenditure in obesity-prone and obesity-resistant rats before and after the introduction of a high-fat diet, Am J PhysiolReg I, vol.299, pp.1097-1105, 2010.

C. Jang, S. F. Oh, S. Wada, G. C. Rowe, L. Liu et al., A branched-chain amino acid metabolite drives vascular fatty acid transport and causes insulin resistance, Nat. Med, vol.22, pp.421-426, 2016.

M. D. Jensen and M. W. Haymond, Protein metabolism in obesity: effects of body fat distribution and hyperinsulinemia on leucine turnover, The American journal of clinical nutrition, vol.53, pp.172-176, 1991.

H. Ji and M. I. Friedman, Reduced hepatocyte fatty acid oxidation in outbred rats prescreened for susceptibility to diet-induced obesity, Int J Obesity, vol.32, pp.1331-1334, 2008.

C. H. Jung, M. J. Lee, Y. M. Kang, J. E. Jang, J. Leem et al., The Risk of Incident Type 2 Diabetes in a Korean Metabolically Healthy Obese Population, The Role of Systemic Inflammation, vol.100, pp.1709-1709, 2015.

C. H. Jung, W. J. Lee, and K. H. Song, Metabolically healthy obesity: a friend or foe?, Korean J Intern Med, vol.32, pp.611-621, 2017.

C. S. Katsanos and L. J. Mandarino, Protein metabolism in human obesity: a shift in focus from whole-body to skeletal muscle, Obesity (Silver Spring), vol.19, pp.469-475, 2011.

D. E. Kelley, B. Goodpaster, R. R. Wing, and J. A. Simoneau, Skeletal muscle fatty acid metabolism in association with insulin resistance, obesity, and weight loss, American Journal of Physiology-Endocrinology and Metabolism, vol.277, pp.1130-1141, 1999.

K. Kraeer, L. S. Arneson, and S. E. Macavoy, The intraspecies relationship between tissue turnover and metabolic rate in rats, Ecol Res, vol.29, pp.937-947, 2014.

C. M. Kurle, Interpreting temporal variation in omnivore foraging ecology via stable isotope modelling, Functional Ecology, vol.23, pp.733-744, 2009.

C. M. Kurle, P. L. Koch, B. R. Tershy, and D. A. Croll, The effects of sex, tissue type, and dietary components on stable isotope discrimination factors (?13C and ?15N) in mammalian omnivores, Isotopes in environmental and health studies, vol.50, pp.307-321, 2014.

C. Lassale, I. Tzoulaki, K. G. Moons, M. Sweeting, J. Boer et al., Separate and combined associations of 224 obesity andmetabolic health with coronary heart disease: a pan-European case-cohort analysis, Eur Heart J, vol.39, p.397, 2018.

T. N. Lee, C. L. Buck, B. M. Barnes, and D. M. Brien, A test of alternative models for increased tissue nitrogen isotope ratios during fasting in hibernating arctic ground squirrels, Journal of Experimental Biology, vol.215, pp.3354-3361, 2012.

C. Lerin, A. B. Goldfine, T. Boes, M. Liu, S. Kasif et al., Defects in muscle branched-chain amino acid oxidation contribute to impaired lipid metabolism, Mol Metab, vol.5, pp.926-936, 2016.

B. E. Levin, A. A. Dunnmeynell, B. Balkan, and R. E. Keesey, Selective breeding for diet-induced obesity and resistance in Sprague-Dawley rats, Am J Physiol-Reg I, vol.273, pp.725-730, 1997.

E. B. Levin, Why some of us get fat and what we can do about it, J Physiol-London, vol.583, pp.425-430, 2007.

T. Liu, T. D. Heden, E. Matthew-morris, K. L. Fritsche, V. J. Vieira-potter et al., High-Fat Diet Alters Serum Fatty Acid Profiles in Obesity Prone Rats: Implications for In Vitro Studies, Lipids, vol.50, pp.997-1008, 2015.

L. A. Lotta, R. A. Scott, S. J. Sharp, S. Burgess, J. A. Luan et al., Genetic Predisposition to an Impaired Metabolism of the Branched-Chain Amino Acids and Risk of Type 2 Diabetes: A Mendelian Randomisation Analysis, Plos Med, vol.13, p.1002179, 2016.

C. J. Lynch, A. , and S. H. , Branched-chain amino acids in metabolic signalling and insulin resistance, Nature reviews. Endocrinology, vol.10, pp.723-736, 2014.

S. E. Macavoy, L. S. Arneson, and E. Bassett, Correlation of metabolism with tissue carbon and nitrogen turnover rate in small mammals, Oecologia, vol.150, pp.190-201, 2006.

S. E. Macavoy, S. A. Macko, A. , and L. S. , Growth versus metabolic tissue replacement in mouse tissues determined by stable carbon and nitrogen isotope analysis, Canadian Journal of Zoology, vol.83, pp.631-641, 2005.

O. L. Mantha, S. Polakof, J. F. Huneau, F. Mariotti, N. Poupin et al., Early changes in tissue amino acid metabolism and nutrient routing in rats fed a highfat diet: evidence from natural isotope abundances of nitrogen and carbon in tissue proteins, British Journal of Nutrition, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01761202

C. Martinez-del-rio, A. , and R. , Beyond the reaction progress variable: the meaning and significance of isotopic incorporation data, Oecologia, vol.156, pp.765-772, 2008.

C. Martinez-del-rio and S. A. Carleton, How fast and how faithful: the dynamics of isotopic incorporation into animal tissues, J Mammal, vol.93, pp.353-359, 2012.

C. Martinez-del-rio and B. O. Wolf, Mass-balance models for animal isotopic ecology. In Physiological and ecological adaptations to feeding in vertebrates, pp.141-174, 2005.

A. Masgrau, A. Mishellany-dutour, H. Murakami, A. M. Beaufrere, S. Walrand et al., Time-course changes of muscle protein synthesis associated with obesity-induced lipotoxicity, The Journal of physiology, vol.590, pp.5199-5210, 2012.

J. H. Mccutchan, W. M. Lewis, C. Kendall, and C. C. Mcgrath, Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur, Oikos, vol.102, pp.378-390, 2003.

A. Mekota, G. Grupe, S. Ufer, and U. Cuntz, Serial analysis of stable nitrogen and carbon isotopes in hair: monitoring starvation and recovery phases of patients suffering from anorexia nervosa, Rapid Communications in Mass Spectrometry, vol.20, pp.1604-1610, 2006.

S. F. Michaliszyn, L. A. Sjaarda, S. J. Mihalik, S. Lee, F. Bacha et al., Metabolomic Profiling of Amino Acids and ?-Cell Function Relative to Insulin Sensitivity in Youth, The Journal of Clinical Endocrinology & Metabolism, vol.97, pp.2119-2124, 2012.

E. M. Morris, M. R. Jackman, G. M. Meers, G. C. Johnson, J. L. Lopez et al., Reduced hepatic mitochondrial respiration following acute high-fat diet is prevented by PGC-1? overexpression, Am. J. Physiol. Gastrointest. Liver Physiol, vol.305, pp.868-880, 2013.

C. B. Newgard, Interplay between Lipids and Branched-Chain Amino Acids in Development of Insulin Resistance, Cell Metabolism, vol.15, pp.606-614, 2012.

C. B. Newgard, J. An, J. R. Bain, M. J. Muehlbauer, R. D. Stevens et al., A Branched-Chain Amino Acid-Related Metabolic Signature that Differentiates Obese and Lean Humans and Contributes to Insulin Resistance, Cell Metabolism, vol.9, pp.311-326, 2009.

D. M. O'brien, Stable isotope ratios as biomarkers of diet for health research, Annual review of nutrition, vol.35, pp.565-594, 2015.

B. W. Patterson, J. F. Horowitz, G. Y. Wu, M. Watford, S. W. Coppack et al., Regional muscle and adipose tissue amino acid metabolism in lean and obese women, American Journal of Physiology-Endocrinology and Metabolism, vol.282, pp.931-936, 2002.

B. W. Patterson, G. Zhao, and S. Klein, Improved accuracy and precision of gas chromatography/mass spectrometry measurements for metabolic tracers, Metabolism, vol.47, pp.706-712, 1998.

G. Paulino, C. B. De-la-serre, T. A. Knotts, P. J. Oort, J. W. Newman et al., Increased expression of receptors for orexigenic factors in nodose ganglion of diet-induced obese rats, American Journal of Physiology-Endocrinology and Metabolism, vol.296, pp.898-903, 2009.

N. Poupin, C. Bos, F. Mariotti, J. F. Huneau, D. Tome et al., The nature of the dietary protein impacts the tissue-to-diet 15N discrimination factors in laboratory rats, PLoS One, vol.6, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01186796

N. Poupin, F. Mariotti, J. F. Huneau, D. Hermier, and H. Fouillet, Natural isotopic signatures of variations in body nitrogen fluxes: a compartmental model analysis, PLoS computational biology, vol.10, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01186909

C. Ratner, A. N. Madsen, L. V. Kristensen, L. J. Skov, K. S. Pedersen et al., Impaired oxidative capacity due to decreased CPT1b levels as a contributing factor to fat accumulation in obesity, Am. J. Physiol. Regul. Integr. Comp. Physiol, vol.308, pp.973-982, 2015.

Y. Schutz, J. P. Flatt, and E. Jequier, Failure of Dietary-Fat Intake to Promote Fat Oxidation -a Factor Favoring the Development of Obesity, American Journal of Clinical Nutrition, vol.50, pp.307-314, 1989.

P. She, K. C. Olson, Y. Kadota, A. Inukai, Y. Shimomura et al., Leucine and protein metabolism in obese Zucker rats, PloS One, vol.8, p.59443, 2013.

R. Stoger, The thrifty epigenotype: an acquired and heritable predisposition for obesity and diabetes?, Bioessays, vol.30, pp.156-166, 2008.

A. Tchernof and J. P. Despres, Pathophysiology of Human Visceral Obesity: An Update, Physiological Reviews, vol.93, pp.359-404, 2013.

P. Tessari, D. Cecchet, A. Cosma, L. Puricelli, R. Millioni et al., Insulin resistance of amino acid and protein metabolism in type 2 diabetes, Clin Nutr, vol.30, pp.267-272, 2011.

P. Tessari, A. Cosma, M. Vettore, R. Millioni, L. Puricelli et al., Fibrinogen kinetics and protein turnover in obese non-diabetic males: effects of insulin, Diabetes Metab. Res. Rev, vol.26, pp.50-58, 2010.

G. Tulipano, A. V. Vergoni, D. Soldi, E. E. Muller, and D. Cocchi, Characterization of the resistance to the anorectic and endocrine effects of leptin in obesity-prone and obesityresistant rats fed a high-fat diet, J Endocrinol, vol.183, pp.289-298, 2004.

R. G. Walsh, S. He, and C. T. Yarnes, Compound-specific ?13C and ?15N analysis of amino acids: a rapid, chloroformate-based method for ecological studies, Rapid Communications in Mass Spectrometry, vol.28, pp.96-108, 2014.

T. J. Wang, M. G. Larson, R. S. Vasan, S. Cheng, E. P. Rhee et al., Metabolite profiles and the risk of developing diabetes, Nat. Med, vol.17, pp.448-483, 2011.

X. Wang, J. Choi, J. I. Joo, D. H. Kim, T. S. Oh et al., Differential expression of liver proteins between obesity-prone and obesity-resistant rats in response to a high-fat diet, Br. J. Nutr, vol.106, pp.612-626, 2011.

N. M. Wheadon, M. Mcgee, G. R. Edwards, and R. J. Dewhurst, Plasma nitrogen isotopic fractionation and feed efficiency in growing beef heifers, Br. J. Nutr, vol.111, pp.1705-1711, 2014.

N. Wolf, S. D. Newsome, J. Peters, and M. L. Fogel, Variability in the routing of dietary proteins and lipids to consumer tissues influences tissue-specific isotopic discrimination, vol.29, pp.1448-1456, 2015.

P. Würtz, V. Mäkinen, P. Soininen, A. J. Kangas, T. Tukiainen et al., Metabolic signatures of insulin resistance in 7,098 young adults, Diabetes, vol.61, pp.1372-1380, 2012.

M. Yamakado, K. Nagao, A. Imaizumi, M. Tani, A. Toda et al., Plasma Free Amino Acid Profiles Predict FourYear Risk of Developing Diabetes, Metabolic Syndrome, Dyslipidemia, and Hypertension in Japanese Population, 2015.

X. Zhao, Q. Han, Y. Liu, C. Sun, X. Gang et al., The Relationship between Branched-Chain Amino Acid Related Metabolomic Signature and Insulin Resistance: A Systematic Review, J Diabetes Res, p.2794591, 2016.

Q. Zhou, J. Du, Z. Hu, K. Walsh, and X. H. Wang, Evidence for adipose-muscle cross talk: opposing regulation of muscle proteolysis by adiponectin and Fatty acids, Endocrinology, vol.148, pp.5696-5705, 2007.

E. Belloto, F. Diraison, and A. Basset, Determination of protein replacement rates by deuterated water: validation of underlying assumptions, Am J Physiol-Endoc M, vol.292, pp.1340-1347, 2007.

R. Busch, Y. K. Kim, and R. A. Neese, Measurement of protein turnover rates by heavy water labeling of nonessential amino acids, Bba-Gen Subjects, vol.1760, pp.730-744, 2006.

H. G. Gasier, J. D. Fluckey, and S. F. Previs, The application of 2H2O to measure skeletal muscle protein synthesis, Nutr Metab, p.31, 2010.

C. Martinez-del-rio, A. , and R. , Beyond the reaction progress variable: the meaning and significance of isotopic incorporation data, Oecologia, vol.156, pp.765-772, 2008.

C. Martinez-del-rio and S. A. Carleton, How fast and how faithful: the dynamics of isotopic incorporation into animal tissues, J Mammal, vol.93, pp.353-359, 2012.

M. F. Fuller and P. J. Reeds, Nitrogen cycling in the gut, Annual review of nutrition, vol.18, pp.385-411, 1998.

R. H. Erickson and Y. S. Kim, Digestion and absorption of dietary protein, Annual review of medicine, vol.41, pp.133-142, 1990.

C. Gaudichon, N. Roos, S. Mahe, H. Sick, C. Bouley et al., Gastric emptying regulates the kinetics of nitrogen absorption from 15N-labeled milk and 15N-labeled yogurt in miniature pigs, The Journal of nutrition, vol.124, issue.10, pp.1970-1977, 1994.

C. Peraino, Q. R. Rogers, M. Yoshida, M. L. Chen, and A. E. Harper, Observations on protein digestion in vivo. II. Dietary factors affecting the rate of disappearance of casein from the gastrointestinal tract, Canadian journal of biochemistry and physiology, vol.37, pp.1475-91, 1959.

H. Fouillet, C. Gaudichon, F. Mariotti, C. Bos, J. F. Huneau et al., Energy nutrients modulate the splanchnic sequestration of dietary nitrogen in humans: a compartmental analysis, American journal of physiology Endocrinology and metabolism, vol.281, issue.2, pp.248-60, 2001.

S. Mahe, N. Roos, R. Benamouzig, L. Davin, C. Luengo et al., Gastrojejunal kinetics and the digestion of [15N]beta-lactoglobulin and casein in humans: the influence of the nature and quantity of the protein, The American journal of clinical nutrition, vol.63, issue.4, pp.546-52, 1996.

Y. Boirie, M. Dangin, P. Gachon, M. P. Vasson, J. L. Maubois et al., Slow and fast dietary proteins differently modulate postprandial protein accretion, Proceedings of the National Academy of Sciences of the United States of America, vol.94, issue.26, pp.14930-14935, 1997.

A. M. Nassl, I. Rubio-aliaga, H. Fenselau, M. K. Marth, G. Kottra et al., Amino acid absorption and homeostasis in mice lacking the intestinal peptide transporter PEPT1, American journal of physiology Gastrointestinal and liver physiology, vol.301, issue.1, pp.128-165, 2011.

G. Wu, Intestinal mucosal amino acid catabolism, The Journal of nutrition, vol.128, issue.8, pp.1249-52, 1998.

E. P. Neis, S. Sabrkhany, I. Hundscheid, D. Schellekens, K. Lenaerts et al., Human splanchnic amino-acid metabolism, Amino acids, vol.49, issue.1, pp.161-72, 2017.

L. Buraczewska, Secretion of nitrogenous compounds in the small intestine of pigs, Acta physiologica Polonica, vol.30, issue.2, pp.319-345, 1979.

F. Blachier, F. Mariotti, J. F. Huneau, and T. D. , Effects of amino acid-derived luminal metabolites on the colonic epithelium and physiopathological consequences, Amino acids, vol.33, issue.4, pp.547-62, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01186779

B. Stoll, D. G. Burrin, J. Henry, H. Yu, F. Jahoor et al., Dietary amino acids are the preferential source of hepatic protein synthesis in piglets, The Journal of nutrition, vol.128, issue.9, pp.1517-1541, 1998.

G. Biolo, P. Tessari, S. Inchiostro, D. Bruttomesso, C. Fongher et al., Leucine and phenylalanine kinetics during mixed meal ingestion: a multiple tracer approach, The American journal of physiology, vol.262, issue.4, pp.455-63, 1992.

Y. M. Yu, D. A. Wagner, E. E. Tredget, J. A. Walaszewski, J. F. Burke et al., Quantitative role of splanchnic region in leucine metabolism: L-[1-13C,15N]leucine and substrate balance studies, The American journal of physiology, vol.259, issue.1, pp.36-51, 1990.

E. Volpi, B. Mittendorfer, S. E. Wolf, and R. R. Wolfe, Oral amino acids stimulate muscle protein anabolism in the elderly despite higher first-pass splanchnic extraction, The American journal of physiology, vol.277, issue.3, pp.513-533, 1999.

G. Wu, Amino acids: metabolism, functions, and nutrition, Amino acids, vol.37, issue.1, pp.1-17, 2009.

S. R. Van-der-schoor, D. L. Wattimena, J. Huijmans, A. Vermes, and J. B. Van-goudoever, The gut takes nearly all: threonine kinetics in infants, The American journal of clinical nutrition, vol.86, issue.4, pp.1132-1140, 2007.

M. W. Schaart, H. Schierbeek, S. R. Van-der-schoor, B. Stoll, D. G. Burrin et al., Threonine utilization is high in the intestine of piglets, The Journal of nutrition, vol.135, issue.4, pp.765-70, 2005.

G. Clarke, R. M. Stilling, P. J. Kennedy, C. Stanton, J. F. Cryan et al., Minireview: Gut microbiota: the neglected endocrine organ, Molecular endocrinology, vol.28, issue.8, pp.1221-1259, 2014.

V. R. Young and J. S. Marchini, Mechanisms and nutritional significance of metabolic responses to altered intakes of protein and amino acids, with reference to nutritional adaptation in humans, The American journal of clinical nutrition, vol.51, issue.2, pp.270-89, 1990.

J. T. Brosnan and M. E. Brosnan, Branched-chain amino acids: enzyme and substrate regulation, The Journal of nutrition, vol.136, issue.1, pp.207-218, 2006.

K. N. Frayn, K. Khan, S. W. Coppack, and M. Elia, Amino acid metabolism in human subcutaneous adipose tissue in vivo, Clinical science, vol.80, issue.5, pp.471-475, 1991.

M. Watford, Glutamine and glutamate metabolism across the liver sinusoid, The Journal of nutrition, vol.130, pp.983-990, 2000.

M. Yudkoff, Interactions in the Metabolism of Glutamate and the Branched-Chain Amino Acids and Ketoacids in the CNS, Neurochemical research, vol.42, issue.1, pp.10-18, 2017.

H. Akashi and T. Gojobori, Metabolic efficiency and amino acid composition in the proteomes of Escherichia coli and Bacillus subtilis, Proceedings of the National Academy of Sciences of the United States of America, vol.99, issue.6, pp.3695-700, 2002.

G. Wu, S. M. Morris, and J. , Arginine metabolism: nitric oxide and beyond, The Biochemical journal, vol.336, pp.1-17, 1998.

M. C. Van-de-poll, P. B. Soeters, N. E. Deutz, K. C. Fearon, and C. H. Dejong, Renal metabolism of amino acids: its role in interorgan amino acid exchange, The American journal of clinical nutrition, vol.79, issue.2, pp.185-97, 2004.

I. D. Weiner and J. W. Verlander, Renal ammonia metabolism and transport, Comprehensive Physiology, vol.3, issue.1, pp.201-221, 2013.

C. J. Lynch and S. H. Adams, Branched-chain amino acids in metabolic signalling and insulin resistance, Nature reviews Endocrinology, vol.10, issue.12, pp.723-759, 2014.

Y. Zheng, U. Ceglarek, T. Huang, L. Li, J. Rood et al., Weight-loss diets and 2-y changes in circulating amino acids in 2 randomized intervention trials, The American journal of clinical nutrition, vol.103, issue.2, pp.505-516, 2016.

A. Braun, A. Vikari, W. Windisch, and K. Auerswald, Transamination governs nitrogen isotope heterogeneity of amino acids in rats, Journal of agricultural and food chemistry, vol.62, issue.32, pp.8008-8021, 2014.

S. Broer and A. Broer, Amino acid homeostasis and signalling in mammalian cells and organisms, The Biochemical journal, vol.474, issue.12, pp.1935-63, 2017.

A. Lilienbaum, Relationship between the proteasomal system and autophagy, International journal of biochemistry and molecular biology, vol.4, issue.1, p.1, 2013.

D. M. Bier, The energy costs of protein metabolism: lean and mean on Uncle Sam's team. The Role of Protein and Amino Acids in Sustaining and Enhancing Performance, pp.109-128, 1999.

Y. Cherel, D. Attaix, D. Rosolowska-huszcz, R. Belkhou, J. P. Robin et al., Whole-body and tissue protein synthesis during brief and prolonged fasting in the rat, Clinical science, vol.81, issue.5, pp.611-620, 1991.

L. Chevalier, C. Bos, C. Gryson, C. Luengo, S. Walrand et al., Highprotein diets differentially modulate protein content and protein synthesis in visceral and peripheral tissues in rats, Nutrition, vol.25, issue.9, pp.932-941, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01547463

L. Chevalier, C. Bos, D. Azzout-marniche, D. Dardevet, D. Tome et al., Dietary protein regulates hepatic constitutive protein anabolism in rats in a dose-dependent manner and independently of energy nutrient composition, American journal of physiology Regulatory, integrative and comparative physiology, vol.299, issue.6, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00967163

S. Danicke, R. Nieto, G. E. Lobley, M. F. Fuller, D. S. Brown et al., Responses in the absorptive phase in muscle and liver protein synthesis rates of growing rats, Archiv fur Tierernahrung, vol.52, issue.1, pp.41-52, 1999.

M. El-yousfi, D. Breuille, I. Papet, S. Blum, M. Andre et al., Increased tissue protein synthesis during spontaneous inflammatory bowel disease in HLA-B27 rats, Clinical science, vol.105, issue.4, pp.437-483, 2003.

E. Estornell, T. Barber, and J. Cabo, Protein synthesis in vivo in rats fed on lipid-rich liquid diets, The British journal of nutrition, vol.72, issue.4, pp.509-526, 1994.

E. Estornell, J. Cabo, and T. Barber, Protein synthesis is stimulated in nutritionally obese rats, The Journal of nutrition, vol.125, issue.5, pp.1309-1324, 1995.

P. J. Garlick, M. A. Mcnurlan, and V. R. Preedy, A rapid and convenient technique for measuring the rate of protein synthesis in tissues by injection of [3H]phenylalanine, The Biochemical journal, vol.192, issue.2, pp.719-742, 1980.

D. F. Goldspink and F. J. Kelly, Protein turnover and growth in the whole body, liver and kidney of the rat from the foetus to senility, The Biochemical journal, vol.217, issue.2, pp.507-523, 1984.

M. M. Jepson, J. M. Pell, P. C. Bates, and D. J. Millward, The effects of endotoxaemia on protein metabolism in skeletal muscle and liver of fed and fasted rats, The Biochemical journal, vol.235, issue.2, pp.329-365, 1986.

R. Masanés, J. Fernández-lópez, M. Alemany, X. Remesar, and I. Rafecas, Effect of dietary protein content on tissue protein synthesis rates in Zucker lean rats, Nutrition Research, vol.19, issue.7, pp.1017-1043, 1999.

M. A. Mcnurlan, E. B. Fern, and P. J. Garlick, Failure of leucine to stimulate protein synthesis in vivo, The Biochemical journal, vol.204, issue.3, pp.831-839, 1982.

M. A. Mcnurlan and P. J. Garlick, Protein synthesis in liver and small intestine in protein deprivation and diabetes, American Journal of Physiology-Endocrinology And Metabolism, vol.241, issue.3, pp.238-283, 1981.

M. A. Mcnurlan and P. J. Garlick, Contribution of rat liver and gastrointestinal tract to whole-body protein synthesis in the rat, The Biochemical journal, vol.186, issue.1, pp.381-384, 1980.

M. A. Mcnurlan, A. M. Tomkins, and P. J. Garlick, The effect of starvation on the rate of protein synthesis in rat liver and small intestine, The Biochemical journal, vol.178, issue.2, pp.373-382, 1979.

S. Mercier, D. Breuillé, L. Mosoni, C. Obled, and P. P. Mirand, Chronic inflammation alters protein metabolism in several organs of adult rats, The Journal of nutrition, vol.132, issue.7, pp.1921-1929, 2002.

L. Mosoni, M. C. Valluy, B. Serrurier, J. Prugnaud, C. Obled et al., Altered response of protein synthesis to nutritional state and endurance training in old rats, The American journal of physiology, vol.268, issue.2, pp.328-363, 1995.

V. R. Preedy and P. J. Garlick, Protein synthesis in skeletal muscle of the perfused rat hemicorpus compared with rates in the intact animal, The Biochemical journal, vol.214, issue.2, pp.433-475, 1983.

B. Ruot, F. Bechereau, G. Bayle, D. Breuille, and C. Obled, The response of liver albumin synthesis to infection in rats varies with the phase of the inflammatory process, Clinical science, vol.102, issue.1, pp.107-121, 2002.

C. L. Yuan, N. Sharma, D. A. Gilge, W. C. Stanley, Y. Li et al., Preserved protein synthesis in the heart in response to acute fasting and chronic food restriction despite reductions in liver and skeletal muscle, American journal of physiology Endocrinology and metabolism, vol.295, issue.1, pp.216-238, 2008.

E. B. Fern and P. J. Garlick, The specific radioactivity of the tissue free amino acid pool as a basis for measuring the rate of protein synthesis in the rat in vivo, Biochemical Journal, vol.142, issue.2, pp.413-422, 1974.

E. B. Fern and P. J. Garlick, The specific radioactivity of the precursor pool for estimates of the rate of protein synthesis, The Biochemical journal, vol.134, issue.4, pp.1127-1157, 1973.

P. J. Garlick, Measurement of liver protein-synthetic rate, The Biochemical journal, vol.126, issue.3, p.23, 1972.

Z. Glick, M. A. Mcnurlan, and P. J. Garlick, Protein synthesis rate in liver and muscle of rats following four days of overfeeding, The Journal of nutrition, vol.112, issue.2, pp.391-398, 1982.

V. M. Pain and P. J. Garlick, Effect of streptozotocin diabetes and insulin treatment on the rate of protein synthesis in tissues of the rat in vivo, The Journal of biological chemistry, vol.249, issue.14, pp.4510-4514, 1974.

A. G. Baillie and P. J. Garlick, Protein synthesis in adult skeletal muscle after tenotomy: responses to fasting and insulin infusion, Journal of applied physiology, vol.71, issue.3, pp.1020-1024, 1991.

A. G. Baillie and P. J. Garlick, Attenuated responses of muscle protein synthesis to fasting and insulin in adult female rats, The American journal of physiology, vol.262, issue.1, pp.1-5, 1992.

M. Faure, D. Moennoz, F. Montigon, C. Mettraux, D. Breuille et al., Dietary threonine restriction specifically reduces intestinal mucin synthesis in rats, The Journal of nutrition, vol.135, issue.3, pp.486-91, 2005.

M. M. Jepson, P. C. Bates, and D. J. Millward, The role of insulin and thyroid hormones in the regulation of muscle growth and protein turnover in response to dietary protein in the rat, The British journal of nutrition, vol.59, issue.3, pp.397-415, 1988.

B. C. Laurent, L. L. Moldawer, V. R. Young, B. R. Bistrian, and G. L. Blackburn, Whole-body leucine and muscle protein kinetics in rats fed varying protein intakes, The American journal of physiology, vol.246, issue.5, pp.444-51, 1984.

V. R. Preedy, M. A. Mcnurlan, and P. J. Garlick, Protein synthesis in skin and bone of the young rat, The British journal of nutrition, vol.49, issue.3, pp.517-540, 1983.

P. Reeds, R. Palmer, S. Hay, and D. Mcmillan, Protein synthesis in skeletal muscle measured at different times during a 24 hour period, Bioscience reports, vol.6, issue.2, pp.209-222, 1986.

D. Taillandier, C. Guezennec, P. Patureau-mirand, and X. Bigard, A high protein diet does not improve protein synthesis in the nonweight-bearing rat tibialis anterior muscle, The Journal of nutrition, vol.126, issue.1, p.266, 1996.

T. Chikenji, D. H. Elwyn, and J. M. Kinney, Protein synthesis rates in rat muscle and skin based on lysyl-tRNA radioactivity, Journal of Surgical Research, vol.34, issue.1, pp.68-82, 1983.

D. J. Millward, P. J. Garlick, D. O. Nnanyelugo, and J. C. Waterlow, The relative importance of muscle protein synthesis and breakdown in the regulation of muscle mass, The Biochemical journal, vol.156, issue.1, pp.185-193, 1976.

C. Obled and M. Arnal, Contribution of skin to whole-body protein synthesis in rats at different stages of maturity, JOURNAL OF NUTRITION-BALTIMORE AND SPRINGFIELD THEN BETHESDA, vol.122, p.2167, 1992.

M. Faure, D. Moënnoz, F. Montigon, L. B. Fay, D. Breuillé et al., Development of a rapid and convenient method to purify mucins and determine their in vivo synthesis rate in rats, Analytical biochemistry, vol.307, issue.2, pp.244-51, 2002.

M. Faure, F. Choné, C. Mettraux, J. Godin, F. Béchereau et al., Threonine utilization for synthesis of acute phase proteins, intestinal proteins, and mucins is increased during sepsis in rats, The Journal of nutrition, vol.137, issue.7, pp.1802-1809, 2007.

C. Obled, I. Papet, and D. Breuille, Metabolic bases of amino acid requirements in acute diseases, Current opinion in clinical nutrition and metabolic care, vol.5, issue.2, pp.189-97, 2002.

S. E. Samuels, D. Taillandier, E. Aurousseau, Y. Cherel, L. Maho et al., Gastrointestinal tract protein synthesis and mRNA levels for proteolytic systems in adult fasted rats, The American journal of physiology, vol.271, issue.2, pp.232-240, 1996.

R. Biggs and F. W. Booth, Protein synthesis rate is not suppressed in rat heart during senescence, American Journal of Physiology-Heart and Circulatory Physiology, vol.258, issue.1, pp.207-218, 1990.

K. N. Jeejeebhoy, A. Bruce-robertson, J. Ho, and U. Sodtke, The effect of cortisol on the synthesis of rat plasma albumin, fibrinogen and transferrin, The Biochemical journal, vol.130, issue.2, pp.533-541, 1972.

I. Papet, D. Dardevet, C. Sornet, F. Bechereau, J. Prugnaud et al., Acute phase protein levels and thymus, spleen and plasma protein synthesis rates differ in adult and old rats, The Journal of nutrition, vol.133, issue.1, pp.215-224, 2003.

J. C. Waterlow and J. C. Waterlow, Protein turnover, 2006.

K. W. Mcmahon and M. D. Mccarthy, Embracing variability in amino acid ?15N fractionation: mechanisms, implications, and applications for trophic ecology, Ecosphere, vol.7, issue.12, 2016.

G. Wu, Amino acids: biochemistry and nutrition, 2013.

S. M. Morris, Regulation of enzymes of the urea cycle and arginine metabolism, Annual review of nutrition, vol.22, pp.87-105, 2002.

G. Wu, Urea synthesis in enterocytes of developing pigs, The Biochemical journal, vol.312, pp.717-740, 1995.

M. Häggström, Medical gallery of Mikael Häggström, Wikiversity Journal of Medicine, vol.1, issue.2, 2014.

K. Hayase, H. Yokogoshi, and A. Yoshida, Effect of dietary proteins and amino acid deficiencies on urinary excretion of nitrogen and the urea synthesizing system in rats, The Journal of nutrition, vol.110, issue.7, pp.1327-1364, 1980.

E. Herrera, R. H. Knopp, and N. Freinkel, Carbohydrate metabolism in pregnancy. VI. Plasma fuels, insulin, liver composition, gluconeogenesis, and nitrogen metabolism during late gestation in the fed and fasted rat, The Journal of clinical investigation, vol.48, issue.12, pp.2260-72, 1969.

G. B. Carey, C. Cheung, N. S. Cohen, S. Brusilow, and L. Raijman, Regulation of urea and citrulline synthesis under physiological conditions, Biochemical Journal, vol.292, issue.1, pp.241-248, 1993.

S. Yamamoto, T. Korin, M. Anzai, M. F. Wang, A. Hosoi et al., Comparative effects of protein, protein hydrolysate and amino acid diets on nitrogen metabolism of normal, protein-deficient, gastrectomized or hepatectomized rats, The Journal of nutrition, vol.115, issue.11, pp.1436-1482, 1985.

V. Phromphetcharat, A. Jackson, P. Dass, and T. Welbourne, Ammonia partitioning between glutamine and urea: Interorgan participation in metabolic acidosis, Kidney international, vol.20, issue.5, pp.598-605, 1981.

A. E. El-khoury, N. K. Fukagawa, M. Sanchez, R. H. Tsay, R. E. Gleason et al., Validation of the tracer-balance concept with reference to leucine: 24-h intravenous tracer studies with L, The American journal of clinical nutrition, vol.59, issue.5, pp.1000-1011, 1994.

A. E. El-khoury, A. M. Ajami, N. K. Fukagawa, T. E. Chapman, and V. R. Young, Diurnal pattern of the interrelationships among leucine oxidation, urea production, and hydrolysis in humans, American Journal of Physiology-Endocrinology And Metabolism, vol.271, issue.3, pp.563-73, 1996.

A. A. Jackson, M. S. Danielsen, and S. Boyes, A noninvasive method for measuring urea kinetics with a single dose of [15N15N]urea in free-living humans, The Journal of nutrition, vol.123, issue.12, pp.2129-2165, 1993.

C. L. Long, M. Jeevanandam, and J. M. Kinney, Metabolism and recycling of urea in man, The American journal of clinical nutrition, vol.31, issue.8, pp.1367-82, 1978.

H. Younes, C. Demigne, and C. Remesy, Acidic fermentation in the caecum increases absorption of calcium and magnesium in the large intestine of the rat, The British journal of nutrition, vol.75, issue.2, pp.301-315, 1996.

F. Mariotti, M. E. Pueyo, D. Tome, S. Berot, R. Benamouzig et al., The influence of the albumin fraction on the bioavailability and postprandial utilization of pea protein given selectively to humans, The Journal of nutrition, vol.131, issue.6, pp.1706-1719, 2001.

H. Younes, K. A. Garleb, S. R. Behr, C. Demigné, and C. Rémésy, Dietary fiber stimulates the extrarenal route of nitrogen excretion in partially nephrectomized rats, The Journal of Nutritional Biochemistry, vol.9, issue.11, pp.613-633, 1998.

F. Mariotti, M. E. Pueyo, D. Tomé, R. Benamouzig, and S. Mahé, Guar gum does not impair the absorption and utilization of dietary nitrogen but affects early endogenous urea kinetics in humans, The American journal of clinical nutrition, vol.74, issue.4, pp.487-93, 2001.

C. Rose, A. Parker, B. Jefferson, and E. Cartmell, The Characterization of Feces and Urine: A Review of the Literature to Inform Advanced Treatment Technology, Critical reviews in environmental science and technology, vol.45, issue.17, pp.1827-79, 2015.

W. M. Rand, P. L. Pellett, and V. R. Young, Meta-analysis of nitrogen balance studies for estimating protein requirements in healthy adults, The American journal of clinical nutrition, vol.77, issue.1, pp.109-136, 2003.

D. H. Calloway, A. C. Odell, and S. Margen, Sweat and miscellaneous nitrogen losses in human balance studies, The Journal of nutrition, vol.101, issue.6, pp.775-86, 1971.

P. De-feo, Fed state protein metabolism in diabetes mellitus, The Journal of nutrition, vol.128, issue.2, pp.328-360, 1998.

M. Arnal, C. Obled, D. Attaix, P. Patureau-mirand, and D. Bonin, Dietary control of protein turnover, Diabete & metabolisme, vol.13, issue.6, pp.630-672, 1987.

Y. Luiking and N. Deutz, Interorgan exchange of amino acids: what is the driving force? Energy and Protein Metabolism and Nutrition, p.319, 2007.

P. Tessari and G. Garibotto, Interorgan amino acid exchange, Current opinion in clinical nutrition and metabolic care, vol.3, issue.1, pp.51-58, 2000.

J. T. Brosnan, Interorgan amino acid transport and its regulation, The Journal of nutrition, vol.133, issue.6, pp.2068-72, 2003.

J. C. Waterlow, The mysteries of nitrogen balance, Nutrition research reviews, vol.12, issue.1, pp.25-54, 1999.

G. M. Price, D. Halliday, P. J. Pacy, M. R. Quevedo, and D. J. Millward, Nitrogen homeostasis in man: influence of protein intake on the amplitude of diurnal cycling of body nitrogen, Clinical science, vol.86, issue.1, pp.91-102, 1994.

M. R. Quevedo, G. M. Price, D. Halliday, P. J. Pacy, and D. J. Millward, Nitrogen homoeostasis in man: diurnal changes in nitrogen excretion, leucine oxidation and whole body leucine kinetics during a reduction from a high to a moderate protein intake, Clinical science, vol.86, issue.2, pp.185-93, 1994.

H. Fouillet, F. Mariotti, C. Gaudichon, C. Bos, and D. Tomé, Peripheral and splanchnic metabolism of dietary nitrogen are differently affected by the protein source in humans as assessed by compartmental modeling, The Journal of nutrition, vol.132, issue.1, pp.125-158, 2002.

C. Gaudichon, S. Mahe, R. Benamouzig, C. Luengo, H. Fouillet et al., Net postprandial utilization of [15N]-labeled milk protein nitrogen is influenced by diet composition in humans, The Journal of nutrition, vol.129, issue.4, pp.400-406, 1999.

K. Hara, K. Yonezawa, Q. P. Weng, M. T. Kozlowski, C. Belham et al., Amino acid sufficiency and mTOR regulate p70 S6 kinase and eIF-4E BP1 through a common effector mechanism, The Journal of biological chemistry, vol.273, issue.23, pp.14484-94, 1998.

Y. Boirie, K. R. Short, B. Ahlman, M. Charlton, and K. S. Nair, Tissue-specific regulation of mitochondrial and cytoplasmic protein synthesis rates by insulin, Diabetes, vol.50, issue.12, pp.2652-2660, 2001.

J. Nygren and K. S. Nair, Differential regulation of protein dynamics in splanchnic and skeletal muscle beds by insulin and amino acids in healthy human subjects, Diabetes, vol.52, issue.6, pp.1377-85, 2003.

S. E. Meek, M. Persson, G. C. Ford, and K. S. Nair, Differential regulation of amino acid exchange and protein dynamics across splanchnic and skeletal muscle beds by insulin in healthy human subjects, Diabetes, vol.47, issue.12, pp.1824-1859, 1998.

K. S. Nair, G. C. Ford, K. Ekberg, E. Fernqvist-forbes, and J. Wahren, Protein dynamics in whole body and in splanchnic and leg tissues in type I diabetic patients, The Journal of clinical investigation, vol.95, issue.6, pp.2926-2963, 1995.

H. Abdulla, K. Smith, P. J. Atherton, and I. Idris, Role of insulin in the regulation of human skeletal muscle protein synthesis and breakdown: a systematic review and meta-analysis, Diabetologia, vol.59, issue.1, pp.44-55, 2016.

D. Cuthbertson, K. Smith, J. Babraj, L. G. Waddell, T. Atherton et al., Anabolic signaling deficits underlie amino acid resistance of wasting, aging muscle, The FASEB Journal, vol.19, issue.3, pp.422-426, 2005.

D. A. Fryburg, L. A. Jahn, S. A. Hill, D. M. Oliveras, and E. J. Barrett, Insulin and insulin-like growth factor-I enhance human skeletal muscle protein anabolism during hyperaminoacidemia by different mechanisms, Journal of Clinical Investigation, vol.96, issue.4, p.1722, 1995.

E. Volpi, A. A. Ferrando, C. W. Yeckel, K. D. Tipton, and R. R. Wolfe, Exogenous amino acids stimulate net muscle protein synthesis in the elderly, The Journal of clinical investigation, vol.101, issue.9, pp.2000-2007, 1998.

M. Sheffield-moore, R. R. Wolfe, D. C. Gore, S. E. Wolf, D. M. Ferrer et al., Combined effects of hyperaminoacidemia and oxandrolone on skeletal muscle protein synthesis, American journal of physiology Endocrinology and metabolism, vol.278, issue.2, pp.273-282, 2000.

W. Bennet, A. Connacher, C. Scrimgeour, and M. Rennie, The effect of amino acid infusion on leg protein turnover assessed by L-[15N] phenylalanine and L-[1-13C] leucine exchange, European journal of clinical investigation, vol.20, issue.1, pp.41-50, 1990.

G. Biolo, K. D. Tipton, S. Klein, and R. R. Wolfe, An abundant supply of amino acids enhances the metabolic effect of exercise on muscle protein, The American journal of physiology, vol.273, issue.1, pp.122-131, 1997.

K. D. Tipton, A. A. Ferrando, S. M. Phillips, D. Doyle, J. Wolfe et al., Postexercise net protein synthesis in human muscle from orally administered amino acids, The American journal of physiology, vol.276, issue.4, pp.628-662, 1999.

C. C. Carroll, J. D. Fluckey, R. H. Williams, D. H. Sullivan, and T. A. Trappe, Human soleus and vastus lateralis muscle protein metabolism with an amino acid infusion, American journal of physiology Endocrinology and metabolism, vol.288, issue.3, pp.479-85, 2005.

T. Corring, W. B. Souffrant, B. Darcy-vrillon, G. Gebhartd, J. P. Laplace et al., Exogenous and endogenous contribution to nitrogen fluxes in the digestive tract of pigs fed a casein diet. I. Contributions of nitrogen from the exocrine pancreatic secretion and the bile, Reproduction, nutrition, development, vol.30, issue.6, pp.717-739, 1990.
URL : https://hal.archives-ouvertes.fr/hal-00899303

F. Haman, G. Zwingelstein, and J. M. Weber, Effects of hypoxia and low temperature on substrate fluxes in fish: plasma metabolite concentrations are misleading, The American journal of physiology, vol.273, issue.6, pp.2046-54, 1997.

K. Y. Guggenheim, Rudolf Schoenheimer and the concept of the dynamic state of body constituents, The Journal of nutrition, vol.121, issue.11, pp.1701-1705, 1991.

M. A. Mcnurlan and P. J. Garlick, Influence of nutrient intake on protein turnover, Diabetes/metabolism reviews, vol.5, issue.2, pp.165-89, 1989.

P. J. Reeds, P. Haggarty, K. W. Wahle, and J. M. Fletcher, Tissue and whole-body protein synthesis in immature Zucker rats and their relationship to protein deposition, The Biochemical journal, vol.204, issue.2, pp.393-401, 1982.

H. G. Gasier, S. E. Riechman, M. P. Wiggs, S. F. Previs, and J. D. Fluckey, A comparison of 2H2O and phenylalanine flooding dose to investigate muscle protein synthesis with acute exercise in rats, American journal of physiology Endocrinology and metabolism, vol.297, issue.1, pp.252-261, 2008.

T. Oshima and N. Tamiya, Mechanism of transaminase action, The Biochemical journal, vol.78, pp.116-125, 1961.

X. J. Zhang, D. L. Chinkes, Y. Sakurai, and R. R. Wolfe, An isotopic method for measurement of muscle protein fractional breakdown rate in vivo, The American journal of physiology, vol.270, issue.5, pp.759-67, 1996.

R. R. Wolfe and D. L. Chinkes, Isotope tracers in metabolic research: principles and practice of kinetic analysis, 2005.

J. Kaur, A comprehensive review on metabolic syndrome, Cardiology research and practice, p.943162, 2014.

M. A. Cornier, D. Dabelea, T. L. Hernandez, R. C. Lindstrom, A. J. Steig et al., The metabolic syndrome, Endocrine reviews, vol.29, issue.7, pp.777-822, 2008.

S. M. Grundy, Metabolic syndrome pandemic. Arteriosclerosis, thrombosis, and vascular biology, vol.28, pp.629-665, 2008.

A. A. Abajobir, K. H. Abate, C. Abbafati, K. M. Abbas, F. Abd-allah et al., Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks, The Lancet, vol.390, issue.17, pp.32366-32374, 2016.

J. L. Kuk and C. I. Ardern, Age and sex differences in the clustering of metabolic syndrome factors: association with mortality risk, Diabetes care, vol.33, issue.11, pp.2457-61, 2010.

K. G. Alberti, P. Zimmet, and J. Shaw, Metabolic syndrome--a new world-wide definition. A Consensus Statement from the International Diabetes Federation, British Diabetic Association, vol.23, issue.5, pp.469-80, 2006.

M. Yamakado, K. Nagao, A. Imaizumi, M. Tani, A. Toda et al., Plasma Free Amino Acid Profiles Predict Four-Year Risk of Developing Diabetes, Metabolic Syndrome, Dyslipidemia, and Hypertension in Japanese Population, Scientific reports, vol.5, p.11918, 2015.

D. B. West, C. N. Boozer, D. L. Moody, and R. L. Atkinson, Dietary obesity in nine inbred mouse strains, The American journal of physiology, vol.262, issue.6, pp.1025-1057, 1992.

D. Azzout-marniche, C. Chaumontet, N. A. Nadkarni, J. Piedcoq, G. Fromentin et al., Food intake and energy expenditure are increased in high-fat-sensitive but not in highcarbohydrate-sensitive obesity-prone rats, American journal of physiology Regulatory, integrative and comparative physiology, vol.307, issue.3, pp.299-309, 2014.

P. C. Even, N. A. Nadkarni, C. Chaumontet, D. Azzout-marniche, G. Fromentin et al., Identification of behavioral and metabolic factors predicting adiposity sensitivity to both high fat and high carbohydrate diets in rats, Frontiers in physiology, vol.2, p.96, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01611421

S. K. Wong, K. Y. Chin, F. H. Suhaimi, A. Fairus, and S. Ima-nirwana, Animal models of metabolic syndrome: a review, Nutrition & metabolism, vol.13, p.65, 2016.

A. De-artinano, A. , M. Castro, and M. , Experimental rat models to study the metabolic syndrome, The British journal of nutrition, vol.102, issue.9, pp.1246-53, 2009.

R. Buettner, J. Scholmerich, and L. C. Bollheimer, High-fat diets: modeling the metabolic disorders of human obesity in rodents, Obesity, vol.15, issue.4, pp.798-808, 2007.

P. Wurtz, V. P. Makinen, P. Soininen, A. J. Kangas, T. Tukiainen et al., Metabolic signatures of insulin resistance in 7,098 young adults, Diabetes, vol.61, issue.6, pp.1372-80, 2012.

E. Tai, M. Tan, R. Stevens, Y. Low, M. Muehlbauer et al., Insulin resistance is associated with a metabolic profile of altered protein metabolism in Chinese and Asian-Indian men, Diabetologia, vol.53, issue.4, pp.757-67, 2010.

V. Pennetti, A. Galante, L. Zonta-sgaramella, and S. D. Jayakar, Relation between obesity, insulinemia, and serum amino acid concentrations in a sample of Italian adults, Clinical chemistry, vol.28, issue.11, pp.2219-2243, 1982.

C. B. Newgard, J. An, J. R. Bain, M. J. Muehlbauer, R. D. Stevens et al., A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance, Cell Metabolism, vol.9, issue.4, pp.311-337, 2009.

K. S. Nair, J. S. Garrow, C. Ford, R. F. Mahler, and D. Halliday, Effect of poor diabetic control and obesity on whole body protein metabolism in man, Diabetologia, vol.25, issue.5, pp.400-403, 1983.

O. Fiehn, W. T. Garvey, J. W. Newman, K. H. Lok, C. L. Hoppel et al., Plasma metabolomic profiles reflective of glucose homeostasis in non-diabetic and type 2 diabetic obese AfricanAmerican women, PloS one, vol.5, issue.12, p.15234, 2010.

P. Felig, E. Marliss, G. F. Cahill, and J. , Plasma amino acid levels and insulin secretion in obesity, The New England journal of medicine, vol.281, issue.15, pp.811-817, 1969.

B. A. Menge, H. Schrader, P. R. Ritter, M. Ellrichmann, W. Uhl et al., Selective amino acid deficiency in patients with impaired glucose tolerance and type 2 diabetes, Regulatory peptides, vol.160, issue.1-3, pp.75-80, 2010.

S. Cheng, E. P. Rhee, M. G. Larson, G. D. Lewis, E. L. Mccabe et al., Metabolite profiling identifies pathways associated with metabolic risk in humans, Circulation, vol.125, issue.18, pp.2222-2253, 2012.

B. Caballero, N. Finer, and R. J. Wurtman, Plasma amino acids and insulin levels in obesity: response to carbohydrate intake and tryptophan supplements, Metabolism: clinical and experimental, vol.37, issue.7, pp.672-678, 1988.

B. Caballero and R. J. Wurtman, Differential effects of insulin resistance on leucine and glucose kinetics in obesity, Metabolism: clinical and experimental, vol.40, issue.1, pp.51-59, 1991.

L. El-khairy, P. M. Ueland, O. Nygard, H. Refsum, and S. E. Vollset, Lifestyle and cardiovascular disease risk factors as determinants of total cysteine in plasma: the Hordaland Homocysteine Study, The American journal of clinical nutrition, vol.70, issue.6, pp.1016-1040, 1999.

S. H. Adams, Emerging perspectives on essential amino acid metabolism in obesity and the insulin-resistant state, Adv Nutr, vol.2, issue.6, pp.445-56, 2011.

T. J. Wang, M. G. Larson, R. S. Vasan, S. Cheng, E. P. Rhee et al., Metabolite profiles and the risk of developing diabetes, Nature medicine, vol.17, issue.4, pp.448-53, 2011.

S. E. Mccormack, O. Shaham, M. A. Mccarthy, A. A. Deik, T. J. Wang et al., Circulating branched-chain amino acid concentrations are associated with obesity and future insulin resistance in children and adolescents, Pediatric obesity, vol.8, issue.1, pp.52-61, 2013.

D. Trico, H. Prinsen, C. Giannini, R. De-graaf, C. Juchem et al., Elevated alpha-Hydroxybutyrate and Branched-Chain Amino Acid Levels Predict Deterioration of Glycemic Control in Adolescents, The Journal of clinical endocrinology and metabolism, vol.102, issue.7, pp.2473-81, 2017.

N. Geidenstam, P. Spegel, H. Mulder, K. Filipsson, M. Ridderstrale et al., Metabolite profile deviations in an oral glucose tolerance test-a comparison between lean and obese individuals, Obesity, vol.22, issue.11, pp.2388-95, 2014.

J. E. Ho, M. G. Larson, R. S. Vasan, A. Ghorbani, S. Cheng et al., Metabolite profiles during oral glucose challenge, Diabetes, vol.62, issue.8, pp.2689-98, 2013.

O. Shaham, R. Wei, T. J. Wang, C. Ricciardi, G. D. Lewis et al., Metabolic profiling of the human response to a glucose challenge reveals distinct axes of insulin sensitivity, Molecular systems biology, vol.4, p.214, 2008.

C. C. Lee, S. M. Watkins, C. Lorenzo, L. E. Wagenknecht, D. Il'yasova et al., Branched-Chain Amino Acids and Insulin Metabolism: The Insulin Resistance Atherosclerosis Study (IRAS), Diabetes care, vol.39, issue.4, pp.582-590, 2016.

G. Forlani, P. Vannini, G. Marchesini, M. Zoli, A. Ciavarella et al., Insulin-dependent metabolism of branched-chain amino acids in obesity, Metabolism: clinical and experimental, vol.33, issue.2, pp.147-50, 1984.

L. Q. Qin, P. Xun, D. Bujnowski, M. L. Daviglus, L. Van-horn et al., Higher branched-chain amino acid intake is associated with a lower prevalence of being overweight or obese in middle-aged East Asian and Western adults, The Journal of nutrition, vol.141, issue.2, pp.249-54, 2011.

Y. Li, Y. Li, L. Liu, Y. Chen, T. Zi et al., The ratio of dietary branched-chain amino acids is associated with a lower prevalence of obesity in young northern Chinese adults: An internet-based cross-sectional study, Nutrients, vol.7, issue.11, pp.9573-89, 2015.

Y. Takeshita, T. Takamura, Y. Kita, H. Ando, T. Ueda et al., Beneficial effect of branched-chain amino acid supplementation on glycemic control in chronic hepatitis C patients with insulin resistance: implications for type 2 diabetes, Metabolism: clinical and experimental, vol.61, issue.10, pp.1388-94, 2012.

S. B. Solerte, M. Fioravanti, E. Locatelli, R. Bonacasa, M. Zamboni et al., Improvement of blood glucose control and insulin sensitivity during a long-term (60 weeks) randomized study with amino acid dietary supplements in elderly subjects with type 2 diabetes mellitus, The American journal of cardiology, vol.101, issue.11A, 2008.

Y. Urata, K. Okita, K. Korenaga, K. Uchida, T. Yamasaki et al., The effect of supplementation with branched-chain amino acids in patients with liver cirrhosis, Hepatology research : the official journal of the Japan Society of Hepatology, vol.37, issue.7, pp.510-516, 2007.

C. Guillet, I. Delcourt, M. Rance, C. Giraudet, S. Walrand et al., Changes in basal and insulin and amino acid response of whole body and skeletal muscle proteins in obese men, The Journal of clinical endocrinology and metabolism, vol.94, issue.8, pp.3044-50, 2009.

C. R. Green, M. Wallace, A. S. Divakaruni, S. A. Phillips, A. N. Murphy et al., Branched-chain amino acid catabolism fuels adipocyte differentiation and lipogenesis, Nature chemical biology, vol.12, issue.1, pp.15-21, 2016.

M. A. Dunn and E. W. Hartsook, Comparative amino acid and protein metabolism in obese and nonobese Zucker rats, The Journal of nutrition, vol.110, issue.9, pp.1865-79, 1980.

Y. Kadota, T. Toyoda, Y. Kitaura, S. H. Adams, and Y. Shimomura, Regulation of hepatic branchedchain alpha-ketoacid dehydrogenase complex in rats fed a high-fat diet, Obesity research & clinical practice, vol.7, issue.6, pp.439-483, 2013.

Y. Kadota, T. Toyoda, M. Hayashi-kato, Y. Kitaura, and Y. Shimomura, Octanoic acid promotes branched-chain amino acid catabolisms via the inhibition of hepatic branched-chain alphaketo acid dehydrogenase kinase in rats, Metabolism: clinical and experimental, vol.64, issue.9, pp.1157-64, 2015.

Ø. Spydevold and B. Hokland, Oxidation of branched-chain amino acids in skeletal muscle and liver of rat Effects of octanoate and energy state, Biochimica et Biophysica Acta (BBA)-General Subjects, vol.676, issue.3, pp.279-88, 1981.

S. Sookoian and C. J. Pirola, Alanine and aspartate aminotransferase and glutamine-cycling pathway: their roles in pathogenesis of metabolic syndrome, World journal of gastroenterology, vol.18, issue.29, pp.3775-81, 2012.

N. Christopher and B. , Interplay between Lipids and Branched-Chain Amino Acids in Development of Insulin Resistance, Cell Metabolism, vol.15, issue.5, pp.606-620, 2012.

H. Kainulainen, J. J. Hulmi, and U. M. Kujala, Potential role of branched-chain amino acid catabolism in regulating fat oxidation. Exercise and sport sciences reviews, vol.41, pp.194-200, 2013.

B. Leclercq and B. Seve, Influence of adiposity (genetic or hormonal) on the metabolism of amino acids and nutritional responses, Reproduction, nutrition, development, vol.34, issue.6, pp.569-82, 1994.
URL : https://hal.archives-ouvertes.fr/hal-00899680

M. Stepien, D. Azzout-marniche, P. C. Even, N. Khodorova, G. Fromentin et al., Adaptation to a high protein diet progressively increases the postprandial accumulation of carbon skeletons from dietary amino acids in rats, American journal of physiology Regulatory, integrative and comparative physiology, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01455217

A. Solini, E. Bonora, R. Bonadonna, P. Castellino, and R. A. Defronzo, Protein metabolism in human obesity: relationship with glucose and lipid metabolism and with visceral adipose tissue, The Journal of clinical endocrinology and metabolism, vol.82, issue.8, pp.2552-2560, 1997.

L. Luzi, P. Castellino, and R. A. Defronzo, Insulin and hyperaminoacidemia regulate by a different mechanism leucine turnover and oxidation in obesity, The American journal of physiology, vol.270, issue.2, pp.273-81, 1996.

S. Chevalier, E. B. Marliss, J. A. Morais, M. Lamarche, and R. Gougeon, Whole-body protein anabolic response is resistant to the action of insulin in obese women, The American journal of clinical nutrition, vol.82, issue.2, pp.355-65, 2005.

S. Welle, R. R. Barnard, M. Statt, and J. M. Amatruda, Increased protein turnover in obese women, Metabolism: clinical and experimental, vol.41, issue.9, p.90133, 1992.

M. D. Jensen and M. W. Haymond, Protein metabolism in obesity: effects of body fat distribution and hyperinsulinemia on leucine turnover, The American journal of clinical nutrition, vol.53, issue.1, pp.172-178, 1991.

B. W. Patterson, J. F. Horowitz, G. Wu, M. Watford, S. W. Coppack et al., Regional muscle and adipose tissue amino acid metabolism in lean and obese women, American journal of physiology Endocrinology and metabolism, vol.282, issue.4, pp.931-937, 2002.

C. S. Katsanos, L. J. Mandarino, R. Gougeon, J. A. Morais, S. Chevalier et al., Determinants of whole-body protein metabolism in subjects with and without type 2 diabetes, Diabetes care, vol.19, issue.3, pp.128-161, 2008.

M. A. Staten, D. E. Matthews, and D. M. Bier, Leucine metabolism in type II diabetes mellitus, Diabetes, vol.35, issue.11, pp.1249-53, 1986.

P. Tessari, A. Coracina, E. Kiwanuka, M. Vedovato, M. Vettore et al., Effects of insulin on methionine and homocysteine kinetics in type 2 diabetes with nephropathy, Diabetes, vol.54, issue.10, pp.2968-76, 2005.

P. Halvatsiotis, K. R. Short, M. Bigelow, and K. S. Nair, Synthesis rate of muscle proteins, muscle functions, and amino acid kinetics in type 2 diabetes, Diabetes, vol.51, issue.8, pp.2395-404, 2002.

S. C. Denne, G. Brechtel, A. Johnson, E. A. Liechty, and A. D. Baron, Skeletal muscle proteolysis is reduced in noninsulin-dependent diabetes mellitus and is unaltered by euglycemic hyperinsulinemia or intensive insulin therapy, The Journal of Clinical Endocrinology & Metabolism, vol.80, issue.8, pp.2371-2378, 1995.

L. Luzi, A. S. Petrides, D. Fronzo, and R. A. , Different sensitivity of glucose and amino acid metabolism to insulin in NIDDM, Diabetes, vol.42, issue.12, pp.1868-77, 1993.

R. Barazzoni, E. Kiwanuka, M. Zanetti, M. Cristini, M. Vettore et al., Insulin acutely increases fibrinogen production in individuals with type 2 diabetes but not in individuals without diabetes, Diabetes, vol.52, issue.7, pp.1851-1857, 2003.

S. Pereira, E. B. Marliss, J. A. Morais, S. Chevalier, and R. Gougeon, Insulin resistance of protein metabolism in type 2 diabetes, Diabetes, vol.57, issue.1, pp.56-63, 2008.

R. J. Manders, R. Koopman, M. Beelen, A. P. Gijsen, W. K. Wodzig et al., The muscle protein synthetic response to carbohydrate and protein ingestion is not impaired in men with longstanding type 2 diabetes, American journal of physiology Endocrinology and metabolism, vol.138, issue.6, pp.1079-85, 2008.

D. T. Villareal, G. I. Smith, K. Shah, and B. Mittendorfer, Effect of weight loss on the rate of muscle protein synthesis during fasted and fed conditions in obese older adults, Obesity, vol.20, issue.9, pp.1780-1786, 2012.

G. I. Smith, D. T. Villareal, D. R. Sinacore, K. Shah, and B. Mittendorfer, Muscle protein synthesis response to exercise training in obese, older men and women, Medicine and science in sports and exercise, vol.44, issue.7, pp.1259-66, 2012.

L. C. Fillios and S. Saito, Hepatic Protein Synthesis and Lipid Metabolism in Genetically Obese Rats, Metabolism: clinical and experimental, vol.14, pp.734-779, 1965.

S. Adéchian, S. Giardina, D. Rémond, I. Papet, D. Buonocore et al., Excessive Energy Intake Does Not Modify Fed-state Tissue Protein Synthesis Rates in Adult Rats, Obesity, vol.17, issue.7, pp.1348-55, 2009.

E. Chanseaume, C. Giraudet, C. Gryson, S. Walrand, P. Rousset et al., Enhanced muscle mixed and mitochondrial protein synthesis rates after a high-fat or high-sucrose diet, Obesity, vol.15, issue.4, pp.853-862, 2007.

A. Masgrau, A. Mishellany-dutour, H. Murakami, A. M. Beaufrere, S. Walrand et al., Time-course changes of muscle protein synthesis associated with obesity-induced lipotoxicity, The Journal of physiology, vol.590, pp.5199-210, 1920.

S. R. Anderson, D. A. Gilge, A. L. Steiber, and S. F. Previs, Diet-induced obesity alters protein synthesis: tissue-specific effects in fasted versus fed mice, Metabolism: clinical and experimental, vol.57, issue.3, pp.347-54, 2008.

S. Southon, G. Livesey, J. M. Gee, and I. T. Johnson, Differences in intestinal protein synthesis and cellular proliferation in well-nourished rats consuming conventional laboratory diets, The British journal of nutrition, vol.53, issue.1, pp.87-95, 1985.

M. Domènech, F. J. López-soriano, N. Carbó, and J. M. Argilés, Amino acid metabolism in several tissues of the obese Zucker rat as indicated by the tissue accumulation of ?-amino [1-14 C] isobutyrate, Molecular and Cellular Biochemistry, vol.110, issue.2, pp.155-164, 1992.

S. H. Shah, D. R. Crosslin, C. S. Haynes, S. Nelson, C. B. Turer et al., Branched-chain amino acid levels are associated with improvement in insulin resistance with weight loss, Diabetologia, vol.55, issue.2, pp.321-351, 2012.

D. M. O'brien, Stable Isotope Ratios as Biomarkers of Diet for Health Research, Annual review of nutrition, vol.35, pp.565-94, 2015.

G. Tcherkez, Isotopie biologique: Introduction aux effets isotopiques et à leurs applications en biologie: Tec & Doc Lavoisier, 2010.

S. A. Macko, M. Estep, M. H. Engel, and P. Hare, Kinetic fractionation of stable nitrogen isotopes during amino acid transamination, Geochimica et cosmochimica acta, vol.50, issue.10, pp.2143-2149, 1986.

E. Melzer and H. L. Schmidt, Carbon isotope effects on the pyruvate dehydrogenase reaction and their importance for relative carbon-13 depletion in lipids, The Journal of biological chemistry, vol.262, issue.17, pp.8159-64, 1987.

L. Handley and J. A. Raven, The use of natural abundance of nitrogen isotopes in plant physiology and ecology, Plant, Cell & Environment, vol.15, issue.9, pp.965-85, 1992.

M. A. Rishavy, W. W. Cleland, and C. J. Lusty, 15N Isotope effects in glutamine hydrolysis catalyzed by carbamyl phosphate synthetase: evidence for a tetrahedral intermediate in the mechanism, Biochemistry, vol.39, issue.24, pp.7309-7324, 2000.

D. A. Hiller, V. Singh, M. Zhong, and S. A. Strobel, A two-step chemical mechanism for ribosomecatalysed peptide bond formation, Nature, vol.476, issue.7359, pp.236-245, 2011.

A. C. Seila, K. Okuda, S. Nunez, A. F. Seila, and S. A. Strobel, Kinetic isotope effect analysis of the ribosomal peptidyl transferase reaction, Biochemistry, vol.44, issue.10, pp.4018-4045, 2005.

J. Silfer, M. Engel, and S. Macko, Kinetic fractionation of stable carbon and nitrogen isotopes during peptide bond hydrolysis: experimental evidence and geochemical implications, Chemical Geology: Isotope Geoscience Section, vol.101, issue.3-4, pp.211-232, 1992.

J. L. Bada, M. J. Schoeninger, and A. Schimmelmann, Isotopic fractionation during peptide bond hydrolysis, Geochimica et cosmochimica acta, vol.53, issue.12, pp.3337-3378, 1989.

J. M. Hayes, Fractionation of carbon and hydrogen isotopes in biosynthetic processes, Reviews in mineralogy and geochemistry, vol.43, issue.1, pp.225-77, 2001.

M. L. Fogel and L. A. Cifuentes, Isotope fractionation during primary production, pp.73-98, 1993.

D. A. Schoeller, Isotope fractionation: why aren't we what we eat, Journal of Archaeological Science, vol.26, issue.6, pp.667-73, 1999.

N. Poupin, F. Mariotti, J. F. Huneau, D. Hermier, and H. Fouillet, Natural isotopic signatures of variations in body nitrogen fluxes: a compartmental model analysis, PLoS computational biology, vol.10, issue.10, p.1003865, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01186909

G. Wallin and J. Åqvist, The transition state for peptide bond formation reveals the ribosome as a water trap, Proceedings of the National Academy of Sciences, vol.107, issue.5, pp.1888-93, 2010.

J. H. Mccutchan, W. M. Lewis, C. Kendall, and C. C. Mcgrath, Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur, Oikos, vol.102, issue.2, pp.378-90, 2003.

S. Caut, E. Angulo, and F. Courchamp, Variation in discrimination factors (?15N and ?13C): the effect of diet isotopic values and applications for diet reconstruction, Journal of Applied Ecology, vol.46, issue.2, pp.443-53, 2009.

F. Huelsemann, K. Koehler, H. Braun, W. Schaenzer, and U. Flenker, Human dietary ?15N intake: representative data for principle food items, American journal of physical anthropology, vol.152, issue.1, pp.58-66, 2013.

B. J. Peterson and B. Fry, Stable isotopes in ecosystem studies, Annual review of ecology and systematics, vol.18, issue.1, pp.293-320, 1987.

G. Cantalapiedra-hijar, H. Fouillet, J. F. Huneau, A. Fanchone, M. Doreau et al., Relationship between efficiency of nitrogen utilization and isotopic nitrogen fractionation in dairy cows: contribution of digestion v. metabolism?, Animal, vol.10, issue.2, pp.221-230, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01260291

G. Cantalapiedra-hijar, I. Ortigues-marty, B. Sepchat, J. Agabriel, J. F. Huneau et al., Dietanimal fractionation of nitrogen stable isotopes reflects the efficiency of nitrogen assimilation in ruminants, The British journal of nutrition, vol.113, issue.7, pp.1158-69, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01133635

V. Balter, L. Simon, H. Fouillet, and C. Lecuyer, Box-modeling of 15N/14N in mammals, Oecologia, vol.147, issue.2, pp.212-234, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00133072

K. J. Petzke, H. Boeing, S. Klaus, and C. C. Metges, Carbon and nitrogen stable isotopic composition of hair protein and amino acids can be used as biomarkers for animal-derived dietary protein intake in humans, The Journal of nutrition, vol.135, issue.6, pp.1515-1535, 2005.

D. M. O'brien, A. R. Kristal, M. A. Jeannet, M. J. Wilkinson, A. Bersamin et al., Red blood cell ?15N: a novel biomarker of dietary eicosapentaenoic acid and docosahexaenoic acid intake, The American journal of clinical nutrition, vol.89, issue.3, pp.913-922, 2009.

T. C. O'connell and R. E. Hedges, Investigations into the effect of diet on modern human hair isotopic values, American journal of physical anthropology, vol.108, issue.4, pp.409-434, 1999.

G. G. Kuhnle, A. M. Joosen, C. J. Kneale, O. Connell, and T. C. , Carbon and nitrogen isotopic ratios of urine and faeces as novel nutritional biomarkers of meat and fish intake, European journal of nutrition, vol.52, issue.1, pp.389-95, 2013.

P. S. Patel, A. J. Cooper, . Tc, G. G. Kuhnle, C. K. Kneale et al., Serum carbon and nitrogen stable isotopes as potential biomarkers of dietary intake and their relation with incident type 2 diabetes: the EPICNorfolk study, The American journal of clinical nutrition, vol.100, issue.2, pp.708-726, 2014.

D. Schoeller, P. Klein, J. Watkins, T. Heim, and W. Maclean, 13C abundances of nutrients and the effect of variations in 13C isotopic abundances of test meals formulated for 13CO2 breath tests, The American journal of clinical nutrition, vol.33, issue.11, pp.2375-85, 1980.

A. H. Jahren, J. N. Bostic, and B. M. Davy, The potential for a carbon stable isotope biomarker of dietary sugar intake, Journal of Analytical Atomic Spectrometry, vol.29, issue.5, pp.795-816, 2014.

M. J. Deniro and S. Epstein, Mechanism of carbon isotope fractionation associated with lipid synthesis, Science, vol.197, issue.4300, pp.261-264, 1977.

K. A. Van-leeuwen, P. D. Prenzler, D. Ryan, and F. Camin, Gas Chromatography-Combustion-Isotope Ratio Mass Spectrometry for Traceability and Authenticity in Foods and Beverages, Comprehensive Reviews in Food Science and Food Safety, vol.13, issue.5, pp.814-851, 2014.

J. N. Bostic, S. J. Palafox, M. E. Rottmueller, and A. H. Jahren, Effect of baking and fermentation on the stable carbon and nitrogen isotope ratios of grain-based food. Rapid communications in mass spectrometry, RCM, vol.29, issue.10, pp.937-984, 2015.

D. J. Morrison, B. Dodson, C. Slater, and T. Preston, 13C natural abundance in the British diet: implications for 13C breath tests, Rapid Communications in Mass Spectrometry, vol.14, issue.15, pp.1321-1325, 2000.

E. H. Yeung, C. D. Saudek, A. H. Jahren, W. H. Kao, M. Islas et al., Evaluation of a novel isotope biomarker for dietary consumption of sweets, American journal of epidemiology, vol.172, issue.9, 2010.

S. H. Nash, A. R. Kristal, A. Bersamin, S. E. Hopkins, B. B. Boyer et al., Carbon and nitrogen stable isotope ratios predict intake of sweeteners in a Yup'ik study population, The Journal of nutrition, vol.143, issue.2, pp.161-166, 2013.

M. Minagawa and E. Wada, Stepwise enrichment of 15 N along food chains: further evidence and the relation between ? 15 N and animal age, Geochimica et cosmochimica acta, vol.48, issue.5, pp.1135-1175, 1984.

D. M. Post, Using stable isotopes to estimate trophic position: models, methods, and assumptions, Ecology, vol.83, issue.3, pp.703-721, 2002.

C. T. Robbins, L. A. Felicetti, and M. Sponheimer, The effect of dietary protein quality on nitrogen isotope discrimination in mammals and birds, Oecologia, vol.144, issue.4, 2005.

M. Zanden and J. B. Rasmussen, Variation in ?15N and ?13C trophic fractionation: Implications for aquatic food web studies, Limnology and Oceanography, vol.46, issue.8, pp.2061-2067, 2001.

M. A. Vanderklift and S. Ponsard, Sources of variation in consumer-diet ?15N enrichment: a metaanalysis, Oecologia, vol.136, issue.2, pp.169-82, 2003.

?. ???? and ?. , Variations of natural 13C and 15N abundances in the rat tissues and their correlation, Radioisotopes, vol.32, issue.7, pp.330-332, 1983.

S. E. Macavoy, S. A. Macko, and L. S. Arneson, Growth versus metabolic tissue replacement in mouse tissues determined by stable carbon and nitrogen isotope analysis, Canadian Journal of Zoology, vol.83, issue.5, pp.631-672, 2005.

T. N. Lee, C. L. Buck, B. M. Barnes, O. 'brien, and D. M. , A test of alternative models for increased tissue nitrogen isotope ratios during fasting in hibernating arctic ground squirrels, Journal of Experimental Biology, vol.215, pp.3354-61, 2012.

M. J. Deniro and S. Epstein, Influence of diet on the distribution of nitrogen isotopes in animals, Geochimica et cosmochimica acta, vol.45, issue.3, pp.341-51, 1981.

L. S. Arneson and S. E. Macavoy, Carbon, nitrogen, and sulfur diet-tissue discrimination in mouse tissues, Canadian Journal of Zoology, vol.83, issue.7, pp.989-95, 2005.

C. M. Kurle, Interpreting temporal variation in omnivore foraging ecology via stable isotope modelling, Functional Ecology, vol.23, issue.4, pp.733-777, 2009.

S. Caut, E. Angulo, and F. Courchamp, Discrimination factors (?15N and ?13C) in an omnivorous consumer: effect of diet isotopic ratio, Functional Ecology, vol.22, issue.2, pp.255-63, 2008.

O. H. Gaebler, T. G. Vitti, and R. Vukmirovich, Isotope effects in metabolism of 14N and 15N from unlabeled dietary proteins, Canadian journal of biochemistry, vol.44, issue.9, pp.1249-57, 1966.

H. Sick, N. Roos, E. Saggau, K. Haas, V. Meyn et al., Amino acid utilization and isotope discrimination of amino nitrogen in nitrogen metabolism of rat liver in vivo, Zeitschrift fur Ernahrungswissenschaft, vol.36, issue.4, pp.340-346, 1997.

B. T. Fuller and K. J. Petzke, The dietary protein paradox and threonine 15N-depletion: Pyridoxal-5'-phosphate enzyme activity as a mechanism for the ?15N trophic level effect, Rapid Communications in Mass Spectrometry, vol.31, issue.8, pp.705-723, 2017.

R. A. Werner and H. Schmidt, The in vivo nitrogen isotope discrimination among organicplant compounds, Phytochemistry, vol.61, issue.5, pp.465-84, 2002.

J. Miller, J. Millar, and F. Longstaffe, Carbon-and nitrogen-isotope tissue-diet discrimination and turnover rates in deer mice, Peromyscus maniculatus, Canadian Journal of Zoology, vol.86, issue.7, pp.685-91, 2008.

G. Robb, S. Woodborne, P. De-bruin, K. Medger, and N. Bennett, The influence of food quantity on carbon and nitrogen stable isotope values in southern African spiny mice (Acomys spinosissimus), Canadian Journal of Zoology, vol.93, issue.5, pp.345-51, 2015.

C. M. Kurle, P. L. Koch, B. R. Tershy, and D. A. Croll, The effects of sex, tissue type, and dietary components on stable isotope discrimination factors (Delta13C and Delta15N) in mammalian omnivores, Isotopes in environmental and health studies, vol.50, issue.3, pp.307-328, 2014.

D. T. Sare, J. S. Millar, and F. J. Longstaffe, Tracing dietary protein in red-backed voles (Clethrionomys gapperi) using stable isotopes of nitrogen and carbon, Canadian Journal of Zoology, vol.83, issue.5, pp.717-742, 2005.

Y. Hwang, J. Millar, and F. Longstaffe, Do ? 15N and ? 13C values of feces reflect the isotopic composition of diets in small mammals?, Canadian Journal of Zoology, vol.85, issue.3, pp.388-96, 2007.

R. Fernandes, M. Nadeau, and P. M. Grootes, Macronutrient-based model for dietary carbon routing in bone collagen and bioapatite, Archaeological and Anthropological Sciences, vol.4, issue.4, pp.291-301, 2012.

Y. I. Naito, Y. Chikaraishi, D. G. Drucker, N. Ohkouchi, P. Semal et al., Ecological niche of Neanderthals from Spy Cave revealed by nitrogen isotopes of individual amino acids in collagen, Journal of human evolution, vol.93, pp.82-90, 2016.

J. H. Scott, D. M. O'brien, E. D. Sun, H. Mcdonald, G. D. Salgado et al., An examination of the carbon isotope effects associated with amino acid biosynthesis, Astrobiology, vol.6, issue.6, pp.867-80, 2006.

P. E. Hare, M. L. Fogel, T. W. Stafford, A. D. Mitchell, and T. C. Hoering, The isotopic composition of carbon and nitrogen in individual amino acids isolated from modern and fossil proteins, Journal of Archaeological Science, vol.18, issue.3, pp.277-92, 1991.

C. J. Wallace and R. E. Hedges, Nitrogen isotopic discrimination in dietary amino acids: The threonine anomaly. Rapid communications in mass spectrometry, RCM, vol.30, issue.22, pp.2442-2448, 2016.

K. J. Petzke, T. Feist, W. E. Fleig, and C. C. Metges, Nitrogen isotopic composition in hair protein is different in liver cirrhotic patients. Rapid communications in mass spectrometry, RCM, vol.20, pp.2973-2981, 2006.

K. J. Petzke and S. Lemke, Hair protein and amino acid 13C and 15N abundances take more than 4 weeks to clearly prove influences of animal protein intake in young women with a habitual daily protein consumption of more than 1 g per kg body weight. Rapid communications in mass spectrometry, RCM, vol.23, issue.16, pp.2411-2431, 2009.

K. J. Petzke, H. Boeing, and C. C. Metges, Choice of dietary protein of vegetarians and omnivores is reflected in their hair protein 13C and 15N abundance, Rapid Communications in Mass Spectrometry, vol.19, issue.11, pp.1392-400, 2005.

D. Stetten, The fate of dietary serine in the body of the rat, Journal of Biological Chemistry, vol.144, pp.501-507, 1942.

W. Wang, Z. Wu, Z. Dai, Y. Yang, J. Wang et al., Glycine metabolism in animals and humans: implications for nutrition and health, Amino acids, vol.45, issue.3, pp.463-77, 2013.

P. B. Darling, J. Grunow, M. Rafii, S. Brookes, R. O. Ball et al., Threonine dehydrogenase is a minor degradative pathway of threonine catabolism in adult humans, American Journal of Physiology-Endocrinology And Metabolism, vol.278, issue.5, pp.877-84, 2000.

H. Munro, Evolution of protein metabolism in mammals, Mammalian protein metabolism, vol.3, pp.133-82, 1969.

K. W. Mcmahon, M. L. Fogel, T. S. Elsdon, and S. R. Thorrold, Carbon isotope fractionation of amino acids in fish muscle reflects biosynthesis and isotopic routing from dietary protein, Journal of Animal Ecology, vol.79, issue.5, pp.1132-1173, 2010.

M. R. Howland, L. T. Corr, S. M. Young, V. Jones, J. S. Van-der-merwe et al., Expression of the dietary isotope signal in the compound-specific ?13C values of pig bone lipids and amino acids, International Journal of Osteoarchaeology, vol.13, issue.1-2, pp.54-65, 2003.

S. Jim, V. Jones, S. H. Ambrose, and R. P. Evershed, Quantifying dietary macronutrient sources of carbon for bone collagen biosynthesis using natural abundance stable carbon isotope analysis, British Journal of Nutrition, vol.95, issue.06, pp.1055-62, 2006.

M. S. Fantle, A. I. Dittel, S. M. Schwalm, C. E. Epifanio, and M. L. Fogel, A food web analysis of the juvenile blue crab, Callinectes sapidus, using stable isotopes in whole animals and individual amino acids, Oecologia, vol.120, issue.3, pp.416-442, 1999.

D. M. O'brien, C. L. Boggs, and M. L. Fogel, Pollen feeding in the butterfly Heliconius charitonia: isotopic evidence for essential amino acid transfer from pollen to eggs, Proceedings of the Royal Society of London B: Biological Sciences, vol.270, pp.2631-2637, 1533.

S. D. Newsome, N. Wolf, J. Peters, and M. L. Fogel, Amino acid ?13C analysis shows flexibility in the routing of dietary protein and lipids to the tissue of an omnivore, Integrative and comparative biology, vol.54, issue.5, pp.890-902, 2014.

N. Poupin, C. Bos, F. Mariotti, J. Huneau, D. Tomé et al., The nature of the dietary protein impacts the tissue-to-diet 15N discrimination factors in laboratory rats, PloS one, vol.6, issue.11, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01186796

T. Deschner, B. T. Fuller, V. M. Oelze, C. Boesch, J. J. Hublin et al., Identification of energy consumption and nutritional stress by isotopic and elemental analysis of urine in bonobos (Pan paniscus). Rapid communications in mass spectrometry, RCM, vol.26, issue.1, pp.69-77, 2012.

K. A. Hobson, R. T. Alisauskas, and R. G. Clark, Stable-nitrogen isotope enrichment in avian tissues due to fasting and nutritional stress: implications for isotopic analyses of diet, pp.388-94, 1993.

Y. Cherel, K. A. Hobson, F. Bailleul, and R. Groscolas, Nutrition, physiology, and stable isotopes: new information from fasting and molting penguins, Ecology, vol.86, issue.11, pp.2881-2889, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00187689

J. Guelinckx, J. Maes, P. Van-den-driessche, B. Geysen, F. Dehairs et al., Changes in ?13C and ?15N in different tissues of juvenile sand goby Pomatoschistus minutus: a laboratory diet-switch experiment, Marine Ecology Progress Series, vol.341, pp.205-220, 2007.

L. P. Castillo and K. A. Hatch, Fasting increases delta15N-values in the uric acid of Anolis carolinensis and Uta stansburiana as measured by nondestructive sampling. Rapid communications in mass spectrometry, RCM, vol.21, issue.24, pp.4125-4133, 2007.

U. Focken, Stable isotopes in animal ecology: the effect of ration size on the trophic shift of C and N isotopes between feed and carcass. Isotopes in environmental and health studies, vol.37, pp.199-211, 2001.

L. Zhao, D. M. Schell, and M. A. Castellini, Dietary macronutrients influence 13 C and 15 N signatures of pinnipeds: captive feeding studies with harbor seals

, Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, vol.143, issue.4, pp.469-78, 2006.

S. F. Pearson, D. J. Levey, C. H. Greenberg, M. Del-rio, and C. , Effects of elemental composition on the incorporation of dietary nitrogen and carbon isotopic signatures in an omnivorous songbird, Oecologia, vol.135, issue.4, pp.516-539, 2003.

J. Gaye-siessegger, U. Focken, S. Muetzel, H. Abel, and K. Becker, Feeding level and individual metabolic rate affect ?13C and ?15N values in carp: implications for food web studies, Oecologia, vol.138, issue.2, pp.175-83, 2004.

J. Gaye-siessegger, U. Focken, H. Abel, and K. Becker, Starvation and low feeding levels result in an enrichment of 13C in lipids and 15N in protein of Nile tilapia Oreochromis niloticus L, Journal of Fish Biology, vol.71, issue.1, pp.90-100, 2007.

B. T. Fuller, J. L. Fuller, N. E. Sage, D. A. Harris, O. Connell et al., Nitrogen balance and?15N: why you're not what you eat during nutritional stress, Rapid Communications in Mass Spectrometry, vol.19, issue.18, pp.2497-506, 2005.

A. Mekota, G. Grupe, S. Ufer, and U. Cuntz, Serial analysis of stable nitrogen and carbon isotopes in hair: monitoring starvation and recovery phases of patients suffering from anorexia nervosa, Rapid Communications in Mass Spectrometry, vol.20, issue.10, pp.1604-1614, 2006.

T. C. O'connell, C. J. Kneale, N. Tasevska, and G. G. Kuhnle, The diet-body offset in human nitrogen isotopic values: a controlled dietary study, Am J Phys Anthropol, vol.149, issue.3, pp.426-460, 2012.

K. J. Petzke, T. Feist, W. E. Fleig, and C. C. Metges, Nitrogen isotopic composition in hair protein is different in liver cirrhotic patients, Rapid Commun Mass Spectrom, vol.20, issue.19, pp.2973-2981, 2006.

I. Tea, E. Martineau, I. Antheaume, J. Lalande, C. Mauve et al., 13C and 15N natural isotope abundance reflects breast cancer cell metabolism, Scientific reports, vol.6, p.34251, 2016.

R. Doucett, R. Booth, G. Power, and R. Mckinley, Effects of the spawning migration on the nutritional status of anadromous Atlantic salmon (Salmo salar): insights from stable-isotope analysis, Canadian Journal of Fisheries and Aquatic Sciences, vol.56, issue.11, pp.2172-80, 1999.

S. Habran, C. Debier, D. E. Crocker, D. S. Houser, G. Lepoint et al., Assessment of gestation, lactation and fasting on stable isotope ratios in northern elephant seals (Mirounga angustirostris), Marine Mammal Science, vol.26, issue.4, pp.880-95, 2010.

F. M. Neuberger, E. Jopp, M. Graw, K. Puschel, and G. Grupe, Signs of malnutrition and starvation--reconstruction of nutritional life histories by serial isotopic analyses of hair, Forensic science international, vol.226, issue.1-3, pp.22-32, 2013.

S. C. Kalhan, S. M. Savin, and P. A. Adam, Estimation of glucose turnover with stable tracer glucose-1-13C. The Journal of laboratory and clinical medicine, vol.89, pp.285-94, 1977.

J. P. Godin, A. B. Ross, M. Cleroux, E. Pouteau, I. Montoliu et al., Natural carbon isotope abundance of plasma metabolites and liver tissue differs between diabetic and nondiabetic Zucker diabetic fatty rats, PloS one, vol.8, issue.9, p.74866, 2013.

M. D. Mccue and E. D. Pollock, Stable isotopes may provide evidence for starvation in reptiles, Rapid Communications in Mass Spectrometry, vol.22, issue.15, pp.2307-2321, 2008.

K. A. Hatch, K. A. Sacksteder, I. W. Treichel, M. E. Cook, and W. P. Porter, Early detection of catabolic state via change in 13C/12C ratios of blood proteins, Biochemical and biophysical research communications, vol.212, issue.3, pp.719-745, 1995.

C. T. Williams, C. L. Buck, J. Sears, and A. S. Kitaysky, Effects of nutritional restriction on nitrogen and carbon stable isotopes in growing seabirds, Oecologia, vol.153, issue.1, pp.11-19, 2007.

B. Kempster, L. Zanette, F. J. Longstaffe, S. A. Macdougall-shackleton, J. C. Wingfield et al., Do stable isotopes reflect nutritional stress? Results from a laboratory experiment on song sparrows, Oecologia, vol.151, issue.3, pp.365-71, 2007.

J. Sears, S. A. Hatch, O. 'brien, and D. M. , Disentangling effects of growth and nutritional status on seabird stable isotope ratios, Oecologia, vol.159, issue.1, pp.41-49, 2009.

K. L. Robertson, N. E. Rowland, and J. Krigbaum, Effects of caloric restriction on nitrogen and carbon stable isotope ratios in adult rat bone, Rapid Communications in Mass Spectrometry, vol.28, pp.2065-74, 2014.

J. R. Milanovich and J. C. Maerz, Realistic fasting does not affect stable isotope levels of a metabolically efficient salamander, Journal of Herpetology, vol.47, issue.4, pp.544-552, 2013.

M. D. Mccue, Western diamondback rattlesnakes demonstrate physiological and biochemical strategies for tolerating prolonged starvation, Physiological and biochemical zoology : PBZ, vol.80, issue.1, pp.25-34, 2007.

S. Z. Herzka and G. J. Holt, Changes in isotopic composition of red drum (Sciaenops ocellatus) larvae in response to dietary shifts: potential applications to settlement studies, Canadian Journal of Fisheries and Aquatic Sciences, vol.57, issue.1, pp.137-184, 2000.

J. L. Varela, A. Ortega, F. La-gándara, and A. Medina, Effects of starvation on ?15N and ?13C in Atlantic bonito, Sarda sarda (Bloch, 1793), Aquaculture Research, vol.46, issue.8, pp.2043-2050, 2015.

E. Gorokhova and S. Hansson, An experimental study on variations in stable carbon and nitrogen isotope fractionation during growth of Mysis mixta and Neomysis integer, Canadian Journal of Fisheries and Aquatic Sciences, vol.56, issue.11, pp.2203-2213, 1999.

B. Boag, R. Neilson, and C. M. Scrimgeour, The effect of starvation on the planarian Arthurdendyus triangulatus (Tricladida: Terricola) as measured by stable isotopes, Biology and fertility of soils, vol.43, issue.2, pp.267-70, 2006.

M. R. Kaufman, R. R. Gradinger, B. A. Bluhm, O. 'brien, and D. M. , Using stable isotopes to assess carbon and nitrogen turnover in the Arctic sympagic amphipod Onisimus litoralis, Oecologia, vol.158, issue.1, pp.11-22, 2008.

M. Traugott, C. Pázmándi, R. Kaufmann, and A. Juen, Evaluating 15 N/14 N and 13 C/12 C isotope ratio analysis to investigate trophic relationships of elaterid larvae (Coleoptera: Elateridae), Soil Biology and Biochemistry, vol.39, issue.5, pp.1023-1053, 2007.

E. Kikuchi, S. Takagi, and S. Shikano, Changes in carbon and nitrogen stable isotopes of chironomid larvae during growth, starvation and metamorphosis, Rapid Communications in Mass Spectrometry, vol.21, issue.6, pp.997-1002, 2007.

P. J. Olive, J. K. Pinnegar, N. V. Polunin, G. Richards, and R. Welch, Isotope trophic-step fractionation: a dynamic equilibrium model, Journal of Animal Ecology, vol.72, issue.4, pp.608-625, 2003.

O. Schmidt, C. M. Scrimgeour, and J. P. Curry, Carbon and nitrogen stable isotope ratios in body tissue and mucus of feeding and fasting earthworms (Lumbricus festivus), Oecologia, vol.118, issue.1, pp.9-15, 1999.

K. Oelbermann and S. Scheu, Stable isotope enrichment (d 15 N and d 13 C) in a generalist predator, Oecologia, vol.130, issue.3, pp.337-381, 2002.

M. D. Mccue, Endogenous and environmental factors influence the dietary fractionation of 13C and 15N in hissing cockroaches Gromphadorhina portentosa, Physiological and Biochemical Zoology, vol.81, issue.1, pp.14-24, 2007.

J. Grizard, D. Dardevet, I. Papet, L. Mosoni, P. P. Mirand et al., Nutrient regulation of skeletal muscle protein metabolism in animals. The involvement of hormones and substrates, Nutrition research reviews, vol.8, issue.1, pp.67-91, 1995.

M. M. Meguid, M. D. Collier, and L. J. Howard, Uncomplicated and stressed starvation, The Surgical clinics of North America, vol.61, issue.3, pp.529-572, 1981.

M. D. Mccue, Comparative physiology of fasting, starvation, and food limitation, 2012.

E. Hertz, M. Trudel, M. K. Cox, and A. Mazumder, Effects of fasting and nutritional restriction on the isotopic ratios of nitrogen and carbon: a meta-analysis, Ecology and evolution, vol.5, issue.21, pp.4829-4868, 2015.

D. Rio, C. M. Carleton, and S. A. , How fast and how faithful: the dynamics of isotopic incorporation into animal tissues, Journal of Mammalogy, vol.93, issue.2, pp.353-362, 2012.

S. E. Macavoy, L. S. Arneson, and E. Bassett, Correlation of metabolism with tissue carbon and nitrogen turnover rate in small mammals, Oecologia, vol.150, issue.2, pp.190-201, 2006.

R. L. Demots, J. M. Novak, K. F. Gaines, A. J. Gregor, C. S. Romanek et al., Tissue-diet discrimination factors and turnover of stable carbon and nitrogen isotopes in white-footed mice (Peromyscus leucopus), Canadian Journal of Zoology, vol.88, issue.10, pp.961-968, 2010.

S. Macavoy, S. Lazaroff, K. Kraeer, and L. Arneson, Sex and strain differences in isotope turnover rates and metabolism in house mice (Mus musculus), Canadian Journal of Zoology, vol.90, issue.8, pp.984-90, 2012.

K. Kraeer, L. S. Arneson, and S. E. Macavoy, The intraspecies relationship between tissue turnover and metabolic rate in rats, Ecological research, vol.29, issue.5, pp.937-984, 2014.

A. Braun, K. Auerswald, A. Vikari, and H. Schnyder, Dietary protein content affects isotopic carbon and nitrogen turnover, Rapid Communications in Mass Spectrometry, vol.27, issue.23, pp.2676-84, 2013.

L. L. Tieszen, T. W. Boutton, K. G. Tesdahl, and N. A. Slade, Fractionation and turnover of stable carbon isotopes in animal tissues: implications for ? 13 C analysis of diet, Oecologia, vol.57, issue.1, pp.32-39, 1983.

S. Ponsard and P. Averbuch, Should growing and adult animals fed on the same diet show different ?15N values? Rapid Communications in, Mass Spectrometry, vol.13, issue.13, pp.1305-1315, 1999.

D. Rio, C. M. Wolf, and B. O. , Mass-balance models for animal isotopic ecology. Physiological and ecological adaptations to feeding in vertebrates, pp.141-74, 2005.

G. Cantalapiedra-hijar, I. Ortigues-marty, B. Sepchat, J. Agabriel, J. Huneau et al., Diet-animal fractionation of nitrogen stable isotopes reflects the efficiency of nitrogen assimilation in ruminants, British Journal of Nutrition, vol.113, issue.7, pp.1158-69, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01133635

L. Cheng, A. Sheahan, S. Gibbs, A. Rius, J. Kay et al., Technical note: nitrogen isotopic fractionation can be used to predict nitrogen-use efficiency in dairy cows fed temperate pasture, Journal of animal science, vol.91, issue.12, pp.5785-5793, 2013.

J. Gaye-siessegger, U. Focken, H. Abel, and K. Becker, Individual protein balance strongly influences ?15N and ?13C values in Nile tilapia, Oreochromis niloticus, Naturwissenschaften, vol.91, issue.2, pp.90-93, 2004.

B. T. Fuller, J. L. Fuller, N. E. Sage, D. A. Harris, O. Connell et al., Nitrogen balance and ?15N: why you're not what you eat during pregnancy, Rapid Communications in Mass Spectrometry, vol.18, issue.23, pp.2889-96, 2004.

E. A. Hobbie, Dietary protein content and tissue type control 13C discrimination in mammals: an analytical approach, Rapid Communications in Mass Spectrometry, vol.31, issue.7, pp.639-687, 2017.

D. Schoeller, C. Brown, K. Nakamura, A. Nakagawa, R. Mazzeo et al., Influence of metabolic fuel on the 13C/12C ratio of breath CO2, Biological Mass Spectrometry, vol.11, issue.11, pp.557-61, 1984.

K. A. Hatch, M. A. Crawford, A. W. Kunz, S. R. Thomsen, D. L. Eggett et al., An objective means of diagnosing anorexia nervosa and bulimia nervosa using15N/14N

, and13C/12C ratios in hair, vol.20, pp.3367-73, 2006.

C. M. Kurle, P. L. Koch, B. R. Tershy, and D. A. Croll, The effects of sex, tissue type, and dietary components on stable isotope discrimination factors (?13C and ?15N) in mammalian omnivores, Isotopes in environmental and health studies, vol.50, issue.3, pp.307-328, 2014.

N. Wolf, S. D. Newsome, J. Peters, and M. L. Fogel, Variability in the routing of dietary proteins and lipids to consumer tissues influences tissue-specific isotopic discrimination. Rapid communications in mass spectrometry, Journal of Analytical Atomic Spectrometry, vol.29, issue.15, pp.594-602, 2014.

N. Poupin, Natural abundances of stable nitrogen isotopes in rats : their variability and application for the study of body nitrogen fluxes and of the metabolic impact of nutritional and pathophysiological conditions using compartmental modeling, 2013.
URL : https://hal.archives-ouvertes.fr/pastel-00927219

I. Estrada-alcalde, M. R. Tenorio-guzman, A. R. Tovar, D. Salinas-rubio, T. -. Villalvazo et al., Metabolic Fate of Branched-Chain Amino Acids During Adipogenesis, in Adipocytes From Obese Mice and C2C12 Myotubes, Journal of cellular biochemistry, vol.118, issue.4, pp.808-826, 2017.

S. Polakof, D. Rémond, J. David, D. Dardevet, and I. Savary-auzeloux, Time-course changes in circulating branched-chain amino acid levels and metabolism in obese Yucatan minipig, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01741289

R. G. Walsh, S. He, and C. T. Yarnes, Compound-specific delta13C and delta15N analysis of amino acids: a rapid, chloroformate-based method for ecological studies. Rapid communications in mass spectrometry, RCM, vol.28, issue.1, pp.96-108, 2014.

J. M. Hayes, An introduction to isotopic calculations. Woods Hole Oceanographic Institution, 2004.