E. De,

L. .. De-l'experience, . Cliches-mehr-issus-d'une-sequence, . Video, E. En, A. De-ceo2 et al.,

A. Mobilite-des, D. De-l'experience, . .. Faisceau, . Cliches-mehr-issus-d'une-sequence, . Video et al., , vol.28, pp.1-16

A. .. De-l'ilot, L. Schema-resumant, R. A. Batonnets, A. Cubes, A. O. B)-exemple-de-diffractogramme-rx-mesure-pour-?-compris-entre-10 et al., 34 FIGURE 2-2 : A)

R. Controlees and . Compte-tenu,

. Des, ;. .. De-la-litterature, and . Juste, 38 FIGURE 2-4 : FIGURE EXTRAITE DE LA REF, vol.63

. Apres-la-rupture.-c)-representation, . Du, . De-rupture, . De-type-{111}.-d)-batonnet-oriente, A. Selon-un-axe-<110> et al.,

. .. Dans-le-reseau, . Images-extraites-d'une, P. Video, . Des, . Morphologiques et al., 45 FIGURE 2-8

A. Toutes, . En, ;. .. Temps, &. De-type-<100>, M. .. Cuboïdale et al., , vol.56, pp.2-12

. .. Simultanee-de-faces-{111}-et-{110}, . Modelisation-3d-a-l'aide, . Du, . Diamond, . Deux et al.,

. Sur-les and . .. Numerotees,

;. .. Sa-taille, B. Cerine, U. N. Germe, . Est, and . Fixe-;-c,

C. De, L. A. Nanoparticule, T. Les, and . Sont-liberes,

D. Temps, E. N. Partant-d'une-surface, E. Amorphisee, S. Cubique, and . Cubes,

. .. Precedemment-utilisee, . Images-extraites-d'une, F. Video, . De-ceo2, . Les et al.,

. .. De-ceo2, . Micrographies, . Et, . De, . De-deux et al.,

L. .. Au-dessus, A. Jolly, . Du, B. Experimental, and . .. De-l'echantillon,

;. .. Croissantes-sont-fournies and . En, , vol.78

. .. Fonction-de-la-temperature,

A. De-l'echantillon-au@cubes05 and C. Depart,

B. De-l'echantillon-au@cubes06, C. Depart, . Le, . Raman-entier, . Est et al., SITU EN TEMPERATURE (JUSQU'A 600°C, vol.84

. Dans-le-tableau-10, . On, . Ici-les-tapd-pour, . Differents, . .. Supportes et al., , vol.87, pp.3-11

P. Support-pour and . En,

. .. Montrer-l'effet, . Photo, F. Du, . Ici, . Les et al.,

. .. Le-cas, . Photos, . Du-four-monowave®-qui-a-ete, . Utilise, L. T. De et al.,

D. .. These,

C. Gras and . .. Plastique,

R. 1. Mirzaei, A. Neri, and G. , Microwave-assisted synthesis of metal oxide nanostructures for gas sensing application: A review, Sensors and Actuators, vol.237, pp.749-775, 2016.

R. R. Mishra and A. K. Sharma, Microwave-material interaction phenomena: Heating mechanisms, challenges and opportunities in material processing, Composites Part A: Applied Science and Manufacturing, vol.8, pp.78-97, 2016.

C. Féral-martin, Influence de la morphologie d'oxydes à base de cérium sur les relations (micro)structures / propriétés, 2010.

I. Moog, Local organization of Fe3+into nano-CeO2with controlled morphologies and its impact on reducibility properties, Journal of Materials Chemistry A, vol.2, issue.2, pp.20402-20414, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01082706

N. Dahal, S. Garcìa, J. Zhou, and S. M. Humphrey, Beneficial effects of microwave-assisted heating versus conventional heating in noble metal nanoparticle synthesis, ACS Nano, vol.6, issue.6, pp.9433-9446, 2012.

S. Joseph and B. Mathew, Microwave assisted facile green synthesis of silver and gold nanocatalysts using the leaf extract of Aerva lanata, Spectrochimica Acta -Part A: Molecular and Biomolecular Spectroscopy, vol.1, pp.1371-1379, 2015.

Q. Liu, Quantifying the Nucleation and Growth Kinetics of Microwave Nanochemistry Enabled by in Situ High-Energy X-ray Scattering, Nano Letters, vol.1, issue.16, pp.715-720, 2016.

C. Song, T. Wu, C. Pang, H. Zhu, and L. Wang, Microwave-assisted synthesis of noble metal nanoparticles. Nanjing Youdian Daxue Xuebao (Ziran Kexue Ban), Journal of Nanjing University of Posts and Telecommunications (Natural Science), vol.3, 2015.

Y. Yang, One pot microwave-assisted synthesis of Ag decorated yolk@shell structured TiO2 microspheres, RSC Advances, vol.5, issue.5, pp.11349-11357, 2015.

S. A. Carabineiro, Exotemplated ceria catalysts with gold for CO oxidation, Applied Catalysis A: General, vol.3, issue.381, pp.150-160, 2010.

S. A. Carabineiro, A. M. Silva, G. Draic, P. B. Tavares, and J. L. Figueiredo, Gold nanoparticles on ceria supports for the oxidation of carbon monoxide, Catalysis Today, vol.154, pp.21-30, 2010.

Z. Han and Y. Gao, A 2D-3D structure transition of gold clusters on CeO2-X(111) surfaces and its influence on CO and O2 adsorption: A comprehensive DFT + U investigation, Nanoscale, vol.7, issue.7, pp.308-316, 2014.

J. Li and W. Li, Effect of preparation method on the catalytic activity of Au/CeO 2 for VOCs oxidation, Journal of Rare Earths, vol.2, pp.547-551, 2010.

F. Menegazzo, Quantitative determination of gold active sites by chemisorption and by infrared measurements of adsorbed CO, Journal of Catalysis, vol.2, issue.237, pp.431-434, 2006.

S. Scirè, C. Crisafulli, P. M. Riccobene, G. Patanè, and A. Pistone, Selective oxidation of CO in H 2-rich stream over Au/CeO 2 and Cu/CeO 2 catalysts: An insight on the effect of preparation method and catalyst pretreatment, Applied Catalysis A: General, vol.4, pp.66-75, 2012.

L. Wang, L. Zhang, S. Zhong, and A. Xu, Highly uniform CeO2 hierarchical microstructures: Facile synthesis and catalytic activity evaluation, RCS Advances, vol.2, pp.769-776, 2012.

S. Deshpande, S. Patil, S. V. Kuchibhatla, and S. Seal, Size dependency variation in lattice parameter and valency states in nanocrystalline cerium oxide, Applied Physics Letters, vol.8, pp.1-3, 2005.

R. K. Hailstone, A. G. Difrancesco, J. G. Leong, T. D. Allston, and K. J. Reed, A study of lattice expansion in CeO2 Nanoparticles by Transmission Electron Microscopy, Journal of Physical Chemistry C, vol.1, pp.15155-15159, 2009.

K. Reed, Exploring the properties and applications of nanoceria: Is there still plenty of room at the bottom?, Environmental Science: Nano, vol.1, issue.1, pp.390-405, 2014.

N. K. Renuka, T. Divya, and T. Jency-mohan, A facile route to ceria nanocubes, Materials Letters, vol.1, issue.141, pp.107-109, 2015.

S. Tsunekawa, K. Ishikawa, Z. Li, Y. Kawazoe, and A. Kasuya, Origin of anomalous lattic expansion in oxide nanoparticles, Physical Review Letters, vol.8, pp.3340-3443, 2000.

S. Tsunekawa, R. Sahara, Y. Kawazoe, and K. Ishikawa, Lattice relaxation of monosoze CeO2-x nanocrystalline particles, Applied Surface Science, vol.1, pp.53-56, 1999.

D. Zhang, X. Du, L. Shi, and R. Gao, Shape-controlled synthesis and catalytic application of ceria nanomaterials, Dalton Transactions, vol.4, pp.14455-14475, 2012.

S. Agarwal, Exposed surfaces on shape-controlled ceria nanoparticles revealed through AC-TEM and water-gas shift reactivity, ChemSusChem, vol.6, issue.6, pp.1898-1906, 2013.

C. T. Campbell and C. H. Peden, Oxygen vacancies and catalysis on ceria surfaces, Science, vol.309, pp.713-714, 2005.

D. Devaiah, L. H. Reddy, K. Kuntaiah, and B. M. Reddy, Design of novel ceria-based nanooxides for CO oxidation and other catalytic applications, Indian Journal of ChemistrySection A Inorganic, Physical, Theoretical and Analytical Chemistry, vol.5, pp.186-195, 2012.

B. Goris, S. Turner, S. Bals, and G. Van-tendeloo, Three-dimensional valency mapping in ceria nanocrystals, ACS Nano, vol.8, issue.8, pp.10878-10884, 2014.

L. Li, F. Chen, J. Lu, and M. Luo, Study of defect sites in ce1-xmxo2-δ (x = 0.2) solid solutions using raman spectroscopy, Journal of Physical Chemistry A, vol.1, pp.7972-7977, 2011.

Y. Liu, Z. Li, H. Xu, and Y. Han, Reverse water-gas shift reaction over ceria nanocube synthesized by hydrothermal method, Catalysis Communications, vol.7, pp.1-6, 2016.

T. Naganuma and E. Traversa, Stability of the Ce 3+ valence state in cerium oxide nanoparticle layers, Nanoscale, vol.4, issue.4, pp.4950-4953, 2012.

M. Nolan, Enhanced oxygen vacancy formation in ceria (111) and (110) surfaces doped with divalent cations, Journal of Materials Chemistry, vol.2, issue.21, pp.9160-9168, 2011.

C. Sun, H. Li, and L. Chen, Nanostructured ceria-based materials: Synthesis, properties, and applications, Energy and Environmental Science, vol.5, issue.5, pp.8475-8505, 2012.

L. Li, H. Wang, L. Zou, and X. Wang, Controllable synthesis, photocatalytic and electrocatalytic properties of CeO2 nanocrystals, RSC Advances, vol.5, issue.5, pp.41506-41512, 2015.

T. Bunluesin, R. J. Gorte, and G. W. Graham, Studies of the water-gas-shift reaction on ceria-supported Pt, Pd, and Rh: Implications for oxygen-storage properties, Applied Catalysis B, Environmental, vol.1, pp.107-114, 1998.

M. Monte, Preferential oxidation of CO in excess H2 over CuO/CeO 2 catalysts: Performance as a function of the copper coverage and exposed face present in the CeO2 support, Catalysis Today, vol.2, pp.104-113, 2014.

J. Barbier and D. Duprez, Reactivity of steam in exhaust gas catalysis I. Steam and oxygen/steam conversions of carbon monoxide and of propane over PtRh catalysts, Applied Catalysis B, Environmental, vol.3, issue.3, pp.61-83, 1993.

D. D. Beck, J. W. Sommers, and C. L. Dimaggio, Impact of sulfur on model palladium-only catalysts under simulated three-way operation, Applied Catalysis B, Environmental, vol.3, issue.3, pp.205-227, 1994.

M. Funabiki, T. Yamada, and K. Kayano, Auto exhaust catalysts, Catalysis Today, vol.1, pp.33-43, 1991.

J. Kaspar, P. Fornasiero, and M. Graziani, Use of CeO2-based oxides in the three-way catalysis, Catalysis Today, vol.5, issue.50, pp.285-298, 1999.

L. Lan, Preparation of ceria-zirconia by modified coprecipitation method and its supported Pd-only three-way catalyst, Journal of Colloid and Interface Science, vol.4, issue.450, pp.404-416, 2015.

M. Haruta, Abstracts of papers of the american chemical society, 1985.

M. Haruta, T. Kobayashi, H. Sano, and N. Yamada, Novel gold catalysts for the oxidation of carbon monoxide at a termperature far below 0°C, Chemistry Letters, pp.405-408, 1987.

M. Haruta, N. Yamada, T. Kobayashi, and S. Iijima, Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide, Journal of Catalysis, vol.1, pp.301-309, 1989.

I. Moog, Sur des oxydes de cérium contenant du fer nanostructurés et de morphologies contrôlées, 2012.

H. Mai, Shape-selective synthesis and oxygen storage behavior of ceria nanopolyhedra, nanorods, and nanocubes, J Phys Chem B, vol.1, pp.24380-24385, 2005.

N. Ta, J. Liu, and W. Shen, Tuning the shape of ceria nanomaterials for catalytic applications, Cuihua Xuebao/Chinese Journal of Catalysis, vol.3, pp.838-850, 2013.

Q. Yuan, Controlled synthesis and assembly of ceria-based nanomaterials, Journal of Colloid and Interface Science, vol.3, pp.151-167, 2009.

P. Pansu, À la surface des cristaux, 2009.

G. Wulff, On the question of the rate of growth and dissolution of crystal surfaces (translated), Zeitschrift fuer Kristallographie und Mineralogie, vol.3, pp.449-530, 1901.

O. Spalla, Stabilité de dispersion de particules nanométriques, 1991.

N. Bugayeva, Synthesis and Characterization of CeO2 Sm2O3 and Sm-doped CeO2 nanoparticles with unique morphologies, 2006.

N. Bugayeva and J. Robinson, Synthesis of hydrated CeO2 nanowires and nanoneedles, Materials Science and Technology, vol.2, pp.237-241, 2007.

Y. Li and W. Shen, Morphology-dependent nanocatalysts: Rod-shaped oxides, Chemical Society Reviews, vol.4, pp.1543-1574, 2014.

D. C. Sayle, S. A. Maicaneanu, and G. W. Watson, Atomistic models for CeO2(111), (110), and (100) nanoparticles, supported on yttrium-stabilized zirconia, Journal of the American Chemical Society, vol.1, pp.11429-11439, 2002.

N. T. Thanh, N. Maclean, and S. Mahiddine, Mechanisms of nucleation and growth of nanoparticles in solution, Chemical Reviews, vol.1, issue.114, pp.7610-7630, 2014.

W. O. Milligan, D. F. Mullica, and J. D. Oliver, Rare-earth trihydroxide parameters, Journal of Applied Crystallography, vol.1, pp.411-412, 1979.

T. R. Griffiths, H. V. Hubbard, and M. J. Davies, Electron transfer reactions in nonstoichiometric ceria and urania, Inorganica Chimica Acta, vol.2, pp.305-317, 1994.

I. Florea, Three-dimensional tomographic analyses of ceo2 nanoparticles, Crystal Growth & Design, vol.1, pp.1110-1121, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01011846

Q. Wu, Great influence of anions for controllable synthesis of CeO2 nanostructures: From nanorods to nanocubes, Journal of Physical Chemistry C, vol.1, pp.17076-17080, 2008.

B. R. Cuenya, Synthesis and catalytic properties of metal nanoparticles: Size, shape, support, composition, and oxidation state effects, Thin Solid Films, vol.5, pp.3127-3150, 2010.

Y. Guan, Gold stabilized by nanostructured ceria supports: Nature of the active sites and catalytic performance, Topics in Catalysis, vol.5, pp.424-438, 2011.

W. Song and E. J. Hensen, Mechanistic aspects of the water-gas shift reaction on isolated and clustered Au atoms on CeO2(110): A density functional theory study, ACS Catalysis, vol.4, issue.4, pp.1885-1892, 2014.

F. Cardenas-lizana, An examination of catalyst deactivation in p-chloronitrobenzene hydrogenation over supported gold, Chemical Engineering Journal, vol.2, issue.255, pp.695-704, 2014.

M. Farnesi-camellone and D. Marx, Nature and role of activated molecular oxygen species at the gold/titania interface in the selective oxidation of alcohols, Journal of Physical Chemistry C, vol.1, pp.20989-21000, 2014.

I. X. Green, W. Tang, M. Neurock, and J. T. Yates, Insights into catalytic oxidation at the Au/TiO2 dual perimeter sites, Accounts of Chemical Research, vol.4, pp.805-815, 2014.

S. D. Lin, M. Bollinger, and M. A. Vannice, Low temperature CO oxidation over Au/TiO2 and Au/SiO2 catalysts, Catalysis Letters, vol.1, pp.245-262, 1993.

G. J. Hutchings, Nanocrystalline gold and gold-palladium alloy oxidation catalysts: A personal reflection on the nature of the active sites, Dalton Transactions, pp.5523-5536, 2008.

J. J. Liu, Advanced Electron Microscopy of Metal-Support Interactions in Supported Metal Catalysts, ChemCatChem, vol.3, issue.3, pp.934-948, 2011.

T. Akita, M. Okumura, K. Tanaka, M. Kohyama, and M. Haruta, Analytical TEM observation of Au nano-particles on cerium oxide, Catalysis Today, vol.1, pp.62-68, 2006.

T. Akita, M. Okumura, K. Tanaka, M. Kohyama, and M. Haruta, TEM observation of gold nanoparticles deposited on cerium oxide, Journal of Materials Science, vol.4, pp.3101-3106, 2005.

T. Akita, K. Tanaka, M. Kohyama, and M. Haruta, Analytical TEM study on structural changes of Au particles on cerium oxide using a heating holder, Catalysis Today, vol.1, pp.233-238, 2007.

J. Majimel, M. Lamirand-majimel, I. Moog, C. Feral-martin, and M. Trã©guer-delapierre, Size-dependent stability of supported gold nanostructures onto ceria: An HRTEM study, Journal of Physical Chemistry C, vol.1, pp.9275-9283, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00388519

J. Fan, X. Wu, R. Ran, and D. Weng, Influence of the oxidative/reductive treatments on the activity of Pt/Ce0.67Zr0.33O2 catalyst, Applied Surface Science, vol.2, pp.162-171, 2005.

J. Fan, X. Wu, L. Yang, and D. Weng, The SMSI between supported platinum and CeO2-ZrO2-La2O3 mixed oxides in oxidative atmosphere, Catalysis Today, vol.1, pp.303-312, 2007.

G. W. Graham, H. Jen, W. Chun, and R. W. Mccabe, High-temperature-aging-induced encapsulation of metal particles by support materials: Comparative results for Pt, Pd, and Rh on cerium-zirconium mixed oxides, Journal of Catalysis, vol.1, pp.228-233, 1999.

L. F. Liotta, Influence of the SMSI effect on the catalytic activity of a Pt(1%)/Ce 0.6Zr0.4O2 catalyst: SAXS, XRD, XPS and TPR investigations, Applied Catalysis B, Environmental, vol.4, pp.133-149, 2004.

A. Y. Stakheev and L. M. Kustov, Effects of the support on the morphology and electronic properties of supported metal clusters: Modern concepts and progress in 1990s, Applied Catalysis A: General 1, vol.188, pp.3-35, 1999.

C. M. Yeung, Engineering Pt in ceria for a maximum metal-support interaction in catalysis, Journal of the American Chemical Society, vol.1, pp.18010-18011, 2005.

U. M. Bhatta, Morphology and surface analysis of pure and doped cuboidal ceria nanoparticles, Journal of Physical Chemistry C, vol.1, pp.24561-24569, 2013.

X. Feng, Converting ceria polyhedral nanoparticles into single-crystal nanospheres, Science, vol.312, pp.1504-1508, 2006.

G. Möbus, Dynamics of polar surfaces on ceria nanoparticles observed in situ with single-atom resolution, Advanced Functional Materials, vol.2, issue.21, pp.1971-1976, 2011.

M. Molinari, S. C. Parker, D. C. Sayle, and M. S. Islam, Water adsorption and its effect on the stability of low index stoichiometric and reduced surfaces of ceria, Journal of Physical Chemistry C, vol.1, pp.7073-7082, 2012.

M. Nolan, S. Grigoleit, D. C. Sayle, S. C. Parker, and G. W. Watson, Density functional theory studies of the structure and electronic structure of pure and defective low index surfaces of ceria, Surface Science, vol.5, pp.217-229, 2005.

T. S. Sakthivel, Engineering of nanoscale defect patterns in CeO2 nanorods via ex situ and in situ annealing, Nanoscale, vol.7, issue.7, pp.5169-5177, 2015.

T. X. Sayle, Strain and architecture-tuned reactivity in ceria nanostructures

, Enhanced catalytic oxidation of CO to CO 2, Chemistry of Materials, vol.2, issue.24, pp.1811-1821, 2012.

T. X. Sayle, Mechanical properties of ceria nanorods and nanochains; The effect of dislocations, grain-boundaries and oriented attachment, Nanoscale, vol.3, issue.3, pp.1823-1837, 2011.

T. X. Sayle, Mechanical properties of mesoporous ceria nanoarchitectures, Physical Chemistry Chemical Physics, vol.1, pp.24899-24912, 2014.

T. X. Sayle, Environment-mediated structure, surface redox activity and reactivity of ceria nanoparticles, Nanoscale, vol.5, issue.5, pp.6063-6073, 2013.

B. Muntifering, R. Dingreville, K. Hattar, and J. Qu, Electron Beam Effects during In-Situ Annealing of Self-Ion Irradiated Nanocrystalline Nickel, MRS Online Proceedings Library, vol.1809, pp.1-6, 2015.

C. M. Wang, Electron beam-induced thickening of the protective oxide layer around Fe nanoparticles, Ultramicroscopy, vol.1, pp.43-51, 2007.

J. P. Winterstein and C. B. Carter, Electron-beam damage and point defects near grain boundaries in cerium oxide, Journal of the European Ceramic Society, vol.3, pp.3007-3018, 2014.

. Coll, , 1975.

T. X. Sayle, S. C. Parker, and C. R. Catlow, The role of oxygen vacancies on ceria surfaces in the oxidation of carbon monoxide, Surface Science, vol.3, pp.329-336, 1994.

M. Nolan, S. C. Parker, and G. W. Watson, The electronic structure of oxygen vacancy defects at the low index surfaces of ceria, Surface Science, vol.5, pp.223-232, 2005.

N. V. Skorodumova, M. Baudin, and K. Hermansson, Surface properties of CeO2 from first principles, Physical Review B -Condensed Matter and Materials Physics, vol.6, pp.754011-754018, 2004.

J. Burgin, 3D morphology of Au and Au@Ag nanobipyramids, vol.4, pp.1299-1303, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00667188

P. A. Crozier, R. Wang, and R. Sharma, In situ environmental TEM studies of dynamic changes in cerium-based oxides nanoparticles during redox processes, Ultramicroscopy, vol.1, pp.1432-1440, 2008.

D. C. Grinter, Spillover Reoxidation of Ceria Nanoparticles, Journal of Physical Chemistry C, vol.120, pp.11037-11044, 2016.

V. Sharma, P. A. Crozier, R. Sharma, and J. B. Adams, Direct observation of hydrogen spillover in Ni-loaded Pr-doped ceria, Catalysis Today, vol.1, pp.2-8, 2012.

G. C. Allen, M. B. Wood, and J. M. Dyke, Spectroscopic properties of some mixed-valence transitional metal chalcogenides, Journal of Inorganic and Nuclear Chemistry, vol.3, pp.2311-2318, 1973.

S. Ivanova, Formation de nanoparticules d'or supportées : De la préparation à la réactivité catalytique, 2004.

A. Demessence, Préparation de catalyseurs à base de nanoparticules d'or supportées. Ecole d'été du GdR Or Nano -Cap D'agde, 2016.

M. J. Hÿtch and L. Potez, Geometric phase analysis of high-resolution electron microscopy images of antiphase domains: Example Cu3Au. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, vol.7, pp.1119-1138, 1997.

C. Louis and O. Pluchery, Gold nanoparticles for physics, chemistry and biology. Gold Nanoparticles for Physics, Chemistry and Biology 1-395, 2012.

J. Guzman, S. Carrettin, and A. Corma, Spectroscopic evidence for the supply of reactive oxygen during CO oxidation catalyzed by gold supported on nanocrystalline CeO2, Journal of the American Chemical Society, vol.1, pp.3286-3287, 2005.

J. Jolly, B. Pavageau, and J. Tatibouët, High throughput approach applied to VOC oxidation at low temperature. Oil and Gas Science and Technology 6 68, pp.505-517, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00968135

V. V. Pushkarev, I. P. Kovalchuk, and J. L. Itri, Probing defecgt sites on the CeO2 surface with dioxygen, J. Phys. Chem. B, vol.108, pp.5341-5348, 2004.

J. E. Spanier, R. D. Zhang, S. Chan, and I. P. Herman, Size-dependent properties of CeO2-y nanoparticles as studied by Raman scattering, Physical review B, vol.6, p.64, 2001.

W. H. Weber, K. C. Hass, and J. R. Mcbride, Raman study of CeO2: Second-order cattering, lattice dynamics, and particles-size effects, Physical Review B, vol.4, pp.178-185, 1993.

F. Zhang, Cerium oxide nanoparticles : Size-selective formation and structure analysis, Applied Physics letters, vol.8, pp.127-129, 2002.

K. Byrappa, Novel hydrothermal solution routes of advanced high melting nanomaterials processing, Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi/Journal of the Ceramic Society of Japan, vol.1, pp.236-244, 2009.

K. Byrappa and T. Adschiri, Hydrothermal technology for nanotechnology, Progress in Crystal Growth and Characterization of Materials, vol.5, pp.117-166, 2007.

S. Hosokawa, Synthesis of metal oxides with improved performance using a solvothermal method, Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi/Journal of the Ceramic Society of Japan, vol.1, pp.870-874, 2016.