, International Union of Pure and Applied Chemistry, 1970.

D. Schüler, M. Buchert, R. Liu, S. Dittrich, and C. Merz, Study on rare earths and their recycling, 2011.

J. Chen, Application of Ionic Liquids on Rare Earth Green Separation and Utilization. Green Chemistry and Sustainable Technology, 2016.

Y. Liu, J. Chen, and D. Li, Application and Perspective of Ionic Liquids on Rare Earths Green Separation, Separation Science and Technology, vol.47, pp.223-232, 2012.

I. Mcgill, Rare Earth Elements, Ullmann's Encyclopedia of Industrial Chemistry, 2000.

. Brgm, Les Terres Rares. Dossier "Enjeux des géosciences, 2017.

P. Hetzel and D. Bataille, Les enjeux stratégiques des terres rares. Etude de faisabilité. Assemblée Nationale, 2014.

R. Poisson, La guerre des terres rares. L'Actualité Chimique, p.47, 2012.

, Study on the review of the list of Critical Raw Materials. Publications Office of the European Union, 2017.

S. Ali, Social and Environmental Impact of the Rare Earth Industries, Resources, vol.3, pp.123-134, 2014.

T. E. Graedel, J. Allwood, J. P. Birat, B. K. Reck, S. F. Sibley et al., Recycling rates of metals -A status report, 2011.

G. Lefebvre, Sursaut sur le marché des Terres Rares en 2017. Minéral Info, 2017.

I. Billard, Ionic Liquids: New Hopes for Efficient Lanthanide/Actinide Extraction and Separation, Handbook on the physics and chemistry of rare earths, vol.43, pp.213-273, 2013.

G. Moutiers and I. Billard, Les liquides ioniques : des solvants pour l'industrie, 2005.

C. Gomes and . Margarida, Physico-chimie des liquides ioniques : Pourquoi présentent-ils des opportunités uniques ? presented at the Tolosian Ionic Liquids Today, 2015.

C. Pretti, C. Chiappe, D. Pieraccini, M. Gregori, F. Abramo et al., Acute toxicity of ionic liquids to the zebrafish (Danio rerio), Green Chem, vol.8, pp.238-240, 2006.

P. Walden, Bulletin de l'Académie impériale des sciences de Saint-Pétersbourg: 1800, 1914.

J. S. Wilkes and M. J. Zaworotko, Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids, Journal of the Chemical Society, pp.965-967, 1992.

M. O. Souza and . De, Ionic Liquids and Catalysis, Journal of the Brazilian Chemical Society, 2014.

P. Hapiot and C. Lagrost, Electrochemical Reactivity in Room-Temperature Ionic Liquids, Chemical Reviews, vol.108, pp.2238-2264, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01151567

Y. Traore, Perspective nouvelle pour la récupération de l'indium issu des edéchets par électrodéposition dans les liquides ioniques à température ambiante, 2012.

C. G. Hanke, N. A. Atamas, and R. M. Lynden-bell, Solvation of small molecules in imidazolium ionic liquids: a simulation study, Green Chemistry, vol.4, pp.107-111, 2002.

. Hardacre, J. D. Christopher, M. Holbrey, T. G. Nieuwenhuyzen, and . Youngs, Structure and Solvation in Ionic Liquids, Accounts of Chemical Research, vol.40, pp.1146-1155, 2007.

A. H. Padua and . Agilio, La thermodynamique moléculaire : comprendre les interactions et les propriétés des liquides ioniques. L'Actualité Chimique, p.63, 2014.

S. Zhang, N. Sun, X. He, X. Lu, and X. Zhang, Physical Properties of Ionic Liquids: Database and Evaluation, Journal of Physical and Chemical Reference Data, vol.35, p.1475, 2006.

H. Jin, B. O. Hare, J. Dong, S. Arzhantsev, G. A. Baker et al., Physical Properties of Ionic Liquids Consisting of the 1-Butyl-3-Methylimidazolium Cation with Various Anions and the Bis(trifluoromethylsulfonyl)imide Anion with Various Cations, The Journal of Physical Chemistry B, vol.112, pp.81-92, 2008.

K. Tsunashima and M. Sugiya, Physical and electrochemical properties of low-viscosity phosphonium ionic liquids as potential electrolytes, Electrochemistry Communications, vol.9, pp.2353-2358, 2007.

K. Tsunashima, A. Kawabata, M. Matsumiya, S. Kodama, R. Enomoto et al., Low viscous and highly conductive phosphonium ionic liquids based on bis(fluorosulfonyl)amide anion as potential electrolytes, Electrochemistry Communications, vol.13, pp.178-181, 2011.

H. Matsumoto, H. Sakaebe, and K. Tatsumi, Preparation of room temperature ionic liquids based on aliphatic onium cations and asymmetric amide anions and their electrochemical properties as a lithium battery electrolyte, Journal of Power Sources, vol.146, pp.45-50, 2005.

H. Matsumoto, H. Kageyama, and Y. Miyazaki, Room temperature ionic liquids based on small aliphatic ammonium cations and asymmetric amide anions, Chemical Communications, pp.1726-1727, 2002.

K. Liu, Y. Zhou, H. Han, S. Zhou, W. Feng et al., Ionic liquids based on (fluorosulfonyl)(pentafluoroethanesulfonyl)imide with various oniums, Electrochimica Acta, vol.55, pp.7145-7151, 2010.

N. V. Ignat'ev, U. Welz-biermann, A. Kucheryna, G. Bissky, and H. Willner, New ionic liquids with tris(perfluoroalkyl)trifluorophosphate (FAP) anions, Journal of Fluorine Chemistry, vol.126, pp.1150-1159, 2005.

. Zhou, H. Zhi-bin, K. Matsumoto, and . Tatsumi, Cyclic Quaternary Ammonium Ionic Liquids with Perfluoroalkyltrifluoroborates: Synthesis, Characterization, and Properties, vol.12, pp.2196-2212, 2006.

. Zhou, H. Zhi-bin, K. Matsumoto, and . Tatsumi, Low-Melting, Low-Viscous, Hydrophobic Ionic Liquids: Aliphatic Quaternary Ammonium Salts with Perfluoroalkyltrifluoroborates, vol.11, pp.752-766, 2005.

M. Deng, P. Chen, T. Leong, I. Sun, J. Chang et al.,

, Dicyanamide anion based ionic liquids for electrodeposition of metals, Electrochemistry Communications, vol.10, pp.213-216

O. O. Okoturo and T. J. Vandernoot, Temperature dependence of viscosity for room temperature ionic liquids, Journal of Electroanalytical Chemistry, vol.568, pp.167-181, 2004.

H. Matsumoto, T. Matsuda, and Y. Miyazaki, Room Temperature Molten Salts Based on Trialkylsulfonium Cations and Bis(trifluoromethylsulfonyl)imide, Chemistry Letters, vol.29, pp.1430-1431, 2000.

M. Gali?ski, A. Lewandowski, and I. St?pniak, Ionic liquids as electrolytes, Electrochimica Acta, vol.51, pp.5567-5580, 2006.

Z. Chen, T. Jian, J. Xue, and . Lee, What causes the low viscosity of etherfunctionalized ionic liquids? Its dependence on the increase of free volume, RSC Advances, vol.2, p.10564, 2012.

L. J. Siqueira and M. C. Ribeiro, Alkoxy Chain Effect on the Viscosity of a Quaternary Ammonium Ionic Liquid: Molecular Dynamics Simulations, The Journal of Physical Chemistry B, vol.113, pp.1074-1079, 2009.

Z. Chen, S. Liu, Z. Li, Q. Zhang, and Y. Deng, Dialkoxy functionalized quaternary ammonium ionic liquids as potential electrolytes and cellulose solvents, New Journal of Chemistry, vol.35, p.1596, 2011.

. Tang, G. A. Shaokun, H. Baker, and . Zhao, Ether-and alcohol-functionalized taskspecific ionic liquids: attractive properties and applications, Chemical Society Reviews, vol.41, p.4030, 2012.

Y. Yoshida and G. Saito, Ionic liquids based on diethylmethyl(2-methoxyethyl)ammonium cations and bis(perfluoroalkanesulfonyl)amide anions: influence of anion structure on liquid properties, Physical Chemistry Chemical Physics, vol.13, p.20302, 2011.

H. Ohno, Electrochemical Aspects of ionic Liquids, 2005.

J. M. Pringle, J. Golding, K. Baranyai, C. M. Forsyth, G. B. Deacon et al., The effect of anion fluorination in ionic liquids?physical properties of a range of bis(methanesulfonyl)amide salts, New Journal of Chemistry, vol.27, p.1504, 2003.

S. Zhang, J. Wang, X. Lu, and Q. Zhou, Structures and interactions of ionic liquids, D.M.P Mingos, 2013.

J. Vila, L. M. Varela, and O. Cabeza, Cation and anion sizes influence in the temperature dependence of the electrical conductivity in nine imidazolium based ionic liquids, Electrochimica Acta, vol.52, pp.7413-7417, 2007.

M. Ishii, M. Matsumiya, and S. Kawakami, Development of recycling process for rare earth magnets by electrodeposition using ionic liquids media, ECS Transactions, vol.50, pp.549-560, 2012.

A. Jarosik, S. R. Krajewski, A. Lewandowski, and P. Radzimski, Conductivity of ionic liquids in mixtures, Journal of Molecular Liquids, vol.123, pp.43-50, 2006.

S. Ong, O. Ping, Y. Andreussi, N. Wu, G. Marzari et al., Electrochemical Windows of Room-Temperature Ionic Liquids from Molecular Dynamics and Density Functional Theory Calculations, Chemistry of Materials, vol.23, pp.2979-2986, 2011.

P. C. Howlett, E. I. Izgorodina, M. Forsyth, and D. R. Macfarlane, Electrochemistry at negative potentials in NTf2 ionic liquids, vol.220, pp.1483-1498, 2006.

D. Vos, C. Nils, C. V. Maton, and . Stevens, Electrochemical Stability of Ionic Liquids: General Influences and Degradation Mechanisms. ChemElectroChem, vol.1, pp.1258-1270, 2014.

. O'mahony, M. Aoife, D. S. Silvester, L. Aldous, C. Hardacre et al., Effect of Water on the Electrochemical Window and Potential Limits of Room-Temperature Ionic Liquids, Journal of Chemical & Engineering Data, vol.53, pp.2884-2891, 2008.

P. Wasserscheid and T. Welton, Ionic Liquids in Synthesis. Green Chemistry, 2003.

T. Wu, S. Su, K. Lin, Y. Lin, H. Wang et al., Voltammetric and physicochemical characterization of hydroxyland ether-functionalized onium bis(trifluoromethanesulfonyl)imide ionic liquids, Electrochimica Acta, vol.56, pp.7278-7287, 2011.

S. Randström, M. Montanino, G. B. Appetecchi, C. Lagergren, A. Moreno et al., Effect of water and oxygen traces on the cathodic stability of N-alkyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide, Electrochimica Acta, vol.53, pp.6397-6401, 2008.

H. Sakaebe and H. Matsumoto, N-Methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide (PP13-TFSI) -novel electrolyte base for Li battery, Electrochemistry Communications, vol.5, pp.594-598, 2003.

D. R. Mcfarlane, J. Sun, J. Golding, P. Meakin, and M. Forsyth, High conductivity molten salts based on the imide ion, Electrochimica Acta, vol.45, pp.1271-1278, 2000.

R. K. Donato, V. Marcelo, M. A. Migliorini, J. Benvegnú, R. S. Dupont et al., The electrochemical properties of a platinum electrode in functionalized room temperature imidazolium ionic liquids, Journal of Solid State Electrochemistry, vol.11, pp.1481-1487, 2007.

L. V. Ganapatibhotla, J. Zheng, D. Roy, and S. Krishnan, PEGylated Imidazolium Ionic Liquid Electrolytes: Thermophysical and Electrochemical Properties, Chemistry of Materials, vol.22, pp.6347-6360, 2010.

A. I. Bhatt, I. May, V. A. Volkovich, D. Collison, M. Helliwell et al., Structural Characterization of a Lanthanum Bistriflimide Complex, La(N(SO2CF3)2)3(H2O)3, and an Investigation of La, Sm, and Eu Electrochemistry in a Room-Temperature Ionic Liquid, Inorganic Chemistry, vol.44, pp.4934-4940, 2005.

M. Matsumiya, M. Ishii, R. Kazama, and S. Kawakami, Electrochemical analyses of diffusion behaviors and nucleation mechanisms for neodymium complexes in [DEME][TFSA] ionic liquid, Electrochimica Acta, vol.146, pp.371-377, 2014.

T. Sato, G. Masuda, and K. Takagi, Electrochemical properties of novel ionic liquids for electric double layer capacitor applications, Electrochimica Acta, vol.49, pp.3603-3611, 2004.

J. Chen, Application of Ionic Liquids on Rare Earth Green Separation and Utilization. Green Chemistry and Sustainable Technology, 2016.

. Belhocine, S. A. Tayeb, H. Q. Forsyth, M. Gunaratne, P. Nieuwenhuyzen et al., Azepanium ionic liquids, Green Chemistry, vol.13, p.3137, 2011.

A. I. Bhatt, I. May, V. A. Volkovich, M. E. Hetherington, B. Lewin et al., Group 15 quaternary alkyl bistriflimides: ionic liquids with potential application in electropositive metal deposition and as supporting electrolytes, Journal of the Chemical Society, pp.4532-4534, 2002.

H. Kondo, M. Matsumiya, K. Tsunashima, and S. Kodama, Attempts to the electrodeposition of Nd from ionic liquids at elevated temperatures, Electrochimica Acta, vol.66, pp.313-319, 2012.

C. Liu, F. Xu, S. Feng, L. Zheng, H. Zhang et al., New hydrophobic ionic liquids based on (fluorosulfonyl)(polyfluorooxaalkanesulfonyl)imides with various oniums, Electrochimica Acta, vol.99, pp.262-272, 2013.

J. Mun, Y. Jung, T. Yim, H. Y. Lee, H. Kim et al., Electrochemical stability of bis(trifluoromethanesulfonyl)imide-based ionic liquids at elevated temperature as a solvent for a titanium oxide bronze electrode, Journal of Power Sources, vol.194, pp.1068-1074, 2009.

M. C. Kroon, W. Buijs, C. J. Peters, G. Witkamp-;-cammarata, L. et al., Decomposition of ionic liquids in electrochemical processing, Physical Chemistry Chemical Physics, vol.8, pp.5192-5200, 2001.

E. Bossé, Comportement des actinides dans les liquides ioniques à température ambiante, 2008.

M. G. Freire, M. N. Luís, A. M. Santos, . Fernandes, A. P. João et al., An overview of the mutual solubilities of water-imidazolium-based ionic liquids systems, Fluid Phase Equilibria, vol.261, pp.449-454, 2007.

M. Klähn, C. Stüber, A. Seduraman, and P. Wu, What Determines the Miscibility of Ionic Liquids with Water? Identification of the Underlying Factors to Enable a Straightforward Prediction, The Journal of Physical Chemistry B, vol.114, pp.2856-2868, 2010.

C. D. Tran, H. Silvia, D. De-paoli-lacerda, and . Oliveira, Absorption of water by room-temperature ionic liquids: effect of anions on concentration and state of water, Applied spectroscopy, vol.57, pp.152-157, 2003.

T. Katase, S. Imashuku, K. Murase, T. Hirato, and Y. Awakura, Water content and related physical properties of aliphatic quaternary ammonium imide-type ionic liquid containing metal ions, Science and Technology of Advanced Materials, vol.7, pp.502-510, 2006.

D. S. Silvester and R. G. Compton, Electrochemistry in Room Temperature Ionic Liquids: A Review and Some Possible Applications, vol.220, pp.1247-1274, 2006.

H. Kondo, M. Matsumiya, K. Tsunashima, and S. Kodama, Investigation of oxidation state of the electrodeposited neodymium metal related with the water contents of phosphonium ionic liquids, ECS Transactions, vol.50, pp.529-538, 2012.

S. Legeai, S. Diliberto, N. Stein, C. Boulanger, J. Estager et al., Room-temperature ionic liquid for lanthanum electrodeposition, Electrochemistry Communications, vol.10, pp.1661-1664, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01494537

Y. Katayama, H. Onodera, M. Yamagata, and T. Miura, Electrochemical Reduction of Oxygen in Some Hydrophobic Room-Temperature Molten Salt Systems, Journal of The Electrochemical Society, vol.151, p.59, 2004.

Y. Katayama, K. Sekiguchi, M. Yamagata, and T. Miura, Electrochemical Behavior of Oxygen/Superoxide Ion Couple in 1-Butyl-1-methylpyrrolidinium Bis(trifluoromethylsulfonyl)imide Room-Temperature Molten Salt, Journal of The Electrochemical Society, vol.152, p.247, 2005.

S. Randström, G. B. Appetecchi, C. Lagergren, A. Moreno, and S. Passerini, The influence of air and its components on the cathodic stability of N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide, Electrochimica Acta, vol.53, pp.1837-1842, 2007.

P. Hapiot, C. Lagrost, ;. Shaohua, L. Yang, C. Wei et al., Ionic liquids based on guanidinium cations and TFSI anion as potential electrolytes, Electrochimica Acta, vol.108, pp.1752-1756, 2008.

. Fang, L. Shaohua, J. Yang, M. Wang, K. Li et al., Ionic liquids based on functionalized guanidinium cations and TFSI anion as potential electrolytes, Electrochimica Acta, vol.54, pp.4269-4273, 2009.

A. A. Torriero, Electrochemistry in Ionic Liquids, 2015.

M. Yamagata, Y. Katayama, and T. Miura, Electrochemical Behavior of Samarium, Europium, and Ytterbium in Hydrophobic Room-Temperature Molten Salt Systems, Journal of The Electrochemical Society, vol.153, p.5, 2006.

G. Gritzner and J. Kuta, Recommendations on reporting electrode potentials in nonaqueous solvents (Recommendations, vol.56, pp.461-466, 1983.

G. A. Snook, A. S. Best, A. G. Pandolfo, and A. F. Hollenkamp, Evaluation of a Ag|Ag+ reference electrode for use in room temperature ionic liquids, Electrochemistry Communications, vol.8, pp.1405-1411, 2006.

J. Clavilier, J. M. Orts, R. Gomez, J. M. Feliu, and A. Aldaz, Comparison of electrosorption at activated polycrystalline and Pt (531) kinked platinum electrodes: surface voltammetry and charge displacement on potentiostatic CO adsorption, Journal of Electroanalytical Chemistry, vol.404, pp.281-289, 1996.

L. Naour and C. , Etude voltampérométrique des acides formique et dihydroxymalonique sur platine en vue de la définition d'un procédé de destruction électrolytique d'acides carbocyliques d'effluents aqueux radioactifs, 1994.

W. Ma, Y. Ying, L. Qin, Z. Gu, H. Zhou et al., Investigating electron-transfer processes using a biomimetic hybrid bilayer membrane system, Nature Protocols, vol.8, pp.439-450, 2013.

A. J. Bard and L. R. Faulkner, Electrochemical Methods -Fundamentals and Applications

D. A. Rand and R. Woods, The nature of adsorbed oxygen on rhodium, palladium and gold electrodes, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol.31, pp.29-38, 1971.

N. Tachikawa, Y. Katayama, and T. Miura, Electrode Kinetics of Ferrocenium/ferrocene in Room-temperature Ionic Liquids, 2009.

E. I. Rogers, D. S. Silvester, D. L. Poole, L. Aldous, C. Hardacre et al., Voltammetric Characterization of the Ferrocene|Ferrocenium and Cobaltocenium|Cobaltocene Redox Couples in RTILs, The Journal of Physical Chemistry C, vol.112, pp.2729-2735, 2008.

M. R. Antonio, L. Soderholm, and I. Song, Design of spectroelectrochemical cell for in situ X-ray absorption fine structure measurements of bulk solution species, Journal of Applied Electrochemistry, vol.27, pp.784-792, 1997.

Y. Takahashi, G. R. Kolonin, G. P. Shironosova, I. I. Kupriyanova, T. Uruga et al., Determination of the Eu(II)/Eu(III) ratios in minerals by X-ray absorption near-edge structure (XANES) and its application to hydrothermal deposits, Mineralogical Magazine, vol.69, pp.179-190, 2005.

H. Liang, H. He, Q. Zeng, S. Wang, Q. Su et al., VUV and Eu-L 3 edge XANES spectra of europium-doped strontium tetraborate prepared in air, Journal of electron spectroscopy and related phenomena, vol.124, pp.67-72, 2002.

M. C. Buzzeo, C. Hardacre, and R. G. Compton, Extended Electrochemical Windows Made Accessible by Room Temperature Ionic Liquid/Organic Solvent Electrolyte Systems, ChemPhysChem, vol.7, pp.176-180, 2006.

. Aldous, D. S. Leigh, W. R. Silvester, R. G. Pitner, M. C. Compton et al., Voltammetric Studies of Gold, Protons, and [HCl2] -in Ionic Liquids, The Journal of Physical Chemistry C, vol.111, pp.8496-8503, 2007.

D. S. Silvester, L. Aldous, C. Hardacre, and R. G. Compton, An Electrochemical Study of the Oxidation of Hydrogen at Platinum Electrodes in Several Room Temperature Ionic Liquids ?, The Journal of Physical Chemistry B, vol.111, pp.5000-5007, 2007.

C. L. Bentley, A. M. Bond, A. F. Hollenkamp, P. J. Mahon, and J. Zhang, Mass Transport Studies and Hydrogen Evolution at a Platinum Electrode Using Bis(trifluoromethanesulfonyl)imide as the Proton Source in Ionic Liquids and Conventional Solvents, The Journal of Physical Chemistry C, vol.118, pp.29663-29673, 2014.

D. A. Walsh, A. Ejigu, S. Muhammad, and P. Licence, The Formation and Role of Oxide Layers on Pt during Hydrazine Oxidation in Protic Ionic Liquids, vol.1, pp.281-288, 2014.

G. Jerkiewicz, G. Vatankhah, J. Lessard, M. P. Soriaga, and Y. Park, Surface-oxide growth at platinum electrodes in aqueous H2SO4, Electrochimica Acta, vol.49, pp.1451-1459, 2004.

H. Angerstein-kozlowska, B. E. Conway, and W. B. Sharp, The real condition of electrochemically oxidized platinum surfaces: Part I. Resolution of component processes, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol.43, pp.9-36, 1973.

B. E. Conway, Electrochemical oxide film formation at noble metals as a surfacechemical process, Progress in Surface Science, vol.49, pp.331-452, 1995.

L. P. Hammett, The velocity of the hydrogen electrode reaction on platinum catalysts, Journal of the American Chemical Society, vol.46, pp.7-19, 1924.

J. E. Droessler, R. Kenneth, D. W. Czerwinski, and . Hatchett, Electrochemical Measurement of Gold Oxide Reduction and Methods for Acid Neutralization and Minimization of Water in Wet Ionic Liquid, Electroanalysis, vol.26, pp.2631-2638, 2014.

Y. Tang, Z. Wang, X. Chi, M. D. Sevilla, and X. Zeng, Situ Generated Platinum Catalyst for Methanol Oxidation via Electrochemical Oxidation of Bis(trifluoromethylsulfonyl)imide Anion in Ionic Liquids at Anaerobic Condition, The Journal of Physical Chemistry C, vol.120, pp.1004-1012, 2016.

K. Motobayashi and M. Osawa, Potential-dependent condensation of Water at the Interface between ionic liquid, Electrochemistry Communications, vol.65, pp.14-17, 2016.

Y. Furuya, T. Mashio, A. Ohma, N. Dale, K. Oshihara et al., Surface oxide growth on platinum electrode in aqueous trifluoromethanesulfonic acid, The Journal of Chemical Physics, vol.141, p.164705, 2014.

X. -. Yuan, V. Zi, Z. Alzate, D. G. Xie, W. Ivey et al., Oxygen Reduction Reaction in 1-Butyl-1-methyl-pyrrolidinium Bis (trifluoromethanesulfonyl) imide: Addition of Water as a Proton Species, Journal of The Electrochemical Society, vol.161, pp.451-457, 2014.

M. P. Sumino and S. Shibata, Specific adsorption of hydrogen on polycrystalline platinum electrode, Electrochimica acta, vol.37, pp.2629-2635, 1992.

D. Armand and J. Clavilier, Electrochemical behaviour of the (110) orientation of a platinum surface in acid medium: the role of anions, Journal of electroanalytical chemistry and interfacial electrochemistry, vol.263, pp.109-126, 1989.

D. Armand and J. Clavilier, Influence of specific adsorption of anions on the electrochemical behaviour of the Pt (100) surface in acid medium: Comparison with Pt (111), Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol.270, pp.331-347, 1989.

A. Rollet, P. Porion, M. Vaultier, I. Billard, M. Deschamps et al., Anomalous Diffusion of Water in [BMIM][TFSI] Room-Temperature Ionic Liquid, The Journal of Physical Chemistry B, vol.111, pp.11888-11891, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00181174

C. G. Hanke and R. M. Lynden-bell, A Simulation Study of Water?Dialkylimidazolium Ionic Liquid Mixtures, The Journal of Physical Chemistry B, vol.107, pp.10873-10878, 2003.

M. Farebrother, M. Goledzinowski, G. Thomas, and V. I. Birss, Early stages of growth of hydrous platinum oxide films, Journal of Electroanalytical Chemistry, vol.297, pp.469-488, 1991.

R. Barhdadi, M. Troupel, C. Comminges, M. Laurent, and A. Doherty, Electrochemical Determination of pKa of N-Bases in Ionic Liquid Media, The Journal of Physical Chemistry B, vol.116, pp.277-282, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01271703

C. L. Bentley, A. M. Bond, A. F. Hollenkamp, P. J. Mahon, and J. Zhang, Electrochemical Proton Reduction and Equilibrium Acidity (pKa) in Aprotic Ionic Liquids: Protonated Amines and Sulfonamide Acids, vol.119, pp.21828-21839, 2015.

F. G. Bordwell, Equilibrium acidities in dimethyl sulfoxide solution, Accounts of Chemical Research, vol.21, pp.456-463, 1988.

L. D. Burke, D. T. Buckley, and J. A. Morrissey, Novel view of the electrochemistry of gold, Analyst, vol.119, pp.841-845, 1994.

L. D. Burke and P. F. Nugent, The electrochemistry of gold: I the redox behaviour of the metal in aqueous media, Gold Bulletin, vol.30, pp.43-53, 1997.

D. E. Hobart, K. Samhoun, J. P. Young, V. E. Norvell, G. Mamantov et al., Stabilization of Praseodymium (IV) and Terbium (IV) in aqueous carbonate solution, Inorganic and Nuclear Chemistry Letters, vol.16, pp.321-328, 1980.

M. R. Cicconi, G. Giuli, E. Paris, W. Ertel-ingrisch, P. Ulmer et al., Europium oxidation state and local structure in silicate glasses, American Mineralogist, vol.97, pp.918-929, 2012.

L. Diaz, P. Chamelot, M. Gibilaro, L. Massot, and J. Serp, Electrochemical Behavior of Neodymium in Molten Chloride Salts, Rare Metal Technology, pp.77-86, 2017.

Q. Zhang, Y. Hua, C. Xu, Y. Li, J. Li et al., Non-haloaluminate ionic liquids for low-temperature electrodeposition of rare-earth metals-A review, Journal of Rare Earths, vol.33, pp.1017-1025, 2015.

L. J. Nugent, R. D. Baybarz, J. L. Burnett, and J. L. Ryan, Electron-transfer and f? d absorption bands of some lanthanide and actinide complexes and the standard (III-IV) oxidation potentials for each member of the lanthanide and actinide series, Journal of Inorganic and Nuclear Chemistry, vol.33, pp.2503-2530, 1971.

R. Research, Luminescent Lanthanide Agents, 2016.

S. Chandra, Comprehensive Inorganic Chemistry, 2006.

K. Binnemans, Interpretation of europium(III) spectra, Coordination Chemistry Reviews, vol.295, pp.1-45, 2015.

Y. Pan and C. L. Hussey, Electrochemical and Spectroscopic Investigation of Ln 3+ (Ln = Sm, Eu, and Yb) Solvation in Bis(trifluoromethylsulfonyl)imide-Based Ionic Liquids and Coordination by N, N, N?, N?-Tetraoctyl-3-oxa-pentane Diamide (TODGA) and Chloride, Inorganic Chemistry, vol.52, pp.3241-3252, 2013.

K. Binnemans and C. Görller-walrand, On the color of the trivalent lanthanide ions, Chemical Physics Letters, vol.235, pp.163-174, 1995.

G. Rao, G. , and P. V. Rao, Ammonium hexanitratocerate(IV) as an oxidising agent -IV, Talanta, vol.11, pp.1489-1496

N. N. Greenwood and A. Earnshaw, Chemistry of the Elements, 1997.

R. Nagaishi, M. Arisaka, T. Kimura, and Y. Kitatsuji, Spectroscopic and electrochemical properties of europium(III) ion in hydrophobic ionic liquids under controlled condition of water content, Journal of Alloys and Compounds, vol.431, pp.221-225, 2007.

S. Mekki, Speciation de l'europium trivalent dans un liquide ionique basse température, 2006.

W. D. Horrocks and D. R. Sudnick, Laser-induced luminescence decay constants provide a direct measure of the number of metal-coordinated water molecules, Journal of the American Chemical Society, vol.101, pp.334-340, 1979.

T. Kimura and G. R. Choppin, Luminescence study on determination of the hydration number of Cm(III), Journal of Alloys and Compounds, vol.213, pp.313-317, 1994.

T. Kimura and Y. Kato, Luminescence study on hydration states of lanthanide(III)-polyaminopolycarboxylate complexes in aqueous solution, Journal of Alloys and Compounds, vol.275, pp.806-810, 1998.

A. Kurachi, M. Matsumiya, K. Tsunashima, and S. Kodama, Electrochemical behavior and electrodeposition of dysprosium in ionic liquids based on phosphonium cations, Journal of Applied Electrochemistry, vol.42, pp.961-968, 2012.

A. Babai, S. Pitula, and A. Mudring, Structural and Electrochemical Properties of Yb III in Various Ionic Liquids, European Journal of Inorganic Chemistry, pp.4933-4937, 2010.

A. Babai and A. Mudring, Anhydrous Praseodymium Salts in the Ionic Liquid, Chemistry of Materials, vol.17, pp.6230-6238, 2005.

A. Babai and A. Mudring, The first homoleptic bis(trifluoromethanesulfonyl)amide complex compounds of trivalent f-elements, Dalton Transactions, p.1828, 2006.

D. Williams, M. E. Bridget, B. L. Stoll, D. A. Scott, W. J. Costa et al., Coordination chemistry of the bis(trifluoromethylsulfonyl)imide anion: molecular interactions in room temperature ionic liquids, Chemical Communications, p.1438, 2005.

K. Kuribara, M. Matsumiya, and K. Tsunashima, Nd(III) and Dy(III) complexes in ionic liquids evaluated by Raman spectroscopy and DFT calculation, Journal of Molecular Structure, vol.1125, pp.186-192, 2016.

M. Matsumiya, R. Kazama, and K. Tsunashima, Analysis of coordination states for Dy(II) and Dy(III) complexes in ionic liquids by Raman spectroscopy and DFT calculation, Journal of Molecular Liquids, vol.215, pp.308-315, 2016.

I. Billard and C. Gaillard, Actinide and lanthanide speciation in imidazoliumbased ionic liquids, Radiochimica Acta, vol.97, 2009.
URL : https://hal.archives-ouvertes.fr/in2p3-00409924

Y. Cui, Y. Hua, and Y. Lin, Applications of ionic liquids in electrodeposition of rare earths.pdf, Journal of Chongqing University (English Edition), vol.9, pp.167-176, 2010.

N. Sasaya, M. Matsumiya, and K. Tsunashima, Solvation and electrochemical analyses of neodymium complexes in TFSA-based ionic liquids dissolving the nitrates synthesized from spent Nd-Fe-B magnets, Polyhedron, vol.85, pp.888-893, 2015.

M. Matsumiya, Y. Kikuchi, T. Yamada, and S. Kawakami, Extraction of rare earth ions by tri-n-butylphosphate/phosphonium ionic liquids and the feasibility of recovery by direct electrodeposition, Separation and Purification Technology, vol.130, pp.91-101, 2014.

R. Kazama, M. Matsumiya, N. Tsuda, and K. Tsunashima, Electrochemical analysis of diffusion behavior and nucleation mechanism for Dy(II) and Dy(III) in phosphonium-based ionic liquids, Electrochimica Acta, vol.113, pp.269-279, 2013.

. Chou, C. L. Li-hsien, and . Hussey, An Electrochemical and Spectroscopic Study of Nd(III) and Pr(III) Coordination in the 1-Butyl-1-methylpyrrolidinium Bis(trifluoromethylsulfonyl)imide Ionic Liquid Containing Chloride Ion, Inorganic Chemistry, vol.53, pp.5750-5758, 2014.

J. Rao, K. A. Ch, K. Venkatesan, T. G. Nagarajan, P. R. Srinivasan et al., Electrochemical and thermodynamic properties of europium(III), samarium(III) and cerium(III) in 1-butyl-3-methylimidazolium chloride ionic liquid, Journal of Nuclear Materials, vol.399, pp.81-86, 2010.

L. -. Chou, W. E. Hsien, C. L. Cleland, and . Hussey, Electrochemical and Spectroscopic Study of Ce(III) Coordination in the 1-Butyl-3-methylpyrrolidinium Bis(trifluoromethylsulfonyl)imide Ionic Liquid Containing Chloride Ion, Inorganic Chemistry, vol.51, pp.11450-11457, 2012.

M. Matsumiya, S. Suda, K. Tsunashima, M. Sugiya, H. Shin-ya-kishioka et al., Electrochemical behaviors of multivalent complexes in room temperature ionic liquids based on quaternary phosphonium cations, Journal of Electroanalytical Chemistry, vol.622, pp.129-135, 2008.

L. M. Glukhov, A. A. Greish, and L. M. Kustov, Electrodeposition of rare earth metals Y, Gd, Yb in ionic liquids, Russian Journal of Physical Chemistry A, vol.84, pp.104-108, 2010.

J. Rao, K. A. Ch, K. Venkatesan, T. G. Nagarajan, P. R. Srinivasan et al., Electrochemical behavior of europium (III) in N-butyl-N-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, Electrochimica Acta, vol.54, pp.4718-4725, 2009.

R. Rama, K. A. Alok-rout, M. P. Venkatesan, P. R. Antony, and . Vasudeva-rao, Electrochemical behavior of Eu(III) in imidazolium ionic liquid containing tri-n-butyl phosphate and N,N-dihexyloctanamide ligands, Journal of Electroanalytical Chemistry, vol.757, pp.36-43, 2015.

A. I. Bhatt, I. May, V. A. Volkovich, M. E. Hetherington, B. Lewin et al., Group 15 quaternary alkyl bistriflimides: ionic liquids with potential application in electropositive metal deposition and as supporting electrolytes, Journal of the Chemical Society, pp.4532-4534, 2002.

. Gupta, S. K. Ruma, J. S. Gupta, K. V. Gamre, V. Lohithakshan et al., Understanding the Dynamics of Eu 3+ Ions in Room-Temperature Ionic Liquids -Electrochemical and Time-Resolved Fluorescence Spectroscopy Studies: The Dynamics of Eu 3+ Ions in Room-Temperature Ionic Liquids, European Journal of Inorganic Chemistry, pp.104-111, 2015.

A. Sengupta, M. S. Murali, and P. K. Mohapatra, Electrochemical behavior of cerium(IV) in a RTIL and its mixture with ethanol, Journal of Rare Earths, vol.32, pp.641-647, 2014.

X. Tan, Q. Fan, X. Wang, and B. Grambow, Eu(III) Sorption to TiO2 (Anatase and Rutile): Batch, XPS, and EXAFS Studies, Environmental Science & Technology, vol.43, pp.3115-3121, 2009.
URL : https://hal.archives-ouvertes.fr/in2p3-00388691

P. G. Allen, J. J. Bucher, D. K. Shuh, N. M. Edelstein, and I. Craig, Coordination Chemistry of Trivalent Lanthanide and Actinide Ions in Dilute and Concentrated Chloride Solutions, Inorganic Chemistry, vol.39, pp.595-601, 2000.

C. Clavaguéra, R. Pollet, J. M. Soudan, V. Brenner, and J. P. Dognon, Molecular Dynamics Study of the Hydration of Lanthanum(III) and Europium(III) Including Many-Body Effects, The Journal of Physical Chemistry B, vol.109, pp.7614-7616, 2005.

R. D. Shannon, Revised Effective ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides, Acta Crystallographica, vol.32, p.751, 1976.

N. Tachikawa, Y. Katayama, and T. Miura, Electrochemical and Spectroscopic Studies of Europium(II/III) Species in a Hydrophobic Room-Temperature Ionic Liquid, Electrochemistry, vol.77, pp.642-644, 2009.

I. Billard, G. Moutiers, A. Labet, A. E. Azzi, C. Gaillard et al., Stability of Divalent Europium in an Ionic Liquid: Spectroscopic Investigations in 1-Methyl-3-butylimidazolium Hexafluorophosphate, Inorganic Chemistry, vol.42, pp.1726-1733, 2003.
URL : https://hal.archives-ouvertes.fr/in2p3-00012860

M. E. Fieser, G. Maryline, J. Ferrier, E. Su, S. K. Batista et al., Evaluating the electronic structure of formal, Ln II ions in Ln II, issue.C5H4SiMe3, p.3, 2017.

, ? using XANES spectroscopy and DFT calculations, Chem. Sci, vol.8, pp.6076-6091

H. Wang, C. Hao-wu, R. S. Weatherup, B. Feng, Y. Ye et al., X-ray-Induced Fragmentation of Imidazolium-Based Ionic Liquids Studied by Soft X-ray Absorption Spectroscopy, The Journal of Physical Chemistry Letters, vol.9, pp.785-790, 2018.

E. Fonda, D. Andreatta, P. E. Colavita, and G. Vlaic, EXAFS analysis of the L3 edge of Ce in CeO2 : effects of multi-electron excitations and final-state mixed valence, Journal of Synchrotron Radiation, vol.6, pp.34-42, 1999.

S. Bénazeth, J. Purans, M. Chalbot, M. K. Nguyen-van-duong, L. Nicolas et al., Temperature and pH Dependence XAFS Study of Gd(DOTA) -and Gd(DTPA) 2 -Complexes: Solid State and Solution Structures, Inorganic Chemistry, vol.37, pp.3667-3674, 1998.

A. Mishra and S. Ninama, Theoretical Analysis of EXAFS Spectra of Copper (II) amino Acid Using IFEFFIT Method, Physical Review, p.9, 2014.

M. Audras, L. Berthon, C. Berthon, D. Guillaumont, T. Dumas et al., Structural Characterization of Am(III)-and Pu(III)-DOTA Complexes, Inorganic Chemistry, vol.56, pp.12248-12259, 2017.

C. R. Groom, I. J. Bruno, M. P. Lightfoot, and S. C. Ward, The Cambridge Structural Database, Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, vol.72, pp.171-179, 2016.

A. Lewandowski and A. ?widerska-mocek, Ionic liquids as electrolytes for Li-ion batteries-An overview of electrochemical studies, Journal of Power Sources, vol.194, pp.601-609, 2009.

R. Michez, J. Vander-steen, T. Doneux, M. Luhmer, and C. Buessherman, Electroreduction of 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ionic liquid: Oriented product selectivity through the electrode material, Electrochimica Acta, vol.270, pp.434-439, 2018.

D. G. Peters and J. J. Lingane, Anodic Formation and Chemical Analysis of Oxychloride Films on Platinum Electrodes, Journal of Electroanalytical Chemistry, vol.4, pp.193-217, 1962.

M. Balva, S. Legeai, N. Leclerc, E. Billy, and E. Meux, Environmentally Friendly Recycling of Fuel-Cell Membrane Electrode Assemblies by Using Ionic Liquids, ChemSusChem, vol.10, pp.2922-2935, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01840639

D. F. Koch and R. Woods, The electro-oxidation of acetate on platinum at low potentials, Electrochimica Acta, vol.13, pp.80119-80126, 1968.

L. E. Barrosse-antle and R. G. Compton, Reduction of carbon dioxide in 1-butyl-3-methylimidazolium acetate, Chemical Communications, p.3744, 2009.

H. D. Jenkins and K. P. Thakur, Reappraisal of thermochemical radii for complex ions, Journal of Chemical Education, vol.56, p.576, 1979.

I. A. Shkrob, T. W. Marin, Y. Zhu, and D. P. Abraham, Why Bis(fluorosulfonyl)imide Is a "Magic Anion" for Electrochemistry, The Journal of Physical Chemistry C, vol.118, pp.19661-19671, 2014.

P. Bonhote, A. Dias, N. Papageorgiou, K. Kalyanasundaram, and M. Grätzel, Hydrophobic, highly conductive ambient-temperature molten salts, Inorganic chemistry, vol.35, pp.1168-1178, 1996.

R. Bunsen, Ueber eine volumetrische Methode von sehr allgemeiner Anwendbarkeit, Justus Liebigs Annalen der Chemie, vol.86, pp.265-291, 1853.

K. Fischer, Neues Verfahren zur massanalytischen Bestimmung des Wassergehaltes von Flüssigkeiten und festen Körpern, Angewandte Chemie, vol.48, pp.394-396, 1935.

S. Rivera-rubero and S. Baldelli, Surface Spectroscopy of Room-temperature Ionic Liquids on a Platinum Electrode: A Sum Frequency Generation Study, The Journal of Physical Chemistry B, vol.108, pp.15133-15140, 2004.

R. Atkin, N. Borisenko, M. Drüschler, F. Endres, R. Hayes et al., Structure and dynamics of the interfacial layer between ionic liquids and electrode materials, Journal of Molecular Liquids, vol.192, pp.44-54, 2014.

R. Hayes, N. Borisenko, M. K. Tam, and P. C. Howlett, Double Layer Structure of Ionic Liquids at the Au(111) Electrode Interface: An Atomic Force Microscopy Investigation, The Journal of Physical Chemistry C, vol.115, pp.6855-6863, 2011.

A. S. Barnes, E. I. Rogers, I. Streeter, L. Aldous, C. Hardacre et al., Extraction of Electrode Kinetic Parameters from Microdisc Voltammetric Data Measured under Transport Conditions Intermediate between Steady-State Convergent and Transient Linear Diffusion As Typically Applies to Room Temperature Ionic Liquids, The Journal of Physical Chemistry B, vol.112, pp.7560-7565, 2008.

J. G. Bünzli and V. K. Pecharsky, Handbook on the physics and chemistry of rare earths, vol.43, 2013.

M. Matsumiya, T. Yamada, Y. Kikuchi, and S. Kawakami, Removal of Iron and Boron by Solvent Extraction with Ionic Liquids and Recovery of Neodymium Metal by Direct Electrodeposition, Solvent Extraction and Ion Exchange, vol.34, pp.522-534, 2016.

, Une première méthode consiste, à la suite d'un procédé de séparation des différents lanthanides, à effectuer le dépôt électrolytique d'un élément à l'état métallique, p.120

, Une étape d'extraction liquide/liquide dans [P2225][NTf2] en présence de TBP qui permet d'éliminer le B et une grande partie du Fe. Cette étape permet d'obtenir une solution à 65,3 g/L en Nd et, Le liquide ionique intervient dans deux étapes différentes

. -l', étape finale est ensuite un procédé d'électrolyse effectué directement dans le même milieu et qui permet tout d'abord de déposer le Fe métallique à E = -1,75 V puis d'obtenir jusqu'à 49

. Toutefois, ces valeurs théoriques sont basées sur des rendements mesurés pour un procédé à plus petite échelle et les hypothèses d'intensification ne sont pas précisées. D'après les données publiées, le plus gros dépôt réellement obtenu a été obtenu pour une charge totale transportée de 28,4 C soit environ un dépôt de 14 mg en considérant un rendement faradique de 100 %. De plus

, Annexes Annexe 7 : Étude spectro-électrochimique des couples Sm(III)/Sm(II) et

(. Yb and . Iii)/yb,

, Les espèces divalentes du samarium et de l'ytterbium sont également citées dans la littérature comme étant stables, vol.5

, Une étude similaire à celle menée pour le couple Eu(III)/Eu(II) a donc été menée. Elle a conduit à des résultats assez différents

. Le-voltampérogramme-cyclique-du-couple and . Sm,

+. V-vs-fc and . Fc, Toutefois, contrairement à ce qui était observé dans le cas de l'europium, deux pics d'oxydation sont observés, l'un à -0,66 V et l'autre à 0,13 V vs Fc + /Fc. La figure 121 montre les voltampérogrammes obtenus à différentes vitesses de balayage. Figure 121 : Voltampérogrammes cycliques d'une solution de Sm(NTf2)3 0,05 M dans

, Les pics (1) à -0,66 V vs Fc + /Fc et (3) à -1,37 V vs Fc + /Fc semblent

. Sm, Le rapport d'intensité des deux pics d'oxydation (I2/I1) augmente avec la vitesse de balayage jusqu'à un maximum de 1. Le pic (2) n'est pas obervé à 10 mv/s. À cette vitesse de balayage, une forte dissymétrie entre les pics d'oxydation et de réduction est toutefois relevée. Le pic d'oxydation est moins intense que celui de réduction. Cela semble indiquer une réaction de dégradation du samarium divalent formé par réduction de Sm(III)