J. L. Abascal, E. Sanz, R. G. Fernández, and C. Vega, A potential model for the study of ices and amorphous water: TIP4p/Ice, J. Chem. Phys, vol.122, p.234511, 2005.

J. L. Abascal and C. Vega, A general purpose model for the condensed phases of water: TIP4P, J. Chem. Phys, vol.123, p.234505, 2005.

K. V. Agrawal, S. Shimizu, L. W. Drahushuk, D. Kilcoyne, and M. S. Strano, Observation of extreme phase transition temperatures of water confined inside isolated carbon nanotubes, 2016.

F. G. Alabarse, J. Haines, O. Cambon, C. Levelut, D. Bourgogne et al., Freezing of water confined at the nanoscale, Phys. Rev. Lett, vol.109, p.35701, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00743730

E. Y. Aladko, Y. A. Dyadin, V. B. Fenelonov, E. G. Larionov, M. S. Mel'gunov et al., Dissociation conditions of methane hydrate in mesoporous silica gels in wide ranges of pressure and water content, J. Phys. Chem. B, vol.108, pp.16540-16547, 2004.

S. Alavi and R. Ohmura, Understanding decomposition and encapsulation energies of structure I and II clathrate hydrates, J. Chem. Phys, vol.145, p.154708, 2016.

S. Alavi and J. A. Ripmeester, Nonequilibrium adiabatic molecular dynamics simulations of methane clathrate hydrate decomposition, J. Chem. Phys, vol.132, p.144703, 2010.

Z. M. Aman and C. A. Koh, Interfacial phenomena in gas hydrate systems, Chem. Soc. Rev, vol.45, pp.1678-1690, 2016.

G. K. Anderson, Enthalpy of dissociation and hydration number of methane hydrate from the clapeyron equation, J. Chem. Thermodyn, vol.36, pp.1119-1127, 2004.

R. Anderson, M. Llamedo, B. Tohidi, and R. W. Burgass, Experimental measurement of methane and carbon dioxide clathrate hydrate equilibria in mesoporous silica, J. Phys. Chem. B, vol.107, pp.3507-3514, 2003.

S. Angioletti-uberti, M. Ceriotti, P. D. Lee, and M. W. Finnis, Solid-liquid interface free energy through metadynamics simulations, Phys. Rev. B, vol.81, p.125416, 2010.

J. L. Aragones, M. M. Conde, E. G. Noya, and C. Vega, The phase diagram of water at high pressures as obtained by computer simulations of the TIP4P/2005 model: the appearance of a plastic crystal phase, Phys. Chem. Chem. Phys, vol.11, pp.543-555, 2009.

L. N. Arnaudov, O. J. Cayre, M. A. Cohen-stuart, S. D. Stoyanov, and V. N. Paunov, Measuring the three-phase contact angle of nanoparticles at fluid interfaces, Phys. Chem. Chem. Phys, vol.12, pp.328-331, 2010.

A. Arora, S. S. Cameotra, R. Kumar, C. Balomajumder, A. K. Singh et al., Biosurfactant as a promoter of methane hydrate formation: Thermodynamic and kinetic studies, Sci. Rep, vol.6, p.20893, 2016.

S. M. Babakhani, B. Bouillot, S. Ho-van, J. Douzet, and J. Herri, A review on hydrate composition and capability of thermodynamic modeling to predict hydrate pressure and composition, Fluid Phase Equilibria, vol.472, pp.22-38, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01807219

P. Babu, D. Yee, P. Linga, A. Palmer, B. C. Khoo et al., Morphology of methane hydrate formation in porous media, Energy Fuels, vol.27, pp.3364-3372, 2013.

L. A. Báez and P. Clancy, Computer simulation of the crystal growth and dissolution of natural gas hydratesa, Ann. N. Y. Acad. Sci, vol.715, issue.1, pp.177-186, 1994.

S. A. Bagherzadeh, S. Alavi, J. Ripmeester, and P. Englezos, Formation of methane nano-bubbles during hydrate decomposition and their effect on hydrate growth, J. Chem. Phys, vol.142, p.214701, 2015.

D. Bai, G. Chen, X. Zhang, W. , and W. , Microsecond molecular dynamics simulations of the kinetic pathways of gas hydrate formation from solid surfaces, Langmuir, vol.27, pp.5961-5967, 2011.

D. Bai, G. Chen, X. Zhang, W. , and W. , Nucleation of the CO 2 hydrate from three-phase contact lines, Langmuir, vol.28, pp.7730-7736, 2012.

D. Bai, D. Zhang, X. Zhang, C. , and G. , Origin of self-preservation effect for hydrate decomposition: Coupling of mass and heat transfer resistances, Sci. Rep, vol.5, p.14599, 2015.

T. Barmavath, P. Mekala, and J. S. Sangwai, Prediction of phase stability conditions of gas hydrates of methane and carbon dioxide in porous media, J. Natural Gas Sci. Eng, vol.18, pp.254-262, 2014.

M. A. Barroso and A. L. Ferreira, Solid-fluid coexistence of the lennard-jones system from absolute free energy calculations, J. Chem. Phys, vol.116, pp.7145-7150, 2002.

J. D. Bernal and R. H. Fowler, A theory of water and ionic solution, with particular reference to hydrogen and hydroxyl ions, J. Chem. Phys, vol.1, pp.515-548, 1933.

Y. Bi, R. Cabriolu, L. , and T. , Heterogeneous ice nucleation controlled by the coupling of surface crystallinity and surface hydrophilicity, J. Phys. Chem. C, vol.120, pp.1507-1514, 2016.

Y. Bi and T. Li, Probing methane hydrate nucleation through the forward flux sampling method, J. Phys. Chem. B, vol.118, pp.13324-13332, 2014.

K. A. Birkedal, C. M. Freeman, G. J. Moridis, and A. Graue, Numerical predictions of experimentally observed methane hydrate dissociation and reformation in sandstone, Energy Fuels, vol.28, pp.5573-5586, 2014.

L. Borchardt, M. E. Casco, and J. Silvestre-albero, Methane hydrate in confined spaces: an alternative storage system, Chem. Phys. Chem, vol.19, pp.1298-1314, 2018.

L. Borchardt, W. Nickel, M. Casco, I. Senkovska, V. Bon et al., Illuminating solid gas storage in confined spaces-methane hydrate formation in porous model carbons, Phys. Chem. Chem. Phys, vol.18, pp.20607-20614, 2016.

I. Brovchenko, A. Geiger, and A. Oleinikova, Water in nanopores. i. coexistence curves from gibbs ensemble monte carlo simulations, J. Chem. Phys, vol.120, pp.1958-1972, 2004.

P. E. Brumby, D. Yuhara, D. T. Wu, A. K. Sum, Y. et al., Cage occupancy of methane hydrates from gibbs ensemble monte carlo simulations, Fluid Phase Equilibria, vol.413, pp.242-248, 2016.

V. Buch, P. Sandler, and J. Sadlej, Simulations of H 2 O solid, liquid, and clusters, with an emphasis on ferroelectric ordering transition in hexagonal ice, J. Phys. Chem, vol.102, pp.8641-8653, 1998.

C. J. Burnham and N. J. English, Communication: Librational dynamics in water, sI and sII clathrate hydrates, and ice ih: Molecular-dynamics insights, J. Chem. Phys, vol.144, p.51101, 2016.

R. Cabriolu and T. Li, Ice nucleation on carbon surface supports the classical theory for heterogeneous nucleation, Phys. Rev. E, vol.91, p.52402, 2015.

X. Cao, Y. Huang, W. Li, Z. Zheng, X. Jiang et al., Phase diagrams for clathrate hydrates of methane, ethane, and propane from first-principles thermodynamics, Phys. Chem. Chem. Phys, vol.18, pp.3272-3279, 2016.

M. E. Casco, C. Cuadrado-collados, M. Martínez-escandell, F. Rodríguez-reinoso, and J. Silvestre-albero, Influence of the oxygen-containing surface functional groups in the methane hydrate nucleation and growth in nanoporous carbon, Carbon, vol.123, pp.299-301, 2017.

M. E. Casco, J. Silvestre-albero, A. J. Ramírez-cuesta, F. Rey, J. L. Jordá et al., Methane hydrate formation in confined nanospace can surpass nature, Nat. Commun, vol.6, p.6432, 2015.

S. B. Cha, H. Ouar, T. R. Wildeman, and E. D. Sloan, A third-surface effect on hydrate formation, J. Phys. Chem, vol.92, pp.6492-6494, 1988.

N. S. Chakraborty and L. D. Gelb, A monte carlo simulation study of methane clathrate hydrates confined in slit-shaped pores, J. Phys. Chem. B, vol.116, pp.2183-2197, 2012.

S. N. Chakraborty and L. D. Gelb, A monte carlo simulation study of methane clathrate hydrates confined in slit-shaped pores, J. Phys. Chem. B, vol.116, pp.2183-2197, 2012.

P. Chau and A. J. Hardwick, A new order parameter for tetrahedral configurations, Mol. Phys, vol.93, pp.511-518, 1998.

A. A. Chialvo, M. Houssa, and P. T. Cummings, Molecular dynamics study of the structure and thermophysical properties of model sI clathrate hydrates, J. Phys. Chem. B, vol.106, pp.442-451, 2002.

B. Coasne, Freezing of mixtures confined in a slit nanopore, Adsorption, vol.11, pp.301-306, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00381713

B. Coasne, J. Czwartos, K. E. Gubbins, F. R. Hung, and M. Sliwinska-bartkowiak, Freezing and melting of binary mixtures confined in a nanopore, Mol. Phys, vol.102, pp.2149-2163, 2004.

D. J. Cole, M. C. Payne, and L. C. Ciacchi, Water structuring and collagen adsorption at hydrophilic and hydrophobic silicon surfaces, Phys. Chem. Chem. Phys, vol.11, pp.11395-11399, 2009.

M. M. Conde, M. A. Gonzalez, J. L. Abascal, and C. Vega, Determining the phase diagram of water from direct coexistence simulations: The phase diagram of the TIP4P/2005 model revisited, J. Chem. Phys, vol.139, p.154505, 2013.

M. M. Conde, J. P. Torré, and C. Miqueu, Revisiting the thermodynamic modelling of type I gas-hydroquinone clathrates, Phys. Chem. Chem. Phys, vol.18, pp.10018-10027, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01804389

M. M. Conde and C. Vega, Determining the three-phase coexistence line in methane hydrates using computer simulations, J. Chem. Phys, vol.133, p.64507, 2010.

M. M. Conde, C. Vega, C. Mcbride, E. G. Noya, R. Ramírez et al., Can gas hydrate structures be described using classical simulations?, J. Chem. Phys, vol.132, p.114503, 2010.

C. Cuadrado-collados, F. Fauth, I. Such-basanez, M. Martínez-escandell, and J. Silvestrealbero, Methane hydrate formation in the confined nanospace of activated carbons in seawater environment, Microporous Mesoporous Materials, vol.255, pp.220-225, 2018.

J. Czwartos, B. Coasne, K. E. Gubbins, F. R. Hung, and M. Sliwinska-bartkowiak, Freezing and melting of azeotropic mixtures confined in nanopores: Experiment and molecular simulation, Mol. Phys, vol.103, pp.3103-3113, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00381731

W. Damm, A. Frontera, J. Tirado-rives, and W. L. Jorgensen, OPLS all-atom force field for carbohydrates, J. Comput. Chem, vol.18, pp.1955-1970, 1997.

E. Dartois, P. Duret, U. Marboeuf, and B. Schmitt, Hydrogen sulfide clathrate hydrate ftir spectroscopy: a help gas for clathrate formation in the solar system?, Icarus, vol.220, pp.427-434, 2012.

H. Davy, The bakerian lecture: On some of the combinations of oxymuriatic gas and oxygene, and on the chemical relations of these principles, to inflammable bodies, Philos. Trans. R. Soc. London, Ser. B, vol.1, pp.385-388, 1800.

F. De-azevedo-medeiros, F. M. Shiguematsu, F. B. Campos, I. S. Segtovich, J. E. Da-silva-ourique et al., Alternative eos-based model for predicting water content, metastable phases and hydrate formation in natural gas systems, J. Natural Gas Sci. Eng, vol.36, pp.550-562, 2016.

J. J. De-pablo, M. Laso, and U. W. Suter, Simulation of polyethylene above and below the melting point, J. Chem. Phys, vol.96, pp.2395-2403, 1992.

A. Demurov, R. Radhakrishnan, and B. L. Trout, Computations of diffusivities in ice and CO 2 clathrate hydrates via molecular dynamics and monte carlo simulations, J. Chem. Phys, vol.116, pp.702-709, 2002.

A. Desmedt, L. Bedouret, E. Pefoute, M. Pouvreau, S. Say-liang-fat et al., Energy landscape of clathrate hydrates, Eur. Phys. J. Spec. Top, vol.213, pp.103-127, 2012.

A. Di-crescenzo, P. Di-profio, G. Siani, R. Zappacosta, and A. Fontana, Optimizing the interactions of surfactants with graphitic surfaces and clathrate hydrates, Langmuir, vol.32, pp.6559-6570, 2016.

H. Docherty, A. Galindo, C. Vega, and E. Sanz, A potential model for methane in water describing correctly the solubility of the gas and the properties of the methane hydrate, J. Chem. Phys, vol.125, p.74510, 2006.

P. Dornan, S. Alavi, and T. K. Woo, Free energies of carbon dioxide sequestration and methane recovery in clathrate hydrates, J. Chem. Phys, vol.127, p.124510, 2007.

Z. Duan, D. Li, Y. Chen, and R. Sun, The influence of temperature, pressure, salinity and capillary force on the formation of methane hydrate, Geoscience Frontiers, vol.2, pp.125-135, 2011.

H. Dureckova, T. K. Woo, and S. Alavi, Molecular simulations and density functional theory calculations of bromine in clathrate hydrate phases, J. Chem. Phys, vol.144, p.44501, 2016.

S. M. El-sheikh, K. Barakat, and N. M. Salem, Phase transitions of methane using molecular dynamics simulations, J. Chem. Phys, vol.124, p.124517, 2006.

N. J. English, P. D. Gorman, and J. M. Macelroy, Mechanisms for thermal conduction in hydrogen hydrate, J. Chem. Phys, vol.136, p.44501, 2012.

N. J. English, J. K. Johnson, and C. E. Taylor, Molecular-dynamics simulations of methane hydrate dissociation, J. Chem. Phys, vol.123, p.244503, 2005.

N. J. English and J. M. Macelroy, Theoretical studies of the kinetics of methane hydrate crystallization in external electromagnetic fields, J. Chem. Phys, vol.120, pp.10247-10256, 2004.

N. J. English and J. S. Tse, Mechanisms for thermal conduction in methane hydrate, Phys. Rev. Lett, vol.103, p.15901, 2009.

N. J. English, J. S. Tse, and D. J. Carey, Mechanisms for thermal conduction in various polymorphs of methane hydrate, Phys. Rev. B, vol.80, p.134306, 2009.

J. R. Errington and P. G. Debenedetti, Relationship between structural order and the anomalies of liquid water, Nature, vol.409, pp.318-321, 2001.

B. Fábián, S. Picaud, P. Jedlovszky, A. Guilbert-lepoutre, and O. Mousis, Ammonia clathrate hydrate as seen from grand canonical monte carlo simulations, ACS Earth and Space Chem, vol.2, issue.5, pp.521-531, 2018.

M. Ferdows and M. Ota, Molecular simulation study for CO 2 clathrate hydrate, Chem. Eng. Technol, vol.28, pp.168-173, 2005.

R. G. Fernández, J. L. Abascal, and C. Vega, The melting point of ice Ih for common water models calculated from direct coexistence of the solid-liquid interface, J. Chem. Phys, vol.124, p.144506, 2006.

L. J. Florusse, C. J. Peters, J. Schoonman, K. C. Hester, C. A. Koh et al., Stable low-pressure hydrogen clusters stored in a binary clathrate hydrate, Science, vol.306, p.469, 2004.

A. D. Fortes, I. G. Wood, D. Grigoriev, M. Alfredsson, S. Kipfstuhl et al., No evidence for large-scale proton ordering in antarctic ice from powder neutron diffraction, J. Chem. Phys, vol.120, p.11376, 2004.

N. Fray, U. Marboeuf, O. Brissaud, and B. Schmitt, Equilibrium data of methane, carbon dioxide, and xenon clathrate hydrates below the freezing point of water. applications to astrophysical environments, J. Chem. Eng. Data, vol.55, issue.11, pp.5101-5108, 2010.

D. Frenkel and A. J. Ladd, New monte carlo method to compute the free energy of arbitrary solids. application to the fcc and hcp phases of hard spheres, J. Chem. Phys, vol.81, pp.3188-3193, 1984.

D. Frenkel and B. Smit, Understanding Molecular Simulation: From Algorithms to Applications. Computational Science, 2002.

L. Gai, C. R. Iacovella, L. Wan, C. Mccabe, and P. T. Cummings, Examination of the phase transition behavior of nano-confined fluids by statistical temperature molecular dynamics, J. Chem. Phys, vol.143, p.54504, 2015.

H. Ganji, M. Manteghian, K. S. Zadeh, M. Omidkhah, and H. R. Mofrad, Effect of different surfactants on methane hydrate formation rate, stability and storage capacity, Fuel, vol.86, pp.434-441, 2007.

U. Gasser, E. R. Weeks, A. Schofield, P. N. Pusey, and D. A. Weitz, Real-space imaging of nucleation and growth in colloidal crystallization, Science, vol.292, pp.258-262, 2001.

H. Ghaedi, M. Ayoub, A. H. Bhat, S. M. Mahmood, S. Akbari et al., The effects of salt, particle and pore size on the process of carbon dioxide hydrate formation: A critical review, AIP Conference Proceedings, vol.1787, p.60001, 2016.

V. Govindaraj, D. Mech, G. Pandey, R. Nagarajan, and J. S. Sangwai, Kinetics of methane hydrate formation in the presence of activated carbon and nano-silica suspensions in pure water, J. Nat. Gas Sci. Eng, vol.26, pp.810-818, 2015.

S. Habershon and D. E. Manolopoulos, Free energy calculations for a flexible water model, Phys. Chem. Chem. Phys, vol.13, pp.19714-19727, 2011.

A. Hachikubo, S. Takeya, E. Chuvilin, and V. Istomin, Preservation phenomena of methane hydrate in pore spaces, Phys. Chem. Chem. Phys, vol.13, pp.17449-17452, 2011.

L. Hakim, K. Koga, and H. Tanaka, Phase behavior of different forms of ice filled with hydrogen molecules, Phys. Rev. Lett, vol.104, p.115701, 2010.

Y. P. Handa and D. Y. Stupin, Thermodynamic properties and dissociation characteristics of methane and propane hydrates in 70-.ang.-radius silica gel pores, J. Phys. Chem, vol.96, pp.8599-8603, 1992.

A. H. Harvey, Semiempirical correlation for henry's constants over large temperature ranges, AIChE J, vol.42, pp.1491-1494, 1996.

A. H. Harvey and J. M. Sengers, Correlation of aqueous henry's constants from 0 ? C to the critical point, AIChE J, vol.36, pp.539-546, 1990.

J. P. Henriet and J. Mienert, Gas Hydrates: Relevance to World Margin Stability and Climatic Change, 1998.

F. Hersant, D. Gautier, and J. I. Lunine, Enrichment in volatiles in the giant planets of the solar system, Planet. Space Sci, vol.52, pp.623-641, 2004.

E. Hjertenaes, T. T. Trinh, and H. Koch, Chemically accurate energy barriers of small gas molecules moving through hexagonal water rings, Phys. Chem. Chem. Phys, vol.18, pp.17831-17835, 2016.

W. G. Hoover, Canonical dynamics: Equilibrium phase-space distributions, Phys. Rev. A, vol.31, pp.1695-1697, 1985.

T. Huang, C. Li, W. Jia, and Y. Peng, Application of equations of state to predict methane solubility under hydrate-liquid water two-phase equilibrium, Fluid Phase Equilibria, vol.427, pp.35-45, 2016.

Y. Huang, C. Zhu, L. Wang, X. Cao, Y. Su et al., A new phase diagram of water under negative pressure: The rise of the lowest-density clathrate s-III, Sci. Adv, vol.2, 2016.

Z. Huo, K. Hester, E. D. Sloan, and K. T. Miller, Methane hydrate nonstoichiometry and phase diagram, AIChE J, vol.49, pp.1300-1306, 2003.

P. Ilani-kashkouli, H. Hashemi, F. Gharagheizi, S. Babaee, A. H. Mohammadi et al., Gas hydrate phase equilibrium in porous media: An assessment test for experimental data, Fluid Phase Equilibria, vol.360, pp.161-168, 2013.

L. C. Jacobson, W. Hujo, and V. Molinero, Thermodynamic stability and growth of guest-free clathrate hydrates: A low-density crystal phase of water, J. Phys. Chem. B, vol.113, pp.10298-10307, 2009.

L. C. Jacobson, W. Hujo, and V. Molinero, Amorphous precursors in the nucleation of clathrate hydrates, J. Am. Chem. Soc, vol.132, pp.11806-11811, 2010.

L. C. Jacobson, W. Hujo, and V. Molinero, Nucleation pathways of clathrate hydrates: Effect of guest size and solubility, J. Phys. Chem. B, vol.114, pp.13796-13807, 2010.

L. C. Jacobson and V. Molinero, A methane-water model for coarse-grained simulations of solutions and clathrate hydrates, J. Phys. Chem. B, vol.114, pp.7302-7311, 2010.

L. C. Jacobson and V. Molinero, Can amorphous nuclei grow crystalline clathrates? the size and crystallinity of critical clathrate nuclei, J. Am. Chem. Soc, vol.133, pp.6458-6463, 2011.

Z. M. Jendi, P. Servio, and A. D. Rey, Ab initio modelling of methane hydrate thermophysical properties, Phys. Chem. Chem. Phys, vol.18, pp.10320-10328, 2016.

L. Jensen, K. Thomsen, N. Von-solms, S. Wierzchowski, M. R. Walsh et al., Calculation of liquid water-hydrate-methane vapor phase equilibria from molecular simulations, J. Phys. Chem. B, vol.114, pp.5775-5782, 2010.

K. S. Jhung, O. Kum, and H. W. Lee, Monte carlo calculations of free energy in the solid phase, J. Chem. Phys, vol.94, pp.1470-1473, 1991.

W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L. Klein, Comparison of simple potential functions for simulating liquid water, J. Chem. Phys, vol.79, pp.926-935, 1983.

W. L. Jorgensen, J. D. Madura, and C. J. Swenson, Optimized intermolecular potential functions for liquid hydrocarbons, J. Am. Chem. Soc, vol.106, pp.6638-6646, 1984.

W. L. Jorgensen, D. S. Maxwell, and J. Tirado-rives, Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids, J. Am. Chem. Soc, vol.118, pp.11225-11236, 1996.

G. Kaminski, E. M. Duffy, T. Matsui, and W. L. Jorgensen, Free energies of hydration and pure liquid properties of hydrocarbons from the OPLS all-atom model, J. Phys. Chem, vol.98, pp.13077-13082, 1994.

H. Kang, D. Koh, and H. Lee, Nondestructive natural gas hydrate recovery driven by air and carbon dioxide, Sci. Rep, vol.4, p.6616, 2014.

S. Kang and J. Lee, Kinetic behaviors of CO 2 hydrates in porous media and effect of kinetic promoter on the formation kinetics, Chemical Engineering Science, vol.65, pp.1840-1845, 2010.

S. Kang, J. Lee, and H. Ryu, Phase behavior of methane and carbon dioxide hydrates in meso-and macro-sized porous media, Fluid Phase Equilibria, vol.274, pp.68-72, 2008.

S. Kang, H. Ryu, and Y. Seo, Phase behavior of CO 2 and CH 4 hydrate in porous media, Eng. Technol, vol.33, pp.3711-3715, 2009.

S. Kang, Y. Seo, and W. Jang, Kinetics of methane and carbon dioxide hydrate formation in silica gel pores, Energy Fuels, vol.23, pp.3711-3715, 2009.

M. Kato, S. Matsumoto, A. Takashima, Y. Fujii, Y. Takasu et al., , 2016.

, Energy-dissipation of OH-stretching in tetrahydrofuran clathrate hydrate by raman spectroscopy and DFT calculation, Vib. Spectrosc, vol.85, pp.11-15

K. Katsumasa, K. Koga, and H. Tanaka, On the thermodynamic stability of hydrogen clathrate hydrates, J. Chem. Phys, vol.127, p.44509, 2007.

S. W. Kieffer, X. L. Lu, C. M. Bethke, J. R. Spencer, S. Marshak et al., A clathrate reservoir hypothesis for enceladus' south polar plume, Science, vol.314, pp.1764-1766, 2006.

M. T. Kirchner, R. Boese, W. E. Billups, and L. R. Norman, Gas hydrate single-crystal structure analyses, J. Am. Chem. Soc, vol.126, pp.9407-9412, 2004.

J. G. Kirkwood and F. P. Buff, The statistical mechanical theory of surface tension, J. Chem. Phys, vol.17, pp.338-343, 1949.

B. C. Knott, V. Molinero, M. F. Doherty, and B. Peters, Homogeneous nucleation of methane hydrates: Unrealistic under realistic conditions, J. Am. Chem. Soc, vol.134, pp.19544-19547, 2012.

P. E. Krouskop, J. D. Madura, D. Paschek, and A. Krukau, Solubility of simple, nonpolar compounds in TIP4P-Ew, J. Chem. Phys, vol.124, p.16102, 2006.

A. Kumar, G. Bhattacharjee, B. D. Kulkarni, and R. Kumar, Role of surfactants in promoting gas hydrate formation, Ind. Eng. Chem. Res, vol.54, pp.12217-12232, 2015.

K. A. Kvenvolden, Methane hydrate -a major reservoir of carbon in the shallow geosphere?, Chem. Geol, vol.71, p.41, 1988.

D. Kyung, H. Lim, H. Kim, and W. Lee, CO 2 hydrate nucleation kinetics enhanced by an organo-mineral complex formed at the montmorillonite-water interface, Environ. Sci. Technol, vol.49, pp.1197-1205, 2015.

M. Lasich, A. H. Mohammadi, K. Bolton, J. Vrabec, and D. Ramjugernath, Phase equilibria of methane clathrate hydrates from grand canonical monte carlo simulations, Fluid Phase Equilibria, vol.369, pp.47-54, 2014.

W. Lechner and C. Dellago, Accurate determination of crystal structures based on averaged local bond order parameters, J. Chem. Phys, vol.129, p.114707, 2008.

H. Lee, J. Lee, D. Y. Kim, J. Park, Y. Seo et al., Tuning clathrate hydrates for hydrogen storage, Nature, vol.434, pp.743-746, 2005.

H. Lee, S. Ahn, B. Nam, B. Kim, G. Lee et al., Thermodynamic stability, spectroscopic identification, and gas storage capacity of CO 2 -CH 4 -n 2 mixture gas hydrates: Implications for landfill gas hydrates, Environ. Sci. Technol, vol.46, pp.4184-4190, 2012.

S. Lee and Y. Seo, Experimental measurement and thermodynamic modeling of the mixed CH 4 + C 3 H 8 clathrate hydrate equilibria in silica gel pores: Effects of pore size and salinity, Langmuir, vol.26, pp.9742-9748, 2010.

F. Lehmkühler, M. Paulus, C. Sternemann, D. Lietz, F. Venturini et al., The carbon dioxide-water interface at conditions of gas hydrate formation, J. Am. Chem. Soc, vol.131, pp.585-589, 2009.

J. Li, D. Liang, K. Guo, R. Wang, F. et al., Formation and dissociation of hfc134a gas hydrate in nano-copper suspension, Energy Convers. Manag, vol.47, pp.201-210, 2006.

S. Liang, L. Yi, and D. Liang, Molecular insights into the homogeneous melting of methane hydrates, J. Phys. Chem. C, vol.118, pp.28542-28547, 2014.

P. Linga, N. Daraboina, J. A. Ripmeester, and P. Englezos, Enhanced rate of gas hydrate formation in a fixed bed column filled with sand compared to a stirred vessel, Chem. Eng. Sci, vol.68, pp.617-623, 2012.

D. P. Luis, E. C. Herrera-hernández, and H. Saint-martin, A theoretical study of the dissociation of the sI methane hydrate induced by an external electric field, J. Chem. Phys, vol.143, p.204503, 2015.

A. P. Lyubartsev, O. K. Fo/rrisdahl, and A. Laaksonen, Solvation free energies of methane and alkali halide ion pairs: An expanded ensemble molecular dynamics simulation study, J. Chem. Phys, vol.108, pp.227-233, 1998.

G. J. Macdonald, The future of methane as an energy resource, Annu. Rev. Energy, vol.15, p.53, 1990.

M. E. Madden, S. Ulrich, P. Szymcek, S. Mccallum, and T. Phelps, Experimental formation of massive hydrate deposits from accumulation of ch4 gas bubbles within synthetic and natural sediments, Mar. Pet. Geol, vol.26, pp.369-378, 2009.

T. C. Mak and R. K. Mcmullan, Polyhedral clathrate hydrates. X. structure of the double hydrate of tetrahydrofuran and hydrogen sulfide, J. Chem. Phys, vol.42, pp.2732-2737, 1965.

U. Marboeuf, O. Mousis, J. Petit, and B. Schmitt, Clathrate hydrates formation in short-period comets, ApJ, vol.708, pp.812-816, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00463939

E. Ma?olepsza, J. Kim, and T. Keyes, Entropic description of gas hydrate ice-liquid equilibrium via enhanced sampling of coexisting phases, Phys. Rev. Lett, vol.114, p.170601, 2015.

G. Mclaurin, K. Shin, S. Alavi, and J. A. Ripmeester, Antifreezes act as catalysts for methane hydrate formation from ice, Angew. Chem. Int. Ed, vol.53, pp.10429-10433, 2014.

R. K. Mcmullan and G. A. Jeffrey, Polyhedral clathrate hydrates. IX. structure of ethylene oxide hydrate, J. Chem. Phys, vol.42, p.2725, 1965.

V. P. Mel'nikov, L. S. Podenko, A. N. Nesterov, A. O. Drachuk, N. S. Molokitina et al., Self-preservation of methane hydrates produced in "dry water, Doklady Chem, vol.466, pp.53-56, 2016.

V. K. Michalis, J. Costandy, I. N. Tsimpanogiannis, A. K. Stubos, and I. G. Economou, Prediction of the phase equilibria of methane hydrates using the direct phase coexistence methodology, J. Chem. Phys, vol.142, p.44501, 2015.

V. K. Michalis, O. A. Moultos, I. N. Tsimpanogiannis, and I. G. Economou, , 2016.

, Molecular dynamics simulations of the diffusion coefficients of light n-alkanes in water over a wide range of temperature and pressure, Fluid Phase Equilibria, vol.407, pp.236-242

V. K. Michalis, I. N. Tsimpanogiannis, A. K. Stubos, and I. G. Economou, Direct phase coexistence molecular dynamics study of the phase equilibria of the ternary methane-carbon dioxide-water hydrate system, Phys. Chem. Chem. Phys, vol.18, pp.23538-23548, 2016.

S. Y. Misyura, The influence of porosity and structural parameters on different kinds of gas hydrate dissociation, Sci. Rep, vol.6, p.30324, 2016.

J. Miyawaki, T. Kanda, T. Suzuki, T. Okui, Y. Maeda et al., Macroscopic evidence of enhanced formation of methane nanohydrates in hydrophobic nanospaces, J. Phys. Chem. B, vol.102, pp.2187-2192, 1998.

V. Molinero and E. B. Moore, Water modeled as an intermediate element between carbon and silicon, J. Phys. Chem. B, vol.113, pp.4008-4016, 2009.

E. B. Moore, E. De-la-llave, K. Welke, D. A. Scherlis, and V. Molinero, Freezing, melting and structure of ice in a hydrophilic nanopore, Phys. Chem. Chem. Phys, vol.12, pp.4124-4134, 2010.

O. Mousis, J. I. Lunine, S. Picaud, and D. Cordier, Volatile inventories in clathrate hydrates formed in the primordial nebula, Faraday Discuss, vol.147, pp.509-525, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00555848

E. M. Myshakin, H. Jiang, R. P. Warzinski, J. , and K. D. , Molecular dynamics simulations of methane hydrate decomposition, J. Phys. Chem. A, vol.113, pp.1913-1921, 2009.

J. M. Míguez, M. M. Conde, J. Torré, F. J. Blas, M. M. Piñeiro et al., Molecular dynamics simulation of CO 2 hydrates: Prediction of three phase coexistence line, J. Chem. Phys, vol.142, p.124505, 2015.

P. Naeiji, F. Varaminian, and M. Rahmati, Thermodynamic and structural properties of methane/water systems at the threshold of hydrate formation predicted by molecular dynamic simulations, J. Natural Gas Sci. Eng, vol.31, pp.555-561, 2016.

J. F. Nagle, Lattice statistics of hydrogen bonded crystals. i. the residual entropy of ice, J. Math. Phys, vol.7, p.1484, 1966.

A. H. Narten and H. A. Levy, Liquid water: Molecular correlation functions from x-ray diffraction, J. Chem. Phys, vol.55, pp.2263-2269, 1971.

A. H. Nguyen and V. Molinero, Identification of clathrate hydrates, hexagonal ice, cubic ice, and liquid water in simulations: the CHILL+ algorithm, J. Phys. Chem. B, vol.119, pp.9369-9376, 2015.

M. J. Nijmeijer, C. Bruin, A. F. Bakker, and J. M. Van-leeuwen, Wetting and drying of an inert wall by a fluid in a molecular-dynamics simulation, Phys. Rev. A, vol.42, pp.6052-6059, 1990.

F. Ning, Y. Yu, S. Kjelstrup, T. J. Vlugt, and K. Glavatskiy, Mechanical properties of clathrate hydrates: status and perspectives, Energy Environ. Sci, vol.5, p.6779, 2012.

F. L. Ning, K. Glavatskiy, Z. Ji, S. Kjelstrup, H. Vlugt et al., Compressibility, thermal expansion coefficient and heat capacity of CH 4 and CO 2 hydrate mixtures using molecular dynamics simulations, Phys. Chem. Chem. Phys, vol.17, pp.2869-2883, 2015.

S. Nosé, A unified formulation of the constant temperature molecular dynamics methods, J. Chem. Phys, vol.81, pp.511-519, 1984.

E. G. Noya, M. M. Conde, and C. Vega, Computing the free energy of molecular solids by the Einstein molecule approach: Ices XIII and XIV, hard-dumbbells and a patchy model of proteins, J. Chem. Phys, vol.129, p.104704, 2008.

S. Ogata, Monte carlo simulation study of crystallization in rapidly supercooled one-component plasmas, Phys. Rev. A, vol.45, pp.1122-1134, 1992.

K. Ohgaki, K. Nakatsuji, K. Takeya, A. Tani, and T. Sugahara, Hydrogen transfer from guest molecule to radical in adjacent hydrate-cages, Phys. Chem. Chem. Phys, vol.10, pp.80-82, 2008.

Y. Okano and K. Yasuoka, Free-energy calculation of structure-h hydrates, J. Chem. Phys, vol.124, p.24510, 2006.

D. Paschek, Temperature dependence of the hydrophobic hydration and interaction of simple solutes: An examination of five popular water models, J. Chem. Phys, vol.120, pp.6674-6690, 2004.

S. Patchkovskii and J. S. Tse, Thermodynamic stability of hydrogen clathrates, Proc. Natl. Acad. Sci. U.S.A, vol.100, pp.14645-14650, 2003.

A. Patt, J. Simon, S. Picaud, and J. M. Salazar, A grand canonical monte carlo study of the N 2 , CO, and mixed N 2 -CO clathrate hydrates, J. Phys. Chem. C, vol.122, issue.32, pp.18432-18444, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02084064

E. Pefoute, M. Prager, M. Russina, and A. Desmedt, Quasi-elastic neutron scattering investigation of the guest molecule dynamics in the bromomethane clathrate hydrate, Special Issue: Gas Hydrates and Semiclathrate Hydrates, vol.413, pp.116-122, 2016.

C. Petuya, F. Damay, B. Chazallon, J. Bruneel, and A. Desmedt, Guest partitioning and metastability of the nitrogen gas hydrate, J. Phys. Chem. C, vol.122, pp.566-573, 2018.

C. Petuya, F. Damay, S. Desplanche, D. Talaga, and A. Desmedt, Selective trapping of CO 2 gas and cage occupancy in CO 2 -N 2 and CO 2 -CO mixed gas hydrates, Chem. Commun, vol.54, pp.4290-4293, 2018.

A. Phan, D. R. Cole, and A. Striolo, Aqueous methane in slit-shaped silica nanopores: high solubility and traces of hydrates, J. Phys. Chem. C, vol.118, pp.4860-4868, 2014.

P. Pirzadeh and P. G. Kusalik, Molecular insights into clathrate hydrate nucleation at an ice-solution interface, J. Am. Chem. Soc, vol.135, pp.7278-7287, 2013.

S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys, vol.117, pp.1-19, 1995.

J. M. Polson, E. Trizac, S. Pronk, and D. Frenkel, Finite-size corrections to the free energies of crystalline solids, J. Chem. Phys, vol.112, pp.5339-5342, 2000.

P. S. Prasad, V. D. Chari, D. V. Sharma, and S. R. Murthy, Effect of silica particles on the stability of methane hydrates, Fluid Phase Equilibria, vol.318, pp.110-114, 2012.

R. Radhakrishnan and B. L. Trout, A new approach for studying nucleation phenomena using molecular simulations: Application to CO 2 hydrate clathrates, J. Chem. Phys, vol.117, pp.1786-1796, 2002.

R. Radhakrishnan and B. L. Trout, Nucleation of crystalline phases of water in homogeneous and inhomogeneous environments, Phys. Rev. Lett, vol.90, p.158301, 2003.

R. Radhakrishnan and B. L. Trout, Nucleation of hexagonal ice (I <i> h </i> ) in liquid water, J. Am. Chem. Soc, vol.125, pp.7743-7747, 2003.

A. Reinhardt, J. P. Doye, E. G. Noya, and C. Vega, Local order parameters for use in driving homogeneous ice nucleation with all-atom models of water, J. Chem. Phys, vol.137, p.194504, 2012.

J. A. Ripmeester, J. S. Tse, C. I. Ratcliffe, and B. M. Powell, A new clathrate hydrate structure, Nature, vol.325, p.135, 1987.

P. C. Rodrigues and F. M. Fernandes, Phase diagrams of alkali halides using two interaction models: A molecular dynamics and free energy study, J. Chem. Phys, vol.126, p.24503, 2007.

G. Román-pérez, M. Moaied, J. M. Soler, Y. , and F. , Stability, adsorption, and diffusion of CH 4 , CO 2 , and h 2 in clathrate hydrates, Phys. Rev. Lett, p.105, 2010.

E. J. Rosenbaum, N. J. English, J. K. Johnson, D. W. Shaw, and R. P. Warzinski, Thermal conductivity of methane hydrate from experiment and molecular simulation, J. Phys. Chem. B, vol.111, issue.46, pp.13194-13205, 2007.

J. Sa, G. Kwak, K. Han, D. Ahn, and K. Lee, Gas hydrate inhibition by perturbation of liquid water structure, Sci. Rep, vol.5, p.11526, 2015.

J. Sa, G. Kwak, B. R. Lee, D. Park, K. Han et al., Hydrophobic amino acids as a new class of kinetic inhibitors for gas hydrate formation, Sci. Rep, vol.3, p.2428, 2013.

S. Said, V. Govindaraj, J. Herri, Y. Ouabbas, M. Khodja et al., A study on the influence of nanofluids on gas hydrate formation kinetics and their potential: application to the co 2 capture process, J. Nat. Gas Sci. Eng, vol.32, pp.95-108, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01346311

S. Sarupria and P. G. Debenedetti, Homogeneous nucleation of methane hydrate in microsecond molecular dynamics simulations, J. Phys. Chem. Lett, vol.3, pp.2942-2947, 2012.

R. J. Saykally, Air/water interface: Two sides of the acid-base story, Nat. Chem, vol.5, pp.82-84, 2013.

H. D. Schulz and M. Zabel, Marine Geochemistry, 2006.

F. Schüth, Technology: Hydrogen and hydrates, Nature, vol.434, p.712, 2005.

Y. Seo and S. Kang, Enhancing CO 2 separation for pre-combustion capture with hydrate formation in silica gel pore structure, Chem. Eng. J, vol.161, pp.308-312, 2010.

Y. Seo, H. Lee, and T. Uchida, Methane and carbon dioxide hydrate phase behavior in small porous silica gels: Three-phase equilibrium determination and thermodynamic modeling, Langmuir, vol.18, pp.9164-9170, 2002.

Y. Seo, S. Lee, I. Cha, J. D. Lee, and H. Lee, Phase equilibria and thermodynamic modeling of ethane and propane hydrates in porous silica gels, J. Phys. Chem. B, vol.113, pp.5487-5492, 2009.

W. Shen and P. A. Monson, Solid-fluid equilibrium in a nonlinear hard sphere triatomic model of propane, J. Chem. Phys, vol.103, p.9756, 1995.

R. Shetty and F. A. Escobedo, On the application of virtual gibbs ensembles to the direct simulation of fluid-fluid and solid-fluid phase coexistence, J. Chem. Phys, vol.116, pp.7957-7966, 2002.

H. Shimizu, T. Kumazaki, T. Kume, and S. Sasaki, Elasticity of single-crystal methane hydrate at high pressure, Phys. Rev. B, vol.65, pp.212102-212106, 2002.

A. Siangsai, P. Rangsunvigit, B. Kitiyanan, S. Kulprathipanja, and P. Linga, Investigation on the roles of activated carbon particle sizes on methane hydrate formation and dissociation, Chem. Eng. Sci, vol.126, pp.383-389, 2015.

E. D. Sloan, Fundamental principles and applications of natural gas hydrates, Nature, vol.426, pp.353-363, 2003.

E. D. Sloan and C. A. Koh, Clathrate Hydrates of Natural Gases. Chemical Industries, 2007.

E. A. Smelik and H. E. King, Crystal-growth studies of natural gas clathrate hydrates using a pressurized optical cell, Am. Mineralogist, vol.82, p.88, 1997.

G. S. Smirnov and V. V. Stegailov, Melting and superheating of sI methane hydrate: Molecular dynamics study, J. Chem. Phys, vol.136, p.44523, 2012.

K. S. Smirnov, A modeling study of the methane hydrate decomposition in contact with the external surface of zeolite, Phys. Chem. Chem. Phys, 2017.

V. G. Smirnov, A. Y. Manakov, E. A. Ukraintseva, G. V. Villevald, T. D. Karpova et al., Formation and decomposition of methane hydrate in coal, Fuel, vol.166, pp.188-195, 2016.

A. K. Soper and C. J. Benmore, Quantum differences between heavy and light water, Phys. Rev. Lett, vol.101, p.65502, 2008.

P. J. Steinhardt, D. R. Nelson, and M. Ronchetti, Bond-orientational order in liquids and glasses, Phys. Rev. B, vol.28, pp.784-805, 1983.

T. A. Strobel, E. D. Sloan, and C. A. Koh, Raman spectroscopic studies of hydrogen clathrate hydrates, J. Chem. Phys, vol.130, p.14506, 2009.

L. Sun, J. T. Tanskanen, J. T. Hirvi, S. Kasa, T. Schatz et al., Molecular dynamics study of montmorillonite crystalline swelling: Roles of interlayer cation species and water content, Chem. Phys, vol.455, pp.23-31, 2015.

R. Susilo, S. Alavi, J. A. Ripmeester, and P. Englezos, Molecular dynamics study of structure h clathrate hydrates of methane and large guest molecules, J. Chem. Phys, vol.128, p.194505, 2008.

S. Takeya, T. Uchida, Y. Kamata, J. Nagao, M. Kida et al., Lattice expansion of clathrate hydrates of methane mixtures and natural gas, Angew. Chem. Int. Ed, vol.44, pp.6928-6931, 2005.

H. Tanaka, Bond orientational order in liquids: Towards a unified description of water-like anomalies, liquid-liquid transition, glass transition, and crystallization, Eur. Phys. J. E, vol.35, p.113, 2012.

C. Thomas, O. Mousis, S. Picaud, and V. Ballenegger, Variability of the methane trapping in martian subsurface clathrate hydrates, Planet. Space Sci, vol.57, issue.1, pp.42-47, 2009.

T. T. Trinh, M. H. Waage, T. S. Van-erp, and S. Kjelstrup, Low barriers for hydrogen diffusion in sII clathrate, Phys. Chem. Chem. Phys, vol.17, pp.13808-13812, 2015.

K. Tsiberkin, D. V. Lyubimov, T. P. Lyubimova, and O. Zikanov, Evolution of a spherical hydrate-free inclusion in a porous matrix filled with methane hydrate, Phys. Rev. E, vol.89, p.23008, 2014.

I. N. Tsimpanogiannis and P. C. Lichtner, Gas saturation resulting from methane hydrate dissociation in a porous medium: Comparison between analytical and porenetwork results, J. Phys. Chem. C, vol.117, pp.11104-11116, 2013.

Y. Tung, L. Chen, Y. Chen, and S. Lin, The growth of structure i methane hydrate from molecular dynamics simulations, J. Phys. Chem. B, vol.114, pp.10804-10813, 2010.

T. Uchida, T. Ebinuma, and T. Ishizaki, Dissociation conditions measurements of methane hydrate in confined small pores of porous glass, J. Phys. Chem. B, vol.103, pp.3659-3662, 1999.

T. Uchida, T. Ebinuma, S. Takeya, J. Nagao, and H. Narita, Effects of pore sizes on dissociation temperatures and pressures of methane, carbon dioxide, and propane hydrate in porous media, J. Phys. Chem. B, vol.106, pp.820-826, 2002.

K. A. Udachin, G. D. Enright, C. I. Ratcliffe, and J. A. Ripmeester, Structure, stoichiometry, and morphology of bromine hydrate, J. Am. Chem. Soc, vol.119, pp.11481-11486, 1997.

H. Ueno, H. Akiba, S. Akatsu, and R. Ohmura, Crystal growth of clathrate hydrates formed with methane + carbon dioxide mixed gas at the gas/liquid interface and in liquid water, New J. Chem, vol.39, pp.8254-8262, 2015.

C. Vega, J. L. Abascal, and I. Nezbeda, Vapor-liquid equilibria from the triple point up to the critical point for the new generation of TIP4P-like models: TIP4P/Ew, TIP4P/2005, and TIP4P/Ice, J. Chem. Phys, vol.125, p.34503, 2006.

C. Vega and P. A. Monson, Solid-fluid equilibrium for a molecular model with short ranged directional forces, J. Chem. Phys, vol.109, pp.9938-9949, 1998.

C. Vega and E. G. Noya, Revisiting the frenkel-ladd method to compute the free energy of solids: The einstein molecule approach, J. Chem. Phys, vol.127, p.154113, 2007.

C. Vega, E. P. Paras, and P. A. Monson, Solid-fluid equilibria for hard dumbbells via monte carlo simulation, J. Chem. Phys, vol.96, pp.9060-9072, 1992.

C. Vega, E. Sanz, J. L. Abascal, and E. G. Noya, Determination of phase diagrams via computer simulation: methodology and applications to water, electrolytes and proteins, J. Phys.: Condens. Matter, vol.20, p.153101, 2008.

L. Verlet, Computer experiments on classical fluids: I. thermodynamical properties of lennard-jones molecules, Phys. Rev, vol.159, pp.98-103, 1967.

A. Vidal-vidal, M. Perez-rodriguez, and M. M. Pineiro, Direct transition mechanism for molecular diffusion in gas hydrates, RSC Adv, vol.6, pp.1966-1972, 2016.

M. H. Waage, T. J. Vlugt, and S. Kjelstrup, Phase diagram of methane and carbon dioxide hydrates computed by monte carlo simulations, J. Phys. Chem. B, vol.121, pp.7336-7350, 2017.

W. F. Waite, L. A. Stern, S. H. Kirby, W. J. Winters, and D. H. Mason, Simultaneous determination of thermal conductivity, thermal diffusivity and specific heat in sI methane hydrate, Geophys. J. Int, pp.767-774, 2007.

F. Wang, S. Luo, S. Fu, Z. Jia, M. Dai et al., Methane hydrate formation with surfactants fixed on the surface of polystyrene nanospheres, J. Mater. Chem. A, vol.3, pp.8316-8323, 2015.

S. J. Wierzchowski and P. A. Monson, Calculating the phase behavior of gashydrate-forming systems from molecular models, Ind. Eng. Chem. Res, vol.45, pp.424-431, 2006.

S. J. Wierzchowski and P. A. Monson, Calculation of free energies and chemical potentials for gas hydrates using monte carlo simulations, J. Phys. Chem. B, vol.111, pp.7274-7282, 2007.

J. Wu, L. Chen, Y. Chen, and S. Lin, Molecular dynamics study on the equilibrium and kinetic properties of tetrahydrofuran clathrate hydrates, J. Phys. Chem. C, vol.119, pp.1400-1409, 2015.

P. Xu, X. Lang, S. Fan, Y. Wang, C. et al., Molecular dynamics simulation of methane hydrate growth in the presence of the natural product pectin, J. Phys. Chem. C, vol.120, pp.5392-5397, 2016.

T. Yagasaki, M. Matsumoto, and H. Tanaka, Effects of thermodynamic inhibitors on the dissociation of methane hydrate: a molecular dynamics study, Phys. Chem. Chem. Phys, vol.17, pp.32347-32357, 2015.

L. Yan, G. Chen, W. Pang, and J. Liu, Experimental and modeling study on hydrate formation in wet activated carbon, J. Phys. Chem. B, vol.109, pp.6025-6030, 2005.

Q. Yan and J. J. De-pablo, Hyper-parallel tempering monte carlo: Application to the lennard-jones fluid and the restricted primitive model, J. Chem. Phys, vol.111, pp.9509-9516, 1999.

Q. Yan and J. J. De-pablo, Hyperparallel tempering monte carlo simulation of polymeric systems, J. Chem. Phys, vol.113, pp.1276-1282, 2000.

M. Yang, Z. Fu, Y. Zhao, L. Jiang, J. Zhao et al., Effect of depressurization pressure on methane recovery from hydrate-gas-water bearing sediments, Fuel, vol.166, pp.419-426, 2016.

Y. Yang, D. Shin, S. Choi, J. Lee, M. Cha et al., Cage occupancy and stability of n 2 o-encaged structure i and II clathrate hydrates, Energy Fuels, vol.30, pp.9628-9634, 2016.

E. M. Yezdimer, P. T. Cummings, and A. A. Chialvo, Determination of the gibbs free energy of gas replacement in SI clathrate hydrates by mol. simul, J. Phys. Chem. A, vol.106, pp.7982-7987, 2002.

J. Yoon, M. Chun, and H. Lee, Generalized model for predicting phase behavior of clathrate hydrate, AIChE J, vol.48, pp.1317-1330, 2002.

Z. Zhang, Heat transfer during the dissociation of hydrate in porous media, Proc. Eng, vol.126, pp.502-506, 2015.

Z. Zhang, M. R. Walsh, and G. Guo, Microcanonical molecular simulations of methane hydrate nucleation and growth: evidence that direct nucleation to sI hydrate is among the multiple nucleation pathways, Phys. Chem. Chem. Phys, vol.17, pp.8870-8876, 2015.

W. Zhao, J. S. Francisco, and X. C. Zeng, CO separation from h2 via hydrate formation in single-walled carbon nanotubes, J. Phys. Chem. Lett, vol.7, pp.4911-4915, 2016.

W. Zhao, L. Wang, J. Bai, J. S. Francisco, and X. C. Zeng, Spontaneous formation of one-dimensional hydrogen gas hydrate in carbon nanotubes, J. Am. Chem. Soc, vol.136, pp.10661-10668, 2014.

X. Zhou, Z. Long, S. Liang, Y. He, L. Yi et al., In situ raman analysis on the dissociation behavior of mixed CH 4 -CO 2 hydrates, Energy Fuels, vol.30, pp.1279-1286, 2016.

J. Zhu, S. Du, X. Yu, J. Zhang, H. Xu et al., Encapsulation kinetics and dynamics of carbon monoxide in clathrate hydrate, Nat. Comm, vol.5, p.4128, 2014.