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Abstract

Methane hydrate is a non-stoichiometric crystal in which water molecules form hydrogen-

bonded cages that entrap methane molecules. Abundant methane hydrate resources can

be found on Earth, especially trapped in mineral porous rocks (e.g., clay, permafrost,

seafloor, etc.). For this reason, understanding the thermodynamics and formation kinetics

of methane hydrate confined in porous media is receiving a great deal of attention. In

this thesis, we combine computer modeling and theoretical approaches to determine the

thermodynamics and formation kinetics of methane hydrate confined in porous media. First,

the state-of-the-art on the thermodynamics and formation kinetics of methane hydrate

is presented. Second, different molecular simulation strategies, including free energy

calculations using the Einstein molecule approach, the direct coexistence method, and the

hyperparallel tempering technique, are used to assess the phase stability of bulk methane

hydrate at various temperatures and pressures. Third, among these strategies, the direct

coexistence method is chosen to determine the shift in melting point upon confinement

in pores, ∆Tm = T pore
m − T bulk

m where T pore
m and T bulk

m are the melting temperatures of

bulk and confined methane hydrate. We found that confinement decreases the melting

temperature, T pore
m < T bulk

m . The shift in melting temperature using the direct coexistence

method is consistent with the Gibbs-Thomson equation which predicts that the shift in

melting temperature linearly depends on the reciprocal of pore width, i.e., ∆Tm/T bulk
m ∼

kGB/Dp. The quantitative validity of this classical thermodynamic equation to describe

such confinement and surface effects is also addressed. The surface tensions of methane

hydrate-substrate and liquid water-substrate interfaces are determined using molecular

dynamics to quantitatively validate the Gibbs-Thomson equation. Molecular dynamics



viii

simulations are also performed to determine important thermodynamic properties of bulk

and confined methane hydrate: (a) thermal conductivity λ using the Green-Kubo formalism

and the autocorrelation function of the heat-flux and (b) the thermal expansion αP and

isothermal compressibility κT . Finally, some conclusions and perspectives for future work

are given.



Résumé

L’hydrate de méthane est un cristal non-stœchiométrique dans lequel les molécules d’eau

forment des cages liées par liaison hydrogène qui piégent des molécules de méthane. Des

ressources abondantes en hydrate de méthane peuvent être trouvées sur Terre, en particulier

dans les roches poreuses minérales (par exemple, l’argile, le permafrost, les fonds marins,

etc.). Pour cette raison, la compréhension de la thermodynamique et de la cinétique

de formation de l’hydrate de méthane confiné dans des milieux poreux suscite beaucoup

d’attention. Dans cette thèse, nous combinons la modélisation moléculaire et des approches

théoriques pour déterminer la thermodynamique et la cinétique de formation de l’hydrate

de méthane confiné dans des milieux poreux. Tout d’abord, l’état de l’art en matière

de thermodynamique et de cinétique de formation de l’hydrate de méthane est présenté.

Deuxièmement, différentes stratégies de simulation moléculaire, y compris des calculs

d’énergie libre utilisant l’approche de la molécule d’Einstein, la méthode de coexistence

directe et la technique hyperparallel tempering, sont utilisées pour évaluer la stabilité de

l’hydrate de méthane à différentes températures et pressions. Troisièmement, parmi ces

stratégies, la méthode de coexistence directe est choisie pour déterminer le déplacement

du point de fusion lors du confinement dans des pores, ∆Tm = T pore
m −T bulk

m où T pore
m et

T bulk
m sont les températures de fusion d’hydrate de méthane non confiné et confiné. Nous

avons constaté que le confinement diminue la température de fusion, T pore
m < T bulk

m . Le

changement de température de fusion en utilisant la méthode de la coexistence directe est

cohérent avec l’équation de Gibbs-Thomson qui prédit que le décalage de la température

de fusion dépend linéairement de l’inverse de la taille des pores, ∆Tm/T bulk
m ∼ kGT/Dp. La

validité quantitative de cette équation thermodynamique classique pour décrire de tels effets



x

de confinement et de surface est également abordée. Les tensions de surface des interfaces

hydrate-substrat et eau-substrat sont déterminées à l’aide de la dynamique moléculaire pour

valider quantitativement l’équation de Gibbs-Thomson. Des simulations de dynamique

moléculaire sont également effectuées pour déterminer les propriétés thermodynamiques

importantes de l’hydrate de méthane non confiné et confiné: (a) conductivité thermique λ

en utilisant le formalisme de Green-Kubo et la fonction d’autocorrélation du flux thermique;

(b) expansion thermique αP et compressibilité isotherme κT . Enfin, des conclusions et

perspectives pour des travaux futurs sont présentées.
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Introduction

Methane hydrate is a non-stoichiometric crystalline structure made up of water molecules

forming a network of hydrogen–bonded cages around methane molecules (Davy, 1800;

Sloan and Koh, 2007). Here “non-stoichiometric” means that the methane composition in

the hydrate phase is changing with temperature, T , and pressure, P. Abundant methane

hydrate resources on Earth, especially in deep seafloors and in the permafrost (Kvenvolden,

1988; MacDonald, 1990; Sloan and Koh, 2007), are important both for energy and environ-

mental applications (Florusse et al., 2004; Lee et al., 2005; Schüth, 2005; Strobel et al.,

2009; Udachin et al., 1997). In particular, in the context of climate change and global

warming, even a small temperature increase could induce the melting of methane hydrate

and, therefore, the release of large amounts of methane into the atmosphere (methane

leads to a far larger greenhouse gas effect than carbon dioxide) (Henriet and Mienert,

1998; Petuya et al., 2018a,b). Moreover, the formation of methane hydrate in oil and gas

pipelines is known to be detrimental as it hinders flow. Finally, hydrates including methane

hydrates are also thought to be a key ingredient in the geochemistry of planets, comets,

etc. where the coexistence of water and gases leads to hydrate formation depending on

temperature and pressure (Dartois et al., 2012; Fray et al., 2010; Hersant et al., 2004;

Kieffer et al., 2006; Marboeuf et al., 2010; Mousis et al., 2010; Thomas et al., 2009).

From a fundamental point of view, methane hydrate and other gas hydrates are

model systems to gain insights into the complex thermodynamics and dynamics of non-

stoichiometric structures including the large family of clathrates. For instance, many

porous materials such as zeolites and metal organic frameworks are synthesized by crys-
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tallizing cages around an organic template, therefore sharing some important features

with hydrates. In addition, owing to their nonstoichiometric nature, gas hydrates can

be considered as prototypical examples of confined solids which also possess varying

compositions with temperature and pressure (even though their bulk counterpart exhibits

constant stoichiometry) (Coasne et al., 2004; Czwartos et al., 2005). As a result, owing to

its importance for both fundamental and practical sciences, methane hydrate is receiving

increasing attention with significant effort devoted to better understanding their physical

and physicochemical properties (Babakhani et al., 2018; Conde and Vega, 2010; Desmedt

et al., 2012; Docherty et al., 2006; English et al., 2012; Jacobson et al., 2010a; Jensen

et al., 2010; Knott et al., 2012; Nguyen and Molinero, 2015; Patt et al., 2018; Pefoute et al.,

2016; Said et al., 2016; Sloan and Koh, 2007; Wierzchowski and Monson, 2007).

Most methane hydrate on Earth is confined in voids formed in the various porous rocks

and/or fractures, such as clay minerals, silica/sands, etc. For this reason, the motivation

of this thesis is to study the thermodynamics and formation kinetics of methane hydrate

confined at the nanoscale in a porous medium. More in details, this thesis focuses on:

(1) the phase stability of methane hydrate, i.e., Liquid–Hydrate–Vapor (L–H–V) phase

equilibrium, both as bulk and confined phases using molecular simulation;

(2) the ability of macroscopic thermodynamic modeling using the Gibbs-Thomson

equation to describe the confinement and surface effects on the phase stability of

methane hydrate;

(3) the confinement effects on the formation/dissociation kinetics of methane hydrate

using free energy techniques;

(4) the confinement effects on the structural and thermodynamic properties of confined

methane hydrate.

The remainder of this thesis is organized as follows. In Chapter 1, a brief review is

given on the state-of-the-art of methane hydrate: structure, formation/dissociation kinetics,

phase stability, and confinement effect, etc. In Chapter 2, the general framework of sta-
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tistical mechanics and molecular simulation is given. Several ensembles, e.g., Canonical,

Isobaric-isothermal, Grand Canonical, and Semi-Grand Canonical, are considered and

molecular models and interaction potentials are also presented. Some additional technical

details on these methods are also presented in the different chapters. In Chapter 3, a Monte

Carlo (MC) algorithm is used to (re)construct physical configurations of methane hydrate,

and different molecular simulation strategies are used to assess the phase stability of

methane hydrate (i.e., liquid–hydrate–vapor phase equilibrium) under various temperature

and pressure conditions. In Chapter 4, the direct coexistence method (DCM) is adopted to

determine the shift of melting point of methane hydrate confined at the nanoscale. The

classical thermodynamic modeling – the Gibbs-Thomson equation – is revisited to account

for the shift in melting point upon confinement. In Chapter 5, several thermodynamic

properties of nanoconfined methane hydrate, including density profiles, thermal conductiv-

ity, thermal expansion, and isothermal compressibility, are determined using molecular

dynamics (MD). The main results together with several suggestions for future works are

presented in the conclusion of this manuscript.

Some parts of this manuscript were taken from my paper published in Langmuir Ref.

[Jin, D. and Coasne, B. (2017). Molecular Simulation of the Phase Diagram of Methane

Hydrate: Free Energy Calculations, Direct Coexistence Method, and Hyperparallel Tem-

pering. Langmuir, 33:11217–11230.]. A detailed list of these parts can be found in the

following table. Besides those parts, all written text in this manuscript is original (∼ 80%).

In addition, significant changes have been made to reorganize the chapters/discussion to

better match PhD thesis requirements.

Table 1 Declaration of my manuscript.

Chapter Beginning End
Introduction “Methane hydrate is a non-stoichiometric ... ... and physicochemical properties.”

Sec. 2.2.3 “Monte Carlo simulation in the canonical ... ... molecules in the configuration.”
Sec. 2.5 “Methane was modeled as a single ... ... ice forms (like Ice VII and Ice VIII).”
Chap. 3 all the texts
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As discussed in the introduction, fundamental understanding on methane hydrate has

raised significant interest in the last decades. The dynamics and thermodynamics of this

complex compound play an important role in many practical applications of methane

hydrate. Most methane hydrate in nature is confined in the voids present in various porous

medium and rocks. That is, methane hydrate inside this porosity interacts with the surface

atoms of these host porous materials. Such pore–hydrate interactions have drastic effects

on the dynamics and thermodynamics of methane hydrate. This chapter presents a brief

review of methane hydrate: (1) crystalline structure, (2) physicochemical properties, (3)

formation/dissociation kinetics, (4) phase stability, and (5) confinement effects at the

nanoscale.

1.1 Structure

1.1.1 Crystalline structure and molecular model

Methane hydrate is a non-stoichiometric crystalline structure (crystal) made up of the

hydrogen-bonded water molecules forming the cavity around methane molecules (see

Figure 1.1) (Davy, 1800; Sloan and Koh, 2007). Here “non-stoichiometric” means that the

methane composition, xm, in the hydrate phase varies with temperature, T , and pressure,

P. Other small gas molecules, e.g., carbon dioxide (CO2), hydrogen sulfur (H2S), and

hydrocarbons (C2H6, C3H8, etc.), can also form gas hydrate in natural environments.

To date, three primary crystalline hydrate structures have been identified: structure I

(sI) (McMullan and Jeffrey, 1965), structure II (sII), (Mak and McMullan, 1965) and

structure H (sH) (Ripmeester et al., 1987). The first two structures, sI and sII, are cubic

crystals, while the third one is a hexagonal crystal (analogous to the hexagonal ice, Ihex). As

shown in Figure 1.1, these three structures differ from each other in the types and numbers

of water cavities (made up of four-, five- and six-member rings of water molecules). These

water cavities can be classified according to their size: (1) one small size cavity, 512,

consists of twelve pentagons; (2) three large size cavities, including 51262, 51264, and
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htb

Figure 1.1 (left) Gas hydrate with structure I (sI): the small spheres are water molecules
forming hydrogen-bonded cavities and the large spheres are the gas molecules. The gray
polyhedrons represent the cavities generated by the water molecules. (right) Typically, the
types and numbers of water cavities correspond to one of the three following structures of
gas hydrate: sI, sII, and sH. The circled numbers are the numbers of such water cavities
which are used to form the corresponding hydrate structure. [Picture from Ref. (Schulz
and Zabel, 2006)]

51268, created by adding two, four, and eight hexagons in the cavity 512, respectively;

(3) one medium size cavity, 4351263, created by adding three squares and three hexagons

into the cavity 512. These structures of gas hydrate can be viewed as a packing of these

polyhedral water cavities. The structure sI consists of two small size cavities 512 and six

large size cavities 51262. The structure sII consists of sixteen small size cavities 512 and

eight large size cavities 51264. The structure sH consists of three small size cavities 512, two

medium size cavities 4351263, and one large size cavity 51268. Each cavity can encapsulate

one or two gas molecules depending on the nature of the gas molecules (typically, the

molecular size). Despite the differences in these structures, i.e., numbers and types of

water cavities, the molar composition of gas molecule, xm, and water molecule, xw, are

similar for these three structures of methane hydrate: xm ∼ 0.15 and xw ∼ 0.85.

Under typical environmental conditions where methane hydrate is encountered on

Earth, methane hydrate is formed as structure sI (Michalis et al., 2015; Sloan and Koh,

2007). In this crystalline structure, 46 water molecules form two small pentagonal do-
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decahedral cages (i.e., small size water cavity 512) and six tetracaidecahedral cages (i.e.,

large size water cavity 51262) so that a maximum of 8 methane molecules can be encapsu-

lated (Michalis et al., 2015). In addition, the structure sI of methane hydrate also obeys the

following rules:

(1) proton disordered structure: the crystal lattice of methane hydrate is formed by water

molecules with oxygen atoms located at regular crystalline positions. In contrast,

the positions of the hydrogen atoms are disordered;

(2) ice rules (also known as Bernal–Fowler rules (Bernal and Fowler, 1933)): each

oxygen atom in the methane hydrate is covalently bonded to two hydrogen atoms,

and is involved in four hydrogen bonds pointing toward the neighbor oxygen atoms.

Two of these hydrogen bonds are outgoing (i and ii in Figure 1.2) while the two

others are incoming (iii and iv in Figure 1.2);

(3) zero dipole moment: methane hydrate has a zero dipole moment.

A B

(i)

(ii)

(iii)

(iv)

A
B

C

D

E

(1) proton disorder (2) ice rules (3) zero dipole moment


OH 

OH


w

2e-

e+ e+

A B

Figure 1.2 Three criteria should be satisfied for methane hydrate with sI structure (Bernal
and Fowler, 1933; Chakraborty and Gelb, 2012a): (1) proton disorder; (2) ice rules; and
(3) zero dipole moment. The red and green spheres are the oxygen and hydrogen atoms of
water, respectively.

To study the thermodynamics and dynamics of methane hydrate, many molecular

models for water and methane can be, in principle, used in molecular simulation. However,

in practice, all water models do not reproduce accurately all available experimental data

for methane hydrate. Thus, the choice of the molecular models for water and methane is

very important for the description of methane hydrate. In the literature, methane molecules
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are usually described using a simplified model known as the unit-atom model (Damm

et al., 1997). The water molecules can be described using different molecular mod-

els, e.g., TIP4P/2005 (Abascal et al., 2005), TIP4P/ICE (Abascal and Vega, 2005), and

SPC/E (Docherty et al., 2006; Kaminski et al., 1994; Krouskop et al., 2006; Paschek, 2004).

Among these water molecular models, only a few of them reproduce the experimental

data, especially phase stability, for methane hydrate. Thanks to a reparameterization, the

TIP4P/family (e.g., TIP4P/2005 and TIP4P/ICE) water molecular models show improved

performance in the determination of the solid–liquid phase diagram of water, as compared

with other water molecular models (e.g., SPC/E) (Abascal et al., 2005; Abascal and Vega,

2005). In combination with the united-atom (UA) model for methane molecule, these two

water molecular models can reproduce the phase diagram of methane hydrate (Conde and

Vega, 2010; Vega et al., 2008). Molinero et al. used the coarse-grain model for water, mW,

and the Stillinger-Weber (SW) potential to speed up the molecular simulation by about

a factor of 100 (Jacobson et al., 2009, 2010a,b; Jacobson and Molinero, 2010; Molinero

and Moore, 2009). The drawback of this water model is that it does not provide results as

accurate as those with the TIP4P/family model.

In this work, a stochastic Monte Carlo algorithm, inspired by Ref. (Buch et al., 1998),

has been developed to generate the crystalline structure of methane hydrate that follows

the three criteria given above. This part of the work will be discussed in Chapter 3. The

TIP4P/ICE and TIP4P/2005 water molecule models, in combination with the OPLS-UA

methane molecular models were used.

1.1.2 Order parameter

To identify the structure of methane hydrate, one or more order parameters were developed

in recent years. In practice, these order parameters usually describe the packing of the

oxygen atoms of water molecules in various phases, because it is easier to identify the

regular oxygen atom network than the disordered network of hydrogen atoms. Considering

typical environment conditions for methane hydrate, most studies deal with identifying
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the following phases: liquid water, hexagonal ice, and methane hydrate. Many order

parameters allow one to distinguish liquid water from its crystalline structures, including

hexagonal ice and methane hydrate, due to the striking difference between disordered and

ordered oxygen atoms in liquid and crystal phases. Such order parameters include the

radial distribution function, g(r), the number of hydrogen bonds, NHB, and the tetrahedral

order parameter, ξ . In contrast, distinguishing methane hydrate and hexagonal ice is more

difficult due to the fact that most oxygen atoms in these two structures are tetrahedrally

connected.

The radial distribution function, gαβ (r), is related to the structure factor, S(q), through

the inverse Fourier transform (Gasser et al., 2001). gαβ (r) describes the number density

distributions of the species β (e.g., oxygen atom, hydrogen atom, or methane molecule) sur-

rounding a given species α : gαβ (r)=
〈
ραβ (r)

〉
/
〈
ρβ

〉
where ραβ (r)= 1/4πr2∆r(∑Nα

1 ∆Nαβ (r))/Nα

is the number density of the pairs α–β separated by a distance between r and r+∆r (the

corresponding number of such pairs for each atom α is ∆Nαβ ). Summation runs over all

the number of atoms in species α , Nα . ρβ is the density of species β and ⟨· · · ⟩ means

an ensemble average. In other words, gαβ (r) is the probability of finding an atom β

at a distance r from an atom α . Among all g(r) functions, gO-H(r) allows identifying

the hydrogen bonds formed between the water molecules for different liquid and crystal

structures. A pair of water molecules, wA–wB, is assumed to be hydrogen-bonded if

it satisfies the following criteria: (1) the distance dOAHB ≤ 0.235 nm and (2) the angle

⟨HAOAHB⟩ ≤ 30◦ (Alabarse et al., 2012). The number of hydrogen bonds, ⟨NHB⟩, in liquid

water is 3.54–3.65 per water molecule (Alabarse et al., 2012; Errington and Debenedetti,

2001), while NHB = 3.98 for hexagonal ice and methane hydrate at T = 290 K and P = 100

atm.

The tetrahedral order parameter, ξ (i), describes the extent to which the four nearest-

neighbour oxygen atoms are tetrahedrally coordinated with respect to a given oxygen atom

Oi, ξ (i) = 1−3/8∑
3
j=1 ∑

4
k= j+1

(
cos
〈
O jOiOk

〉
+1/3

)
where the indices j and k run over

the four nearest-neighbour oxygen atoms around Oi, and the angle
〈
O jOiOk

〉
is formed



1.1 Structure 11

by the lines joining O j and Ok associated with Oi (Errington and Debenedetti, 2001;

Radhakrishnan and Trout, 2002). This definition ensures that ξ (i) = 0 for a completely

disordered structure while ξ (i) = 1 for a completely ordered tetrahedral structure. An

intermediate value is obtained for a partially disordered structure (e.g., liquid water, ⟨ξ ⟩=

0.63–0.68 (Errington and Debenedetti, 2001; Radhakrishnan and Trout, 2002)). The above

order parameter shows that both hexagonal ice and methane hydrate are perfect tetrahedral

crystals. Therefore, identification of liquid water is rather easy but the distinguishing

between hexagonal ice and methane hydrate requires to develop a more complex order

parameter.

The local bond order parameters, Ql (l is an integer) (Steinhardt et al., 1983), are

widely used to identify crystals (Lechner and Dellago, 2008; Ogata, 1992; Radhakrishnan

and Trout, 2002, 2003a,b; Steinhardt et al., 1983). Ql provides a clear indication for

disordered and ordered structures, especially for crystals with different symmetries. For

a given oxygen atom Oi, Ql(i) is computed using the complex vectors that link Oi to its

Nb(i) nearest-neighbour oxygen atoms O j. The complex vector Qlm(i) is first computed,

Qlm(i) =
1

Nb(i)

Nb(i)

∑
j=1

Ylm(ri j) with m ∈ [−l, l] (1.1)

where Ylm(ri j) are the spherical harmonics which depend on the position vectors ri j. Ql(i)

are then obtained using these complex vectors,

Ql(i) =

(
4π

2l +1

l

∑
m=−l

| Qlm(i) |2
)1/2

(1.2)

where the summation over m runs [−l,+l]. In practice, one can also use improved spatial

resolution by averaging these local bond order parameters, ⟨Ql(i)⟩,

⟨Ql(i)⟩=

(
4π

2l +1

l

∑
m=−l

| ⟨Qlm(i)⟩ |2
)1/2

(1.3)
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where ⟨Qlm(i)⟩ is given by,

⟨Qlm(i)⟩=
1

Nb(i)

Nb(i)

∑
k=0

Qlm(k) (1.4)

The summation in Eq. (1.4) from k = 0 to Nb(i) runs over all the nearest neighbouring

oxygen atoms Ok and includes itself (i.e., k = 0). Qlm(i) contains the structural information

on the first shell surrounding Oi. In contrast, ⟨Qlm(i)⟩ contains the structural information

on the first and second shells.

<Q4(i)>

<
Q

6
(i
)>

Figure 1.3 (color online) Averaged local bond order parameters, ⟨Q4⟩–⟨Q6⟩–plane, for
liquid water (blue), hexagonal ice (red), and methane hydrate (black) at T = 200 K. [Picture
from Ref. Reinhardt et al. (2012)]

Usually, l = 4 and 6 are used since they allow the identification of the different crystal

phases of water, e.g., cubic and hexagonal ices (Chau and Hardwick, 1998; Chialvo et al.,

2002; Errington and Debenedetti, 2001; Ferdows and Ota, 2005; Jorgensen et al., 1983;

Lechner and Dellago, 2008; Narten and Levy, 1971; Ogata, 1992; Radhakrishnan and

Trout, 2002; Reinhardt et al., 2012; Soper and Benmore, 2008; Steinhardt et al., 1983).

Figure 1.3 shows the scatter plot of liquid water, cubic and hexagonal ice under T = 200

K in the ⟨Q4⟩–⟨Q6⟩–plane. As expected, these data suggest that liquid water exhibits

a more disordered structure (much broader distribution) as compared with crystalline

structures. Despite some overlap, this pair order parameter is suitable to identify liquid
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water, cubic and hexagonal ice. Recent works have shown that Ql plays an important role

in the determination of the formation/crystallization of methane hydrate, especially to

identify the phase transition from liquid water to methane hydrate (Nguyen and Molinero,

2015; Radhakrishnan and Trout, 2003b; Tanaka, 2012). Another possible order parameter

is the distribution of cyclic pentamers. (Báez and Clancy, 1994; Fábián et al., 2018)

In summary, complete phase identification between liquid water, hexagonal ice, and

methane hydrate can be achieved using local bond order parameters. These orders parame-

ters are efficient and simple order parameters for the identification of methane hydrate in

the course of formation/crystallization. In this work, Q6 has been used to determine the

free energy barrier between liquid water and methane hydrate. The free energy calculations

with the umbrella sampling will be discussed in Chapter 4.

1.2 Thermodynamic properties

Thermodynamic properties – which include physical and physicochemical properties – are

essential for practical applications involving methane hydrate (Jendi et al., 2016; Ning

et al., 2012, 2015). For instance, the thermal expansion coefficient, αP = 1/v(∂v/∂T )P,

is an important parameter for assessing the mechanical stability of methane hydrate and

geological media filled with methane hydrate (Jendi et al., 2016). The exploration of

methane hydrate and the storage of carbon dioxide by substitution of carbon dioxide with

methane in methane hydrate can lead to mechanical instabilities. Moreover, the isothermal

compressibility, κT =−1/v(∂v/∂P)T , plays an important role in the detection of methane

hydrate when using seismic waves. As a result, understanding the thermodynamic proper-

ties of methane hydrate has raised significant interest in the last decade (Bai et al., 2015;

Burnham and English, 2016; Demurov et al., 2002; Michalis et al., 2016a; Yang et al.,

2016b; Zhu et al., 2014).

Many experiments focus on the following thermodynamic properties: second-order

elastic constant (Shimizu et al., 2002), isothermal compressibility (Sloan and Koh, 2007),
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thermal expansion (Takeya et al., 2005), heat capacity (Waite et al., 2007), and thermal

conductivity (English et al., 2012, 2005). These results provide valuable information for

the geophysical applications of methane hydrate. Understanding these properties at the

atomic-scale level is also important. For instance, ab initio and classical calculations can

provide accurate values for αP and κT .

Using molecular dynamics, one can determine the contributions from each component

(methane and water for methane hydrate) to the thermal conductivity, which is very useful

in the description of heat-transfer upon methane hydrate formation/dissociation. The

heat-flux vector, J, reads,

J =
1
V

[
N

∑
i
(ei +ui)vi +

N

∑
i

N

∑
j>i

(
fi j ·v j

)
ri j

]
(1.5)

where V is the volume of the simulation box, N is the total number of molecules, ei =

1/2miv2
i is the kinetic energy of molecule i, ui is the potential energy of molecule i which

interacts with the other molecules, vi is the velocity vector of molecule i, fi j is the force

between molecule i and molecule j, and ri j is the position vector between molecule i and

molecule j.

The thermal conductivity, k, can be estimated using the Green-Kubo formalism,

k =
V

3kBT 2

∫ +∞

0
⟨J(t) ·J(0)⟩dt (1.6)

where ⟨· · · ⟩ denotes an ensemble average. This method provides a thermal conductivity k

that includes all contributions to the heat flux (Jendi et al., 2016; Ning et al., 2012, 2015).

The thermal conductivity not only can explain unusual thermal-transport phenomena but

also helps to provide deep understanding of thermoelectric materials which possess similar

structures as methane hydrate (e.g., semiconductor silicon clathrates).

Another important thermodynamic property is the gas mobility/diffusion of methane

molecules in hydrate and liquid phases. Such dynamics plays an important role in the

process of formation, dissociation, and displacement of carbon dioxide with methane (De-
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murov et al., 2002; Hjertenaes et al., 2016; Liang et al., 2014; Michalis et al., 2016a;

Ohgaki et al., 2008; Pefoute et al., 2016; Román-Pérez et al., 2010; Trinh et al., 2015;

Vidal-Vidal et al., 2016). For instance, in the process of formation of methane hydrate, the

extremely low solubility of methane in liquid water does not allow transport of methane

molecules to maintain the growth rate of methane hydrate; methane molecules are required

to diffuse across liquid water towards the hydrate-liquid interface. Thus, the diffusion rate

of methane in liquid water is one of the key steps in the formation of methane hydrate.

Moreover, methane molecules in hydrate phase affect the mechanical stability of methane

hydrate in seaflooor, permafrost, marine sediments, etc. Due to slow methane diffusion,

hydrate phase can form with incompletely filled water cavities. On the one hand, fewer

methane molecules decrease the water-methane interactions which contribute to the struc-

ture stability of methane hydrate. On the other hand, the empty water cavities can easily

“open” and trigger methane hydrate dissociation (Liang et al., 2014).

1.3 Formation/dissociation and phase stability

1.3.1 Crystallization

According to the classical nucleation theory (CNT), the formation of methane hydrate

includes two steps:

(1) Below the crystalization point, T < Tm, several water molecules in liquid phase get

together to form a crystal-like nucleus with a cluster radius, r;

(2) If the radius is larger than the critical radius (i.e., r > rc) the above crystal-like

nucleus keeps growing and eventually form the crystalline structure of methane

hydrate. In contrast, if r < rc, the nucleus dissociates and eventually disappears.

The above two steps can be described in Figure 1.4. Figure 1.4 shows the free energy,

∆G, for methane hydrate formation as a function of the radius of the nucleus, r. From a

thermodynamic viewpoint, the free energy, ∆G, for the methane hydrate formation can be



16 State-of-the-art: Methane Hydrate

-

0

+

0 +∞

Surafce Term

Volume Term

shrink growth

rc
ΔGbarr

Δ
G

r

Figure 1.4 Free energy (solid line), ∆G, as a function of nucleus radius, r, in the the
formation process of methane hydrate. Formation can be described as the interplay
between the hydrate–liquid surface free energy (surface term corresponding to the dashed
line), ∆GS, and the free energy difference between liquid water and methane hydrate
(volume term corresponding to the dot dashed line), ∆GV . The critical radius, rc, and the
corresponding free energy barrier, ∆Gbarr, are also shown in this figure. If the nucleus
radius is larger than the critical radius, i.e., r > rc, the nucleus keeps growing to form
methane hydrate (“growth”). For r < rc, the nucleus melts into liquid water (“shrink”).

described as a combination of the hydrate–liquid surface free energy (surface contribution,

see Figure 1.4), ∆GS, and the free energy difference between liquid water and methane

hydrate (volume contribution, see Figure 1.4), ∆GV ,

∆G = ∆GS +∆GV

= 4πr2
γHL −

4
3

πr3
ρH∆µHL

(1.7)

where γHL is the surface tension of hydrate–liquid interface, ∆µHL is the difference of the

chemical potential between liquid water and methane hydrate, and ρH is the number density

of water molecules in methane hydrate. In the above equation, the surface contribution,

∆GS = 4πr2γHL, corresponds to the free energy cost of creating the liquid–hydrate interface.

The volume contribution, ∆GV =−4/3πr3ρH∆µHL, describes the fact that the structure

of methane hydrate is more stable than that of liquid water below the crystalization point

(i.e., free energy difference between methane hydrate and liquid water). The maximum of
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the total free energy (as described by Eq. (1.7)) corresponds to the free energy barrier of

the formation of methane hydrate, ∆Gbarr,

∆Gbarr =
16π

3

(
γ3

HL

ρ2
H∆µ2

HL

)
(1.8)

The corresponding critical radius, rc, of the crystal-like nucleus reads,

rc =
2γHL

ρH∆µHL
(1.9)

Figure 1.4 also shows the two possible scenarios as described by the classical nucleation

theory: (1) “growth” for r > rcrit , the nucleus keep growing to form methane hydrate and

(2) “shrink” for r < rc, the nucleus melts. For bulk methane hydrate, the melting point,

Tm(r), of a nucleus with a radius, r, is linearly proportional to the reciprocal of its critical

radius, rc, as described by the Gibbs-Thomson equation (Jacobson and Molinero, 2011),

Tm(r)−T bulk
m

T bulk
m

=− 2γHL

ρH∆hmr
(1.10)

where T bulk
m is the melting point of an infinite bulk methane hydrate and ∆hm is the molar

enthalpy of melting from methane hydrate to liquid water.

The formation kinetics of methane hydrate as described by the nucleation rate, J f ,

reads,

J f = J f ,0Aexp
(
−βT ∆G f

barr

)
(1.11)

where J f ,0 is the frequency with which methane and water molecules reach the surface

area around the nucleus (i.e., nucleation sites), A = 4πr2 is the surface area of the nucleus,

and βT = 1/kBT is the reciprocal of the thermal energy with the Boltzmann constant kB.

Therefore, two factors control the formation rate of methane hydrate: (1) the number density

of nucleation sites, and (2) the free energy barrier, ∆G f
barr, for methane hydrate formation

(i.e., from liquid water to methane hydrate). For many reasons, the nucleation rate of

methane hydrate is very slow in nature, in agreement with experiments and molecular
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simulations. For instance, the very low solubility of methane in liquid water, xm ∼ 0.001,

makes it difficult to feed methane hydrate which further decreases the formation probability

of the nucleus/crystal. Another possible reason for the slow nucleation rate is related to

interfacial phenomena: after the nucleus is formed, a thin molecular interface is present

between methane hydrate and liquid water of methane hydrate; such a hydrate-liquid

interface decreases the diffusion of methane vapor through it which further hinders crystal

growth. More importantly, there is a large free energy barrier between liquid water and

methane hydrate. Such a large free energy barrier significantly affects the nucleation rate,

as described by Eq. (1.11). Experimentally, it can take up to several days maybe more

to synthesize methane hydrate. As for theoretical aspects, simulating methane hydrate

requires to use advanced molecular simulation strategies such as free energy techniques.

In practice, such slow formation/dissociation kinetics for methane hydrate is important in

natural environments. For instance, the liquid-hydrate (or ice-hydrate at low temperature)

interface prevents the melting of methane hydrate when the temperature increases so that

the slow dissociation kinetics of methane hydrate in seafloor and permafrost decreases the

release rate of methane (Angioletti-Uberti et al., 2010; Bi et al., 2016; Bi and Li, 2014;

Lehmkühler et al., 2009; Mel’nikov et al., 2016; Pirzadeh and Kusalik, 2013; Saykally,

2013; Ueno et al., 2015; Zhang et al., 2015).

Many strategies are being developed to control the nucleation rate of methane hydrate.

By virtue of the two factors above, one can attempt to alter the number density of nucleation

sites and/or the free energy barrier. For instance, methane vapor can be injected into liquid

water to increase the probability of formation of the nucleus. Various surfactants can also

be used as promoters to decrease the free energy barrier for methane hydrate formation, etc.

On the other hand, hydrate inhibitors (e.g., alcohol-based, glycol-based, polymer-based,

ionic liquids, amino acides, etc.) can be injected into transport pipelines to avoid the

formation of methane hydrate (Arora et al., 2016; Dureckova et al., 2016; Kato et al., 2016;

Kumar et al., 2015; Lee et al., 2005; McLaurin et al., 2014; Sa et al., 2015, 2013; Wu et al.,

2015; Xu et al., 2016; Yagasaki et al., 2015).
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1.3.2 Melting/Dissociation

Understanding the dissociation of methane hydrate is important in the field of environ-

mental science. The melting of methane hydrate in nature can release massive amounts

of this greenhouse gas. Like with methane hydrate formation, many experiments but also

thermodynamic models and molecular simulations have been reported on the dissociation

mechanism and kinetics (Alavi and Ohmura, 2016; Bagherzadeh et al., 2015; Chakraborty

and Gelb, 2012a; Liang et al., 2014; Luis et al., 2015; Misyura, 2016; Myshakin et al.,

2009; Smirnov and Stegailov, 2012; Vidal-Vidal et al., 2016; Zhou et al., 2016). The

kinetics rate for the dissociation of methane hydrate writes,

Jd = Jd,0 exp
(
−βT ∆Gd

barr

)
(1.12)

where ∆Gd
barr is the activation energy for methane hydrate dissociation and Jd,0 is an

exponential factor that accounts for the attempt rate for dissociation. In addition to the

kinetic rate of methane hydrate dissociation, the heat transfer is another important point

for the melting of methane hydrate.

1.3.3 Phase diagram

Phase stability is shown in the phase diagram provided in Figure 1.5. This phase diagram

provides phase boundaries which delimitates the conditions under which methane hydrate

coexists with liquid water (or ice at low temperature) and methane vapor. In other words,

phase transitions occur along these equilibrium lines (phase boundaries). More in details,

Figure 1.5 shows the pressure–temperature (P–T ) phase diagram of methane hydrate

which involves liquid water (L), ice (I), methane hydrate (H), and methane vapor (V). The

melting line of ice – melting temperature T I
m at a given P – indicates that ice is located

in the region T < T I
m while liquid water is located in the region T > T I

m. Similarly, the

melting line of methane hydrate – melting temperature T H
m at a given P – indicates that

methane hydrate is located in the region T < T H
m while liquid water and methane vapor
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coexist in the region T > T H
m . These two melting lines separate the phase diagram into

four regions: (1) methane hydrate coexists with ice (H+ICE); (2) methane hydrate coexists

with liquid water (H+L); (3) methane vapor coexists with liquid water (V+L); and (4)

methane vapor coexists with ice (V+ICE). Along the melting line of methane hydrate

(as indicated by line AQB in Figure 1.5), two types of three phase equilibrium exist: (1)

liquid–hydrate–vapor (L–H–V) at high temperature, T > T I
m and (2) ice–hydrate–vapor

(I–H–V) at low temperature, T < T I
m.
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Figure 1.5 Pressure–temperature (P–T ) phase diagram for liquid (L), ice (I), vapor (V),
and hydrate (H) phases. The phase boundary – dashed line – indicates the conditions for
which ice coexists with liquid water, L–I. The phase boundary – solid line AQ – indicates
the conditions for which methane hydrate coexists with ice and methane vapor, I–H–V.
The phase boundary – solid line QB – indicates the conditions for which methane hydrate
coexists with liquid water and methane vapor, L–H–V. Four regions involving the two
phase coexistence are shown: (1) hydrate coexists with ice, H+I; (2) hydrate coexists with
liquid water, H+L; (3) methane vapor coexists with liquid water, V+L; and (4) methane
vapor coexists with ice, V+I. Q is a four phase coexistence point, L–H–I–V.

Generally, the phase coexistence requires that the chemical potentials of each com-

ponent are equal in all phases. In this work, methane hydrate can be viewed as a binary

mixture of methane, m, and water, w; for such a system, L–H–V phase equilibrium requires

that the chemical potentials of water in all phases (Φ = H, L, and V) are equal,

µ
H
w (xm,T,P) = µ

L
w(xm,T,P) = µ

V
w (xm,T,P) (1.13)



1.3 Formation/dissociation and phase stability 21

but also for methane,

µ
H
m (xm,T,P) = µ

L
m(xm,T,P) = µ

V
m (xm,T,P) (1.14)

where µ is the chemical potential as a function of the composition of methane, xm (one

could use the composition of water, xw = 1− xm.), the temperature, T, and the pressure,

P. In principle, one can determine L–H–V phase equilibrium by solving the two equa-

tions above: one is for water and one for methane. Many theoretical methods use such

thermodynamic modeling, e.g., van der Waals–Platteeuw method (Conde et al., 2016;

de Azevedo Medeiros et al., 2016; Duan et al., 2011; Hakim et al., 2010; Katsumasa et al.,

2007; Lasich et al., 2014; Lee et al., 2012; Yoon et al., 2002), first-principles thermody-

namics (Cao et al., 2016; Trinh et al., 2015), etc. In addition to the above techniques, there

are other robust techniques to determine L–H–V phase equilibrium. These techniques

allow probing the formation/nucleation of methane hydrate such as the direct coexistence

method and the parallel tempering technique, etc.

Free energy calculations. Free energy calculations allow one to determine L–H–

V phase equilibrium. Such computations are often used to determine the solid–liquid

phase equilibrium for various crystalline materials (Barroso and Ferreira, 2002; Dornan

et al., 2007; Frenkel and Ladd, 1984; Habershon and Manolopoulos, 2011; Jhung et al.,

1991; Lyubartsev et al., 1998; Nagle, 1966; Noya et al., 2008; Okano and Yasuoka,

2006; Polson et al., 2000; Radhakrishnan and Trout, 2003a; Shen and Monson, 1995;

Shetty and Escobedo, 2002; Susilo et al., 2008; Vega and Monson, 1998; Vega and Noya,

2007; Vega et al., 1992, 2008). The main goal with this technique is to compute the

chemical potentials of methane and water in different phases at different T and P. Then

thermodynamic equations, corresponding to Eqs. (1.13) and (1.14), are solved using these

chemical potentials. To determine the L–H–V phase equilibrium, one usually chooses

the following two equations: (1) L–H phase equilibrium, µH
w (xm,T,P) = µL

w(xm,T,P)

and (2) H–V phase equilibrium, µH
m (xm,T,P) = µV

m (xm,T,P). From a physical point of

view, the chemical potential can be obtained from the corresponding free energy. Many
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theoretical approaches were developed to determine chemical potentials: (1) the equation

of state (EoS) provides an easy way to determine the chemical potential of vapor phase,

µV
m ; (2) the Gibbs–Duhem equation provides a way to determine the chemical potential

of liquid phase especially for uncompressible liquid water, µL
w; (3) the grand canonical

ensemble Monte Carlo simulation provides a way to determine the chemical potential as a

function of xm by imposing a given µH
m ; (4) the Einstein molecule approach determines

the chemical potential of water in the hydrate phase, µH
w , etc. The latter technique –

the Einstein molecule approach – can be used to determine the chemical potential of

any arbitrary solid phases but the determination of the chemical potential of water in

methane hydrate is not straightforward in practice. According to the definition of chemical

potential, one could determine the chemical potential of a solid phase using the free energy

relationship, µ = (A+PV )/N where A is the Helmholtz free energy, PV is the mechanical

contribution, and N is the number of molecules. The Einstein molecule approach provides

a way to determine the free energy of methane hydrate. Within the framework of the

Einstein molecule approach, one constructs a link from the ideal Einstein molecule to

methane hydrate. As the reference, the Einstein molecule has an analytic free energy,

AE. Thermodynamic integration provides a way to compute the free energy difference

between the Einstein molecule and methane hydrate, ∆A. The free energy of methane

hydrate is readily obtained as AH = AE +∆A. By using this technique, researchers have

determined the phase diagram of methane hydrate (Jensen et al., 2010; Waage et al., 2017;

Wierzchowski and Monson, 2006, 2007; Yezdimer et al., 2002).

The umbrella sampling is a molecular simulation technique which provides a way to

determine L–H–V phase equilibrium by using free energy calculations. With this tech-

nique, one prepares a single phase (e.g., methane hydrate) and forces it to transform into

another one (e.g., liquid water) by adding a biasing potential energy contribution. Such

biasing potential contribution is used to cancel out the free energy barrier between the

two phases. In other words, the phase transition is driven by the biasing potential. In

practice, to determine L–H–V phase equilibrium, one starts from methane hydrate which
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is then transformed into liquid water by adding a harmonic potential in the framework

of the umbrella sampling technique. Usually, an order parameter (e.g., Q6) is used in

the biasing harmonic potential (e.g., w(Q6) = 1/2kus
(
Q6,i −Q6,0

)
where kus is the force

constant which represent the transform rate and Q6,i/Q6,0 are the order parameters of

current/reference system. By determining the probability distribution, the free energy

contribution, V B(Q6) =−kBT ln(w(Q6)), of the biasing potential at a given order param-

eter can be obtained. The unbiased free energy profile, G(Q6), on the order parameter

can be estimated by subtracting V B(Q6) from the biased free energy profile, GB(Q6):

G(Q6) = GB(Q6)−V B(Q6). In so doing, the free energy, ∆G, as a function of the order

parameter, OP, is determined (Frenkel and Smit, 2002). Figure 1.6 shows a typical free

energy profile ∆G(OP) at three different T and P. At T > Tm, liquid water is more stable

than methane hydrate. That is, the free energy of liquid water is lower than that of methane

hydrate at T > Tm: ∆GL < ∆GH. While at T < Tm, methane hydrate is more stable than

liquid water, ∆GL > ∆GH. The melting/crystallization temperature at equilibrium, Tm, is

obtained when the free energy difference between liquid water and methane hydrate is

zero, i.e., ∆GHL = 0. In addition, it should be noted that such free energy calculations

give access to the free energy barrier between methane hydrate and liquid water. This

value provides information about the formation/dissociation kinetics of methane hydrate

(as mentioned in Section 1.3).

The free energy landscape such as illustrated in Figure 1.6 shows not only phase

stability but also formation/dissociation kinetics of methane hydrate. In this work, two free

energy techniques, involving the Einstein molecule approach and the parallel tempering

technique, were used within the grand canonical ensemble to determine L–H–V phase

equilibrium (Chapters 3 and 4) as well as the free energy barrier for methane hydrate

formation/dissociation (Chapter 4).

Direct coexistence method. The direct coexistence method (DCM) is a robust tech-

nique to determine phase boundary in a phase diagram (Alavi and Ripmeester, 2010;

Anderson, 2004; Aragones et al., 2009; Barmavath et al., 2014; Cabriolu and Li, 2015;
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Figure 1.6 Free energy, G, as a function of the normalized order parameter, OP, using
biased molecular simulations. Liquid water (L) exhibits a small order parameter, while
methane hydrate (H) exhibits a large order parameter. At the melting temperature, T = Tm,
methane hydrate coexists with liquid water (i.e., the free energies of liquid water and
methane hydrate are equal). At high temperature, T > Tm, liquid water is stable (i.e., the
free energy of liquid water is smaller than that of methane hydrate). At low temperature,
T < Tm, methane hydrate is stable (i.e., the free energy of methane hydrate is smaller
than that of methane hydrate). The free energy barrier between liquid water and methane
hydrate, ∆Gbarr, upon formation is also shown.

Cao et al., 2016; Conde et al., 2013, 2016; Conde and Vega, 2010; Conde et al., 2010;

de Azevedo Medeiros et al., 2016; Duan et al., 2011; El-Sheikh et al., 2006; Fortes et al.,

2004; Gai et al., 2015; Hakim et al., 2010; Huang et al., 2016a,b; Ilani-Kashkouli et al.,

2013; Kang et al., 2014; Katsumasa et al., 2007; Lasich et al., 2014; Lee et al., 2012; Lee

and Seo, 2010; Małolepsza et al., 2015; Míguez et al., 2015; Patchkovskii and Tse, 2003;

Rodrigues and Fernandes, 2007; Seo et al., 2009; Tsimpanogiannis and Lichtner, 2013;

Wu et al., 2015). In this technique, one prepares an initial simulation box with two or three

coexisting phases. As shown in Figure 1.7 (top), the three coexisting phases, i.e., liquid

water + methane hydrate + methane vapor phases, are placed in a cubic simulation box

to determine L–H–V phase equilibrium. Then, one performs molecular simulations at

different T and P to determine the stability domain for each phase. For a given P, the low

symmetry phase (methane hydrate) will be stable below the melting temperature Tm while
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the high symmetry phase (liquid water coexisting with methane vapor) will be stable above

Tm. In other words, liquid water and methane vapor form as methane hydrate for T < Tm,

as shown in Figure 1.7 (center) and (bottom). On the other hand, methane hydrate melts as

liquid water and methane vapor for T > Tm. Usually, one performs molecular dynamics

to determine Tm at a given P (English et al., 2005; Fernández et al., 2006; Knott et al.,

2012; Naeiji et al., 2016; Sarupria and Debenedetti, 2012; Tung et al., 2010; Yagasaki

et al., 2015). For instance, by using different molecular models, some researchers have

simulated the phase diagram of methane hydrate (Conde and Vega, 2010; Michalis et al.,

2015, 2016b; Míguez et al., 2015). Unlike the thermodynamic models and free energy

calculations, the DCM technique does not require to compute the chemical potential of

each component in each phase. In addition, the DCM allows one to observe the formation

process directly at the molecular scale. As shown in Figure 1.7, the growth of methane

hydrate from liquid water and methane vapor can be seen using the direct coexistence

method. As another example, one can prepare coexisting phases consisting of methane

hydrate within a sphere (radius r), liquid water, and methane vapor. Using the DCM, one

can determine the melting temperature, Tm(r), at a given P (Jacobson et al., 2010a). The

critical radius of the nucleus (i.e., the minimum radius to keep the nucleus growing) at

Tm(r) for a given P can be also described by the Gibbs-Thomson equation.

As mentioned previously, the large free energy barrier between methane hydrate and

liquid water leads to very slow kinetic rates for the formation/nucleation of methane

hydrate. Furthermore, the DCM technique usually requires very long molecular dynamics

or Monte Carlo simulations. Typically, several hundred of nanoseconds are used when

using molecular dynamics. For the sake of computational efficiency, this work extended

the DCM technique within the grand canonical ensemble, as presented in Chapter 4. This

ensemble allows one to: (1) use two coexisting phases instead of three in the simulation

box to determine L–H–V phase equilibrium and (2) use a smaller molecular system to

mimic an infinite molecular system. For instance, one can prepare a system with L–H

coexistence in the simulation box that is in equilibrium with an infinite reservoir. The
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Figure 1.7 (color online) Typical molecular configurations obtained in the direct coexis-
tence method at T = 294 K and P = 600 bar (where methane hydrate is stable): (top) the
coexisting phases, i.e., liquid water (L) + methane hydrate (H) + methane vapor (V), are
the initial configuration; (center) the growth of methane hydrate; and (bottom) the perfect
methane hydrate formed at the end of the molecular simulation. The red and white lines
denote the water molecules while the blue spheres are the methane molecules. [Picture
from Ref. (Conde and Vega, 2010)]

reservoir imposes chemical potentials µm and µw as well as temperature T . This ensemble

allows one to determine L–H–V phase equilibrium because the L–H phase also coexists

implicitly with methane vapor though the fictive reservoir.

Parallel tempering. In addition to the above techniques, parallel tempering provides

another way to improve computational efficiency. Figure 1.8 shows a schematic view of the

Boltzmann factor in the phase space at low and high temperatures. As compared with low

temperature, the system at high temperature escapes more easily from the metastable state.

The Boltzmann factor at high temperature spans a border distributions, and the free energy

barrier for phase transition at high temperature is much lower than at low Temperature.

The parallel tempering technique helps the system to escape from the metastable states,

therefore improving computational efficiency. In practice, within the parallel tempering
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technique, one prepares N simulation boxes (replicas) where each replica consists of either

the solid phase (methane hydrate) or the liquid phase (liquid water). These N molecular

replicas are equilibrated under different temperatures independently, and exchange between

two configurations is used to avoid configurations to remain trapped into local metastable

states. The parallel tempering technique is often used to determine two phase equilibrium,

e.g., solid–liquid or liquid–vapor phases transition (Brumby et al., 2016). For instance,

Malolepsza et al. used the replica exchange technique to determine L–H phase equilibrium

within the framework of isobaric molecular dynamics (Małolepsza et al., 2015). Due to the

constant number of molecules in this ensemble, the phase transition between liquid water

and empty hydrate (β–ice) is obtained while the L–H–V phase equilibrium is impossible

to reach within this ensemble. In this work, the parallel tempering technique was used in

the grand canonical ensemble (i.e., hyperparallel tempering Monte Carlo simulation) to

determine L–H–V phase equilibrium.
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Figure 1.8 Boltzmann factor, exp(−U/kBT ), in the phase space, Γ, as an example to
illustrate the parallel tempering technique. The blue line is for the low temperature, while
the red line is for the high temperature. The system in state A (blue circle) remains easily
trapped into a metastable state, while the system in state B (red circle) escape more easily.
Parallel tempering between A and B is used to make the escape easier.

Many different molecular simulation strategies can be used to determine L–H–V phase

equilibrium. In this work, four different molecular simulation strategies were used to

determine L–H–V phase equilibrium. First, free energy calculations with the Einstein
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molecule approach was used to predict L–H–V phase equilibrium. This method exactly

follows the thermodynamic definition of phase equilibrium. Second, the direct coexistence

method was used to determine the phase transition between liquid water and methane

hydrate. This strategy is difficult to determine three phase coexistence (unless one runs

the molecular simulation at the exact melting point T and P), but this method is valid to

assess the phase boundary using the Einstein molecule approach. Then, the hyperparallel

tempering technique was used to accelerate the observation of phase transition due to the

slow kinetics rates for the formation/dissociation of methane hydrate. Here “hyperparallel

tempering” is referred rather than parallel tempering because we treated the system in the

Grand Canonical ensemble. The results for the phase stability of methane hydrate will be

presented in Chapter 3. Finally, free energy calculations with the umbrella sampling was

used to probe not only the L–H–V phase equilibrium but also the formation/dissociation

kinetics of methane hydrate (presented in Chapter 4). All these molecular simulation

strategies, involving the direct coexistence method, the parallel tempering technique, and

the umbrella sampling technique, were extended in the grand canonical ensemble Monte

Carlo simulations.

1.4 Confinement effects at the nanoscale

In nature, most methane hydrate is confined in the voids formed in various porous rocks

and/or fractures. This confined methane hydrate interacts with the surface atoms (within

a specific distance, typically one or two nanometers for van der Waals interactions and

several nanometers for electrostatic interactions) (Casco et al., 2017, 2015; English and

MacElroy, 2004; Smirnov, 2017; Smirnov et al., 2016). This fluid–pore interaction leads

to an additional contribution to the free energy of methane hydrate. Due to such fluid-pore

interactions, confinement effects also lead to non isotropic pressure tensors: the pressure

parallel to the interface is PT while the pressure normal to the interface is PN . From a

physical viewpoint, such non isotropic pressure tensors generate an external surface free
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energy of the confined fluid which corresponds to the surface tension (Aman and Koh,

2016; Arnaudov et al., 2010). This surface tension has drastic effects on the structure,

dynamics and thermodynamics of confined methane hydrate. Therefore, understanding the

role of the confinement effects on methane hydrate is an important research field (Bai et al.,

2011, 2012; Barmavath et al., 2014; Borchardt et al., 2016; Brovchenko et al., 2004; Casco

et al., 2015; Cole et al., 2009; Di Crescenzo et al., 2016; English et al., 2005; Ghaedi et al.,

2016; Hachikubo et al., 2011; Ilani-Kashkouli et al., 2013; Kang and Lee, 2010; Kang

et al., 2008, 2009a,b; Kyung et al., 2015; Luis et al., 2015; Misyura, 2016; Moore et al.,

2010; Seo and Kang, 2010; Seo et al., 2009; Smirnov, 2017; Smirnov et al., 2016; Sun

et al., 2015; Tsiberkin et al., 2014; Tsimpanogiannis and Lichtner, 2013; Wang et al., 2015;

Yang et al., 2016a; Zhang, 2015; Zhao et al., 2016, 2014). A recent review on confinement

effects can be found in Ref. (Borchardt et al., 2018). This reference mainly focuses on

the confinement effects on the crystallization/formation, dissociation/melting and phase

stability of methane hydrate.

Confinement effects depend on many factors, e.g., surface chemistry, pore width,

pore topology and morphology, etc. Thus, various porous materials will lead to different

confinement effects. Many porous materials in nature (e.g., porous silica, clay minerals,

etc.) and in man-made materials (e.g., polymers, zeolites, metal organic frameworks, etc.)

can be used to study confinement effects on the phase stability of methane hydrate (Aladko

et al., 2004; Anderson et al., 2003; Cuadrado-Collados et al., 2018; Kang et al., 2008;

Seo et al., 2002, 2009; Uchida et al., 1999, 2002). Many observations suggest that

confinement in micro- and meso-pores leads to a reduced phase stability (i.e., the L–H–V

phase boundary is shifted towards a higher pressure and/or lower temperature) (Aladko

et al., 2004; Birkedal et al., 2014; Handa and Stupin, 1992; Madden et al., 2009; Prasad

et al., 2012). However, confinement in fine glass beads shows a positive effect on phase

stability (Anderson et al., 2003; Hachikubo et al., 2011; Kang et al., 2008, 2009a). At a

given pressure, let us consider the shift in the melting point, ∆Tm, of confined methane

hydrate with respect to bulk methane hydrate: ∆Tm = T pore
m −T bulk

m where T pore
m is the
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melting point of confined methane hydrate in the porous material and T bulk
m is the melting

point of bulk methane hydrate. This shift in phase stability is often described using the

Gibbs-Thomson equation for a slit pore (Chakraborty and Gelb, 2012a; Seo et al., 2002;

Uchida et al., 1999),
∆Tm

T bulk
m

=
2vγLH cosθ

∆hm

1
Dp

(1.15)

where γLH is the surface tension between liquid water and methane hydrate, θ is the angle

between the surface of the substrate and the surface formed by methane hydrate and liquid

water (i.e., contact angle), v is the molar volume (i.e., the reciprocal of the number density:

v = 1/ρ) of the hydrate/liquid phase, ∆hm is the molar enthalpy of melting from methane

hydrate to liquid water, and Dp is the pore width.

The Gibbs-Thomson equation suggests that the shift in the melting point of confined

methane hydrate at constant pressure linearly depends on the reciprocal of the pore width:

∆Tm ∼ 1/Dp. Several researchers focused on the application of the Gibbs-Thomson equa-

tion to methane hydrate. For instance, Chakraborty et al. used this equation to determine

the surface tension (Chakraborty and Gelb, 2012a) of methane hydrate-liquid water. Seo

et al. used the Gibbs-Thomson equation for their thermodynamic modeling to predict

the phase diagram of methane hydrate in pores (Seo et al., 2002, 2009). However, the

validation of the Gibbs–Thomson equation for very small pores remains to be established.

First, the determination of the true melting point at equilibrium is difficult in practice.

Most experiments and theoretical simulations determine the dissociation point of methane

hydrate (here, dissociation means the point where methane hydrate transforms to liquid

water) instead of the true melting point (Aladko et al., 2004; Chakraborty and Gelb, 2012a;

Seo et al., 2002; Uchida et al., 1999). However, the dissociation point can be far from the

equilibrium transition point due to the large free energy barrier between methane hydrate

and liquid water.

It should also be noted that the Gibbs–Thomson equation given above relies on the

following approximation: the number density of molecules in the hydrate phase, ρH, and in

the liquid phase, ρL, are assumed to be equal, i.e., ρH ∼ ρL. In contrast, a large difference
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in the number density of ∼ 20% is found in realistic conditions between liquid water and

methane hydrate. Finally, Young’s equation, γLH cosθ = γLS − γHS, and the contact angle

θ = 0 are usually imposed in the Gibbs-Thomson equation. The availability of Young’s

equation is unknown for small pores and the value of θ is also difficult to determine. In this

work, the Gibbs-Thomson equation will be revisited by considering the different densities

(ρH ̸= ρL) and the different surface tensions γLS and γHS which will be determined using

molecular simulation. Then, the true melting point of bulk and confined methane hydrate

will be determined to check the validity of the Gibbs-Thomson equation.

Confinement in porous materials seems to lead to faster formation kinetics of methane

hydrate (Borchardt et al., 2018; Casco et al., 2015; Cha et al., 1988; Ganji et al., 2007;

Govindaraj et al., 2015; Li et al., 2006; Linga et al., 2012; Phan et al., 2014; Seo and

Kang, 2010; Smelik and King, 1997; Yan et al., 2005). For instance, experimental data

suggest a shorter formation time of methane hydrate in bentonite (clay) (Cha et al., 1988)

as compared with bulk methane hydrate. Silica/sand exhibits an improved conversion up to

∼ 94% (vs. ∼ 74% for bulk methane hydrate) and a shorter formation time of 34 h (vs. 60

h for bulk methane hydrate) (Linga et al., 2012). These confinement effects, which arise

mainly from surface chemistry and fluid–pore interactions, decrease the free energy barrier

between methane hydrate and liquid water. However, the physical reasons for such faster

formation kinetics remain unclear.

In addition to its effects on phase stability and formation kinetics, confinement also

affects the structure of methane hydrate (Babu et al., 2013; Borchardt et al., 2016; Casco

et al., 2015; Cha et al., 1988; Miyawaki et al., 1998; Siangsai et al., 2015). For instance,

the hydrate phase formed in porous carbons can consist of a monolayer of methane

molecules adsorbed at the pore walls and a hydrogen–bonded zigzag chain in the pore

center (Borchardt et al., 2018; Miyawaki et al., 1998). Such hydrate structure is not formed

as a perfect sI structure, and the stable methane composition for such hydrate phase, xm,

is ∼0.333 (where xm = nm/(nm + nw) with the number of methane, nm, and water, nw,

molecules in one unit cell). In contrast, we recall that for the sI structure xm = 0.147
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(i.e., nw : nm = 5.78). Recently, a hydrate phase was found in carbon nanotubes (Agrawal

et al., 2016; Zhao et al., 2016). Another goal of the present work will be to assess

such confinement effects on the structure and physical and physicochemical properties of

confined methane hydrate.

1.5 Summary

In this chapter, the crystalline structure, thermodynamic properties, crystallization theory,

formation/dissociation kinetics, and phase stability of methane hydrate were reviewed.

Such review aims at giving some physical insights into the dynamics and thermodynamics

of methane hydrate as well as the corresponding formation/dissociation kinetics. We also

introduced the role of confinement effects at the nanoscale. Several key points can be

summarized as follows:

Methane hydrate in typical environmental and experimental conditions forms as struc-

ture I (sI). In this structure, 46 water molecules form two small pentagonal dodecahedral

cages (512) and six tetracaidecahedral cages (51262) so that a maximum of 8 methane

molecules can be encapsulated. In addition to the above packing of water molecules,

methane hydrate should obey three criteria: (1) proton disorder, (2) ice rules, and (3) zero

dipole moment. On the one hand, the local bond order parameters, Ql , provide a tool to

identify the structure of liquid water, hexagonal ice, and methane hydrate. On the other

hand, free energy calculations can be used to assess the formation kinetics and phase

stability of methane hydrate.

The classical nucleation theory suggests that the crystallization of methane hydrate is a

two-step mechanism: the formation and growth of a crystal-like nucleus in liquid water.

Such mechanism suggests that the formation kinetics of methane hydrate is controlled by

two factors: the number density of nucleation sites and the free energy barrier between

methane hydrate and liquid water. By using additives (thermodynamic promoter/inhibitor)

to alter these two factors, one can increase/decrease the nucleation rate, e.g., using the
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thermodynamic inhibitor to prevent the formation of methane hydrate that could block

pipelines.

Phase stability is one of the most important characteristics of methane hydrate. The

pressure–temperature phase diagram shows the phase boundary of liquid–hydrate–vapor

phase equilibrium (or ice–hydrate–vapor at low temperature). Along this phase boundary,

methane hydrate coexists with liquid water and methane vapor, i.e., the chemical potentials

of water/methane in these three phases are equal. Different theoretical techniques can be

used to assess the phase stability of methane hydrate, e.g., free energy calculations, direct

coexistence method, parallel tempering, etc. Using suitable molecular models for methane

and water molecules, one could obtain an accurate L–H–V phase diagram.

Methane hydrate can be confined at the nanoscale in different nanoporous medium.

These nanoporous materials lead to strong surface interactions with methane hydrate and

liquid water which provide an additional free energy contribution, i.e., surface tension

γLW and γHW . At the nanoscale, confinement effects lead to reduced phase stability, i.e., a

decreased melting temperature at a given pressure or an increased melting pressure at a

given temperature, for methane hydrate. Although such reduced phase stability is often

described using the Gibbs-Thomson equation, less effort has been devoted to establishing

the validity of the Gibbs-Thomson equation for methane hydrate confined at the nanoscale

level.
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2.1 Statistical mechanics

2.1.1 Classical statistical mechanics

Statistical mechanics establishes the link between the macroscopic properties of a system

and the motions of its microscopic elements (atoms, molecules, etc.). Statistical mechanics

provides a way to determine the thermodynamic and dynamic behaviors of a molecular

system at equilibrium. This chapter mainly discusses the thermodynamics and dynamics

of systems for which the motion of atoms and molecules can be described using classical

statistical mechanics. Taking a system having a volume V and a number of particles N,

we consider the set of coordinates rN = (r1,r2, . . . ,rN) and the set of momenta pN =

(p1,p2, . . . ,pN) for each of the N particles. The total kinetic energy, Ek, of the system is

given by the following summation over these N particles,

Ek(pN) =
N

∑
i

Ek,i =
N

∑
i

p2
i /(2mi) (2.1)

where Ek,i and mi is the kinetic energy and mass of the i-th particle, respectively. The

total potential energy, U , is a function of all particles’ coordinates (and orientations if the

particles are molecules),

U(rN) =U(r1,r2, . . . ,rN) (2.2)

The classical Hamiltonian, H (rN ,pN), is the sum of the kinetic and potential energy,

H (rN ,pN) = Ek(pN)+U(rN)

=
N

∑
i

p2
i /(2mi)+U(rN)

(2.3)



38 Statistical Mechanics and Computational Methods

The partition function, Q, is defined as the following integral over all particles’ coordinates

and momenta:

Q =
1

h3NN!

∫
drNdpN exp

[
−βT

(
N

∑
i

p2
i /(2mi)+U(rN)

)]
(2.4)

where
∫

drNdpN =
∫
· · ·
∫

dr1 · · ·drNdp1 · · ·dpN . The factor 1/N! accounts for the fact

that these N identical particles are indistinguishable. βT = 1/kBT is the reciprocal of

the thermal energy with kB the Boltzmann constant. h in the above equation is Planck’s

constant. The partition function and its derivatives with respect to the temperature T ,

pressure P, and volume V , describe the thermodynamics of the system. For instance, the

internal energy can be expressed as ⟨E⟩=−∂ lnQ/∂βT while the entropy can be expressed

as S = ∂ (kBT lnQ)/∂T . From a statistical physics point of view, the probability, P(s), to

find a system in a given microstate, s = (rN ,pN), reads,

P(s) =
1
Q

exp

[
−βT

(
N

∑
i

p2
i /(2mi)+U(rN)

)]
(2.5)

The above equation shows that the partition function Q is a normalization constant (the

normalization is to ensure that the integral of the probability over all possible microstates

is equal to one),

∫
dsP(s) =

1
Q

∫
drNdpN exp

[
−βT

(
N

∑
i

p2
i /(2mi)+U(rN)

)]

= 1

(2.6)

Any thermodynamic property of interest, X , can be determined using its average, ⟨X⟩, over

all possible microstates (i.e., ensemble average),

⟨X⟩= 1
Q

∫
drNdpN exp

[
−βT

(
N

∑
i

p2
i /(2mi)+U(rN)

)]
X
(
rN ,pN) (2.7)
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where X
(
rN ,pN) is the value taken by X when the system is in the microstate s = (rN ,pN).

The above equation is the starting point in molecular simulation which is used to determine

the thermodynamic and dynamic behaviors of a many-body system.

2.1.2 Ensembles

As previously discussed, a thermodynamic property of interest, ⟨X⟩, can be obtained using

an ensemble average. The statistical ensemble, which is defined from the thermodynamic

parameters that are constant, leads to a specific partition function. Here, I discuss the three

statistical mechanics ensembles that will be used in this work.

(1) Canonical ensemble, NV T . The canonical ensemble is relevant to a system consisting

of N particles in a volume V that is in equilibrium with a thermostat at a temperature

T . Such a system exchanges energy, E, with the thermostat which imposes the

temperature T . The canonical ensemble contains all the possible microstates that

are consistent with N, V , and T as constraints. The partition function, QNV T ,

corresponding to this ensemble reads,

QNV T =
1

h3NN!

∫
drNdpN exp

[
−βT

(
N

∑
i

p2
i /(2mi)+U(rN)

)]

=
1

Λ3NN!

∫
drN exp

(
−βTU(rN)

)
=

V N

Λ3NN!

∫
dsN exp

(
−βTU(sN)

)
(2.8)

where Λ = h/
√

2πmkBT is the thermal de Broglie wavelength with m the mass of

the particle, kB the Boltzmann constant, and h the Planck constant. In the above

equation, Λ3N is the integral of the kinetic energy over all the N particles (the term

1/h3N is included in this contribution). For the sake of convenience, the above

equation can be simplified using a reduced coordinate set, sN = (s1,s2, · · · ,sN) =

(r1/L,r2/L, · · · ,rN/L), where these N particles are assumed to be located in a cubic

box of a dimension L.
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(2) Isobaric–isothermal ensemble, NPT . The isobaric–isothermal ensemble is relevant

to a system of N particles in equilibrium with a thermostat imposing its temperature

T and a barostat imposing its pressure P. The system exchanges thermal energy

with the thermostat and mechanical energy/volume with the barostat. The NPT

ensemble contains all the possible microstates that are consistent with N, P, and T

as constraints. The NPT ensemble is often used to mimic experiments due to the

fact that many real conditions are performed by controlling T and P. The partition

function, QNPT , corresponding to this ensemble can be written as the weighted

integral of QNV T ,

QNPT =
∫

dV exp(−βT PV )(βT P)QNV T (2.9)

(3) Grand canonical ensemble, µV T . The grand canonical ensemble is relevant to a

system which has a constant volume V but with a fluctuating number N of particles.

This system is in equilibrium with a reservoir which imposes its temperature T and

its chemical potential µ . The system exchanges energy E and particles with the

reservoir. The µV T ensemble contains all the possible microstates that are consistent

with µ , V , and T as constraints. The partition function, QµV T , corresponding to this

ensemble can be written as the weighted summation (N is discrete) of QNV T ,

QµV T ≡
+∞

∑
N=0

exp(βT µN)QNV T (2.10)

There are other statistical ensembles such as the isoenthalpic-isobaric ensemble NHP.

For a binary mixture (e.g., methane hydrate in this work), combined ensembles can also be

used such as the semi–grand ensemble, µ1N2PT . In this thesis, the latter ensemble was

used for bulk methane hydrate. Such semi–grand ensemble requires that the system has a

constant number of molecules for the second species, N2. In contrast, the first species is at

constant chemical potential µ1 so that N1 fluctuates. The whole system is in equilibrium

with the thermostat and barostat which impose the pressure P and temperature T . The
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partition function, Qµ1N2PT , corresponding to this ensemble reads,

Qµ1N2PT =
+∞

∑
N1=0

exp(N1µ1)
∫

dV exp(−βT PV )(βT p)QNV T (2.11)

2.2 Monte Carlo simulation

2.2.1 Detailed balance and Metropolis scheme

Monte Carlo (MC) sampling methods are widely applied to determine the thermodynamic

behavior of a system in classical molecular simulation. The sampling in a Monte Carlo

(MC) simulation can be done by generating microstates randomly. However, complete

random sampling is generally not possible as one cannot sample efficiently the whole phase

space. Also, evaluation of an integral such as
∫

dsN exp
[
−βTU(sN)

]
is often impossible

in practice. The Metropolis scheme provides an efficient sampling algorithm in which sam-

pling is performed according to the Boltzmann factor. A system at equilibrium obeys the

principle of micro-reversibility (also known as “detailed balance” in statistical mechanics),

which states that the total probability of transitions from every initial microstate, oi, to all

other microstates, n j, is equal to the total probability of transitions from these microstates

n j to the microstate oi,

∑
j

ρ(oi)Π(oi → n j) = ∑
j

ρ(n j)Π(n j → oi) ∀i = 1,2, · · · (2.12)

where ρ(oi) is the probability of a microstate oi while ρ(n j) is the probability of a

microstate n j. Π(oi → n j) is the probability of transition from microstate oi to n j while

Π(n j → oi) is the probability of transition from microstate n j to oi. Summation over j

indicates the total probability of transition. The above detailed balance condition is valid

and can be used for any strategy in MC simulation. In practice, a much stronger detailed

balance condition is imposed as follows: the transition probability from microstate oi to

microstate n j is taken equal to by the transition probability from microstate n j to microstate
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oi,

ρ(oi)Π(oi → n j) = ρ(n j)Π(n j → oi) ∀ i = 1,2, · · · (2.13)

Such a stronger detailed balance condition obviously satisfies the requirement of

Eq. (2.12). In practice, only one MC move is attempted at every MC step: for a current

microstate o, one MC trial move o → n must therefore verifies:

ρ(o)Π(o → n) = ρ(n)Π(n → o) (2.14)

where Π(o → n) = α(o → n)Pacc(o → n) and Π(n → o) = α(n → o)Pacc(n → o) so that,

ρ(o)α(o → n)Pacc(o → n) = ρ(n)α(n → o)Pacc(n → o) (2.15)

where ρ(o) and ρ(n) are the probabilities to find the system in the microstate o and n (the

probability can be obtained from the partition function Q which depends on the ensemble).

α(o → n) and α(n → o) are the probabilities to attempt a trial move from o to n and from

n to o. Pacc(o → n) and Pacc(n → o) are the probabilities to accept the corresponding trial

moves. For most MC moves, α is chosen as a symmetric matrix, α(o → n) = α(n → o),

thus,
Pacc(o → n)
Pacc(n → o)

=
ρ(n)
ρ(o)

(2.16)

Many statistical distributions can verify this stronger detailed balance condition. Here, we

choose the Metropolis scheme that generates Markov chains and accepts trial moves as

follows:

(1) for ρ(n)/ρ(o)< 1, we have Pacc(o → n) = ρ(n)/ρ(o) and Pacc(n → o) = 1

(2) for ρ(n)/ρ(o)> 1, we have Pacc(o → n) = 1 and Pacc(n → o) = ρ(n)/ρ(o)
(2.17)
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or using a simplified formulation,

Pacc(o → n) = min{1,ρ(n)/ρ(o)}

Pacc(n → o) = min{1,ρ(o)/ρ(n)}
(2.18)

Instead of complete random sampling, the Metropolis algorithm generates sampling

using a relative probability to avoid sampling very low probability states. Such sampling

significantly improves the efficiency of MC simulation. In the next section, the typical

trial moves and the corresponding acceptance probabilities used in Monte Carlo simulation

within various ensembles are discussed.

2.2.2 Trial moves and acceptance probabilities

Most real experiments can be mimicked by choosing different ensembles. Within various

statistic ensembles, the different trial moves that can be used, and the corresponding

acceptance probabilities vary. However, they must respect the constant thermodynamic

parameters for a specific ensemble. Here, we list the typical trial moves and acceptance

probabilities for various ensembles relevant to this work. By recalling the partition function

for various ensembles (see Section 2.1.2), the probability to find the system in a microstate

o within different ensembles, ρ···(o), reads:

ρNV T (o) =
1

QNV T

V N

Λ3NN!
exp
(
−βTU(sN(o))

)
ρNPT (o) =

1
QNPT

1
Λ3NN!

exp
[
−βT

(
PV − (N +1) lnV

βT
+U(sN(o)

)]
ρµV T (o) =

1
QµV T

V N

Λ3NN!
exp
(
βT (µN −U(sN(o))

)
ρµ1N2PT (o) =

1
Qµ1N2PT

1
Λ3NN!

exp
[
−βT

(
PV − (N +1) lnV

βT
−µ1N1 +U(sN(o)

)]
(2.19)

Molecule translation and rotation. These two trial moves only change the potential

energy contribution in Eq. (2.19). As a result, the acceptance probability can be computed
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using the potential energy term only. One molecule in the old configuration o is randomly

chosen (e.g., the i-th molecule), and the translation trial move consists of displacing it by a

small random value to generate a new configuration n,

xi(n) = xi(o)+∆max(ranf()−0.5)

yi(n) = yi(o)+∆max(ranf()−0.5)

zi(n) = zi(o)+∆max(ranf()−0.5)

(2.20)

where ∆max is the maximum displacement and ranf() is a random number uniformly dis-

tributed between 0 and 1. Rotation trial moves change the orientation of a randomly chosen

molecule by a small random Euler’s rotation matrix ℜ33 to generate a new configuration n,


xi(n)

yi(n)

zi(n)

= ℜ33


xi(o)

yi(o)

zi(o)

=


R11 R12 R13

R21 R22 R23

R31 R32 R33




xi(o)

yi(o)

zi(o)

 (2.21)

The probability to find the system in a microstate n, ρ(n), can be determined by Eq. (2.19).

For these two trial moves, the probability to attempt a trial move from o to n is equal to

the probability to attempt a trial move from n to o, i.e., α(o → n) = α(n → o) = 1/(2N).

Thus, according to Eq. (2.18), the acceptance probability Pacc(o → n) for such trial moves

can be expressed as,

Pacc(o → n) = min
{

1,
ρ(n)
ρ(o)

}
= min

{
1,exp

(
−βT ∆U(sN)

)}
(2.22)

where ∆U(sN) =U(sN(n))−U(sN(o)) is the potential energy difference before and after

the trial move. The acceptance probability given above can be used for these two trial

moves in all statistical ensembles.

Molecule insertion and removal. These two trial moves are only used for systems in

which the number of particles N is not constant, e.g., µV T and µ1N2PT ensembles. The

insertion trial move generates a new configuration n by randomly inserting a molecule at an
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arbitrary position into the old configuration o. Inversely, the removal trial move attempts

to remove a randomly selected molecule from configuration n (note that N +1 molecules

in the configuration n). Therefore,

α(o → n) =
1
2

dr
V

α(n → o) =
1
2

1
N +1

(2.23)

The probability to find the system in a microstate n with (N +1) molecules is given by,

ρµV T (n) =
1

QµV T

V (N+1)

Λ3(N+1)(N +1)!
exp
(

βT (µ(N +1)−U(s(N+1)(n))
)

(2.24)

According to Eq. (2.18), the acceptance probability for such insertion moves can be

expressed as,

Pacc(o → n) = min
{

1,
ρ(n)α(n → o)
ρ(o)α(o → n)

}
= min

{
1,

V
Λ3(N +1)

exp
[
βT

(
µ − (U(s(N+1)(n))−U(sN(o))

)]} (2.25)

The removal trial move can be viewed as the reversible process of insertion, where the

molecular number changes from N to N −1, not from N +1 to N so that,

α(o → n) =
1
2

1
N

α(n → o) =
1
2

dr
V

(2.26)

According to Eq. (2.18), the acceptance probability for such removal trial moves can be

expressed as,

Pacc(n → o) = min
{

1,
ρ(o)α(o → n)
ρ(n)α(n → o)

}
= min

{
1,

Λ3N
V

exp
[
−βT

(
µ +

(
U(s(N−1)(n))−U(sN(o))

))]} (2.27)
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Volume change. Volume change is necessary to treat systems in the isobaric ensemble,

such as NPT and µ1N2PT . Here, we take the NPT ensemble as an example to establish

the acceptance probability for this trial move. Volume trial moves generate a new volume,

V (n), based on the old volume, V (o), for the molecular system using a small random

change in volume,

V (n) = λV (o) = (1+∆Vmax(rand()−0.5))V (o) (2.28)

where ∆Vmax is the maximum volume change allowed at each Monte Carlo step. λ =

V (n)/V (o) is the rescaling factor for the coordinates of system molecules. The new

coordinates of each molecule (ri(n)) are obtained by rescaling their old coordinates (ri(o)),

ri(n) = λ 1/3ri(o). The probability to find the system in a microstate n is given by,

ρNPT (n) =
1

QNPT

1
Λ3NN!

exp
[
−βT

(
PV (n)− (N +1) lnV (n)

βT
+U(sN(n)

)]
(2.29)

The probability to attempt such trial moves is,

α(o → n) =
1
2

dv
V

α(n → o) =
1
2

dv
V

(2.30)

According to Eq. (2.18), the acceptance probability for such volume trial moves can be

expressed as,

Pacc(o → n) = min
{

1,
ρ(n)α(n → o)
ρ(o)α(o → n)

}
= min

{
1,
(

V (n)
V (o)

)(N+1)

exp
[
−βT (P(V (n)−V (0))−

(
U(s(N)(n))−U(sN(o))

)]}
(2.31)
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2.2.3 Details of Monte Carlo simulation

Monte Carlo simulation in the canonical ensemble (CMC) were used in our free energy

calculations to determine (1) the free energy change between the non-interacting and

the interacting Einstein molecules ∆A1 and (2) the free energy change from the Einstein

molecule to the methane hydrate ∆A2 (again, details of the free energy calculations will be

given later). In these canonical simulations (constant number of particles N, temperature T ,

and volume V ), MC moves include rotations for the water molecules and translations for the

water and methane molecules. In the framework of the Metropolis algorithm, each move

from an old (o) to a new (n) microscopic states was accepted or rejected according to the

acceptance probability Pacc = min{1, pn
NV T/po

NV T} where pNV T for a given configuration

corresponds to the density of states in the canonical ensemble:

pNV T (sN) ∝
V N

N!
exp
(
−U(sn)

kBT

)
(2.32)

where sN is the set of coordinates of the N molecules in a given microscopic configuration

and U(sN) is the corresponding intermolecular potential energy.

Semi-Grand Monte Carlo (SGMC) simulations were performed to determine the

number of methane molecules NH
m inside the methane hydrate as a function of their

chemical potential µH
m at given T and P (here, the subscript m refers to methane while

the superscript H refers to the hydrate phase). In this hybrid ensemble, methane is

treated at constant chemical potential µH
m and temperature T while water is treated at

constant number of molecules NH
w and temperature T . On the other hand, the volume

V is allowed to fluctuate since the system is at constant pressure P. For each T and

P, we start from an equilibrium configuration obtained using isobaric-isothermal MD

simulations. MC moves in SGMC simulations include rotations and translations for water

and translations, insertions, and deletions for methane. Moreover, volume changes are

also attempted. In the framework of the Metropolis algorithm, moves from an old (o) to a

new (n) microscopic states are accepted or rejected according to the acceptance probability
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Pacc = min{1, pn
µmNwPT/po

µmNwPT} where pµmNwPT for a given configuration corresponds

to the density of states in the semi-grand canonical ensemble:

pµmNwPT (sN) ∝
V N

N!
exp
(
−PV
kBT

)
exp
(

Nmµm

kBT

)
exp
(
−U(sn)

kBT

)
(2.33)

As in the case of canonical Monte Carlo simulations, sN is the set of coordinates for the N

molecules in the microscopic configuration while U(sN) is the corresponding intermolecu-

lar potential energy. V and Nm are the volume and number of methane molecules in the

configuration.

Grand Canonical Monte Carlo simulations (GCMC) were used in the direct coexistence

method and the hyper parallel tempering technique. In the grand canonical ensemble, the

system has a constant volume and methane and water are at constant chemical potentials

µm, µw and temperature T . Monte Carlo moves in the grand canonical ensemble include

rotations, translations, insertions, and deletions for both water and methane. In this ensem-

ble, moves from an old (o) to a new (n) microscopic states are accepted or rejected using

a Metropolis scheme with an acceptance probability Pacc = min{1, pn
µmµwV T/po

µmµwV T}

where pµmµwV T for a given configuration corresponds to the density of states in the grand

canonical ensemble:

pµmµwV T (sN) ∝
V N

N!
exp
(

Nmµm +Nwµw

kBT

)
exp
(
−U(sn)

kBT

)
(2.34)

sN is the set of coordinates of the N molecules in the microscopic configuration while

U(sN) is the corresponding intermolecular potential energy. Nw and Nm are the numbers of

water and methane molecules in the configuration.
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2.3 Molecular Dynamics

2.3.1 Ergodicity

The ergodic hypothesis, which is often invoked in statistical physics, states that an ensemble

average, ⟨X⟩, is equal to an average over time, ⟨X⟩τ ,

⟨X⟩= ⟨X⟩τ = lim
τ→∞

1
τ

∫
τ

0
X(τ)dτ (2.35)

The above equation indicates that the thermodynamic behavior can be determined from the

trajectories generated over a long period τ obtained using molecular dynamics. Using the

ergodic hypothesis, molecular dynamics is performed as follows: starting from an initial

configuration, after a time corresponding to equilibrium, the system evolves over a long

time within a specific ensemble to generate a very long trajectory. This trajectory is used

to determine the thermodynamic behavior of the system.

2.3.2 Newton’s equation

Let us consider a molecular system of N particles. These N particles have a set of mass

(m1,m2, · · · ,mN), a set of positions (r1(t = 0),r2(t = 0), · · · ,rN(t = 0)), and a set of

velocities (v1(t = 0),v2(t = 0), · · · ,vN(t = 0)) at the time t = 0. The sampling used to

determine a time average derive from the trajectories of these N particles. In classical

mechanics, these N particles obey the Newton’s equation:

mir̈i(t) = Fi(t), i = 1,2, · · · ,N (2.36)

where Fi(t) is the force acting on the particle i at time t. The force Fi(t) derives from the

potential energy U(ri j) arising from the interactions with all the other particles at time t,

Fi(t) =−
N

∑
j=1

∇iU(ri j(t)), i = 1,2, · · · ,N (2.37)
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where ri j(t) = |ri(t)− r j(t)| is the distance between particles i and j. Summation over j

indicates that all the other particles interacts with particle i.

2.3.3 Integration scheme

In general, Newton’s equation of motion does not have an analytical solution (or have

a complicated solution). Thus, several integration algorithms have been developed to

integrate the equation of motion numerically. The usual integration algorithms include: (1)

verlet algorithm; (2) leap-frog algorithm; and (3) velocity-verlet algorithm.

(1) Verlet algorithm. This algorithm updates the new position r(t +δ t) at time t +δ t

using the position r(t) and force F(t) at time t and the position r(t − δ t) at time

t −δ t,

r(t +δ t)≈ 2r(t)− r(t −δ t)+
F(t)

m
δ t2

v(t)≈ r(t +δ t)− r(t −δ t)
2δ t

(2.38)

The verlet algorithm is straightforward, and requires modest memory storage capaci-

ties. However, the algorithm is of moderate precision.

(2) Leap-frog algorithm. In the leap-frog algorithm, the velocity v(t +0.5δ t) at time

t +0.5δ t is first computed using the velocity v(t −0.5δ t) at time t −0.5δ t and the

force F(t) at time t. Then, the position r(t + δ t) at t + δ t is updated using the

position r(t) at time t and velocity v(t +0.5δ t) at time t +0.5δ t,

v(t +δ t)≈ v(t −0.5δ t)+
F(t)

m
δ t

r(t +δ t)≈ r(t)+ v(t +0.5δ t)δ t
(2.39)
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The velocity v(t) at time t is updated using the average of velocity v(t +0.5δ t) at

time t +0.5δ t and velocity v(t −0.5δ t) at time t −0.5δ t,

v(t)≈ 1
2
[v(t +0.5δ t)+ v(t −0.5δ t)] (2.40)

(3) Velocity-verlet algorithm. The velocity-verlet algorithm updates the position and

velocity at the same time. The position r(t +δ t) and velocity v(t +δ ) at time t +δ t

are computed using the position r(t), velocity v(t), and force F(t) at time t but also

the force F(t +δ t) at time t +δ t,

r(t +δ t)≈ r(t)+ v(t)δ t +
1
2

F(t)
m

δ t2

v(t +δ t)≈ v(t)+
1
2

[
F(t)

m
+

F(t +δ t)
m

]
δ t

(2.41)

In the present work, the velocity-verlet algorithm is adopted in all the molecular dynamics

simulations.

2.3.4 Thermostat and barostat

In molecular dynamics, the temperature for a molecular system is determined using the

ensemble average of the kinetic energy,

3
2

NkBT =

〈
1
2

N

∑
i

miv2
i

〉
(2.42)

while the pressure is determined from the virial theorem,

P = ρkBT +
1

3V

〈
N

∑
i=1

N

∑
j>i

Fi j · ri j

〉
(2.43)

where ρ = N/V is the number density of particles. The factor of 3 for T and 1/3 for P are

for a 3-D system.
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Most experiments are at constant T and/or P. As a result, MD simulations are usually

performed in the NPT or NV T ensemble rather than the NV E ensemble. To do so, a

thermostat and barostat are used to control T and P in MD simulation. Four primary

strategies can be employed,

(1) Stochastic approach. The controlling variable (e.g., velocity for T ) is reassigned

to the preset distribution function at each MD step. For example, the Andersen

thermostat assigns the velocity of one particle (randomly chosen) to a new velocity

from the Maxwellian velocity distribution.

(2) Strong-coupling approach. The controlling variable is rescaled to an exact preset

value at each MD step. For example, the isokinetic/Gaussian thermostat rescales

the velocity of each particle using the current velocity (i.e., velocity in Newton’s

equation) multiplied by a rescaling factor, λ =
√

Tdesired/Tcurrent .

(3) Weak-coupling approach. The controlling variable is rescaled towards the desired

value. For example, the Berendsen thermostat introduces a coupling parameter, τ ,

to the external bath using a rescaling factor λ =
√

1+δ t/τ(Tdesired/Tcurrent −1) to

control T .

(4) Extended system dynamics. This approach requires to introduce an additional

external degree of freedom that allows controlling T and P. For example, the Nosé-

Hoover thermostat corrects the equation of motion using an additional degree of

freedom, s. This additional degree of freedom s induces a friction with a “heat bath

mass, Qm” and has the potential energy of (N + 1)kBTdesired ln(s). The parameter

Qm determines the coupling strength and energy flow between the thermostat and

the molecular system. Large Qm leads to weak coupling and it is recommended to

use Qm ∼ 6NkBT .

The different constant temperature algorithms above are given as example to illustrate

the strategies when performing MD simulation in a constant temperature ensemble such as

the canonical ensemble. The constant pressure algorithm is analogous; the volume V is the
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controlling variable and the positions of all particles are rescaled as,

ri(t +δ t) =
√

λri(t), i = 1,2, · · · .N (2.44)

where λ = 1− kδ t/3τ(Pdesired −Pcurrent) is the rescaling factor, τ is a coupling parameter,

and k = βT

(〈
V 2〉−⟨V ⟩2

)
/⟨V ⟩ is the isothermal compressibility that determines the

volume fluctuations in MD simulation. In this work, T and P were maintained constant

using the Nose-Hoover algorithm.

2.3.5 Details of molecular dynamics

In the context of the free energy calculations carried out in Chapter 3, Molecular Dynamics

(MD) in the isobaric–isothermal ensemble (constant number of molecule N, temperature

T , and pressure P) was used to determine (1) the density of methane vapor and (2) the

volume of zero-occupancy methane hydrate at different temperatures T and pressures P

(details of the free energy calculations will be discussed later in this manuscript).

To determine the thermodynamic parameters that are inputs for the Gibbs-Thomson

equation in Chapter 4, molecular dynamics in the isobaric–isothermal ensemble (constant

number of molecule N, temperature T , and pressure P) was also used to determine the

molar volume v and enthalpy of liquid water, hL, and methane hydrate, hH, at bulk phase

coexistence conditions: T = Tm(P). Molecular dynamics in the canonical ensemble

(constant number of molecule N, volume V , and temperature T ) was used to determine

the solid–hydrate γHS and solid–liquid γLS surface tensions at bulk phase coexistence

conditions (details of the surface tension will also be discussed later).

Calculations of the physical and physicochemical properties in Chapter 5 were assessed

using molecular dynamics. (1) For bulk methane hydrate and liquid water, the thermal ex-

pansion αP and isothermal compressibility κT were determined using molecular dynamics

in the isobaric–isothermal ensemble (constant number of molecule N, temperature T , and

pressure P). (2) Molecular dynamics at constant number of molecule N, temperature T and
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pressure component Pzz was used to determine the thermal expansion αPzz and isothermal

compressibility κT (Pzz) for bulk methane hydrate and liquid water (z is the direction normal

to the pore surface). (3) Molecular dynamics in the microcanonical ensemble (constant

number of molecule N, volume V , and energy E) was used to determine the thermal

conductivity λ of bulk methane hydrate. (4) For the confined methane hydrate and liquid

water, molecular dynamics were performed in the microcanonical ensemble for porous

solid atoms while the canonical ensemble for methane hydrate/liquid water.

All molecular dynamics simulations were performed using LAMMPS (Plimpton, 1995).

The Velocity-Verlet algorithm (Verlet, 1967) was used to integrate the equation of motion

with a total time of at least 2 ns and a timestep of 1 fs. For the ensembles with constant

temperature and/or constant pressure, T , P, and Pzz were controlled using Nose-Hoover

thermostat/barostat with a typical relaxation time of 2 ps (Hoover, 1985; Nosé, 1984).

2.4 Interaction potentials

The interaction potential, U , determines not only the force in molecular dynamics but

also the acceptance probability in Monte Carlo simulations. Generally, U in molecular

simulation includes intramolecular (i.e., bonded) interactions, Uintra, and intermolecular

(i.e., non-bonded) interactions, Uinter,

Utotal =Uintra +Uinter (2.45)

2.4.1 Intramolecular potential

The intramolecular potential maintains all atoms together within a molecule so that it de-

scribes chemical bonding. Such a strong interaction potential accounts for bond stretching,
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Ubond , bond angle bending, Uangle, and torsional rotation, Udihedral ,

Uintra =Ubond +Uangle +Udihedral

=
1
2

kl(l − lc)2 +
1
2

kθ (θ −θc)
2 + kφ [1+ cos(nφ −δ )]

(2.46)

where the first term is for bond stretching with the alteration of the optimized bond length,

lc, to a less favorable bond length, l; the second term is for angle bending with the alteration

of the optimized bond angle, θc, to a less favorable bond angle, θ ; and the third term

corresponds to the torsional rotation and describes the interaction potential when the

number of atoms in the molecule is 4 or more (in this term, n is the periodicity as rotation

repeats around 2π , φ is the dihedral angle, and δ is the offset of the function). kl , kθ ,

and kφ are the force constants. For each potential contribution, any change of the bond

length/angle will increase the interaction potential. In this thesis, the contribution from the

intramolecular interactions is always zero, Uintra = 0, since only rigid water models and a

united-atom model for methane are considered.

2.4.2 Intermolecular potential

The intermolecular potential describes non-bonded interactions, i.e., the attractive/repulsive

energies among molecules or atomic groups. It usually includes the three following con-

tributions: (1) repulsive interaction originating from the Pauli exclusion principle that

prevents the overlap of atoms; (2) electrostatic interactions (attractive or repulsive) be-

tween point charges, dipoles, quadrupoles, and multipoles; and (3) attractive/dispersion

interactions between atoms due to instantaneous multipoles. In practice, the above three

contributions are often represented using the Lennard-Jones (LJ) potential and the Coulom-

bic potential,

Uinter =ULJ +UC (2.47)
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Lennard-Jones potential. The Lennard-Jones (LJ) potential between two atoms i

and j includes a short-range repulsive contribution (the first term in Eq. (2.48)) and an

attractive dispersion contribution (the second term in Eq. (2.48)):

uLJ(ri j) = 4εi j

[(
σi j

ri j

)12

−
(

σi j

ri j

)6
]

(2.48)

where ri j is the distance between atoms i and j while εi j and σi j are the corresponding LJ

parameters, i.e., the characteristic energy and distance. The total LJ interaction potentials

for the whole system, ULJ , are truncated within a cutoff distance due to the short-range

nature of these interactions,

ULJ =
N

∑
i=1

N

∑
j>i

4εi j

[(
σi j

ri j

)12

−
(

σi j

ri j

)6
]

(r ≤ rc) (2.49)

where N is the number of atoms. The like-atom LJ parameters are presented in Ta-

ble 2.1 of Section 2.5. The LJ parameters between unlike atoms are determined using the

Lorentz–Berthelot mixing rules, i.e., εi j = (εiiε j j)
1/2, σi j = (σii +σ j j)/2.

Coulombic potential and ewald summation. In addition to the above repulsion/dispersion

interactions, the intermolecular potential includes the electrostatic interaction between two

atoms i and j separated by a distance ri j as described via the coulombic potential,

uC(ri j) =
1

4πεo

qiq j

ri j
(2.50)

where qi and q j are the atomic charges on atoms i and j, respectively; ε0 = 8.8541878176×

10−12 Fm-1 is the vacuum permittivity. The coulombic potential is a long-range contri-

bution but the usual simulation boxes typically have lengths of the order of nanometers.

This implies that one has to consider several periodic images to estimate accurately the
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coulombic contribution,

UC =
1
2

N

∑
i=1

qi

(
1

4πε0
∑
n

N

∑
j=1

q j

|ri j +nL|

)

=
1
2

N

∑
i=1

qiφ(ri)

(2.51)

for a system consisting of N atoms in a cubic box with dimensions Lx = Ly = Lz = L. n

is a vector of three integer numbers, e.g., n = [0,0,1]. φ(ri) = ∑ j ̸=i(ri) is the electrical

field generated at the position ri of atom i by all the other atoms in the cubic box and their

periodic images. Note that the term with i = j for n = [0,0,0] should be excluded as it

corresponds to self-interaction. In practice, the above equation cannot be considered in real

molecular simulations as it would require huge computational cost. The ewald summation

technique provides a way to correct for the small size of the simulation box:

(1) the atom i has the atomic charge qiδ (r− ri) where δ (r− ri) is the Dirac delta

function;

(2) a Gaussian charge distribution (with a width
√

2/α), ρG(r)=−qi(α/π)3/2 exp(−αr2),

is added for each charge i to make the electrostatic interaction short-ranged. Such

distribution has an integrated charge of the same magnitude but with an opposite

sign, −qi;

(3) a compensating charge distribution is used to cancel out the Gaussian charge intro-

duced in (2).

Locally, the effective charge for the atom i at the position r in the ewald summation reads,

ρi(r) = [qiδ (r− ri)+ρG(r)]S − [ρG(r)]L (2.52)
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where ρi(r) is the total charge distribution at the position vector r. The electrical field,

φi(r), created by this effective charge ρi(r) at a position r is expressed as,

φi(r) = φ
S
i (r)+φ

L
i (r)

=

[
qi

4πεor
erfc

(
r
√

α
)]S

+

[
qi

4πεor
erf(r

√
α)

]L (2.53)

where r = |r|, erf(x) = 2/
√

π
∫ x

0 dt exp(−t2) is the error function, and erfc(x) = 1− erf(x)

is the complementary error function. φ S
i (r) is the electric field created by the charge [· · · ]S

in Eq. (2.52) while φ L
i (r) is the electric field created by the charge [· · · ]L in Eq. (2.52). Due

to the fast decay of erfc(x), i.e., limx→∞ erf(x) = 1, the term [· · · ]S in Eq. (2.53) is a very

short-range term whose sum quickly converges in the real space (the cutoff distance is set

to rc). The term [· · · ]L in Eq. (2.53) represents a long-range contribution whose sum can

be estimated in the reciprocal space (the cutoff wave vector is set to kc =
2π

Lnc
where nc is a

positive integer). The electrostatic potential field, UC, can be rewritten as,

UC =
1
2

N

∑
i=1

qiφ
S
i (ri)+

1
2

N

∑
i=1

qiφ
L
i,n̸=0(ri)

=
1
2

N

∑
i=1

qiφ
S
i (ri)+

1
2

N

∑
i=1

qiφ
L
i,n(ri)−

1
2

N

∑
i=1

qiφ
L
i,n=0(ri)

=
1

4πε0

N

∑
i=1

N

∑
j>i

qiq j

ri j
erfc(

√
αri j) (ri j < rc)

+
1

2L3ε0
∑

0<k<kc

N

∑
i=1

N

∑
j=1

qiq j

k2 exp
(
ik · (ri − r j)

)
exp
(
− k2

4α

)

− α

4π3/2ε0

N

∑
i=1

q2
i

(2.54)

where k is the reciprocal vector chosen so that exp(−ik ·nL) = 1.

The computational accuracy of the ewald summation depends on rc, nc, and α . The

ewald summation introduces cutoff errors because of (1) the cutoff rc in the real-space,
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δUR, and (2) the cutoff kc in the reciprocal-space, δUF ,

δUR ∼
N

∑
i=1

q2
i

√
rc

2L3
exp[−(αrc)

2]

(αrc)
2

δUF ∼
N

∑
i=1

q2
i

√
nc

αL2
exp[−(πnc/αL)2]

(πnc/αL)2

(2.55)

Owing to the form exp(−x2)/x2, these two error contributions have the same accuracy ε

(ε = 1.0×10−5 is used in this thesis), i.e., ε = exp(−s2)/s2. Therefore,

α = s/rc and nc = sLα/π (2.56)

2.5 Molecular models

Methane was modeled as a single Lennard-Jones (LJ) sphere with the parameters taken

from the OPLS-UA forcefield (UA stands for united-atom) (Jorgensen et al., 1984, 1996).

Water was modeled using the TIP4P model which consists of a rigid model containing

4 sites: an LJ site located on the oxygen atom, two sites corresponding to the hydrogen

atoms, and a fourth site M corresponding to the negative charge of the oxygen atom

located at a distance dOM from the oxygen atom toward the hydrogen atoms along the

H–O–H angle bisector. Two versions of the TIP4P water model (Vega et al., 2006), namely

TIP4P/2005 (Abascal et al., 2005) and TIP4P/Ice (Abascal and Vega, 2005) models, were

used to describe the water molecules in methane hydrate. In both water models, the water

molecule has an O–H bond length of 0.9572 Å and an H–O–H angle of 104.52◦. The LJ

potential parameters for methane and water as well as the atomic charges and distance

dOM for the two water models are given in Table 2.1. The TIP4P/2005 model reproduces

qualitatively the liquid/solid coexistence for water but with a shift in temperature (20–30

K) and in pressure (100 MPa) (Aragones et al., 2009; Vega et al., 2006). In contrast, the

TIP4P/Ice model accurately reproduces the liquid/solid phase diagram for water but with
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some deviations in the coexistence lines for some dense ice forms (like Ice VII and Ice

VIII) (Vega et al., 2006).

Table 2.1 Interaction potential parameters corresponding to the OPLS-UA model for
methane, the TIP4P/2005 and TIP4P/Ice models for water, and the atomic model used to
describe the porous solid (solid atom). For the two water models, we also indicate the
melting temperature Tm as predicted using molecular modeling.

Model ε/kB (K) σ (Å) qH (e) qO (e) dOM (Å) Tm (K)
TIP4P/2005 93.2 3.1589 0.5564 -1.1128 0.1546 252.2
TIP4P/Ice 106.1 3.1668 0.5879 -1.1758 0.1577 272.2
methane 147.5 3.7300 - - - - - - - -

solid atom 65.55 3.5810 - - - - - - - -
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In this chapter, different molecular simulation strategies are considered to assess

the thermodynamics of bulk methane hydrate. First, for two different water models –

TIP4P/2005 and TIP4P/Ice –, free energy calculations based on the Einstein molecule

approach developed by Vega and coworkers (Noya et al., 2008; Vega et al., 2008) are

used to determine the pressure–temperature phase diagram of methane hydrate (in all

simulations, methane is treated using a coarse-grained model known as the united-atom

model). More precisely, the stability conditions for three pressures are determined: P = 1,

10 and 100 atm. For each pressure, in addition to determining the temperature range where

methane hydrate is stable, the methane occupancy of the hydrate is also estimated and the

non negligible effect of the approximation used to treat methane vapor (exact equation of

state as probed using molecular simulation versus thermodynamic integration from an ideal

gas) is discussed. While free energy calculations obviously constitute the most rigorous

scheme to determine the phase diagram of such complex phases, less demanding strategies

is also considered in a second step. First, we consider the direct coexistence method

in which one generates an initial configuration where both liquid water and methane

hydrate coexist to determine using molecular simulation the final, stable phase for many

temperature and pressure conditions. While the direct coexistence method has already been

used to investigate the thermodynamic stability of methane hydrate (Conde and Vega, 2010;

Michalis et al., 2015), here a novel version is proposed; both water and methane are treated

in the Grand Canonical ensemble using Monte Carlo simulations to account for large

variations in the number of molecules upon melting and formation of the hydrate. Second,

we also consider hyper parallel tempering molecular simulations in which several replicas

of the system, taken at different temperatures and chemical potentials, are considered in

parallel (following the work by De Pablo and coworkers, these simulations are referred

to hyper parallel tempering rather than parallel tempering as the system is treated in the

Grand Canonical ensemble) (de Pablo et al., 1992; Yan and de Pablo, 1999, 2000). While

this method has been already used for simulating solid–liquid phase diagrams of confined

mixtures (Coasne, 2005; Coasne et al., 2004), it is the first time that such a hyper parallel

tempering strategy is considered for methane hydrate.
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The remainder of this chapter is organized as follows. In Section 3.1, the Monte

Carlo algorithm to generate methane hydrate with structure sI is presented. In Section 3.2,

general considerations regarding the liquid–hydrate–vapor phase equilibrium is presented.

In Section 3.3, free energy calculations of methane hydrate are first presented to determine

the phase diagram of methane hydrate for the two water models selected in this work. In

this part, we also determine the chemical potential for each species as well as methane

occupancy for the different pressure/temperature coexistence conditions. In Section 3.2,

we also present the stability conditions obtained using the direct coexistence method and

the hyper parallel tempering method. The results obtained using the different methods

above are compared with experimental data as well as data obtained in previous theoretical

works. In Section 3.4, some concluding remarks are presented.

3.1 Molecular structure of methane hydrate

Figure 3.1 shows a molecular configuration of methane hydrate corresponding to 2 × 2

× 2 unit cells of the sI structure (the unit cell has a length of 1.1877 nm). This section

describes the strategy used to generate such a molecular configuration of methane hydrate

from the experimental crystallographic data. For methane hydrate, three criteria should be

verified (more details can be found in Section 1.1.1): (1) proton disorder, (2) ice rules also

known as Bernal–Fowler rules, and (3) zero dipole moment. To build a molecular structure

obeying these criteria, we followed the stochastic strategy proposed by Buch et al. (Buch

et al., 1998).

1. A cubic box with dimensions Lx = Ly = Lz = 2.3754 nm, corresponding to 2×

2×2 unit cells, is constructed by first placing the oxygen atoms according to the

experimental X-ray crystallographic data (Kirchner et al., 2004).

2. In order to comply with the ice rule, each pair of nearest neighbor oxygens must

share a hydrogen atom which belongs either to the first or second oxygen atom.

In what follows, the two oxygen atoms in each O-O pair are labelled O1 and O2.
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Initially, a hydrogen atom is randomly assigned either to O1 or O2 for each O-O pair.

The distance from the selected oxygen atom to this hydrogen atom is set according

to the chemical O–H bond length of the TIP4P water model, dOH = 0.09578 nm.

Due to the random assignment of the hydrogen atoms, the initial structure obtained

according to this strategy is unrealistic; oxygen atoms are coordinated to Nc = 0, 1,

2, 3 or 4 hydrogen atoms (obviously, coordination numbers Nc ̸= 2 are not physical).

3. The following stochastic/Monte Carlo approach is then performed to relax these

non-physical coordination numbers and reach realistic configurations where Nc = 2

for all oxygen atoms. An O-O pair is randomly chosen. If the hydrogen atom

is bonded to O1 (O2), attempt is made to transfer the hydrogen atom to O2 (O1).

This move is accepted or rejected based on the change in the absolute difference in

coordination numbers ∆Nc = |NO1
c −NO2

c |. More precisely, the move is accepted if

the change in the absolute difference in coordination numbers ∆(∆Nc)< 0 (because

this leads overall to configurations with oxygen atoms having the same coordination

numbers i.e. Nc = 2). The move is accepted with a probability 0.5 if ∆(∆Nc) = 0.

In contrast, the move is rejected if ∆(∆Nc) > 0. Such moves are attempted until

each oxygen atom is linked to two hydrogen atoms (in practice, 20000 moves are

performed as it is found sufficient to reach physical configurations for the system

size considered in this work).

The strategy above, which is illustrated in Figure 3.2, is repeated 20000 times to obtain

20000 possible configurations for methane hydrate. For each configuration, we compute

the total dipole moment, p = ∑
N
i=1 qiri, where qi and ri are the charge and position of the i-

th atom (N is the total number of atoms in the system). Among these 20000 configurations,

we eventually select the configuration with the smallest dipole moment (typically, p< 10−9

D). Finally, the methane molecules (64 methane molecules for the 2×2×2 primitive cell)

are inserted into the hydrate cages. The addition of methane molecules does not change

the dipole moment of the methane hydrate structure owing to its non polar nature.
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Figure 3.1 (color online) Molecular configuration of methane hydrate with structure sI.
The red and white spheres are the oxygen and hydrogen atoms of water, respectively. The
gray spheres are the methane molecules which are trapped inside the hydrogen-bonded
cages formed by water molecules (1 methane molecule for 8 water molecules). The
dimensions of this molecular configuration, which corresponds to 2 × 2 × 2 unit cells, are:
Lx = Ly = Lz = 2.3754 nm.

3.2 Liquid–Hydrate–Vapor equilibrium

3.2.1 Phase coexistence conditions

Methane hydrate (H) is a binary mixture of water (w) and methane (m) that coexists with

liquid water (L) (or ice at sufficient low T ) and methane vapor (V) in specific temperature

T and pressure P ranges (i.e., for a given P, there exists a T at which the three phases

L–H–V coexist – the hydrate phase being stable at low T /high P). At P and T where the

three phases coexist, the chemical potentials µΦ
i for each species (i = w, m) in all phases

(Φ = L, H, V) are equal. µΦ
i at given T and P varies with the methane and water mole

fractions (xm and xw, respectively) so that L–H–V equilibrium depends also on xm and

xw (Huo et al., 2003; Sloan, 2003). Since xw = 1− xm for a binary system, the L–H–V

equilibrium condition can be expressed using xm only:

µ
L
w(xm,T,P) = µ

H
w (xm,T,P) = µ

V
w (xm,T,P)

µ
L
m(xm,T,P) = µ

H
m (xm,T,P) = µ

V
m (xm,T,P)

(3.1)
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Step I – proton disorder: randomly 
assign a hydrogen to oxygen atoms

Step II – ice rules: 
Stochastic MC Algorithm

Step IV: insert methane molecules 
into the cages

Step III – zero dipole moment: repeat steps I and II 
20000 times to generate as many configurations and 
select the configuration with minimum dipole moment

Figure 3.2 Stochastic algorithm to generate methane hydrate molecular configurations
with sI structure (Buch et al., 1998): (1) set the oxygen positions according to the experi-
mental X-ray crystallographic data (Kirchner et al., 2004); (2) generate proton disorder by
randomly assigning a hydrogen atom to one of the oxygen atoms in each O–O pair (step
I); (3) use a stochastic MC algorithm to verify the ice rules (step II); (4) repeat steps I
and II 20000 times to generate as many configurations and select the configuration with
minimum dipole moment (step III); and (5) insert the methane molecules into the cages of
the methane hydrate (step IV). The red and white spheres are the oxygen and hydrogen
atoms of water, respectively. The gray spheres are the methane molecules. The dimensions
of the system shown here are Lx = Ly = Lz = 2.3754 nm which correspond to 2×2×2
unit cells.

Such L–H–V equilibrium can be recast as 2 two-phase coexistence conditions: (1) liquid

water–methane hydrate (L–H) and (2) methane hydrate–methane vapor (H–V):

µ
L
w(xm,T,P) = µ

H
w (xm,T,P)

µ
H
m (xm,T,P) = µ

V
m (xm,T,P)

(3.2)

As indicated by the experimental Henry constant (xm ∼0.003–0.001 for methane in liquid

water at 100 bar for T ranging between 275 and 310 K) (Harvey, 1996; Harvey and

Sengers, 1990), the solubility of methane in liquid water is very low so that the effect

of methane on the chemical potential of water in the liquid phase can be neglected, i.e.

µL
w(xm ∼ 0,T,P)∼ µL

w(xm = 0,T,P) (Docherty et al., 2006; Jensen et al., 2010). Similarly,

the chemical potential of methane in the vapor can be approximated by that of pure methane

vapor, i.e. µV
m (xm ∼ 1,T,P)∼ µV

m (xm = 1,T,P). With these approximations, the L–H–V
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coexistence conditions defined in Eqs. (3.2) become

µ
L
w(xm = 0,T,P) = µ

H
w (xm,T,P)

µ
H
m (xm,T,P) = µ

V
m (xm = 1,T,P)

(3.3)

The description above shows that determining phase coexistence requires to estimate

the four following chemical potentials: µH
m (xm,T,P), µH

w (xm,T,P), µL
w(xm = 0,T,P), and

µV
m (xm = 1,T,P).

3.2.2 Estimation of the different chemical potentials

In the previous section, it was shown that the following chemical potentials are re-

quired to estimate rigorously L–H–V phase coexistence: µH
m (xm,T,P), µH

w (xm,T,P),

µL
w(xm = 0,T,P), and µV

m (xm = 1,T,P). The next paragraph shows that the two chemical

potentials for pure phases, µL
w(xm = 0,T,P) and µV

m (xm = 1,T,P), can be estimated in

a straightforward way. In contrast, µH
m (xm,T,P) and µH

w (xm,T,P) will be estimated in a

second step using free energy calculations.

µV
m (xm = 1,T,P) and µL

w (xm = 0,T,P). The chemical potential of methane in the

vapor phase µV
m (T,P) was computed using its equation of state determined as follows. At

a given T , isobaric-isothermal MD simulations are performed to determine the density

of methane as a function of pressure, i.e., ρm(T,P). In parallel, GCMC simulations are

performed to determine the relation between the chemical potential and density of methane

vapor, i.e., ρm(µ
V
m ,T ). By inverting these two relationships, one obtains µV

m (T,P) as a

function of T and P. Table 3.1 displays µV
m (T,P) for the various T and P considered in

this work.

The chemical potential of pure liquid water, µL
w(xm = 0,T,P), at given T and P can be

estimated using the Gibbs-Duhem equation:

NL
wdµ

L
w =−SL

wdT +V L
w dP (3.4)
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Table 3.1 Chemical potential, µV
m (xm = 1,T,P), and fugacity, f , of methane vapor for the

OPLS-UA methane model. All chemical potentials are normalized to the thermal energy,
kBT . Absolute uncertainties for the chemical potentials are smaller than 3×10−4.

p = 1 atm p = 10 atm p = 100 atm
T /K f (bar) µV

m
kBT f (bar) µV

m
kBT f (bar) µV

m
kBT

180 1.0009 -13.4927 9.4291 -11.2497 29.2235 -10.1186
190 1.0021 -13.6266 9.4609 -11.3815 38.9995 -9.9652
200 1.0074 -13.7496 9.6774 -11.4871 44.7003 -9.9570
210 1.0122 -13.8668 9.6409 -11.6129 52.0088 -9.9275
220 1.0081 -13.9871 9.7581 -11.7171 58.5239 -9.9258
230 1.0121 -14.0943 9.7937 -11.8246 64.1186 -9.9456
240 1.0132 -14.1996 9.8883 -11.9214 68.8134 -9.9813
250 1.0147 -14.3002 9.8559 -12.0267 72.6275 -10.0294
260 1.0155 -14.3975 9.9965 -12.1106 76.4827 -10.0758
270 1.0116 -14.4957 9.9077 -12.2139 78.9855 -10.1379
280 1.0152 -14.5830 9.8759 -12.3080 81.7055 -10.1950
290 1.0162 -14.6698 10.0320 -12.3801 84.0855 -10.2540
300 1.0203 -14.7505 10.0357 -12.4644 85.7526 -10.3191
310 1.0195 -14.8333 9.9720 -12.5528 87.8612 -10.3768
320 1.0164 -14.9156 10.0045 -12.6289 89.3645 -10.4392
330 1.0127 -14.9962 10.0725 -12.6991 90.7896 -10.5003
340 1.0111 -15.0724 10.0968 -12.7713 91.8352 -10.5635
350 1.0187 -15.1375 10.0219 -12.8512 92.8797 -10.6247

where SL
w, NL

w , and V L
w are the entropy, number of water molecules, and volume of the

liquid phase. If one assumes that the density ρL
w = NL

w/V L
w of liquid water is constant

(incompressible liquid), integration of the Gibbs-Duhem equation at constant temperature

T = T0 leads to:

µ
L
w(xm = 0,T0,P) = µ

L
w(xm = 0,T0,P0)+

P−P0

ρw(T0,P0)
(3.5)

It is convenient to take the L–V phase coexistence of water (T0,P0) as a reference state

since it is well-known for the different water models considered in this work (Vega et al.,

2006). In particular, for the temperature and pressure ranges considered here, water vapor

along the L–V coexistence line can be treated as an ideal gas so that the chemical potential

at coexistence is readily obtained from the bulk saturating vapor pressure µV
w (T0,P0) =

µL
w(T0,P0) = kBT0 ln

(
P0Λ3/kBT0

)
(Λ = h/

√
2πmkBT is the thermal wavelength with h

Planck constant and m the molecular mass of water). Table 3.2 shows the chemical
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potential of water as a function of T and P (both the data for TIP4P/2005 and TIP4P/Ice

are shown).

Table 3.2 Chemical potential of liquid water µL
w(T,P). All chemical potentials are nor-

malized to the thermal energy, kBT . Absolute uncertainties for the chemical potentials are
smaller than 3×10−2.

water P = 1 atm P = 10 atm p = 100 atm
model T /K Ptriple f (Pa) µL

m
kBT f (Pa) µL

m
kBT f (Pa) µL

m
kBT

TIP4P 180 2.371E-09 2.37E-04 -33.53 2.40E-04 -33.52 2.68E-04 -33.40
/2005 190 2.090E-08 2.09E-03 -31.49 2.11E-03 -31.47 2.35E-03 -31.37

200 1.400E-07 1.40E-02 -29.71 1.42E-02 -29.70 1.56E-02 -29.60
210 7.482E-07 7.49E-02 -28.16 7.56E-02 -28.15 8.31E-02 -28.05
220 3.314E-06 3.32E-01 -26.79 3.35E-01 -26.78 3.67E-01 -26.69
230 1.254E-05 1.25E+00 -25.57 1.27E+00 -25.56 1.38E+00 -25.47
240 4.147E-05 4.15E+00 -24.48 4.19E+00 -24.47 4.55E+00 -24.38
250 1.223E-04 1.22E+01 -23.50 1.23E+01 -23.49 1.34E+01 -23.41
260 3.268E-04 3.27E+01 -22.61 3.30E+01 -22.60 3.56E+01 -22.53
270 8.010E-04 8.02E+01 -21.81 8.08E+01 -21.80 8.69E+01 -21.73
280 1.821E-03 1.82E+02 -21.08 1.84E+02 -21.07 1.97E+02 -21.00
290 3.876E-03 3.88E+02 -20.41 3.91E+02 -20.41 4.18E+02 -20.34
300 7.781E-03 7.79E+02 -19.80 7.84E+02 -19.79 8.38E+02 -19.73
310 1.483E-02 1.48E+03 -19.24 1.49E+03 -19.23 1.59E+03 -19.17
320 2.698E-02 2.70E+03 -18.72 2.72E+03 -18.71 2.89E+03 -18.65
330 4.711E-02 4.71E+03 -18.24 4.74E+03 -18.23 5.04E+03 -18.17
340 7.922E-02 7.93E+03 -17.79 7.97E+03 -17.79 8.45E+03 -17.73
350 1.288E-01 1.29E+04 -17.38 1.30E+04 -17.37 1.37E+04 -17.32

TIP4P 180 5.051E-11 5.06E-06 -37.38 5.11E-06 -37.36 5.72E-06 -37.25
/Ice 190 6.058E-10 6.06E-05 -35.03 6.13E-05 -35.02 6.81E-05 -34.91

200 5.283E-09 5.29E-04 -32.99 5.34E-04 -32.98 5.91E-04 -32.88
210 3.549E-08 3.55E-03 -31.21 3.59E-03 -31.20 3.95E-03 -31.10
220 1.920E-07 1.92E-02 -29.63 1.94E-02 -29.62 2.12E-02 -29.53
230 8.664E-07 8.67E-02 -28.24 8.75E-02 -28.23 9.55E-02 -28.14
240 3.352E-06 3.36E-01 -26.99 3.38E-01 -26.98 3.68E-01 -26.90
250 1.137E-05 1.14E+00 -25.87 1.15E+00 -25.86 1.24E+00 -25.78
260 3.446E-05 3.45E+00 -24.86 3.48E+00 -24.85 3.75E+00 -24.78
270 9.465E-05 9.47E+00 -23.95 9.54E+00 -23.94 1.03E+01 -23.86
280 2.386E-04 2.39E+01 -23.11 2.41E+01 -23.10 2.58E+01 -23.03
290 5.581E-04 5.59E+01 -22.35 5.62E+01 -22.34 6.03E+01 -22.27
300 1.221E-03 1.22E+02 -21.65 1.23E+02 -21.64 1.32E+02 -21.57
310 2.520E-03 2.52E+02 -21.01 2.54E+02 -21.00 2.71E+02 -20.94
320 4.934E-03 4.94E+02 -20.42 4.97E+02 -20.41 5.29E+02 -20.35
330 9.216E-03 9.22E+02 -19.87 9.28E+02 -19.86 9.86E+02 -19.80
340 1.650E-02 1.65E+03 -19.36 1.66E+03 -19.36 1.76E+03 -19.30
350 2.845E-02 2.85E+03 -18.89 2.86E+03 -18.88 3.03E+03 -18.83

µH
m (xm,T,P) and µH

w (xm,T,P). While the chemical potentials for pure phases (L and

V) are rather easy to assess, µH
m (xm,T,P) and µH

w (xm,T,P) must be computed using a
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more complex formalism which requires to combine SGMC simulations and free energy

calculations. Let us consider a methane hydrate made up of Nm methane molecules and

Nw water molecules at given T and P. For this system, an infinitely small change in the

internal energy dU writes:

dU = T dS−PdV +µ
H
m dNm +µ

H
w dNw (3.6)

where V and S are the volume and entropy of the methane hydrate, respectively. Legendre

transformation of U with respect to S, V , Nw and Nm leads to:

U = T S−PV +µ
H
m Nm +µ

H
w Nw (3.7)

By comparing Eq. (3.6) with the derivative of Eq. (3.7), one obtains:

Nwdµ
H
w =−SdT +V dP−Nmdµ

H
m (3.8)

which is the Gibbs–Duhem equation for a binary mixture. Considering that Nw is constant

in methane hydrate (owing to its crystalline structure), one can integrate Eq. (3.8) at

constant T and P to obtain the change ∆µH
w in the chemical potential for water between the

zero-occupancy and occupied methane hydrate (i.e., as the methane mole fraction increases

from 0 to xm):

∆µ
H
w = µ

H
w (xm)−µ

H
w (xm = 0) =− 1

Nw

∫
µH

m (xm)

µH
m (xm=0)

Nmdµm (3.9)

While Nm can be determined as a function of µH
m using SGMC simulations as described

in Section 2.2.3, the later equation shows that determining the chemical potential of

water µH
w in the hydrate phase requires to estimate the same chemical potential in the

zero-occupancy hydrate phase µH
w (xm = 0). The determination of µH

w (xm = 0) is not

straightforward and requires free energy calculations that are reported in the next section.
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3.3 Phase diagram of methane hydrate

3.3.1 Free energy approach

Einstein molecule method. In Section 3.2, it was shown that determining the condition

for L–H–V phase coexistence requires to estimate the chemical potentials for water in

the liquid and hydrate phases and for methane in the vapor and hydrate phases: µL
w(xm =

0,T,P), µH
w (xm,T,P), µV

m (xm = 1,T,P) and µH
m (xm,T,P). While the estimation of the

chemical potentials for the pure phases µL
w(xm = 0,T,P) and µV

m (xm = 1,T,P) and for

methane in the hydrate phase µH
m (xm,T,P) does not raise important technical issues, the

estimation of the the chemical potential for water in the hydrate phase µH
w (xm,T,P) is

not straightforward. However, as shown at the end of Section 3.2.2, µH
w (xm,T,P) can be

estimated from its value in the zero-occupancy hydrate µH
w (xm = 0,T,P) (See Eq. (3.9)).

By noting that the chemical potential is defined as the Gibbs free energy per water molecule

µH
w (xm = 0,T,P) = GH

w(xm = 0)/Nw, the chemical potential of water in the zero-occupancy

methane hydrate can be estimated from the Helmholtz free energy AH
w(xm = 0):

µ
H
w (xm = 0) =

GH
w(xm = 0)

Nw
=

AH
w(xm = 0)+PV

Nw
(3.10)

where the contribution PV is determined using molecular dynamics in the isobaric-

isothermal ensemble (NPT ).

In this section, we estimate AH
w(xm = 0) using free energy calculations based on the

Einstein molecule approach developed by Vega and coworkers (Conde et al., 2016; Vega

et al., 2008). This technique, which derives from the Einstein crystal approach, consists

of estimating AH
w(xm = 0) along a reversible thermodynamic path linking the real solid

to an Einstein molecule; the Einstein molecule is an ideal crystalline structure without

any intermolecular interactions in which each molecule is attached to its reference lattice

position and orientation by a harmonic potential. The canonical partition function and free

energy of this reference state are known analytically. For technical reasons, it is convenient
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to compute the partition function of the Einstein molecule with one of its molecules at a

fixed reference position (it should be noted that the position of this reference molecule is

constant but molecular rotation is allowed).

Figure 3.3 shows the thermodynamic path used in the Einstein molecule approach

to determine the free energy of the zero-occupancy methane hydrate. Throughout the

manuscript, the superscript * indicates that the system has one of its water molecules at a

fixed position (this molecule is shown by the big pink ’+’ sign in Figure 3.3). The reversible

integration path considered in the Einstein molecule approach consists of four steps which

transform the ideal Einstein molecule into the zero-occupancy methane hydrate:

1. Let us start from the non-interacting Einstein molecule (A) whose free energy

AA is known analytically; AA = −kBT lnQA where QA is the canonical partition

function of the non-interacting Einstein molecule. The first step in the Einstein

molecule approach consists of fixing the position of one of its water molecules

to form a constrained, non–interacting Einstein molecule (A*). The free energy

change corresponding to this transformation is simply ∆AA→A* = AA* − AA =

kBT ln
(
V/Λ3) where V is the volume of the Einstein molecule and Λ the thermal

wavelength of the water molecule;

2. The constrained, non-interacting Einstein molecule (A*) is transformed into the

corresponding interacting Einstein molecule (B*) by adding the intermolecular

potential energy between water molecules (which includes the Lennard-Jones and

Coulomb potentials as described in Chapter 2). That is, the interacting Einstein

molecule consists of the non-interacting Einstein molecule and the intermolecular

interactions of water–water. In this step, both the non-interacting and interacting

Einstein molecules have one of their water molecules at a fixed position so that both

of these structures are referred to as “constrained”. The free energy difference along

this step, ∆A1 = AB* −AA*, is determined using a perturbation treatment described

below.
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3. The constrained interacting Einstein molecule (B*) is transformed into the corre-

sponding constrained, zero-occupancy methane hydrate (C*) by gradually switching

off the harmonic potentials UA that attach the water molecules to their reference

lattice position in the Einstein molecule. The free energy difference in this step,

∆A2 = AC* −AB*, is determined by thermodynamic integration as described below;

4. The zero-occupancy methane hydrate (C) is obtained from the constrained, zero-

occupancy methane hydrate (C*) by releasing the constraint over the fixed water

molecule. The free energy change for this step simply writes ∆AC*→C = AC−AC* =

−kBT ln
(
V/Λ3).

The thermodynamic path above allows writing the free energy of the zero-occupancy

methane hydrate as

AC = AA +(AA* −AA)+(AB* −AA*)+(AC* −AB*)+(AC −AC*)

= AA + kBT ln
V
Λ3 +∆A1 +∆A2 − kBT ln

V
Λ3 = AA +∆A1 +∆A2

(3.11)

where it used that constraining (step 1) and unconstraining (step 4) the position of one

reference water molecule in the thermodynamic path cancel out. While these free energy

calculations should not depend on a specific choice for the Einstein molecule (provided a

reasonable configuration is used), we followed here the annealing approach suggested by

Noya and coworkers (Noya et al., 2008). First, the Einstein molecule is selected with a

volume identical to that of real methane hydrate as obtained using isobaric–isothermal MD

simulations at P = 1, 10, and 100 atm. Then, a simulated annealing strategy (canonical

ensemble) is used to determine the final configuration; the temperature is decreased

from T = 180 K to 1 K with temperature steps of 10 K. Eq. (3.11) shows that only the

three following contributions must be calculated to determine the free energy of the zero-

occupancy methane hydrate: AA, ∆A1 and ∆A2. In the rest of this subsection, we determine

these three contributions before gathering all the data to estimate the free energy of the

zero-occupancy methane hydrate AC = AH
w(xm = 0) and the chemical potentials µH

w and

µH
m in the real (i.e., methane occupied) methane hydrate.
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Figure 3.3 Thermodynamic path used in the Einstein molecule approach to calculate the
free energy of the zero-occupancy methane hydrate, AC. Orange and green spheres are
the oxygen and hydrogen atoms of water, respectively. The green box shows the periodic
boundary conditions of the simulation cell. The superscript * indicates that the system
has one of its water molecules at a fixed position shown by the big pink ’+’ sign (see
text). AA is the free energy of the non-interacting Einstein molecule while AA* is the free
energy of the same system with one of its water molecules at a fixed position. AB* is the
free energy of the interacting Einstein molecule with one of its water molecules at a fixed
position. AC* is the free energy of the zero-occupancy methane hydrate with one of its
water molecules at a fixed position while AC is the free energy of the same system without
fixing any water molecule positions. Constraining a water molecule position (3 degrees of
freedom) increases the free energy by kBT ln

(
V/Λ3). The change in free energy between

the non-interacting and interacting Einstein molecule is ∆A1 = AB* −AA*. The change
in free energy between the constrained interacting Einstein molecule and the constrained
methane hydrate is ∆A2 = AC* −AB* (see text).

Free Energy AA of the non-interacting Einstein molecule. Water molecules in the

non-interacting Einstein molecule (A) are attached to their reference lattice position and

orientation through harmonic potentials so that its potential energy writes:

UA(Ri,φa,i,φb,i) = λT

N

∑
i=1

(Ri −R(0)
i )2 +λR

N

∑
i=1

[(sin2
φa,i +(

φb,i

π

2
)] (3.12)

where the sum runs over each molecule i of the N molecules in the system. The first term

in Eq. (3.12) corresponds to harmonic potentials acting on each molecule position Ri

with an equilibrium position defined as the reference position R(0)
i . Similarly, the second

term in Eq. (3.12) corresponds to harmonic potentials acting on each molecule orientation

defined by two vectors a and b with equilibrium vectors a(0)i and b(0)
i corresponding to

the reference molecule orientation. As shown in Figure A.1 of the Appendix A, the two

orientation vectors can be chosen as a = (l1− l2)/|l1− l2| and b = (l1+ l2)/|l1+ l2| where
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l1 and l2 are the vectors along the O–H bonds in the water molecule. For each water

molecule i, φa,i = cos(ai·a(0)i ) and φb,i = cos(bi·b(0)
i ). Following previous works (Jensen

et al., 2010; Vega and Noya, 2007; Vega et al., 2008; Wierzchowski and Monson, 2007),

the spring constants in UA(Ri,φa,i,φb,i) were selected as λR/kBT Å
2
= λT/kBT = 25000

(note that when reasonable choices are made for these parameters, AA is independent of

these values as harmonic oscillators only depend on temperature).

The Helmholtz free energy AA of the non-interacting Einstein molecule, which can be

computed from its canonical partition function QA, subdivides into a translation AA,T and

a rotation AA,R contributions:

AA

NkBT
=− lnQA

N
=

AA,T

NkBT
+

AA,R

NkBT
(3.13)

where all free energy contributions are normalized to the total thermal energy NkBT . As

shown in Section A.2 of the Appendix A, these two contributions can be expressed as:

AA,T

NkBT
=

1
N

ln
(

NΛ3

V

)
+

3
2

(
1− 1

N

)
ln
(

Λ2λT

kBT π

)
∼N→∞

[
3
2

ln
(

Λ2λT

kBT π

)] (3.14)

AA,R

NkBT
=− ln

[∫ 1

0
exp
(
− λR

kBT
(1− x2)

)
dx
∫ 1

0
exp
(
− λR

kBT
y2
)

dy
]

(3.15)

Calculations based on these expressions, including numerical integration of Eq. (3.15),

can be found in Section A.2 of the Appendix A and lead to AA,T/(NkBT ) = 29.43,

AE,R/(NkBT ) = 16.01. These values are fully consistent with those reported by Vega

and coworkers for hexagonal ice (Vega et al., 2008).

Free energy difference ∆A1. The free energy change ∆A1 = AB* −AA* between the

non-interacting and interacting Einstein molecules is estimated through a perturbation

approach. One can write that the potential energy in the interacting Einstein molecule UB∗
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is the sum of the non-interacting Einstein molecule UA∗ and the intermolecular potential

energy U , i.e., UB∗ =UA∗+U . For large λR and λT , U <<UB∗ ∼UA∗ and a perturbation

treatment allows determining ∆A1 from an average over a canonical distribution ⟨...⟩NV T :

∆A1

NkBT
=− 1

N
ln
〈

exp
(
− U

kBT

)〉
NV T

(3.16)

In fact, U is not small since the intermolecular potential energy in the reference lattice

U (0) is not negligible. To overcome this technical problem, one can estimate ∆A1 through

a perturbation approach in which one considers U −U (0). With this approach, Eq. (3.16)

becomes:

∆A1

NkBT
=

U (0)

NkBT
− 1

N
ln

〈
exp

(
−U −U (0)

kBT

)〉
NV T

(3.17)

In practice, Monte Carlo simulations in the canonical ensemble (CMC) are used to

estimate the canonical average defined in Eq. (3.17). Figure 3.4(a) shows ∆A1(T,P) as

a function of temperature T for a pressure P = 100 atm (data for other pressures are not

shown for the sake of clarity). Both the results for TIP4P/2005 and TIP4P/Ice are reported.

As expected, ∆A1(T,P) is negative since the intermolecular potential in the interacting

Einstein molecule (which stabilizes the structure) decreases its energy and therefore its

free energy. Moreover, upon increasing the temperature, ∆A1(T,P) is less significant as

the thermal energy and entropy contribution become more important.

Free energy difference ∆A2. The free energy change ∆A2 = AC* − AB* between

the constrained interacting Einstein molecule (B*) and the constrained zero-occupancy

methane hydrate (C*) is estimated by means of thermodynamic integration. More precisely,

we considers a hybrid potential that depends linearly on the potential energies of B* and

C*:

U(λ ) = (1−λ )UC* +λUB* =U +λUA* (3.18)
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Figure 3.4 Free energy changes ∆A1 (a) and ∆A2 (b) and free energy AH
w (xm = 0) of the

zero-occupancy methane hydrate (c) as a function of temperature T (all data reported here
are for P = 100 atm). The empty and closed circles are for the TIP4P/Ice and TIP4P/2005
water models, respectively. Free energies are normalized to the total thermal energy
NkBT . ∆A1 = AB* −AA* is the free energy difference between the non-interacting and
interacting Einstein molecules (corresponding to the zero-occupancy methane hydrate).
∆A2 = AC* −AB* is the free energy difference between the interacting Einstein molecule
and the zero-occupancy methane hydrate. Except for the zero-occupancy methane hydrate
in (c), all systems are constrained with one of their molecules having a fixed reference
position.

where λ is a coupling parameter. The second equality in the equation above is obtained

by noting that UB* =UA* +U and UC* =U . Thermodynamic integration is performed by

varying infinitesimally λ from 0 to 1 (so that the hybrid system considered in Eq. (3.18)

varies slowly from B* to C*). Within this framework, ∆A2 can be obtained from the

following integration:

∆A2 = AC∗ −AB∗ =−[A(λ = 0)−A(λ = 1)]

=−
∫ 1

0
dλ

〈
∂U(λ )

∂λ

〉
NV T λ

=−
∫ 1

0
dλ ⟨UA*⟩NV T λ

(3.19)

where ⟨· · · ⟩NV T λ
denotes canonical averages over a system with a hybrid potential energy

U(λ ) sampled using Monte Carlo simulations. In practice, integration in the equation

above is performed for several λ in the range of [0,1] (the 31-point Gauss-Legendre

integration method was adopted).
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Figure 3.4(b) shows ∆A2(T,P) as a function of temperature T for a pressure P =

100 atm (again, data for other pressures are not shown for the sake of clarity). Like for

∆A1(T,P), both the results for TIP4P/2005 and TIP4P/Ice are reported. ∆A2(T,P) is

negative since removing the harmonic potential contributions (necessarily positive) when

switching from B* to C* leads to lower energies and hence free energies. Finally, as the

temperature increases, ∆A2(T,P) becomes less pronounced as the entropy contribution

becomes more important.

Proton Disorder Correction. While oxygen atoms occupy well-defined positions in

a zero-occupancy hydrate, hydrogen atoms fluctuate and lead to significantly disordered

water molecule orientations (known as the proton disorder rule discussed above). As a

result, an additional contribution to the free energy of the zero-occupancy methane hydrate

must therefore be considered to account for such proton disorder. This proton disorder

correction, which is independent of the molecular interaction potential considered, can be

approximated as the residual entropy of ice Nagle (1966); Vega et al. (2008):

Adisorder

NkBT
=−Sdisorder

NkB
=− lnW (3.20)

Using the values reported by Nagle (1.50683 <W < 1.50687) Nagle (1966), one obtain a

proton disorder correction Adisorder/NkBT ∼−0.41.

Chemical potential of water and methane in methane hydrate, µH
w and µH

m . Fig-

ure 3.4(c) shows the free energy of the zero-occupancy methane hydrate AH
w (xm = 0) as a

function of temperature T . This contribution was obtained using Eq. (3.11) from the calcu-

lations of the free energy AH
w (xm = 0) and the free energy changes ∆A1 and ∆A2. Thanks to

this free energy curve, we obtain readily the chemical potential of water in zero-occupancy

methane hydrate µH
w (xm = 0,T,P) using Eq.(3.10). Once µH

w (xm = 0,T,P) has been ob-

tained using free energy calculations, several SGMC simulations need to be performed to

determine the methane occupancy NH
m (expressed as the number of methane molecules per

methane hydrate unit cell) as a function of the chemical potential of methane µH
m at given T

and P. Figure 3.5 shows the methane occupancy as a function of µH
m at T = 250 K and P =
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100 atm (similar data were obtained for other T and P). These results, which are consistent

with those reported by Wierzchowski and Monson (Wierzchowski and Monson, 2007),

shows that the methane occupancy increases rapidly with µm and then plateaus as the

methane occupancy reaches its maximum. Fifty different chemical potentials µm were con-

sidered in the SGMC simulations to determine the methane occupancy Nm as a function of

chemical potential µm (See Figures A.4 and A.5 of the Appendix A). To determine the cor-

rection ∆µH
w (xm,T,P) to the water chemical potential due to methane occupancy, the data

Nm(µm) were interpolated using a cubic interpolation procedure to obtain 2.5×105 points.

Thanks to such finely desecrated data, we could estimate very accurately the contribution

to the water chemical potential due to methane occupancy using the simple trapezoidal

rule. Such a numerical integration leads to error bars that are at most ±2×10−3 for the

correction term. While the calculations above can be considered very accurate, possible

size effects due to the finite size of the methane hydrate considered. However, considering

that the system size in this work (2×2×2 methane hydrate unit cell) allowed one to use

a large interaction cutoff, finite size effects are believed to be negligible. Figure 3.5 also

shows the correction term ∆µH
w = µH

w (xm)−µH
w (xm = 0) =− 1

Nw

∫ µH
m (xm,T,P)

µH
m (xm=0,T,P)Nmdµm as a

function of methane occupancy Nm. As expected, ∆µH
w is small as the chemical potential of

water is not very sensitive to the methane occupancy (due to the fact that water density in

hydrate does not change significantly with the methane occupancy and that water weakly

interacts with methane). For the different T and P considered in this work, the chemical

potential of water in methane hydrate is obtained by adding the correction term due to

methane occupancy to the chemical potential for the zero-occupancy hydrate. The chemical

potentials of water in the methane-occupied hydrate, µH
w , in the temperature range T =

180–350K and for P = 1, 10, 100 atm are shown in Figures A.4 and A.5 of the Appendix A

(which correspond to the data for TIP4P/2005 and TIP4P/Ice, respectively). Figure A.6 of

the Appendix A also shows the different contributions to the water chemical potential: free

energy of the zero occupancy hydrate, pressure-volume term, proton disorder correction

and correction due to methane occupancy.
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Table 3.3 Free energy contributions of zero-occupancy methane hydrate, µH
w (xm = 0,T,P).

a Absolute error bar is less than 0.008; b The error bar is negligible as it smaller than
the last digit shown (high accuracy of the Gauss-Legendre formula); c proton disorder
correction is already included here.

water T/K AA
NkBT

A1
NkBT

a A2
NkBT

b AH

NkBT
c

µH
w /kBT µH

w /kBT µH
w /kBT

model P = 1 atm P = 10 atm P = 100 atm
TIP4P 180 25.8835 -41.0685 -17.7439 -33.3149 -33.3134 -33.3000 -33.1664
/2005 190 25.8024 -38.9023 -17.8783 -31.3642 -31.3628 -31.3501 -31.2233

200 25.7255 -36.9117 -18.0376 -29.6098 -29.6084 -29.5963 -29.4755
210 25.6523 -35.1278 -18.1918 -28.0532 -28.0520 -28.0404 -27.9249
220 25.5825 -33.5345 -18.2980 -26.6360 -26.6348 -26.6237 -26.5136
230 25.5158 -32.0754 -18.4169 -25.3625 -25.3613 -25.3507 -25.2446
240 25.4520 -30.7312 -18.5484 -24.2136 -24.2124 -24.2023 -24.1006
250 25.3907 -29.4746 -18.6645 -23.1343 -23.1333 -23.1235 -23.0258
260 25.3319 -28.3381 -18.7843 -22.1764 -22.1754 -22.1660 -22.0718
270 25.2753 -27.2826 -18.8799 -21.2732 -21.2722 -21.2631 -21.1724
280 25.2207 -26.2871 -19.0000 -20.4523 -20.4513 -20.4425 -20.3549
290 25.1681 -25.3486 -19.0865 -19.6530 -19.6520 -19.6435 -19.5585
300 25.1172 -24.4787 -19.2073 -18.9547 -18.9538 -18.9456 -18.8632
310 25.0680 -23.6105 -19.3084 -18.2368 -18.2359 -18.2279 -18.1482
320 25.0204 -22.8603 -19.4048 -17.6306 -17.6298 -17.6221 -17.5447
330 24.9742 -22.1325 -19.5058 -17.0500 -17.0492 -17.0417 -16.9663
340 24.9294 -21.4812 -19.5715 -16.5092 -16.5084 -16.5011 -16.4277
350 24.8859 -20.8100 -19.6685 -15.9785 -15.9777 -15.9705 -15.8993

TIP4P 180 25.9299 -44.8718 -17.5103 -36.8382 -36.8367 -36.8231 -36.6873
/Ice 190 25.8488 -42.4988 -17.6474 -34.6834 -34.6820 -34.6691 -34.5404

200 25.7719 -40.3826 -17.8168 -32.8134 -32.8120 -32.7998 -32.6774
210 25.6987 -38.4410 -17.9498 -31.0781 -31.0768 -31.0651 -30.9483
220 25.6289 -36.6783 -18.0710 -29.5064 -29.5052 -29.4940 -29.3822
230 25.5622 -35.0610 -18.2072 -28.0919 -28.0907 -28.0800 -27.9729
240 25.4984 -33.6109 -18.3264 -26.8249 -26.8237 -26.8135 -26.7107
250 25.4371 -32.2472 -18.4380 -25.6340 -25.6329 -25.6230 -25.5242
260 25.3783 -30.9968 -18.5562 -24.5607 -24.5596 -24.5501 -24.4548
270 25.3217 -29.8351 -18.6717 -23.5711 -23.5701 -23.5609 -23.4690
280 25.2671 -28.7567 -18.7756 -22.6510 -22.6501 -22.6412 -22.5524
290 25.2145 -27.7576 -18.8784 -21.8074 -21.8064 -21.7978 -21.7119
300 25.1637 -26.8127 -18.9704 -21.0054 -21.0045 -20.9962 -20.9130
310 25.1145 -25.9463 -19.0452 -20.2630 -20.2621 -20.2540 -20.1733
320 25.0668 -25.1055 -19.1462 -19.5708 -19.5699 -19.5620 -19.4838
330 25.0207 -24.3386 -19.2423 -18.9461 -18.9453 -18.9377 -18.8616
340 24.9759 -23.5634 -19.3428 -18.3162 -18.3154 -18.3080 -18.2340
350 24.9324 -22.8693 -19.4184 -17.7412 -17.7404 -17.7332 -17.6611
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Figure 3.5 Chemical potential of methane, µH
m , versus number of methane molecules,

NH
m , in methane hydrate at T = 250 K and P = 10 atm. NH

m is expressed as the number
of methane molecules per methane hydrate unit cell. The empty and filled circles are for
TIP4P/Ice anf TIP4P/2005 water models, respectively. The dotted lines correspond to
cubic interpolation of the data. The insert shows the chemical potential difference of water
relative to the zero-occupancy methane hydrate, ∆µH

w = µH
w −µH

w (xm = 0), as a function
of the number of methane molecules, NH

m (these data are obtained from Nm(µm) using
Eq. (3.9)). The dashed and solid lines are for the TIP4P/Ice and TIP4P/2005 water models.
All chemical potentials are normalized to the thermal energy, kBT .

Pressure–temperature phase diagram. The previous sections were devoted to de-

termining the different chemical potentials for water in the liquid and methane hydrate

phases and for methane in the vapor and methane hydrate phases. These quantities are

crucial as they are required to predict phase coexistence for methane hydrate using the

conditions given in Eq. (3.3) (which simply correspond to chemical potential equalities

for water and methane in each of the three coexisting phases). As discussed above, these

L–H–V coexistence conditions correspond to two important equalities: (1) µV
m = µH

m and

(2) µL
w = µH

w . These two equations lead to two solutions for xm in methane hydrate at

given T and P; the first solution xm(1) is obtained from the coexistence of pure liquid

water (L) with methane hydrate (H) while the second solution xm(2) is obtained from

the coexistence of methane hydrate (H) and pure methane vapor (V). For a given P, the
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temperature corresponding to L–H–V equilibrium is given by xm(1) = xm(2). In contrast,

if xm(1) ̸= xm(2), the set P and T does not correspond to L–H–V equilibrium. In order

to determine L–H–V phase coexistence, we plot xm(1) and xm(2) as a function of T in

Figure 3.6. we show the data corresponding to P = 1, 10, and 100 atm for the two water

models considered in this work. These data show that the L–H–V coexistence condition is

determined unambiguously using this strategy.
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Figure 3.6 (color online) Equilibrium number of methane, xm(µ
V
m = µH

m ) (empty circles)
and xm(µ

L
w = µH

w ) (filled circles), as a function of temperature, T , at P = 1 (blue), 10 (red),
100 (black) atm. The corresponding interpolation cross point, xm(µ

V
m = µH

m ) = xm(µ
L
w =

µH
w ) , indicating the liquid water-methane hydrate-methane vapor (L–H–V) equilibrium

temperature and methane composition at the given pressure. The left and right panels are
for TI4P/2005 and TIP4P/Ice water models, respectively.

The pressure–temperature phase diagram of sI methane hydrate determined using the

free energy calculations above are shown in Figure 3.7. For the TIP4P/2005 water model,

the hydrate melting temperatures are 221 K, 244 K, and 265 K for P = 1, 10, and 100

atm, respectively. For these three coexistence points, the corresponding methane mole

fractions are xm ∼ 0.10, 0.12, and 0.14 (these values correspond to NH
m ∼ 4.94, 6.56 and

7.56). For the TIP4P/Ice water model, the hydrate melting temperatures are 232 K, 262

K, and 287 K for P = 1, 10, and 100 atm, respectively, with methane mole fractions

xm ∼ 0.10, 0.13, and 0.14 (these values correspond to NH
m ∼ 5.19, 6.63, and 7.56). As

shown in Figure 3.7, in agreement with previous data by Conde et al. (Conde and Vega,

2010), the TIP4P/2005 water model underestimates the melting temperature of methane

hydrate by ∼ 20 K (such a shift is consistent with the fact that this model underestimates
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the crystallization temperature of different ice forms) (Abascal et al., 2005; Abascal and

Vega, 2005). In contrast, the TIP4P/Ice water model accurately captures the experimental

pressure–temperature phase diagram of methane hydrate (Sloan, 2003). Interestingly,

the data for TIP4P/Ice lead to data which are in better agreement with the experimental

data than those by Jensen et al. (Jensen et al., 2010) although these authors consider

the same model and strategy. Such a discrepancy is due to the approximation made by

these authors to describe methane vapor; While we consider the exact equation of state

for methane as probed by a combination of isobaric-isothermal and Grand Canonical

molecular simulations, Jensen et al. determined the chemical potential of methane vapor

using thermodynamic integration starting from an ideal gas approximation. The differences

between the two sets of results, which were are consistent with differences observed by

Conde et al. (Conde and Vega, 2010), necessarily arise from the chemical potential of

methane in the vapor phase as all other results are in very good agreement (free energy

of the zero-occupancy methane hydrate and water chemical potential in the liquid phase).

Moreover, one could trust that the data obtained using the free calculations in this work

are robust because the phase diagram obtained with TIP4P/2005 is consistent with the

results by Conde et al. (Conde and Vega, 2010). Moreover, the dissociation temperature

obtained using our free energy calculations is also consistent with those obtained using

the direct coexistence method and the hyper parallel tempering technique (these data will

be discussed later). The important shift between the data obtained in the present work

and those obtained by Jensen et al. shows that all approximations made in the free energy

calculations are important. The data reported in the present work were also found to be in

very good agreement with the recent results obtained by Waage et al. (Waage et al., 2017).

3.3.2 Direct Coexistence Method in the Grand Canonical Ensemble

Two other strategies, including the direct coexistence method and hyper parallel tempering

method, were also adopted to assess phase boundary between methane hydrate and liquid

water. For these two strategies, we only use the TIP4P/Ice water model (as this model
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Figure 3.7 Pressure–Temperature phase diagram of methane hydrate as determined using
free energy calculations (circles, this work), direct coexistence method (gray pentagon,
this work), hyper parallel tempering method (black pentagon, this work). The empty and
filled symbols are for TIP4P/Ice and TIP4P/2005 water models, respectively. The empty
and filled squares are the results obtained for TIP4P/Ice and TIP4P/2005 by Conde et
al. (Conde and Vega, 2010) using the direct coexistence method. The empty triangles are
the free energy calculations for TIP4P/Ice by Jensen et al. (Jensen et al., 2010). The solid
line shows the experimental data by Sloan et al. (Sloan, 2003). The insert shows a zoomed
view of the region shown depicted as a dashed rectangle in the main figure.

was found to better capture the experimental phase diagram). Moreover, to keep the

discussion as simple as possible, we only consider the pressure P = 100 atm. With the

direct coexistence method, one prepares an initial simulation box in which the two phases

coexist (here, the methane hydrate and the liquid phase). Then, several simulations are

performed at different T and P to determine the stability domain for each phase; for a

given P, the high symmetry phase (hydrate) will be stable below the melting temperature

Tm while the low symmetry phase (liquid) will be stable above Tm. In other words, the

region occupied by the liquid transforms into methane hydrate for T < Tm while the

region occupied by the methane hydrate transforms into liquid for T > Tm. In general,

such direct coexistence simulations are conducted in the isobaric-isothermal ensemble

(NPT ) because phase transitions occurs at constant T and P. As a result, all direct

coexistence method strategies applied to methane hydrate have been carried out so far in
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this ensemble (Conde and Vega, 2010; Michalis et al., 2015; Tung et al., 2010). However,

for binary compounds such as methane hydrate, such coexistence simulations can be

performed in the Grand Canonical ensemble where the system volume V , temperature T ,

and chemical potentials for water µw and methane µm are constant. We adopted this strategy

which has not been considered previously to the best of our knowledge. Considering such

an open ensemble in which the numbers of water and methane molecules fluctuate present

several advantages over constant number of molecules ensemble (such as NVT or NPT

simulations). First, this allows considering small system sizes since the number of methane

molecules will adjust upon methane hydrate formation even though the initial number of

methane molecules is small. In contrast, with constant N simulations, one has to simulate

a large domain of methane molecules that acts as a methane source to fill the water

cages upon methane hydrate formation. Moreover, by considering an ensemble where

density will change through molecule numbers fluctuations, one avoids difficulties due to

inefficient/limited sampling in volume changes. Finally, in GCMC simulations, molecule

insertion/deletions are attempted randomly, homogeneously throughout the simulation box

so that difficulties inherent to slow diffusion between the methane hydrate and liquid/fluid

phases are overcome.

For such complex systems, DCM should be used with caution because of the initial

coexisting system can be chosen in different ways. According to Gibbs’ phase rule, in the

temperature/pressure range where methane hydrate is stable, it coexists with the liquid

(water-rich) and vapor (methane-rich) phases. As a result, initial phase coexistence in

DCM can be chosen as a system made of two of these three phases or three phases.

In the present work, we chose to consider phase coexistence between the liquid phase

and methane hydrate; while this corresponds to an approximation, the use of the Grand

Canonical ensemble ensures that three-phase coexistence is simulated in fact; because the

system is in equilibrium with an infinite reservoir of bulk molecules at chemical potentials

corresponding to those of the water-rich liquid and methane-rich vapor, DCM simulations

in this specific ensemble are equivalent to simulating a system with three-phase coexistence.
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In order to prepare the initial system (i.e., methane hydrate coexisting with liquid water),

several strategies are possible. we started from a methane hydrate phase having the

following dimensions: Lx = Ly = Lz = 2.3754 nm. Periodic boundary conditions were

applied in each direction to avoid finite size effects. we started from a hydrate phase

equilibrated at low T (it should be noted that the pressure was set to 100 atm). Then,

molecules located in the region z < 0 were frozen while the rest of the simulation box was

equilibrated at high temperature T to melt the hydrate located in the region z > 0. In so

doing, one obtains a coexisting system made of methane hydrate in equilibrium with the

liquid phase (Figure 3.8(a)). Obviously, this system is maintained at coexistence condition

in an unphysical fashion and, depending on the temperature used in subsequent GCMC

simulations, the system will melt or form hydrate (unless in the very unlikely event that

the chosen temperature and chemical potentials exactly correspond to phase coexistence).

From a practical point of view, for P = 100 atm, we performed M = 18 simulations with

temperatures in the range T = 180–350 K (the temperature interval is 10 K). The DCM

simulations in the Grand Canonical ensemble at a given pressure and temperature require

to specify chemical potentials for water and methane. In the present work, as described in

Section 3.2.2, the chemical potential for water in the liquid phase was chosen equal to that

of pure liquid water while that the chemical potential for methane in the vapor phase was

chosen equal to that or pure methane vapor.

Figure 3.8(b) shows the methane xm and water xw mole fractions in the system in the

course of the GCMC simulation (i.e., the number of MC moves performed with one MC

move corresponding to a molecule translation, rotation, insertion or creation). Results

for different temperatures are shown: T = 260, 270, 280, 290, and 300 K. On the one

hand, at high temperature, T ≥ 290 K, the system melts as evidenced by the decrease

in the methane mole fraction xm. As expected, xm ∼ 0 (xw ∼ 1) in the liquid phase,

which further justifies our choice in the L–H–V equilibrium condition to assume that

µL
w(xm,T,P)∼ µL

w(xm = 0,T,P). On the other hand, at low temperature, T ≤ 280 K, the

methane mole fraction increases (while xw decreases) upon methane hydrate formation.
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While melting does not suffer from ambiguity since all methane hydrate is transformed into

liquid, it should be emphasized that hydrate formation was found to be inefficient; due to

the low probability to nucleate hydrate cages (inherent to their very small entropy), it was

observed that formation of the hydrate is incomplete. As a result, despite the coexistence

with an already formed hydrate, many long GCMC runs (about 7-8 ×108 MC moves for a

system size of the order of ∼ 102 −103 molecules) were not sufficient to lead to perfect

methane hydrates. Despite this drawback of the direct coexistence method, the results

above show that the equilibrium temperature for hydrate/liquid coexistence is comprised

between 280 K and 290 K. As can be seen in Figure 3.7, this coexistence temperature is in

very good agreement with the results from the free energy calculations Tm = 287 K. This

value is also consistent with the experimental data as well as with other theoretical results

obtained for the same water/methane molecular models.

(a) (b)

→ y↑ z

Figure 3.8 (color online) Determination of the phase transition temperature between
methane hydrate and liquid phases using the direct coexistence method. (a) Starting from
a methane hydrate coexisting with the liquid phase, several Monte Carlo simulations in the
Grand Canonical ensemble (µV T ) at different temperatures and chemical potentials are
performed (chemical potentials are chosen so that the pressure is P = 100 atm). The red and
white spheres are the oxygen and hydrogen atoms of water while the grey spheres are the
methane molecules. The dimensions of the simulation box are: Lx = Ly = Lz = 2.3754 nm.
Molecules with y < 0 (left region) and y > 0 (right region) belong to the methane hydrate
and liquid phases, respectively. If the temperature is lower than the melting point Tm, the
liquid disappears as methane hydrate forms. In contrast, if the temperature is larger than
Tm, the methane hydrate melts and is replaced by the liquid. (b) Methane (left) and water
(right) mole fractions during the different GCMC simulation runs: T = 260 K (black), 270
K (purple), 280 K (blue), 290 K (red), and 300 K (orange). The x-axis, which indicates
progress along the GCMC simulation, is expressed as a number of attempted MC moves
where one move is a molecule translation, rotation, insertion or deletion.
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3.3.3 Hyper Parallel Tempering

In the hyper parallel tempering method (Coasne, 2005; Coasne et al., 2004; Czwartos et al.,

2005; Yan and de Pablo, 1999, 2000), which is an extended version of the parallel temper-

ing method (Frenkel and Smit, 2002), several replicas of the same system are considered

in parallel in to circumvent the difficulty to form/dissociate methane hydrate (large free

energy barrier between the liquid and solid states). Each of the M = 16 replicas consists of

a mixture of water and methane molecules at a given set of temperature/chemical potentials

(T,µw,µm). For each replica, conventional GCMC moves are performed: molecule transla-

tion, rotation, deletion and insertion. Moreover, trial swap moves between configuration α

(energy Uα , Nα
w water molecules and Nα

m methane molecules) in replica (1) and configu-

ration β (energy Uβ , Nβ
w water molecules and Nβ

m methane molecules) in replica (2) are

attempted. The swap move is accepted or rejected according to the following Metropolis

probability:

Pacc (α1,β2 → α2,β1) =min

1,
(

T2

T1

)3(Nβ
m+Nβ

w−Nα
m−Nα

m )/2

exp
[(

1
kBT2

− 1
kBT1

)(
Uβ −Uα

)]
∏

i=m,w
exp
[(

µ1
i

kBT1
− µ2

i
kBT2

)(
Nβ

i −Nα
i

)]}
(3.21)

In this work, the different replicas were considered at temperatures and chemical po-

tentials corresponding to a pressure P = 100 atm. The temperature of the different replicas

ranges from 283 to 298 K with a temperature difference between two successive replicas

of ∆T = 1 K. In theory, hyper parallel tempering should provide a rigorous description

of methane hydrate formation/dissociation as a function of temperature provided that

both configurations corresponding to the liquid phase and the methane hydrate phase are

considered in the initial replicas; for long enough simulations, swapping between the

liquid and solid phases at different temperatures should lead to an accurate estimate of the
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phase transition temperature Tm with liquid configurations for T > Tm and methane hydrate

configurations for T < Tm. However, in practice, very low swapping probabilities were

observed between liquid and methane hydrate configurations due to the large differences in

water and methane molecule numbers in these two states (as can be seen in the acceptance

probability in the equation above, the difference in the number of molecules is an important

parameter). In this work, we found that this issue can be overcome by considering in

the initial replicas composite configurations corresponding to mixtures of the liquid and

hydrate phases (in the spirit of the mixture considered as the initial configuration for the

direct coexistence method). As shown in Figure 3.9(a), in addition to pure liquid and

hydrate configurations, several configurations corresponding to methane hydrate regions

coexisting with the liquid phase were considered (these mixtures correspond to different

hydrate volume fractions ranging from 0.25 to 0.75). The total number of methane and

water molecules in each replica is of the order of ∼ 102 −103. Equilibration was reached

after 9×108 Monte Carlo steps and water and methane mole fractions were averaged over

another 1×108 Monte Carlo steps.

Figure 3.9(b) shows the methane xm and water xw mole fractions as a function of

temperature T once equilibrium has been reached. The sharp decrease (increase) at

Tm = 289.5 K in xm (xw) indicates melting of the methane hydrate. Such a transition

temperature for P = 100 atm is consistent with the values obtained using free energy

calculations and the direct coexistence method. These results show that such a hyper

parallel tempering technique improves the sampling of phase space and allows determining

accurately the melting temperature of complex, non stoichiometric systems such as methane

hydrates (by preventing the system from being ‘trapped’ in local metastable states).

3.4 Conclusion

Using different molecular simulation strategies, the pressure–temperature phase diagram

for bulk methane hydrate is determined. For two different water models, in this chapter,



90 Molecular Simulation of the Phase Diagram of Bulk Methane Hydrate

  

0.00

0.05

0.10

0.15

280 290 300

x m

T (K)

0.85

0.90

0.95

1.00

280 290 300

x w

T (K)

(a)

(b)

…              …              ...

Figure 3.9 (color online) Determination of the phase transition temperature between the
methane hydrate and liquid phases using hyper parallel tempering Monte Carlo simulations.
(a) Several replicas M = 16 of the system are considered in parallel. Each replica is at
different temperatures and chemical potentials (the latter are chosen so that the pressure of
the system is P = 100 atm). The temperature ranges from 283 K to 298 K with a temperature
difference ∆T = 1 K. For each replica, a regular grand canonical Monte Carlo simulation
consisting of molecule translation, rotation, insertion, and deletion moves are performed.
In addition to these conventional moves, replicas at two different temperature/chemical
potentials sets are swapped with a probability given from the ratio of the Boltzmann factors
in the Grand Canonical ensemble (see text). The red and white spheres are the oxygen
and hydrogen atoms of water while the grey spheres are the methane molecules. The
dimensions of the simulation box are: Lx = Ly = Lx = 2.754 nm. (b) Average methane
(left) and water (right) mole fraction as a function of temperature as estimated from the
different replicas considered in the hyper parallel tempering simulation.

we first determined the liquid–hydrate–vapor phase coexistence using rigorous free energy

calculations based on the Einstein molecule approach. The data presented in the present

work, which are consistent with previous molecular simulation works, shows that the

different thermodynamic approximations such as the description of methane vapor are

important. Overall, in agreement with previous studies, it is shown that the choice of

the water model is a key problem and that TIP4P/Ice, which was specifically developed

to reproduce crystalline phases of water, reproduces accurately the experimental phase

diagram of methane hydrate.
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While free energy techniques are obviously robust strategies to estimate the phase

diagram of such complex, non stoichiometric compounds, we also considered two direct

molecular simulations approaches. First, we extended the direct coexistence method to treat

both methane and water in the Grand Canonical ensemble; this is an important aspect as it

allows taking into account large fluctuations in the number of methane and water molecules

upon hydrate dissociation/formation. This allows considering calculations with the direct

coexistence method using system sizes that remains small (otherwise, large methane

regions in the system have to be considered to act as methane molecules source/sink

upon melting/crystallization of the hydrate). In addition to the direct coexistence method

extended to the grand canonical ensemble, we also considered hyper parallel tempering

which consists of considering several replicas of the system at different temperatures and

chemical potentials – the system being therefore treated in the grand canonical ensemble

to allow for large changes in its composition upon hydrate formation/dissociation.

Despite the reduced accuracy/robustness compared to more rigorous approaches based

on free energy techniques, both the direct coexistence method and hyper parallel tempering

technique were found to lead to reasonable predictions for phase coexistence. However,

while the results reported in this work shows that these two direct techniques can be

used to estimate stability conditions for methane hydrate, we emphasizes that several

refinements and “tricks” were needed to lead to sufficient sampling of the phase space

and accurate phase coexistence predictions. First, as mentioned above, both the direct

coexistence and hyper parallel techniques were used with water and methane treated in

the Grand Canonical ensemble; we found that this was needed to efficiently sample large

molecule number fluctuations upon hydrate formation/dissociation. Moreover, in the

case of hyper parallel tempering, we also found that the initial replicas (i.e. at different

temperatures and chemical potentials) must include composite systems where both the

hydrate and liquid phases coexist. Such coexisting states allow sufficient swapping along

the hyper parallel tempering simulation between the low and high temperature replicas.

Otherwise, considering the Metropolis acceptance probability in this hyper grand canonical
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ensemble given in Eq. (3.21), the large difference in the numbers of water and methane

molecules between the liquid and hydrate phases lead to very low swapping probabilities

(too low to allow efficient sampling). As a result, while our data show that accurate hydrate

stability conditions can be estimated in principle using hyper parallel tempering, the latter

drawback constitutes an important limitation to this technique. Finally, in addition to

being more robust than the direct coexistence and hyper parallel tempering methods, free

energy calculations provide accurate estimates for the chemical potentials for water and

methane in the hydrate phase, including their values at phase coexistence (in contrast, with

the two direct techniques, one has to estimate in an approximate fashion the chemical

potentials that lead to phase equilibrium). This is a key asset of the free energy technique

over direct methods since such chemical potentials at phase coexistence will be used in

subsequent work on the stability of methane hydrate confined in porous media (which

are in equilibrium with an external methane and water mixture or hydrate imposing its

chemical potentials at constant temperature).
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This chapter aims at exploring the phase stability and formation/dissociation kinetics

of methane hydrate confined at the nanoscale. First, the direct coexistence method (DCM)

within the framework of Grand Canonical Monte Carlo (GCMC) simulations is used to

assess liquid–hydrate–vapor (L–H–V) phase equilibrium of sI methane hydrate confined

in a porous solid with different pore widths. Then, the Gibbs-Thomson equation is derived

to describe the shift in the phase stability of the confined methane hydrate. In this work,

an extended formula of the Gibbs-Thomson equation which relaxes the two following

important hypotheses, is redrived: (1) the molar volumes of methane hydrate (vH) and

liquid water (vL) are equal, i.e., vL = vH (v = 1/ρ where ρ is number density) and (2)

Young’s equation is used to estimate the surface tension between methane hydrate and

liquid water (γLH), γLS−γHS = γLH cosθ where γHS is the surface tension between methane

hydrate and the substrate surface and γLS is the surface tension between liquid water and

the substrate surface. Moreover, a contact angle θ ∼ 180◦ is used in the Gibbs-Thomson

equation. These hypotheses are crude assumptions to assess the validity of the Gibbs-

Thomson equation. First, the difference between the molar volumes of methane hydrate

and liquid water is not small. Second, the validity of Young’s equation is unclear for

a small pore. Our work does not rely on these hypotheses. To assess the validity of

the Gibbs-Thomson equation, we compute the hydrate–solid γHS and liquid–solid γLS

surface tensions (here, “solid” refers to the pore walls), the molar volume of bulk (i.e.,

non-confined) methane hydrate and liquid water, and the molar enthaply of melting ∆hm

from methane hydrate to liquid water using molecular dynamics (MD). Our findings

show that confinement at the nanoscale level has a negative effect on the L–H–V phase

equilibrium (i.e., phase equilibrium is shifted towards lower temperature). The shift in the

phase coexistence temperature relative to the bulk, ∆Tm/Tm, is found to linearly depend on

the reciprocal pore size 1/Dp. Our molecular simulations results from the DCM technique

are found to be in quantitative agreement with the derived Gibbs-Thomson equation. In

addition, the effects of the surface wettablity on the L–H–V phase equilibrium is studied

by modifying the LJ parameters (i.e., tuning the wetting properties of the porous medium).

Finally, free energy calculations using the umbrella sampling technique is used to show
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that confinement decreases the free energy barrier, ∆GHL, between methane hydrate and

liquid water.

The remainder of this chapter is organized as follows. In Section 4.1, we present

the computational details: molecular model of porous solid, determination of the solid-

liquid and solid-hydrate surface tensions, and free energy calculations using the umbrella

sampling technique. In Section 4.2, the phase stability of confined methane hydrate at

a given pressure (P = 100 atm) is first presented using the direct coexistence method

(DCM) (see Section 4.2.1). Then, we derive the Gibbs-Thomson equation to describe

L–H–V phase equilibrium in confinement (see Section 4.2.2). In this part, we also present

the effects of surface wettability on the phase stability of confined methane hydrate. In

addition, free energy calculations using the umbrella sampling technique are performed to

determine the formation/dissociation kinetics of bulk and confined methane hydrate (see

Section 4.2.3). All results are compared with previous experimental data as well as data

obtained in previous theoretical works. Section 4.3 presents some concluding remarks.

4.1 Computational details

4.1.1 Molecular models

Porous solid. To study confinement effects, we consider phase coexistence between

methane hydrate and liquid water located between two parallel solid walls as shown in

Figure 4.1. We use here a hypothetical model for porous solids. The dimensions of

the system in the x– and y–directions are Lx = Ly = 2.3754 nm (corresponding to 2×2

unit cells of methane hydrate with the size of each unit cell being u = 1.1877 nm). This

x–y–plane (i.e., Lx = Ly = 2.3754 nm) is partitioned into 11×11 small squares, and solid

atoms are located at the vertex and center of these small squares so that a total number

of 242 solid atoms are present in one solid layer. The distance separating solid atom

pairs is 0.1527 nm which is close to the typical chemical C–C bond length, ∼0.142 nm,
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in most porous carbonaceous materials. We use two solid walls: one at the top and one

at the bottom to form a slit pore. Each pore wall consists of four layers defined above

with an interlayer distance Dl = 0.216 nm. In this work, we consider pores with the

following widths Dp = 1.6677 nm, 2.8554 nm, 5.2308 nm, and 7.6062 nm. The direct

coexistence method is used to determine the melting temperature as a function of Dp at a

given pressure. For the determination of the surface tensions between methane hydrate

and the solid wall, γHS, and between liquid water and the solid wall, γLS, the pore with

Dp = 9.9816 nm is used. The final dimensions are Lx = Ly = 2.3754 nm, and Lz = 3.1793

nm, 4.3670 nm, 6.7424 nm, 9.1178 nm, and 11.4936 nm (corresponding to Dp = 1.6677

nm, 2.8554 nm, 5.2308 nm, 7.6062 nm, and 9.9816 nm, respectively). These exact values

were used because they correspond to the multiple integer of the unit cell (u = 1.1877 nm)

of bulk methane hydrate. All the solid atoms are maintained frozen and all the interactions

between solid atom pairs are excluded in all our molecular simulations.

4.1.2 Surface tensions

The surface tension between a phase α (e.g., methane hydrate or liquid water in this

work) and a phase β (e.g., porous solid in this work), γαβ , can be determined using the

Kirkwood and Buff approach (Kirkwood and Buff, 1949). Figure 4.2 shows the scheme

used in this approach to determine γαβ . For a molecular system with a planar interface

(perpendicular to the z axis) between phases α and β , a small increase dA in the surface

area A in the x–y–plane leads to a small decrease dz in the size Lz if we maintain the

volume LzA constant, i.e., LzdA =−(A+dA)dz. The surface tension γαβ is defined as,

γαβ =
1
2

∫ Lz

0
(PN(z)−P∗

T (z))dz =
Lz

2
(⟨PN⟩−⟨P∗

T ⟩) (4.1)

where the factor 1/2 is due to the fact that there are two interfaces between phase α

and phase β . PN(z) = Pzz(z) and PT (z) = 1
2 (Pxx(z)+Pyy(z)) are the pressure components

normal and parallel to the interface. The meaning of the asterisk will be discussed below.
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Figure 4.1 (color online) Molecular configuration of the confined coexisting phases (i.e.,
methane hydrate + liquid water) considered in this work. The red and white spheres are
the oxygen and hydrogen atoms of water, respectively. The gray spheres are the methane
molecules which are inside the hydrogen-bonded cages formed by water molecules. The
yellow spheres are the solid atoms in the pore walls. The two component system is confined
in a pore with a width Dp made of layers of solid particles distributed according to a square
structure. Each pore surface is made of 4 layers separated by a distance Dl = 0.2159 nm
so that the total pore wall thickness is 0.7558 nm. Inside the porosity, methane hydrate is
located in the region y < 0 (left side) and liquid water in the region y > 0 (right side). In
this specific configuration, the pore size is Dp = 2.8554 nm which corresponds to 2×2×2
unit cells of bulk sI methane hydrate (the lattice parameter of methane hydrate is u =
1.1877 nm). Periodic boundary conditions are used along the x, y, and z directions. The
dimensions of the simulation box (defined by the dashed lines) are Lx = Ly = 2.3754 nm
and Lz = 4.3670 nm.

Pdd(z) with d = x, y or z are the diagonal elements of the pressure tensor at a position z.

⟨PN⟩ and ⟨PT ⟩ in the above equation are macroscopic components of the pressure tensor

defined in terms of a volume average. According to the work by Nijmeijer et al. (Nijmeijer

et al., 1990), for an interface involving a frozen solid phase, we include interactions

with the frozen solid atoms when computing ⟨PN⟩ = ⟨Pzz⟩ but we do not include such

interactions in the calculation of ⟨P∗
T ⟩=

(
⟨Pxx⟩+

〈
Pyy
〉)

/2. The asterisk in ⟨P∗
T ⟩ indicates

that such interactions are omitted. In case of fluid-fluid interfaces, such interactions must

be included.
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Figure 4.2 (color online) Schematic illustration of the determination of the surface tension
using the Kirkwood-Buff approach. (1) The configuration of phases α (orange region)
and β (gray region) is prepared. These two phases define two planar α–β–interfaces
perpendicular to the z axis (left): the surface area in the x–y–plane is A and the length of
the simulation box in the z–direction is Lz. The normal and parallel pressure components
are PT (z) = (Pxx(z)+Pyy(z))/2 and PN(z) = Pzz(z). (2) A small change dA is considered
in the surface area the in x–y–plane. (3) The change is compensated by a small change dz
to keep the volume V constant, i.e., LzdA =−(A+dA)dz.

4.1.3 Umbrella sampling

In order to obtain the free energy barrier between methane hydrate and liquid water, ∆Gbarr,

we used the umbrella sampling technique to determine the free energy G as a function

of the local bond order parameter Q6. Both bulk and confined systems were considered

(Dp = 2.8554 nm was considered for the latter). The umbrella sampling technique is a

robust method in molecular simulation to study the thermodynamics of rare events. As

mentioned in Chapter 1, the local bond order parameter Q6, which is found to be a suitable

order parameter to identify liquid water and methane hydrate (Nguyen and Molinero, 2015;

Radhakrishnan and Trout, 2002; Steinhardt et al., 1983), is defined for a given oxygen

atom Oi as follows:

Q6(i) =

(
4π

13

6

∑
m=−6

| Q6m(i) |2
)1/2

(4.2)
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where m ∈ [−6,6] and Q6m(i) is a set of complex vectors:

Q6m(i) =
1

Nb(i)

Nb(i)

∑
j=1

Y6m(ri j) (4.3)

The summation from j = 1 to Nb(i) in Eq. (4.3) runs over all the nearest neighbor oxygen

atoms Nb(i) for Oi. Ylm(ri j) are the spherical harmonics which depend on the position

vector ri j.

In the umbrella sampling technique, considering methane hydrate as the initial con-

figuration, we force it to transform into liquid water by using a biasing potential, w(Q6),

that depends on Q6. By determining the probability distribution, PB(Q6), of Q6 in such

biased simulations, the unbiased free energy profile, G(Q6), can be obtained by sub-

tracting the biasing potential contribution, w(Q6), from the biased free energy profile,

GB(Q6) =−kBT ln
(
PB(Q6)

)
,

G(Q6)/kBT =− ln
(
PB(Q6)

)
−w(Q6)/kBT (4.4)

where kBT is the thermal energy. To sample the entire domain of Q6 (0.300–0.6), we run

Nwindows = 61 windows with a spacing of 0.05 (i.e., Nwindows GCMC simulations with

different references Q(0)
6,i ). In practice, this means that for the i–th window, we use the

following biasing harmonic potential wi(Q6),

wi(Q6) =
1
2

K
(

Q6 −Q(0)
6,i

)2
(4.5)

where K = 5×107 K is the force constant and Q(0)
6,i is the center of the biasing harmonic

potential for the i–th window. We use the weighted average of the unbiased probabilities

of each window PU
i to determine the full unbiased probability distribution PU ,

PU(Q) =
Nwindows

∑
i

NiPU
i (Q6)exp [−(wi(Q6)−Gi)/kBT ] (4.6)
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where PU
i is the unbiased probability, Ni is the number of samples, and Gi is the unbiased

free energy,

exp(−Gi/kBT ) =
∫

dQ6PU(Q6)exp(−wi(Q6)/kBT ) (4.7)

By starting from Eq. (4.6) with Gi = 0, we iterate between Eqs. (4.7) and (4.6) until a

convergence tolerance of 10−3 is reached in a self-consistent manner for Gi/kBT . In this

work, the probability distributions were analyzed using the weighted histogram analysis

method (WHAM) to solve Eqs. (4.7) and (4.6) in a self-consistent manner.

4.2 Formation and dissociation of confined methane hy-

drate

4.2.1 Phase stability of confined methane hydrate

Using the direct coexistence method (DCM), we reproduced the phase diagram of bulk

methane hydrate as discussed in Chapter 3. In the present chapter, we apply the DCM

technique in the framework of GCMC simulations to study the effect of confinement

on L–H–V phase equilibrium at a given pressure. As described previously, the initial

configuration in DCM is chosen as a coexisting phase consisting of liquid water and

methane hydrate confined between two parallel solid walls. The use of the Grand Canonical

ensemble ensures that three-phase (L–H–V) coexistence in the porous solid is simulated in

fact; because the system is in equilibrium with an infinite reservoir of bulk molecules at

chemical potentials corresponding to those of the water-rich liquid and methane-rich vapor,

DCM simulations in this specific ensemble are equivalent to simulating a system with three–

phase coexistence. The melting temperature, T pore
m , of confined methane hydrate in four

different pore widths are determined: Dp = 1.6677 nm, 2.8554 nm, 5.2308 nm, and 7.6062

nm. The preparation of these initial configurations are described in the previous section. In

all these simulations, periodic boundary conditions were applied in each direction to avoid

finite size effects.
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Figure 4.3 (color online) Pore size, Dp, effect on the melting temperature, T pore
m , of

confined methane hydrate/liquid water using the direct coexistence method: methane (xm,
left), and water (xw, right) mole fractions for Dp = 2.8554 nm during the different GCMC
simulation runs at T = 230 K (black), 240 K (blue), 250 K (purple), 260 K (red), and 270 K
(orange). The x-axis, which indicates progress along the GCMC simulation, is expressed
as a number of attempted MC moves where one move is a molecule translation, rotation,
insertion or deletion.

In practice, for each pore size, we performed M = 18 simulations at P = 100 atm

with temperatures in the range T = 180–350 K (the temperature interval is 10 K). Our

DCM simulations in the Grand Canonical ensemble at given pressure and temperature

require to specify chemical potentials for water µw and methane µm. µw and µm obtained

in Chapter 3 were used for this purpose. Figure 4.3 shows the methane xm and water xw

mole fractions of the coexisting system confined in the nanoporous solid with Dp = 2.8554

nm in the course of GCMC simulations (i.e., the number of MC moves performed with one

MC move corresponding to a molecule translation, rotation, insertion or creation). Results

for different temperatures are shown: T = 230 K, 240 K, 250 K, 260 K, and 270 K. On the

one hand, at high temperature, T ≥ 260 K, the system melts as evidenced by the decrease

in the methane mole fraction xm. As expected, xm ∼ 0 (xw ∼ 1) in the liquid phase. On the

other hand, at low temperature, T ≤ 250 K, the methane mole fraction increases (while xw

decreases) upon methane hydrate formation. While melting does not suffer from ambiguity

since all methane hydrate is transformed into liquid water, hydrate formation was found

to be inefficient; due to the low probability to nucleate hydrate cages (inherent to their

very small entropy), it was observed that formation of the hydrate is incomplete. Such

slow transformation kinetics will be illustrated in a following section Using free energy
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calculations with the umbrella sampling technique. As a result, despite the coexistence

with an already formed hydrate, many GCMC runs (about the order of ∼ 105 −106 MC

moves per molecule) were not sufficient to lead to perfect methane hydrates. Despite

this drawback, the DCM technique above shows that the L–H–V equilibrium temperature

for hydrate/liquid coexistence is T pore
m = 255± 5 K for Dp = 2.8554 nm. In constrast,

T bulk
m = 285± 5 K at the same pressure P = 100 atm (see Chapter 3). The shift in the

coexistence temperature is therefore ∆T pore
m = T pore

m −T bulk
m ∼ −30 K for Dp = 2.8554

nm, indicating that confinement in such porous solids tends to lower the coexistence

temperature. As will be further discussed in the next section, this is consistent with the

Gibbs-Thomson equation with a lower hydrate-substrate surface tension than the liquid-

substrate surface tension. For the three other pore sizes Dp = 1.6677 nm, 5.2308 nm, and

7.6062 nm, the methane xm and water xw mole fractions confined in the porous solids in

the course of GCMC simulations are shown in Figure 4.4. These GCMC simulations lead

to T pore
m = 235±5 K for Dp = 1.6677 nm, T pore

m = 265±5 K for Dp = 5.2308 nm, and

T pore
m = 275±5 K for Dp = 7.6062 nm. These data are summarized in Table 4.1.

Table 4.1 Determination of melting temperature Tm of bulk and confined methane hydrate
at pressure P using the direct coexistence method. Lx and Ly are the dimensions of the
molecular system in the x– and y–directions, respectively. Dp is the pore size. * is for the
melting temperature of bulk methane hydrate, T bulk

m , as reported in Chapter 3.

P (atm) Lx (nm) Ly (nm) Lz(nm) Dp (nm) Tm (K)
100 2.3754 2.3754 2.3754 ∞ 285±5*

100 2.3754 2.3754 9.1178 7.6062 275±5
100 2.3754 2.3754 6.7424 5.2308 265±5
100 2.3754 2.3754 4.3670 2.8554 255±5
100 2.3754 2.3754 3.1793 1.6677 235±5
100 2.3754 4.7508 6.7424 5.2308 285±5
100 2.3754 4.7508 4.3670 2.8554 265±5
10 2.3754 2.3754 2.3754 ∞ 265±5
10 2.3754 2.3754 4.3670 2.8554 225±5

Finite size effects from (1) the vacuum layer and (2) the molecular system size were

also considered in the present work. A vacuum layer (with a size of Dv) is usually used

on each side of the porous solid to remove the interactions with the periodic images in

the z–direction. In this work, two different sizes Dv = 0.0000 nm and 2.0000 nm were
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Figure 4.4 (color online) Melting temperature, T pore
m , of confined methane hydrate/liquid

water for different pore widths: Dp = 1.6677 nm (left panels), 5.2308 nm (center panels),
and 7.6062 nm (right panels) as obtained using the direct coexistence method. The methane
(xm, top panels) and water (xw, bottom panels) mole fractions during the different GCMC
simulation runs are shown: T for each pore size is indicated using different colors (see
figure legend). The x-axis, which indicates progress along the GCMC simulation, is
expressed as a number of attempted MC moves where one move is a molecule translation,
rotation, insertion or deletion. T pore

m of confined methane hydrate for different Dp are
summarized in Table 4.1. For bulk methane hydrate, we reported T bulk

m = 285±5 K at P =
100 atm using the direct coexistence method in Chapter 3.

considered for Dp = 2.8554 nm. At P = 100 atm, we obtained T pore
m = 255±5 K for both

sizes (the data of Dv = 0.0000 nm are shown in Figure 4.3 while the data for Dv = 2.0000

nm are shown in Figure B.1 of the Appendix B). The fact that we obtain the same melting

temperature indicates a negligible influence of the vacuum layer on T pore
m . Molecular

systems with a bigger dimension in the y–axis Ly = 4.7508 nm (while keeping Lx and Lz

identical) were considered for the pores Dp = 2.8554 nm and 5.2308 nm. The calculations

performed using the DCM technique lead to T pore
m = 265±5 K for Dp = 2.8554 nm and

T pore
m = 285± 5 K for Dp = 5.2308 nm as shown in Figure B.2 of the Appendix B. By

comparing with the melting temperature obtained using the small systems (see Figures 4.3

and 4.4), the finite size effect on melting temperature is 10 K for each pore size. However,
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with respect to bulk methane hydrate, the shifts in the melting temperature of confined

system were found to be consistent between the big and small systems (as shown in

Figure B.3 of the Appendix B).

4.2.2 Gibbs-Thomson equation

To describe the confinement effect on the melting point T pore
m , we revisited the Gibbs-

Thomson equation. To relax the two following hypotheses: (1) the molar volumes in

methane hydrate and liquid water are equal vL = vH and (2) Young’s equation is used to

compute the surface tension difference γLS − γHS = γLH cosθ where γLS, γHS, and γLH are

the surface tensions of the liquid water-substrate interface, the methane hydrate-substrate

interface, and liquid water-methane hydrate interface. In this work, we did not rely on

these hypotheses.

ΩH = PHV + γHSA

γHS A

Dp ΩH = PHV + γLSA

γLS

Figure 4.5 (color online) Gibbs-Thomson equation for L–H–V equilibrium upon confine-
ment: methane hydrate (H, red region) and liquid water (L, blue region) are confined in a
slit pore of a width Dp formed by two parallel substrates (S, the gray regions). ΩH and PH

are the grand potential and pressure of methane hydrate while ΩL and PL are the grand
potential and pressure of liquid water. γLS is the surface tension of liquid water–substrate
(LS) interface while γHS is the surface tension of methane hydrate–substrate (HS) interface.
V = DpA is the pore volume where A is the surface area.

As shown in Figure 4.5, methane hydrate (H, left) and liquid water with methane

molecules solubilized (L, right) considered to derive the Gibbs-Thomson equation are

confined in a slit pore of a width Dp. These two confined systems within the volume V

(V = DpA) are in equilibrium with the reservoir which imposes the chemical potential of

water µw, the chemical potential of methane µm, and temperature T . The grand potentials
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for confined methane hydrate ΩH and confined liquid water ΩL are defined as,

Ω
H=̂−PHV + γHSA

Ω
L=̂−PLV + γLSA

(4.8)

where PH is the pressure of methane hydrate while PL is the pressure of liquid water. γLS is

the surface tension of liquid water–substrate (LS) interface while γHS is the surface tension

of methane hydrate–substrate (HS) interface. V = DpA is the pore volume where A is the

surface area. At L–H–V equilibrium,1 we have,

Ω
L = Ω

H (4.9)

In details,

−PHV +2γHSA =−PLV +2γLSA (4.10)

Using V = DpA, we obtain the Laplace equation:

PL −PH = 2(γLS − γHS)
1

Dp
(4.11)

We assume that: (a) the confined liquid water at a pressure PL has the same properties

as the bulk liquid water; and (b) the confined methane hydrate at a pressure PH has the

same properties as the bulk methane hydrate. To determine the pressures PH and PL at

(µw,µm,T ), we use a first-order Taylor expansion of the pressure P around a reference

point (µw,0, µm,0, T0):

P ∼ P0 +(T −T0)

(
∂P
∂T

)
µw,0,µm,0

+ ∑
i=m,w

(µi −µi,0)

(
∂P
∂ µi

)
T

∼ P0 +(T −T0)
s0

v0
+ ∑

i=m,w
(µi −µi,0)

ni,0

v0

(4.12)

1The derivation of the grand potential reads: dΩ = −SdT −PdV −Ndµ + γdA. At constant T , V , µ ,
and A, dΩ = 0.
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where P = P(µw,µm,T ) and P0 = P(µw,0,µm,0,T0) is the pressure at the reference point

(µw,0, µm,0, T0). s0/v0 = (∂P/∂T )
µw,0,µm,0,T0

is the molar entropy s0 (note that s is the

total entropy which includes both methane and water contributions) devided by the molar

volume v0 at (µw,0, µm,0, T0). ni,0/v0 = (∂P/∂ µi)T0
is the number ni,0 of molecules of type

i (i = m,w) devided by the molar volume v0 at (µw,0, µm,0, T0). Using Eq. (4.12), we have

for PH and PL:

PH = PH
0 +(T −T0)

sH
0

vH
0
+ ∑

i=m,w

(
µ

H
i −µ

H
i,0
) nH

i,0

vH
0

PL = PL
0 +(T −T0)

sL
0

vL
0
+ ∑

i=m,w

(
µ

L
i −µ

L
i,0
) nL

i,0

vL
0

(4.13)

We select the melting point (T bulk
m , P0) of bulk methane hydrate as the reference point:

(µH
m,0 = µL

m,0 = µm,0, µH
w,0 = µL

w,0 = µw,0, T0 = T bulk
m , PH

0 = PL
0 = P0) where µΦ

i,0 is the

chemical potential of species i in phases Φ (Φ = H for hydrate and L for liquid) at (T bulk
m ,

P0). Using Eq. (4.13), we determine the pressures PH and PL at T pore
m :

PH = P0 +
1

vH
0

(
∆T pore

m sH
0 + ∑

i=m,w
∆µ

H
i nH

i,0

)

PL = P0 +
1
vL

0

(
∆T pore

m sL
0 + ∑

i=m,w
∆µ

L
i nL

i,0

) (4.14)

where ∆T pore
m = T pore

m −T bulk
m is the shift of the melting point T pore

m of confined methane

hydrate with respect to the melting point T bulk
m of bulk methane hydrate. ∆µΦ

i = µΦ
i −µΦ

i,0

is the difference of chemical potential of species i at T pore
m and T bulk

m for phases Φ. We can

replace ∆µΦ
i by ∆µi because that µH

i = µL
i = µi at T pore

m and µH
i,0 = µL

i,0 = µi,0 at T bulk
m .

Using Eqs. (4.14), we estimate the pressure difference:

vH
0
(
PH −P0

)
− vL

0
(
PL −P0

)
=−∆T pore

m ∆sm,0 + ∑
i=m,w

∆µi
(
nH

i,0 −nL
i,0
)

=−∆T pore
m

T pore
m

∆hm,0 + ∑
i=m,w

∆µi
(
nH

i,0 −nL
i,0
) (4.15)
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where ∆sm,0 = sL
m,0 − sH

m,0 and ∆hm,0 = ∆sm,0/T bulk
m are the molar entropy and enthalpy

of melting from methane hydrate to liquid water (plus methane vapor) at T bulk
m . Using

Eq. (4.15), the shift of melting point reads:

∆T pore
m

T bulk
m

=−
vH

0
∆hm,0

[
PH −PL +

(
1−

vL
0

vH
0

)(
PL −P0

)
+

1
vH

0
∑

i=m,w
∆µi
(
nL

i,0 −nH
i,0
)] (4.16)

Using the Laplace equation in Eq. (4.11), Eq. (4.16) is rewritten as,

∆T pore
m

T bulk
m

=
vH

0
∆hm,0

[
2(γLS − γHS)

1
Dp

+

(
vL

0
vH

0
−1
)(

PL −P0
)

− 1
vH

0
∑

i=m,w
∆µi
(
nL

i,0 −nH
i,0
)] (4.17)

The above equation, which is a revisited version of the Gibbs-Thomson equation, shows

that the shift in melting temperature of confined methane hydrate with respect to the

bulk phase, ∆T pore
m /T bulk

m = (T pore
m −T bulk

m )/T bulk
m , linearly depends on the reciprocal pore

width, 1/Dp. However, we note that in this extended approach there is two additional

terms that do not depend directly on pore width Dp. If we assume as is usually done in the

literature: (a) vH
0 = vL

0 ; (b) nH
i,0 = nL

i,0 (i = m,w); and (c) γLS − γHS = γLH cosθ with θ = π ,

Eq. (4.17) leads to the classical formulation of the Gibbs-Thomson equation:

∆T pore
m

T bulk
m

=−
2γLHvH

0
∆hm,0

1
Dp

(4.18)

In what precedes, we rederived the Gibbs-Thomson equation under the formula given in

Eq. (4.17). Such a Gibbs-Thomson equation indicates that the shift in melting temperature

∆Tm/T bulk
m linearly depends on the reciprocal pore width 1/Dp with two additional terms

for enthalpy and chemical potentials. The Gibbs-Thomson coefficient, kGB = 2(γLS −

γHS)vH/∆hm, describes the proportionality coefficient. In the next paragraph, we will
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determine the following parameters using molecular simulation to check the validity of

Eq. (4.17): γHS, γLS, vH, vL, ∆hm at (T bulk
m , P).
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Figure 4.6 (color online) Molar volume v (a) and molar enthalpy h (b) of liquid water
(solid circles), full-methane hydrate (empty squares), and empty-methane hydrate (empty
triangles). Enthalpy of melting ∆hm (c) from full-methane hydrate (empty squares) to
liquid water and from empty-methane hydrate (empty triangles) to liquid water using MD
simulations. The dashed lines indicate that these parameters are along the L–H–V phase
boundary for bulk phase: the red, blue, and green colors are for (T,P) = (233 K, 1 atm),
(262 K, 10 atm), and (286 K, 100 atm), respectively. All the thermodynamic parameters
are per mole of water.

Molar volume of methane hydrate, vH, molar volume of liquid water, vL, and

molar enthalpy of melting from methane hydrate to liquid water (+ methane vapor),

∆hm. ∆hm is defined by subtracting the enthalpy of liquid water and the enthalpy of

methane vapor from the enthalpy of methane hydrate using the appropriate stoichiometry:

∆hm =
(
hL

w +hV
m
)
−hH

m,w. In practice, the contribution of methane vapor is ignored, ∆hm =

hL
w − hH

m,w. The configurations of methane hydrate and liquid water are equilibrated

using isobaric-isothermal molecular dynamics until the density and energy converge to an

equilibrium value. vH, vL, hH, hL, and ∆hm at different bulk phase equilibrium conditions,

(T,P) = (233 K, 1 atm), (262 K, 10 atm), and (286 K, 100 atm), are shown in Figure 4.6.

From these calculations, we obtain ∆hm = 8.35 kJ·mol-1, vL = 1.8475×10−5 m3·mol-1,

and vH = 2.2813×10−5 m3·mol-1 at T = 286 K and P = 100 atm. Such an enthalpy of

melting, ∆hm, leads to an entropy of melting, ∆sm = ∆hm/T bulk
m = 29.3 J·K-1·mol-1 which

is comparable to that reported by Molinero et al. (Jacobson and Molinero, 2011). For the

sake of clarity, these values are summarized in Table 4.2. These thermodynamic parameters
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for an empty hydrate (i.e., the framework of sI methane hydrate obtained after removing

methane molecules) were also computed for comparison (see Figure 4.6).

Surface tensions between the solid wall and methane hydrate, γHS, or liquid water,

γLS. The Gibbs–Thomson equation as defined in Eq. (4.17) requires to determine the two

following surface tensions: γHS and γLS. Here, we use the Kirkwood-Buff approach

to determine γHS and γLS as described in Section 4.1.2. With this approach, one must

determine the normal, PN , and tangential, PT , pressure components in the canonical

ensemble (i.e., at constant number of molecules N, volume V , and temperature T ). For

γHS, the 2×2×8 unit cells of methane hydrate is confined in a slit pore with Dp = 9.9816

nm. For γLS, liquid water is first adsorbed in the porous solid using GCMC simulations at

T = 290 K. In so doing, each molecular system includes two interfaces (top and bottom

walls) and we perform canonical ensemble MD simulations to determine the ensemble

averages ⟨PN⟩= ⟨Pzz⟩ and ⟨PT ⟩=
(
⟨Pxx⟩+

〈
Pyy
〉)

/2. Figure 4.7 shows ⟨PT ⟩ and ⟨PN⟩ at

T = 290 K during the MD simulation in the last 2.5 ns (a total of > 20 ns was used for

each molecular dynamics). In practice, the finite size effects from the vacuum layer (added

at each side of the simulation box along the z–axis), Dv, is first considered. We determine

γHS at T = 290 K with Dv = 0−20 nm (as shown in Figure B.7 of Appendix B); it was

found that the influence of Dv can be ignored when Dv ≥ 15 nm. In this work, Dv = 15

nm was thus used to calculate γHS and γLS. These calculations lead to γHS = 15 mJ·m2 and

γLS =−56 mJ·m2 at T = 290 K. These results are shown in Table 4.2.

Validity of the Gibbs-Thomson equation. In the previous section, the following

thermodynamic proprieties, vH, vL, ∆hm, γHS and γLS were computed using MD and

GCMC simulations. The resulting values are summarized in Table 4.2. These calculations

lead to the Gibbs-Thomson constant kGT =−0.39 where kGT = 2(γLS − γHS)vH/∆hm as

shown in Eq. (4.17). In the context of the results obtained using the direct coexistence

method, the constant kDCM = −0.28 was estimated using a linear fit with the following

equation ∆T pore
m = kDCM/Dp. Figure 4.8 shows the shift in melting temperature of confined

methane with respect to bulk phase, ∆T pore
m , as a function of the reciprocal of pore width,
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Figure 4.7 Normal (black line), PN = Pzz, and parallel (gray line), PT = 1
2 (Pxx +Pyy),

pressure components of methane hydrate (left) and liquid water (right) in a slit pore
Dp = 9.9816 nm as a function of time, t, in canonical ensemble MD simulation at T = 290
K. The dimensions of the simulation box are: Lx = Ly = 2.3754 nm and Lz = 41.4932 nm.

1/Dp. The two values kGT and kDCM are in fair agreement. The results obtained using the

DCM technique are therefore reasonably described by using the revisited Gibbs–Thomson

equation. In other words, the shift in the melting temperature of confined methane hydrate

relative to the bulk phase ∆Tm/Tm linearly depends on the reciprocal pore size 1/Dp with

a slope that can be described using the Gibbs-Thomson equation.

Table 4.2 Thermodynamic properties of liquid water and methane hydrate (both empty and
full hydrates are considered) at T = 286a K or T = 290b K and P = 100 atm. a Normalized
per mole of water. b Surface tensions determined for hydrate-substrate and liquid-substrate
surfaces. c kDCM =−0.28 as obtained by fitting the results of the direct coexistence method.
The values in parentheses are those reported by Molinero at al. (Jacobson and Molinero,
2011).

property liquid water methane hydrate
full empty

v (10−5 m3 mol-1) a 1.85 2.28 2.27
∆h f us (kJ mol-1) a – 8.35 (6.53) 4.55 (4.40)

∆s f us (J K-1mol-1) a – 29.3 (21.3) 16.0
γ (mJ m2) b -56 15 –

kGT
c – -0.39 –

Pressure effects. Using the DCM technique, the melting temperature at a lower

pressure P = 10 atm was also determined. For bulk and confined methane hydrate in

a pore width Dp = 2.8554 nm, we obtained T bulk
m = 265± 5 K and T pore

m = 225± 5 K

(see Figure B.4 of the Appendix B). As compared with P = 100 atm, a larger shift in
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Figure 4.8 Shift in melting temperature of confined methane hydrate with respect to the
bulk, ∆T pore

m /T bulk
m , at P = 100 atm as a function of the reciprocal of pore size, 1/Dp.

The solid circles are obtained using the direct coexistence method while the solid line is
determined using the revisited version of the Gibbs-Thomson equation: ∆T pore

m /T bulk
m =

2(γLSvL − γHSvH)/∆hmDp.

melting temperature, ∆T pore
m = T pore

m −T bulk
m ∼−40 K, is obtained for Dp = 2.8554 nm.

As a result, a more negative Gibbs-Thomson coefficient kGT is expected at P = 10 atm

(as compared with P = 100 atm). we recall that γHS is determined using the canonical

ensemble in this work. We obtained γLS = −48 mJ·m2 at P = 10 atm. vL, vH, and ∆hm

at T = 262 K and P = 10 atm can be found in Figure 4.6. These calculations lead to

k′GT =−0.38 according to Eq. (4.17) for P = 10 atm. These results are in agreement with

the data obtained using the DCM technique as shown in Figure B.5 of the Appendix B.

Decreasing the pressure leads therefore to a larger shift in the phase stability of confined

methane hydrate.

Surface wettability effects. The effect of surface wettability was assessed by changing

the LJ energy parameter, ε ′, of the pair interactions between methane hydrate and the

porous solid, UHS. ε ′ = 1/2, 1/3, 1/4, 2, 3, and 4 ε (where ε is the original LJ energy

parameters used in the previous sections) were adopted to mimic stronger or weaker solid-

fluid interactions. By using the DCM technique, the melting temperature using different

ε ′ at P = 100 atm were determined as shown in Figure B.6 of the Appendix B. We found
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that the melting temperature remains constant. This result can be explained using the

Gibbs-Thomson equation; kGT depends on γHS and γLS (the values vH, vL, and ∆hm are

those for bulk methane hydrate and/or liquid water). At constant T and P, a first-order

Taylor expansion for γ leads to:

γ(ε ′)∼ γ(ε)+

(
∂γ

∂ε

)
ε

(ε ′− ε) (4.19)

Since UHS/U ≤ 5% (where U is the total potential energy and UHS is the potential energy

contribution arising from solid-fluid interactions), the contribution from UHS in γ can

be ignored: (∂γ/∂ε)ε ∼ 0. As a result, γHS(ε
′) ∼ γHS(ε

′) and γLS(ε
′) ∼ γLS(ε), so that

kGT (ε
′)∼ kGT (ε) considering the range of ε ′ used here.

4.2.3 Free energy calculations and kinetics

To estimate the free energy barriers for methane hydrate formation/dissociation, we com-

bined grand canonical ensemble Monte Carlo (GCMC) simulations with the umbrella

sampling technique to explore the free energy landscape for this complex system. The

details of these umbrella sampling calculations were discussed in Section 4.1.3. Due to the

slow formation/dissociation kinetics, large computational resources are required from a

technical point of view even if the umbrella sampling technique is used. In particular, low

temperatures lead to very slow methane hydrate dissociation. Therefore, it is difficult to

explore the free energy profile at low temperature (e.g., at melting temperature Tm ∼ 255

K of confined methane hydrate for Dp = 2.8554 nm). In this work, four temperatures

(T = 290 K, 310 K, 330 K, and 350 K) around T bulk
m = 285 K were considered for bulk

methane hydrate/liquid water. As for confined methane hydrate/liquid water, three tem-

peratures (T = 290 K, 300 K, and 310 K) above T pore
m = 255K were considered. Lower

temperatures were also considered for confined methane hydrate/liquid water. However,

even if ∼ 106 MC moves per molecule were used in the umbrella sampling technique, we

did not obtain meaningful results for these low temperatures.
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Figure 4.9 shows the normalized free energy, G/kBT , of bulk and confined (Dp =

2.8554 nm) methane hydrate/liquid water as a function of the local bond order parameter,

Q6, at different temperatures. For bulk methane hydrate/liquid water (see Figure 4.9

(left)), methane hydrate is favorable at low temperature T < Tm; for instance, the free

energy difference between methane hydrate and liquid water shows a positive value,

∆GLH/kBT =
(
GL −GH)/kBT = 8.1> 0 at T = 290 K. While at high temperature T > Tm,

liquid water is favorable; for instance, the free energy difference shows a negative value

∆GLH/kBT = −3.1 < 0 at T = 310 K. For the confined phase (see Figure 4.9 (right)),

all the free energy calculations were performed above the expected melting temperature

of confined methane hydrate as the results at lower temperatures were found to be too

noisy to be used to analysis. As expected, liquid water is the favorable phase at these

temperatures; indeed, free energy profiles at these three temperature give a negative free

energy difference between methane hydrate and liquid water. To estimate the melting

temperature of bulk and confined methane hydrate, the free energy difference, ∆GLH , as

a function of temperature, T , is shown in Figure 4.10. We found that the free energy

difference depends linearly on temperature. Therefore, we used a linear fit for both bulk

and confined phases to extrapolate ∆GLH at T pore
m . In so doing, this fit leads to T bulk

m = 302

K and T pore
m = 257 K for Dp = 2.8554 nm which are in fair agreement with the results

obtained using the direct coexistence method.

Each free energy profile, G(Q6), in Figure 4.9 shows two free energy barriers, ∆Gbarr:

one is for the phase transition from liquid water to methane hydrate (i.e., formation),

∆GL→H
barr while the other one is for the phase transition from methane hydrate to liquid

water (i.e., dissociation), ∆GH→L
barr . As said previously, the slow formation/dissociation

kinetics makes it difficult to determine the free energy profiles of confined methane

hydrate close to its melting temperature even when the umbrella sampling technique

is used. In order to overcome this problem, we compare the free energy barriers as

a function of the temperature difference with respect to the melting point for the bulk

and confined systems. This makes it possible to compare the formation/dissociation
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Figure 4.9 (color online) Free energy, G, of methane hydrate and liquid water in bulk
phase (left) and in confined phase for Dp = 2.8554 nm (right) as a function of the local
bond order parameter, Q6. G(Q6) of bulk phase (left) is shown at T = 290 K (blue), 310
K (purple), 330 K (orange) and 350 K (red). G(Q6) upon confinement (right) is shown at
T = 290 K (blue), 300 K (green), and 310 K (purple). The free energy is normalized using
the thermal energy, kBT . For the sake of clarity, a shift of +10, +20, and +30 in G/kBT
is added for the bulk phase at T = 310 K, 330 K, and 350 K. A shift of +10 and +20 in
G/kBT is added for the confined phase at T = 300 K and 310 K.
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Figure 4.10 (color online) Free energy difference, ∆GLH , between methane hydrate and
liquid water as a function of temperature, T . The blue circles are for bulk methane hydrate
and the red circles are for confined methane hydrate in a pore Dp = 2.8554 nm. The blue
dashed line is a linear fit for bulk methane hydrate while the red dashed line is a linear fit
for confined methane. These fits lead to T bulk

m = 302 K and T pore
m = 257 K for Dp = 2.8554

nm. The free energy is normalized using the thermal energy, kBT .
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kinetics between bulk and confined phases at the same “distance” to the melting point.

In particular, for confined methane hydrate, we can extrapolate and estimate ∆Gbarr at

T pore
m . These data are shown in Figure 4.11. On the one hand, as described in the

classical nucleation theory (see Section 1.3), the formation/dissociation rate, J, is defined

as J = J0 exp(−∆Gbarr/kBT ). Using the extrapolation, we obtain ∆Gbarr/kBT = 50.7 for

bulk methane hydrate while ∆Gbarr/kBT = 33.8 for confined methane hydrate. A larger

free energy barrier ∆Gbarr/kBT = 300 for bulk methane hydrate is found at T = 273 K

and P = 900 atm by Knott et al. (Knott et al., 2012). The large free energy barrier between

liquid water and methane hydrate at the melting point (∆GL→H
barr = ∆GH→L

barr at this point)

indicates that the phase transition between methane hydrate and liquid water (i.e., L → H

and H → L) is extremely slow. On the other hand, as compared with bulk methane hydrate,

confinement decreases the free energy barrier Gbarr/kBT (for both L → H and H → L).

This result suggests that the phase transition between methane hydrate and liquid water is

much easier (i.e., faster kinetics) when confined in a porous solid.

4.3 Conclusion

Using molecular simulation, the confinement effects on the phase stability and forma-

tion/dissociation kinetics of methane hydrate were determined. For different pore widths,

we first determined the melting temperature, T pore
m , of confined methane hydrate at a given

pressure using the direct coexistence method. Our results show a reduced phase stability

with a shift in the melting temperature, ∆T pore
m , pointing to low temperature, as compared

with bulk methane hydrate: ∆T pore
m = T pore

m −T bulk
m < 0 where T bulk

m is the melting temper-

ature of bulk methane hydrate and T pore
m is the melting temperature of confined methane

hydrate.

A revised version of the Gibbs–Thomson equation was also derived. For this revised

Gibbs-Thomson equation, we first determined important thermodynamic parameters such

as the molar volume and enthalpy for both methane hydrate and liquid water. And, the
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Figure 4.11 (color online) Free energy barriers, ∆Gbarr/kBT , between methane hydrate
and liquid water as a function of the shift with respect to the melting point, T −Tm, for
bulk phase (red) and for confined phase (blue): (1) free energy barriers from liquid water
to methane hydrate, i.e., methane hydrate formation (left), ∆GL→H

barr ; and (2) free energy
barrier from methane hydrate to liquid water, i.e., methane hydrate dissociation (right),
∆GH→L

barr . The red cross is for bulk methane hydrate while the blue cross is for confined
methane hydrate using the extroplation described in the text. The free energy barriers are
normalized using the thermal energy, kBT .

chemical potential of methane and water upon phase equilibrium is necessary to correct

the Gibbs-Thomson equation. Then, we determined the surface tensions between the

porous solid and methane hydrate γHS or liquid water γLS. The Gibbs-Thomson coefficient

obtained using these data, which is agreement with that inferred using the direct coexistence

method, shows that the shift in melting temperature of confined methane hydrate as a

function of pore width can be well-described using the Gibbs-Thomson equation.

Slow formation kinetics was observed in the direct coexistence method. This was

further validated using free energy calculations. More in details, using the umbrella

sampling technique, we determined the free energy profiles of bulk and confined methane

hydrate at different temperatures. Our finding suggests that confinement leads to faster

formation/dissociation kinetics (i.e., decreases the free energy barriers between methane
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hydrate and liquid water) of methane hydrate. However, we note that formation/dissociation

of confined methane hydrate remains overall very slow.
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In this chapter, we focus on the physical and physicochemical properties of methane

hydrate confined at the nanoscale. These physical and physicochemical properties in-

clude (1) density distribution, (2) order parameter, (3) thermal expansion, (4) isothermal

compressibility, and (5) thermal conductivity. Both bulk and confined methane hydrates

are considered as they play an important role in practical applications (Bai et al., 2015;

Burnham and English, 2016; Demurov et al., 2002; Jendi et al., 2016; Michalis et al.,

2016a; Yang et al., 2016b; Zhu et al., 2014). The remainder of this chapter is organized as

follows. In Section 5.1, we present the computational details: molecular configurations of

confined methane hydrate and liquid water, molecular dynamics in the isobaric-isothermal

ensemble, molecular dynamics in the canonical ensemble, piston method to apply a given

pressure, the Green-Kubo formalism to determine the thermal conductivity. In Section 5.2,

the density profiles of bulk and confined methane hydrates as well as liquid water are

presented. In this part, we also show local bond order parameters. In Section 5.3, the

thermal expansion and isothermal compressibility are presented. In Section 5.4, we use the

Green-Kubo formalism to compute the thermal conductivity of bulk and confined methane

hydrate. Section 5.5 presents some concluding remarks.

5.1 Computational details

5.1.1 Molecular models

Figure 5.1 shows the molecular configurations of confined methane hydrate (left) and

liquid water (right) considered in this work. We first duplicate the unit cell of bulk methane

hydrate along the z-axis to build a larger configuration. Then, we remove all the molecules

(water and methane) |z|> zc where zc = 1.3809 nm. In so doing, a total number of 392

water molecules and 76 methane molecules are included in the configuration of confined

methane hydrate. A similar method was proposed by Chakraborty et al. (Chakraborty

and Gelb, 2012b). The pore walls are the same as those used in Chapter 4; the pore

width, Dp, is defined as the distance between the center of the innermost layer solid
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atoms of the two pore walls. The configuration of confined liquid water is generated by

melting the empty hydrate structure in the canonical ensemble followed by simulation at

constant pressure. To determine density profiles, order parameters, thermal expansion,

and isothermal compressibility, the following box dimensions Lx = Ly = Lz = 2.3754

nm are used for bulk methane hydrate/liquid water while Lx = Ly = 2.3754 nm and

Lz = 44.5734 nm are used for confined methane hydrate/liquid water. To determine the

thermal conductivity, Lx = Ly = Lz = 3.5631 nm (corresponding to 3×3×3 unit cells)

are used for bulk methane hydrate following the work by English et al. (English and Tse,

2009; English et al., 2009). The following simulation box dimensions Lx = Ly = 3.5631

nm and Lz = 49.4754 nm (corresponding to 3×3×6 unit cells) are used to determine the

thermal conductivity of confined methane hydrate. Periodic boundary conditions are used

in the x– and y–directions while the system is non-periodic in the z–direction.

5.1.2 Molecular dynamics details

Molecular dynamics (MD) in the isobaric–isothermal (NPT ) ensemble are used to relax

the configuration (energy, density, etc.) and to determine the density profiles of water ρw(z)

and methane ρm(z), order parameter profiles Q6(z), thermal expansion αP, isothermal

compressibility κT of bulk methane hydrate and liquid water. To relax such confined

molecular systems, a pressure component along the z-axis, Pzz, was applied using two

pistons (one is the top wall and the other one is the bottom wall). Each piston applies

an external force, f wh
zz,ex where wh = bot is for the bottom wall and wh = top is for the

top wall, to each piston atom (each piston is made of Nwh
s atoms). These forces are

f top
zz,ex =−Pzz/

(
LxLyNtop

s

)
and f bot

zz,ex = Pzz/
(
LxLyNbot

s
)

where Lx and Ly are the dimensions

of the simulation box in the x– and y–directions. In addition to fzz,ex, there is another force,

f wh
zz,in, for each solid atom. Such force arises from the LJ interactions with the methane

hydrate atoms (or liquid water atoms). To determine f wh
zz,in, the total force from LJ pair

interactions on the pore wall is first calculated, Fwh
zz,in. Then, this force is averaged and
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reassigned to every atom: f wh
zz,in = Fwh

zz,in/Nwh
s . Therefore, the force on each solid atom is

f wh
zz = f wh

zz,ex + f wh
zz,in at each timestep of the molecular dynamics simulation.

D
p

Figure 5.1 (color online) Molecular configuration of confined methane hydrate (left) and
liquid water (right). The red and white spheres are the oxygen and hydrogen atoms of
water, respectively. The gray spheres are the methane molecules which are inside the
hydrogen-bonded cages formed by water molecules. The yellow spheres are the solid
atoms of the pore walls. Pore walls are set as described in Chapter 4 but with pistons
at the top wall and bottom wall. In this specific configuration, the sI methane hydrate
with dimensions of Lx = Ly = Lz = 2.3754 nm is confined inside the porosity (left). The
liquid water (right) is obtained by first removing methane molecules and then melting the
hydrate phase in the canonical ensemble followed by simulations at constant pressure. The
dimensions of the simulation box are Lx = Ly = 2.3754 nm and Lz = 44.5734 nm (left) and
41.4932 nm (right). Periodic boundary conditions are used along the x– and y–directions.

5.1.3 Thermal conductivity

For bulk methane hydrate, molecular dynamics in the isobaric-isothermal (NPT ) ensemble

is first used to relax its density and energy. While for confined methane hydrate, methane

hydrate is treated in a similar way but with pistons used to apply a pressure Pzz. Once

equilibrium is reached, molecular dynamics simulations in the microcanonical (NV E)

ensemble are used to determine the heat-flux vector as a function of time, J(t), of bulk and

confined methane hydrate. The heat-flux vector, J(t), at time, t, can be computed using the
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following microscopic expression:

J(t) =
1
V

[
∑

i

(
1
2

miv2
i (t)
)

vi(t)

+
1
2 ∑

i
∑
i< j

ui j(t)
(
vi(t)+v j(t)

)
+

1
2 ∑

i
∑
i< j

[
fi j(t)·

(
vi(t)+v j(t)

)
ri j(t)

]]
(5.1)

where V is the volume, 1
2miv2

i is the kinetic energy of molecule i with the molecular mass

mi, ui j is the interaction energy between molecules i and j, vi (v j) are the velocity of the

molecule i (molecule j), fi j is the force on molecule i exerted by molecule j, and ri j is the

position vector separating molecules i and j. kB is Boltzmann’s constant. The first, second,

and third terms in Eq. (5.1) correspond to the kinetic energy, potential energy, and stress.

In Eq. (5.1), J(t) is a vector which has three components – [Jx(t), Jy(t), Jz(t)].

The Green-Kubo formalism relates the ensemble average of the time autocorrelation of

the heat flux to the thermal conductivity, λ :

λ =
V

3kBT 2

∫
∞

0
⟨J(0)·J(t)⟩dt (5.2)

where h(t) =V/3kBT ⟨J(0) ·J(t)⟩ is the normalized autocorrelation function of the heat-

flux. For bulk methane hydrate, J(t) is symmetrical in x–, y–, and z–directions and the

heat-flux vector components are equal in each direction: Jx(t) = Jy(t) = Jz(t). In contrast,

for confined methane hydrate: Jx(t) = Jy(t) ̸= Jz(t). We computed the thermal conductivity

using the two following components:

λT =
V

2kBT 2

∫
∞

0

〈
Jx(0)Jx(t)+ Jy(0Jy(t))

〉
dt

λN =
V

kBT 2

∫
∞

0
⟨Jz(0)Jz(t))⟩dt

(5.3)
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where λT and λN are the tangential and normal components of the thermal conductivity.

hT (t) = V/2kBT
〈
Jx(0)Jx(t)+ Jy(0)Jy(t)

〉
and hN(t) = V/kBT ⟨Jz(0)Jz(t)⟩ are the corre-

sponding autocorrelation functions.

The autocorrelation function h(t) in Eq. (5.2) and hN(t) and hT (t) in Eqs. (5.3) can

be extracted using the energy transfer between neighboring atoms. Such energy transfer

is the sum of exponentially decaying functions that correspond to acoustic and optical

components together with a cosine-modulated term for the optical component,

h(t) =
nac

∑
i=1

Ai exp(−t/τi)+
nop

∑
j=1

[
nop, j

∑
k=1

Bi j exp
(
−t/τ jk

)]
cosω jt +

nop

∑
j=1

C j cosω jt (5.4)

In this equation, the first term corresponds to two or three (i.e., nac = 2 or 3) acoustic modes

(namely, short range, sh, long range, lg, and, possibly, medium range, me). The second

term corresponds to one or two (nop = 1 or 2) optical modes. The third term corresponds

to the residual oscillations beyond the acoustic and optical modes. The relaxation times

for the acoustic modes are τsh, τme, and τlg while those for the optical modes are τ jk. Ai,

B jk, and C j are the amplitudes of the acoustic, optical, and residual terms, respectively.

ω j are the oscillation frequencies which correspond to peaks in the optical region of the

power spectrum, F (v). F (v) is obtained in this work using the Fourier transform of h(t).

It should be noted that the residual terms are omitted in the Fourier transform as it only

leads to a delta function in the Fourier space.

5.2 Structure

Density profiles. The density profiles, ρΦ
s (z), of a species s in the phase Φ along the

z–axis are computed as follows:

ρ
Φ
s (z) =

⟨∆Ns(z,z+∆z)⟩Ms

NALxLy∆z
(5.5)
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where ⟨∆N(z,z+∆z)⟩ is the ensemble average of the number of species s located in the

region between z and z+∆z, Ms is the molar mass of molecule s, and NA is Avogadro’s

constant. s = m is for methane molecules while s = w is for water molecules. Φ = L is

for liquid water while Φ = H is for methane hydrate. The following density profiles were

determined at T = 240 K and P = 100 atm (or Pzz = 100 atm for confined systems): water

in liquid phase, ρL
w(z), and methane, ρH

m (z), and water, ρH
w (z), in hydrate phase. These

data are shown in Figure 5.2. Multi-layer distributions are observed for confined liquid

water (see Figure 5.2 (top)). In these layers, liquid water exhibits a high density close to

the pore wall. By comparing water molecules in the bulk and confined methane hydrate

(Figure 5.2 (center)), the density profiles do not show significant differences. Moreover,

comparison between the density of methane molecules in bulk methane hydrate and that

for confined methane hydrate (see Figure 5.2 (bottom)), the later exhibits a higher density

only close to the pore walls.

Order parameter. The order parameter profiles of water along the z–axis, Q6(z), are

computed as follows:

Q6(z) =

〈
∑

∆Nw(z,z+∆z)
i Q6,i

∆Nw(z,z+∆z)

〉
(5.6)

where ⟨· · · ⟩ denotes an ensemble average. ∆Nw(z,z+∆z) is the number of water molecules

located in the region between z and z+∆z. The index i runs over all these water molecules.

The i–th water molecule exhibits a local bond order parameter Q6,i (as defined in Chapter 4).

Figure 5.3 shows the order parameter Q6 of liquid water and methane hydrate along the

z-axis. First, liquid water exhibits a much more ordered structure at such low temperature

T = 240 K (as compared with the data at temperatures above the melting point of ice).

For instance, Q6 ∼ 0.39 for liquid water at T = 290 K is obtained using the free energy

calculations in Figure 4.9 of Chapter 4. In contrast, Q6 ∼ 0.48 is obtained at T = 240 K as

shown in Figure 5.3. The latter value is closer to the value of crystalline structures of water

such as Q6 ∼ 0.55 for methane hydrate and hexagonal ice at T = 250 K and P = 10 atm.

Q6 for hexagonal ice and methane hydrate were determined using molecular dynamics

in the NPT ensemble. Second, by comparing Q6 for bulk and confined liquid water (see
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Figure 5.2 Density profiles along the z–axis, ρ(z), of water in liquid phase (top), methane
in hydrate phase (center), and water in hydrate phase (bottom) at T = 240 K and P = 100
atm. The red solid lines are for bulk phases while the green solid lines are for confined
phases. The black dashed lines are the positions of the pore walls with the pore width Dp.
The blue dashed lines are the dimension in the z–direction for bulk methane hydrate with
Lz = 2 u. The red dashed lines are the density profiles for a duplicated bulk phase.
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Figure 5.3 (top)), it is seen that confinement decreases Q6. This might be caused by the

fact that the larger density leads to a larger number of neighbors for a water molecule in

the layers while the lower density corresponds to fewer neighbors for a water molecule

between two layers. Q6 for confined liquid water around the pore center is close to the

value for bulk liquid water. This is due to the fact that their densities are similar. Finally,

Q6 for bulk and confined methane hydrate are similar along the z–axis (see Figure 5.3

(bottom)) except for slight differences close to the pore walls. These slight differences

are due to the fact that the water molecules in this region possess fewer neighbors. The

number of neighbors is Nb = 4 for water molecules in bulk methane hydrate and confined

methane hydrate in pore center while Nb = 2 or 3 for water in the region close to the pore

walls.
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Figure 5.3 Local bond order parameters along the z–axis, Q6(z), in liquid water (top) and
methane hydrate (bottom) at T = 240 K and P = 100 atm. The red solid lines are for bulk
phases while the green solid lines are for confined phases. The black dashed lines are the
positions of the pore walls with the pore width Dp. The blue dashed lines indicate the
dimension in the z–direction for bulk methane hydrate with Lz = 2 u. The red dashed lines
are the local bond order parameters for a duplicated bulk phase.
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5.3 Thermodynamic coefficients

Thermal expansion, αP. The thermal expansion, αΦ
P , describes the ability of methane

hydrate (Φ = H) or liquid water (Φ = L) to change its volume V in response to a change

in temperature, T , at constant pressure, P,

α
Φ
P =

1
V

(
∂V
∂T

)
P

(5.7)

According to the above definition, the estimation of αP requires to determine the volume,

V (T ), as a function of temperature T at a given pressure P. For bulk liquid water/methane

hydrate, V (T ) is determined using molecular dynamics in the NPT ensemble. Due to the

fact that there is no unique definition of the volume V for a confined phase, we consider

here two volumes, V dmin
pore and V dmax

pore (definitions will be given later), to compute the thermal

expansion. According to Eq. (5.7), this leads to two thermal expansions, α
Φ,dmin
Pzz,pore and

α
Φ,dmax
Pzz,pore ,

α
Φ,dmin
Pzz,pore =

1
V dmin

pore

(
∂V dmin

pore

∂T

)
Pzz

α
Φ,dmax
Pzz,pore =

1
V dmax

pore

(
∂V dmax

pore

∂T

)
Pzz

(5.8)

where V dmax
pore = LxLyDp and V dmin

pore = LxLy(Dp −σOS) are the maximum and minimum

volumes that can be considered. We recall that Dp is defined as the distance between

the centers of solid atoms of the innermost layer of pore walls. σOS is the LJ parameter

for unlike atomic pairs of oxygen-solid atoms. Pzz is the pressure applied to the pistons

(the details of such piston calculations can be found in Section 5.1). As a comparison

with confined systems, the thermal expansion using the molecular dynamics in the NPzzT

ensemble, αΦ
pzz

, reads:

α
Φ
Pzz

=
1
Vz

(
∂Vz

∂T

)
Pzz

(5.9)
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where Vz = LxLyLz is the volume of bulk phase in the NPzzT ensemble. In this work,

different temperatures were considered: T = 160 K, 180 K, 200 K, 220 K, and 240 K

at P = 100 atm (or Pzz = 100 atm). For the calculations of α
Φ,dmax
Pzz,pore , α

Φ,dmin
Pzz,pore and αΦ

Pzz
,

Lx = Ly = 2.3754 nm is kept constant.

Figure 5.4 shows the volume (left) and the corresponding thermal expansion (right) as

a function of temperature for liquid water. First, the volume V increases with temperature

T at P = 100 atm for both bulk and confined liquid water. Second, calculations in the NPT

and NPzzT ensembles leads to the same volume of bulk liquid water at each temperature, i.e.,

V (T )∼Vz(T ) and (∂V/∂T )P ∼ (∂Vz/∂T )Pzz
, so that as expected the thermal expansion

of bulk liquid water determined using the NPT ensemble is the same as that determined

using the NPzzT ensemble, αL
P = αL

Pzz
. Finally, comparing αL

P and α
L,dmax
Pzz,pore (or α

L,dmin
Pzz,pore)

suggests that the thermal expansion of confined water is small or equal to that of bulk

liquid water.

Figure 5.5 shows the volume (left) and the corresponding thermal expansion (right) as

a function of temperature for methane hydrate. Similarly to liquid water, we found that: (1)

V (T ), Vz(T ), V dmax
pore (T ), and V dmin

pore (T ) increases with T ; (2) V (T )∼Vz(T ), (∂V/∂T )P ∼

(∂Vz/∂T )Pzz
, so that αH

P = αH
Pzz

; (3) αH
P > α

H,dmin
Pzz,pore > α

H,dmax
Pzz,pore. Confinement decreases

the thermal expansion up to 44.3% for methane hydrate. In addition, by comparing the

thermal expansion between methane hydrate and liquid water, methane hydrate shows a

smaller thermal expansion than liquid water in the temperature range 160–240 K: αL
P > αH

P ,

α
L,dmax
Pzz,pore > α

H,dmax
Pzz

, and α
L,dmin
Pzz,pore > α

H,dmin
Pzz,pore.

Isothermal compressibility, κT . The isothermal compressibility describes the ability

of methane hydrate or liquid water to change its volume in response to a change in pressure

at constant temperature. As with the thermal expansion, the three following isothermal

compressibilities at T = 240 K and P = 100 atm, 300 atm, 500 atm, 700 atm, and 900 atm

are considered in this work:
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Figure 5.4 (color online) Volume (V , left) and thermal expansion (αP, right) of bulk
and confined liquid water as a function of temperature T at P = 100 atm. Two different
ensembles were considered for bulk liquid water: NPT ensemble (blue circles) and NPzT
ensemble (black circles). For confined liquid water, a minimum value Dmin

p (orange circles)
and a maximum value Dmax

p (red circles) of the pore width were considered. A total of 368
water molecules were used to determine these data. The dashed lines are linear fits.
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Figure 5.5 (color online) Volume (V , left) and thermal expansion (αP, right) of bulk and
confined methane hydrate as a function of temperature T at P = 100 atm. Two different
ensembles were considered for bulk methane hydrate: NPT ensemble (blue circles) and
NPzT ensemble (black circles). For confined methane hydrate, a minimum value Dmin

p
(orange circles) and a maximum value Dmax

p (red circles) of the pore width were considered.
The dashed lines (left) are linear fits. The solid black line are experimental data while the
dashed black line (right) are simulation data for bulk methane hydrate (Ning et al., 2012,
2015).
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(1) the isothermal compressibility, κΦ
T , for bulk phase is determined using molecular

dynamics in the NPT ensemble,

κ
Φ
T =− 1

V

(
∂V
∂P

)
T

(5.10)

(2) the isothermal compressibility, κ
Φ,dmax
T,pore and κ

Φ,dmin
T,pore , for the confined phases is

determined using the piston method,

κ
Φ,dmin
T,pore =− 1

V dmin
pore

(
∂V dmin

pore

∂Pzz

)
T

κ
Φ,dmax
T,pore =− 1

V dmax
pore

(
∂V dmax

pore

∂Pzz

)
T

(5.11)

(3) the isothermal compressibility, κΦ
T,Pzz

, for the bulk phase is determined using molecu-

lar dynamics in the NPzzT ensemble,

κ
Φ
T,Pzz =

1
Vz

(
∂Vz

∂Pzz

)
T

(5.12)

The volume and the isothermal compressibility as a function of pressure P (or pressure

component Pzz) for liquid water and methane hydrate are shown in Figures 5.6 and 5.7. For

both liquid water and methane hydrate, the volumes obtained using different simulations

(V L, V L
z , V L,dmin

pore , and V L,dmax
pore for liquid water and V H, V H

z , V H,dmin
pore , and V H,dmax

pore for

methane hydrate) decrease as the pressure increases. As a result, positive values of the

isothermal compressibility are always observed for both methane hydrate and liquid water.

For both bulk and confined liquid water (see Figure 5.6), the isothermal compressibility

(κL
T , κ

L,dmin
T,pore , and κ

L,dmax
T,pore ) increases with pressure. Confinement decreases the isothermal

compressibility of liquid water: κL
T > κ

L,dmin
T,pore > κ

L,dmax
T,pore . The isothermal compressibility

of bulk methane hydrate (κH
T ) increases with pressure while the isothermal compressibility

(κH,dmin
T,pore and κ

H,dmax
T,pore ) of confined methane hydrate decreases with increasing pressure.

Compared with bulk methane hydrate, confinement increases the isothermal compressibility
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at low pressure P < 500 atm (κH
T < κ

H,dmax
T,pore < κ

H,dmin
T,pore ) while it decreases the isothermal

compressibility at high pressure P > 500 atm (κH
T > κ

H,dmin
T,pore > κ

H,dmax
T,pore ).
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Figure 5.6 (color online) Volume (V , left) and isothermal compressibility (κT , right) of
bulk and confined liquid water as a function of pressure P at T = 240 K. Two different
ensembles were considered for bulk liquid water: NPT ensemble (blue circles) and NPzT
ensemble (black circles). For confined liquid water, a minimum value Dmin

p (orange circles)
and a maximum value Dmax

p (red circles) of the pore width were considered. The dashed
lines are linear fits.
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Figure 5.7 (color online) Volume (V , left) and isothermal compressibility (κT , right) of
bulk and confined methane hydrate as a function of pressure P at T = 240 K. Two different
ensembles were considered for bulk methane hydrate: NPT ensemble (blue circles) and
NPzT ensemble (black circles). For confined methane hydrate, a minimum value Dmin

p
(orange circles) and a maximum value Dmax

p (red circles) of the pore width were considered.
The dashed lines are linear fits.
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5.4 Thermal conductivity

In this work, the thermal conductivity of bulk (λ ) and confined (λN and λT are tangential

and normal components) methane hydrate are determined using molecular dynamics simu-

lation. The details of these molecular dynamics simulations can be found in Section 5.1.3.

To determine λ , λN and λT , the heat-flux vectors are first determined using Eq. (5.1). Then,

the (normalized) autocorrelation functions of these heat-flux vectors for bulk methane

hydrate, h(t), and for confined methane hydrate, hT (t) and hN(t), are estimated using

Eqs. (5.2) and (5.3). Figure 5.8 shows these autocorrelation functions at T = 250 K –

h(t) (left), hT (t) and hN(t) (right) – as obtained from our simulations. we also show the

autocorrelation function h(t) obtained by English et al. for bulk methane hydrate. We

obtained data for bulk methane hydrate that are consistent with those reported by English

et al. (English and Tse, 2009; English et al., 2009). For confined methane hydrate, the

tangential component hT (t) shows a similar trend as h(t) for bulk methane hydrate but

with a slight different oscillation frequency. The normal component hN(t) exhibits two

oscillation frequencies.
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Figure 5.8 (color online) Autocorrelation function of the heat-flux vector, h(t), as a
function of time, t, for bulk (left) and confined (right) methane hydrate. For bulk methane
hydrate, the black solid line is from this work while the black dashed line is from English
et al. (English and Tse, 2009; English et al., 2009). For confined methane hydrate, the red
solid line is the tangential component hN =V/kBT ⟨Jz(t)Jz(0)⟩ while the green solid line
is the normal component hT =V/2kBT

〈
Jx(t)Jx(0)+ Jy(t)Jy(0)

〉
.
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As described in Section 5.1.3, we can use Eq. (5.4) to fit these autocorrelation functions.

These fits require us to separate the acoustic and optical modes. We take the Fourier

transform of Eq. (5.4):

F [υ ] =
nac

∑
i=1

Ai
τ
−1
i

υ2 + τ
−2
i

+
nop

∑
j=1

nop, j

∑
k=1

B jk
τ
−1
jk(

υ −ω j
)2

+ τ
−2
jk

 (5.13)

We recall that the residual terms corresponding to ∑
nop
j C j cosω j are omitted in this equation

as it leads to a Dirac peak when calculating the Fourier transform (see Section 5.1.3). In the

Fourier space, the acoustic modes (including short, medium, and long range) are centered

around zero frequency while the optical modes are centered around a localized vibration

frequency, i.e., w j. The power spectra obtained using Fourier transform are shown in

Figure 5.9. For bulk methane hydrate, one optical mode with the oscillation frequency

ω1 = 148.3 rad/ps is found. For the tangential component of confined methane hydrate,

only one optical mode with ω1 = 115.5 rad/ps is also found. For the normal component

of confined methane hydrate, two optical modes with ω1 = 137.7 rad/ps and ω2 = 186.7

rad/ps are found. To obtain the acoustic contributions, a low-pass filter approach is adopted

as first described by English et al. (English and Tse, 2009; English et al., 2009). The optical

modes are first removed from the Fourier transform of the autocorrelation of the heat-flux

(i.e., set zero for υ > 350 cm-1). Then, we calculate the inverse Fourier transform to obtain

the acoustic modes. In so doing, the acoustic and optical modes are separated using inverse

Fourier transforms of the power spectrum F (υ). Figure 5.10 shows the separated acoustic

and optical modes for bulk methane hydrate. We use these two plots to determine the

relaxation times, τi and τ jk, and amplitudes, Ai, B jk, and C j, for each component of the

acoustic and optical modes in Eq. (5.4). On the one hand, all the maximum/peak points

of the autocorrelation functions (h(t), hT (t) and hN(t)) are taken to fit the optical modes.

On the other hand, a smoothed form for the acoustic modes is constructed by taking the

function values of the inverse Fourier transform at half-way in time between two peaks of

the optical modes. This treatment aims at eliminating the artificial periodicity introduced
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by the square cut-off when we perform the low-pass filter. These maxima and smoothed

points are also shown in Figure 5.11 using a logarithm scale.
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Figure 5.9 (color online) Fourier transform F [υ ] of the autocorrelation function of the
heat-flux for bulk (h(t), left) and confined (hT (t), center; hN(t), right) methane hydrate.
For bulk methane hydrate, the black solid line is from this work while the black dashed line
is from English et al. (English and Tse, 2009; English et al., 2009). For confined methane
hydrate, the red solid line is for hN =V/kBT ⟨Jz(t)Jz(0)⟩ while the green solid line is for
hT =V/2kBT

〈
Jx(t)Jx(0)+ Jy(t)Jy(0)

〉
.
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Figure 5.10 Inverse Fourier transform of the power spectrum for bulk methane hydrate.
The acoustic mode (gray line) and optical mode (black line) are separated as described in
the text. The maxima/peaks of the optical modes (black circles) and the smoothed points
for the acoustic modes (gray circles) are considered to determine the relaxation time and
amplitudes (see text).

Until now, we obtained all the points needed to fit the acoustic modes (smoothed

points) and the optical modes (maxima/peaks). Piecewise linear fits are then applied to the

acoustic and optical modes as shown in Figure 5.11. On the one hand, three linear fits are

performed to determine the signal corresponding to the acoustic modes: Ash and τsh for the
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short-range contribution, Ame and τme for the medium-range contribution, and Alg and τlg

for the long-range contribution. On the other hand, another three (more if the system has

more optical modes) linear fits are performed to determine the signal corresponding to the

optical modes: B11 and τ11 for the short-range contribution, B12 and τ12 for the long-range

contribution, and C1 for the constant term. Using the fitting results (i.e., relaxation time

τ and oscillation amplitudes A, B, C) given above as the initial parameters, two overall

fits are then performed: one is for the acoustic and the other one is for the optical modes.

These fits results are also shown in Figure 5.11. The final fit results were used to determine

the corresponding thermal conductivity in Eqs. (5.2) and (5.3),

λ =
∫

∞

0
h(t)dt =

nac

∑
i

Aiτi +
nop

∑
j

[
nop, j

∑
k

B jkτ jk

1+(τ jkω j)2

]
(5.14)

In practice, the fit of the acoustic modes given above is accurate for bulk methane

hydrate (see Figure 5.11 (right top)) while not for confined methane hydrate (see Figure 5.11

(right center) and (right bottom)). On the one hand, Figure 5.11 (right center) shows that

the fit does not work well for the acoustic modes of the tangential component of confined

methane hydrate. Therefore, the trapezoidal integration algorithm is also used to estimate

the total (including acoustic and optical modes) tangential component of the thermal

conductivity of confined methane hydrate. On the other hand, Figure 5.11(right bottom)

indicates that the acoustic modes for the normal component exhibits a low-frequency

oscillated decay. According to the Fourier transform, as shown in Figure 5.9, the oscillation

frequency reads ω = 1.2612 rad/ps. Considering this observation, the fit equation for the

acoustic modes of the normal component of the confined methane hydrate is rewritten as,

h(t) =
nac

∑
i=1

Ai exp(−t/τi)cos(ωit)+
nop

∑
j=1

[
nop, j

∑
k=1

Bi j exp
(
−t/τ jk

)]
cosω jt +

nop

∑
j=1

C j cosω jt

(5.15)

and the corresponding integration reads,

λN =
∫

∞

0
h(t)dt =

nac

∑
i

Aiτi

1+(τiωi)
2 +

nop

∑
j

[
nop, j

∑
k

B jkτ jk

1+(τ jkω j)2

]
(5.16)
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Figure 5.11 (color online) Piecewise linear fits applied to the acoustic – smoothed points –
(gray circles, right panels) and optical – maxima/peaks – (black circles, left panels) modes
for bulk methane hydrate (top panels) and the tangential (center panels) and normal (bottom
panels) components of confined methane hydrate. Piecewise linear fits for optical modes
are shown for short-range (red solid lines), long-range (blue solid lines), and constant term
(green solid lines) terms. for hN(t), two optical modes are included but only one optical
mode (ω j = 186.7 rad/ps) is shown here (the fit results for the other one are shown in Table
5.2). Piecewise linear fits for acoustic modes are shown for short-range (red hashed lines),
medium-range (blue dashed lines), and long-range (green dashed lines) terms. The black
solid lines are for overall optical fits while the gray solid lines are for overall acoustic fits.
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All the data related to the fits are summarized in Tables 5.1 and 5.2. These calculations

lead to λ = 0.616 W/mK, λT = 1.857 (using trapezoidal integration) – 20.743 W/mK

(using energy transfer fits), and λN = 0.729 W/mK. The value obtained in this work for

bulk methane hydrate is close to the simulation data (λ = 0.64 W/mK) reported by English

et al. (English and Tse, 2009; English et al., 2009) and experimental data (0.68 (Rosenbaum

et al., 2007) and 0.62 (Waite et al., 2007)). Confinement increases the thermal conductivity

of confined methane hydrate, especially for the tangential component: λ < λN < λT .

Table 5.1 Relaxation times, τi (in ps), and amplitude, Ai (in W/mKfs), from the overall fit
of the acoustic modes. Contributions, λi (in W/mK), of each component to the thermal
conductivity, λac (in W/mK), of acoustic modes are also listed. * is for the oscillated
acoustic mode with the frequency – ωsh = 1.2612 rad/ps.

obj. Ash τsh λsh Ame τme λme Alg τlg λlg λac

h(t) 0.0014 0.0455 0.063 0.0004 0.2001 0.073 0.0002 2.1069 0.369 0.504
hT (t) 0.0022 0.0453 0.100 0.0016 0.3027 0.497 0.0047 4.2780 20.146 20.743
hN(t)∗ 0.0261 29.0935 0.564 – – – – – – 0.564

Table 5.2 Relaxation times, τ jk (in ps), and amplitude, B jk (in W/mKfs), from the overall
fit of the optical modes. The oscillation frequencies, ω j (in rad/ps) obtained from the
power spectra are also listed. Contributions, λ j (in W/mK), of each component to the
thermal conductivity, λop (in W/mK), of optical modes are also listed. The final thermal
conductivity is shown here.

obj. ω j τ jk B jk λ jk τ jk B jk λ jk C j λop λ

h(t) 148.3 0.0534 0.1331 0.112 0.4567 0.0065 0.001 0.0027 0.113 0.616
hT (t) 115.1 0.0428 0.1120 0.190 0.1692 0.0449 0.020 0.0032 0.210 20.953
hN(t) 186.7 0.0462 0.1484 0.091 0.1882 0.1408 0.022 0.0030 0.112 0.729

137.7 0.1225 0.1228 0.053 – – – 0.0003 0.0527

5.5 Conclusion

In this chapter, we use molecular dynamics simulation to determine the confinement effects

on the physical and physicochemcial properties of methane hydrate such as structure,

thermal coefficients, and thermal conductivity. For bulk system, these thermodynamics are

determined using molecular dynamics in the isobaric-isothermal ensemble. For confined

system, the piston method are applied to determine these thermodynamics at desired
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temperature and pressure. First, structural profiles, including density and local bond

order parameters are determined. Confinement increases the ordered structure of liquid

water but slightly affects the structure of methane hydrate. Then, the thermal expansion

and isothermal compressibility of bulk and confined methane hydrate/liquid water are

also determined. For both methane hydrate and liquid water, their thermal expansions

determined using the NPzzT ensemble are close to the results obtained using the NPT

ensemble, as well for isothermal compressibility. On the one hand, at the temperature

considered in this work, confinement decreases the thermal expansion of liquid water and

methane hydrate. On the other hand, at the pressure considered in this work, confinement

also decreases the isothermal compressibility of liquid water but increases or decreases

that of methane hydrate relates to the pressure. Finally, the thermal conductivity of bulk

and confined methane hydrate are also addressed using the Green-Kubo formalism. We

reproduced the thermal conductivity of bulk methane hydrate. As compared with bulk

methane hydrate, confined methane hydrate exhibits different autocorrelation function of

the heat-flux: the tangential component shows a lower oscillation frequency for the optical

mode while the normal component exhibits two optical modes and one oscillated acoustic

mode. Our data suggest that confinement increases the thermal conductivity for both the

tangential and normal components.





Conclusions and Perspectives

Methane hydrate, which is a crystalline structure made of water molecules forming a

network of hydrogen-bonded cages around methane molecules, is important for many

applications in the field of environment and energy science. In nature, methane hydrate

is often confined at the surface or inside porous rocks and media where it interacts

with mineral surfaces. Understanding the role of these confinement and surface effects

on the thermodynamics and dynamics of methane hydrate is an important concern. In

this thesis, different molecular simulation strategies were used to assess the structure,

phase stability, formation kinetics, and physical properties of methane hydrate confined

at the nanoscale. First, different molecular simulation strategies, including free energy

calculations using the Einstein molecule approach, the hyperparallel tempering technique,

and the direct coexistence method, are used to determine the phase stability of bulk

methane hydrate. Then, the direct coexistence method is chosen to determine the phase

stability of confined methane hydrate. To describe the shift in melting temperature, we

also revisit the Gibbs-Thomson equation. We also use molecular dynamics to determine

the thermodynamic parameters in the Gibbs-Thomson equation ans address its validity.

Finally, free energy calculations using the umbrella sampling technique are performed

to determine the formation/dissociation kinetics of bulk and confined methane hydrate.

In addition, confinement effects on several physical and physicochemical properties of

methane hydrate are also determined. Our findings are as follows:

(1) Using different molecular simulation strategies, the pressure–temperature phase

diagram for bulk methane hydrate is determined. In this part, we found that the
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choice of TIP4P/Ice water and OPLS-UA methane models allows one to reproduce

the phase diagram of methane hydrate. The data presented in the present work are

consistent with previous molecular simulation works and the experimental phase

diagram of methane hydrate.

(2) Using the direct coexistence method, decreased melting temperatures are observed

for confined methane hydrate with respect to bulk methane hydrate. In other words,

the shift in melting temperature of confined methane hydrate is negative ∆Tm =

T pore
m −T bulk

m < 0.

(3) The Gibbs-Thomson equation is revisited, and several thermodynamic parameters

needed in this equation are determined using molecular dynamics. Compared with

the liquid-substrate surface tension, a larger hydrate-substrate surface tension is

observed, γLS − γHS < 0. The data obtained using the direct coexistence method are

found to be consistent with the Gibbs-Thomson equation determined using molecular

dynamics. The shift in the melting point is found to be quantitatively described using

the Gibbs–Thomson equation, which predicts that the shift in melting point linearly

depends on the reciprocal of the pore width.

(4) Using the umbrella sampling technique, the free energy barriers between methane

hydrate and liquid water are determined. We found that confinement decreases these

free energy barriers and leads to faster formation/dissociation kinetics of methane

hydrate.

(5) Confinement decreases the thermal expansion and isothermal compressibility of

methane hydrate.

Despite the suitability of molecular simulation to determine confinement effects on the

physics of methane hydrate, many challenges are still to be faced:

(1) Understanding formation/dissociation mechanisms. Faster formation/dissociation

kinetics (corresponding to a decreased free energy barrier) was observed in this PhD
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work. However, understanding the growth mechanism of methane hydrate in porous

materials remains to be achieved as it is important for practical applications.

(2) Understanding surface chemistry effects and salt effects on the thermodynamics

and dynamics of methane hydrate. Natural porous materials exhibit various sur-

face chemistries (chemical composition, hydrophilicity/hydrophobicity, heterogene-

ity/homogeneity, etc.). These differences should be considered to mimic real en-

vironmental conditions. For methane hydrate trapped in marine sediments, salt in

seawater could also have drastic effects on phase stability of methane hydrate.

(3) Knowledge transfer to other gas hydrates. Understanding the role of confinement

on methane hydrate should allow one to explore other gas hydrates (e.g., carbon

dioxide, nitrogen, hydrogen, other hydrocarbons, etc.) and other clathrate structures

(e.g., zeolites, Metal Organic Frameworks, etc.).

(4) Decreasing computational costs. A large free energy barrier between methane

hydrate and liquid water leads to slow formation kinetics. Such a low nucleation

rate requires to perform large-scale molecular dynamics or Monte Carlo simulations

combined with free energy calculations. In this PhD work, we used the grand

canonical ensemble as it simplifies the calculations to determine the L–H–V phase

equilibrium. Despite the success of these calculations, they still require extensive

computational resources.
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L’hydrate de méthane, une structure cristalline constituée de molécules d’eau formant un

réseau de cages liés par liaison hydrogène autour de molécules de méthane, est important

pour de nombreuses applications dans le domaine de l’environnement et de l’énergie. Dans

la nature, l’hydrate de méthane est souvent confiné à la surface ou à l’intérieur de roches

poreuses où il interagit avec des surfaces minérales. Comprendre le rôle de ces effets de

confinement et de surface sur la thermodynamique et la dynamique de l’hydrate de méthane

est une préoccupation importante. Dans cette thèse, différentes stratégies de simulation

moléculaire ont été utilisées pour évaluer la structure, la stabilité, la cinétique de formation

et les propriétés physiques de l’hydrate de méthane confiné à l’échelle nanométrique.

Premièrement, différentes stratégies de simulation moléculaire, y compris des calculs

d’énergie libre utilisant l’approche de la molécule d’Einstein, la technique hyperparallel

tempering et la méthode de la coexistence directe, sont utilisées pour déterminer la stabilité

de la phase d’hydrate de méthane non confinée. Ensuite, la méthode de la coexistence

directe est choisie pour déterminer la stabilité de l’hydrate de méthane nanoconfinée.

Pour décrire le changement de température de fusion, nous redérivons l’équation de

Gibbs-Thomson. Nous utilisons également la dynamique moléculaire pour déterminer

les paramètres thermodynamiques de cette équation de Gibbs-Thomson et en évaluer sa

validité. Enfin, des calculs d’énergie libre utilisant la technique umbrella sampling sont

effectués pour déterminer la cinétique de formation/dissociation de l’hydrate de méthane

non confiné et confiné. En outre, l’effet de confinement sur plusieurs propriétés physiques
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et physicochimiques de l’hydrate de méthane est également déterminé. Nos constatations

sont les suivantes:

(1) En utilisant différentes stratégies de simulation moléculaire, le diagramme de phase

pression-température pour l’hydrate de méthane non confiné est déterminé. Dans

cette partie, nous avons constaté que le choix des modèles de méthane TIP4P /

Ice Water et OPLS-UA est important pour reproduire le diagramme de phase de

l’hydrate de méthane. Les données présentées dans ce travail sont en bon accord

avec des travaux antérieurs de simulation moléculaire mais aussi le diagramme de

phase expérimental de l’hydrate de méthane.

(2) En utilisant la méthode de la coexistence directe, des températures de fusion dimin-

uées sont observées pour l’hydrate de méthane confiné par rapport à l’hydrate de

méthane non confiné. En d’autres termes, le décalage de la température de fusion de

l’hydrate de méthane confiné est négatif. ∆Tm = T pore
m −T bulk

m < 0.

(3) L’équation de Gibbs-Thomson est revue et plusieurs paramètres thermodynamiques

nécessaires dans cette équation sont déterminés en utilisant la dynamique molécu-

laire. En comparaison avec la tension de surface entre le liquide et le substrat, on

observe une tension superficielle hydrate-substrat plus importante, γLS − γHS < 0.

Les données obtenues à l’aide de la méthode de coexistence directe sont cohérentes

avec l’équation de Gibbs-Thomson. Le déplacement du point de fusion est décrit

de manière quantitative en utilisant l’équation de Gibbs-Thomson, qui prédit que le

décalage du point de fusion dépend linéairement de l’inverse de la taille des pores.

(4) En utilisant la technique umbrella sampling, les barrières d’énergie libre entre

l’hydrate de méthane et l’eau liquide sont déterminées. Nous avons constaté que

le confinement diminue ces barrières d’énergie libre et conduit à une cinétique de

formation/dissociation plus rapide de l’hydrate de méthane.

(5) Le confinement diminue la dilatation thermique et la compressibilité isotherme de

l’hydrate de méthane.



Conclusions et Perspectives 147

Malgré la pertinence de la simulation moléculaire pour déterminer les effets du con-

finement sur la physique de l’hydrate de méthane, de nombreux défis restent à relever:

(1) Comprendre les mécanismes de formation/dissociation. Une cinétique de forma-

tion/dissociation plus rapide (correspondant à une diminution de la barrière d’énergie

libre) a été observée dans ce travail de thèse. Cependant, il reste à comprendre le

mécanisme de croissance de l’hydrate de méthane dans les matériaux poreux.

(2) Comprendre les effets de la chimie de surface et les effets de sel sur la thermody-

namique et la dynamique de l’hydrate de méthane. Les matériaux poreux naturels

présentent diverses chimies de surface (composition chimique, hydrophilie/hydrophobie,

hétérogénéité/homogénéité, etc.). Ces différences doivent être considérées pour

imiter les conditions environnementales réelles. Pour l’hydrate de méthane piégé

dans les sédiments marins, le sel dans l’eau de mer pourrait également avoir des

effets importants sur la stabilité de la phase de l’hydrate de méthane.

(3) Transfert de connaissances vers d’autres hydrates de gaz. Comprendre le rôle

du confinement sur l’hydrate de méthane devrait permettre d’explorer d’autres

hydrates de gaz (par exemple le dioxyde de carbone, l’azote, l’hydrogène, d’autres

hydrocarbures, etc.) et d’autres structures de clathrates (zéolithes, Metal Organic

Framework, etc.).

(4) Coûts de calcul. Une grande barrière d’énergie libre entre l’hydrate de méthane et

l’eau liquide conduit à une cinétique de formation lente. Une vitesse de nucléation

aussi faible nécessite d’effectuer des simulations moléculaires à grande échelle ou

des simulations Monte Carlo ou de dynamique moléculaire combinées à des calculs

d’énergie libre. Dans cette thèse, nous avons utilisé l’ensemble grand canonique car

il simplifie les calculs pour déterminer l’équilibre de phase L–H–V. Malgré le succès

de ces calculs, ils nécessitent encore des ressources informatiques considérables.





Appendix A

Einstein Molecule Approach

A.1 Vectors a and b

b
a

y

z

l
1

l
2

Figure A.1 Definition of the normalized vectors a and b in the 4-site rigid water molecule
(TIP4P/2005 and TIP4P/Ice). These two vectors are formed by the subtraction a =
(l1 − l2)/|l1 − l2| and summation b = (l1 + l2)/|l1 + l2| of the two bond vectors, l1 and l2.
The red and white spheres are the oxygen and hydrogen atoms, respectively. The green
sphere is the electronic site M of the oxygen atom.
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A.2 Free energy of non-interacting Einstein molecule AA

From the canonical partition function, QA, we obtain the Helmholtz free energy of the

non-interacting Einstein molecule, AA,

AA

NkBT
=− 1

N
ln(QA) (A.1)

For N water molecules distributed in a periodic box of volume V , QA reads:

QA =
(qtqrqvqe)

N

N!

∫
· · ·
∫

exp
(
−UA (r1,φ1, · · · ,rN ,φN)

kBT

)
×dr1dφ1 · · ·drNdφN (A.2)

where qt =V Λ−3 is the individual translational partition function while qr, qv, qe are the

individual rotational, vibrational, and electronic partition functions, respectively. qr, qv, qe

are dimensionless and are identical in the two coexisting phases, so that we assign them an

arbitrary value of one. The harmonic potential energy UA includes the translation UA,T

and rotation UA,R contributions:

UA =UA (r1,φ1, · · · ,rN ,φN)

=UA,T (r1, · · · ,rN)+UA,R (φ1, · · · ,φN) =UA,T +UA,R

(A.3)

where UA,T only depends on the positions ri of the N molecules while UA,R depends on

their two vector angles, φi =
(
φa,i,φb,i

)
. QA can be recast as:

QA =
1

N!Λ3N

∫
· · ·
∫

exp
(
− UA

kBT

)
×dr1dφ1 · · ·drNdφN

=
1

N!Λ3N

∫
· · ·
∫

exp
(
−

UA,T +UA,R

kBT

)
×dr1dφ1 · · ·drNdφN

=
1

N!Λ3N

∫
· · ·
∫

exp
(
−

UA,T

kBT

)
×dr1 · · ·drN

∫
· · ·
∫

exp
(
−

UA,R

kBT

)
×dφ1 · · ·dφN

= QA,T QA,R

(A.4)
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QA can be viewed as the product of the translation contribution QA,T (the term 1
N!Λ3N

is included in QA,T ) and the rotation contribution QA,R. Therefore, AA consists of a

translation AA,T and a rotation AA,R contributions, Noya et al. (2008); Vega et al. (2008)

AA

NkBT
=− 1

N
ln(QA) =− 1

N
ln
(
QA,T QA,R

)
=− 1

N
ln
(
QA,T

)
− 1

N
ln
(
QA,R

)
=

AA,T

NkBT
+

AA,R

NkBT

(A.5)

All free energies are normalized by the total thermal energy NkBT .

Translation contribution to the free energy of the non-interacting Einstein molecule,

AA,T . AA,T ,which arises from UA,T =UA,T (r1, · · · ,rN), only depends on the relative po-

sitions of the water molecules: the set of positions of all water molecules (r1, · · · ,rN)

can be rewritten as a set of the relative positions with respect to the first water molecule

(r1,r2 − r1, · · · ,rN − r1,). QA,T can therefore be rewritten as:

QA,T =
1

N!Λ3N

∫
· · ·
∫

exp
(
−

UA,T (r1, · · · ,rN)

kBT

)
×dr1 · · ·drN

=
1

N!Λ3N

∫
· · ·
∫

exp
(
−U (r1,r2 − r1, · · · ,rN − r1)

kBT

)
×dr1d(r2 − r1) · · ·d(rN − rN)

=
1

N!Λ3N

∫
dr1

∫
· · ·
∫

exp
(
−U (r2 − r1, · · · ,rN − r1)

kBT

)
×d(r2 − r1) · · ·d(rN − rN)

=
V

N!Λ3N

∫
· · ·
∫

exp
(
−U (r2 − r1, · · · ,rN − r1)

kBT

)
×d(r2 − r1) · · ·d(rN − rN)

(A.6)

From the integration corresponding to one permutation (between particles 1 and 2 for

instance) κ(UA,T ), the above partition function is the product of κ(UA,T ) with the total

number of all possible permutations (N −1)!:

QA,T =
(N −1)!V

N!Λ3N κT (UA,T ) =
V

NΛ3N κT (UA,T ) (A.7)
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where κ(UA,T ) is the integral for (N −1) 3D oscillators,

QA,T =
V

NΛ3N

(∫ +∞

0

∫
π

0

∫ 2π

0
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− λT

kBT
r2
)
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4π
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0
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0
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r2
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3/2
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π1/2

2
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V
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(
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(A.8)

Using the last equation, we obtain:

AA,T

NkBT
=− 1

N
ln
(
QA,T

)
=

1
N

ln
(

NΛ3

V

)
+

3
2

(
1− 1

N

)
ln
(

Λ2λT

kBT π

) (A.9)

Rotation contribution to the free energy of the non-interacting Einstein molecule,

AA,R. AA,R is obtained from QA,R. Each molecule in the Einstein molecule is equivalent

and independent, so that QA,R is the product of the integral for each molecule,

AA,R

NkBT
=− 1

N
ln(QA,R)

=− 1
N

ln

(
1

8π2

∫
π

0

∫ 2π

0

∫ 2π

0
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{
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kBT

[
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(
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π

)2
]}
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)N

=− ln

(
1

8π2

∫
π

0

∫ 2π

0

∫ 2π

0
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{
− λR

kBT

[
sin2

φa +

(
φb

π

)2
]}

sinαdαdϕdγ

)
(A.10)

where α , ϕ , and γ are the Euler angles. The integral above can be simplified as follows:
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1. By taking the vector a(0) as the z-axis so that the Euler angle α is identical to φa,

AA,R

NkBT
=− ln

(
1

8π2

∫
π

0

∫ 2π

0

∫ 2π

0
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{
− λR

kBT

[
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(
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π

)2
]}

sinαdαdϕdγ

)
(A.11)

2. By considering that the main contribution to the intergral arises from α ∼ 0 in the

case of very large coupling parameters λR, and that the Euler angle φb is identical to

γ ,
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(A.12)

which can be simplified as,

AA,R

NkBT
=− ln

(∫ 1

0
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kBT
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 (A.13)
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A.3 Free energy difference ∆A1 and ∆A2
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Figure A.2 Intermolecular potential energy U of the zero-occupancy methane hy-
drate along the canonical ensemble MC simulation at T = 250 K and P = 100 atm
(black line) (only the harmonic potential UA∗ is considered in the acceptance proba-
bility): (a) TIP4P/2005 water model; (b) TIP4P/Ice water model. Note that the fig-
ure shows exp

(
−(U −U (0))/kBT

)
where U (0) is the potential energy of the reference

lattice system . The gray horizontal line is the canonical ensemble averaged value,〈
exp
(
−(U −U (0))/kBT

)〉
NV T

. All energies are normalized to the thermal energy kBT .
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Figure A.3 Canonical ensemble average of the harmonic potential energy UA∗ as a function
of the coupling parameter λ at T = 250 K and P = 100 atm: (a) TIP4P/2005 water
model (filled circles) and (b) TIP4P/ICE water model (empty circles). These values are
obtained from several canonical ensemble MC simulations for the hybrid potential energy,
U(λ ) = (1−λ )UC∗ +λUB∗ . The first molecule in the corresponding molecular system
have a fixed position in all these MC simulations. All energies are normalized to the
thermal energy kBT . The absolute error bar for each average energy is smaller than 0.6.
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A.4 Chemical potentials: water and methane
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Figure A.4 Determination of the chemical potential of methane and water in methane
hydrate using TIP4P/2005 water in combination with OPLS-UA methane model: (1)
methane occupancy NH

m (the number of molecules per unit cell) versus fugacity f (left
panel), (2) chemical potential of methane µH

m/kBT = ln f Λ3

kBT (center panel) and water

µH
w /kBT = µ

(0)
w /kBT − 1

NwkBT
∫ µm
−∞ Nmdµm (right panel) versus NH

m . In the left panel, the
temperature increases from 180 to 350 K (∆T = 10 K) (from left to right); In the center and
right panels, temperature increases from 180 to 350 K (∆T = 10 K) (from top to bottom).
The pressures are P = 1 atm (top), 10 atm (middle), and 100 atm (bottom). All chemical
potentials are normalized to the thermal energy, kBT .
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Figure A.5 Same as Figure A.4 but for the TIP4P/Ice water model.
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Figure A.6 Contributions to the chemical potential of water in methane hydrate
µH

w (xm)/kBT at T = 250 K and P = 100 atm. µH
w (xm)/kBT = µH

w (xm = 0)/kBT +
∆µH

w (xm)/kBT where µH
w (xm = 0)/kBT (black solid line) is the chemical potential of

water in zero-occupancy methane hydrate and ∆µH
w (xm)/kBT (black dashed line) is the

contribution due to the methane occupancy. µH
w (xm = 0)/kBT = Aw(xm = 0)/NwkBT +

Adisorder/NwkBT + PV/NwkBT where Aw(xm = 0)/kBT is the contribution from the
Helmholtz free energy of zero-occupancy methane hydrate using Einstein molecule ap-
proach (green solid line), Adisorder is the proton disorder correction (blue solid line), and
PV/NwkBT term (red solid line). The data shown here are for the TIP4P/Ice water model
(similar qualitative results were obtained for the TIP4P/2005 water model). Note the use
of a broken axis along the y-axis.
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Finite Size Effects

B.1 Vacuum layer width effect
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Figure B.1 (color online) Methane (xm, left) and water (xw, right) mole fractions during
the different GCMC simulation runs: T = 230 K (black), 240 K (blue), 250 K (purple),
260 K (red), and 270 K (orange). The x-axis, which indicates progress along the GCMC
simulation, is expressed as a number of attempted MC moves where one move is a
molecule translation, rotation, insertion or deletion. The dimensions of the simulation box
are: Lx = Ly = 2.3754 nm and Lz = 8.3674 nm (corresponding to Dp = 2.8554 nm with a
vacuum layer Dv = 2.0000 nm in each side).
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B.2 Molecular system size effect
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Figure B.2 (color online) Methane (xm, left panels) and water (xw, right panels), mole
fractions during the different GCMC simulation runs: T = 230 K (black), 240 K (blue),
250 K (purple), 260 K (red), and 270 K (orange) for Dp = 2.8554 nm (top panels); and
T = 260 K (blue), 270 K (purple), 280 K (red), and 290 K (orange) for Dp = 5.2308 nm
(bottom panels). The x-axis, which indicates progress along the GCMC simulation, is
expressed as a number of attempted MC moves where one move is a molecule translation,
rotation, insertion or deletion. The dimensions of the simulation box are: Lx = 2.3754 nm,
Ly = 4.7508 nm, and Lz = 4.3670 nm for Dp = 2.8554 nm (top panels) while Lz = 6.7424
nm for Dp = 5.2308 nm (bottom panels).
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Figure B.3 Shift in the melting temperature of confined methane hydrate with respect
to the bulk, ∆T pore

m /T bulk
m , as a function of the reciprocal of the pore width, 1/Dp: the

dashed line is for the larger molecular system (i.e., Ly = 4.3670 nm); while the solid line
is for the smaller one (i.e., Ly = 2.3754 nm). Note that T pore

m for larger system reads from
Figure B.2, while T bulk

m and kGB are estimated using these data.
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Figure B.4 (color online) Methane (xm, left panels) and water (xw, right panels) mole
fractions during the different GCMC simulation runs: T = 250 K (black), 260 K (blue),
270 K (purple), 280 K (red), and 290 K (orange) for bulk phase (top panels); while T =
210 K (black), 220 K (blue), 230 K (purple), 240 K (red), and 250 K (orange) for confined
system with Dp = 2.8554 nm (bottom panels). The x-axis, which indicates progress along
the GCMC simulation, is expressed as a number of attempted MC moves where one move
is a molecule translation, rotation, insertion or deletion. The dimensions of the simulation
box in x– and y–directions are Lx = Ly = 2.3754 nm, and in z–direction are Lz = 2.3754
nm for bulk system while Lz = 4.3670 nm for confined system. T bulk

m = 265± 5 K and
T pore

m = 225±5 K at P = 10 atm for methane hydrate are summarized in Table 4.1.
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Figure B.5 Shift in the melting temperature of confined methane hydrate with respect
to the bulk, ∆T pore

m /T bulk
m , as a function of the reciprocal of the pore width, 1/Dp: the

dashed line is for P = 10 atm while the solid line is for P = 100 atm. The black circles
read from Figure B.4 (DCM simulations); while the dashed and solid lines are computed
using kGB = (γLSvL − γHSvH)/∆h f us.
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B.4 Surface wettability effect
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Figure B.6 Same as Figure 4.3 but for the decreased LJ energy parameter (two left panels:
one for methane, xm, and another one for water, xw): ε ′ = 1/2ε (top panels), 1/3ε (center
panels), and 1/4ε (bottom panels); and for the increased LJ energy parameters (two right
panels: one for methane, xm, and another one for water, xw): ε ′ = 2ε (top panels), 3ε

(center panels), 4ε (bottom panels). ε ′ is for the pair of atoms between solid walls and
hydrate/liquid phase.
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Figure B.7 The normal (black), PN =Pzz, and tangential (gray), PT = 1
2 (Pxx +Pyy), pressure

tensors for methane hydrate (left), and the surface tension (right), γHS, as a function of the
vacuum layer width Dv at T = 290 K. Dv ≥ 15 nm is required to determine γHS.
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