Z. Ahmed, D. Gerhard, D. Zeeshan, and . Gerhard, Role of Ontology in Semantic Web Development, vol.11, pp.2007-2022, 2007.

H. Alani, TGVizTab: An Ontology Visualisation Extension for Protégé, Workshop on Visualization Information in Knowledge Engineering, pp.3-9, 2003.

R. Aravindhan, M. Chitra, and M. , A Review on Ontology Based Search Engine, International Journal of Advanced Research in Computer and Communication Engineering, vol.3, issue.10, pp.8232-8236, 2014.

J. Barzdins and G. Barzdins, Karlis Cerans, Renars Liepins, and Arturs Sprogis. UML Style Graphical Notation and Editor for OWL 2, CEUR Workshop Proceedings, vol.596, pp.102-114, 2010.

J. Barzdins and G. Barzdins, Karlis Cerans, Renars Liepins, Arturs Sprogis, and Lumiilv RenarsLiepins, Ontology Repositories and Editors for the Semantic Web, 2010.

J. Barzdins and K. Cerans, Advanced ontology visualization with OWLGrEd, Renars Liepins, and Arturs Sprogis, vol.796, 2011.

E. Ben-arye, B. Shulman, Y. Eilon, R. Woitiz, V. Cherniak et al., Attitudes Among Nurses Toward the Integration of Complementary Medicine Into Supportive Cancer Care, Oncology Nursing Forum, vol.44, issue.4, pp.428-434, 2017.

Y. Hacohen and -. Bitterman, Experiments with Language Models for Word Completion and Prediction in Hebrew, Advances in Natural Language Processing, pp.450-462, 2014.

O. Bodenreider, The Unified Medical Language System (UMLS): integrating biomedical terminology, Nucleic Acids Research, vol.32, issue.90001, pp.267-270, 2004.

W. N. Borst, Construction of engineeriing ontologies for knowledge sharing and reuse, 1997.

R. L. Cilibrasi and P. M. Vitanyi, The Google Similarity Distance, IEEE Transactions on Knowledge and Data Engineering, vol.19, issue.3, pp.370-383, 2007.

, Knowledge Organization Systems: An Overview

J. Davies, Lightweight Ontologies, Theory and Applications of Ontology: Computer Applications, pp.197-229, 2010.

A. De-nicola, M. Missikoff, and R. Navigli, A software engineering approach to ontology building, Information Systems, vol.34, issue.2, pp.258-275, 2009.

D. L. Mcguinness and F. Van-harmelen, OWL Web Ontology Language Overview, 2004.

B. Dutta, Examining the interrelatedness between ontologies and Linked Data, Library Hi Tech, vol.35, issue.2, pp.312-331, 2017.

, EuroCAM. What is

M. Fernández-lópez, N. Gómez-pérez, and . Juristo, METHON-TOLOGY: From Ontological Art Towards Ontological Engineering

, AAAI-97 Spring Symposium Series, 1997.

A. Gomez-perez-figueroa and M. C. Suarez, Neon methodology for building ontology networks: a Scenario-Based Methodology, Demetra EOOD, pp.1-18, 2009.

K. Frantzi, S. Ananiadou, and H. Mima, Automatic recognition of multi-word terms:. the C-value/NC-value method, International Journal on Digital Libraries, vol.3, issue.2, pp.115-130, 2000.

M. Frenkel, E. Ben-arye, and L. Cohen, Communication in Cancer Care: Discussing Complementary and Alternative Medicine, tegrative Cancer Therapies, vol.9, pp.177-185, 2010.

A. Gérazine, T. Nguyen, F. Carbonnel, E. Guerdoux-ninot, and G. Ninot, Ontologie des interventions non médicamenteuses, vol.66, p.42, 2018.

R. Thomas and . Gruber, A translation approach to portable ontology specifications, Knowledge Acquisition, vol.5, issue.2, pp.199-220, 1993.

R. Thomas, . Gruber, and . Ontology, Encyclopedia of Database Systems, pp.1963-1965, 2009.

N. Guarino and D. Oberle, What is An Ontology, Handbook on Ontologies, pp.1-17, 2009.

L. Han, A. Kashyap, T. Finin, J. Mayfield, and J. W. Umbc-ebiquity-core, Semantic Textual Similarity Systems. Proceedings of the 2nd Joint Conference on Lexical and Computational Semantics, vol.1, pp.44-52, 2013.

S. Harispe, S. Ranwez, S. Janaqi, and J. Montmain, Semantic Similarity from Natural Language and Ontology Analysis, vol.8, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01288380

A. Marti and . Hearst, Automatic acquisition of hyponyms from large text corpora, Proceedings of the 14th conference on Computational, vol.2, p.539, 1992.

M. Horridge and . Owlviz,

. Infogrid, What are the differences between a vocabulary

, Institute of Medicine of the National Academies. Complementary and Alternative Medicine In the United States, vol.0309092701, 2005.

S. Jupp, Simple Knowledge Organisation System (SKOS), 2010.

A. Kashyap, L. Han, R. Yus, J. Sleeman, T. Satyapanich et al., Robust semantic text similarity using LSA, machine learning, and linguistic resources. Language Resources and Evaluation, vol.50, pp.125-161, 2016.

R. Kumar, P. Suri, and R. Chauhan, Search Engines Evaluation. DESIDOC Bulletin of Information Technology, vol.25, issue.2, pp.3-10, 2005.

P. Kunowski, T. Boinski, and . Sova,

D. Lindberg, B. Humphreys, and A. Mccray, The Unified Medical Language System. Methods Archive, vol.32, pp.281-291, 1993.

, Linked Data Tools. Introducing RDFS & OWL

S. Lohmann, S. Negru, and D. Bold, The ProtégéVOWL Plugin: Ontology Visualization for Everyone, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol.8798

S. Lohmann, S. Negru, F. Haag, and T. Ertl, VOWL 2: User-Oriented Visualization of Ontologies, Knowledge Engineering and Knowledge Management -19th International Conference, vol.8876, pp.266-281, 2014.

S. Lohmann, V. Link, E. Marbach, and S. Negru, WebVOWL: Web-based Visualization of Ontologies, pp.154-158, 2015.

S. Lohmann, S. Negru, F. Haag, and T. Ertl, Visualizing ontologies with VOWL. Semantic Web, vol.7, pp.399-419, 2016.

J. Ventura, C. Jonquet, and M. Roche, Yet Another Ranking Function for Automatic Multiword Term Extraction
URL : https://hal.archives-ouvertes.fr/lirmm-01068556

, LNCS, vol.8686, pp.52-64, 2014.

J. Ventura, C. Jonquet, M. Roche, and M. Teisseire, Integration of linguistic and web information to improve biomedical terminology extraction, Proceedings of the 18th International Database Engineering & Applications Symposium on -IDEAS '14, pp.265-269, 2014.
URL : https://hal.archives-ouvertes.fr/lirmm-01068547

J. Ventura, C. Jonquet, M. Roche, and M. Teisseire, Biomedical Terminology Extraction: A new combination of Statistical and Web Mining Approaches, 12th International Workshop on Statistical Analysis of Textual Data, JADT'14, number i, pp.421-432, 2014.
URL : https://hal.archives-ouvertes.fr/lirmm-01056598

J. Ventura, C. Jonquet, M. Roche, and M. Teisseire, BioTex: A system for biomedical terminology extraction, ranking, and validation, CEUR Workshop Proceedings, pp.157-160, 2014.
URL : https://hal.archives-ouvertes.fr/lirmm-01112894

J. Ventura, C. Jonquet, M. Roche, and M. Teisseire, Biomedical term extraction: overview and a new methodology, Information Retrieval Journal, vol.19, issue.1-2, pp.59-99, 2016.
URL : https://hal.archives-ouvertes.fr/lirmm-01274539

C. D. Manning, P. Ragahvan, and H. Schutze, An Introduction to Information Retrieval

M. Mcintyre, The Regulation of Complementary and Alternative Medicine (CAM) in the EU

J. Melorose, R. Perroy, and S. Careas, Statewide Agricultural Land Use Baseline, vol.2020, 2015.

T. Mikolov, K. Chen, G. Corrado, and J. Dean, Efficient Estimation of Word Representations in Vector Space, Arxiv, pp.1-12, 2013.

T. Mikolov, K. Chen, G. Corrado, and J. Dean, Distributed Representations of Words and Phrases and their Compositionality, Nips, pp.1-9, 2013.

T. Mikolov, W. Yih, and G. Zweig, Linguistic regularities in continuous space word representations, Proceedings of NAACL-HLT, number June, pp.746-751, 2013.

G. A. Miller, R. Beckwith, C. Fellbaum, D. Gross, and K. J. Miller, Introduction to WordNet: An On-line Lexical

*. Database, International Journal of Lexicography, vol.3, issue.4, pp.235-244, 1990.

, Complementary, Alternative, or Integrative Health: What's In a Name?, 2015.

, Expanding Horizons of Healthcare: Five-Year Strategic Plan, 2000.

S. Negru and S. Lohmann, A Visual Notation for the Integrated Representation of OWL Ontologies, Proceedings of the 9th International Conference on Web Information Systems and Technologies, pp.308-315, 2013.

A. The-loc-nguyen, S. Laurent, F. Rapior, R. Carbonnel, G. Trouillet et al., Defining a Collaborative Ontology for Non-Pharmacological Interventions, 2016.

G. Ninot, Interventionn on-médicamenteuseI NM : un concept pour lever les ambiguïtés sur les médecines douces et complémentaires

G. Ninot, S. Agier, S. Bacon, and C. Berr,

A. David and . Gerazime,

K. Laurent, T. Lavoie, B. Libourel, F. Lognos, J. Maffre et al., Anne Stoebner-Delbarre, and Raphaël Trouillet. La Plateforme CEPS : Une structure universitaire de réflexion sur l'évaluation des interventions non médicamenteuses (INM). HEGEL -HEpato-GastroEntérologie Libérale, vol.7, pp.53-56, 2017.

G. Ninot, F. Amadori, J. Maître, and S. Rapior, Loric Rivière, Raphaël Trouillet, and François Carbonnel. Motrial, le premier méta-moteur de recherche desétudes cliniques sur les interventions non médicamenteuses (INM). HEGEL -HEpato-GastroEntérologie Libérale, 2018.

G. Ninot, I. Boulze-launay, G. Bourrel, A. Géraz-ime, E. Guerdoux-ninot et al.,

F. Trouillet and . Carbonnel, De la définition des interventions non médicamenteusesà leur ontologie, 2018.

F. Natalya, D. L. Noy, and . Mcguinness, Ontology Development 101: A Guide to Creating Your First Ontology, 2001.

C. Kay-ogden and I. A. Richards, The Meaning of Meaning: a Study of the Influence of Language upon Thought and of the Science of Symbolism, Nature, vol.111, pp.566-566, 1923.

T. Pedersen, V. Serguei, S. Pakhomov, and . Patwardhan,

C. G. Chute, Measures of semantic similarity and relatedness in the biomedical domain, Journal of Biomedical Informatics, vol.40, issue.3, pp.288-299, 2007.

T. Pedersen, S. Pakhomov, B. Mcinnes, and Y. Liu, Measuring the Similarity and Relatedness of Concepts in the Medical Domain : IHI 2012 Tutorial, 2012.

J. Pennington, R. Socher, and C. Manning, Glove: Global Vectors for Word Representation, Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp.1532-1543, 2014.

L. Philip and W. Eversole, Controlled vocabularies taxonomies and ontologies, Top Braid, pp.1-5, 2013.

C. E. Ramisch, Multi-word terminology extraction for domainspecific documents, 2009.

C. Republic and T. Mikolov, Statistical Language Models Based on Neural Networks, 2012.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Learning representations by back-propagating errors, Nature, vol.323, issue.6088, pp.533-536, 1986.

M. Salvadores, R. Paul, . Alexander, N. F. Mark-a-musen, and . Noy, BioPortal as a Dataset of Linked Biomedical Ontologies and Terminologies in RDF, Semantic Web, vol.4, issue.3, pp.277-284, 2013.

E. Sanjuan, J. Dowdall, F. Ibekwe-sanjuan, and F. Rinaldi, A symbolic approach to automatic multiword term structuring, Computer Speech and Language, vol.19, issue.4, pp.524-542, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00636158

K. Biplab, P. Sarker, W. Wallace, and . Gill, Some observations on mind map and ontology building tools for knowledge management, Ubiquity, pp.1-9, 2008.

S. Falconer and . Ontograf,

A. Singhal, Modern Information Retrieval: A Brief Overview, Bulletin of the Ieee Computer Society Technical Committee on Data Engineering, vol.24, issue.4, pp.1-9, 2001.

I. Spasi?, M. Greenwood, A. Preece, N. Francis, and G. Elwyn, FlexiTerm: a flexible term recognition method, Journal of Biomedical Semantics, vol.4, issue.1, p.27, 2013.

T. Tudorache and N. Noy, Collaborative Ontology Development with Protégé, 2009.

T. Tudorache, C. Nyulas, N. F. Noy, and M. A. Musen, WebProtégé: A Collaborative Ontology Editor and Knowledge Acquisition Tool for the Web, Semantic web, vol.4, pp.89-99, 2013.

, PubMed?: MEDLINE? Retrieval on the World Wide Web

J. Ventura, C. Jonquet, M. Roche, and M. Teisseire, Towards a Mixed Approach to Extract Biomedical Terms from Text Corpus, International Journal of Knowledge Discovery in Bioinformatics, vol.4, issue.1, pp.1-15, 2014.
URL : https://hal.archives-ouvertes.fr/lirmm-00859846

. W3c and . Rdf, Vocabulary Description Language 1.0: RDF Schema (RDFS)

. W3c, Resource Description Framework (RDF)

. W3c.-semantic and . Web,

. W3c, Simple Knowledge Organization System (SKOS)

. W. W3c and . Ontology-language,

. W3c and . Skos, Simple Knowledge Organization System Reference

, World Health Organization. Traditional, complementary and integrative medicine, 2017.

M. Zeng, Knowledge Organization Systems (KOS), vol.35, pp.160-182, 2008.

M. L. Zeng and P. Mayr, Knowledge Organization Systems (KOS) in the Semantic Web: A Multi-Dimensional Review, 2018.

Z. Zhang, J. Gao, and F. Ciravegna, JATE 2.0 : Java Automatic Term Extraction with Apache Solr, 10th International Conference on Language Resources and Evaluation (LREC'16), pp.2262-2269, 2016.

Y. Zhu, E. Yan, and F. Wang, Semantic relatedness and similarity of biomedical terms: examining the effects of recency, size, and section of biomedical publications on the performance of word2vec, BMC Medical Informatics and Decision Making, vol.17, issue.1, p.95, 2017.