D. Beaufils, S. Jepaul, Z. Liu, L. Boiteau, and R. Pascal, The Activation of Free Dipeptides Promoted by Strong Activating Agents in Water Does not Yield Diketopiperazines, Orig. Life Evol. Biosph, vol.46, pp.19-30, 2016.

J. Biron, A. L. Parkes, R. Pascal, and J. D. Sutherland, Expeditious, potentially primordial, aminoacylation of nucleotides, Angew. Chem. Int. Ed, vol.44, pp.6731-6734, 2005.

J. Biron and R. Pascal, Amino acid N-carboxyanhydrides: activated peptide monomers behaving as phosphate-activating agents in aqueous solution, J. Am. Chem. Soc, vol.126, pp.9198-9199, 2004.

A. Brack, Selective emergence and survival of early polypeptides in water, Orig. Life, vol.17, pp.367-379, 1987.

G. Bruylants, K. Bartik, and J. Reisse, Prebiotic chemistry: a fuzzy field, C. R. Chim, vol.14, pp.388-391, 2011.

H. J. Cleaves, J. H. Chalmers, A. Lazcano, S. L. Miller, and J. L. Bada, A Reassessment of Prebiotic Organic Synthesis in Neutral Planetary Atmospheres, Orig. Life Evol. Biosph, vol.38, issue.2, pp.105-115, 2008.

C. Cockell, Astrobiology: Understanding life in the universe, 2015.

F. Crick, Central Dogma of Molecular Biology, Nature, vol.227, pp.561-563, 1970.

G. Danger, L. Boiteau, H. Cottet, and R. Pascal, The peptide formation mediated by cyanate revisited. N-Carboxoxyanhydrides as accessible intermediates in the decomposition of Ncarbamoylaminoacids, J. Am. Chem. Soc, vol.12, pp.7412-7413, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00134565

G. Danger, A. Fresneau, N. Abou-mrad, P. Marcellus, F. Orthous-daunay et al., Insight into the molecular composition of an organic membrane produced by interstellar / pre-cometary ice analogues using very high resolution mass spectrometry, Geochimica & Cosmochimica Acta, vol.189, pp.184-196, 2016.

G. Danger, R. Plasson, and R. Pascal, Pathways for the formation and evolution of peptides in prebiotic environments, Chem. Soc. Rev, vol.41, pp.5416-5429, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00778056

D. Deamer and A. L. Weber, Bioenergetics and life's origins. Cold Spring, Harb. Pespect. Biol, 2010.

A. Eschenmoser, The search for the chemistry of life's origins, Tetrahedron, vol.63, 2007.

J. G. Forsythe, S. S. Yu, I. Mamajanov, M. A. Grover, R. Krishnamurthy et al., Ester-Mediated Amide Bond Formation Driven by Wet-Dry Cycles: A Possible Path to Polypeptides on the Prebiotic Earth, Angew. Chem. Int. Ed, vol.54, pp.9871-9875, 2015.

M. Gargaud, H. Martin, P. López-garcía, T. Montmerle, and R. Pascal, Young Sun, Early Earth and the Origins of Life, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00824583

R. F. Gesteland and T. R. Cech, The RNA World, 1999.

H. D. Holland, The oxygenation of the atmosphere and oceans, Philos. Trans. R. Soc. London, Ser. B, vol.361, pp.903-915, 2006.

E. Imai, H. Honda, K. Hatori, A. Brack, and K. Matsuno, Elongation of oligopeptides in a simulated submarine hydrothermal system, Science, vol.283, pp.831-834, 1999.

G. F. Joyce and L. E. Orgel, Progress for understanding the origin of the RNA world, The RNA World, pp.49-77, 1999.

J. F. Kasting, Earth's early atmosphere, Science, vol.259, pp.920-926, 1993.

J. F. Kasting and J. L. Siefert, Life and the evolution of Earth's atmosphere, Science, vol.296, pp.1066-1068, 2002.

N. Lahav, D. White, and S. Chang, Peptide formation in the prebiotic era: thermal condensation of glycine in fluctuating clay environments, Science, vol.201, pp.67-69, 1978.

J. Lambert, Adsorption and Polymerization of Amino Acids on Mineral Surfaces, Origins Life Evol. Biospheres, vol.38, pp.211-242, 2008.

L. Leman, L. Orgel, and M. R. Ghadiri, Carbonyl sulfide-mediated prebiotic formation of peptides, Science, vol.306, pp.283-286, 2004.

L. Leman, L. E. Orgel, and M. R. Ghadiri, Amino acid dependent formation of phosphate anhydrides in water mediated by carbonyl sulfide, J. Am. Chem. Soc, vol.128, pp.20-21, 2006.

Z. Liu, D. Beaufils, J. C. Rossi, and R. Pascal, Evolutionary importance of the intramolecular pathways of hydrolysis of phosphate ester mixed anhydrides with amino acids and peptides, Sci. Rep, vol.4, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01099839

Z. Liu, L. Rigger, J. Rossi, J. D. Sutherland, and R. Pascal, Mixed Anhydride Intermediates in the Reaction of 5(4H)-Oxazolones with Phosphate Esters and Nucleotides, Chem. Eur. J, vol.22, pp.14940-14949, 2016.

R. Lohrmann and L. E. Orgel, Preferential formation of (2'-5')-linked internucleotide bonds in non-enzymatic reactions, Tetrahedron, vol.34, pp.853-855, 1978.

R. F. Ludlow and S. Otto, Systems chemistry, Chem. Soc. Rev, vol.37, pp.101-108, 2008.

J. Marin-carbonne, F. Robert, and M. Chaussidon, The silicon and oxygen isotope compositions of Precambrian cherts: A record of oceanic paleo-temperatures?, Precambrian Research, vol.247, pp.223-234, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01769048

C. Meinert, J. Filippi, P. De-marcellus, L. Sergeant-d'hendecourt, L. Meierhenrich et al., N-(2-Aminoethyl)glycine and Amino Acids from Interstellar Ice Analogues, ChemPlus Chem, vol.77, pp.186-191, 2012.

S. L. Miller, A production of amino acids under possible primitive Earth conditions, Science, vol.117, pp.528-529, 1953.

F. Mullie and J. Reisse, Organic matter in carbonaceous chondrites, Organic Geo-and Cosmochemistry. Topics in Current Chemistry, 139, 1987.

A. Oparin, Evolution of the concepts of the origin of life, Orig. Life, vol.7, pp.3-8, 1976.

A. Oparin and V. Fesenkov, Life in the Universe, Academy of sciences publisher, 1956.

A. Oparin, Proiskhozhdenie zhizny (The origin of life), 1924.

R. Pascal, Suitable energetic conditions for dynamic chemical complexity and the living state, J. Syst. Chem, vol.3, p.3, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00777826

R. Pascal, Life, metabolism and energy, Astrochemistry and Astrobiology: Physical Chemistry in Action, pp.243-269, 2013.

R. Pascal and L. Boiteau, Energy flows, metabolism and translation, Philos. Trans. R. Soc. Lond., B, Biol. Sci, vol.366, pp.2949-2958, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00773520

R. Pascal, L. Boiteau, and A. Commeyras, From the prebiotic synthesis of ?-amino acids towards a primitive translation apparatus for the synthesis of peptides, Top. Curr. Chem, vol.259, pp.69-122, 2005.

,

B. H. Patel, C. Percivalle, D. J. Ritson, C. D. Duffy, and J. D. Sutherland, Common origins of RNA, protein and lipid precursors in a cyanosulfidic protometabolism, Nature Chemistry, vol.7, pp.301-307, 2015.

S. Pizzarello and E. Shock, The organic composition of carbonaceous meteorites: the evolutionary story ahead of biochemistry. Cold Spring (ED), Harb. Perspect. Biol, vol.2, p.2105, 2010.

M. W. Powner, B. Gerland, and J. D. Sutherland, Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions, Nature, vol.459, pp.239-242, 2009.

A. Pross, Seeking the chemical roots of Darwinism: bridging between chemistry and biology, Chem. Eur. J, vol.15, pp.8374-8381, 2009.

A. Pross, Toward a general theory of evolution: extending Darwinian theory to inanimate matter, J. Syst. Chem, vol.2, p.1, 2011.

A. Pross and R. Pascal, The origin of life: what we know, what we can know, what we will never know, Open Biol, vol.3, p.120190, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01003174

A. Pross and R. Pascal, How and why kinetics, thermodynamics, and chemistry induce the logic of biological evolution, Beilstein J. Org. Chem, vol.13, pp.665-674, 2017.

A. Pross, What is Life? How Chemistry Becomes Biology, 2016.

A. Rimola, M. Sodupe, and P. Ugliengo, Aluminosilicate surfaces as promoters for peptide bond formation: An assessment of Bernal's hypothesis by ab initio methods, J. Am. Chem. Soc, vol.129, pp.8333-8344, 2007.

F. Robert and M. Chaussidon, A palaeotemperature curve for the Precambrian oceans based on silicon isotopes in cherts, Nature, vol.443, pp.969-972, 2006.

B. M. Rode, Peptides and the origin of life, Peptides, vol.20, pp.773-786, 1999.

B. M. Rode, H. L. Son, Y. Suwannachot, and J. Bujdak, The combination of salt induced peptide formation reaction and clay catalysis: a way to higher under primitive Earth conditions, Origins Life Evol. Biosphere, vol.29, pp.273-286, 1999.

D. L. Rohlfing, Thermal polyamino acids: synthesis at less than 100 degrees C, Science, vol.193, pp.68-70, 1976.

A. Rousset, M. Lasperas, J. Taillades, and A. Commeyras, Systemes de strecker et apparentes-XI : Formation et stabilité de l'?-carboxyaminonitrile.Intermédiaire essentiel dans la synthèse des hydantoïnes selon bucherer-bergs, Tetrahedron, vol.36, pp.2649-2661, 1980.

K. Ruiz-mirazo, C. Briones, and A. De-la-escosura, Prebiotic systems chemistry: new perspectives for the origins of life, Chem. Rev, vol.114, pp.285-366, 2014.

G. Schlesinger and S. L. Miller, Prebiotic synthesis in atmospheres containing CH4, CO, and CO2. I. Amino acids; II. Hydrogen cyanide formaldehyde and ammonia, J. Mol. Evol, vol.19, pp.383-390, 1983.

S. M. Som, R. Buick, J. W. Hagadorn, T. S. Blake, J. M. Perreault et al.,

C. , Earth's air pressure 2.7 billion years ago constrained to less than half modern levels, Nature Geoscience, vol.9, pp.448-451, 2016.

C. Sotin, In : L'environnement de la Terre primitive. Presses Universitaires de Bordeaux, reimpression, pp.237-263, 2005.

J. D. Sutherland, Opinion: Studies on the origin of life -the end of the beginning, Nature Reviews Chemistry, vol.1, p.12, 2017.

J. Taillades, I. Beuzelin, L. Garrel, V. Tabacik, C. Bied et al., N-Carbamoyl-?-amino acids rather than free a-amino acids formation in the primitive hydrosphere: A novel proposal for the emergence of prebiotic peptides, Orig. Life Evol. Biosphere, vol.28, pp.61-77, 1998.

J. Taillades, L. Boiteau, I. Beuzelin, O. Lagrille, J. Biron et al., A pH-dependent cyanate reactivity model: application to preparative N-carbamoylation of amino acids, J. Chem. Soc. Perkin Trans, vol.2, pp.1247-1254, 2001.

J. Taillades, H. Collet, L. Garrel, I. Beuzelin, L. Boiteau et al., , 1999.

. N-carbamoyl, Amino Acid Solid-Gas Nitrosation by NO/NO x: A New Route to Oligopeptides via ?-Amino Acid N-Carboxyanhydride. Prebiotic Implications, J. Mol. Evol, vol.48, pp.638-645

P. Thaddeus, The prebiotic molecules observed in the interstellar gas, Phil. Trans. R. Soc. B, vol.361, pp.1681-1687, 2006.

I. N. Tolstikhin and M. B. , The evolution of terrestrial volatiles: A view from helium, neon, argon and nitrogen isotope modelling, Chem. Geol, vol.147, pp.27-52, 1998.

V. Vasas, C. Fernando, M. Santos, S. Kauffman, and E. Szathmáry, Evolution before genes, Biol. Direct, vol.7, p.1, 2012.

T. N. Wells, C. K. Ho, and A. R. Fersht, Free Energy of Hydrolysis of Tyrosyl Adenylate and Its Binding to Wild-Type and Engineered Mutant Tyrosyl-tRNA Synthetases, Biochemistry, vol.25, pp.6603-6608, 1986.

S. A. Wilde, J. W. Valley, W. H. Peck, and C. M. Graham, Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago, Nature, vol.409, pp.175-178, 2001.

S. S. Yu, M. Solano, M. Blanchard, M. Soper-hopper, R. Krishnamurthy et al., Elongation of Model Prebiotic Proto-Peptides by Continuous Monomer Feeding, Macromolecules, vol.50, pp.9286-9294, 2017.

K. Zahnle, E. Charles, J. M. Woodward, H. A. Shull, and . Thronson, Origins of atmospheres, ASP Conference Series, vol.148, p.364, 1998.

D. Beaufils, G. Danger, L. Boiteau, J. C. Rossi, and R. Pascal, Diastereoselectivity in prebiotically relevant 5(4H)-oxazolone-mediated peptide couplings, Chem. Commun, vol.50, pp.3100-3102, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01930550

D. Beaufils, S. Jepaul, Z. Liu, L. Boiteau, and R. Pascal, The Activation of Free Dipeptides Promoted by Strong Activating Agents in Water Does not Yield Diketopiperazines, Orig. Life Evol. Biosph, vol.46, pp.19-30, 2016.

J. Biron, A. L. Parkes, R. Pascal, and J. D. Sutherland, Expeditious, potentially primordial, aminoacylation of nucleotides, Angew. Chem. Int. Ed, vol.44, pp.6731-6734, 2005.

J. Biron and R. Pascal, Amino acid N-carboxyanhydrides: activated peptide monomers behaving as phosphate-activating agents in aqueous solution, J. Am. Chem. Soc, vol.126, pp.9198-9199, 2004.

A. Brack, From amino acids to prebiotic active peptides: A chemical reconstitution, Pure Appl. Chem, vol.65, pp.1143-1151, 1993.

A. Brack, From interstellar amino acids to prebiotic catalytic peptides: A Review, Chem. Biodivers, vol.4, pp.665-679, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00158352

T. K. Brotherton and J. W. Lynn, The synthesis and chemistry of cyanogen, Chem Rev, vol.59, pp.841-883, 1959.

G. Danger, L. Boiteau, H. Cottet, and R. Pascal, The peptide formation mediated by cyanate revisited. N-Carboxoxyanhydrides as accessible intermediates in the decomposition of Ncarbamoylaminoacids, J. Am. Chem. Soc, vol.12, pp.7412-7413, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00134565

G. Danger, A. Michaut, M. Bucchi, L. Boiteau, J. Canal et al., 5(4H)-Oxazolones as intermediates in the carbodiimide and cyanamide-promoted peptide activations in aqueous solution, Angew. Chem. Int. Ed, vol.52, pp.611-614, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00778615

G. Danger, R. Plasson, and R. Pascal, Pathways for the formation and evolution of peptides in prebiotic environments, Chem. Soc. Rev, vol.41, pp.5416-5429, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00778056

C. Dueymes, C. Pirat, and R. Pascal, Facile synthesis of simple mono-alkyl phosphates from phosphoric acid and alcohols, Tetrahedron Lett, vol.49, pp.5300-5301, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00493433

M. Eigen, Self-organisation of matter and the evolution of biological macromolecules, Naturwissenschaften, vol.58, pp.465-523, 1971.

A. Eschenmoser, Chemistry of potentially prebiological natural products, Orig Life Evol. Biosph, vol.24, pp.389-423, 1994.

A. Eschenmoser, Question 1: Commentary referring to the statement "The origin of life can be traced back to the origin of kinetic control" and the question "Do you agree with this statement; and how would you envisage the prebiotic evolutionary bridge between thermodynamic and kinetic control?, Orig. Life Evol. Biosph, vol.37, pp.309-314, 2007.

J. G. Forsythe, S. S. Yu, I. Mamajanov, M. A. Grover, R. Krishnamurthy et al., , 2015.

. Ester-mediated, Amide Bond Formation Driven by Wet-Dry Cycles: A Possible Path to Polypeptides on the Prebiotic Earth, Angew. Chem. Int. Ed, vol.54, pp.9871-9875

J. Hulshof and C. Ponnamperuma, Prebiotic condensation reactions in an aqueous medium: a review of condensing agents, Orig. Life Evol. Biosph, vol.7, pp.197-224, 1976.

L. Leman, L. Orgel, and M. R. Ghadiri, Carbonyl sulfide-mediated prebiotic formation of peptides, Science, vol.306, pp.283-286, 2004.

L. Leman, L. E. Orgel, and M. R. Ghadiri, Amino acid dependent formation of phosphate anhydrides in water mediated by carbonyl sulfide, J. Am. Chem. Soc, vol.128, pp.20-21, 2006.

S. Lifson, On the crucial stages in the origin of animate matter, J. Mol. Evol, vol.44, pp.1-8, 1997.

Z. Liu, D. Beaufils, J. C. Rossi, and R. Pascal, Evolutionary importance of the intramolecular pathways of hydrolysis of phosphate ester mixed anhydrides with amino acids and peptides, Sci. Rep, vol.4, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01099839

Z. Liu, C. Hanson, G. Ajram, L. Boiteau, J. Rossi et al., 5(4H)-Oxazolones as Effective Aminoacylation Reagents for the 3?-Terminus of RNA, Synlett, vol.28, pp.73-77, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01930502

Z. Liu, L. Rigger, J. Rossi, J. D. Sutherland, and R. Pascal, Mixed Anhydride Intermediates in the Reaction of 5(4H)-Oxazolones with Phosphate Esters and Nucleotides, Chem. Eur. J, vol.22, pp.14940-14949, 2016.

I. Mamajanova and J. Herzfeld, HCN polymers characterized by solid state NMR: Chains and sheets formed in the neat liquid, J. Chem. Phys, vol.130, p.134503, 2009.

A. Mariani, D. A. Russell, T. Javelle, and J. D. Sutherland, A Light-Releasable Potentially Prebiotic Nucleotide Activating Agent, J. Am. Chem. Soc, 2018.

R. Pascal, Suitable energetic conditions for dynamic chemical complexity and the living state, J. Syst. Chem, vol.3, p.3, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00777826

R. Pascal, Life, metabolism and energy, Astrochemistry and Astrobiology: Physical Chemistry in Action, pp.243-269, 2013.

R. Pascal and L. Boiteau, Energy flows, metabolism and translation, Philos. Trans. R. Soc. Lond., B, Biol. Sci, vol.366, pp.2949-2958, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00773520

R. Pascal, L. Boiteau, and A. Commeyras, From the prebiotic synthesis of ?-amino acids towards a primitive translation apparatus for the synthesis of peptides, Top. Curr. Chem, vol.259, pp.69-122, 2005.

R. Pascal, A. Pross, and J. D. Sutherland, Towards an evolutionary theory of the origin of life based on kinetics and thermodynamics, Open Biol, vol.3, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01003404

R. Pascal and L. Boiteau, Energetic constraints on prebiotic pathways: application to the emergence of translation, Origin and Evolution of Life: An Astrobiology Perspective, pp.247-258, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00556733

B. H. Patel, C. Percivalle, D. J. Ritson, C. D. Duffy, and J. D. Sutherland, Common origins of RNA, protein and lipid precursors in a cyanosulfidic protometabolism, Nat. Chem, vol.7, pp.301-307, 2015.

A. Pross and R. Pascal, How and why kinetics, thermodynamics, and chemistry induce the logic of biological evolution, Beilstein J. Org. Chem, vol.13, pp.665-674, 2017.

A. Pross, What is Life? How Chemistry Becomes Biology, 2016.

D. Ritson and J. D. Sutherland, Prebiotic synthesis of simple sugars by photoredox systems chemistry, Nat. Chem, vol.4, pp.895-899, 2012.

M. Rodriguez-garcia, A. Surman, G. Cooper, I. Suárez-marina, Z. Hosni et al., Formation of oligopeptides in high yield under simple programmable conditions, Nat. Commun, vol.6, p.8385, 2015.

K. Ruiz-mirazo, C. Briones, and A. De-la-escosura, Prebiotic systems chemistry: new perspectives for the origins of life, Chem. Rev, vol.114, pp.285-366, 2014.

E. Szathmáry and I. Gladkih, Sub-exponential growth and coexistence of non-enzymatically replicating templates, J. Theor. Biol, vol.138, pp.55-58, 1989.

J. Taillades, L. Boiteau, I. Beuzelin, O. Lagrille, J. Biron et al., A pH-dependent cyanate reactivity model: application to preparative Ncarbamoylation of amino acids, J. Chem. Soc. Perkin Trans, vol.2, pp.1247-1254, 2001.

J. Taillades, H. Collet, L. Garrel, I. Beuzelin, L. Boiteau et al., NCarbamoyl Amino Acid Solid-Gas Nitrosation by NO/NO x: A New Route to Oligopeptides via ?-Amino Acid N-Carboxyanhydride. Prebiotic Implications, J. Mol. Evol, vol.48, pp.638-645, 1999.

,

M. Tsanakopoulou and J. D. Sutherland, Cyanamide as a prebiotic phosphate activating agentcatalysis by simple 2-oxoacid salts, Chem. Commun, vol.53, pp.11893-11896, 2017.

T. N. Wells, C. K. Ho, and A. R. Fersht, Free Energy of Hydrolysis of Tyrosyl Adenylate and Its Binding to Wild-Type and Engineered Mutant Tyrosyl-tRNA Synthetases, Biochemistry, vol.25, pp.6603-6608, 1986.

J. Xu, D. J. Ritson, S. Ranjan, Z. R. Todd, D. D. Sasselov et al., Photochemical reductive homologation of hydrogen cyanide using sulfite and ferrocyanide, Chem Commun, 2018.

S. S. Yu, M. Solano, M. Blanchard, M. Soper-hopper, R. Krishnamurthy et al., Elongation of Model Prebiotic Proto-Peptides by Continuous Monomer Feeding, Macromolecules, vol.50, pp.9286-9294, 2017.

, Formation of nucleotide esters. a) No aminoacyl esters formed at the 2'(3')-OH of Me-2'(3')-AMP but only at the free 5'-OH were formed. b) Aminoacyl esters formed at the 2(3')-OH of the Me-5'-AMP model. c)

, Scheme 3. a) aminoacylation of 2'(3')-OH of Me-5'-AMP by oxazolone. b) no aminoacylation of the 2'(3')-OH of Me-5'-AMP by NCA

J. Biron, A. L. Parkes, R. Pascal, and J. D. Sutherland, Expeditious, potentially primordial, aminoacylation of nucleotides, Angew. Chem. Int. Ed, vol.44, pp.6731-6734, 2005.

J. Biron and R. Pascal, Amino acid N-carboxyanhydrides: activated peptide monomers behaving as phosphate-activating agents in aqueous solution, J. Am. Chem. Soc, vol.126, pp.9198-9199, 2004.

V. Borsenberger, M. A. Crowe, J. Lehbauer, J. Raftery, M. Helliwell et al., Exploratory Studies to Investigate a Linked Prebiotic Origin of RNA and Coded Peptides, Chem. Biodiversity, p.203, 2004.

M. Kindermann, I. Stahl, M. Reimold, W. M. Pankau, and G. Von-kiedrowski, Systems chemistry: Kinetic and computational analysis of a nearly exponential organic replicator, 2005.

, Angew. Chem. Int. Ed, vol.44, pp.6750-6755

L. J. Leman, L. E. Orgel, and M. R. Ghadiri, Amino Acid Dependent Formation of Phosphate Anhydrides in Water Mediated by Carbonyl Sulfide, J. Am. Chem. Soc, vol.128, pp.20-21, 2006.

Z. Liu, L. Rigger, J. Rossi, J. D. Sutherland, and R. Pascal, Mixed Anhydride Intermediates in the Reaction of 5(4H)-Oxazolones with Phosphate Esters and Nucleotides, Chem. Eur. J, vol.22, pp.14940-14949, 2016.

Z. Liu, D. Beaufils, J. Rossi, and R. Pascal, Evolutionary Importance of the Intramolecular Pathways of Hydrolysis of Phosphate Ester Mixed Anhydrides with, Amino Acids and Peptides. Scientific Reports, vol.4, p.7440, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01099839

R. F. Ludlow and S. Otto, Systems chemistry, Chem. Soc. Rev, vol.37, pp.101-108, 2008.

D. Beaufils, G. Danger, L. Boiteau, J. C. Rossi, and R. Pascal, Diastereoselectivity in prebiotically relevant 5(4H)-oxazolone-mediated peptide couplings, Chem. Commun, vol.50, pp.3100-3102, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01930550

H. S. Bernhardt, The Juxtaposition of Ribose Hydroxyl Groups: The Root of Biological Catalysis and the RNA World?, Orig. Life Evol. Biosph, vol.45, p.15, 2015.

V. Borsenberger, Exploratory Studies to Investigate a Linked Prebiotic Origin of RNA and Coded Peptides, Chem. Biodiversity, vol.1, pp.203-246, 2004.

W. H. Daly and D. Poché, The preparation of N-carboxyanhydrides of ?-amino acids using bis(trichloromethyl)carbonate, Tetrahedron Lett, vol.29, p.5859, 1988.

G. Danger, L. Boiteau, H. Cottet, and R. Pascal, The peptide formation mediated by cyanate revisited. N-Carboxoxyanhydrides as accessible intermediates in the decomposition of Ncarbamoylaminoacids, J. Am. Chem. Soc, vol.12, pp.7412-7413, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00134565

G. Danger, A. Michaut, M. Bucchi, L. Boiteau, J. Canal et al., 5(4H)-Oxazolones as intermediates in the carbodiimide and cyanamide-promoted peptide activations in aqueous solution, Angew. Chem. Int. Ed, vol.52, pp.611-614, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00778615

W. D. Fuller, M. P. Cohen, M. Shabankareh, R. K. Blair, M. Goodman et al., Urethane protected amino acid N-carboxyanhydrides and their use in peptide synthesis, J. Am. Chem. Soc, vol.112, p.7414, 1990.

W. D. Fuller, M. Goodman, F. R. Naider, and Y. Zhu, Urethane-protected ?-amino acid Ncarboxyanhydrides and peptide synthesis, Biopolymers, vol.40, p.183, 1996.

B. P. Gottikh, A. A. Krayevskyn, B. Tarussovap, P. Purygin, and T. L. Tsilevic, The general synthetic route to amino acid esters of nucleotides and nucleoside-5?-triphosphates and some properties of these compounds, Tetrahedron, vol.26, p.4419, 1970.

M. Illangasekare, Aminoacyl-RNA synthesis catalyzed by an RNA, Science, vol.267, pp.643-647, 1995.

G. F. Joyce and L. E. Orgel, The RNA World, issue.2, 1999.

R. F. Gesteland and T. R. Cech,

J. C. Lacey, A. F. Hawkins, R. D. Thomas, and C. L. Watkins, Differential distribution of D and L amino acids between the 2' and 3' positions of the AMP residue at the 3' terminus of transfer ribonucleic acid, Proc. Natl. Acad. Sci. U.S.A, vol.85, p.4996, 1988.

J. C. Lacey, N. S. Wickramasinghe, G. W. Cook, and G. Anderson, Couplings of character and of chirality in the origin of the genetic system, J. Mol. Evol, vol.37, p.233, 1993.

L. Leman, L. Orgel, and M. R. Ghadiri, Carbonyl sulfide-mediated prebiotic formation of peptides, Science, vol.306, pp.283-286, 2004.

Z. Liu, Mixed Anhydride Intermediates in the Reaction of 5(4H)-Oxazolones with Phosphate Esters and Nucleotides, Chem. Eur. J, vol.22, pp.14940-14949, 2016.

Z. Liu, Evolutionary importance of the intramolecular pathways of hydrolysis of phosphate ester mixed anhydrides with amino acids and peptides, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01099839

U. F. Müller and D. P. Bartel, Substrate 2?-hydroxyl groups required for ribozyme-catalyzed polymerization, Chem. Biol, vol.10, pp.799-806, 2003.

S. Murillo-sánchez, D. Beaufils, J. M. González-mañas, R. Pascal, and K. Ruiz-mirazo, Fatty acids' double role in the prebiotic formation of a hydrophobic dipeptide, Chem. Sci, vol.7, p.3406, 2016.

L. E. Orgel, The origin of polynucleotide-directed protein synthesis, J. Mol. Evol, vol.29, p.465, 1989.

R. Pascal and L. Boiteau, In: Origin and Evolution of Life: an astrobiology perspective, 2011.

M. Gargaud, P. López-garcía, H. Martin, and . Eds,

R. Pascal, L. Boiteau, and A. Commeyras, From the Prebiotic Synthesis of ?-Amino Acids towards a Primitive Translation Apparatus for the Synthesis of Peptides, Top. Curr. Chem, vol.259, pp.69-122, 2005.

A. T. Profy and D. A. Usher, Stereoselective aminoacylation of polyribonucleotides, J. Am. Chem. Soc, vol.106, pp.5030-5031, 1984.

A. T. Profy and D. A. Usher, b) Stereoselective aminoacylation of a dinucleoside monophosphate by the imidazolides of dl-alanine and N-(tert-butoxycarbonyl)-dl-alanine, J. Mol. Evol, vol.20, pp.147-156, 1984.

M. A. Rangelov, G. P. Petrova, V. M. Yomtova, and G. N. Vayssilov, Catalytic role of vicinal OH in ester aminolysis: proton shuttle versus hydrogen bond stabilization, J. Org. Chem, vol.75, p.6782, 2010.

K. Ruiz-mirazo, C. Briones, and A. De-la-escosura, Prebiotic systems chemistry: new perspectives for the origins of life, Chem. Rev, vol.114, pp.285-366, 2014.

H. Saito and H. Suga, A Ribozyme Exclusively Aminoacylates the 3"-Hydroxyl Group of the tRNA Terminal Adenosine, J. Am. Chem. Soc, vol.123, p.7178, 2001.

M. Smith, J. G. Moffatt, and H. G. Khorana, Carbodiimides. VIII. 1 Observations on the Reactions of, 1958.

, Carbodiimides with Acids and Some New Applications in the Synthesis of Phosphoric Acid Esters

, J. Am. Chem. Soc, vol.80, p.6204

J. Taillades, H. Collet, L. Garrel, I. Beuzelin, L. Boiteau et al., NCarbamoyl Amino Acid Solid-Gas Nitrosation by NO/NO x : A New Route to Oligopeptides via ?-Amino Acid N-Carboxyanhydride. Prebiotic Implications, J. Mol. Evol, vol.48, pp.638-645, 1999.

,

J. S. Weinger, K. M. Parnell, S. Dorner, R. Green, and S. A. Strobel, Substrate-assisted catalysis of peptide bond formation by the ribosome, Nat. Struct. Mol. Biol, vol.11, p.1101, 2004.

J. S. Weinger and S. A. Strobel, Participation of the tRNA A76 Hydroxyl Groups throughout Translation, Biochemistry, p.5939, 2006.

N. S. Wickramasinghe and J. C. Lacey, Catalytic roles of the AMP at the 3? end of tRNAs, Mol. Cell. Biochem, vol.139, p.117, 1994.

R. Wolfenden, D. H. Rammler, and F. Lipmann, Expeditious, potentially primordial, aminoacylation of nucleotides, Angew. Chem. Int. Ed, vol.3, pp.6731-6734, 1964.

J. Biron and R. Pascal, Amino acid N-carboxyanhydrides: activated peptide monomers behaving as phosphate-activating agents in aqueous solution, J. Am. Chem. Soc, vol.126, pp.9198-9199, 2004.

V. Borsenberger, M. A. Crowe, J. Lehbauer, J. Raftery, M. Helliwell et al., Exploratory Studies to Investigate a Linked Prebiotic Origin of RNA and Coded Peptides, Chem. Biodiversity, p.203, 2004.

A. Kaiser, S. Spies, T. Lommel, and C. Richert, Template-Directed Synthesis in 3' and 5' Direction with Reversible Termination, Angew. Chem. Int. Ed, vol.51, pp.8299-8303, 2012.

M. Kindermann, I. Stahl, M. Reimold, W. M. Pankau, and G. Von-kiedrowski, Systems chemistry: Kinetic and computational analysis of a nearly exponential organic replicator, 2005.

, Angew. Chem. Int. Ed, vol.44, pp.6750-6755

Z. Liu, D. Beaufils, J. C. Rossi, and R. Pascal, Evolutionary importance of the intramolecular pathways of hydrolysis of phosphate ester mixed anhydrides with amino acids and peptides, Sci. Rep, vol.4, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01099839

Z. Liu, C. Hanson, G. Ajram, L. Boiteau, J. Rossi et al., 5(4H)-Oxazolones as Effective Aminoacylation Reagents for the 3?-Terminus of RNA, Synlett, vol.28, pp.73-77, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01930502

Z. Liu, L. Rigger, J. Rossi, J. D. Sutherland, and R. Pascal, Mixed Anhydride Intermediates in the Reaction of 5(4H)-Oxazolones with Phosphate Esters and Nucleotides, Chem. Eur. J, vol.22, pp.14940-14949, 2016.

R. F. Ludlow and S. Otto, Systems chemistry, Chem. Soc. Rev, vol.37, pp.101-108, 2008.

R. Pascal, L. Boiteau, and A. Commeyras, From the prebiotic synthesis of ?-amino acids towards a primitive translation apparatus for the synthesis of peptides, Top. Curr. Chem, vol.259, pp.69-122, 2005.

J. L. Shim, R. Lohrmann, and L. E. Orgel, Poly(U)-Directed Transamidation between Adenosine 5'-Phosphorimidazolide and 5 '-Phosphoadenosine 2'(3')-Glycine Ester, J. Am. Chem. Soc, vol.96, pp.5283-5284, 1974.

D. Sievers and G. Von-kiedrowski, Self-replication of complementary nucleotide-based oligomers, Nature, vol.369, pp.221-224, 1994.

G. Von-kiedrowski, B. Wlotzka, J. Helbing, M. Matzen, and S. Jordan, Parabolic growth of a self-replicating hexadeoxynucleotide bearing a 3'-5'-phosphoramidate linkage, Angew. Chem., Int. Ed. Engl, vol.30, pp.423-426, 1991.

N. S. Wickramasinghe, M. P. Staves, and J. C. Lacey, Stereoselective, nonenzymatic, intramolecular transfer of amino acids, Biochemistry, vol.30, pp.2768-2772, 1991.

S. Zhang, N. Zhang, J. C. Blain, and J. W. Szostak, Synthesis of N3'-P5'-linked Phosphoramidate DNA by Nonenzymatic Template-Directed Primer Extension, J. Am, 2013.

, Chem. Soc, vol.135, pp.924-932

W. S. Zielinski and L. E. Orgel, Oligomerization of activated derivatives of 3'-amino-3'-deoxyguanosine on poly(C) and poly(dC) templates, Nucleic Acids Res, vol.13, pp.2469-2484, 1985.

W. S. Zielinski and L. E. Orgel, Autocatalytic synthesis of a tetranucleotide analogue, Nature, vol.327, pp.346-347, 1987.

W. S. Zielinski and L. E. Orgel, b). Oligoaminonucleoside phosphoramidates. Oligomerization of dimers of 3'-amino-3'-deoxynudeotides (GC and CG) in aqueous solution, Nucleic Acids Res, vol.15, pp.1699-1715, 1987.
URL : https://hal.archives-ouvertes.fr/in2p3-00590761

W. S. Zielinski and L. E. Orgel, Polymerase-catalyzed synthesis of DNA from phosphoramidate conjugates of deoxynucleotides and amino acids, Nucleic Acids Res, vol.35, pp.5060-5072, 1989.

C. Anastasi, Direct Assembly of Nucleoside Precursors from Two-and ThreeCarbon Units, Angew. Chem. Int. Ed, vol.45, pp.6176-6179, 2006.

S. J. Benkovic and P. A. Benkovic, Hydrolytic Mechanisms of Phosphoramidates of Aromatic Amino Acids, J. Am. Chem. Soc, vol.89, pp.4714-4722, 1967.

J. Biron, Expeditious, Potentially Primordial, Aminoacylation of Nucleotides, Angew. Chem. Int. Ed, vol.44, pp.6731-6734, 2005.

V. Borsenberger, Exploratory Studies to Investigate a Linked Prebiotic Origin of RNA and Coded Peptides, Chem. Biodiversity, vol.1, pp.203-246, 2004.

A. Brack, Selective emergence and survival of early polypeptides in water, Origins Life, vol.17, pp.367-379, 1987.

F. H. Crick, The origin of the genetic code, J. Mol. Biol, vol.38, pp.367-379, 1968.

G. Danger, The Peptide Formation Mediated by Cyanate Revisited. NCarboxyanhydrides as Accessible Intermediates in the Decomposition of NCarbamoylaminoacids, J. Am. Chem. Soc, vol.128, pp.7412-7413, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00134565

C. Förster, Effector region of the translation elongation factor EF-Tu GTP complex stabilizes an orthoester acid intermediate structure of aminoacyl-tRNA in a ternary complex, Proc. Natl. Acad. Sci. U.S.A, vol.91, pp.454-457, 1994.

H. Griesser, Ribonucleotides and RNA Promote Peptide Chain Growth, Angew. Chem. Int. Ed, vol.56, pp.1219-1223, 2017.

H. Griesser, Amino Acid-Specific, Ribonucleotide-Promoted Peptide Formation in the Absence of Enzymes, Angew. Chem. Int. Ed, vol.56, pp.1224-1228, 2017.

M. Illangasekare, Aminoacyl-RNA synthesis catalyzed by an RNA, Science, vol.267, pp.643-647, 1995.

M. Illangasekare, O. Kovalchuke, and M. Yarus, Essential Structures of a Selfaminoacylating RNA, J. Mol. Biol, vol.274, pp.519-529, 1997.

M. Jauker, H. Griesser, and C. Richert, Spontaneous Formation of RNA Strands, Peptidyl RNA, and Cofactors. Angew. Chemie Int, vol.54, p.14564, 2015.

A. Kaiser, Template-Directed Synthesis in 3' and 5' Direction with Reversible Termination, Angew. Chem. Int. Ed, vol.51, pp.8299-8303, 2012.

J. F. Kasting, Faint young Sun redux, Nature, vol.464, pp.687-689, 2010.

M. Kindermann, Systems Chemistry: Kinetic and Computational Analysis of a Nearly Exponential Organic Replicator, Angew. Chem. Int. Ed, vol.44, pp.6750-6755, 2005.

N. Lee, Ribozyme-catalyzed tRNA aminoacylation, Nat. Struct. Biol, vol.7, pp.28-33, 2000.

L. J. Leman, L. E. Orgel, and M. R. Ghadiri, Amino Acid Dependent Formation of Phosphate Anhydrides in Water Mediated by Carbonyl Sulfide, J. Am. Chem. Soc, vol.128, pp.20-21, 2006.

L. Leman, L. Orgel, and M. R. Ghadiri, Carbonyl Sulfide-Mediated Prebiotic Formation of Peptides, Science, vol.306, pp.283-286, 2004.

Z. Liu, Evolutionary importance of the intramolecular pathways of hydrolysis of phosphate ester mixed anhydrides with amino acids and peptides, Sci. Rep, vol.4, p.7440, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01099839

Z. Liu, Mixed Anhydride Intermediates in the Reaction of 5(4H)-Oxazolones with Phosphate Esters and Nucleotides, Chem. Eur. J, vol.22, pp.14940-14949, 2016.

Z. Liu, 5(4H)-Oxazolones as Effective Aminoacylation Reagents for the 3?-Terminus of RNA, Synlett, vol.28, pp.73-77, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01930502

R. Lohrmann and L. E. Orgel, Template-directed synthesis of high molecular weight polynucleotide analogues, Nature, vol.261, pp.342-344, 1976.

R. F. Ludlow and S. Otto, Systems chemistry, Chem. Soc. Rev, vol.37, pp.101-108, 2008.

S. L. Miller, A production of amino acids under possible primitive earth conditions, Science, vol.117, pp.528-529, 1953.

P. Monnard, A. Kanavarioti, and D. W. Deamer, Eutectic Phase Polymerization of Activated Ribonucleotide Mixtures Yields Quasi-Equimolar Incorporation of Purine and Pyrimidine Nucleobases, J. Am. Chem. Soc, vol.125, pp.13734-13740, 2003.

F. Ni, On the Electrophilicity of Cyclic Acylphosphoramidates (CAPAs) Postulated as Intermediates, Eur. J. Org. Chem, pp.3026-3035, 2009.

M. Ora, J. Ojanper, and H. Lönnberg, Hydrolytic Reactions of Thymidine 5'-O-Phenyl-NAlkylphosphoramidates, Models of Nucleoside 5'-Monophosphate Prodrugs, Chem. Eur. J, vol.13, pp.8591-8599, 2007.

L. E. Orgel, Evolution of the genetic apparatus, J. Mol. Biol, vol.38, pp.381-393, 1968.

R. Pascal and A. Pross, Stability and its manifestation in the chemical and biological worlds, Chem. Commun, vol.51, pp.16160-16165, 2015.

R. Pascal, Catalysis through Induced Intramolecularity: What Can Be Learned by Mimicking Enzymes with Carbonyl Compounds that Covalently Bind Substrates?, Eur. J. Org. Chem, pp.1813-1824, 2003.

R. Pascal, Kinetic Barriers and the Self-organization of Life, Isr. J. Chem, vol.55, pp.865-874, 2015.

R. Pascal, L. Boiteau, and A. Commeyras, From the Prebiotic Synthesis of ?-Amino Acids Towards a Primitive Translation Apparatus for the Synthesis of Peptides, Top. Curr. Chem, vol.259, pp.69-122, 2005.

R. Pascal, A. Pross, and J. D. Sutherland, Towards an evolutionary theory of the origin of life based on kinetics and thermodynamics, Open Biol, vol.3, p.130156, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01003404

B. H. Patel, Common origins of RNA, protein and lipid precursors in a cyanosulfidic protometabolism, Nat. Chem, vol.7, pp.301-307, 2015.

M. W. Powner, B. Gerland, and J. D. Sutherland, Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions, Nature, vol.459, pp.239-242, 2009.

A. T. Profy and D. A. Usher, Stereoselective aminoacylation of polyribonucleotides, J. Am. Chem. Soc, vol.106, pp.5030-5031, 1984.

A. T. Profy and D. A. Usher, Stereoselective Aminoacylation of a Dinucleoside Monophosphate by the Imidazolides of DL-Alanine and N-(tert-Butoxycarbonyl)-DL-Alanine, 1984.

, J. Mol. Evol, vol.20, pp.147-156

A. Pross, What is Life? How Chemistry Becomes Biology, 2016.

U. K. Oxford,

E. J. Sampson, Intramolecular and Divalent Metal Ion Catalysis. The Hydrolytic Mechanism of O-Phenyl N-(Glycyl)phosphoramidate, J. Org. Chem, vol.38, pp.1301-1306, 1973.

F. Schuber and M. Pinck, On the chemical reactivity of aminoacyl-tRNA ester bond. I. Influence of pH and nature of the acyl group on the rate of hydrolysis, Biochimie, vol.56, pp.383-390, 1974.

J. L. Shim, &. R. Lohrmann, and L. E. Orgel, Poly(U)-Directed Transamidation between Adenosine 5'-Phosphorimidazolide and 5 '-Phosphoadenosine 2'(3')-Glycine Ester, J. Am. Chem. Soc, vol.96, pp.5283-5284, 1974.

D. Sievers and G. Von-kiedrowski, Self-replication of complementary nucleotide-based oligomers, Nature, vol.369, pp.221-224, 1994.

J. Sutherland, Studies on the origin of life -the end of the beginning, Nat. Rev. Chem, vol.1, p.12, 2017.

E. Szathmáry, The origin of the genetic code -amino acids as cofactors in an RNA world, Trends Genet, vol.15, pp.223-229, 1999.

K. Tamura and P. Schimmel, Chiral-Selective Aminoacylation of an RNA Minihelix, Science, vol.305, pp.1253-1253, 2004.

R. M. Turk, N. V. Chumachenko, and M. Yarus, Multiple translational products from a five-nucleotide ribozyme, Proc. Natl. Acad. Sci. U.S.A, vol.107, pp.4585-4589, 2010.

R. M. Turk, M. Illangasekare, and M. Yarus, Catalyzed and Spontaneous Reactions on Ribozyme Ribose, J. Am. Chem. Soc, vol.133, pp.6044-6050, 2011.

G. Von-kiedrowski, Parabolic growth of a self-replicating hexadeoxynucleotide bearing a 3'-5'-phosphoramidate linkage, Angew. Chem., Int. Ed. Engl, vol.30, pp.423-426, 1991.

J. D. Watson and F. H. Crick, Molecular structure of nucleic acids -A structure for deoxyribose nucleic acid, Nature, vol.171, pp.737-738, 1953.

H. B. White, Coenzymes as fossils of an earlier metabolic state, J. Mol. Evol, vol.7, pp.101-104, 1976.

N. S. Wickramasinghe, M. P. Staves, and J. C. Lacey, Stereoselective, nonenzymatic, intramolecular transfer of amino acids, Biochemistry, vol.30, pp.2768-2772, 1991.

R. Wolfenden, The mechanism of hydrolysis of amino acyl RNA, Biochemistry, vol.2, pp.1090-1092, 1963.

R. Wolfenden, The temperature dependence of enzyme rate enhancement, J. Am. Chem. Soc, vol.121, pp.7419-7420, 1999.

R. Wolfenden, D. H. Rammler, and F. Lipmann, On the Site of Esterification of Amino Acids to Soluble RNA, Biochemistry, vol.3, pp.329-338, 1964.

S. Zhang, Synthesis of N3'-P5'-linked Phosphoramidate DNA by Nonenzymatic Template-Directed Primer Extension, J. Am. Chem. Soc, vol.135, pp.924-932, 2013.

W. S. Zielinski and L. E. Orgel, Oligomerization of activated derivatives of 3'-amino-3'-deoxyguanosine on poly(C) and poly(dC) templates, Nucleic Acids Res, vol.13, pp.2469-2484, 1985.

W. S. Zielinski and L. E. Orgel, Autocatalytic synthesis of a tetranucleotide analogue, Nature, vol.327, pp.346-347, 1987.

W. S. Zielinski and L. E. Orgel, b). Oligoaminonucleoside phosphoramidates. Oligomerization of dimers of 3'-amino-3'-deoxynudeotides (GC and CG) in aqueous solution, Nucleic Acids Res, vol.15, pp.1699-1715, 1987.
URL : https://hal.archives-ouvertes.fr/in2p3-00590761

W. S. Zielinski and L. E. Orgel, Polymerization of a Monomeric Guanosine Derivative in a Hydrogen-Bonded Aggregate, J. Mol. Evol, vol.29, pp.367-369, 1989.

, A devised loop allowing the formation and the reproduction of the 2'(3')-aminoacylated nucleotide 13 based on a facilitated intramolecular transfer of the aminoacyl moiety in mixed anhydrides 10 and on the possibility of cleavage of the phosphoramidate linkage of the resulting co-tetramer 11 into two 2, p.13

, Experimental procedures for chapter 5: Reagents and solvents were purchased from Sigma-Aldrich or Bachem, and were used without further purification. All aqueous solutions were prepared using pure water (18 M?) produced with a Milli-Q (Merck-Millipore) apparatus. NMR spectra in either DMSO, Scheme 7. Investigation of the possibility for intramolecular transfer of the 5'-aminoacyl moiety in the mixed anhydride copolymer 10 to the 2'(3')-OH, p.300

. Mhz, MHz); chemical shifts ?H are reported in ppm; coupling constants J are reported in Hz. In all the experiments, the pH was monitored using a Thermo Orion 3-STAR pH-meter with a VWR electrode, Bruker Avance, vol.500, p.3000

, B: CH3CN (0.1% TFA); flow rate 0.2 mL/min; gradient: 0 min (10% B) to 20 min (100% B). Method B: mobile phase made of solvent A: H2O (0.1% TFA, Standard system including an autosampler unit, p.5

, 10 min (10% B), 15 min (35%), 18 min (100% B), 19 min (100% B), pp.21-100

, mm 2.1×50 mm column (System B) or Thermo Scientific BDS-Hypersil C18 3 µm 50×2.1 mm column (System C). using gradients of solvent Method C: System B, mobile phase: A: H2O (0.1% formic acid, HPLC/ESI-MS analyses were carried out on a Waters Synapt G2-S mass spectrometer system connected to waters Acquity UPLC H-Class apparatus equipped with in an Aquity UPLC BEH C18, vol.1

D. Method, B: CH3CN (0.1% formic acid); flow rate 0.2 mL/min, System C, mobile phase solvent A: H2O (0.1% formic acid, p.15

, 18 min (100% B), 19 min (100% B), 25 min (100% B)

T. Baddiley, To a solution of dibenzyl phosphite (2.36 g, 9 mmol) in anhydrous toluene (30 mL), N-chloro succinimide (1.62 g, 12.1 mmol) was added. After stirring at room temperature for 2 hr, Synthesis of starting materials and reagents: Dibenzyl chlorophosphate, vol.2, 1947.

T. Baddiley, 2':3'-isoPropylidene adenosine (1 g, 3.25 mmol) was dissolved by warming in dry pyridine (12 mL), and the solution cooled in an acetone-liquid nitrogen bath until the liquid at sides of the flask began to solidify. Then subsequently, a solution of fresh dibenzyl chlorophosphate (2.66 g, 2.76 eq.) in toluene (2 mL) was added with shaking, and the mixture left for 3 hours in cold bath at a temperature just above the freezing point of the mixture under N2 gas and then set aside at room temperature overnight. Water (6 mL) and sodium carbonate (1 g) was added, and subsequently, the solution was evaporated under reduced pressure. The syrup obtained was dissolved in dichloromethane (100 mL), and the solution was washed with brine solution (3 × 100ml), then dried over Na2SO4, and concentrated to give a crude syrup. The crude syrup was chromatographed on silica gel (250 mL of CH2Cl2/MeOH = 97/3, 200 mL of CH2Cl2/MeOH = 95/5), then the fraction containing the product was evaporated to give an oily product (mass obtained 550 mg). HPLC analysis (method A): retention time 13, 1947.

, 31 P NMR (121 MHz, CDCl3) ? -0.88 (s)

. Esi-ms,

, Bn-5'-AMP, 4: A procedure from the literature (Baddiley and Todd, 1947) was modified as follows: the compound 3 (400 mg ,0.9 mmol) was dissolved in ethanol (0.27 mL), then a 9, p.27

, ml of 19 mM trifluoroacetic acid (1 eq.) was added, and the solution was refluxed for 90 min. Then the solvent was evaporated and then freeze-dried after the addition of water (mass obtained = 350 mg). HPLC analysis (method A): retention time 2, vol.9

H. Nmr, 300 MHz, D2O) ? 8.21 (s, 1H), 8.07 -7.96 (m, 1H), 7.09 (dd, J = 10, vol.9

. Liu, tertButyloxycarbonyl (Boc) Leucine (0.31 mmol) was dissolved in dimethylformamide (DMF, 0.125 mL). 1,1'-Carbonyldiimidazole (89.2 mg, 0.34 mmol) was added to the solution and allowed to react for 5 min at room temperature. The resulting solution of the imidazolide of amino acid was added to the 5'-benzyl AMP.Na salt (0.25 mmol) in water (0.25 mL). After reacting for one night. DMF was removed under vacuum. The mono nucleotide aminoacyl ester was isolated from the aqueous phase by preparative LC C18 column with the gradient: mobile phase: A: H2O + 5 mM triethylamine and acetic acid at pH 6.5, B: acetonitrile; flow rate: 9 mL/min; 0 min (10% B), to 21 min (60% B), and 22 min (100% B). The solvent was removed by lyophilization. The Boc protecting group was removed by trifluoroacetic acid (0.25 mL) for 10 min. The precipitate was collected by centrifugation after adding diethyl ether, 31 P NMR (121 MHz, D2O) ? 0.28 (s), HRMS (ESI -): calcd. for C17H19N5O7P, 1978.

, min; HRMS (ESI -): calcd. for C23H30N6O8P, 1858.

, regioisomer: 1 H NMR (300 MHz, D2O) ? 8.38 (s, 1H), 8.18 (s, 1H), 7.20 -7.00 (m, 5H), 6.01 (d, J = 6.8 Hz, 1H), vol.5

6. Hz, After three days at 5 °C (in the fridge), the mixture was separated by preparative HPLC with the gradient as follows: mobile phase: A: H2O + 5 mM triethylamine and acetic acid at pH 6.5, B: acetonitrile; flow rate: 9 mL/min; 0 min (10% B), to 12 min (15% B), to 17 min (23% B) and 18 min (100% B), 22 (100% B). The fraction containing the product was collected and the solvent was evaporated, then freeze dried after adding water (the product was contaminated by Nethyl-N'-(dimethyl)aminopropyl urea (EDU) present as a counter ion). The white powder (35 mg, Other signals for this compound were mainly obscured. Preparation of benzylated co-trimer: (N-2'(3')-Leucyl adenosine 5'-benzyl phosphate)-5'-adenosine phosphoramidate, vol.7

, Figure 3); 31 P NMR (D2O, 202 MHz, Figure 4) ? 6.77 (s), 6.38 (s), 0.02 (s)

. Esi-ms, Removal of the benzyl protecting group: co-trimer, 8: The removal of the benzyl group was done according to a procedure of the literature (Michelson and Todd 1949). (15 mg, 0.017 mmol) of compound 7 was dissolved in methanol (5.5 mL). An equal weight of 40 %, vol.62

, Then the hydrogenation proceeded overnight, and the mixture was filtered (using celite), washed with a mixture of methanol and water, and evaporated under reduced pressure. The product was used without further purification (white precipitate, mass obtained = 12 mg). HPLC analysis (method A): retention time 3 min, 4 min; HPLC analysis (method B): retention time 11, A gentle stream of nitrogen was passed through the reaction mixture for 15 mins, 1914.

L. , yield 24%). 1 H NMR (400 MHz, CDCl3) ? 6.69 (s, 1H, The N-carboxyanhydride was prepared by reaction of H-L-Leu-OH with triphospgene, vol.9, 1988.

, Procedures for the study of the reactivity of copolymers (8) with NCAs

J. Baddiley and A. R. Todd, Part I. Muscle Adenylic Acid and Adenosine Di phosphate, J. Chem. Soc, vol.0, pp.648-651, 1947.

J. Biron, A. L. Parkes, R. Pascal, and J. D. Sutherland, Expeditious, potentially primordial, aminoacylation of nucleotides, Angew. Chem. Int. Ed, vol.44, pp.6731-6734, 2005.

W. H. Daly and D. Poche, The preparation of N-carboxyanhydrides of amino acids using bis(trichloromethyl)carbonate, Tetrahedron Lett, vol.29, pp.5859-5862, 1988.

Z. Liu, 5(4H)-Oxazolones as Effective Aminoacylation Reagents for the 3'-Terminus of RNA, Synlett, vol.28, pp.73-77, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01930502

A. M. Michelson and A. R. Todd, Part III. Mononucleotides derived from Adenosine, Guanosine, Cytidine, and Uridine, J. Chem. Soc, vol.0, pp.2476-2486, 1949.

A. Pross, What is Life? How Chemistry Becomes Biology, 2016.

K. Tamura and P. Schimmel, Chiral-Selective Aminoacylation of an RNA Minihelix, Science, vol.305, pp.1253-1253, 2004.

A. L. Weber and L. E. Orgel, The formation of peptides from the 2'(3')-glycyl ester of a nucleotide, J. Mol. Evol, vol.11, pp.189-198, 1978.

H. Nmr, 500 MHz, D 2 O) of trimer model 7 (bis-N-ethyl-N'-(dimethyl)aminopropyl urea salt)

, Complete stuffed Bibliographic References

A. Bardyn, D. Baklouti, H. Cottin, N. Fray, C. Briois et al.,

P. Modica, F. Orthous-daunay, J. Rynö, R. Schulz, J. Silén et al., Carbon-rich dust in comet 67P/ChuryumovGerasimenko measured by COSIMA/Rosetta, Monthly Notices of the Royal Astronomical Society, vol.469, pp.712-722, 2017.

D. Beaufils, G. Danger, L. Boiteau, J. C. Rossi, and R. Pascal, Diastereoselectivity in prebiotically relevant 5(4H)-oxazolone-mediated peptide couplings, Chem. Commun, vol.50, pp.3100-3102, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01930550

D. Beaufils, S. Jepaul, Z. Liu, L. Boiteau, and R. Pascal, The Activation of Free Dipeptides Promoted by Strong Activating Agents in Water Does not Yield Diketopiperazines, Orig. Life Evol. Biosph, vol.46, pp.19-30, 2016.

J. Biron, A. L. Parkes, R. Pascal, and J. D. Sutherland, Expeditious, potentially primordial, aminoacylation of nucleotides, Angew. Chem. Int. Ed, vol.44, pp.6731-6734, 2005.

J. Biron and R. Pascal, Amino acid N-carboxyanhydrides: activated peptide monomers behaving as phosphate-activating agents in aqueous solution, J. Am. Chem. Soc, vol.126, pp.9198-9199, 2004.

V. Borsenberger, M. A. Crowe, J. Lehbauer, J. Raftery, M. Helliwell et al., Exploratory Studies to Investigate a Linked Prebiotic Origin of RNA and Coded Peptides, Chem. Biodiversity, p.203, 2004.

A. Brack, Selective emergence and survival of early polypeptides in water, Orig. Life, vol.17, pp.367-379, 1987.

G. Bruylants, K. Bartik, and J. Reisse, Prebiotic chemistry: a fuzzy field, C. R. Chim, vol.14, pp.388-391, 2011.

H. J. Cleaves, J. H. Chalmers, A. Lazcano, S. L. Miller, and J. L. Bada, A Reassessment of Prebiotic Organic Synthesis in Neutral Planetary Atmospheres, Orig. Life Evol. Biosph, vol.38, issue.2, pp.105-115, 2008.

C. Cockell, Astrobiology: Understanding life in the universe, 2015.

F. Crick, Central Dogma of Molecular Biology, Nature, vol.227, pp.561-563, 1970.

G. Danger, L. Boiteau, H. Cottet, and R. Pascal, The peptide formation mediated by cyanate revisited. N-Carboxoxyanhydrides as accessible intermediates in the decomposition of Ncarbamoylaminoacids, J. Am. Chem. Soc, vol.12, pp.7412-7413, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00134565

G. Danger, A. Fresneau, N. Abou-mrad, P. Marcellus, F. Orthous-daunay et al., Insight into the molecular composition of an organic membrane produced by interstellar / pre-cometary ice analogues using very high resolution mass spectrometry, Geochimica & Cosmochimica Acta, vol.189, pp.184-196, 2016.

G. Danger, A. Michaut, M. Bucchi, L. Boiteau, J. Canal et al., 5(4H)-Oxazolones as intermediates in the carbodiimide and cyanamide-promoted peptide activations in aqueous solution, Angew. Chem. Int. Ed, vol.52, pp.611-614, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00778615

G. Danger, R. Plasson, and R. Pascal, Pathways for the formation and evolution of peptides in prebiotic environments, Chem. Soc. Rev, vol.41, pp.5416-5429, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00778056

D. Deamer and A. L. Weber, Bioenergetics and life's origins. Cold Spring, Harb. Pespect. Biol, 2010.

D. Giulio and M. , On the RNA World: Evidence in Favor of an Early Ribonucleopeptide World, J. Mol. Evol, vol.45, pp.571-578, 1997.

A. Eschenmoser, The search for the chemistry of life's origins, Tetrahedron, vol.63, 2007.

J. G. Forsythe, S. S. Yu, I. Mamajanov, M. A. Grover, R. Krishnamurthy et al., Ester-Mediated Amide Bond Formation Driven by Wet-Dry Cycles: A Possible Path to Polypeptides on the Prebiotic Earth, Angew. Chem. Int. Ed, vol.54, pp.9871-9875, 2015.

M. Gargaud, H. Martin, P. López-garcía, T. Montmerle, and R. Pascal, Young Sun, Early Earth and the Origins of Life, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00824583

R. F. Gesteland and T. R. Cech, The RNA World, 1999.

H. D. Holland, The oxygenation of the atmosphere and oceans, Philos. Trans. R. Soc. London, Ser. B, vol.361, pp.903-915, 2006.

J. Hulshof and C. Ponnamperuma, Prebiotic condensation reactions in an aqueous medium: a review of condensing agents, Orig. Life Evol. Biosph, vol.7, pp.197-224, 1976.

E. Imai, H. Honda, K. Hatori, A. Brack, and K. Matsuno, Elongation of oligopeptides in a simulated submarine hydrothermal system, Science, vol.283, pp.831-834, 1999.

G. F. Joyce and L. E. Orgel, Progress for understanding the origin of the RNA world, The RNA World, pp.49-77, 1999.

A. Kaiser, S. Spies, T. Lommel, and C. Richert, Template-Directed Synthesis in 3' and 5' Direction with Reversible Termination, Angew. Chem. Int. Ed, vol.51, pp.8299-8303, 2012.

J. F. Kasting, Earth's early atmosphere, Science, vol.259, pp.920-926, 1993.

J. F. Kasting and J. L. Siefert, Life and the evolution of Earth's atmosphere, Science, vol.296, pp.1066-1068, 2002.

M. Kindermann, I. Stahl, M. Reimold, W. M. Pankau, and G. Von-kiedrowski, Systems chemistry: Kinetic and computational analysis of a nearly exponential organic replicator, 2005.

, Angew. Chem. Int. Ed, vol.44, pp.6750-6755

N. Lahav, D. White, and S. Chang, Peptide formation in the prebiotic era: thermal condensation of glycine in fluctuating clay environments, Science, vol.201, pp.67-69, 1978.

J. Lambert, Adsorption and Polymerization of Amino Acids on Mineral Surfaces, Origins Life Evol. Biospheres, vol.38, pp.211-242, 2008.

L. Leman, L. Orgel, and M. R. Ghadiri, Carbonyl sulfide-mediated prebiotic formation of peptides, Science, vol.306, pp.283-286, 2004.

L. Leman, L. E. Orgel, and M. R. Ghadiri, Amino acid dependent formation of phosphate anhydrides in water mediated by carbonyl sulfide, J. Am. Chem. Soc, vol.128, pp.20-21, 2006.

Z. Liu, D. Beaufils, J. C. Rossi, and R. Pascal, Evolutionary importance of the intramolecular pathways of hydrolysis of phosphate ester mixed anhydrides with amino acids and peptides, Sci. Rep, vol.4, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01099839

Z. Liu, C. Hanson, G. Ajram, L. Boiteau, J. Rossi et al., 5(4H)-Oxazolones as Effective Aminoacylation Reagents for the 3?-Terminus of RNA, Synlett, vol.28, pp.73-77, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01930502

Z. Liu, L. Rigger, J. Rossi, J. D. Sutherland, and R. Pascal, Mixed Anhydride Intermediates in the Reaction of 5(4H)-Oxazolones with Phosphate Esters and Nucleotides, Chem. Eur. J, vol.22, pp.14940-14949, 2016.

R. Lohrmann and L. E. Orgel, Preferential formation of (2'-5')-linked internucleotide bonds in non-enzymatic reactions, Tetrahedron, vol.34, pp.853-855, 1978.

R. F. Ludlow and S. Otto, Systems chemistry, Chem. Soc. Rev, vol.37, pp.101-108, 2008.

C. Meinert, J. Filippi, P. De-marcellus, L. Sergeant-d'hendecourt, L. Meierhenrich et al., N-(2-Aminoethyl)glycine and Amino Acids from Interstellar Ice Analogues, ChemPlus Chem, vol.77, pp.186-191, 2012.

S. L. Miller, A production of amino acids under possible primitive Earth conditions, Science, vol.117, pp.528-529, 1953.

F. Mullie and J. Reisse, Organic matter in carbonaceous chondrites, Organic Geo-and Cosmochemistry. Topics in Current Chemistry, 139, 1987.

A. Oparin, Proiskhozhdenie zhizny (The origin of life), 1924.

A. Oparin, Evolution of the concepts of the origin of life, Orig. Life, vol.7, pp.3-8, 1976.

A. Oparin and V. Fesenkov, Life in the Universe, Academy of sciences publisher, 1956.

R. Pascal, Suitable energetic conditions for dynamic chemical complexity and the living state, J. Syst. Chem, vol.3, p.3, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00777826

R. Pascal, Life, metabolism and energy, Astrochemistry and Astrobiology: Physical Chemistry in Action, pp.243-269, 2013.

R. Pascal and L. Boiteau, Energy flows, metabolism and translation, Philos. Trans. R. Soc. Lond., B, Biol. Sci, vol.366, pp.2949-2958, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00773520

R. Pascal, L. Boiteau, and A. Commeyras, From the prebiotic synthesis of ?-amino acids towards a primitive translation apparatus for the synthesis of peptides, Top. Curr. Chem, vol.259, pp.69-122, 2005.

R. Pascal, A. Pross, and J. D. Sutherland, Towards an evolutionary theory of the origin of life based on kinetics and thermodynamics, Open Biol, vol.3, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01003404

B. H. Patel, C. Percivalle, D. J. Ritson, C. D. Duffy, and J. D. Sutherland, Common origins of RNA, protein and lipid precursors in a cyanosulfidic protometabolism, Nature Chemistry, vol.7, pp.301-307, 2015.

S. Pizzarello and E. Shock, The organic composition of carbonaceous meteorites: the evolutionary story ahead of biochemistry. Cold Spring (ED), Harb. Perspect. Biol, vol.2, p.2105, 2010.

M. W. Powner, B. Gerland, and J. D. Sutherland, Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions, Nature, vol.459, pp.239-242, 2009.

A. Pross, Seeking the chemical roots of Darwinism: bridging between chemistry and biology, Chem. Eur. J, vol.15, pp.8374-8381, 2009.

A. Pross, Toward a general theory of evolution: extending Darwinian theory to inanimate matter, J. Syst. Chem, vol.2, p.1, 2011.

A. Pross, What is Life? How Chemistry Becomes Biology, 2016.

A. Pross and R. Pascal, The origin of life: what we know, what we can know, what we will never know, Open Biol, vol.3, p.120190, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01003174

A. Pross and R. Pascal, How and why kinetics, thermodynamics, and chemistry induce the logic of biological evolution, Beilstein J. Org. Chem, vol.13, pp.665-674, 2017.

A. Rimola, M. Sodupe, and P. Ugliengo, Aluminosilicate surfaces as promoters for peptide bond formation: An assessment of Bernal's hypothesis by ab initio methods, J. Am. Chem. Soc, vol.129, pp.8333-8344, 2007.

F. Robert and M. Chaussidon, A palaeotemperature curve for the Precambrian oceans based on silicon isotopes in cherts, Nature, vol.443, pp.969-972, 2006.

B. M. Rode, Peptides and the origin of life, Peptides, vol.20, pp.773-786, 1999.

B. M. Rode, H. L. Son, Y. Suwannachot, and J. Bujdak, The combination of salt induced peptide formation reaction and clay catalysis: a way to higher under primitive Earth conditions, Origins Life Evol. Biosphere, vol.29, pp.273-286, 1999.

D. L. Rohlfing, Thermal polyamino acids: synthesis at less than 100 degrees C, Science, vol.193, pp.68-70, 1976.

A. Rousset, M. Lasperas, J. Taillades, and A. Commeyras, Systemes de strecker et apparentes-XI : Formation et stabilité de l'?-carboxyaminonitrile.Intermédiaire essentiel dans la synthèse des hydantoïnes selon bucherer-bergs, Tetrahedron, vol.36, pp.2649-2661, 1980.

K. Ruiz-mirazo, C. Briones, and A. De-la-escosura, Prebiotic systems chemistry: new perspectives for the origins of life, Chem. Rev, vol.114, pp.285-366, 2014.

G. Schlesinger and S. L. Miller, Prebiotic synthesis in atmospheres containing CH4, CO, and CO2. I. Amino acids; II. Hydrogen cyanide formaldehyde and ammonia, J. Mol. Evol, vol.19, pp.383-390, 1983.

J. L. Shim, R. Lohrmann, and L. E. Orgel, Poly(U)-Directed Transamidation between Adenosine 5'-Phosphorimidazolide and 5 '-Phosphoadenosine 2'(3')-Glycine Ester, J. Am. Chem. Soc, vol.96, pp.5283-5284, 1974.

D. Sievers and G. Von-kiedrowski, Self-replication of complementary nucleotide-based oligomers, Nature, vol.369, pp.221-224, 1994.

S. M. Som, R. Buick, J. W. Hagadorn, T. S. Blake, J. M. Perreault et al.,

C. , Earth's air pressure 2.7 billion years ago constrained to less than half modern levels, Nature Geoscience, vol.9, pp.448-451, 2016.

C. Sotin, In : L'environnement de la Terre primitive. Presses Universitaires de Bordeaux, reimpression, pp.237-263, 2005.

J. D. Sutherland, Opinion: Studies on the origin of life -the end of the beginning, Nature Reviews Chemistry, vol.1, p.12, 2017.

E. Szathmary, Coding coenzyme handles: a hypothesis for the origin of the genetic code, Proc. Natl. Acad. Sci. U.S.A, vol.90, pp.9916-9920, 1993.

J. Taillades, I. Beuzelin, L. Garrel, V. Tabacik, C. Bied et al., N-Carbamoyl-?-amino acids rather than free a-amino acids formation in the primitive hydrosphere: A novel proposal for the emergence of prebiotic peptides, Orig. Life Evol. Biosphere, vol.28, pp.61-77, 1998.

J. Taillades, L. Boiteau, I. Beuzelin, O. Lagrille, J. Biron et al., A pH-dependent cyanate reactivity model: application to preparative N-carbamoylation of amino acids, J. Chem. Soc. Perkin Trans, vol.2, pp.1247-1254, 2001.

J. Taillades, H. Collet, L. Garrel, I. Beuzelin, L. Boiteau et al., N-Carbamoyl Amino Acid Solid-Gas Nitrosation by NO/NO x: A New Route to Oligopeptides via ?-Amino Acid N-Carboxyanhydride. Prebiotic Implications, J. Mol. Evol, vol.48, pp.638-645, 1999.

P. Thaddeus, The prebiotic molecules observed in the interstellar gas, Phil. Trans. R. Soc. B, vol.361, pp.1681-1687, 2006.

I. N. Tolstikhin and M. B. , The evolution of terrestrial volatiles: A view from helium, neon, argon and nitrogen isotope modelling, Chem. Geol, vol.147, pp.27-52, 1998.

V. Vasas, C. Fernando, M. Santos, S. Kauffman, and E. Szathmáry, Evolution before genes, Biol. Direct, vol.7, p.1, 2012.

G. Von-kiedrowski, B. Wlotzka, J. Helbing, M. Matzen, and S. Jordan, Parabolic growth of a self-replicating hexadeoxynucleotide bearing a 3'-5'-phosphoramidate linkage, Angew. Chem., Int. Ed. Engl, vol.30, pp.423-426, 1991.

T. N. Wells, C. K. Ho, and A. R. Fersht, Free Energy of Hydrolysis of Tyrosyl Adenylate and Its Binding to Wild-Type and Engineered Mutant Tyrosyl-tRNA Synthetases, Biochemistry, vol.25, pp.6603-6608, 1986.

N. S. Wickramasinghe, M. P. Staves, and J. C. Lacey, Stereoselective, nonenzymatic, intramolecular transfer of amino acids, Biochemistry, vol.30, pp.2768-2772, 1991.

S. A. Wilde, J. W. Valley, W. H. Peck, and C. M. Graham, Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago, Nature, vol.409, pp.175-178, 2001.

J. T. Wong, The co-evolution theory of the genetic code, Proc. Natl. Acad. Sci. U.S.A, vol.72, pp.1909-1912, 1975.

S. S. Yu, M. Solano, M. Blanchard, M. Soper-hopper, R. Krishnamurthy et al., Elongation of Model Prebiotic Proto-Peptides by Continuous Monomer Feeding, Macromolecules, vol.50, pp.9286-9294, 2017.

K. Zahnle, E. Charles, J. M. Woodward, H. A. Shull, and . Thronson, Origins of atmospheres, ASP Conference Series, vol.148, p.364, 1998.

S. Zhang, N. Zhang, J. C. Blain, and J. W. Szostak, Synthesis of N3'-P5'-linked Phosphoramidate DNA by Nonenzymatic Template-Directed Primer Extension, J. Am. Chem. Soc, vol.135, pp.924-932, 2013.

W. S. Zielinski and L. E. Orgel, Oligomerization of activated derivatives of 3'-amino-3'-deoxyguanosine on poly(C) and poly(dC) templates, Nucleic Acids Res, vol.13, pp.2469-2484, 1985.

W. S. Zielinski and L. E. Orgel, Autocatalytic synthesis of a tetranucleotide analogue, Nature, vol.327, pp.346-347, 1987.

W. S. Zielinski and L. E. Orgel, b). Oligoaminonucleoside phosphoramidates. Oligomerization of dimers of 3'-amino-3'-deoxynudeotides (GC and CG) in aqueous solution, Nucleic Acids Res, vol.15, pp.1699-1715, 1987.
URL : https://hal.archives-ouvertes.fr/in2p3-00590761

W. S. Zielinski and L. E. Orgel, Polymerization of a Monomeric Guanosine Derivative in a Hydrogen-Bonded Aggregate, J. Mol. Evol, vol.29, pp.367-369, 1989.