Z. Szondy, E. Garabuczi, G. Joós, G. J. Tsay, and Z. Sarang, Impaired clearance of apoptotic cells in chronic inflammatory diseases: therapeutic implications, Front Immunol, vol.5, p.354, 2014.

R. S. Foo, K. Mani, and R. N. Kitsis, Death begets failure in the heart, J Clin Invest, vol.115, pp.565-571, 2005.

R. S. Whelan, V. Kaplinskiy, and R. N. Kitsis, Cell death in the pathogenesis of heart disease: mechanisms and significance, Annu Rev Physiol, vol.72, pp.19-44, 2010.

J. Chen, K. Carey, and P. J. Godowski, Identification of Gas6 as a ligand for Mer, a neural cell adhesion molecule related receptor tyrosine kinase implicated in cellular transformation, Oncogene, vol.14, pp.2033-2039, 1997.

R. S. Scott, E. J. Mcmahon, S. M. Pop, E. A. Reap, R. Caricchio et al., Phagocytosis and clearance of apoptotic cells is mediated by MER, Nature, vol.411, pp.207-211, 2001.

R. Hanayama, M. Tanaka, K. Miwa, A. Shinohara, A. Iwamatsu et al., Identification of a factor that links apoptotic cells to phagocytes, Nature, vol.417, pp.182-187, 2002.

M. A. Ensslin and B. D. Shur, Identification of mouse sperm SED1, a bimotif EGF repeat and discoidin-domain protein involved in sperm-egg binding, Cell, vol.114, pp.405-417, 2003.

J. S. Silvestre, C. Théry, G. Hamard, J. Boddaert, B. Aguilar et al., Lactadherin promotes VEGF-dependent neovascularization, Nat Med, vol.11, pp.499-506, 2005.

H. Ait-oufella, K. Kinugawa, J. Zoll, T. Simon, J. Boddaert et al., Lactadherin deficiency leads to apoptotic cell accumulation and accelerated atherosclerosis in mice, Circulation, vol.115, pp.2168-2177, 2007.

N. Deroide, X. Li, D. Lerouet, E. Van-vré, L. Baker et al., MFGE8 inhibits inflammasome-induced IL-1? production and limits postischemic cerebral injury, J Clin Invest, vol.123, pp.1176-1181, 2013.

R. Hanayama, M. Tanaka, K. Miyasaka, K. Aozasa, M. Koike et al., Autoimmune disease and impaired uptake of apoptotic cells in MFG-E8-deficient mice, Science, vol.304, pp.1147-1150, 2004.

J. Kranich, N. J. Krautler, J. Falsig, B. Ballmer, S. Li et al., Engulfment of cerebral apoptotic bodies controls the course of prion disease in a mouse strain-dependent manner, J Exp Med, vol.207, pp.2271-2281, 2010.

E. F. Nandrot, M. Anand, D. Almeida, K. Atabai, D. Sheppard et al., Essential role for MFG-E8 as ligand for alphavbeta5 integrin in diurnal retinal phagocytosis, Proc Natl Acad Sci U S A, vol.104, pp.12005-12010, 2007.

M. Nahrendorf, F. K. Swirski, E. Aikawa, L. Stangenberg, T. Wurdinger et al., The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions, J Exp Med, vol.204, pp.3037-3047, 2007.

M. Nahrendorf and F. K. Swirski, Monocyte and macrophage heterogeneity in the heart, Circ Res, vol.112, pp.1624-1633, 2013.

A. Sica and A. Mantovani, Macrophage plasticity and polarization: in vivo veritas, J Clin Invest, vol.122, pp.787-795, 2012.

K. J. Lavine, S. Epelman, K. Uchida, K. J. Weber, C. G. Nichols et al., Distinct macrophage lineages contribute to disparate patterns of cardiac recovery and remodeling in the neonatal and adult heart, Proc Natl Acad Sci U S A, vol.111, pp.16029-16034, 2014.

S. Epelman, K. J. Lavine, A. E. Beaudin, D. K. Sojka, J. A. Carrero et al., Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation, Immunity, vol.40, pp.91-104, 2014.

S. Epelman, K. J. Lavine, and G. J. Randolph, Origin and functions of tissue macrophages, Immunity, vol.41, pp.21-35, 2014.

T. Heidt, G. Courties, P. Dutta, H. B. Sager, M. Sebas et al., Differential contribution of monocytes to heart macrophages in steady-state and after myocardial infarction, Circ Res, vol.115, pp.284-295, 2014.

V. A. Fadok, D. L. Bratton, A. Konowal, P. W. Freed, J. Y. Westcott et al., Macrophages that have ingested apoptotic cells in vitro inhibit References 1, Nature reviews. Cardiology, vol.12, pp.659-669, 2015.

J. A. Ezekowitz, F. A. Mcalister, and P. W. Armstrong, Anemia is common in heart failure and is associated with poor outcomes: insights from a cohort of 12 065 patients with new-onset heart failure, Circulation, vol.107, pp.223-225, 2003.

E. A. Jankowska, Iron deficiency: an ominous sign in patients with systolic chronic heart failure, European heart journal, vol.31, pp.1872-1880, 2010.

D. J. Pennell, Cardiovascular function and treatment in beta-thalassemia major: a consensus statement from the American Heart Association, Circulation, vol.128, pp.281-308, 2013.

G. M. Felker, Underlying causes and long-term survival in patients with initially unexplained cardiomyopathy, N Engl J Med, vol.342, pp.1077-1084, 2000.

K. J. Allen, Iron-overload-related disease in HFE hereditary hemochromatosis, N Engl J Med, vol.358, pp.221-230, 2008.

H. Drakesmith and A. M. Prentice, Hepcidin and the iron-infection axis, Science, vol.338, pp.768-772, 2012.

E. Nemeth, Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization, Science, vol.306, pp.2090-2093, 2004.

G. Nicolas, Severe iron deficiency anemia in transgenic mice expressing liver hepcidin, Proceedings of the National Academy of Sciences of the United States of America, vol.99, pp.4596-4601, 2002.

H. Drakesmith, Resistance to hepcidin is conferred by hemochromatosisassociated mutations of ferroportin, Blood, vol.106, pp.1092-1097, 2005.

K. E. Finberg, Mutations in TMPRSS6 cause iron-refractory iron deficiency anemia (IRIDA), Nat Genet, vol.40, pp.569-571, 2008.

G. Nicolas, The gene encoding the iron regulatory peptide hepcidin is regulated by anemia, hypoxia, and inflammation, The Journal of clinical investigation, vol.110, pp.1037-1044, 2002.

D. Y. Shin, Pretreatment with CO-releasing molecules suppresses hepcidin expression during inflammation and endoplasmic reticulum stress through inhibition of the STAT3 and CREBH pathways, Blood, vol.119, pp.2523-2532, 2012.

M. Isoda, Expression of the peptide hormone hepcidin increases in cardiomyocytes under myocarditis and myocardial infarction, J Nutr Biochem, vol.21, pp.749-756, 2010.

S. Lakhal-littleton, Cardiac ferroportin regulates cellular iron homeostasis and is important for cardiac function, Proceedings of the National Academy of Sciences of the United States of America, vol.112, pp.3164-3169, 2015.

S. Lakhal-littleton, An essential cell-autonomous role for hepcidin in cardiac iron homeostasis, Elife, vol.5, 2016.

E. Nemeth, IL-6 mediates hypoferremia of inflammation by inducing the synthesis of the iron regulatory hormone hepcidin, The Journal of clinical investigation, vol.113, pp.1271-1276, 2004.

C. Peyssonnaux, TLR4-dependent hepcidin expression by myeloid cells in response to bacterial pathogens, Blood, vol.107, pp.3727-3732, 2006.

, Hypertension and coronary heart disease: classification and criteria for epidemiological studies. First Report of the Expert Committee on Cardiovascular Diseases and Hypertension, 1958.

. Who, Public Health in Europe, Paper No. 5, Regional Office for Europe, 1976.

S. Mendis, K. Thygesen, K. Kuulasmaa, S. Giampaoli, M. Mahonen et al., Writing group on behalf of the participating experts of the WHOcfroWHOdomi. World Health Organization definition of myocardial infarction: 2008-09 revision, vol.40, pp.139-185, 2011.

, WHO. World Health Statistics, 2012.

S. Yusuf, S. Hawken, S. Ounpuu, T. Dans, A. Avezum et al., Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): casecontrol study, vol.364, pp.937-52, 2004.

, Prevention of Cardiovascular Disease: Guidelines for Assessment and Management of Total Cardiovascular Risk, 2007.

P. Libby, Inflammation in atherosclerosis, vol.420, pp.868-74, 2002.

L. P. Lee and R. T. , Matrix matters, vol.102, pp.1874-1880, 2000.

T. B. Clarkson, R. W. Prichard, T. M. Morgan, G. S. Petrick, and K. P. Klein, Remodeling of coronary arteries in human and nonhuman primates, vol.271, pp.289-94, 1994.

P. Schoenhagen, K. M. Ziada, S. R. Kapadia, T. D. Crowe, N. Se et al., Extent and direction of arterial remodeling in stable versus unstable coronary syndromes : an intravascular ultrasound study, vol.101, pp.598-603, 2000.

E. M. Tuzcu, S. R. Kapadia, E. Tutar, K. M. Ziada, R. E. Hobbs et al., High prevalence of coronary atherosclerosis in asymptomatic teenagers and young adults: evidence from intravascular ultrasound, vol.103, pp.2705-2715, 2001.

W. C. Roberts, Relationship Between Coronary Thrombosis and Myocardial Infarction, vol.41, pp.7-10, 1972.

V. Y. Bogdanov, V. Balasubramanian, J. Hathcock, O. Vele, M. Lieb et al., Alternatively spliced human tissue factor: a circulating, soluble, thrombogenic protein, vol.9, pp.458-62, 2003.

E. Falk, P. K. Shah, and V. Fuster, Coronary plaque disruption, vol.92, pp.657-71, 1995.

R. Virmani, A. P. Burke, A. Farb, and F. D. Kolodgie, Pathology of the vulnerable plaque, vol.47, pp.13-21, 2006.

V. Toschi, R. Gallo, M. Lettino, J. T. Fallon, S. D. Gertz et al., Tissue factor modulates the thrombogenicity of human atherosclerotic plaques, vol.95, pp.594-603, 1997.

D. E. Vaughan, Plasminogen activator inhibitor-1 and the calculus of mortality after myocardial infarction, vol.108, pp.376-383, 2003.

E. Falk, Unstable angina with fatal outcome: dynamic coronary thrombosis leading to infarction and/or sudden death. Autopsy evidence of recurrent mural thrombosis with peripheral embolization culminating in total vascular occlusion, vol.71, pp.699-708, 1985.

E. J. Topol and J. S. Yadav, Recognition of the importance of embolization in atherosclerotic vascular disease, vol.101, pp.570-80, 2000.

E. Braunwald, E. M. Antman, J. W. Beasley, R. M. Califf, M. D. Cheitlin et al., American College of C and American Heart Association. Committee on the Management of Patients With Unstable A. ACC/AHA 2002 guideline update for the management of patients with unstable angina and non-ST-segment elevation myocardial infarction--summary article: a report of the American College of Cardiology/American Heart Association task force on practice guidelines, vol.40, pp.1366-74, 2002.

Z. Xiao, P. Theroux, and M. Frojmovic, Modulation of platelet-neutrophil interaction with pharmacological inhibition of fibrinogen binding to platelet GPIIb/IIIa receptor, vol.81, pp.281-286, 1999.

X. Z. Theroux and P. , Clopidogrel inhibits platelet-leukocyte interactions and thrombin receptor agonist peptide-induced platelet activation in patients with an acute coronary syndrome, vol.43, pp.1982-1990, 2004.

J. E. Salem, P. Sabouret, C. Funck-brentano, and J. S. Hulot, Pharmacology and mechanisms of action of new oral anticoagulants, vol.29, pp.10-20, 2015.

G. G. Schwartz, A. G. Olsson, M. D. Ezekowitz, P. Ganz, M. F. Oliver et al., Myocardial Ischemia Reduction with Aggressive Cholesterol Lowering Study I. Effects of atorvastatin on early recurrent ischemic events in acute coronary syndromes: the MIRACL study: a randomized controlled trial, vol.285, pp.1711-1719, 2001.

A. J. Cayatte, Y. Du, J. Oliver-krasinski, G. Lavielle, T. J. Verbeuren et al., The thromboxane receptor antagonist S18886 but not aspirin inhibits atherogenesis in apo E-deficient mice: evidence that eicosanoids other than thromboxane contribute to atherosclerosis, vol.20, pp.1724-1732, 2000.

R. R. Azar, S. Rinfret, P. Theroux, P. H. Stone, R. Dakshinamurthy et al., A randomized placebo-controlled trial to assess the efficacy of antiinflammatory therapy with methylprednisolone in unstable angina (MUNA trial, vol.21, pp.2026-2058, 2000.

C. B. Granger, K. W. Mahaffey, W. D. Weaver, P. Theroux, J. S. Hochman et al., Pexelizumab, an anti-C5 complement antibody, as adjunctive therapy to primary percutaneous coronary intervention in acute myocardial infarction: the COMplement inhibition in Myocardial infarction treated with Angioplasty (COMMA) trial, vol.108, pp.1184-90, 2003.

J. S. Hochman, Cardiogenic shock complicating acute myocardial infarction: expanding the paradigm, vol.107, pp.2998-3002, 2003.

M. M. Levy, M. P. Fink, J. C. Marshall, A. E. Angus, D. Cook et al., SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference, vol.31, pp.1250-1256, 2003.

C. T. Dotter and M. P. Judkins, Transluminal Treatment of Arteriosclerotic Obstruction. Description of a New Technic and a Preliminary Report of Its Application, vol.30, pp.654-70, 1964.

U. Sigwart, J. Puel, V. Mirkovitch, J. F. Kappenberger, and L. , Intravascular stents to prevent occlusion and restenosis after transluminal angioplasty, vol.316, pp.701-707, 1987.

P. W. Serruys, P. De-jaegere, F. Kiemeneij, C. Macaya, W. Rutsch et al., A comparison of balloonexpandable-stent implantation with balloon angioplasty in patients with coronary artery disease, Benestent Study Group, vol.331, pp.489-95, 1994.

S. Garg and P. W. Serruys, Coronary stents: current status, vol.56, pp.1-42, 2010.

C. L. Grines, K. F. Browne, J. Marco, D. Rothbaum, G. W. Stone et al., A comparison of immediate angioplasty with thrombolytic therapy for acute myocardial infarction. The Primary Angioplasty in Myocardial Infarction Study Group, vol.328, pp.673-682, 1993.

E. Bonnefoy, F. Lapostolle, A. Leizorovicz, G. Steg, E. P. Mcfadden et al., Comparison of A and Prehospital Thromboysis in Acute Myocardial Infarction study g. Primary angioplasty versus prehospital fibrinolysis in acute myocardial infarction: a randomised study, vol.360, pp.825-834, 2002.

L. W. Eaton and B. H. Bulkley, Expansion of acute myocardial infarction: its relationship to infarct morphology in a canine model, vol.49, pp.80-88, 1981.

E. Korup, D. Dalsgaard, O. Nyvad, T. M. Jensen, T. E. Berning et al., Comparison of degrees of left ventricular dilation within three hours and up to six days after onset of first acute myocardial infarction, vol.80, pp.449-53, 1997.

G. M. Hutchins and B. H. Bulkley, Infarct expansion versus extension: two different complications of acute myocardial infarction, vol.41, pp.1127-1159, 1978.

H. F. Weisman, D. E. Bush, J. A. Mannisi, and B. H. Bulkley, Global cardiac remodeling after acute myocardial infarction: a study in the rat model, vol.5, pp.1355-62, 1985.

P. Anversa, G. Olivetti, and J. M. Capasso, Cellular basis of ventricular remodeling after myocardial infarction, vol.68, pp.7-16, 1991.

P. Gaudron, C. Eilles, I. Kugler, and G. Ertl, Progressive left ventricular dysfunction and remodeling after myocardial infarction. Potential mechanisms and early predictors, vol.87, pp.755-63, 1993.

H. D. White, R. M. Norris, M. A. Brown, P. W. Brandt, R. M. Whitlock et al., Left ventricular end-systolic volume as the major determinant of survival after recovery from myocardial infarction, vol.76, pp.44-51, 1987.

M. Nahrendorf, M. J. Pittet, and F. K. Swirski, Monocytes: protagonists of infarct inflammation and repair after myocardial infarction, vol.121, pp.2437-2482, 2010.

F. K. Swirski, M. Nahrendorf, M. Etzrodt, M. Wildgruber, V. Cortez-retamozo et al., Identification of splenic reservoir monocytes and their deployment to inflammatory sites, vol.325, pp.612-618, 2009.

N. G. Frangogiannis, Regulation of the inflammatory response in cardiac repair, vol.110, pp.159-73, 2012.

D. M. Yellon and D. J. Hausenloy, Myocardial reperfusion injury, vol.357, pp.1121-1156, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01608633

U. Hofmann, N. Beyersdorf, J. Weirather, A. Podolskaya, J. Bauersachs et al., Activation of CD4+ T lymphocytes improves wound healing and survival after experimental myocardial infarction in mice, vol.125, pp.1652-63, 2012.

G. J. Lieschke, D. Grail, G. Hodgson, D. Metcalf, E. Stanley et al., Mice lacking granulocyte colony-stimulating factor have chronic neutropenia, granulocyte and macrophage progenitor cell deficiency, and impaired neutrophil mobilization, vol.84, pp.1737-1783, 1994.

R. E. Bruehl, K. L. Moore, D. E. Lorant, N. Borregaard, G. A. Zimmerman et al., Leukocyte activation induces surface redistribution of P-selectin glycoprotein ligand-1, vol.61, pp.489-99, 1997.

M. Steegmaier, E. Borges, J. Berger, H. Schwarz, and D. Vestweber, The E-selectin-ligand ESL-1 is located in the Golgi as well as on microvilli on the cell surface, vol.110, pp.687-94, 1997.

K. Buscher, S. B. Riese, M. Shakibaei, C. Reich, J. Dernedde et al., The transmembrane domains of L-selectin and CD44 regulate receptor cell surface positioning and leukocyte adhesion under flow, vol.285, pp.13490-13497, 2010.

A. Hidalgo, A. J. Peired, M. K. Wild, D. Vestweber, and P. S. Frenette, Complete identification of E-selectin ligands on neutrophils reveals distinct functions of PSGL-1, ESL-1, and CD44, vol.26, pp.477-89, 2007.

M. Bunting, E. S. Harris, T. M. Mcintyre, P. Sm, and G. A. Zimmerman, Leukocyte adhesion deficiency syndromes: adhesion and tethering defects involving beta 2 integrins and selectin ligands, vol.9, pp.30-35, 2002.

O. Barreiro, M. Yanez-mo, J. M. Serrador, M. C. Montoya, M. Vicente-manzanares et al., Dynamic interaction of VCAM-1 and ICAM-1 with moesin and ezrin in a novel endothelial docking structure for adherent leukocytes, vol.157, pp.1233-1278, 2002.

A. Woodfin, M. B. Voisin, and S. Nourshargh, Recent developments and complexities in neutrophil transmigration, vol.17, pp.9-17, 2010.

M. Phillipson, J. Kaur, P. Colarusso, C. M. Ballantyne, and P. Kubes, Endothelial domes encapsulate adherent neutrophils and minimize increases in vascular permeability in paracellular and transcellular emigration, vol.3, p.1649, 2008.

O. E. Sorensen, P. Follin, A. H. Johnsen, J. Calafat, G. S. Tjabringa et al., Human cathelicidin, hCAP-18, is processed to the antimicrobial peptide LL-37 by extracellular cleavage with proteinase 3, vol.97, pp.3951-3960, 2001.

K. Theilgaard-monch, S. Knudsen, P. Follin, and N. Borregaard, The transcriptional activation program of human neutrophils in skin lesions supports their important role in wound healing, vol.172, pp.7684-93, 2004.

P. Scapini, J. A. Lapinet-vera, S. Gasperini, F. Calzetti, F. Bazzoni et al., The neutrophil as a cellular source of chemokines, vol.177, pp.195-203, 2000.

P. Scapini, A. Carletto, B. Nardelli, F. Calzetti, V. Roschke et al., Proinflammatory mediators elicit secretion of the intracellular B-lymphocyte stimulator pool (BLyS) that is stored in activated neutrophils: implications for inflammatory diseases, vol.105, pp.830-837, 2005.

T. Lapidot and O. Kollet, The essential roles of the chemokine SDF-1 and its receptor CXCR4 in human stem cell homing and repopulation of transplanted immune-deficient NOD/SCID and NOD/SCID/B2m(null) mice, vol.16, pp.1992-2003, 2002.

D. H. Walter, J. Haendeler, J. Reinhold, U. Rochwalsky, F. Seeger et al., Impaired CXCR4 signaling contributes to the reduced neovascularization capacity of endothelial progenitor cells from patients with coronary artery disease, vol.97, pp.1142-51, 2005.

E. A. Liehn, A. M. Piccinini, R. R. Koenen, O. Soehnlein, T. Adage et al., A new monocyte chemotactic protein-1/chemokine CC motif ligand-2 competitor limiting neointima formation and myocardial ischemia/reperfusion injury in mice, vol.56, pp.1847-57, 2010.

W. Z. Wang, X. H. Fang, L. L. Stephenson, K. T. Khiabani, and W. A. Zamboni,

, Ischemia/reperfusion-induced necrosis and apoptosis in the cells isolated from rat skeletal muscle, vol.26, pp.351-357, 2008.

C. Duilio, G. Ambrosio, P. Kuppusamy, A. Dipaula, L. C. Becker et al., Neutrophils are primary source of O2 radicals during reperfusion after prolonged myocardial ischemia, vol.280, pp.2649-57, 2001.

M. R. Litt, R. W. Jeremy, H. F. Weisman, J. A. Winkelstein, and L. C. Becker, Neutrophil depletion limited to reperfusion reduces myocardial infarct size after 90 minutes of ischemia. Evidence for neutrophil-mediated reperfusion injury, vol.80, pp.1816-1843, 1989.

J. L. Romson, B. G. Hook, S. L. Kunkel, G. D. Abrams, M. A. Schork et al., Reduction of the extent of ischemic myocardial injury by neutrophil depletion in the dog, vol.67, pp.1016-1039, 1983.

J. M. Budde, C. D. Morris, D. A. Velez, S. Muraki, N. P. Wang et al., Reduction of infarct size and preservation of endothelial function by multidose intravenous adenosine during extended reperfusion, vol.116, pp.104-119, 2004.

B. Chandrasekar, J. T. Colston, J. Geimer, C. D. Freeman, and G. L. , Induction of nuclear factor kappaB but not kappaB-responsive cytokine expression during myocardial reperfusion injury after neutropenia, vol.28, pp.1579-88, 2000.

S. P. Jones, S. D. Trocha, M. B. Strange, D. N. Granger, C. G. Kevil et al., Leukocyte and endothelial cell adhesion molecules in a chronic murine model of myocardial reperfusion injury, vol.279, pp.2196-201, 2000.

M. L. Entman, L. Michael, R. D. Rossen, W. J. Dreyer, D. C. Anderson et al., Inflammation in the course of early myocardial ischemia, vol.5, pp.2529-2566, 1991.

M. Horckmans, L. Ring, J. Duchene, D. Santovito, M. J. Schloss et al., Neutrophils orchestrate post-myocardial infarction healing by polarizing macrophages towards a reparative phenotype, 2016.

S. Chia, J. T. Nagurney, D. F. Brown, O. C. Raffel, F. Bamberg et al., Association of leukocyte and neutrophil counts with infarct size, left ventricular function and outcomes after percutaneous coronary intervention for ST-elevation myocardial infarction, vol.103, pp.333-340, 2009.

L. Guasti, F. Dentali, L. Castiglioni, L. Maroni, F. Marino et al., Neutrophils and clinical outcomes in patients with acute coronary syndromes and/or cardiac revascularisation. A systematic review on more than 34,000 subjects, vol.106, pp.591-600, 2011.

T. Kawai and S. Akira, The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors, vol.11, pp.373-84, 2010.

J. A. Hamerman, K. Ogasawara, and L. L. Lanier, NK cells in innate immunity, vol.17, pp.29-35, 2005.

K. Takeda, Y. Hayakawa, M. J. Smyth, N. Kayagaki, N. Yamaguchi et al., Involvement of tumor necrosis factor-related apoptosisinducing ligand in surveillance of tumor metastasis by liver natural killer cells, vol.7, pp.94-100, 2001.

S. Paust, H. S. Gill, B. Z. Wang, M. P. Flynn, E. A. Moseman et al., Critical role for the chemokine receptor CXCR6 in NK cell-mediated antigen-specific memory of haptens and viruses, vol.11, pp.1127-1162, 2010.

D. Luger, M. J. Lipinski, P. C. Westman, D. K. Glover, J. Dimastromatteo et al., Intravenously-Delivered Mesenchymal Stem Cells: Systemic Anti-Inflammatory Effects Improve Left Ventricular Dysfunction in Acute Myocardial Infarction and Ischemic Cardiomyopathy, 2017.

H. Saiwai, H. Kumamaru, Y. Ohkawa, K. Kubota, K. Kobayakawa et al., Ly6C+ Ly6G-Myeloid-derived suppressor cells play a critical role in the resolution of acute inflammation and the subsequent tissue repair process after spinal cord injury, vol.125, pp.74-88, 2013.

X. Yan, A. E. Hegab, J. Endo, A. Anzai, T. Matsuhashi et al., Lung natural killer cells play a major counter-regulatory role in pulmonary vascular hyperpermeability after myocardial infarction, vol.114, pp.637-686, 2014.

M. Muzio, G. Natoli, S. Saccani, M. Levrero, and A. Mantovani, The human toll signaling pathway: divergence of nuclear factor kappaB and JNK/SAPK activation upstream of tumor necrosis factor receptor-associated factor 6 (TRAF6), vol.187, pp.2097-101, 1998.

J. Banchereau and R. M. Steinman, Dendritic cells and the control of immunity, vol.392, pp.245-52, 1998.

D. Bell, Y. Jw, and J. Banchereau, Dendritic cells, vol.72, pp.255-324, 1999.

D. N. Hart, Dendritic cells: unique leukocyte populations which control the primary immune response, vol.90, pp.3245-87, 1997.

B. N. Lambrecht, B. Salomon, D. Klatzmann, and R. A. Pauwels, Dendritic cells are required for the development of chronic eosinophilic airway inflammation in response to inhaled antigen in sensitized mice, vol.160, pp.4090-4097, 1998.

M. Rescigno, F. Granucci, S. Citterio, M. Foti, R. et al., Coordinated events during bacteria-induced DC maturation, vol.20, pp.200-203, 1999.

O. Akbari, N. Panjwani, S. Garcia, R. Tascon, D. Lowrie et al., DNA vaccination: transfection and activation of dendritic cells as key events for immunity, vol.189, pp.169-78, 1999.

H. Hacker, H. Mischak, T. Miethke, S. Liptay, R. Schmid et al., CpG-DNA-specific activation of antigen-presenting cells requires stress kinase activity and is preceded by non-specific endocytosis and endosomal maturation, vol.17, pp.6230-6270, 1998.

G. Hartmann, G. J. Weiner, and A. M. Krieg, CpG DNA: a potent signal for growth, activation, and maturation of human dendritic cells, vol.96, pp.9305-9315, 1999.

M. Cella, M. Salio, Y. Sakakibara, H. Langen, J. I. Lanzavecchia et al., Maturation, activation, and protection of dendritic cells induced by double-stranded RNA, vol.189, pp.821-830, 1999.

J. Zhang, Z. X. Yu, S. Fujita, Y. Ml, and V. J. Ferrans, Interstitial dendritic cells of the rat heart. Quantitative and ultrastructural changes in experimental myocardial infarction, vol.87, pp.909-929, 1993.

Y. Maekawa, N. Mizue, A. Chan, Y. Shi, Y. Liu et al., Survival and cardiac remodeling after myocardial infarction are critically dependent on the host innate immune interleukin-1 receptor-associated kinase-4 signaling: a regulator of bone marrow-derived dendritic cells, vol.120, pp.1401-1415, 2009.

A. Anzai, T. Anzai, S. Nagai, Y. Maekawa, K. Naito et al., Regulatory role of dendritic cells in postinfarction healing and left ventricular remodeling, vol.125, pp.1234-1279, 2012.

K. Naito, T. Anzai, Y. Sugano, Y. Maekawa, T. Kohno et al., Differential effects of GM-CSF and G-CSF on infiltration of dendritic cells during early left ventricular remodeling after myocardial infarction, vol.181, pp.5691-701, 2008.

U. Eriksson, R. Ricci, L. Hunziker, M. O. Kurrer, G. Y. Oudit et al., Dendritic cell-induced autoimmune heart failure requires cooperation between adaptive and innate immunity, vol.9, pp.1484-90, 2003.

J. Douaiher, J. Succar, L. Lancerotto, M. F. Gurish, D. P. Orgill et al., Development of mast cells and importance of their tryptase and chymase serine proteases in inflammation and wound healing, vol.122, pp.211-52, 2014.

S. J. Galli, M. Grimbaldeston, and M. Tsai, Immunomodulatory mast cells: negative, as well as positive, regulators of immunity, vol.8, pp.478-86, 2008.

M. F. Gurish and A. Kf, Developmental origin and functional specialization of mast cell subsets, vol.37, pp.25-33, 2012.

T. C. Moon, S. Laurent, C. D. Morris, K. E. Marcet, C. Yoshimura et al., Advances in mast cell biology: new understanding of heterogeneity and function, vol.3, pp.111-139, 2010.

S. J. Galli, N. Borregaard, and T. A. Wynn, Phenotypic and functional plasticity of cells of innate immunity: macrophages, mast cells and neutrophils, vol.12, pp.1035-1079, 2011.

W. Dawicki and J. S. Marshall, New and emerging roles for mast cells in host defence, vol.19, pp.31-39, 2007.

S. J. Galli, J. Kalesnikoff, M. A. Grimbaldeston, A. M. Piliponsky, C. M. Williams et al., Mast cells as "tunable" effector and immunoregulatory cells: recent advances, vol.23, pp.749-86, 2005.

S. J. Galli, S. Nakae, and M. Tsai, Mast cells in the development of adaptive immune responses, vol.6, pp.135-177, 2005.

M. A. Grimbaldeston, S. Nakae, J. Kalesnikoff, M. Tsai, and S. J. Galli, Mast cell-derived interleukin 10 limits skin pathology in contact dermatitis and chronic irradiation with ultraviolet B, vol.8, pp.1095-104, 2007.

T. B. Feyerabend, A. Weiser, A. Tietz, M. Stassen, N. Harris et al., Cre-mediated cell ablation contests mast cell contribution in models of antibody-and T cell-mediated autoimmunity, vol.35, pp.832-876, 2011.

A. Ngkelo, A. Richart, J. A. Kirk, P. Bonnin, J. Vilar et al., Mast cells regulate myofilament calcium sensitization and heart function after myocardial infarction, vol.213, pp.1353-74, 2016.

G. M. Arteaga, C. M. Warren, S. Milutinovic, A. F. Martin, and R. J. Solaro, Specific enhancement of sarcomeric response to Ca2+ protects murine myocardium against ischemiareperfusion dysfunction, vol.289, pp.2183-92, 2005.

R. J. Solaro, Nitroxyl effects on myocardium provide new insights into the significance of altered myofilament response to calcium in the regulation of contractility, vol.580, p.697, 2007.

P. Ehrlich, Beitrage zur Theorie und Praxis der histologischen 1878

T. Ishizaka, D. Bernardo, R. Tomioka, H. Lichtenstein, L. M. Ishizaka et al., Identification of basophil granulocytes as a site of allergic histamine release, vol.108, pp.1000-1008, 1972.

J. T. Schroeder, Basophils beyond effector cells of allergic inflammation, vol.101, pp.123-61, 2009.

M. C. Siracusa, B. S. Kim, J. M. Spergel, and D. Artis, Basophils and allergic inflammation, vol.132, pp.789-801, 2013.

J. T. Schroeder, Basophils: emerging roles in the pathogenesis of allergic disease, vol.242, pp.144-60, 2011.

S. J. Galli, Mast cells and basophils, vol.7, pp.32-41, 2000.

S. J. Galli, A. M. Dvorak, and H. F. Dvorak, Basophils and mast cells: morphologic insights into their biology, secretory patterns, and function, vol.34, pp.1-141, 1984.

J. A. Denburg, Basophil and mast cell lineages in vitro and in vivo, vol.79, pp.846-60, 1992.

B. M. Ogilvie, A. Pw, and R. Me, Basophils and eosinophils in three strains of rats and in athymic (nude) rats following infection with the nematodes Nippostrongylus brasiliensis or Trichinella spiralis, vol.39, pp.385-394, 1980.

R. L. Roth and L. Da, Nippostrongylus brasiliensis: peripheral leukocyte responses and correlation of basophils with blood histamine concentration during infection in rats, vol.50, pp.331-372, 1980.

T. L. Rothwell and J. K. Dineen, Cellular reactions in guinea-pigs following primary and challenge infection with Trichostrongylus colubriformis with special reference to the roles played by eosinophils and basophils in rejection of the parasite, vol.22, pp.733-778, 1972.

M. E. Rothenberg and S. P. Hogan, The eosinophil, vol.24, pp.147-74, 2006.

H. Kita, The eosinophil: a cytokine-producing cell?, vol.97, pp.889-92, 1996.

J. R. Mackenzie, J. Mattes, L. A. Dent, and P. S. Foster, Eosinophils promote allergic disease of the lung by regulating CD4(+) Th2 lymphocyte function, vol.167, pp.3146-55, 2001.

Z. T. Handzel, W. W. Busse, J. B. Sedgwick, R. Vrtis, W. M. Lee et al., Eosinophils bind rhinovirus and activate virus-specific T cells, vol.160, pp.1279-84, 1998.

A. N. Sferruzzi-perri, S. A. Robertson, and L. A. Dent, Interleukin-5 transgene expression and eosinophilia are associated with retarded mammary gland development in mice, vol.69, pp.224-257, 2003.

V. Gouon-evans and J. W. Pollard, Eotaxin is required for eosinophil homing into the stroma of the pubertal and cycling uterus, vol.142, pp.4515-4536, 2001.

A. Nagral, Z. Ben-ari, A. P. Dhillon, and A. K. Burroughs, Eosinophils in acute cellular rejection in liver allografts, vol.4, pp.355-62, 1998.

H. F. Rosenberg and J. B. Domachowske, Eosinophils, eosinophil ribonucleases, and their role in host defense against respiratory virus pathogens, vol.70, pp.691-699, 2001.

R. I. Tepper, R. L. Coffman, and P. Leder, An eosinophil-dependent mechanism for the antitumor effect of interleukin-4, vol.257, pp.548-51, 1992.

T. Sakai, S. Inoue, T. A. Matsuyama, M. Takei, H. Ota et al., Eosinophils may be involved in thrombus growth in acute coronary syndrome, vol.50, pp.267-77, 2009.

M. S. Rohrbach, C. L. Wheatley, N. R. Slifman, and G. J. Gleich, Activation of platelets by eosinophil granule proteins, vol.172, pp.1271-1275, 1990.

S. D. Mawhorter, D. A. Stephany, E. A. Ottesen, and T. B. Nutman, Identification of surface molecules associated with physiologic activation of eosinophils. Application of wholeblood flow cytometry to eosinophils, vol.156, pp.4851-4859, 1996.

G. Niccoli, C. Calvieri, D. Flego, G. Scalone, A. Imaeva et al., Allergic Inflammation Is Associated With Coronary Instability and a Worse Clinical Outcome After Acute Myocardial Infarction, vol.8, p.2554, 2015.

C. W. Pfister and S. G. Plice, Acute myocardial infarction during a prolonged allergic reaction to penicillin, vol.40, pp.945-952, 1950.

K. Ng and G. M. Zavras, Histamine-induced coronary artery spasm: the concept of allergic angina, vol.45, pp.121-129, 1991.

E. Braunwald, Unstable angina: an etiologic approach to management, vol.98, pp.2219-2241, 1998.

G. Cervellin, G. Lippi, and N. G. Kounis, Allergic Inflammation Is Associated With Coronary Instability and a Worse Clinical Outcome After Acute Myocardial Infarction, vol.8, 2015.

C. A. Janeway, J. Jason, and J. M. , How T lymphocytes recognize antigen, vol.1, pp.133-64, 1980.

C. A. Janeway, K. Bottomly, J. Horowitz, J. Kaye, B. Jones et al., Modes of cell:cell communication in the immune system, vol.135, pp.739-742, 1985.

J. A. Villadangos and P. Schnorrer, Intrinsic and cooperative antigen-presenting functions of dendritic-cell subsets in vivo, vol.7, pp.543-55, 2007.

C. L. Flies and D. B. , Molecular mechanisms of T cell co-stimulation and co-inhibition, vol.13, pp.227-269, 2013.

X. Yan, A. Anzai, Y. Katsumata, T. Matsuhashi, K. Ito et al., Temporal dynamics of cardiac immune cell accumulation following acute myocardial infarction, vol.62, pp.24-35, 2013.

Y. Zouggari, H. Ait-oufella, P. Bonnin, T. Simon, A. P. Sage et al., B lymphocytes trigger monocyte mobilization and impair heart function after acute myocardial infarction, vol.19, pp.1273-80, 2013.

J. Weirather, U. D. Hofmann, N. Beyersdorf, G. C. Ramos, B. Vogel et al., Foxp3+ CD4+ T cells improve healing after myocardial infarction by modulating monocyte/macrophage differentiation, vol.115, pp.55-67, 2014.

A. Saxena, M. Dobaczewski, V. Rai, Z. Haque, W. Chen et al., Regulatory T cells are recruited in the infarcted mouse myocardium and may modulate fibroblast phenotype and function, vol.307, pp.1233-1275, 2014.

C. Curato, S. Slavic, J. Dong, A. Skorska, W. Altarche-xifro et al., Identification of noncytotoxic and IL-10-producing CD8+AT2R+ T cell population in response to ischemic heart injury, vol.185, pp.6286-93, 2010.

M. A. Sobirin, S. Kinugawa, M. Takahashi, A. Fukushima, T. Homma et al., Activation of natural killer T cells ameliorates postinfarct cardiac remodeling and failure in mice, vol.111, pp.1037-1084, 2012.

T. T. Goodchild, K. A. Robinson, W. Pang, F. Tondato, J. Cui et al., Bone marrow-derived B cells preserve ventricular function after acute myocardial infarction, vol.2, pp.1005-1021, 2009.

B. J. Pomerantz, L. L. Reznikov, A. H. Harken, and C. A. Dinarello, Inhibition of caspase 1 reduces human myocardial ischemic dysfunction via inhibition of IL-18 and IL-1beta, vol.98, pp.2871-2877, 2001.

S. Lecour and R. W. James, When are pro-inflammatory cytokines SAFE in heart failure?, vol.32, pp.680-685, 2011.

D. L. Mann, Inflammatory mediators and the failing heart: past, present, and the foreseeable future, vol.91, pp.988-98, 2002.

K. Ono, A. Matsumori, T. Shioi, Y. Furukawa, and S. Sasayama, Cytokine gene expression after myocardial infarction in rat hearts: possible implication in left ventricular remodeling, vol.98, pp.149-56, 1998.

B. Levine, J. Kalman, L. Mayer, H. M. Fillit, and M. Packer, Elevated circulating levels of tumor necrosis factor in severe chronic heart failure, vol.323, pp.236-277, 1990.

J. Mcmurray, I. Abdullah, D. Hj, and D. Shapiro, Increased concentrations of tumour necrosis factor in "cachectic" patients with severe chronic heart failure, vol.66, pp.356-364, 1991.

A. Deswal, N. J. Petersen, A. M. Feldman, J. B. Young, B. G. White et al., Cytokines and cytokine receptors in advanced heart failure: an analysis of the cytokine database from the Vesnarinone trial (VEST), vol.103, pp.2055-2064, 2001.

M. W. Irwin, S. Mak, D. L. Mann, R. Qu, J. M. Penninger et al., Tissue expression and immunolocalization of tumor necrosis factor-alpha in postinfarction dysfunctional myocardium, vol.99, pp.1492-1500, 1999.

C. Kupatt, H. Habazettl, A. Goedecke, D. A. Wolf, S. Zahler et al., Tumor necrosis factor-alpha contributes to ischemia-and reperfusioninduced endothelial activation in isolated hearts, vol.84, pp.392-400, 1999.

D. R. Meldrum, C. A. Dinarello, B. D. Shames, J. C. Cleveland, J. Cain et al., Ischemic preconditioning decreases postischemic myocardial tumor necrosis factor-alpha production. Potential ultimate effector mechanism of preconditioning, vol.98, pp.214-222, 1998.

M. Valgimigli, C. Ceconi, P. Malagutti, E. Merli, O. Soukhomovskaia et al., Tumor necrosis factor-alpha receptor 1 is a major predictor of mortality and new-onset heart failure in patients with acute myocardial infarction: the Cytokine-Activation and Long-Term Prognosis in Myocardial Infarction (C-ALPHA) study, vol.111, pp.863-70, 2005.

H. Hirota, M. Izumi, T. Hamaguchi, S. Sugiyama, E. Murakami et al., Circulating interleukin-6 family cytokines and their receptors in patients with congestive heart failure, vol.19, pp.237-278, 2004.

T. Kubota, M. Miyagishima, R. J. Alvarez, R. Kormos, W. D. Rosenblum et al., Expression of proinflammatory cytokines in the failing human heart: comparison of recent-onset and end-stage congestive heart failure, vol.19, pp.819-843, 2000.

H. G. Eiken, E. Oie, J. K. Damas, A. Yndestad, V. Bjerkeli et al., Myocardial gene expression of leukaemia inhibitory factor, interleukin-6 and glycoprotein 130 in end-stage human heart failure, vol.31, pp.389-97, 2001.

M. Nakano, A. A. Knowlton, Z. Dibbs, and D. L. Mann, Tumor necrosis factor-alpha confers resistance to hypoxic injury in the adult mammalian cardiac myocyte, vol.97, pp.1392-400, 1998.

K. M. Kurrelmeyer, L. H. Michael, G. Baumgarten, G. E. Taffet, J. J. Peschon et al., Endogenous tumor necrosis factor protects the adult cardiac myocyte against ischemic-induced apoptosis in a murine model of acute myocardial infarction, vol.97, pp.5456-61, 2000.

G. A. Deuchar, L. H. Opie, and S. Lecour, TNFalpha is required to confer protection in an in vivo model of classical ischaemic preconditioning, vol.80, pp.1686-91, 2007.

L. Lacerda, J. Mccarthy, S. F. Mungly, E. G. Lynn, M. N. Sack et al., TNFalpha protects cardiac mitochondria independently of its cell surface receptors, vol.105, pp.751-62, 2010.

Y. Gu, K. Kuida, H. Tsutsui, G. Ku, K. Hsiao et al., Activation of interferon-gamma inducing factor mediated by interleukin1beta converting enzyme, vol.275, pp.206-215, 1997.

T. Ghayur, S. Banerjee, M. Hugunin, D. Butler, L. Herzog et al., Caspase-1 processes IFN-gamma-inducing factor and regulates LPS-induced IFN-gamma production, vol.386, pp.619-642, 1997.

T. L. Born, E. Thomassen, T. A. Bird, and J. E. Sims, Cloning of a novel receptor subunit, AcPL, required for interleukin-18 signaling, vol.273, pp.29445-50, 1998.

K. Torigoe, S. Ushio, T. Okura, S. Kobayashi, M. Taniai et al., Purification and characterization of the human interleukin-18 receptor, vol.272, pp.25737-25779, 1997.

D. Robinson, K. Shibuya, A. Mui, F. Zonin, E. Murphy et al., IGIF does not drive Th1 development but synergizes with IL-12 for interferon-gamma production and activates IRAK and NFkappaB, vol.7, pp.571-81, 1997.

J. C. Cleveland, D. R. Meldrum, B. S. Cain, A. Banerjee, and A. H. Harken, Oral sulfonylurea hypoglycemic agents prevent ischemic preconditioning in human myocardium. Two paradoxes revisited, vol.96, pp.29-32, 1997.

B. S. Cain, D. R. Meldrum, C. A. Dinarello, X. Meng, A. Banerjee et al., Adenosine reduces cardiac TNF-alpha production and human myocardial injury following ischemia-reperfusion, vol.76, pp.117-140, 1998.

B. S. Cain, D. R. Meldrum, X. Meng, C. A. Dinarello, B. D. Shames et al., p38 MAPK inhibition decreases TNF-alpha production and enhances postischemic human myocardial function, vol.83, pp.7-12, 1999.

B. S. Cain, D. R. Meldrum, C. A. Dinarello, X. Meng, K. S. Joo et al., Tumor necrosis factor-alpha and interleukin-1beta synergistically depress human myocardial function, vol.27, pp.1309-1327, 1999.

J. S. Silvestre, Z. Mallat, R. Tamarat, M. Duriez, A. Tedgui et al., Regulation of matrix metalloproteinase activity in ischemic tissue by interleukin-10: role in ischemiainduced angiogenesis, vol.89, pp.259-64, 2001.

C. Stumpf, C. Lehner, A. Yilmaz, W. G. Daniel, and C. D. Garlichs, Decrease of serum levels of the anti-inflammatory cytokine interleukin-10 in patients with advanced chronic heart failure, vol.105, pp.45-50, 2003.

M. Batlle, F. Perez-villa, L. A. Garcia-pras, E. Vallejos, I. Sionis et al., Decreased expression of thrombospondin-1 in failing hearts may favor ventricular remodeling, vol.41, pp.2231-2234, 2009.

Y. Sakata, A. L. Chancey, V. G. Divakaran, K. Sekiguchi, N. Sivasubramanian et al., Transforming growth factor-beta receptor antagonism attenuates myocardial fibrosis in mice with cardiac-restricted overexpression of tumor necrosis factor, vol.103, pp.60-68, 2008.

H. E. Liang, R. L. Reinhardt, J. K. Bando, B. M. Sullivan, H. Ic et al., Divergent expression patterns of IL-4 and IL-13 define unique functions in allergic immunity, vol.13, pp.58-66, 2011.

B. M. Sullivan, H. E. Liang, J. K. Bando, D. Wu, L. E. Cheng et al., Genetic analysis of basophil function in vivo, vol.12, pp.527-562, 2011.

S. L. Laporte, Z. S. Juo, J. Vaclavikova, L. A. Colf, X. Qi et al., Molecular and structural basis of cytokine receptor pleiotropy in the interleukin-4/13 system, vol.132, pp.259-72, 2008.

U. Hofmann, S. Knorr, B. Vogel, J. Weirather, A. Frey et al., Interleukin-13 deficiency aggravates healing and remodeling in male mice after experimental myocardial infarction, vol.7, pp.822-852, 2014.

Y. Nishimura, T. Inoue, T. Morooka, and K. Node, Mechanical stretch and angiotensin II increase interleukin-13 production and interleukin-13 receptor alpha2 expression in rat neonatal cardiomyocytes, vol.72, pp.647-53, 2008.

O. Amir, I. Spivak, I. Lavi, and M. A. Rahat, Changes in the monocytic subsets CD14(dim)CD16(+) and CD14(++)CD16(-) in chronic systolic heart failure patients, p.616384, 2012.

J. Noll, E. Helk, H. Fehling, H. Bernin, C. Marggraff et al., IL-23 prevents IL-13-dependent tissue repair associated with Ly6C(lo) monocytes in Entamoeba histolytica-induced liver damage, vol.64, pp.1147-57, 2016.

Y. Fang, V. Gupta, R. Karra, J. E. Holdway, K. Kikuchi et al., Translational profiling of cardiomyocytes identifies an early Jak1/Stat3 injury response required for zebrafish heart regeneration, vol.110, pp.13416-13437, 2013.

A. I. Mahmoud, F. Kocabas, S. A. Muralidhar, W. Kimura, A. S. Koura et al., Meis1 regulates postnatal cardiomyocyte cell cycle arrest, vol.497, pp.249-53, 2013.

C. C. O'meara, J. A. Wamstad, R. A. Gladstone, G. M. Fomovsky, V. L. Butty et al., Transcriptional reversion of cardiac myocyte fate during mammalian cardiac regeneration, vol.116, pp.804-819, 2015.

F. Geissmann, M. G. Manz, S. Jung, M. H. Sieweke, M. Merad et al., Development of monocytes, macrophages, and dendritic cells, vol.327, pp.656-61, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00502972

B. Passlick, D. Flieger, and H. W. Ziegler-heitbrock, Identification and characterization of a novel monocyte subpopulation in human peripheral blood, vol.74, pp.2527-2561, 1989.

F. Geissmann, J. S. Littman, and D. R. , Blood monocytes consist of two principal subsets with distinct migratory properties, vol.19, pp.71-82, 2003.

K. L. Wong, J. J. Tai, W. C. Wong, H. Han, X. Sem et al., Gene expression profiling reveals the defining features of the classical, intermediate, and nonclassical human monocyte subsets, vol.118, pp.16-31, 2011.

C. Weber, K. U. Belge, P. Von-hundelshausen, G. Draude, B. Steppich et al., Differential chemokine receptor expression and function in human monocyte subpopulations, vol.67, pp.699-704, 2000.

L. Ziegler-heitbrock, P. Ancuta, S. Crowe, M. Dalod, V. Grau et al., Nomenclature of monocytes and dendritic cells in blood, vol.116, pp.74-80, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00611173

P. Ancuta, R. Rao, A. Moses, A. Mehle, S. K. Shaw et al., Fractalkine preferentially mediates arrest and migration of CD16+ monocytes, vol.197, pp.1701-1708, 2003.

P. Libby, M. Nahrendorf, and F. K. Swirski, Monocyte heterogeneity in cardiovascular disease, vol.35, pp.553-62, 2013.

J. Cros, N. Cagnard, K. Woollard, N. Patey, S. Y. Zhang et al., Human CD14dim monocytes patrol and sense nucleic acids and viruses via TLR7 and TLR8 receptors, vol.33, pp.375-86, 2010.

M. Nahrendorf and F. K. Swirski, Monocyte and macrophage heterogeneity in the heart, vol.112, pp.1624-1657, 2013.

E. Idzkowska, A. Eljaszewicz, P. Miklasz, W. J. Musial, A. M. Tycinska et al., The Role of Different Monocyte Subsets in the Pathogenesis of Atherosclerosis and Acute Coronary Syndromes, vol.82, pp.163-73, 2015.

P. Dutta and M. Nahrendorf, Monocytes in myocardial infarction, vol.35, pp.1066-70, 2015.

K. Jung, P. Kim, F. Leuschner, R. Gorbatov, J. K. Kim et al., Endoscopic time-lapse imaging of immune cells in infarcted mouse hearts, vol.112, pp.891-900, 2013.

S. Lee, C. Vinegoni, P. F. Feruglio, L. Fexon, R. Gorbatov et al., Real-time in vivo imaging of the beating mouse heart at microscopic resolution, vol.3, p.1054, 2012.

M. Nahrendorf, F. K. Swirski, E. Aikawa, L. Stangenberg, T. Wurdinger et al., The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions, vol.204, pp.3037-3084, 2007.

O. Dewald, P. Zymek, K. Winkelmann, A. Koerting, G. Ren et al., CCL2/Monocyte Chemoattractant Protein-1 regulates inflammatory responses critical to healing myocardial infarcts, vol.96, pp.881-890, 2005.

W. Xuan, Y. Liao, B. Chen, Q. Huang, D. Xu et al., Detrimental effect of fractalkine on myocardial ischaemia and heart failure, vol.92, pp.385-93, 2011.

C. T. Ambrose, The Osler slide, a demonstration of phagocytosis from 1876 Reports of phagocytosis before Metchnikoff's 1880 paper, vol.240, pp.1-4, 2006.

E. Metchnikoff, Lectures on the Comparative Pathology of Inflammation ; Delivered at the Pasteur Institute in 1891

E. Metschnikoff, Lecture on Phagocytosis and Immunity, vol.1, pp.213-220, 1891.

L. Peiser, S. Mukhopadhyay, and S. Gordon, Scavenger receptors in innate immunity, vol.14, pp.123-131, 2002.

K. Lauber, E. Bohn, S. M. Krober, Y. J. Xiao, S. G. Blumenthal et al., Apoptotic cells induce migration of phagocytes via caspase-3-mediated release of a lipid attraction signal, vol.113, pp.717-747, 2003.

L. A. Truman, C. A. Ford, M. Pasikowska, J. D. Pound, S. J. Wilkinson et al.,

, CX3CL1/fractalkine is released from apoptotic lymphocytes to stimulate macrophage chemotaxis, vol.112, pp.5026-5062, 2008.

D. R. Gude, S. E. Alvarez, S. W. Paugh, P. Mitra, J. Yu et al., Apoptosis induces expression of sphingosine kinase 1 to release sphingosine-1-phosphate as a "come-and-get-me" signal, vol.22, pp.2629-2667, 2008.

M. R. Elliott, F. B. Chekeni, P. C. Trampont, E. R. Lazarowski, A. Kadl et al., Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance, vol.461, pp.282-288, 2009.

Y. Moodley, P. Rigby, C. Bundell, S. Bunt, H. Hayashi et al., Macrophage recognition and phagocytosis of apoptotic fibroblasts is critically dependent on fibroblast-derived thrombospondin 1 and CD36, vol.162, pp.771-780, 2003.

J. Savill, I. Dransfield, G. C. Haslett, and C. , A blast from the past: clearance of apoptotic cells regulates immune responses, vol.2, pp.965-75, 2002.

M. Miyanishi, K. Tada, M. Koike, Y. Uchiyama, T. Kitamura et al., Identification of Tim4 as a phosphatidylserine receptor, vol.450, pp.435-444, 2007.

S. Y. Park, M. Y. Jung, H. J. Kim, S. J. Lee, S. Y. Kim et al., Rapid cell corpse clearance by stabilin-2, a membrane phosphatidylserine receptor, vol.15, pp.192-201, 2008.

D. Park, A. C. Tosello-trampont, M. R. Elliott, M. Lu, L. B. Haney et al., BAI1 is an engulfment receptor for apoptotic cells upstream of the ELMO/Dock180/Rac module, vol.450, pp.430-434, 2007.

J. Chen, C. K. Godowski, and P. J. , Identification of Gas6 as a ligand for Mer, a neural cell adhesion molecule related receptor tyrosine kinase implicated in cellular transformation, vol.14, pp.2033-2042, 1997.

M. O. Hall, M. S. Obin, M. J. Heeb, B. Bl, and T. A. Abrams, Both protein S and Gas6 stimulate outer segment phagocytosis by cultured rat retinal pigment epithelial cells, vol.81, pp.581-91, 2005.

J. Savill, N. Hogg, Y. Ren, and C. Haslett, Thrombospondin cooperates with CD36 and the vitronectin receptor in macrophage recognition of neutrophils undergoing apoptosis, vol.90, pp.1513-1535, 1992.

R. Hanayama, M. Tanaka, K. Miwa, A. Shinohara, A. Iwamatsu et al., Identification of a factor that links apoptotic cells to phagocytes, vol.417, pp.182-189, 2002.

L. Thomas, A. Bielemeier, P. A. Lambert, R. P. Darveau, M. Lj et al., The Nterminus of CD14 acts to bind apoptotic cells and confers rapid-tethering capabilities on non-myeloid cells, vol.8, p.70691, 2013.

A. Otani, S. Ishihara, M. M. Aziz, N. Oshima, Y. Mishima et al., Intrarectal administration of milk fat globule epidermal growth factor-8 protein ameliorates murine experimental colitis, vol.29, pp.349-56, 2012.

E. Wan, X. Y. Yeap, S. Dehn, R. Terry, M. Novak et al., Enhanced efferocytosis of apoptotic cardiomyocytes through myeloidepithelial-reproductive tyrosine kinase links acute inflammation resolution to cardiac repair after infarction, vol.113, pp.1004-1016, 2013.

S. J. Gardai, K. A. Mcphillips, S. C. Frasch, W. J. Janssen, A. Starefeldt et al., Cell-surface calreticulin initiates clearance of viable or apoptotic cells through trans-activation of LRP on the phagocyte, vol.123, pp.321-355, 2005.

R. D. Stout, C. Jiang, B. Matta, I. Tietzel, S. K. Watkins et al., Macrophages sequentially change their functional phenotype in response to changes in microenvironmental influences, vol.175, pp.342-351, 2005.

A. Mantovani, P. Allavena, and A. Sica, Tumour-associated macrophages as a prototypic type II polarised phagocyte population: role in tumour progression, vol.40, pp.1660-1667, 2004.

A. Mantovani, S. Sozzani, M. Locati, A. , P. Sica et al., Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes, vol.23, pp.549-55, 2002.

A. Mantovani, A. Sica, and M. Locati, Macrophage polarization comes of age, vol.23, pp.344-350, 2005.

D. M. Mosser and J. P. Edwards, Exploring the full spectrum of macrophage activation, vol.8, pp.958-69, 2008.

S. K. Biswas and A. Mantovani, Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm, vol.11, pp.889-96, 2010.

G. S. Martinez and F. O. , Alternative activation of macrophages: mechanism and functions, vol.32, pp.593-604, 2010.

M. Sica and A. Macrophages, innate immunity and cancer: balance, tolerance, and diversity, vol.22, pp.231-238, 2010.

G. S. Taylor and P. R. , Monocyte and macrophage heterogeneity, vol.5, pp.953-64, 2005.

G. Raes, R. Van-den-bergh, D. Baetselier, P. Ghassabeh, G. H. Scotton et al., Arginase-1 and Ym1 are markers for murine, but not human, alternatively activated myeloid cells, vol.174, p.6561, 2005.

P. Loke, M. G. Nair, J. Parkinson, D. Guiliano, M. Blaxter et al., IL-4 dependent alternatively-activated macrophages have a distinctive in vivo gene expression phenotype, vol.3, p.7, 2002.

G. Raes, D. Baetselier, P. Noel, W. Beschin, A. Brombacher et al., Differential expression of FIZZ1 and Ym1 in alternatively versus classically activated macrophages, vol.71, pp.597-602, 2002.

C. J. Scotton, F. O. Martinez, M. J. Smelt, M. Sironi, M. Locati et al., Transcriptional profiling reveals complex regulation of the monocyte IL-1 beta system by IL-13, vol.174, pp.834-879, 2005.

F. O. Martinez, S. Gordon, M. Locati, and A. Mantovani, Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression, vol.177, pp.7303-7314, 2006.

F. O. Martinez, L. Helming, and S. Gordon, Alternative activation of macrophages: an immunologic functional perspective, vol.27, pp.451-83, 2009.

P. J. Murray and T. A. Wynn, Protective and pathogenic functions of macrophage subsets, vol.11, pp.723-760, 2011.

V. Bronte and P. Zanovello, Regulation of immune responses by L-arginine metabolism, vol.5, pp.641-54, 2005.

S. J. Lee, S. Evers, D. Roeder, A. F. Parlow, J. Risteli et al., Mannose receptor-mediated regulation of serum glycoprotein homeostasis, vol.295, pp.1898-901, 2002.

U. Gazi and L. Martinez-pomares, Influence of the mannose receptor in host immune responses, vol.214, pp.554-61, 2009.

M. Stein, S. Keshav, H. N. Gordon, and S. , Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation, vol.176, pp.287-92, 1992.

A. G. Doyle, G. Herbein, L. J. Montaner, A. J. Minty, D. Caput et al., Interleukin-13 alters the activation state of murine macrophages in vitro: comparison with interleukin-4 and interferon-gamma, vol.24, pp.1441-1446, 1994.

T. A. Reese, H. E. Liang, A. M. Tager, A. D. Luster, N. Van-rooijen et al., Chitin induces accumulation in tissue of innate immune cells associated with allergy, vol.447, pp.92-98, 2007.

S. J. Van-dyken, D. Garcia, P. Porter, X. Huang, P. J. Quinlan et al., Fungal chitin from asthma-associated home environments induces eosinophilic lung infiltration, vol.187, pp.2261-2268, 2011.

A. P. Bussink, D. Speijer, J. M. Aerts, and R. G. Boot, Evolution of mammalian chitinase(-like) members of family 18 glycosyl hydrolases, vol.177, pp.959-70, 2007.

I. N. Holcomb, R. C. Kabakoff, B. Chan, T. W. Baker, A. Gurney et al., FIZZ1, a novel cysteine-rich secreted protein associated with pulmonary inflammation, defines a new gene family, vol.19, pp.4046-55, 2000.

M. G. Nair, D. W. Cochrane, and J. E. Allen, Macrophages in chronic type 2 inflammation have a novel phenotype characterized by the abundant expression of Ym1 and Fizz1 that can be partly replicated in vitro, vol.85, pp.173-80, 2003.

A. Munitz, E. T. Cole, D. Karo-atar, F. Fd, and M. E. Rothenberg, Resistin-like molecule-alpha regulates IL-13-induced chemokine production but not allergeninduced airway responses, vol.46, pp.703-716, 2012.

T. A. Doherty, N. Khorram, K. Sugimoto, D. Sheppard, P. Rosenthal et al., Alternaria induces STAT6-dependent acute airway eosinophilia and epithelial FIZZ1 expression that promotes airway fibrosis and epithelial thickness, vol.188, pp.2622-2631, 2012.

H. H. Birdsall, D. M. Green, J. Trial, K. A. Youker, A. R. Burns et al., TGF-beta 1, and MCP-1, in sequence, induce migration of monocytes into ischemic canine myocardium within the first one to five hours after reperfusion, Complement, vol.5, pp.684-92, 1997.

A. M. Van-der-laan, T. Horst, E. N. Delewi, R. Begieneman, M. P. Krijnen et al., Monocyte subset accumulation in the human heart following acute myocardial infarction and the role of the spleen as monocyte reservoir, vol.35, pp.376-85, 2014.

S. Frantz, U. Hofmann, D. Fraccarollo, A. Schafer, S. Kranepuhl et al., Monocytes/macrophages prevent healing defects and left ventricular thrombus formation after myocardial infarction, vol.27, pp.871-81, 2013.

I. Hilgendorf, L. M. Gerhardt, T. C. Tan, C. Winter, T. A. Holderried et al., Ly-6Chigh monocytes depend on Nr4a1 to balance both inflammatory and reparative phases in the infarcted myocardium, vol.114, pp.1611-1633, 2014.

N. G. Frangogiannis, Emerging roles for macrophages in cardiac injury: cytoprotection, repair, and regeneration, vol.125, pp.2927-2957, 2015.

E. R. Porrello, A. I. Mahmoud, E. Simpson, J. A. Hill, J. A. Richardson et al., Transient regenerative potential of the neonatal mouse heart, vol.331, pp.1078-80, 2011.

A. B. Aurora, E. R. Porrello, W. Tan, A. I. Mahmoud, J. A. Hill et al., Macrophages are required for neonatal heart regeneration, vol.124, pp.1382-92, 2014.

K. J. Lavine, S. Epelman, K. Uchida, K. J. Weber, C. G. Nichols et al., Distinct macrophage lineages contribute to disparate patterns of cardiac recovery and remodeling in the neonatal and adult heart, vol.111, pp.16029-16063, 2014.

B. J. Capoccia, A. D. Gregory, and D. C. Link, Recruitment of the inflammatory subset of monocytes to sites of ischemia induces angiogenesis in a monocyte chemoattractant protein-1-dependent fashion, vol.84, pp.760-768, 2008.

P. K. Shireman, The chemokine system in arteriogenesis and hind limb ischemia, vol.45, pp.48-56, 2007.

G. Thurston, Role of Angiopoietins and Tie receptor tyrosine kinases in angiogenesis and lymphangiogenesis, vol.314, pp.61-69, 2003.

M. Milkiewicz, E. Ispanovic, J. L. Doyle, and T. L. Haas, Regulators of angiogenesis and strategies for their therapeutic manipulation, vol.38, pp.333-57, 2006.

L. Moldovan and N. I. Moldovan, Role of monocytes and macrophages in angiogenesis, pp.127-173, 2005.

C. Sunderkotter, K. Steinbrink, M. Goebeler, R. Bhardwaj, and C. Sorg, Macrophages and angiogenesis, vol.55, pp.410-432, 1994.

V. Lakshminarayanan, M. Lewallen, N. G. Frangogiannis, A. J. Evans, K. E. Wedin et al., Reactive oxygen intermediates induce monocyte chemotactic protein-1 in vascular endothelium after brief ischemia, vol.159, pp.1301-1312, 2001.

C. Murdoch, S. Tazzyman, W. S. Lewis, and C. E. , Expression of Tie-2 by human monocytes and their responses to angiopoietin-2, vol.178, pp.7405-7416, 2007.

A. E. Dirkx, O. Egbrink, M. G. , W. , J. Griffioen et al., Monocyte/macrophage infiltration in tumors: modulators of angiogenesis, vol.80, pp.1183-96, 2006.

M. Besnier, A. Galaup, L. Nicol, J. P. Henry, D. Coquerel et al., Enhanced angiogenesis and increased cardiac perfusion after myocardial infarction in protein tyrosine phosphatase 1B-deficient mice, vol.28, pp.3351-61, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02142777

V. Barbay, M. Houssari, M. Mekki, S. Banquet, F. Edwards-levy et al., Role of M2-like macrophage recruitment during angiogenic growth factor therapy, vol.18, pp.191-200, 2015.

F. Ginhoux, M. Greter, M. Leboeuf, S. Nandi, P. See et al., Fate mapping analysis reveals that adult microglia derive from primitive macrophages, vol.330, pp.841-846, 2010.

S. Yona, K. W. Kim, Y. Wolf, A. Mildner, D. Varol et al., Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis, vol.38, pp.79-91, 2013.

C. Schulz, E. Gomez-perdiguero, L. Chorro, H. Szabo-rogers, N. Cagnard et al., A lineage of myeloid cells independent of Myb and hematopoietic stem cells, vol.336, pp.86-90, 2012.

E. Zigmond, C. Varol, J. Farache, E. Elmaliah, A. T. Satpathy et al., Ly6C hi monocytes in the inflamed colon give rise to proinflammatory effector cells and migratory antigenpresenting cells, vol.37, pp.1076-90, 2012.

L. C. Davies, M. Rosas, S. J. Jenkins, C. T. Liao, M. J. Scurr et al., Distinct bone marrow-derived and tissue-resident macrophage lineages proliferate at key stages during inflammation, vol.4, p.1886, 2013.

S. J. Jenkins, D. Ruckerl, P. C. Cook, L. H. Jones, F. D. Finkelman et al., Local macrophage proliferation, rather than recruitment from the blood, is a signature of TH2 inflammation, vol.332, pp.1284-1292, 2011.

A. R. Pinto, R. Paolicelli, E. Salimova, J. Gospocic, E. Slonimsky et al., An abundant tissue macrophage population in the adult murine heart with a distinct alternatively-activated macrophage profile, vol.7, p.36814, 2012.

S. Epelman, K. J. Lavine, A. E. Beaudin, D. K. Sojka, J. A. Carrero et al., Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation, vol.40, pp.91-104, 2014.

D. Z. De-back, E. B. Kostova, M. Van-kraaij, T. K. Van-den-berg, and R. Van-bruggen, Of macrophages and red blood cells; a complex love story, vol.5, p.9, 2014.

R. E. Mebius and G. Kraal, Structure and function of the spleen, vol.5, pp.606-622, 2005.

M. Haldar, M. Kohyama, A. Y. So, W. Kc, X. Wu et al., Heme-mediated SPI-C induction promotes monocyte differentiation into ironrecycling macrophages, vol.156, pp.1223-1257, 2014.

M. Kohyama, W. Ise, B. T. Edelson, P. R. Wilker, K. Hildner et al., Role for Spi-C in the development of red pulp macrophages and splenic iron homeostasis, vol.457, pp.318-339, 2009.

V. Picard, G. Govoni, N. Jabado, and P. Gros, Nramp 2 (DCT1/DMT1) expressed at the plasma membrane transports iron and other divalent cations into a calcein-accessible cytoplasmic pool, vol.275, pp.35738-35783, 2000.

S. Marro, D. Chiabrando, E. Messana, J. Stolte, E. Turco et al., Heme controls ferroportin1 (FPN1) transcription involving Bach1, Nrf2 and a MARE/ARE sequence motif at position -7007 of the FPN1 promoter, vol.95, pp.1261-1269, 2010.

N. C. Andrews and P. J. Schmidt, Iron homeostasis, vol.69, pp.69-85, 2007.

J. I. Huggenvik, C. M. Craven, R. L. Idzerda, S. Bernstein, J. Kaplan et al., A splicing defect in the mouse transferrin gene leads to congenital atransferrinemia, vol.74, pp.482-488, 1989.

C. C. Trenor, D. R. Campagna, V. M. Sellers, N. C. Andrews, and M. D. Fleming, The molecular defect in hypotransferrinemic mice, vol.96, pp.1113-1121, 2000.

C. H. Park, E. V. Valore, W. A. Ganz, and T. , Hepcidin, a urinary antimicrobial peptide synthesized in the liver, vol.276, pp.7806-7816, 2001.

J. B. Jordan, L. Poppe, M. Haniu, T. Arvedson, R. Syed et al., Hepcidin revisited, disulfide connectivity, dynamics, and structure, vol.284, pp.24155-67, 2009.

B. Liau, C. P. Jackman, L. Y. Bursac, and N. , Developmental stage-dependent effects of cardiac fibroblasts on function of stem cell-derived engineered cardiac tissues, vol.7, p.42290, 2017.

S. Bekri, P. Gual, R. Anty, N. Luciani, M. Dahman et al., Increased adipose tissue expression of hepcidin in severe obesity is independent from diabetes and NASH, vol.131, pp.788-96, 2006.

M. Nairz, A. Schroll, T. Sonnweber, and G. Weiss, The struggle for iron -a metal at the host-pathogen interface, vol.12, pp.1691-702, 2010.

U. E. Schaible and S. H. Kaufmann, Iron and microbial infection, vol.2, pp.946-53, 2004.

S. Chlosta, D. S. Fishman, L. Harrington, E. E. Johnson, M. D. Knutson et al., The iron efflux protein ferroportin regulates the intracellular growth of Salmonella enterica, vol.74, pp.3065-3072, 2006.

M. Nairz, I. Theurl, S. Ludwiczek, M. Theurl, S. M. Mair et al., The coordinated regulation of iron homeostasis in murine macrophages limits the availability of iron for intracellular Salmonella typhimurium, vol.9, pp.2126-2166, 2007.

M. Nairz, G. Fritsche, P. Brunner, H. Talasz, K. Hantke et al., Interferon-gamma limits the availability of iron for intramacrophage Salmonella typhimurium, vol.38, pp.1923-1959, 2008.

P. N. Paradkar, D. Domenico, I. Durchfort, N. Zohn, I. Kaplan et al., Iron depletion limits intracellular bacterial growth in macrophages, vol.112, pp.866-74, 2008.

G. Corna, L. Campana, E. Pignatti, A. Castiglioni, E. Tagliafico et al., Polarization dictates iron handling by inflammatory and alternatively activated macrophages, vol.95, pp.1814-1836, 2010.

A. Pagani, A. Nai, G. Corna, L. Bosurgi, P. Rovere-querini et al., Low hepcidin accounts for the proinflammatory status associated with iron deficiency, vol.118, pp.736-782, 2011.

I. Theurl, M. Theurl, M. Seifert, S. Mair, M. Nairz et al., Autocrine formation of hepcidin induces iron retention in human monocytes, vol.111, pp.2392-2401, 2008.

C. Peyssonnaux, A. S. Zinkernagel, V. Datta, X. Lauth, J. Rs et al., TLR4-dependent hepcidin expression by myeloid cells in response to bacterial pathogens, vol.107, pp.3727-3759, 2006.

C. E. Alford, T. E. King, J. Campbell, and P. A. , Role of transferrin, transferrin receptors, and iron in macrophage listericidal activity, vol.174, pp.459-66, 1991.

S. Recalcati, M. Locati, A. Marini, P. Santambrogio, F. Zaninotto et al., Differential regulation of iron homeostasis during human macrophage polarized activation, vol.40, pp.824-859, 2010.

P. W. Buehler, D. 'agnillo, F. Schaer, and D. J. , Hemoglobin-based oxygen carriers: From mechanisms of toxicity and clearance to rational drug design, vol.16, pp.447-57, 2010.

G. J. Kato, Haptoglobin halts hemoglobin's havoc, vol.119, pp.2140-2142, 2009.

R. Larsen, R. Gozzelino, V. Jeney, L. Tokaji, F. A. Bozza et al., A central role for free heme in the pathogenesis of severe sepsis, vol.2, pp.51-71, 2010.

R. Gozzelino, V. Jeney, and M. P. Soares, Mechanisms of cell protection by heme oxygenase-1, vol.50, pp.323-54, 2010.

E. Sierra-filardi, M. A. Vega, P. Sanchez-mateos, C. Al, and P. , Heme Oxygenase-1 expression in M-CSF-polarized M2 macrophages contributes to LPSinduced IL-10 release, vol.215, pp.788-95, 2010.

F. Vallelian, C. A. Schaer, T. Kaempfer, P. Gehrig, E. Duerst et al., Glucocorticoid treatment skews human monocyte differentiation into a hemoglobinclearance phenotype with enhanced heme-iron recycling and antioxidant capacity, vol.116, pp.5347-56, 2010.

G. Bories, S. Colin, J. Vanhoutte, B. Derudas, C. Copin et al., Liver X receptor activation stimulates iron export in human alternative macrophages, vol.113, pp.1196-205, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-00870992

G. L. Semenza, Hypoxia-inducible factor 1 (HIF-1) pathway, p.8, 2007.

L. Marques, A. Negre-salvayre, C. L. , C. , and F. , Iron gene expression profile in atherogenic Mox macrophages, vol.1862, pp.1137-1183, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01601639

J. L. Sullivan, Do hemochromatosis mutations protect against iron-mediated atherogenesis?, vol.2, pp.652-659, 2009.

G. Nicolas, C. Chauvet, L. Viatte, J. L. Danan, X. Bigard et al., The gene encoding the iron regulatory peptide hepcidin is regulated by anemia, hypoxia, and inflammation, vol.110, pp.1037-1081, 2002.

E. Nemeth, E. V. Valore, M. Territo, G. Schiller, A. Lichtenstein et al., Hepcidin, a putative mediator of anemia of inflammation, is a type II acute-phase protein, vol.101, pp.2461-2464, 2003.

E. Nemeth, M. S. Tuttle, J. Powelson, M. B. Vaughn, A. Donovan et al., Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization, vol.306, pp.2090-2093, 2004.

M. D. Knutson, M. R. Vafa, D. J. Haile, W. , and M. , Iron loading and erythrophagocytosis increase ferroportin 1 (FPN1) expression in J774 macrophages, vol.102, pp.4191-4198, 2003.

A. Fernandes, G. C. Preza, Y. Phung, D. Domenico, I. Kaplan et al., The molecular basis of hepcidin-resistant hereditary hemochromatosis, vol.114, pp.437-480, 2009.

R. L. Sham, P. D. Phatak, C. West, P. Lee, C. Andrews et al., Autosomal dominant hereditary hemochromatosis associated with a novel ferroportin mutation and unique clinical features, vol.34, pp.157-61, 2005.

G. Nicolas, M. Bennoun, I. Devaux, C. Beaumont, B. Grandchamp et al., Lack of hepcidin gene expression and severe tissue iron overload in upstream stimulatory factor 2 (USF2) knockout mice, vol.98, pp.8780-8785, 2001.
URL : https://hal.archives-ouvertes.fr/inserm-00331349

A. Roetto, G. Papanikolaou, M. Politou, F. Alberti, D. Girelli et al., Mutant antimicrobial peptide hepcidin is associated with severe juvenile hemochromatosis, vol.33, pp.21-23, 2003.

, Pietrangelo A. Hereditary hemochromatosis, vol.1763, pp.700-710, 2006.

F. Laine, A. M. Jouannolle, J. Morcet, A. Brigand, M. Pouchard et al., Phenotypic expression in detected C282Y homozygous women depends on body mass index, vol.43, pp.1055-1064, 2005.

I. Theurl, E. Aigner, M. Theurl, M. Nairz, M. Seifert et al., Regulation of iron homeostasis in anemia of chronic disease and iron deficiency anemia: diagnostic and therapeutic implications, vol.113, pp.5277-86, 2009.

D. S. Silverberg, D. Wexler, M. Blum, G. Keren, D. Sheps et al., The use of subcutaneous erythropoietin and intravenous iron for the treatment of the anemia of severe, resistant congestive heart failure improves cardiac and renal function and functional cardiac class, and markedly reduces hospitalizations, vol.35, pp.1737-1781, 2000.

M. Isoda, H. Hanawa, R. Watanabe, T. Yoshida, K. Toba et al., Expression of the peptide hormone hepcidin increases in cardiomyocytes under myocarditis and myocardial infarction, vol.21, pp.749-56, 2010.

A. H. Koeppen, Friedreich's ataxia: pathology, pathogenesis, and molecular genetics, vol.303, pp.1-12, 2011.

A. H. Koeppen, R. L. Ramirez, A. B. Becker, S. T. Bjork, S. Levi et al., The pathogenesis of cardiomyopathy in Friedreich ataxia, vol.10, p.116396, 2015.

N. Friedreich, Ueber degenerative Atrophie der spinalen Hinterstränge, 1863.

D. S. Russell, Myocarditis in Friedreich's ataxia, vol.58, pp.739-787, 1946.

J. B. Lamarche, M. Cote, and B. Lemieux, The cardiomyopathy of Friedreich's ataxia morphological observations in 3 cases, vol.7, pp.389-96, 1980.

S. Michael, S. V. Petrocine, J. Qian, J. B. Lamarche, M. D. Knutson et al., Iron and iron-responsive proteins in the cardiomyopathy of Friedreich's ataxia, vol.5, pp.257-67, 2006.

R. L. Ramirez, J. Qian, P. Santambrogio, L. S. Koeppen, and A. H. , Relation of cytosolic iron excess to cardiomyopathy of Friedreich's ataxia, vol.110, pp.1820-1827, 2012.

L. J. Olson, W. D. Edwards, J. T. Mccall, D. M. Ilstrup, and B. J. Gersh, Cardiac iron deposition in idiopathic hemochromatosis: histologic and analytic assessment of 14 hearts from autopsy, vol.10, pp.1239-1282, 1987.

J. L. Sullivan, Iron and the sex difference in heart disease risk, vol.1, pp.1293-1297, 1981.

J. L. Sullivan, The iron paradigm of ischemic heart disease, vol.117, pp.1177-88, 1989.

J. L. Sullivan, Stored iron and ischemic heart disease. Empirical support for a new paradigm, vol.86, pp.1036-1043, 1992.

J. L. Sullivan, Stored iron levels and myocardial infarction at a young age. Limitations of the study design, vol.113, pp.125-132, 1995.

J. L. Sullivan, Macrophage iron, hepcidin, and atherosclerotic plaque stability, vol.232, pp.1014-1034, 2007.

W. Li, L. H. Xu, C. Forssell, J. L. Sullivan, and X. M. Yuan, Overexpression of transferrin receptor and ferritin related to clinical symptoms and destabilization of human carotid plaques, vol.233, pp.818-844, 2008.

T. S. Lee, M. S. Shiao, C. C. Pan, and C. Ly, Iron-deficient diet reduces atherosclerotic lesions in apoE-deficient mice, vol.99, pp.1222-1231, 1999.

D. Ponraj, J. Makjanic, P. S. Thong, T. Bk, and F. Watt, The onset of atherosclerotic lesion formation in hypercholesterolemic rabbits is delayed by iron depletion, vol.459, pp.218-240, 1999.

R. Minqin, R. Rajendran, N. Pan, B. K. Tan, W. Y. Ong et al., The iron chelator desferrioxamine inhibits atherosclerotic lesion development and decreases lesion iron concentrations in the cholesterol-fed rabbit, vol.38, pp.1206-1217, 2005.

P. S. Thong, M. Selley, and F. Watt, Elemental changes in atherosclerotic lesions using nuclear microscopy, vol.42, pp.103-113, 1996.

C. Smith, M. J. Mitchinson, A. Oi, and B. Halliwell, Stimulation of lipid peroxidation and hydroxyl-radical generation by the contents of human atherosclerotic lesions, vol.286, pp.901-906, 1992.

A. J. Matthews, G. M. Vercellotti, H. J. Menchaca, P. H. Bloch, V. N. Michalek et al., Iron and atherosclerosis: inhibition by the iron chelator deferiprone (L1), vol.73, pp.35-40, 1997.

R. Minqin, F. Watt, B. T. Huat, and B. Halliwell, Correlation of iron and zinc levels with lesion depth in newly formed atherosclerotic lesions, vol.34, pp.746-52, 2003.

J. H. Pang, M. J. Jiang, Y. L. Chen, F. W. Wang, D. L. Wang et al., Increased ferritin gene expression in atherosclerotic lesions, vol.97, pp.2204-2216, 1996.

H. T. Lee, L. L. Chiu, T. S. Lee, H. L. Tsai, and C. Ly, Dietary iron restriction increases plaque stability in apolipoprotein-e-deficient mice, vol.10, pp.510-517, 2003.

N. Stadler, R. A. Lindner, and M. J. Davies, Direct detection and quantification of transition metal ions in human atherosclerotic plaques: evidence for the presence of elevated levels of iron and copper, vol.24, pp.949-54, 2004.

N. Stanley, N. Stadler, A. A. Woods, P. G. Bannon, and M. J. Davies, Concentrations of iron correlate with the extent of protein, but not lipid, oxidation in advanced human atherosclerotic lesions, vol.40, pp.1636-1679, 2006.

D. Lapenna, S. D. Pierdomenico, G. Ciofani, S. Ucchino, M. Neri et al., Association of body iron stores with low molecular weight iron and oxidant damage of human atherosclerotic plaques, vol.42, pp.492-500, 2007.

X. M. Yuan and W. Li, The iron hypothesis of atherosclerosis and its clinical impact, vol.35, pp.578-91, 2003.

X. M. Yuan, U. T. Brunk, and A. G. Olsson, Effects of iron-and hemoglobin-loaded human monocyte-derived macrophages on oxidation and uptake of LDL, vol.15, pp.1345-51, 1995.

J. L. Sullivan, Iron in arterial plaque: modifiable risk factor for atherosclerosis, vol.1790, pp.718-741, 2009.

S. W. Waldo, Y. Li, C. Buono, B. Zhao, E. M. Billings et al., Heterogeneity of human macrophages in culture and in atherosclerotic plaques, vol.172, pp.1112-1138, 2008.

A. Kadl, A. K. Meher, P. R. Sharma, M. Y. Lee, A. C. Doran et al., Identification of a novel macrophage phenotype that develops in response to atherogenic phospholipids via Nrf2, vol.107, pp.737-783, 2010.

E. Ehrenwald, G. M. Chisolm, and P. L. Fox, Intact human ceruloplasmin oxidatively modifies low density lipoprotein, vol.93, pp.1493-501, 1994.

E. Ehrenwald and P. L. Fox, Role of endogenous ceruloplasmin in low density lipoprotein oxidation by human U937 monocytic cells, vol.97, pp.884-90, 1996.

A. V. Finn, M. Nakano, R. Polavarapu, V. Karmali, O. Saeed et al., Hemoglobin directs macrophage differentiation and prevents foam cell formation in human atherosclerotic plaques, vol.59, pp.166-77, 2012.

J. J. Li, X. Meng, H. P. Si, C. Zhang, H. X. Lv et al., Hepcidin destabilizes atherosclerotic plaque via overactivating macrophages after erythrophagocytosis, vol.32, pp.1158-66, 2012.

O. Saeed, F. Otsuka, R. Polavarapu, V. Karmali, D. Weiss et al., Pharmacological suppression of hepcidin increases macrophage cholesterol efflux and reduces foam cell formation and atherosclerosis, vol.32, pp.299-307, 2012.

F. Re and W. S. Sly, Hepcidin: a putative iron-regulatory hormone relevant to hereditary hemochromatosis and the anemia of chronic disease, vol.98, pp.8160-8162, 2001.

J. N. Feder, A. Gnirke, W. Thomas, Z. Tsuchihashi, D. A. Ruddy et al., A novel MHC class I-like gene is mutated in patients with hereditary haemochromatosis, vol.13, pp.399-408, 1996.

E. H. Hanson, G. Imperatore, and W. Burke, HFE gene and hereditary hemochromatosis: a HuGE review, Human Genome Epidemiology, vol.154, pp.193-206, 2001.

C. J. Murphy and G. Y. Oudit, Iron-overload cardiomyopathy: pathophysiology, diagnosis, and treatment, vol.16, pp.888-900, 2010.

P. Gujja, D. R. Rosing, D. J. Tripodi, and Y. Shizukuda, Iron overload cardiomyopathy: better understanding of an increasing disorder, vol.56, pp.1001-1013, 2010.

A. Pietrangelo, Hereditary hemochromatosis: pathogenesis, diagnosis, and treatment, vol.139, pp.1-2, 2010.

J. C. Wood, C. Enriquez, N. Ghugre, M. Otto-duessel, M. Aguilar et al., Physiology and pathophysiology of iron cardiomyopathy in thalassemia, vol.1054, pp.386-95, 2005.

M. G. Zurlo, D. Stefano, P. Borgna-pignatti, C. , D. Palma et al., Survival and causes of death in thalassaemia major, vol.2, pp.27-30, 1989.

M. A. Engle, M. Erlandson, and C. H. Smith, Late Cardiac Complications of Chronic, Severe, Refractory Anemia with Hemochromatosis, vol.30, pp.698-705, 1964.

J. P. Carpenter, F. Alpendurada, M. Deac, A. Maceira, M. Garbowski et al., Right ventricular volumes and function in thalassemia major patients in the absence of myocardial iron overload, vol.12, p.24, 2010.

D. T. Kremastinos and D. Farmakis, Iron overload cardiomyopathy in clinical practice, vol.124, pp.2253-63, 2011.

L. J. Noetzli, S. M. Carson, A. S. Nord, T. D. Coates, and J. C. Wood, Longitudinal analysis of heart and liver iron in thalassemia major, vol.112, pp.2973-2981, 2008.

S. J. Fairweather-tait, A. A. Wawer, R. Gillings, J. A. Myint, and P. K. , Iron status in the elderly, pp.22-30, 2014.

D. Harman, Aging: a theory based on free radical and radiation chemistry, vol.11, pp.298-300, 1956.

J. A. Knight, The biochemistry of aging, vol.35, pp.1-62, 2000.

F. De-la, Effects of antioxidants on immune system ageing, vol.56, pp.5-8, 2002.

M. Andriollo-sanchez, I. Hininger-favier, N. Meunier, E. Venneria, J. M. O'connor et al., Age-related oxidative stress and antioxidant parameters in middle-aged and older European subjects: the ZENITH study, vol.59, pp.58-62, 2005.

M. Yamamoto, G. Yang, C. Hong, J. Liu, E. Holle et al., Inhibition of endogenous thioredoxin in the heart increases oxidative stress and cardiac hypertrophy, vol.112, pp.1395-406, 2003.

M. O. Date, T. Morita, N. Yamashita, K. Nishida, O. Yamaguchi et al., The antioxidant N-2-mercaptopropionyl glycine attenuates left ventricular hypertrophy in in vivo murine pressure-overload model, vol.39, pp.907-919, 2002.

A. Sukumaran, J. Chang, M. Han, S. Mintri, K. Ba et al., Iron overload exacerbates age-associated cardiac hypertrophy in a mouse model of hemochromatosis, vol.7, p.5756, 2017.

N. F. Olivieri, The beta-thalassemias, vol.341, pp.99-109, 1999.

G. M. Brittenham, P. M. Griffith, A. W. Nienhuis, C. E. Mclaren, N. S. Young et al., Efficacy of deferoxamine in preventing complications of iron overload in patients with thalassemia major, vol.331, pp.567-73, 1994.

G. Hahalis, D. Alexopoulos, D. T. Kremastinos, and N. C. Zoumbos, Heart failure in betathalassemia syndromes: a decade of progress, vol.118, pp.957-67, 2005.

L. J. Anderson, S. Holden, B. Davis, E. Prescott, C. C. Charrier et al., Cardiovascular T2-star (T2*) magnetic resonance for the early diagnosis of myocardial iron overload, vol.22, pp.2171-2180, 2001.

D. J. Pennell, J. B. Porter, M. D. Cappellini, A. El-beshlawy, L. L. Chan et al., Efficacy of deferasirox in reducing and preventing cardiac iron overload in beta-thalassemia, vol.115, pp.2364-71, 2010.

D. J. Pennell, V. Berdoukas, M. Karagiorga, V. Ladis, A. Piga et al., Randomized controlled trial of deferiprone or deferoxamine in beta-thalassemia major patients with asymptomatic myocardial siderosis, vol.107, pp.3738-3782, 2006.

A. Mantovani, M. A. Cassatella, C. Costantini, and S. Jaillon, Neutrophils in the activation and regulation of innate and adaptive immunity, vol.11, pp.519-550, 2011.

B. Geering, C. Stoeckle, C. S. , and S. Hu, Living and dying for inflammation: neutrophils, eosinophils, basophils, vol.34, pp.398-409, 2013.

O. Soehnlein and L. Lindbom, Phagocyte partnership during the onset and resolution of inflammation, vol.10, pp.427-466, 2010.

T. Homma, S. Kinugawa, M. Takahashi, M. A. Sobirin, A. Saito et al., Activation of invariant natural killer T cells by alpha-galactosylceramide ameliorates myocardial ischemia/reperfusion injury in mice, vol.62, pp.179-88, 2013.

X. Yan, T. Shichita, Y. Katsumata, T. Matsuhashi, H. Ito et al., Deleterious effect of the IL-23/IL-17A axis and gammadeltaT cells on left ventricular remodeling after myocardial infarction, vol.1, p.4408, 2012.

K. Yamauchi-takihara, Y. Ihara, A. Ogata, K. Yoshizaki, J. Azuma et al., Hypoxic stress induces cardiac myocyte-derived interleukin-6, vol.91, pp.1520-1524, 1995.

E. Stabile, M. S. Burnett, C. Watkins, T. Kinnaird, A. Bachis et al., Impaired arteriogenic response to acute hindlimb ischemia in CD4-knockout mice, vol.108, pp.205-215, 2003.

N. G. Frangogiannis, The mechanistic basis of infarct healing, vol.8, pp.1907-1946, 2006.

J. Li, L. F. Brown, M. G. Hibberd, J. D. Grossman, J. P. Morgan et al., VEGF, flk-1, and flt-1 expression in a rat myocardial infarction model of angiogenesis, vol.270, pp.1803-1814, 1996.

H. Lorchner, J. Poling, P. Gajawada, Y. Hou, V. Polyakova et al., Myocardial healing requires Reg3beta-dependent accumulation of macrophages in the ischemic heart, vol.21, pp.353-62, 2015.

L. A. Trinh and D. Y. Stainier, Fibronectin regulates epithelial organization during myocardial migration in zebrafish, vol.6, pp.371-82, 2004.

M. Ieda, T. Tsuchihashi, K. N. Ivey, R. S. Ross, T. T. Hong et al., Cardiac fibroblasts regulate myocardial proliferation through beta1 integrin signaling, vol.16, pp.233-277, 2009.

T. Piatkowski, C. Muhlfeld, T. Borchardt, and T. Braun, Reconstitution of the myocardium in regenerating newt hearts is preceded by transient deposition of extracellular matrix components, vol.22, pp.1921-1952, 2013.

J. Wang, R. Karra, A. L. Dickson, and K. D. Poss, Fibronectin is deposited by injury-activated epicardial cells and is necessary for zebrafish heart regeneration, vol.382, pp.427-462, 2013.

F. Chablais and A. Jazwinska, The regenerative capacity of the zebrafish heart is dependent on TGFbeta signaling, vol.139, pp.1921-1951, 2012.

S. E. Mercer, S. J. Odelberg, and H. G. Simon, A dynamic spatiotemporal extracellular matrix facilitates epicardial-mediated vertebrate heart regeneration, vol.382, pp.457-69, 2013.

E. R. Porrello, A. I. Mahmoud, E. Simpson, B. A. Johnson, D. Grinsfelder et al., Regulation of neonatal and adult mammalian heart regeneration by the miR-15 family, vol.110, pp.187-92, 2013.

J. M. Gonzalez-rosa, V. Martin, M. Peralta, M. Torres, and N. Mercader, Extensive scar formation and regression during heart regeneration after cryoinjury in zebrafish, vol.138, pp.1663-74, 2011.

B. Kuhn, F. Del-monte, R. J. Hajjar, Y. S. Chang, D. Lebeche et al., Periostin induces proliferation of differentiated cardiomyocytes and promotes cardiac repair, vol.13, pp.962-971, 2007.

J. T. Butcher, R. A. Norris, S. Hoffman, C. H. Mjaatvedt, and R. R. Markwald, Periostin promotes atrioventricular mesenchyme matrix invasion and remodeling mediated by integrin signaling through Rho/PI 3-kinase, vol.302, pp.256-66, 2007.

L. W. Stanton, L. J. Garrard, D. Damm, B. L. Garrick, A. Lam et al., Altered patterns of gene expression in response to myocardial infarction, vol.86, pp.939-984, 2000.

J. Litvin, S. Zhu, N. R. Markwald, and R. , Periostin family of proteins: therapeutic targets for heart disease, vol.287, pp.1205-1217, 2005.

T. Oka, J. Xu, R. A. Kaiser, J. Melendez, M. Hambleton et al., Genetic manipulation of periostin expression reveals a role in cardiac hypertrophy and ventricular remodeling, vol.101, pp.313-334, 2007.

A. Lorts, J. A. Schwanekamp, J. W. Elrod, M. A. Sargent, and J. D. Molkentin, Genetic manipulation of periostin expression in the heart does not affect myocyte content, cell cycle activity, or cardiac repair, vol.104, pp.1-7, 2009.

M. C. Fishbein, D. Maclean, and P. R. Maroko, Experimental myocardial infarction in the rat: qualitative and quantitative changes during pathologic evolution, vol.90, pp.57-70, 1978.

F. Yang, Y. H. Liu, X. P. Yang, J. Xu, A. Kapke et al., Myocardial infarction and cardiac remodelling in mice, vol.87, pp.547-55, 2002.

B. I. Jugdutt, Remodeling of the myocardium and potential targets in the collagen degradation and synthesis pathways, vol.3, pp.1-30, 2003.

Y. Ma, L. E. De-castro-bras, H. Toba, R. P. Iyer, M. E. Hall et al., Myofibroblasts and the extracellular matrix network in postmyocardial infarction cardiac remodeling, vol.466, pp.1113-1140, 2014.

E. C. Goldsmith, A. D. Bradshaw, and F. G. Spinale, Cellular mechanisms of tissue fibrosis. 2. Contributory pathways leading to myocardial fibrosis: moving beyond collagen expression, vol.304, pp.393-402, 2013.

N. G. Frangogiannis, L. H. Michael, and M. L. Entman, Myofibroblasts in reperfused myocardial infarcts express the embryonic form of smooth muscle myosin heavy chain (SMemb), vol.48, pp.89-100, 2000.

J. I. Virag and C. E. Murry, Myofibroblast and endothelial cell proliferation during murine myocardial infarct repair, vol.163, pp.2433-2473, 2003.

A. Desmouliere, A. Geinoz, F. Gabbiani, and G. Gabbiani, Transforming growth factor-beta 1 induces alpha-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts, vol.122, pp.103-114, 1993.

G. Serini, M. L. Bochaton-piallat, P. Ropraz, A. Geinoz, L. Borsi et al., The fibronectin domain ED-A is crucial for myofibroblastic phenotype induction by transforming growth factor-beta1, vol.142, pp.873-81, 1998.

D. Mackenna, S. R. Summerour, and F. J. Villarreal, Role of mechanical factors in modulating cardiac fibroblast function and extracellular matrix synthesis, vol.46, pp.257-63, 2000.

S. Roy, S. Khanna, A. A. Bickerstaff, S. V. Subramanian, M. Atalay et al., Oxygen sensing by primary cardiac fibroblasts: a key role of p21(Waf1/Cip1/Sdi1), vol.92, pp.264-71, 2003.

W. M. Blankesteijn, Y. P. Essers-janssen, M. J. Verluyten, M. J. Daemen, and J. F. Smits, A homologue of Drosophila tissue polarity gene frizzled is expressed in migrating myofibroblasts in the infarcted rat heart, vol.3, pp.541-545, 1997.

J. J. Tomasek, G. Gabbiani, B. Hinz, C. Chaponnier, and R. A. Brown, Myofibroblasts and mechano-regulation of connective tissue remodelling, vol.3, pp.349-63, 2002.

M. Miragoli, G. Gaudesius, and S. Rohr, Electrotonic modulation of cardiac impulse conduction by myofibroblasts, vol.98, pp.801-811, 2006.

P. J. Lafontant, A. R. Burns, E. Donnachie, S. B. Haudek, C. W. Smith et al., Oncostatin M differentially regulates CXC chemokines in mouse cardiac fibroblasts, vol.291, pp.18-26, 2006.

D. A. Siwik, C. Dl, and W. S. Colucci, Interleukin-1beta and tumor necrosis factor-alpha decrease collagen synthesis and increase matrix metalloproteinase activity in cardiac fibroblasts in vitro, vol.86, pp.1259-65, 2000.

K. A. Detillieux, F. Sheikh, K. E. Cattini, and P. A. , Biological activities of fibroblast growth factor-2 in the adult myocardium, vol.57, pp.8-19, 2003.

Y. Sun and K. T. Weber, Infarct scar: a dynamic tissue, vol.46, pp.250-256, 2000.

B. Schieffer, A. Wirger, M. Meybrunn, S. Seitz, J. Holtz et al., Comparative effects of chronic angiotensin-converting enzyme inhibition and angiotensin II type 1 receptor blockade on cardiac remodeling after myocardial infarction in the rat, vol.89, pp.2273-82, 1994.

K. Harada, T. Sugaya, K. Murakami, Y. , Y. Komuro et al., Angiotensin II type 1A receptor knockout mice display less left ventricular remodeling and improved survival after myocardial infarction, vol.100, pp.2093-2102, 1999.

N. Ohkubo, H. Matsubara, Y. Nozawa, Y. Mori, S. Murasawa et al., Angiotensin type 2 receptors are reexpressed by cardiac fibroblasts from failing myopathic hamster hearts and inhibit cell growth and fibrillar collagen metabolism, vol.96, pp.3954-62, 1997.

S. Ichihara, T. Senbonmatsu, E. Price, J. Ichiki, T. Gaffney et al., Targeted deletion of angiotensin II type 2 receptor caused cardiac rupture after acute myocardial infarction, vol.106, pp.2244-2253, 2002.

J. Swift, I. L. Ivanovska, A. Buxboim, T. Harada, P. C. Dingal et al., Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation, vol.341, p.1240104, 2013.

J. E. Bishop, R. Greenbaum, D. G. Gibson, Y. M. Laurent, and G. J. , Enhanced deposition of predominantly type I collagen in myocardial disease, vol.22, pp.1157-65, 1990.

J. P. Cleutjens, J. C. Kandala, E. Guarda, R. V. Guntaka, and K. T. Weber, Regulation of collagen degradation in the rat myocardium after infarction, vol.27, pp.1281-92, 1995.

D. Mukherjee and S. Sen, Alteration of collagen phenotypes in ischemic cardiomyopathy, vol.88, pp.1141-1147, 1991.

B. I. Jugdutt, M. J. Joljart, and M. I. Khan, Rate of collagen deposition during healing and ventricular remodeling after myocardial infarction in rat and dog models, vol.94, pp.94-101, 1996.

M. M. Marijianowski, P. Teeling, and A. E. Becker, Remodeling after myocardial infarction in humans is not associated with interstitial fibrosis of noninfarcted myocardium, vol.30, pp.76-82, 1997.

R. J. Mccormick, T. I. Musch, B. C. Bergman, and D. P. Thomas, Regional differences in LV collagen accumulation and mature cross-linking after myocardial infarction in rats, vol.266, pp.354-363, 1994.

S. D. Zimmerman, D. P. Thomas, S. G. Velleman, X. Li, T. R. Hansen et al., Time course of collagen and decorin changes in rat cardiac and skeletal muscle post-MI, vol.281, pp.1816-1838, 2001.

H. N. Sabbah and S. Goldstein, Ventricular remodelling: consequences and therapy, vol.14, pp.24-33, 1993.

M. A. Pfeffer and E. Braunwald, Ventricular remodeling after myocardial infarction. Experimental observations and clinical implications, vol.81, pp.1161-72, 1990.

X. M. Gao, A. M. Dart, E. Dewar, J. G. Du, and X. J. , Serial echocardiographic assessment of left ventricular dimensions and function after myocardial infarction in mice, vol.45, pp.330-338, 2000.

, Six-month effects of early treatment with lisinopril and transdermal glyceryl trinitrate singly and together withdrawn six weeks after acute myocardial infarction: the GISSI-3 trial. Gruppo Italiano per lo Studio della Sopravvivenza nell'Infarto Miocardico, vol.27, pp.337-381, 1996.

R. Latini, A. P. Maggioni, M. Flather, P. Sleight, and G. Tognoni, ACE inhibitor use in patients with myocardial infarction. Summary of evidence from clinical trials, vol.92, pp.3132-3139, 1995.

J. N. Cohn, G. Johnson, S. Ziesche, F. Cobb, G. Francis et al., A comparison of enalapril with hydralazine-isosorbide dinitrate in the treatment of chronic congestive heart failure, vol.325, pp.303-313, 1991.

S. Investigators, S. Yusuf, B. Pitt, C. E. Davis, W. B. Hood et al., Effect of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure, vol.325, pp.293-302, 1991.

R. Garg and S. Yusuf, Overview of randomized trials of angiotensin-converting enzyme inhibitors on mortality and morbidity in patients with heart failure, Collaborative Group on ACE Inhibitor Trials, vol.273, pp.1450-1456, 1995.

B. Pitt, W. Remme, F. Zannad, J. Neaton, F. Martinez et al., Eplerenone Post-Acute Myocardial Infarction Heart Failure E and Survival Study I. Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction, vol.348, pp.1309-1330, 2003.

F. Waagstein, M. R. Bristow, K. Swedberg, F. Camerini, M. B. Fowler et al., Beneficial effects of metoprolol in idiopathic dilated cardiomyopathy, Metoprolol in Dilated Cardiomyopathy (MDC) Trial Study Group, vol.342, pp.1441-1447, 1993.

M. Packer, M. R. Bristow, J. N. Cohn, W. S. Colucci, M. B. Fowler et al., The effect of carvedilol on morbidity and mortality in patients with chronic heart failure, U.S. Carvedilol Heart Failure Study Group, vol.334, pp.1349-55, 1996.

, Effect of metoprolol CR/XL in chronic heart failure: Metoprolol CR/XL Randomised Intervention Trial in Congestive Heart Failure (MERIT-HF), vol.353, pp.2001-2008, 1999.

, A randomized trial of beta-blockade in heart failure. The Cardiac Insufficiency Bisoprolol Study (CIBIS), CIBIS Investigators and Committees, vol.90, pp.1765-73, 1994.

J. D. Drenckhahn, Q. P. Schwarz, S. Gray, A. Laskowski, H. Kiriazis et al., Compensatory growth of healthy cardiac cells in the presence of diseased cells restores tissue homeostasis during heart development, vol.15, pp.521-554, 2008.

B. J. Haubner, M. Adamowicz-brice, S. Khadayate, V. Tiefenthaler, B. Metzler et al., Complete cardiac regeneration in a mouse model of myocardial infarction, vol.4, pp.966-77, 2012.

C. Jopling, E. Sleep, M. Raya, M. Marti, R. A. et al., Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation, vol.464, pp.606-615, 2010.

A. Lepilina, A. N. Coon, K. Kikuchi, J. E. Holdway, R. W. Roberts et al., A dynamic epicardial injury response supports progenitor cell activity during zebrafish heart regeneration, vol.127, pp.607-626, 2006.

D. C. Andersen, S. Ganesalingam, C. H. Jensen, and S. P. Sheikh, Do neonatal mouse hearts regenerate following heart apex resection?, vol.2, pp.406-419, 2014.

D. M. Bryant, C. C. O'meara, N. N. Ho, J. Gannon, L. Cai et al., A systematic analysis of neonatal mouse heart regeneration after apical resection, vol.79, pp.315-323, 2015.

C. Han, Y. Nie, H. Lian, R. Liu, F. He et al., Acute inflammation stimulates a regenerative response in the neonatal mouse heart, vol.25, pp.1137-51, 2015.

A. Darehzereshki, N. Rubin, L. Gamba, J. Kim, J. Fraser et al., Differential regenerative capacity of neonatal mouse hearts after cryoinjury, vol.399, pp.91-100, 2015.

R. Passier, L. W. Van-laake, and C. L. Mummery, Stem-cell-based therapy and lessons from the heart, vol.453, pp.322-331, 2008.

M. A. Laflamme, K. Y. Chen, A. V. Naumova, V. Muskheli, J. A. Fugate et al., Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts, vol.25, pp.1015-1039, 2007.

Y. Yoshida and S. Yamanaka, Induced Pluripotent Stem Cells 10 Years Later: For Cardiac Applications, vol.120, pp.1958-1968, 2017.

B. Cheng, H. C. Chen, I. W. Chou, T. W. Tang, and P. C. Hsieh, Harnessing the early post-injury inflammatory responses for cardiac regeneration, vol.24, p.7, 2017.

J. Butany, V. Nair, A. Naseemuddin, G. M. Nair, C. et al., Cardiac tumours: diagnosis and management, vol.6, pp.219-247, 2005.

P. Anversa and B. Nadal-ginard, Myocyte renewal and ventricular remodelling, vol.415, pp.240-243, 2002.

O. Bergmann, R. D. Bhardwaj, S. Bernard, S. Zdunek, F. Barnabe-heider et al., Evidence for cardiomyocyte renewal in humans, vol.324, pp.98-102, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00374382

O. Bergmann, S. Zdunek, A. Felker, M. Salehpour, K. Alkass et al., Dynamics of Cell Generation and Turnover in the Human Heart, vol.161, pp.1566-75, 2015.

H. De-vries and H. T. Waterbolk, Groningen Radiocarbon Dates III, vol.128, pp.1550-1556, 1958.

R. Nydal, K. Lovseth, and O. Syrstad, Bomb 14 C in the human population, vol.232, pp.418-439, 1971.

I. Levin, S. Hammer, B. Kromer, and F. Meinhardt, Radiocarbon observations in atmospheric CO2: determining fossil fuel CO2 over Europe using Jungfraujoch observations as background, vol.391, pp.211-217, 2008.

K. L. Spalding, B. A. Buchholz, L. E. Bergman, H. Druid, and J. Frisen, Forensics: age written in teeth by nuclear tests, vol.437, pp.333-337, 2005.

W. F. Libby, R. Berger, J. F. Mead, A. Gv, and J. F. Ross, Replacement Rates for Human Tissue from Atmospheric Radiocarbon, vol.146, pp.1170-1172, 1964.

D. D. Harkness, Further investigations of the transfer of bomb 14 C to man, vol.240, pp.302-305, 1972.

A. I. Mahmoud, C. C. O'meara, M. Gemberling, L. Zhao, D. M. Bryant et al., Nerves Regulate Cardiomyocyte Proliferation and Heart Regeneration, vol.34, pp.387-99, 2015.

I. A. White, J. Gordon, W. Balkan, and J. M. Hare, Sympathetic Reinnervation Is Required for Mammalian Cardiac Regeneration, vol.117, pp.990-994, 2015.

A. Kumar and J. P. Brockes, Nerve dependence in tissue, organ, and appendage regeneration, vol.35, pp.691-700, 2012.

A. Kumar, J. W. Godwin, P. B. Gates, A. A. Garza-garcia, and J. P. Brockes, Molecular basis for the nerve dependence of limb regeneration in an adult vertebrate, vol.318, pp.772-779, 2007.

J. W. Godwin, A. R. Pinto, and N. A. Rosenthal, Macrophages are required for adult salamander limb regeneration, vol.110, pp.9415-9435, 2013.

J. W. Godwin and N. Rosenthal, Scar-free wound healing and regeneration in amphibians: immunological influences on regenerative success, vol.87, pp.66-75, 2014.

M. Grow, A. W. Neff, A. L. Mescher, and M. W. King, Global analysis of gene expression in Xenopus hindlimbs during stage-dependent complete and incomplete regeneration, vol.235, pp.2667-85, 2006.

M. W. King, A. W. Neff, and A. L. Mescher, The developing Xenopus limb as a model for studies on the balance between inflammation and regeneration, vol.295, pp.1552-61, 2012.

C. L. Lien, M. Schebesta, S. Makino, G. J. Weber, and M. T. Keating, Gene expression analysis of zebrafish heart regeneration, vol.4, p.260, 2006.

N. Kyritsis, C. Kizil, S. Zocher, V. Kroehne, J. Kaslin et al., Acute inflammation initiates the regenerative response in the adult zebrafish brain, vol.338, pp.1353-1359, 2012.

M. Xin, E. N. Olson, and R. Bassel-duby, Mending broken hearts: cardiac development as a basis for adult heart regeneration and repair, vol.14, pp.529-570, 2013.

M. Hulsmans, S. Clauss, L. Xiao, A. D. Aguirre, K. R. King et al., Macrophages Facilitate Electrical Conduction in the Heart, vol.169, p.510, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01688265

Z. Szondy, E. Garabuczi, G. Joos, G. J. Tsay, and Z. Sarang, Impaired clearance of apoptotic cells in chronic inflammatory diseases: therapeutic implications, vol.5, p.354, 2014.

R. S. Foo, K. Mani, and R. N. Kitsis, Death begets failure in the heart, vol.115, pp.565-71, 2005.

R. S. Whelan, V. Kaplinskiy, and R. N. Kitsis, Cell death in the pathogenesis of heart disease: mechanisms and significance, vol.72, pp.19-44, 2010.

R. S. Scott, E. J. Mcmahon, S. M. Pop, E. A. Reap, R. Caricchio et al., Phagocytosis and clearance of apoptotic cells is mediated by MER, vol.411, pp.207-218, 2001.

M. A. Ensslin and B. D. Shur, Identification of mouse sperm SED1, a bimotif EGF repeat and discoidin-domain protein involved in sperm-egg binding, vol.114, pp.405-422, 2003.

J. S. Silvestre, C. Thery, B. Levy, A. Tedgui, A. S. Mallat et al., , vol.21, pp.683-688, 2005.

H. Ait-oufella, K. Kinugawa, J. Zoll, T. Simon, J. Boddaert et al., Lactadherin deficiency leads to apoptotic cell accumulation and accelerated atherosclerosis in mice, vol.115, pp.2168-77, 2007.

N. Deroide, X. Li, D. Lerouet, E. Van-vre, L. Baker et al., MFGE8 inhibits inflammasome-induced IL-1beta production and limits postischemic cerebral injury, vol.123, pp.1176-81, 2013.

S. Von-haehling, E. A. Jankowska, D. J. Van-veldhuisen, P. , P. Anker et al., Iron deficiency and cardiovascular disease, vol.12, pp.659-69, 2015.

J. A. Ezekowitz, F. A. Mcalister, and P. W. Armstrong, Anemia is common in heart failure and is associated with poor outcomes: insights from a cohort of 12 065 patients with newonset heart failure, vol.107, pp.223-228, 2003.

H. Drakesmith and A. M. Prentice, Hepcidin and the iron-infection axis, vol.338, pp.768-72, 2012.

S. Lakhal-littleton, M. Wolna, C. A. Carr, J. J. Miller, H. C. Christian et al., Cardiac ferroportin regulates cellular iron homeostasis and is important for cardiac function, vol.112, pp.3164-3173, 2015.

S. Lakhal-littleton, M. Wolna, Y. J. Chung, H. C. Christian, L. C. Heather et al., An essential cell-autonomous role for hepcidin in cardiac iron homeostasis, vol.5, 2016.

E. Nemeth, S. Rivera, V. Gabayan, C. Keller, S. Taudorf et al., IL-6 mediates hypoferremia of inflammation by inducing the synthesis of the iron regulatory hormone hepcidin, vol.113, pp.1271-1277, 2004.

G. Simonis, K. Mueller, P. Schwarz, S. Wiedemann, G. Adler et al., The iron-regulatory peptide hepcidin is upregulated in the ischemic and in the remote myocardium after myocardial infarction, vol.31, pp.1786-90, 2010.

N. G. Frangogiannis, The inflammatory response in myocardial injury, repair, and remodelling, vol.11, pp.255-65, 2014.

S. E. Senyo, M. L. Steinhauser, C. L. Pizzimenti, V. K. Yang, L. Cai et al., Mammalian heart renewal by pre-existing cardiomyocytes, vol.493, pp.433-439, 2013.

C. Cochain, K. M. Channon, and J. S. Silvestre, Angiogenesis in the infarcted myocardium, vol.18, pp.1100-1113, 2013.

C. Stockmann, Y. Kerdiles, M. Nomaksteinsky, A. Weidemann, N. Takeda et al., Loss of myeloid cell-derived vascular endothelial growth factor accelerates fibrosis, vol.107, pp.4329-4363, 2010.

C. Kantari-mimoun, M. Castells, R. Klose, A. K. Meinecke, U. J. Lemberger et al., Resolution of liver fibrosis requires myeloid cell-driven sinusoidal angiogenesis, vol.61, pp.2042-55, 2015.

A. Yona, S. Grunewald, M. Landsman, L. Cochain, C. Silvestre et al., On-site education of VEGFrecruited monocytes improves their performance as angiogenic and arteriogenic accessory cells, vol.210, pp.2611-2636, 2013.

K. Y. Howangyin, I. Zlatanova, C. Pinto, A. Ngkelo, C. Cochain et al., Myeloid-EpithelialReproductive Receptor Tyrosine Kinase and Milk Fat Globule Epidermal Growth Factor 8 Coordinately Improve Remodeling After Myocardial Infarction via Local Delivery of Vascular Endothelial Growth Factor, vol.133, pp.826-865, 2016.

M. Jung, C. Mertens, and B. Brune, Macrophage iron homeostasis and polarization in the context of cancer, vol.220, pp.295-304, 2015.

H. Suzuki, K. Toba, K. Kato, T. Ozawa, N. Tomosugi et al., Serum hepcidin-20 is elevated during the acute phase of myocardial infarction, vol.218, pp.93-101, 2009.

X. Y. Xiong, L. Liu, F. X. Wang, Y. R. Yang, J. W. Hao et al., Toll-Like Receptor 4/MyD88-Mediated Signaling of Hepcidin Expression Causing Brain Iron Accumulation, Oxidative Injury, and Cognitive Impairment After Intracerebral Hemorrhage, vol.134, pp.1025-1038, 2016.

Z. Zhang, F. Zhang, P. An, X. Guo, Y. Shen et al., Ferroportin1 deficiency in mouse macrophages impairs iron homeostasis and inflammatory responses, vol.118, pp.1912-1934, 2011.

M. Malek-mohammadi, B. Kattih, A. Grund, N. Froese, M. Korf-klingebiel et al., The transcription factor GATA4 promotes myocardial regeneration in neonatal mice, vol.9, pp.265-279, 2017.

M. A. Laflamme and C. E. Murry, Heart regeneration, vol.473, pp.326-361, 2011.

D. J. Hausenloy, E. Botker, H. Condorelli, G. Ferdinandy, P. Garcia-dorado et al., Translating cardioprotection for patient benefit: position paper from the Working Group of Cellular Biology of the Heart of the, European Society of Cardiology, vol.98, pp.7-27, 2013.

F. Leuschner, G. Courties, P. Dutta, L. J. Mortensen, R. Gorbatov et al., Silencing of CCR2 in myocarditis, vol.36, pp.1478-88, 2015.

F. Leuschner, P. Dutta, R. Gorbatov, T. I. Novobrantseva, J. S. Donahoe et al., Therapeutic siRNA silencing in inflammatory monocytes in mice, vol.29, pp.1005-1015, 2011.

K. T. Love, K. P. Mahon, C. G. Levins, K. A. Whitehead, W. Querbes et al., Lipid-like materials for low-dose, in vivo gene silencing, vol.107, pp.1864-1873, 2010.

G. Torre-amione, S. D. Anker, R. C. Bourge, W. S. Colucci, B. H. Greenberg et al., Young JB and Advanced Chronic Heart Failure CAoIMTI. Results of a non-specific immunomodulation therapy in chronic heart failure (ACCLAIM trial): a placebo-controlled randomised trial, vol.371, pp.228-264, 2008.

T. Harel-adar, B. Mordechai, T. Amsalem, Y. Feinberg, M. S. Leor et al., Modulation of cardiac macrophages by phosphatidylserine-presenting liposomes improves infarct repair, vol.108, pp.1827-1859, 2011.

O. References-1.-bergmann, R. D. Bhardwaj, S. Bernard, S. Zdunek, F. Barnabe-heider et al., Evidence for cardiomyocyte renewal in humans, Science, vol.324, issue.5923, pp.98-102, 2009.

O. Bergmann, S. Zdunek, A. Felker, M. Salehpour, K. Alkass et al., Dynamics of cell generation and turnover in the human heart, Cell, issue.7, pp.1566-75, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01225091

M. Sahara, F. Santoro, and K. R. Chien, Programming and reprogramming a human heart cell, EMBO J, vol.34, issue.6, pp.710-748, 2015.

A. Uygur and R. T. Lee, Mechanisms of cardiac regeneration, Dev Cell, vol.36, issue.4, pp.362-74, 2016.

S. J. Forbes and N. Rosenthal, Preparing the ground for tissue regeneration: from mechanism to therapy, Nat Med, vol.20, issue.8, pp.857-69, 2014.

S. D. Prabhu and N. G. Frangogiannis, he biological basis for cardiac repair ater myocardial infarction: from inlammation to ibrosis, Circ Res, vol.119, issue.1, pp.91-112, 2016.

J. S. Silvestre, D. M. Smadja, and B. I. Levy, Postischemic revascularization: from cellular and molecular mechanisms to clinical applications, Physiol Rev, vol.93, issue.4, pp.1743-802, 2013.

C. Cochain, C. Auvynet, L. Poupel, J. Vilar, E. Dumeau et al., he chemokine decoy receptor D6 prevents excessive inlammation and adverse ventricular remodeling ater myocardial infarction, Arterioscler hromb Vasc Biol, vol.32, issue.9, pp.2206-2219, 2012.

K. Y. Howangyin, I. Zlatanova, C. Pinto, A. Ngkelo, C. Cochain et al., Myeloid-epithelial-reproductive receptor tyrosine kinase and milk fat globule epidermal growth factor 8 coordinately improve remodeling ater myocardial infarction via local delivery of vascular endothelial growth factor, Circulation, vol.133, issue.9, pp.826-865, 2016.

E. Wan, X. Y. Yeap, S. Dehn, R. Terry, M. Novak et al., Enhanced eferocytosis of apoptotic cardiomyocytes through myeloid-epithelialreproductive tyrosine kinase links acute inlammation resolution to cardiac repair ater infarction, Circ Res, vol.113, issue.8, pp.1004-1016, 2013.

T. Hashimoto, V. Sivakumaran, R. Carnicer, G. Zhu, V. S. Hahn et al., Tetrahydrobiopterin protects against hypertrophic heart disease independent of myocardial nitric oxide synthase coupling, J Am Heart Assoc, vol.5, issue.3, p.3208, 2016.

F. Laroumanie, V. Douin-echinard, J. Pozzo, O. Lairez, F. Tortosa et al., CD4+ T cells promote the transition from hypertrophy to heart failure during chronic pressure overload, Circulation, vol.129, issue.21, pp.2111-2135, 2014.
URL : https://hal.archives-ouvertes.fr/inserm-01053619

H. Kaur, M. Takefuji, C. Y. Ngai, J. Carvalho, J. Bayer et al., Targeted ablation of periostin-expressing activated ibroblasts prevents adverse cardiac remodeling in mice, Circ Res, vol.118, issue.12, pp.1906-1923, 2016.

M. Kobara, K. Noda, M. Kitamura, A. Okamoto, T. Shiraishi et al., Antibody against interleukin-6 receptor attenuates let ventricular remodelling ater myocardial infarction in mice, Cardiovasc Res, vol.87, issue.3, 2010.

H. Lorchner, J. Poling, P. Gajawada, Y. Hou, V. Polyakova et al., Myocardial healing requires Reg3beta-dependent accumulation of macrophages in the ischemic heart, Nat Med, vol.21, issue.4, pp.353-62, 2015.

H. B. Sager, M. Hulsmans, K. J. Lavine, M. B. Moreira, T. Heidt et al., Proliferation and recruitment contribute to myocardial macrophage expansion in chronic heart failure, Circ Res, vol.119, issue.7, pp.853-64, 2016.

J. S. Silvestre, Z. Mallat, M. Duriez, R. Tamarat, M. F. Bureau et al., Antiangiogenic efect of interleukin-10 in ischemia-induced angiogenesis in mice hindlimb, Circ Res, vol.87, issue.6, pp.448-52, 2000.

J. S. Silvestre, Z. Mallat, R. Tamarat, M. Duriez, A. Tedgui et al., Regulation of matrix metalloproteinase activity in ischemic tissue by interleukin-10: role in ischemia-induced angiogenesis, Circ Res, vol.89, issue.3, pp.259-64, 2001.

J. S. Burchield, M. Iwasaki, M. Koyanagi, C. Urbich, N. Rosenthal et al., Interleukin-10 from transplanted bone marrow mononuclear cells contributes to cardiac protection ater myocardial infarction, Circ Res, vol.103, issue.2, pp.203-214, 2008.

M. Horckmans, L. Ring, J. Duchene, D. Santovito, M. J. Schloss et al., Neutrophils orchestrate post-myocardial infarction healing by polarizing macrophages towards a reparative phenotype, Eur Heart J, 2016.

A. Boufenzer, J. Lemarie, T. Simon, M. Derive, Y. Bouazza et al., TREM-1 mediates inlammatory injury and cardiac remodeling following myocardial infarction, Circ Res, vol.116, issue.11, pp.1772-82, 2015.

P. J. Simpson, R. F. Todd, . Iii, J. C. Fantone, J. K. Mickelson et al., Reduction of experimental canine myocardial reperfusion injury by a monoclonal antibody (anti-Mo1, anti-CD11b) that inhibits leukocyte adhesion, J Clin Invest, vol.81, issue.2, pp.624-633, 1988.

M. L. Entman, K. Youker, T. Shoji, G. Kukielka, S. B. Shappell et al., Neutrophil induced oxidative injury of cardiac myocytes. A compartmented system requiring CD11b/CD18-ICAM-1 adherence, J Clin Investig, vol.90, issue.4, pp.1335-1380, 1992.

T. Nagai, S. Honda, Y. Sugano, T. A. Matsuyama, K. Ohta-ogo et al., Decreased myocardial dendritic cells is associated with impaired reparative ibrosis and development of cardiac rupture ater myocardial infarction in humans, J Am Heart Assoc, vol.3, issue.3, p.839, 2014.

A. Anzai, T. Anzai, S. Nagai, Y. Maekawa, K. Naito et al., Regulatory role of dendritic cells in postinfarction healing and let ventricular remodeling, Circulation, vol.125, issue.10, pp.1234-1279, 2012.

T. Yao, W. Lu, J. Zhu, J. X. Ma, G. Wang et al., Role of CD11b+Gr-1+ myeloid cells in AGEs-induced myocardial injury in a mice model of acute myocardial infarction, Int J Clin Exp Pathol, vol.8, issue.3, pp.3238-3287, 2015.

J. E. Talmadge and D. I. Gabrilovich, History of myeloid-derived suppressor cells, Nat Rev Cancer, vol.13, issue.10, pp.739-52, 2013.

J. A. Kim, K. March, H. D. Chae, B. Johnstone, S. J. Park et al., Musclederived Gr1(dim)CD11b(+) cells enhance neovascularization in an ischemic hind limb mouse model, Blood, vol.116, issue.9, pp.1623-1629, 2010.

A. Ngkelo, A. Richart, J. A. Kirk, P. Bonnin, J. Vilar et al., Mast cells regulate myoilament calcium sensitization and heart function ater myocardial infarction, J Exp Med, vol.213, issue.7, pp.1353-74, 2016.

S. Fazel, M. Cimini, L. Chen, S. Li, D. Angoulvant et al., Cardioprotective c-kit+ cells are from the bone marrow and regulate the myocardial balance of angiogenic cytokines, J Clin Invest, vol.116, issue.7, pp.1865-77, 2006.

M. Nahrendorf, F. K. Swirski, E. Aikawa, L. Stangenberg, T. Wurdinger et al., he healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions, J Exp Med, vol.204, issue.12, pp.3037-3084, 2007.

M. Nahrendorf and F. K. Swirski, Monocyte and macrophage heterogeneity in the heart, Circ Res, vol.112, issue.12, pp.1624-1657, 2013.

M. D. Majmudar, E. J. Keliher, T. Heidt, F. Leuschner, J. Truelove et al., Monocyte-directed RNAi targeting CCR2 improves infarct healing in atherosclerosis-prone mice, Circulation, vol.127, pp.2038-2084, 1920.

O. Dewald, P. Zymek, K. Winkelmann, A. Koerting, G. Ren et al., CCL2/monocyte chemoattractant protein-1 regulates inlammatory responses critical to healing myocardial infarcts, Circ Res, issue.8, pp.881-890, 2005.

A. Sica and A. Mantovani, Macrophage plasticity and polarization: in vivo veritas, J Clin Invest, vol.122, issue.3, pp.787-95, 2012.

P. J. Murray, J. E. Allen, S. K. Biswas, E. A. Fisher, D. W. Gilroy et al., Macrophage activation and polarization: nomenclature and experimental guidelines, Immunity, vol.41, issue.1, pp.14-20, 2014.

M. A. Ingersoll, R. Spanbroek, C. Lottaz, E. L. Gautier, M. Frankenberger et al., Comparison of gene expression proiles between human and mouse monocyte subsets, Blood, vol.115, issue.3, pp.10-19, 2010.

, Frontiers in Cardiovascular Medicine | www.frontiersin.org October, vol.3, p.40, 2016.

M. Guilliams, F. Ginhoux, C. Jakubzick, S. H. Naik, N. Onai et al., Dendritic cells, monocytes and macrophages: a uniied nomenclature based on ontogeny, Nat Rev Immunol, vol.14, issue.8, pp.571-579, 2014.

K. Molawi, Y. Wolf, P. K. Kandalla, J. Favret, N. Hagemeyer et al., Progressive replacement of embryo-derived cardiac macrophages with age, J Exp Med, vol.211, issue.11, pp.2151-2159, 2014.

E. Gomez-perdiguero, K. Klapproth, C. Schulz, K. Busch, E. Azzoni et al., Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors, Nature, vol.518, issue.7540, pp.547-51, 2015.

J. Sheng, C. Ruedl, and K. Karjalainen, Most tissue-resident macrophages except microglia are derived from fetal hematopoietic stem cells, Immunity, vol.43, issue.2, pp.382-93, 2015.

K. J. Lavine, S. Epelman, K. Uchida, K. J. Weber, C. G. Nichols et al., Distinct macrophage lineages contribute to disparate patterns of cardiac recovery and remodeling in the neonatal and adult heart, Proc Natl Acad Sci U S A, vol.111, issue.45, pp.16029-16063, 2014.

S. Epelman, K. J. Lavine, A. E. Beaudin, D. K. Sojka, J. A. Carrero et al., Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inlammation, Immunity, vol.40, issue.1, pp.91-104, 2014.

S. Epelman, K. J. Lavine, and G. J. Randolph, Origin and functions of tissue macrophages, Immunity, vol.41, issue.1, 2014.

T. Heidt, G. Courties, P. Dutta, H. B. Sager, M. Sebas et al., Diferential contribution of monocytes to heart macrophages in steady-state and ater myocardial infarction, Circ Res, vol.115, issue.2, pp.284-95, 2014.

Y. Zouggari, H. Ait-oufella, P. Bonnin, T. Simon, A. P. Sage et al., B lymphocytes trigger monocyte mobilization and impair heart function ater acute myocardial infarction, Nat Med, vol.19, issue.10, pp.1273-80, 2013.

U. Hofmann and S. Frantz, Role of lymphocytes in myocardial injury, healing, and remodeling ater myocardial infarction, Circ Res, vol.116, issue.2, pp.354-67, 2015.

U. Hofmann, N. Beyersdorf, J. Weirather, A. Podolskaya, J. Bauersachs et al., Activation of CD4+ T lymphocytes improves wound healing and survival ater experimental myocardial infarction in mice, Circulation, vol.125, issue.13, pp.1652-63, 2012.

Y. Zouggari, H. Ait-oufella, L. Waeckel, J. Vilar, C. Loinard et al., Regulatory T cells modulate postischemic neovascularization, Circulation, vol.120, issue.14, pp.1415-1440, 2009.

J. Weirather, U. D. Hofmann, N. Beyersdorf, G. C. Ramos, B. Vogel et al., Foxp3+ CD4+ T cells improve healing ater myocardial infarction by modulating monocyte/macrophage diferentiation, Circ Res, vol.115, issue.1, pp.55-67, 2014.

D. C. Andersen, S. Ganesalingam, C. H. Jensen, and S. P. Sheikh, Do neonatal mouse hearts regenerate following heart apex resection?, Stem Cell Reports, vol.2, issue.4, pp.406-419, 2014.

H. A. Sadek, J. F. Martin, J. K. Takeuchi, J. Leor, Y. Nie et al., Multiinvestigator letter on reproducibility of neonatal heart regeneration following apical resection, Stem Cell Reports, vol.3, issue.1, p.1, 2014.

T. Konino, N. Landa, T. Ben-mordechai, and J. Leor, he type of injury dictates the mode of repair in neonatal and adult heart, J Am Heart Assoc, vol.4, issue.1, p.1320, 2015.

E. R. Porrello, A. I. Mahmoud, E. Simpson, J. A. Hill, J. A. Richardson et al., Transient regenerative potential of the neonatal mouse heart, Science, vol.331, issue.6020, pp.1078-80, 2011.

B. J. Haubner, J. Schneider, U. Schweigmann, T. Schuetz, W. Dichtl et al., Functional recovery of a human neonatal heart ater severe myocardial infarction, Circ Res, vol.118, issue.2, pp.216-237, 2016.

P. C. Hsieh, V. F. Segers, M. E. Davis, C. Macgillivray, J. Gannon et al., Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes ater injury, Nat Med, vol.13, issue.8, pp.970-974, 2007.

C. Han, Y. Nie, H. Lian, R. Liu, F. He et al., Acute inlammation stimulates a regenerative response in the neonatal mouse heart, Cell Res, vol.25, issue.10, pp.1137-51, 2015.

A. I. Mahmoud, C. C. O'meara, M. Gemberling, L. Zhao, D. M. Bryant et al., Nerves regulate cardiomyocyte proliferation and heart regeneration, Dev Cell, vol.34, issue.4, pp.387-99, 2015.

A. B. Aurora, E. R. Porrello, W. Tan, A. I. Mahmoud, J. A. Hill et al., Macrophages are required for neonatal heart regeneration, J Clin Invest, vol.124, issue.3, pp.1382-92, 2014.

D. R. Lemos, F. Babaeijandaghi, M. Low, C. K. Chang, S. T. Lee et al., Nilotinib reduces muscle ibrosis in chronic muscle injury by promoting TNF-mediated apoptosis of ibro/adipogenic progenitors, Nat Med, vol.21, issue.7, pp.786-94, 2015.

L. Boulter, O. Govaere, T. G. Bird, S. Radulescu, P. Ramachandran et al., Macrophage-derived Wnt opposes Notch signaling to specify hepatic progenitor cell fate in chronic liver disease, Nat Med, vol.18, issue.4, pp.572-581, 2012.

L. Arnold, A. Henry, F. Poron, Y. Baba-amer, N. Van-rooijen et al., Inlammatory monocytes recruited ater skeletal muscle injury switch into antiinlammatory macrophages to support myogenesis, J Exp Med, vol.204, issue.5, pp.1057-69, 2007.

J. M. Ruckh, J. W. Zhao, J. L. Shadrach, P. Van-wijngaarden, T. N. Rao et al., Rejuvenation of regeneration in the aging central nervous system, Cell Stem Cell, vol.10, issue.1, pp.96-103, 2012.

D. Burzyn, W. Kuswanto, D. Kolodin, J. L. Shadrach, M. Cerletti et al., A special population of regulatory T cells potentiates muscle repair, Cell, vol.155, issue.6, pp.1282-95, 2013.

Y. Fang, V. Gupta, R. Karra, J. E. Holdway, K. Kikuchi et al., Translational proiling of cardiomyocytes identiies an early Jak1/Stat3 injury response required for zebraish heart regeneration, Proc Natl Acad Sci U S A, vol.110, issue.33, pp.13416-13437, 2013.

C. C. O'meara, J. A. Wamstad, R. A. Gladstone, G. M. Fomovsky, V. L. Butty et al., Transcriptional reversion of cardiac myocyte fate during mammalian cardiac regeneration, Circ Res, vol.116, issue.5, pp.804-819, 2015.

J. E. Heredia, L. Mukundan, F. M. Chen, A. A. Mueller, R. C. Deo et al., Type 2 innate signals stimulate ibro/adipogenic progenitors to facilitate muscle regeneration, Cell, vol.153, issue.2, pp.376-88, 2013.

S. J. Jenkins, D. Ruckerl, G. D. Homas, J. P. Hewitson, S. Duncan et al., IL-4 directly signals tissue-resident macrophages to proliferate beyond homeostatic levels controlled by CSF-1, J Exp Med, vol.210, issue.11, pp.2477-91, 2013.

P. Libby, A. H. Lichtman, and G. K. Hansson, Immune effector mechanisms implicated in atherosclerosis: from mice to humans, Immunity, vol.38, pp.1092-104, 2013.

G. K. Hansson, Inflammation, atherosclerosis, and coronary artery disease, N Engl J Med, vol.352, pp.1685-95, 2005.

A. Tedgui and Z. Mallat, Cytokines in atherosclerosis: pathogenic and regulatory pathways, Physiol Rev, vol.86, pp.515-81, 2006.
URL : https://hal.archives-ouvertes.fr/hal-01589451

K. J. Moore and I. Tabas, Macrophages in the pathogenesis of atherosclerosis, Cell, vol.145, pp.341-55, 2011.

C. Weber and H. Noels, Atherosclerosis: current pathogenesis and therapeutic options, Nat Med, vol.17, pp.1410-1432, 2011.

S. Potteaux, H. Ait-oufella, and Z. Mallat, Role of splenic monocytes in atherosclerosis, Curr Opin Lipidol, vol.26, pp.457-63, 2015.

P. Libby, Inflammation in atherosclerosis, Nature, vol.420, pp.868-74, 2002.

H. Ait-oufella, S. Taleb, Z. Mallat, and A. Tedgui, Recent advances on the role of cytokines in atherosclerosis, Arterioscler Thromb Vasc Biol, vol.31, pp.969-79, 2011.

C. S. Robbins, I. Hilgendorf, and G. F. Weber, Local proliferation dominates lesional macrophage accumulation in atherosclerosis, Nat Med, vol.19, pp.1166-72, 2013.

T. A. Seimon, M. J. Nadolski, and X. Liao, Atherogenic lipids and lipoproteins trigger CD36-TLR2-dependent apoptosis in macrophages undergoing endoplasmic reticulum stress, Cell Metab, vol.12, pp.467-82, 2010.

C. R. Stewart, L. M. Stuart, and K. Wilkinson, CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer, Nat Immunol, vol.11, pp.155-61, 2010.

P. M. Brown, D. J. Kennedy, R. E. Morton, and M. Febbraio, CD36/SR-B2-TLR2 dependent pathways enhance Porphyromonas gingivalis mediated atherosclerosis in the Ldlr KO mouse model, PLoS One, vol.10, p.125126, 2015.

K. J. Moore and M. W. Freeman, Scavenger receptors in atherosclerosis: beyond lipid uptake

, Arterioscler Thromb Vasc Biol, vol.26, pp.1702-1713, 2006.

A. Bouchon, J. Dietrich, and M. Colonna, Cutting edge: inflammatory responses can be triggered by

. Joffre,

, TREM-1 Inhibition Reduces Atherosclerosis 2791

, TREM-1, a novel receptor expressed on neutrophils and monocytes, J Immunol, vol.164, pp.4991-4996, 2000.

A. Bouchon, F. Facchetti, M. A. Weigand, and M. Colonna, TREM-1 amplifies inflammation and is a crucial mediator of septic shock, Nature, vol.410, pp.1103-1110, 2001.

J. W. Ford and D. W. Mcvicar, TREM and TREM-like receptors in inflammation and disease, Curr Opin Immunol, vol.21, pp.38-46, 2009.

J. Klesney-tait, K. Keck, and X. Li, Transepithelial migration of neutrophils into the lung requires TREM-1, J Clin Invest, vol.123, pp.138-187, 2013.

T. Yasuda, Y. Takeyama, and T. Ueda, Increased levels of soluble triggering receptor expressed on myeloid cells-1 in patients with acute pancreatitis, Crit Care Med, vol.36, pp.2048-53, 2008.

J. Kuai, B. Gregory, and A. Hill, TREM-1 pro-inflammatory cytokines, Rheumatology (Oxford), vol.48, pp.1352-1360, 2009.

M. Derive, Y. Bouazza, and N. Sennoun, Soluble TREM-like transcript-1 regulates leukocyte activation and controls microbial sepsis, J Immunol, vol.188, pp.5585-92, 2012.

M. Derive, A. Boufenzer, and Y. Bouazza,

M. Derive, A. Boufenzer, and S. Gibot, Attenuation of
URL : https://hal.archives-ouvertes.fr/hal-01738448

A. Boufenzer, J. Lemarie, and T. Simon, TREM-1 mediates inflammatory injury and cardiac remodeling following myocardial infarction, Circ Res, vol.116, pp.1772-82, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01514439

B. A. Verhoeven, E. Velema, and A. H. Schoneveld, Athero-express: differential atherosclerotic plaque expression of mRNA and protein in relation to cardiovascular events and patient characteristics. Rationale and design, Eur J Epidemiol, 2004.

W. E. Hellings, G. Pasterkamp, and A. Vollebregt, Intraobserver and interobserver variability and spatial differences in histologic examination of carotid endarterectomy specimens, J Vasc Surg, vol.46, pp.1147-54, 2007.

J. Bariety, C. Mandet, G. S. Hill, and P. Bruneval, Parietal podocytes in normal human glomeruli, J Am Soc Nephrol, vol.17, pp.2770-80, 2006.

H. Ait-oufella, O. Herbin, and J. D. Bouaziz, B cell depletion reduces the development of atherosclerosis in mice, J Exp Med, vol.207, pp.1579-87, 2010.

A. Daugherty and S. C. Whitman, Quantification of atherosclerosis in mice, Methods Mol Biol, vol.209, pp.293-309, 2003.

Z. Mallat, A. Gojova, and V. Brun,

S. Potteaux, E. L. Gautier, and S. B. Hutchison, Suppressed monocyte recruitment drives macrophage removal from atherosclerotic plaques of ApoE À/À mice during disease regression, J Clin Invest, vol.121, pp.2025-2061, 2011.

J. Klesney-tait, K. Keck, and X. Li, Transepithelial migration of neutrophils into the lung requires TREM-1, J Clin Invest, vol.123, pp.138-187, 2013.

K. Zanzinger, C. Schellack, N. Nausch, and A. Cerwenka, Regulation of triggering receptor expressed on myeloid cells 1 expression on mouse inflammatory monocytes, Immunology, vol.128, pp.185-95, 2009.

K. Dower, D. K. Ellis, K. Saraf, S. A. Jelinsky, and L. L. Lin, Innate immune responses to TREM-1 activation: overlap, divergence, and positive and negative cross-talk with bacterial lipopolysaccharide, J Immunol, vol.180, pp.3520-3554, 2008.

F. Geissmann, S. Jung, and D. R. Littman, Blood monocytes consist of two principal subsets with distinct migratory properties, Immunity, vol.19, pp.71-82, 2003.

S. Freigang, F. Ampenberger, and A. Weiss,

, Nat Immunol, vol.14, pp.1045-53, 2013.

S. Xanthoulea, M. J. Gijbels, and I. Van-der-made,

J. Klesney-tait, I. R. Turnbull, and M. Colonna, The TREM receptor family and signal integration, Nat Immunol, vol.7, pp.1266-73, 2006.

M. Drechsler, R. T. Megens, M. Van-zandvoort, C. Weber, and O. Soehnlein, Hyperlipidemia-triggered neutrophilia promotes early atherosclerosis, Circulation, vol.122, pp.1837-1882, 2010.

C. Combadiere, S. Potteaux, and J. L. Gao, Decreased atherosclerotic lesion formation in CX3CR1/apolipoprotein E double knockout mice, Circulation, vol.107, pp.1009-1025, 2003.

P. Lesnik, C. A. Haskell, and C. If, Decreased atherosclerosis in CX3CR1

C. Combadiere, S. Potteaux, and M. Rodero, Combined inhibition of CCL2, CX3CR1 and CCR5 abrogates Ly6C(hi) and Ly6C(lo) monocytosis and almost abolishes atherosclerosis in hypercholesterolemic mice, Circulation, vol.117, pp.1649-57, 2008.

C. Cheng, D. Tempel, and R. Van-haperen, Shear stress-induced changes in atherosclerotic plaque composition are modulated by chemokines, J Clin Invest, vol.117, pp.616-642, 2007.

Z. Mallat, S. Besnard, and M. Duriez, Protective role of interleukin-10 in atherosclerosis, Circ Res, vol.85, pp.17-24, 1999.

S. Potteaux, V. Deleuze, and R. Merval, In vivo electrotransfer of interleukin-10 cDNA prevents endothelial upregulation of activated NF-kappaB and adhesion molecules following an atherogenic diet, Eur Cytokine Netw, vol.17, pp.13-21, 2006.
URL : https://hal.archives-ouvertes.fr/inserm-00192319

S. Gibot, M. N. Kolopp-sarda, and M. C. Bene, A soluble form of the triggering receptor expressed on myeloid cells-1 modulates the inflammatory response in murine sepsis, J Exp Med, vol.200, pp.1419-1445, 2004.

Y. S. Wang, X. J. Li, and W. O. Zhao, TREM-1 is a positive regulator of TNF-alpha and IL-8 production in U937 foam cells, Bosn J Basic Med Sci, vol.12, pp.94-101, 2012.

M. Schenk, A. Bouchon, F. Seibold, and C. Mueller, TREM-1-expressing intestinal macrophages crucially amplify chronic inflammation in experimental colitis and inflammatory bowel diseases, J Clin Invest, vol.117, pp.3097-106, 2007.

B. Weber, S. Schuster, and D. Zysset, TREM-1 deficiency can attenuate disease severity without affecting pathogen clearance, PLoS Pathog, vol.10, p.1003900, 2014.

T. H. Lo, K. Y. Tseng, and W. S. Tsao, TREM-1 regulates macrophage polarization in ureteral obstruction, Kidney Int, vol.86, pp.1174-86, 2014.

D. Gosselin, V. M. Link, and C. E. Romanoski, Environment drives selection and function of enhancers controlling tissue-specific macrophage identities, Cell, vol.159, pp.1327-1367, 2014.

R. Virmani, A. P. Burke, A. Farb, and F. D. Kolodgie, Pathology of the vulnerable plaque, J Am Coll Cardiol, vol.47, pp.13-21, 2006.

M. Colonna, TREMs in the immune system and beyond, Nat Rev Immunol, vol.3, pp.445-53, 2003.

A. S. Tessarz and A. Cerwenka, The TREM-1/DAP12 pathway, Immunol Lett, vol.116, pp.111-117, 2008.

M. P. Radsak, H. R. Salih, H. G. Rammensee, and H. Schild, Triggering receptor expressed on myeloid cells-1 in neutrophil inflammatory responses: differential regulation of activation and survival, J Immunol, vol.172, pp.4956-63, 2004.

M. Cai, Q. Chen, and C. Chen, Activation of
URL : https://hal.archives-ouvertes.fr/tel-01487323

V. Gomez-pina, E. Martinez, and I. Fernandez-ruiz, Role of MMPs in orchestrating inflammatory response in human monocytes via a TREM-1-PI3K-NF-kappaB pathway, J Leukoc Biol, vol.91, pp.933-978, 2012.

C. S. Lin, F. Y. Lin, and L. J. Ho, PKCdelta signalling regulates SR-A and CD36 expression and foam cell formation, Cardiovasc Res, vol.95, pp.346-55, 2012.

B. R. Mwaikambo, C. Yang, S. Chemtob, and P. Hardy, Hypoxia up-regulates CD36 expression and function via hypoxia-inducible factor-1-and phosphatidylinositol 3-kinase-dependent mechanisms, J Biol Chem, vol.284, pp.26695-707, 2009.

M. Febbraio, E. A. Podrez, and J. D. Smith, Targeted disruption of the class B scavenger receptor CD36 protects against atherosclerotic lesion development in mice, J Clin Invest, vol.105, pp.1049-56, 2000.

K. J. Moore, V. V. Kunjathoor, and S. L. Koehn,

, J Clin Invest, vol.115, pp.2192-201, 2005.

D. J. Kennedy, S. D. Kuchibhotla, and E. Guy,

, TREM-1 Inhibition Reduces Atherosclerosis DECEMBER 27, pp.2776-93, 2016.

, atherogenesis in LDLR-knockout mice, Arterioscler Thromb Vasc Biol, vol.29, pp.1481-1488, 2009.

F. J. Sheedy, A. Grebe, and K. J. Rayner,

R. J. Arts, L. A. Joosten, J. W. Van-der-meer, and M. G. Netea, TREM-1: intracellular signaling pathways and interaction with pattern recognition receptors, J Leukoc Biol, vol.93, pp.209-224, 2013.

C. Weber, A. Zernecke, and P. Libby, The multifaceted contributions of leukocyte subsets to atherosclerosis: lessons from mouse models, Nat Rev Immunol, vol.8, pp.802-817, 2008.

P. M. Ridker, C. P. Howard, and V. Walter, Effects of interleukin-1beta inhibition with canakinumab on hemoglobin A1c, lipids, C-reactive protein, interleukin-6, and fibrinogen: a phase IIb randomized, placebo-controlled trial, Circulation, vol.126, pp.2739-2787, 2012.

P. Dutta, G. Courties, and Y. Wei, Myocardial infarction accelerates atherosclerosis, Nature, vol.487, pp.325-334, 2012.

E. C. Keeley, C. A. Velez, W. W. O'neill, and R. D. Safian, Long-term clinical outcome and predictors of major adverse cardiac events after percutaneous interventions on saphenous vein grafts

, JA mC o l lC a r d i o l2 0 0 1, vol.3, pp.5-9

. Key-words-apolipoprotein, Foundation Leducq transatlantic network (09-CVD-01), and grant from Aviesan/AstraZeneca. A.R. is supported by grant from "Fondation pour la Recherche M edicale, foam cells, inflammation, macrophage, toll-like receptor This work was supported by Institutional funding from INSERM and Paris Descartes University. J.S.S is supported by "Fondation pour la Recherche M edicale" (DEQ2012023734)

W. , was supported by the Leducq Foundation (MITRAL). M.P. laboratory was supported by "Fondation pour la Recherche M edicale," and Genopole Evry. X.L. was supported by Agence Nationale de la Recherche

T. Asahara, T. Murohara, and A. Sullivan, Isolation of putative progenitor endothelial cells for angiogenesis, Science, vol.275, pp.964-967, 1997.

V. Planat-benard, J. S. Silvestre, and B. Cousin, Plasticity of human adipose lineage cells toward endothelial cells: Physiological and therapeutic perspectives, Circulation, vol.109, pp.656-663, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00409575

J. S. Silvestre, A. Gojova, and V. Brun, Circulation, vol.108, pp.2839-2842, 2003.

A. Aicher, M. Rentsch, and K. Sasaki, Nonbone marrow-derived circulating progenitor cells contribute to postnatal neovascularization following tissue ischemia, Circ Res, vol.100, pp.581-589, 2007.

C. Kalka, H. Masuda, and T. Takahashi, Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization, Proc Natl Acad Sci, vol.97, pp.3422-3427, 2000.

P. Foubert, G. Matrone, and B. Souttou,

, Circ Res, vol.103, pp.751-760, 2008.

P. Campagnolo, D. Cesselli, A. Haj-zen, and A. , Human adult vena saphena contains perivascular progenitor cells endowed with clonogenic and proangiogenic potential, Circulation, vol.121, pp.1735-1745, 2010.

E. Tateishi-yuyama, H. Matsubara, and T. Murohara, Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: A pilot study and a randomised controlled trial, Lancet, vol.360, pp.427-435, 2002.

H. C. Lee, S. G. An, and H. W. Lee, Safety and effect of adipose tissue-derived stem cell implantation in patients with critical limb ischemia: A pilot study, Circ J, vol.76, pp.1750-1760, 2012.

D. H. Walter, H. Krankenberg, J. O. Balzer, and . Ischemia, A randomized-start, placebo-controlled pilot trial (PROVASA), Circ Cardiovasc Interv, vol.4, pp.26-37, 2011.

G. P. Fadini, C. Agostini, and A. Avogaro, Autologous stem cell therapy for peripheral arterial disease meta-analysis and systematic review of the literature, Atherosclerosis, vol.209, pp.10-17, 2010.

S. Dimmeler and A. Leri, Aging and disease as modifiers of efficacy of cell therapy, Circ Res, vol.102, pp.1319-1330, 2008.

M. Teraa, R. W. Sprengers, and P. E. Westerweel, Bone marrow alterations and lower endothelial progenitor cell numbers in critical limb ischemia patients, PLoS One, vol.8, p.55592, 2013.

A. Kawamoto, M. Katayama, and N. Handa, Intramuscular transplantation of G-CSFmobilized CD34(1) cells in patients with critical limb ischemia: A phase I/IIa, multicenter, single-blinded, dose-escalation clinical trial, STEM CELLS, vol.27, pp.2857-2864, 2009.

C. Heeschen, R. Lehmann, and J. Honold, Circulation, vol.109, pp.1615-1622, 2004.

R. Tamarat, J. S. Silvestre, and L. Ricousse, J Pathol, vol.164, pp.457-466, 2004.

B. Mees, A. Recalde, and C. Loinard,

J. A. Thomson, J. Itskovitz-eldor, and S. S. Shapiro, Embryonic stem cell lines derived from human blastocysts, Science, vol.282, pp.1145-1147, 1998.

J. Itskovitz-eldor and M. Schuldiner, Karsenti lineage: A myocardial cell?, Curr Opin Genet Dev, vol.23, pp.498-499, 2013.

N. S. Roy, C. Cleren, and S. K. Singh, Functional engraftment of human ES cell-derived dopaminergic neurons enriched by coculture with telomerase-immortalized midbrain astrocytes, Nat Med, vol.12, pp.1259-1268, 2006.

W. H. Lai, J. C. Ho, and Y. C. Chan, Attenuation of hind-limb ischemia in mice with endothelial-like cells derived from different sources of human stem cells, PLoS One, vol.8, p.57876, 2013.

K. Yamahara, M. Sone, and H. Itoh, Augmentation of neovascularization [corrected] in hindlimb ischemia by combined transplantation of human embryonic stem cellsderived endothelial and mural cells, PLoS One, vol.3, p.1666, 2008.

S. H. Moon, J. S. Kim, and S. J. Park, A system for treating ischemic disease using human embryonic stem cell-derived endothelial cells without direct incorporation, Biomaterials, vol.32, pp.6445-6455, 2011.

G. Blin, D. Nury, and S. Stefanovic, A purified population of multipotent cardiovascular progenitors derived from primate pluripotent stem cells engrafts in postmyocardial infarcted nonhuman primates, J Clin Invest, vol.120, pp.1125-1139, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-00451770

E. M. Heinrich and S. Dimmeler, MicroRNAs and stem cells: Control of pluripotency, reprogramming, and lineage commitment, Circ Res, vol.110, pp.1014-1022, 2012.

N. M. Kane, L. Howard, and B. Descamps, Role of microRNAs 99b, 181a, and 181b in the differentiation of human embryonic stem cells to vascular endothelial cells, Stem Cells, vol.30, pp.643-654, 2012.

N. M. Kane, A. J. Thrasher, and G. D. Angelini, Concise review: MicroRNAs as modulators of stem cells and angiogenesis, STEM CELLS, vol.32, pp.1059-1066, 2014.

T. X. Lu, J. Hartner, and E. J. Lim, Micro-RNA-21 limits in vivo immune responsemediated activation of the IL-12/IFN-gamma pathway, Th1 polarization, and the severity of delayed-type hypersensitivity, J Immunol, vol.187, pp.3362-3373, 2011.

C. Loinard, A. Ginouves, and J. Vilar, Inhibition of prolyl hydroxylase domain proteins
URL : https://hal.archives-ouvertes.fr/hal-00437630

L. Richart and . Eri, , 2921.

, www.StemCells.com V C AlphaMed Press 2014 promotes therapeutic revascularization, vol.120, pp.50-59, 2009.

C. Loinard, Y. Zouggari, and P. Rueda, , vol.125, pp.1014-1026

D. M. Smadja, C. Audigier, and C. L. Guerin, Angiogenic potential of BM MSCs derived from patients with critical leg ischemia, Bone Marrow Transplant, vol.47, pp.997-1000, 2012.

C. Voellenkle, J. Rooij, and A. Guffanti, RNA, vol.18, pp.472-484, 2012.

A. Kuehbacher, C. Urbich, and A. M. Zeiher, Role of Dicer and Drosha for endothelial microRNA expression and angiogenesis

, Circ Res, vol.101, pp.59-68, 2007.

L. Z. Liu, C. Li, and Q. Chen, MiR-21 induced angiogenesis through AKT and ERK activation and HIF-1alpha expression, PLoS One, vol.6, p.19139, 2011.

B. Bao, S. Ali, and A. Ahmad, Hypoxiainduced aggressiveness of pancreatic cancer cells is due to increased expression of VEGF, IL-6 and miR-21, which can be attenuated by CDF treatment, PLoS One, vol.7, p.50165, 2012.

J. Guduric-fuchs, O. Connor, A. Cullen, and A. , Deep sequencing reveals predominant expression of miR-21 amongst the small noncoding RNAs in retinal microvascular endothelial cells, J Cell Biochem, vol.113, pp.2098-2111, 2012.

D. Bernardini, E. Campagnolo, P. Margariti, and A. , Endothelial lineage differentiation from induced pluripotent stem cells is regulated by microRNA-21 and transforming growth factor beta2

, J Biol Chem, vol.289, pp.3383-3393, 2014.

D. Zhao, Y. Tu, and L. Wan, In vivo monitoring of angiogenesis inhibition via downregulation of mir-21 in a VEGFR2-luc murine breast cancer model using bioluminescent imaging, PLoS One, vol.8, p.71472, 2013.

J. S. Silvestre, D. M. Smadja, and B. I. Levy, Postischemic revascularization: From cellular and molecular mechanisms to clinical applications, Physiol Rev, vol.93, pp.1743-1802, 2013.

M. Patterson, D. N. Chan, and I. Ha, Defining the nature of human pluripotent stem cell progeny, Cell Res, vol.22, pp.178-193, 2012.

M. J. Hendrix, E. A. Seftor, and A. R. Hess, Vasculogenic mimicry and tumour-cell plasticity: Lessons from melanoma, Nat Rev Cancer, vol.3, pp.411-421, 2003.

M. J. Lee, J. Kim, and K. I. Lee, Enhancement of wound healing by secretory factors of endothelial precursor cells derived from human embryonic stem cells, Cytotherapy, vol.13, pp.165-178, 2011.

F. Fleissner, V. Jazbutyte, and J. Fiedler, Short communication: Asymmetric dimethylarginine impairs angiogenic progenitor cell function in patients with coronary artery disease through a microRNA-21-dependent mechanism, Circ Res, vol.107, pp.138-143, 2010.

S. Zhu, S. Deng, and Q. Ma, MicroRNA-10A* and MicroRNA-21 modulate endothelial progenitor cell senescence via suppressing highmobility group A2, Circ Res, vol.112, pp.152-164, 2013.

K. Treguer, E. M. Heinrich, and K. Ohtani, Role of the microRNA-17-92 cluster in the endothelial differentiation of stem cells, J Vasc Res, vol.49, pp.447-460, 2012.

E. M. Small and E. N. Olson, Pervasive roles of microRNAs in cardiovascular biology, Nature, vol.469, pp.336-342, 2011.

W. Y. Choi, A. J. Giraldez, and A. F. Schier, Target protectors reveal dampening and balancing of Nodal agonist and antagonist by miR-430, Science, vol.318, pp.271-274, 2007.

T. X. Lu, E. J. Lim, and S. Itskovich, Targeted ablation of miR-21 decreases murine eosinophil progenitor cell growth, PLoS One, vol.8, p.59397, 2013.

Y. Tu, L. Wan, and Y. Fan, Ischemic postconditioning-mediated miRNA-21 protects against cardiac ischemia/reperfusion injury via PTEN/Akt pathway, PLoS One, vol.8, p.75872, 2013.

D. M. Patrick, R. L. Montgomery, and X. Qi, Stress-dependent cardiac remodeling occurs in the absence of microRNA-21 in mice, J Clin Invest, vol.120, pp.3912-3916, 2010.

T. Thum, C. Gross, and J. Fiedler, Micro-RNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts, Nature, vol.456, pp.980-984, 2008.

T. Wang, Y. Feng, and H. Sun, miR-21 regulates skin wound healing by targeting multiple aspects of the healing process, Am J Pathol, vol.181, pp.1911-1920, 2012.

C. Sabatel, L. Malvaux, and N. Bovy, MicroRNA-21 exhibits antiangiogenic function by targeting RhoB expression in endothelial cells, PLoS One, vol.6, p.16979, 2011.

F. Colucci, C. Soudais, and E. Rosmaraki, Dissecting NK cell development using a novel alymphoid mouse model: Investigating the role of the c-abl proto-oncogene in murine NK cell differentiation, J Immunol, vol.162, pp.2761-2765, 1999.