, Thérapie par ultrasons focalisés?????????????????????

, Pulsed cavitational ultrasound for non-invasive chordal cutting guided by real-time 3D echocardiography, Manuscrit "Pulsed Cavitational Ultrasound Softening: a new non-invasive therapeutic approach of calcified bioprosthetic valve stenosis

, Références bibliographiques (autres que celles incluses dans les manuscrits)??, p.242

E. Aikawa, Human Semilunar Cardiac Valve Remodeling by Activated Cells From Fetus to Adult, Circulation, vol.113, issue.10, 2006.

B. Arnal, M. Pernot, M. Fink, and M. Tanter, Tunable Time-Reversal Cavity for High-Pressure Ultrasonic Pulses Generation: A Tradeoff between Transmission and Time Compression, Applied Physics Letters, vol.101, issue.6, p.64104, 2012.

A. Atz, Preoperative Management of Pulmonary Venous Hypertension in Hypoplastic Left Heart Syndrome with Restrictive Atrial Septal Defect, The American journal of cardiology, vol.83, issue.8, pp.1224-1252, 1999.

J. Baffa and . Marie, Coronary Artery Abnormalities and Right Ventricular Histology in Hypoplastic Left Heart Syndrome, Journal of the American College of Cardiology, vol.20, issue.2, pp.350-58, 1992.

M. R. Bailey, Physical Mechanisms of the Therapeutic Effect of Ultrasound (a Review), Acoustical Physics, vol.49, issue.4, pp.369-88, 2003.

D. M. Bers, Cardiac Excitation-contraction Coupling, Nature, vol.415, issue.6868, pp.198-205, 2002.

P. Bonhoeffer, Coronary Artery Obstruction After the Arterial Switch Operation for Transposition of the Great Arteries in Newborns, Journal of the American College of Cardiology, vol.29, issue.1, pp.202-208, 1997.

M. A. Borger, Initial Results of the Chordal-Cutting Operation for Ischemic Mitral Regurgitation, The Journal of Thoracic and Cardiovascular Surgery, vol.133, issue.6, pp.1483-1492, 2007.

N. Budin and S. Abboud, Real-Time Multichannel Abdominal Fetal ECG Monitor Using Digital Signal CoProcessor, Computers in Biology and Medicine, vol.24, issue.6, pp.451-62, 1994.

J. R. Charpie, Postoperative Hemodynamics after Norwood Palliation for Hypoplastic Left Heart Syndrome, The American Journal of Cardiology, vol.87, issue.2, pp.198-202, 2001.

M. Correia, Ultrafast Harmonic Coherent Compound (UHCC) Imaging for High Frame Rate Echocardiography and Shear Wave Elastography, IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol.63, issue.3, pp.420-451, 2016.

M. Correia, J. Provost, M. Tanter, and M. Pernot, 4D Ultrafast Ultrasound Flow Imaging: In Vivo Quantification of Arterial Volumetric Flow Rate in a Single Heartbeat, Physics in Medicine and Biology, vol.61, issue.23, pp.48-61, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01412611

P. F. Cranefield and B. F. Hoffman, Electrophysiology of Single Cardiac Cells, Physiological Reviews, vol.38, issue.1, 1958.

C. Demené, 4D Microvascular Imaging Based on Ultrafast Doppler Tomography, NeuroImage, vol.127, pp.472-83, 2016.

H. Eliasson, Isolated Atrioventricular Block in the Fetus: A Retrospective, Multinational, Multicenter Study of 175 Patients, Circulation, vol.124, issue.18, pp.1919-1945, 2011.

. Van-engelen and D. Andries, Management Outcome and Follow-up of Fetal Tachycardia, Journal of the American College of Cardiology, vol.24, issue.5, pp.1371-75, 1994.

P. Ferrazzi, Transaortic Chordal Cutting, Journal of the American College of Cardiology, vol.66, issue.15, pp.1687-96, 2015.

M. Fink, Time Reversal of Ultrasonic Fields. I. Basic Principles, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol.39, issue.5, pp.555-66, 1992.

R. V. Freeman and C. M. Otto, Spectrum of Calcific Aortic Valve Disease: Pathogenesis, Disease Progression, and Treatment Strategies, Circulation, vol.111, issue.24, pp.3316-3342, 2005.

N. Fujimoto, Effect of Ageing on Left Ventricular Compliance and Distensibility in Healthy Sedentary Humans, The Journal of physiology, vol.590, issue.8, pp.1871-80, 2012.

S. H. Goldbarg, S. Elmariah, M. A. Miller, and V. Fuster, Insights Into Degenerative Aortic Valve Disease, Journal of the American College of Cardiology, vol.50, issue.13, pp.1205-1218, 2007.

J. W. Jenne, High-Intensity Focused Ultrasound: Principles, Therapy Guidance, Simulations and Applications, Zeitschrift für Medizinische Physik, vol.22, issue.4, pp.311-333, 2012.

C. Kähler, The Application of Fetal Magnetocardiography (FMCG) to Investigate Fetal Arrhythmias and Congenital Heart Defects (CHD), Prenatal Diagnosis, vol.21, issue.3, pp.176-82, 2001.

V. Kariniemi, P. Ahopelto, T. Karp, and . Katila, The Fetal Magnetocardiogram, Journal of perinatal medicine, vol.2, issue.3, pp.214-230, 1974.

Y. Kim, Non-Invasive Pulsed Cavitational Ultrasound for Fetal Tissue Ablation: Feasibility Study in a Fetal Sheep Model, Ultrasound in obstetrics & gynecology : the official journal of the International Society of Ultrasound in Obstetrics and Gynecology, vol.37, issue.4, pp.450-57, 2011.

E. E. Konofagou, Noninvasive Electromechanical Wave Imaging and Conduction-Relevant Velocity Estimation in Vivo, Ultrasonics, vol.50, issue.2, pp.208-223, 2010.

K. S. Kunzelman and R. Cochran, Mechanical Properties of Basal and Marginal Mitral Valve Chordae Tendineae, ASAIO transactions / American Society for Artificial Internal Organs, vol.36, issue.3, pp.405-413, 1991.

D. J. Kurz, Degenerative Aortic Valve Stenosis, but Not Coronary Disease, Is Associated With Shorter Telomere Length in the Elderly, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.26, issue.6, 2006.

W. Lee, Noninvasive Assessment of Myocardial Anisotropy in Vitro and in Vivo Using Supersonic Shear Wave Imaging, 2010 IEEE Ultrasonics Symposium (IUS), pp.690-93, 2010.

W. Lee, Mapping Myocardial Fiber Orientation Using EchocardiographyBased Shear Wave Imaging, IEEE transactions on medical imaging, vol.31, issue.3, pp.554-62, 2012.

M. B. Leon, Transcatheter or Surgical Aortic-Valve Replacement in Intermediate-Risk Patients, New England Journal of Medicine, vol.374, issue.17, pp.1609-1629, 2016.

J. R. Lindner, The Fast and the Curious, JACC: Cardiovascular Imaging, 2017.

H. Lombaert, Human Atlas of the Cardiac Fiber Architecture: Study on a Healthy Population, IEEE Transactions on Medical Imaging, vol.31, issue.7, pp.1436-1483, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00797755

S. Madersbacher, Effect of High-Intensity Focused Ultrasound on Human Prostate Cancer in Vivo, Cancer research, vol.55, issue.15, pp.3346-51, 1995.

B. J. Maron and . Martin-s-maron, Hypertrophic Cardiomyopathy, The Lancet, vol.381, issue.9862, pp.242-55, 2013.

A. C. Marshall, Creation of an Atrial Septal Defect in Utero for Fetuses with Hypoplastic Left Heart Syndrome and Intact or Highly Restrictive Atrial Septum, Circulation, vol.110, issue.3, pp.253-58, 2004.

A. D. Maxwell, Noninvasive Treatment of Deep Venous Thrombosis Using Pulsed Ultrasound Cavitation Therapy (Histotripsy) in a Porcine Model, Journal of vascular and interventional radiology : JVIR, vol.22, issue.3, pp.369-77, 2011.

J. J. Mcmurray, ESC Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012, European Journal of Heart Failure, vol.14, issue.8, pp.803-69, 2012.

I. T. Meredith, 1-Year Outcomes With the Fully Repositionable and Retrievable Lotus Transcatheter Aortic Replacement Valve in 120 High-Risk Surgical Patients With Severe Aortic Stenosis, JACC: Cardiovascular Interventions, vol.9, issue.4, pp.376-84, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01850027

E. Messas, J. L. Guerrero, M. D. Handschumacher, and C. Conrad, Chordal Cutting: A New Therapeutic Approach for Ischemic Mitral Regurgitation, Circulation, vol.104, issue.16, pp.1958-63, 2001.

E. Messas, J. L. Guerrero, M. D. Handschumacher, and C. Chow, Paradoxic Decrease in Ischemic Mitral Regurgitation With Papillary Muscle Dysfunction: Insights From Three-Dimensional and Contrast Echocardiography With Strain Rate Measurement, Circulation, vol.104, issue.16, pp.1952-57, 2001.

D. Messika-zeitoun, Aortic Valve Calcification, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.27, issue.3, 2007.

R. M. Miller, G. Owens, A. Ludomirsky, and Z. Xu, Therapeutic Ultrasound to Non-Invasively Create Intra-Cardiac Communications in an Intact Animal Model, Catheterization and cardiovascular interventions, vol.77, issue.4, pp.580-88, 2012.

T. Minamino and I. Komuro, Vascular Cell Senescence, Circulation Research, vol.100, issue.1, 2007.

R. A. Nishimura, T. Patrick, R. O. O'gara, and B. S. Bonow, Guidelines Update on Indications for Transcatheter Aortic Valve Replacement, JAMA Cardiology, vol.312, issue.2, pp.162-70, 2017.

C. Papadacci, Imaging the Dynamics of Cardiac Fiber Orientation in Vivo Using 3D Ultrasound Backscatter Tensor Imaging, Scientific Reports, vol.7, issue.1, p.830, 2017.

M. Pernot and E. E. Konofagou, Electromechanical Imaging of the Myocardium at Normal and Pathological States, IEEE Ultrasonics Symposium, pp.1091-94, 2005.

M. Pernot, K. Fujikura, S. D. Fung-kee-fung, and E. E. Konofagou, ECG-Gated, Mechanical and Electromechanical Wave Imaging of Cardiovascular Tissues In Vivo, Ultrasound in Medicine & Biology, vol.33, issue.7, pp.1075-85, 2007.

M. S. Plesset, The Dynamics of Cavitation Bubbles, Journal of applied mechanics, 1949.

J. Provost, 3D Ultrafast Ultrasound Imaging in Vivo, Physics in Medicine and Biology, vol.59, p.1, 2014.

J. Provost, W. Lee, K. Fujikura, and E. E. Konofagou, Imaging the Electromechanical Activity of the Heart in Vivo, Proceedings of the National Academy of Sciences of the United States of America, vol.108, issue.21, pp.8565-70, 2011.

C. Ramanathan, Noninvasive Electrocardiographic Imaging for Cardiac Electrophysiology and Arrhythmia, Nature medicine, vol.10, issue.4, pp.422-450, 2004.

A. J. Rein, Use of Tissue Velocity Imaging in the Diagnosis of Fetal Cardiac Arrhythmias, Circulation, vol.106, issue.14, 2002.

J. Robin, M. Arnal, M. Tanter, and . Pernot, 3D Imaging with a Time Reversal Cavity: Towards Transcostal Focusing for Shock Wave Therapy, IRBM, vol.38, issue.4, pp.234-271, 2017.

J. Robin, M. Arnal, M. Tanter, and . Pernot, A 3D Time Reversal Cavity for the Focusing of High-Intensity Ultrasound Pulses over a Large Volume, Physics in Medicine and Biology, vol.62, issue.3, pp.810-834, 2017.

J. Robin, M. Tanter, and M. Pernot, A Semi-Analytical Model of Time Reversal Cavity for High Amplitude Focused Ultrasound Applications, Physics in Medicine and Biology, 2017.

M. Sackmann, Shock-Wave Lithotripsy of Gallbladder Stones, The First, vol.175, 1988.

, The New England journal of medicine, vol.318, issue.7, pp.393-97

S. Silbernagl, . Agamemnon, D. Despopoulos, and . Laurent, Médecine-sciences Atlas de Poche de Physiologie. Flammarion médecine sciences, 1992.

C. M. Tempany, J. Nathan, K. Mcdannold, F. A. Hynynen, and . Jolesz, Focused Ultrasound Surgery in Oncology: Overview and Principles, Radiology, vol.259, issue.1, pp.39-56, 2011.

T. Wang, Active Focal Zone Sharpening for High-Precision Treatment Using Histotripsy, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol.58, issue.2, pp.305-320, 2011.

O. Villemain, Pulsed Cavitational Ultrasound for Non-Invasive Chordal Cutting Guided by Real-Time 3D Echocardiography, European Heart Journal -Cardiovascular Imaging, vol.17, issue.10, pp.1101-1108, 2016.

O. Villemain and . Robin, Pulsed Cavitational Ultrasound Softening, JACC: Basic to Translational Science, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-01675757

O. Villemain and . Fidelio-sitefane, Toward Noninvasive Assessment of CVP Variations Using Real-Time and Quantitative Liver Stiffness Estimation, JACC: Cardiovascular Imaging, 2017.

A. P. Vlahos, J. E. Lock, B. Doff, M. E. Mcelhinney, and . Van-der-velde, Hypoplastic Left Heart Syndrome with Intact or Highly Restrictive Atrial Septum: Outcome after Neonatal Transcatheter Atrial Septostomy, Circulation, vol.109, pp.2326-2356, 2004.

E. Vlaisavljevich, Effects of Tissue Mechanical Properties on Susceptibility to Histotripsy-Induced Tissue Damage, Physics in medicine and biology, vol.59, issue.2, pp.253-70, 2014.

H. Wakiyama, Chordal Cutting for the Treatment of Ischemic Mitral Regurgitation: Two Case Reports, Journal of cardiology, vol.44, issue.3, pp.113-130, 2004.

S. N. Weindling, Myocardial Perfusion, Function and Exercise Tolerance after the Arterial Switch Operation, Journal of the American College of Cardiology, vol.23, issue.2, pp.424-457, 1994.

B. T. Wyman, C. William, F. W. Hunter, E. R. Prinzen, and . Mcveigh, Mapping Propagation of Mechanical Activation in the Paced Heart with MRI Tagging, American Journal of Physiology -Heart and Circulatory Physiology, vol.276, issue.3, 1999.

Z. Xu, Controlled Ultrasound Tissue Erosion, IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol.51, issue.6, pp.726-762, 2004.

Z. Xu, Evolution of Bubble Clouds Induced by Pulsed Cavitational Ultrasound Therapy -Histotripsy, IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol.55, issue.5, pp.1122-1154, 2008.

Z. Xu, Noninvasive Creation of an Atrial Septal Defect by Histotripsy in a Canine Model, Circulation, vol.121, issue.6, pp.742-791, 2010.

Z. Xu, Z. Fan, L. Timothy, F. Hall, and . Winterroth, Size Measurement of Tissue Debris Particles Generated from Pulsed Ultrasound Cavitational Therapyhistotripsy, Ultrasound in medicine ?, vol.35, issue.2, pp.245-55, 2009.

, Résumé du travail scientifique Brevet : 1. Methods and Apparatus for Treating Valvular Disease.(PCT/FR2016/050751). Inventors : Messas E, Pernot M, Tanter M, Villemain O Publications dans des journaux avec comité de relecture

O. Villemain, W. Kwiecinski, A. Bel, J. Robin, P. Bruneval et al., Pulsed cavitational ultrasound for non-invasive chordal cutting guided by real-time 3D echocardiography, Eur Heart J Cardiovasc Imaging, 2016.

O. Villemain, F. Sitefance, M. Pernot, S. Malekzadeh-milani, M. Tanter et al., Towards non-invasive assessment of central venous pressure using real time and quantitative liver stiffness estimation, JACC Cardiovasc Imaging, 2017.

O. Villlemain, J. Robin, A. Bel, W. Kwiecinski, P. Bruneval et al., Pulsed Cavitational Ultrasound Softening: a new noninvasive therapeutic approach of calcified bioprosthetic valve stenosis, JACC Basic to Trans Science, 2017.

O. Villemain, M. Correia, E. Mousseaux, J. Baranger, S. Zarka et al., Myocardial stiffness and aging: non-invasive shear wave imaging evaluation in healthy and hypertrophic cardiomyopathy adults

O. Villemain, M. Correia, D. Khraiche, I. Podetti, M. Meot et al., Myocardial stiffness assessment using shear wave imaging in heathy children and hypertrophic cardiomyopathy, JACC Cardiovasc Imaging, 2017.

O. Villemain, Myocardial stiffness in cardiac amyloidosis and heart failure

C. Papadacci, V. Finel, J. Provost, O. Villemain, P. Bruneval et al., Imaging the dynamics of cardiac fiber orientation in vivo using 3D

, Ultrasound Backscatter Tensor Imaging. Sci Rep, 2017.

D. Maresca, M. Correia, O. Villemain, A. Bizé, L. Sambin et al., Non-invasive imaging of the coronary vasculature using ultrafast ultrasound, JACC Cardiovasc Imaging, 2017.

M. Correia, J. Provost, S. Chatelin, O. Villemain, M. Tanter et al., Ultrafast harmonic coherent compound (UHCC) imaging for high frame rate echocardiography and shear wave elastography, IEEE Trans Ultrason Ferroelectr Freq Control, 2016.

M. Correia, I. Podetti, O. Villemain, J. Baranger, M. Tanter et al., Validation of a non-invasive Myocardial Shear Wave Elastography device for clinical applications in cardiology, p.2017

M. Pontailler, B. Ahmad, M. Blanchy, A. Voisin, O. Villemain et al., TPU/PCL Polymer As A Candidate For Tissue Engineered Heart Valve Replacement Scaffold

J. Baranger, Korotkoff noises

V. Finel, Electromechanical wave imaging in human fetus

G. Soulat, Thoracic aorta PWV assessment by using 4D flow in MRI

M. Correia, S. Chatelin, C. Padacci, J. Provost, O. Villemain et al., Ultrafast Harmonic Compounding for cardiac shear wave imaging, IEEE International Ultrasonics Symposium, 2014.

O. Villemain, L'histotripsie (thérapie par ultrasons focalisés) a-t-elle des indications possibles en cardiologie ? RFMCC, 2014.

O. Villemain, M. Pernot, W. Kwiecinski, J. Robin, A. Bel et al., Non invasive ultrasonic chordal cutting. ESC, 2015.

M. Correia, J. Provost, S. Chatelin, O. Villemain, M. Tanter et al., In vivo transthoracic cardiac shear wave elastography using ultrafast harmonic coherent compound imaging, Fourteenth International Tissue Elasticity Conference (ITEC), 2015.

O. Villemain, W. Kwiecinski, A. Bel, J. Robin, M. Tanter et al., Non invasive ultrasonic chordal cutting, 2015.

O. Villemain, W. Kwiecinski, A. Bel, J. Robin, M. Tanter et al., Non invasive ultrasonic chordal cutting. ISTU, 2015.

O. Villemain, W. Kwiecinski, A. Bel, J. Robin, M. Tanter et al., Non invasive ultrasonic chordal cutting. AEPC, 2015.

D. Maresca, M. Correia, O. Villemain, B. Ghaleh, M. Tanter et al., Ultrafast Doppler imaging of intramyocardial coronary arteries, IEEE International Ultrasonics Symposium, 2015.

O. Villemain, W. Kwiecinski, A. Bel, J. Robin, M. Tanter et al., Non invasive ultrasonic chordal cutting, IEEE, 2015.

O. Villemain, Histotripsy Cardiac Therapy. RFMCC, 2015.

D. Maresca, M. Correia, O. Villemain, B. Ghaleh, M. Tanter et al., Ultrafast Doppler imaging of intramyocardial coronary arteries, European Hear Journal -Cardiovascular Imaging, 2015.

O. Villemain, W. Kwiecinski, A. Bel, J. Robin, M. Tanter et al., Non invasive ultrasonic chordal cutting, EuroEcho, 2015.

O. Villemain, Néo-cordages : des moutons et des hommes, JESFC, 2016.

O. Villemain, M. Correia, D. Khraiche, M. Pernot, and D. Bonnet, Myocardial stiffness assessment using shear wave imaging in healthy children and hypertrophic cardiomyopathy, 2016.

O. Villemain, F. Sitefane, M. Pernot, S. Malekzadeh-milani, J. Baranger et al., Liver stiffness by shear wave elastography, new noninvasive and quantitative tool for acute variation estimation of central venous pressure in real-time?, 2016.

O. Villemain, M. Correia, E. Mousseaux, D. Khraiche, J. Baranger et al., Myocardial stiffness assessment using shear wave imaging in healthy children and adults and hypertrophic cardiomyopathy, IEEE International Ultrasonics Symposium, 2016.

O. Villemain, Myocardial Elastography and Hypertrophic Cardiomyopathy, RFMCC, 2016.

O. Villemain, M. Correia, E. Mousseaux, J. Baranger, G. Soulat et al., Evaluation of myocardial stiffness changes over age in healthy and hypertrophic cardiomyopathy populations using new noninvasive ultrasound shear wave imaging, 2016.

D. Maresca, M. Correia, O. Villemain, B. Ghaleh, M. Tanter et al., Ultrafast Doppler imaging of intramyocardial coronary arteries, 2016.

O. Villemain, F. Sitefane, M. Pernot, S. Malekzadeh-milani, J. Baranger et al., Liver stiffness by shear wave elastography, new noninvasive and quantitative tool for acute variation estimation of central venous pressure in real-time? EuroEcho, 2016.

O. Villemain, M. Correia, D. Khraiche, M. Pernot, and D. Bonnet, Myocardial stiffness assessment using shear wave imaging in healthy children and hypertrophic cardiomyopathy, EuroEcho, 2016.

O. Villemain, M. Correia, E. Mousseaux, J. Baranger, G. Soulat et al., Myocardial stiffness assessment using shear wave imaging in healthy adult population, EuroEcho, 2016.

O. Villemain, M. Correia, D. Khraiche, M. Pernot, and D. Bonnet, Myocardial stiffness assessment using shear wave imaging in healthy children and hypertrophic cardiomyopathy, 2017.

O. Villemain, M. Correia, E. Mousseaux, J. Baranger, G. Soulat et al., Myocardial stiffness assessment using shear wave imaging in healthy adult population, 27 th JESFC, 2017.

O. Villemain, F. Sitefane, M. Pernot, S. Malekzadeh-milani, J. Baranger et al., Liver stiffness by shear wave elastography, new noninvasive and quantitative tool for acute variation estimation of central venous pressure in real-time? 27 th JESFC, 2017.

O. Villemain, Myocardial stiffness assessment using shear wave imaging. DMI, 2017.

O. Villemain, Ultrafast doppler imaging of intramyocardial coronary arteries, DMI, 2017.

O. Villemain, M. Correia, D. Khraiche, M. Pernot, and D. Bonnet, Myocardial stiffness assessment using shear wave imaging in healthy children and hypertrophic cardiomyopathy, AEPC, 2017.

O. Villemain, M. Correia, E. Mousseaux, J. Baranger, G. Soulat et al., Myocardial stiffness assessment using shear wave imaging in healthy adult population, AEPC, 2017.

O. Villemain, F. Sitefane, M. Pernot, S. Malekzadeh-milani, J. Baranger et al., Liver stiffness by shear wave elastography, new noninvasive and quantitative tool for acute variation estimation of central venous pressure in real-time?, 2017.

O. Villemain, J. Robin, A. Bel, W. Kwiencinski, P. Bruneval et al.,

, Prix: 1. Young Investigator Award (YIA) EuroEcho Imaging 2015. Pulsed cavitational ultrasound for non-invasive chordal cutting guided by real-time 3D echocardiography, Pulsed Cavitational Ultrasound Softening: a new noninvasive therapeutic approach for calcified bioprosthetic valve stenosis, 2017.

, Best Rapid Presentation ParisEcho 2015. Pulsed cavitational ultrasound for noninvasive chordal cutting guided by real-time 3D echocardiography

, Towards non-invasive assessment of central venous pressure using real time and quantitative liver stiffness estimation 4. Highlights Abstract EuroEcho Imaging 2016. Myocardial stiffness assessment using shear wave imaging in healthy children and hypertrophic cardiomyopathy Financement obtenu, Highscorer Abstract EuroEcho Imaging, 2016.

, Evaluation de l'anatomie et du flux coronarien par doppler ultrafast -application en cardiologie pédiatrique Résumé de Thèse

, Cette thèse avait pour but d'élargir le champ d'application des ultrasons en cardiologie

, Dans un premier temps, nous avons montré la possibilité et l'intérêt d'estimer la rigidité du myocarde par ultrason en pratique clinique, chez l'enfant et chez l'adulte. La technique de l'élastographie par onde de cisaillement, utilisant une nouvelle approche de l'imagerie par sommation cohérente harmonique ultrarapide (imagerie non-linéaire), a été appliquée pour la première fois chez l'humain en cardiologie. De plus, nous avons montré que la rigidité du foie, également estimée grâce à l'élastographie par onde de cisaillement, était directement corrélée aux pressions de remplissage du coeur droit, qui sont difficiles à évaluer de manière quantitative en pratique clinique. Dans un second temps, nous nous sommes intéressés à caractériser l'orientation des fibres myocardiques durant le cycle cardiaque en développant l'imagerie du tenseur de rétrodiffusion ultrasonore en trois dimensions. Le but était de réaliser la preuve de concept sur un coeur battant afin d'ouvrir sur les possibilités d'applications, Concernant l'imagerie, ce sont les capacités, les atouts et les limites des ultrasons à hautes cadences d'image (ultrafast echo) qui ont été explorés

C. , heure actuelle la seule technique d'imagerie clinique ayant une résolution spatiale (et temporelle) suffisante pour voir les flux dans des vaisseaux ayant un diamètre inférieur à 500 micromètres. Enfin, l'ultrafast echo nous a permis de visualiser les micro déplacements du myocarde, qui sont eux-mêmes initiés par l'activité électrique intra-myocardique, dans un intervalle de temps très réduit. Ceci est le couplage électromécanique, et y avoir accès par ultrason ouvrirait de multiples perspectives

, Plusieurs équipes avaient déjà montré que cela était applicable en médecine cardiovasculaire, notamment pour perforer le septum inter-atrial (zone musculaire séparant les deux oreillettes cardiaques) ou pour détruire un thrombus intravasculaire. Nous avons décidé de montrer que le phénomène de cavitation pour avoir deux autres applications distinctes : 1) la section de cordage valvulaire mitral, qui est une technique utilisée actuellement en chirurgie (donc à coeur ouvert et en circulation extra-corporelle) visant à diminuer une fuite valvulaire à cause de cordage restrictif ; 2) l'assouplissement des feuillets valvulaires calcifiés, qui est une maladie représentant un enjeu de santé publique touchant des millions de personnes, et n'ayant à ce jour aucune stratégie non invasive disponible et applicable en pratique clinique. Pour ces deux applications, nous avons réalisé des preuves de concept in vitro puis in vivo à coeur battant, Concernant la thérapie, nous avons exclusivement utilisé les effets mécaniques des ultrasons focalisés à hautes intensités (phénomène de cavitation)