, Existence of a minimizer

, 174 4.2.2 Atlas Estimation Algorithms for Discrete Shapes

.. .. Conclusion,

, Normal cycles linear (= varifolds), 914 iterations (533 for run 1, 381 for run 2)

, Normal cycles sobolev, 1329 iterations (696 for run 1, 633 for run 2)

, In light blue, the trajectories of the vertices along the deformation. We used normal cycles and varifolds with the same parameters ? V = 0.2 and ? W = 0.75 and then 0.2. Each shape has around 100 points

W. Allard-;-allard, On the first variation of a varifold, Annals of Mathematics, vol.19, issue.3, p.64, 1972.

F. Almgren and S. Arguillère, Géométrie sous-riemannienne en dimension infinie et applications à l'analyse mathématique des formes, p.47, 1966.

. Arguillère, Shape deformation analysis from the optimal control viewpoint, Journal de Mathématiques Pures et Appliquées, vol.104, issue.1, p.43, 1989.

N. Aronszajn and . Arsigny, Theory of reproducing kernels. Transactions of the, A Log-Euclidean Framework for Statistics on Diffeomorphisms, vol.68, p.46, 1950.

. Arsigny, Log-euclidean metrics for fast and simple calculus on diffusion tensors, Magnetic Resonance in Medicine, vol.56, issue.2, pp.411-421, 2006.
URL : https://hal.archives-ouvertes.fr/inria-00502678

H. ;. Atkinson, K. Atkinson, W. Han, and . Auzias, Spherical Harmonics and Approximation on the Unit Sphere : an Introduction, IEEE Transactions on Medical Imaging, vol.113, issue.6, pp.1214-1227, 2011.

[. Bauer, Overview of the Geometries of Shape Spaces and Diffeomorphism Groups. ArXiv e-prints, vol.37, p.41, 2013.

G. Bazen, A. M. Bazen, and S. H. Gerez, Fingerprint matching by thin-plate spline modelling of elastic deformations, Pattern Recognition, vol.36, issue.8, pp.1859-1867, 2003.

[. Bibliography and . Beg, Computing Large Deformation Metric Mappings via Geodesic Flows of Diffeomorphisms, International Journal of Computer Vision, vol.61, issue.2, p.46, 2005.

A. Bernig, On some aspects of curvature, vol.84, 2003.

F. L. Bookstein, Principal Warps: Thin-Plate Splines and the Decomposition of Deformations, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.11, issue.6, pp.567-585, 1989.

. Bretin, , 2017.

H. Brézis, Functional analysis, Sobolev spaces and partial differential equations, Universitext. Springer, vol.106, p.117, 2011.

. Bruveris, M. Vialard-;-bruveris, and F. Vialard, On Completeness of Groups of Diffeomorphisms, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01102814

B. Buet, Approximation de surfaces par des varifolds discrets : représentation, courbure, rectifiabilité, vol.62, p.64, 2014.

[. Buet, Discrete Varifolds: A Unified Framework for Discrete Approximations of Surfaces and Mean Curvature, vol.92, p.124, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02141373

[. Carmeli, Vector valued reproducing kernel Hilbert spaces and universality, vol.112, p.117, 2008.

[. Charlier, The fshape framework for the variability analysis of functional shapes, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00981805

[. Charlier, The fshape framework for the variability analysis of functional shapes, Foundations of Computational Mathematics, vol.17, p.196, 2015.
URL : https://hal.archives-ouvertes.fr/hal-00981805

[. Charlier, The matching problem between functional shapes via a BV-penalty term: a gammaconvergence result, vol.30, p.195, 2015.

N. Charon, Analysis of geometric and functionnal shapes with extension of currents. Application to registration and atlas estimation, vol.112, p.142, 0111.

. Charon, N. Trouvé-;-charon, and A. Trouvé, The varifold representation of nonoriented shapes for diffeomorphic registration, SIAM J. Imaging Sciences, vol.6, issue.4, p.61, 2013.

[. Bibliography and . Chazal, Stability of curvature measures, vol.25, p.197, 2008.

, Stability of Curvature Measures, Computer Graphics Forum, vol.93, p.197, 2009.

[. Christensen, Deformable templates using large deformation kinematics, IEEE Transactions on Image Processing, vol.5, issue.10, p.39, 1996.

M. Cohen-steiner, D. Steiner, and J. Morvan, Restricted Delaunay Triangulations And Normal Cycle. SoCG'03, vol.25, p.197, 2003.

M. Cohen-steiner, D. Steiner, and J. Morvan, Second fundamental measure of geometric sets and local approximation of curvatures, J. Differential Geom, vol.74, issue.3, p.197, 2006.

[. Csernansky, Preclinical detection of alzheimer's disease: hippocampal shape and volume predict dementia onset in the elderly, NeuroImage, vol.25, issue.3, pp.783-792, 2005.

[. Csernansky, Computational anatomy and neuropsychiatric disease: probabilistic assessment of variation and statistical inference of group difference, hemispheric asymmetry, and time-dependent change, Mathematics in Brain Imaging, vol.23, pp.56-68, 2004.

J. Duchon, Interpolation des fonctions de deux variables suivant le principe de la flexion des plaques minces. Revue française d'automatique, informatique, recherche opérationnelle. Analyse numérique, vol.10, pp.5-12, 1976.

J. Duchon, Splines minimizing rotation-invariant seminorms in Sobolev spaces, pp.85-100, 1977.

. Dupuis, Variational problems on flows of diffeomorphisms for image matching, Quarterly of applied mathematics, vol.17, p.40, 1998.

S. Durrleman, Statistical models of currents for measuring the variability of anatomical curves, surfaces and their evolution, vol.20, p.175, 2010.
URL : https://hal.archives-ouvertes.fr/tel-00631382

[. Durrleman, Sparse adaptive parameterization of variability in image ensembles, International Journal of Computer Vision, vol.101, issue.1, p.173, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00817565

[. Durrleman, Registration, atlas estimation and variability analysis of Bibliography white matter fiber bundles modeled as currents, NeuroImage, vol.55, issue.3, pp.1073-1090, 2011.

[. Durrleman, Morphometry of anatomical shape complexes with dense deformations and sparse parameters, NeuroImage, vol.101, p.195, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01015771

[. Durrleman, Optimal data-driven sparse parameterization of diffeomorphisms for population analysis, Information Processing in Medical Imaging, p.173, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00818405

H. Federer, Curvature measures, Trans. Amer. Maths. Soc, vol.93, p.193, 1959.

H. Federer, Geometric Measure Theory, vol.20, p.123, 1969.

F. ;. Federer, H. Federer, and W. Fleming, Normal and integral currents, Annals of Mathematics, vol.72, p.56, 1960.

W. Fleming, Convergence of curvatures in secant approximations, Transactions of the American Mathematical Society, vol.121, p.122, 1966.

J. H. Fu, J. Gallier, and J. Glaunès, Transport par difféomorphismes de points, de mesures et de courants pour la comparaison de formes et l'anatomie numérique, American Journal of Mathemtics, vol.116, issue.123, p.139, 1994.

. Grenander, U. Miller-;-grenander, and M. I. Miller, Computational anatomy: An emerging discipline, Q. Appl. Math, vol.LVI, issue.4, p.36, 1998.

[. Helm, Evidence of structural remodeling in the dyssynchronous failing heart, vol.98, pp.125-132, 2006.

S. ;. Jacobs, H. Jacobs, and S. Sommer, Higher-order spatial accuracy in diffeomorphic image registration, vol.1, pp.447-484, 0196.

[. Joshi, S. C. Miller-;-joshi, and M. I. Miller, Landmark matching via large deformation diffeomorphisms, IEEE Transactions on Image Processing, vol.9, issue.8, 2000.

D. G. Kendall, Shape manifolds, procrustean metrics, and complex projective spaces, Bulletin of the London Mathematical Society, vol.16, issue.2, p.35, 1984.

[. Lee, Atlas-based shape analysis and classification of retinal optical coherence tomography images using the functional shape (fshape) framework, Medical Image Analysis, vol.35, p.196, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01817551

[. Lee, Age and glaucoma-related characteristics in retinal nerve fiber layer and choroid: Localized morphometrics and visualization using functional shapes registration, Frontiers in Neuroscience, vol.11, p.196, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01817576

. Liu, D. C. Liu, and J. Nocedal, On the limited memory BFGS method for large scale optimization, Mathematical Programming, vol.45, issue.1-3, p.177, 1989.

[. Ma, Bayesian template estimation in computational anatomy, NeuroImage, vol.42, issue.1, p.175, 2008.

[. Ma, A bayesian generative model for surface template estimation, Journal of Biomedical Imaging, vol.136, p.175, 2010.

[. Mansi, A statistical model for quantification and prediction of cardiac remodelling: Application to tetralogy of fallot, IEEE Transactions on Medical Imaging, vol.30, issue.9, pp.292-304, 1979.
URL : https://hal.archives-ouvertes.fr/inria-00616185

J. Meinguet and J. Mercer, Functions of positive and negative type, and their connection with the theory of integral equations, Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol.209, pp.415-446, 1909.

[. Meyer, , 2003.

, Discrete Differential-Geometry Operators for Triangulated 2-Manifolds, p.92

[. Micchelli, Universal kernels, Journal of Machine Learning Research, vol.7, pp.2651-2667, 2006.

[. Bibliography, . Micheli, M. Glaunès-;-micheli, and J. A. Glaunès, Matrix-valued kernels for shape deformation analysis. Geometry, Imaging and Computing, vol.1, issue.1, p.114, 2014.

[. Miller, Geodesic Shooting for Computational Anatomy, Journal of Mathematical Imaging and Vision, vol.24, issue.2, p.141, 2006.

J. Morvan, , vol.25, p.123, 2008.

X. Pennec, Intrinsic statistics on riemannian manifolds: Basic tools for geometric measurements, Journal of Mathematical Imaging and Vision, vol.25, issue.1, p.18, 2006.
URL : https://hal.archives-ouvertes.fr/inria-00614994

S. Petitjean, A survey of methods for recovering quadrics in triangle meshes, ACM Comput. Surv, vol.34, issue.2, pp.211-262, 2002.
URL : https://hal.archives-ouvertes.fr/inria-00100762

[. Qiu, Parallel transport in diffeomorphisms distinguishes the time-dependent pattern of hippocampal surface deformation due to healthy aging and the dementia of the alzheimer's type, NeuroImage, vol.40, issue.1, pp.68-76, 2008.

T. Rado, What is the area of a surface?, The American Mathematical Monthly, vol.50, issue.3, pp.139-141, 1943.

J. Rataj and M. Zähle, Curvatures and currents for unions of sets with positive reach, ii. Annals of Global Analysis and Geometry, vol.20, p.74, 2001.

P. Roussillon and J. Glaunès, Kernel metrics on normal cycles and application to curve matching, SIAM J. Imaging Sciences, vol.9, pp.1991-2038, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01305806

P. Roussillon and J. Glaunès, Surface matching using normal cycles. To appear in GSI'17: Geometric Science Information, p.29, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01569336

P. Roussillon and J. A. Glaunès, Kernel Metrics on Normal Cycles and Application to Curve Matching, MFCA 2015 : 5th MICCAI workshop on Mathematical Foundations of Computational Anatomy, p.29, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01305806

S. Mumford-;-sharon, E. Mumford, and D. , 2d-shape analysis using conformal mapping, International Journal of Computer Vision, vol.70, issue.1, pp.55-75, 2006.

. Sommer, Higher-order momentum distributions and locally affine lddmm registration, SIAM Journal on Imaging Sciences, vol.6, issue.1, pp.341-367, 0196.
URL : https://hal.archives-ouvertes.fr/hal-00813869

. Sprengel, Thin-plate spline approximation for image registration, Proceedings of the 18th Annual Bibliography International Conference of the IEEE Engineering in Medicine and Biology Society, 1996. Bridging Disciplines for Biomedicine, vol.3, p.39, 1996.

J. Steiner and . Tang, Shape abnormalities of subcortical and ventricular structures in mild cognitive impairment and alzheimer's disease: Detecting, quantifying, and predicting, über parallele flächen. Monatsbericht der Akademie der Wissenchaften zu Berlin, vol.35, pp.3701-3725, 1840.

, US Dept of the Interior Fish and Wildlife Service (1953). Fishes of the gulf of maine, p.142, 1953.

C. Thäle, 50 years sets with positive reach, a survey, Surveys in Mathematics and its Applications, vol.74, p.193, 2008.

J. Thirion, Image matching as a diffusion process: an analogy with maxwell's demons, Medical image analysis, vol.2, issue.3, pp.243-260, 1998.

D. Thompson, On Growth and Forms, vol.15, p.29, 1917.

A. Trouvé, An infinite dimensional group approach for physics based models in patterns recognition, vol.17, p.40, 1995.

A. Trouvé, Diffeomorphisms groups and pattern matching in image analysis, International Journal of Computer Vision, vol.28, issue.3, p.39, 1998.

Y. Trouvé, A. Trouvé, and L. Younes, Shape Spaces, p.38, 2011.

M. Vaillant and J. Glaunès, Surface Matching via Currents, Information Processing in Medical Imaging, number 3565 in Lecture Notes in Computer Science, vol.20, p.109, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00263652

[. Vercauteren, Diffeomorphic demons: Efficient non-parametric image registration, NeuroImage, vol.45, issue.1, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00349600

[. Wang, Large deformation diffeomorphism and momentum based hippocampal shape discrimination in dementia of the alzheimer type, IEEE Transactions on Medical Imaging, vol.26, issue.4, pp.462-470, 2007.

T. Werther, Optimal Interpolation in Semi-Hilbert Spaces, p.117, 2003.

H. Weyl, On the volume of tubes, Normal cycle and integral curvature for polyhedra in Riemannian manifolds. Differential Geometry, p.64, 1939.

L. Younès, Shapes and Diffeomorphisms, vol.17, p.40, 2010.

M. Zähle, Integral and current representation of Federer's curvature measure, Arch. Maths, vol.23, p.84, 1986.

M. Zähle, Curvatures and currents for unions of set with positive reach, Geometriae Dedicata, vol.23, p.193, 1987.