Role of the Srf transcription factor in adult muscle stem cells

Abstract : The adult skeletal muscle is a high plastic tissue as it adapts its size upon overload and it is capable of regeneration upon muscle lesion. The skeletal muscle is composed of a specialized syncytium, the myofiber, which is the functional unit of the muscle and a small population of myogenic progenitors, residing adjacent to the myofibers, termed as satellite cells (SCs). SCs are the muscle-specific stem cells which endow the skeletal muscle with its remarkable capacity to repair and to maintain homeostasis during muscle turnover. In resting adult muscles, SCs are quiescent but they activate upon exposure to stimuli. The activated SCs (myoblasts) proliferate extensively and subsequently differentiate and fuse between them or pre-existing myofibers, a series of cellular events called myogenesis. In parallel to the myogenesis, a reserve population of SCs escapes the myogenic program and self-renews to replenish the SC pool. The current project aims to further characterize the signalling pathways involved in SC functions during muscle regeneration and compensatory hypertrophy (CH). Srf is a muscle-enriched transcription factor with Srf-target genes implicated in cell proliferation, differentiation (sarcomeric proteins), adhesion, migration and cellular cytoskeleton. Studies in C2C12 mouse myogenic cell line showed that Srf loss prevent the myoblast proliferation and differentiation by down-regulating the expression of the myogenic determinant MyoD gene. We used a genetic murine model for adult SC-specific Srf-loss in order to conduct in vivo and ex vivo studies for the Srf role in SCs. Compensatory hypertrophy and regeneration are the two means by which SCs were recruited. We show that loss of Srf in SCs affects the regeneration process and the CH suggesting the Srf role in the SC fate. Srf-depleted SCs display probably no defect in their proliferation and differentiation but reduced capacity in motility and fusion. Transcriptomic analysis revealed altered actin cytoskeleton and signalling. Srf-depleted SCs show reduced actin expression and altered actin cytoskeleton. Rescue of actin expression in Srf-depleted SCs partially restored the cytoskeleton organization and the fusion process. Interestingly by actin overexpression only the heterotypic/asymmetric fusion was established but not the homotypic/symmetric fusion. Therefore actin overexpression restored the hypertrophic growth in the CH (in vivo model of heterotypic fusion) but failed to do so in the regeneration (in vivo model of homotypic fusion). This study contributed to the in vivo investigation of the Srf mechanistic role in adult SCs and underlined the importance of actin cytoskeleton maintenance in the fusion of myogenic cells.
Document type :
Theses
Complete list of metadatas

Cited literature [446 references]  Display  Hide  Download

https://tel.archives-ouvertes.fr/tel-02180596
Contributor : Abes Star <>
Submitted on : Thursday, July 11, 2019 - 3:31:34 PM
Last modification on : Saturday, July 13, 2019 - 1:14:32 AM

File

va_Papaefthymiou_Aikaterini.pd...
Version validated by the jury (STAR)

Identifiers

  • HAL Id : tel-02180596, version 1

Collections

Citation

Aikaterini Papaefthymiou. Role of the Srf transcription factor in adult muscle stem cells. Human health and pathology. Université Sorbonne Paris Cité, 2016. English. ⟨NNT : 2016USPCB120⟩. ⟨tel-02180596⟩

Share

Metrics

Record views

32

Files downloads

18