B. Y. Nguyen, R. D. Isaacs, H. Teppler, R. Y. Leavitt, P. Sklar et al., Raltegravir: the first HIV-1 integrase strand transfer inhibitor in the HIV armamentarium, Ann N Y Acad Sci, vol.1222, pp.83-89, 2011.

. Hares, . Guptass, and E. Valkove, CherepanovP:Retroviral intasome assembly and inhibition of DNA strand transfer, Nature, vol.464, pp.232-236, 2010.

J. F. Mouscadet, O. Delelis, A. G. Marcelin, and L. Tchertanov, Resistance to HIV-1 integrase inhibitors: a structural perspective, Drug Resist Updat, vol.13, pp.139-150, 2010.

P. K. Quashie, T. Mesplede, and M. A. Wainberg, Evolution of HIV integrase resistance mutations, Curr Opin Infect Dis, vol.26, pp.43-49, 2013.

S. Hare, S. J. Smith, M. Métifiot, A. Jaxa-chamiec, Y. Pommier et al., Structural and functional analyses of the second-generation integrase strand transfer inhibitor dolutegravir

, Mol Pharmacol, vol.80, pp.565-572, 2011.

Q. Mespledet, . Osmann, . Hany, . Singhroydn, . Liey et al., Viral fitness cost prevents HIV-1 from evading dolutegravir drug pressure, Retrovirology, vol.10, p.22, 2013.

P. Cherepanov, G. Maertens, . Proostp, . Devreeseb, . Vanbeeumenj et al., HIV-1 integrase forms stable tetramers and associates with LEDGF/p75 protein in human cells, J Biol Chem, vol.278, pp.372-381, 2003.

P. Legrain, J. Rain, R. Benarous, S. Emiliani, C. Berlioz-torrent et al., Proteinprotein interactions in human immunodeficiency virus

. Pct/ep02/, International publication number WO 03/046176 International publication date5June2003, 2002.

A. Engelman and P. Cherepanov, The lentiviral integrase binding protein LEDGF/p75 and HIV-1 replication, PLoS Pathog, vol.4, p.1000046, 2008.

K. Busschots, J. Vercammen, S. Emiliani, R. Benarous, Y. Engelborghs et al., The interaction of LEDGF/p75 with integrase is lentivirus-specific and promotes DNA binding, J Biol Chem, vol.280, pp.17841-17847, 2005.

P. Cherepanov, A. Ambrosio, S. Rahman, T. Ellenberger, and A. Engelman, Structural basis for the recognition between HIV-1 integrase and transcriptional coactivator p75, Proc Natl Acad Sci, vol.102, pp.17308-17313, 2005.

S. Hare, M. Shun, S. S. Gupta, E. Valkov, A. Engelman et al., A novel co-crystal structure affords the design of gain-of-function lentiviral integrase mutants in the presence of modified PSIP1/LEDGF/p75, PLoS Pathog, vol.5, p.1000259, 2009.

M. Llano, D. T. Saenz, A. Meehan, P. Wongthida, M. Peretz et al., An essential role for LEDGF/p75 in HIV integration, Science, vol.314, pp.461-464, 2006.

M. C. Shun, N. K. Raghavendra, N. Vandegraaff, J. E. Daigle, S. Hughes et al., LEDGF/p75 functions downstream from preintegration complex formation to effect gene-specific HIV-1 integration, Genes Dev, vol.21, pp.1767-1778, 2007.

L. Ciuffia, . Poeschlae, . Hoffmannc, J. Leipzig, . Shinnp et al., A role for LEDGF/p75 in targeting HIV DNA integration, Nat Med, vol.11, pp.1287-1289, 2005.

S. Hare, D. Nunzio, F. Labeja, A. Wang, J. Engelman et al., Structural basis for functional tetramerization of lentiviral integrase, PLoS Pathog, vol.5, p.1000515, 2009.
URL : https://hal.archives-ouvertes.fr/pasteur-01536181

S. Emiliani, A. Mousnier, K. Busschots, M. Maroun, B. Van-maele et al., Integrase mutants defective for interaction with LEDGF/p75 are impaired in chromosome tethering and HIV-1 replication, J Biol Chem, vol.280, pp.25517-25523, 2005.

F. Christ, A. Voet, A. Marchand, S. Nicolet, B. A. Desimmie et al., Rational design of small-molecule inhibitors of the LEDGF/p75-integrase interaction and HIV replication, Nat Chem Biol, vol.6, pp.442-448, 2010.

D. Yoakimc, . Duplessism, . Gagnona, . Goulets, . Hueckeo et al., Preparation of pyrazolylbenzimidazole derivatives for use as HIV replication inhibitors, Boehringer Ingelheim International GmbH, 2008.

Y. S. Tsantrizos, M. D. Bailey, F. Bilodeau, R. J. Carson, R. Coulombe et al., Preparation of 2-(tert-butyloxy)-2-(2-methylquinolin-3-yl)acetic acid derivatives as inhibitors of human immunodeficiency virus replication, Boehringer Ingelheim International GmbH, 2009.

C. Yoakim, M. D. Bailey, F. Bilodeau, R. J. Carson, L. Fader et al., Preparation of 2-alkoxy-2-(pyridin-3-yl)acetic acid derivatives as inhibitors of human immunodeficiency virus (HIV) replication. Boehringer Ingelheim International GmbH, pp.2010-130034, 2010.

C. Fenwick, R. Bethell, . Bonneaup, . Duanj, A. Faucher et al., Identification of BI-C, a Novel HIV-1 nonCatalytic Site Integrase Inhibitor, p.18, 2011.

M. L. Mitchell, P. A. Roethle, L. Xu, H. Yang, R. Mcfadden et al., Benzothiazole Compounds and Their Pharmaceutical use. US: Gilead Sciences Inc

C. Bardiotd, . Christf, . Debyserz, . Demm, . Marchanda et al., Preparation of Thieno[2,3-b]Pyridine Derivatives as Viral Replication Inhibitors, Katholieke Universiteit Leuven, 2010.

D. Z. Chaltinp, M. M. De, A. Marchand, D. Marchand, W. Smets et al., Pyrimidine Derivatives as Novel Viral Replication Inhibitors and Their Preparation and use in the Treatment of HIV Infection, Katholieke Universiteit Leuven, 2011.

G. Carlens, P. Chaltin, F. Christ, Z. Debyser, A. Marchand et al., Novel Antiviral Compounds. Katholieke Universiteit Leuven, 2011.

K. Babaoglu, K. Bjornson, H. Guo, R. L. Halcomb, J. O. Link et al., -(Naphth-2-yl)Acetic Acid Derivatives as HIV Antiviral Agents and Their Preparation and use for the Treatment of, AIDS. USA: Gilead Sciences, issue.2

K. Babaoglu, K. Bjornson, H. Guo, R. L. Halcomb, J. O. Link et al., XuL: 2-(Quinolin-6-yl)Acetic Acid Derivatives as HIV Antiviral Agents and Their Preparation and use for the Treatment of, AIDS. USA: Gilead Sciences

A. S. Bell, I. B. Gardner, K. R. Gibson, D. C. Pryde, and F. M. Wakenhut, Inhibitors of HIV Replication

S. Gerritz, D. R. Langley, G. Li, N. A. Meanwell, A. Pendri et al., Inhibitors of Human Immunodeficiency Virus Replication. US: Bristol Myers Squibb Co

M. A. De-la-rosa, S. N. Haidar, B. A. Johns, and E. J. Velthuisen, Isoquinoline Compounds and Methods for Treating HIV. US: Glaxo Smithkline LLC

S. Chasset, F. Chevreuil, B. Ledoussal, L. Strat, F. Benarous et al., Inhibitors of Viral Replication, Their Process of Preparation and Their Therapeutical Uses, Laboratoire Biodim

S. Chasset, F. Chevreuil, B. Ledoussal, L. Strat, F. Benarous et al., Inhibitors of viral replication, their process of preparation and their therapeutical uses

K. Hattori, N. Kurihara, T. Iwaki, T. Inoue, T. Akiyama et al., HIV Replication Inhibitor. Shionogi & Co, 2013.

F. Christ, S. Shaw, J. Demeulemeester, B. A. Desimmie, A. Marchand et al., Small-molecule inhibitors of the LEDGF/p75 binding site of integrase block HIV replication and modulate integrase multimerization, Antimicrob Agents Chemother, vol.56, pp.4365-4374, 2012.

M. Tsiang, G. S. Jones, A. Niedziela-majka, E. Kan, E. B. Lansdon et al., New class of HIV-1 integrase (IN) inhibitors with a dual mode of action, J Biol Chem, vol.287, pp.21189-21203, 2012.

J. J. Kessl, J. N. Koh, Y. Taskent-sezgin, H. Slaughter, A. Feng et al., Multimode, cooperative mechanism of action of allosteric HIV-1 integrase inhibitors, J Biol Chem, vol.287, pp.16801-16811, 2012.

J. Demeulemeester, C. Tintori, M. Botta, Z. Debyser, and F. Christ, Development of an AlphaScreen-based HIV-1 integrase dimerization assay for discovery of novel allosteric inhibitors, J Biomol Screen, vol.17, pp.618-628, 2012.

F. Christ and Z. Debyser, The LEDGF/p75 integrase interaction, a novel target for anti-HIV therapy, Virology, vol.435, pp.102-109, 2013.

J. Wangh, . Wux, L. X. Shunmc, . Ferrisal, . Smithsj et al., HRP2 determines the efficiency and specificity of HIV-1 integration in LEDGF/p75 knockout cells but does not contribute to the antiviral activity of a potent LEDGF/p75-binding site integrase inhibitor, Nucleic Acids Res, vol.40, pp.11518-11530, 2012.

. Fengl, . Sharmaa, . Slaughtera, . Jenan, . Kohy et al., The A128T resistance mutation reveals aberrant protein multimerization as the primary mechanism of action of allosteric HIV-1 integrase inhibitors, J Biol Chem, vol.288, pp.15813-15820, 2013.

B. A. Desimmie, R. Schrijvers, J. Demeulemeester, D. Borrenberghs, C. Weydert et al., LEDGINs inhibit late stage HIV-1 replication by modulating integrase multimerization in the virions, Retrovirology, vol.10, p.57, 2013.

K. A. Jurado, H. Wang, A. Slaughter, L. Feng, J. J. Kessl et al., Allosteric integrase inhibitor potency is determined through the inhibition of HIV-1 particle maturation, Proc Natl Acad Sci, vol.110, pp.8690-8695, 2013.

S. Yant, L. Tsai, C. O'sullivan, T. Cihlar, and M. Balakrishnan, Non-Catalytic Site Integrase Inhibitors Target the Integrase Domain During Virus Production and Induce a Reverse Transcription Block, Conference on Retroviruses and Opportunistic Infections, 2013.

M. Balakrishnan, S. R. Yant, L. Tsai, C. O'sullivan, R. A. Bam et al., Non-catalytic site HIV-1 integrase inhibitors disrupt core maturation and induce a reverse transcription block in target cells, PLoS One, vol.8, p.74163, 2013.

Z. Hayouka, J. Rosenbluh, A. Levin, S. Loya, M. Lebendiker et al., Inhibiting HIV-1 integrase by shifting its oligomerization equilibrium, Proc Natl Acad Sci, vol.104, pp.8316-8321, 2007.

, Stanford university HIV drug resistance database

C. Fenwick, S. Tremblay, E. Wardrop, R. Bethell, R. Coulombe et al., Resistance Studies with HIV-1 non-Catalytic Site Integrase Inhibitors, Mexico: In International Workshop on HIV & Hepatitis Virus Drug Resistance and Curative Strategies, 2011.

J. Berg, B. Doe, K. S. Steimer, and M. Wabl, HeLa-LAV, an epithelial cell line stably infected with HIV-1, J Virol Methods, vol.34, pp.173-180, 1991.

E. Guiot, K. Carayon, O. Delelis, F. Simon, P. Tauc et al., Relationship between the oligomeric status of HIV-1 integrase on DNA and enzymatic activity, J Biol Chem, vol.281, pp.22707-22719, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00216092

A. Engelman, The Pleiotropic Nature of Human Immunodeficiency Virus Type 1 Integrase Mutations, HIV-1 Integrase: Mechanism and Inhibitor Design, Drug Discovery and Development, vol.2011, pp.67-81

J. Y. Wang, H. Ling, Y. W. , and C. , Structure of a two-domain fragment of HIV-1 integrase: implications for domain organization in the intact protein, EMBO J, vol.20, pp.7333-7343, 2001.

L. Berthoux, S. Sebastian, M. A. Muesing, and J. Luban, The role of lysine 186 in HIV-1 integrase multimerization, Virology, vol.364, pp.227-236, 2007.

P. Lesbats, M. Metifiot, C. Calmels, S. Baranova, G. Nevinsky et al., In vitro initial attachment of HIV-1 integrase to viral ends: control of the DNA specific interaction by the oligomerization state, Nucleic Acids Res, vol.36, pp.7043-7058, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00426343

Y. Pommier and C. Marchand, Interfacial inhibitors: targeting macromolecular complexes, Nat Rev Drug Discov, vol.11, pp.25-36, 2012.

J. H. Condra, W. A. Schleif, O. M. Blahy, L. J. Gabryelski, D. J. Graham et al., In vivo emergence of HIV-1 variants resistant to multiple protease inhibitors, Nature, vol.374, pp.569-571, 1995.

M. J. Gonzales, . Johnsone, K. M. Dupnik, T. Imamichi, and R. W. Shafer, Colinearity of reverse transcriptase inhibitor resistance mutations detected by populationbased sequencing, J Acquir Immune Defic Syndr, vol.34, pp.398-402, 2003.

O. Delelis, I. Malet, L. Na, L. Tchertanov, V. Calvez et al., The G140S mutation in HIV integrases from raltegravir-resistant patients rescues catalytic defect due to the resistance Q148H mutation, Nucleic Acids Res, vol.37, pp.1193-1201, 2009.

A. Brussel and P. Sonigo, Analysis of early human immunodeficiency virus type 1 DNA synthesis by use of a new sensitive assay for quantifying integrated provirus, J Virol, vol.77, pp.10119-10124, 2003.

F. Michel, C. Crucifix, F. Granger, S. Eiler, J. F. Mouscadet et al., Structural basis for HIV-1 DNA integration in the human genome, role of the LEDGF/P75 cofactor, EMBO J, vol.28, pp.980-991, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00384501

F. D. Bushman, A. Engelman, I. Palmer, P. Wingfield, and R. Craigie, Domains of the integrase protein of human immunodeficiency virus type 1 responsible for polynucleotidyl transfer and zinc binding, Proc Natl Acad Sci, vol.90, pp.3428-3432, 1993.

T. M. Jenkins, A. B. Hickman, F. Dyda, R. Ghirlando, D. R. Davies et al., Catalytic domain of human immunodeficiency virus type 1 integrase: identification of a soluble mutant by systematic replacement of hydrophobic residues, Proc Natl Acad Sci, vol.92, pp.6057-6061, 1995.

F. Yu, . Jonesgs, M. Hung, A. H. Wagner, H. L. Macarthur et al., HIV-1 integrase preassembled on donor DNA is refractory to activity stimulation by LEDGF/p75, Biochemistry, vol.46, pp.2899-2908, 2007.

O. Delelis, V. Parissi, H. Leh, G. Mbemba, C. Petit et al., Efficient and specific internal cleavage of a retroviral palindromic DNA sequence by tetrameric HIV-1 integrase, PLoS One, vol.2, p.608, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00211177

W. Kabsch and . Xds, Acta Crystallogr D Biol Crystallogr, vol.66, pp.125-132, 2010.

E. Potterton, P. Briggs, M. Turkenburg, and E. Dodson, A graphical user interface to the CCP4 program suite, Acta Crystallogr D Biol Crystallogr, vol.59, pp.1131-1137, 2003.

A. Vagin and . Teplyakova, Molecular replacement with MOLREP, Acta Crystallogr D Biol Crystallogr, vol.66, pp.22-25, 2010.

S. Maignan, J. P. Guilloteau, Q. Zhou-liu, C. Clement-mella, and V. Mikol, Crystal structures of the catalytic domain of HIV-1 integrase free and complexed with its metal cofactor: high level of similarity of the active site with other viral integrases, J Mol Biol, vol.282, pp.359-368, 1998.

P. Emsley, B. Lohkamp, W. G. Scott, and K. Cowtan, Features and development of Coot, Acta Crystallogr D Biol Crystallogr, vol.66, pp.486-501, 2010.

G. N. Murshudov, P. Skubak, A. A. Lebedev, N. S. Pannu, R. A. Steiner et al., REFMAC5 for the refinement of macromolecular crystal structures, Acta Crystallogr D Biol Crystallogr, vol.67, pp.355-367, 2011.

J. Fontana, K. A. Jurado, N. Cheng, N. L. Ly, J. R. Fuchs et al., , p.564

A. C. Steven, Distribution and Redistribution of HIV-1 Nucleocapsid Protein in

M. Immature and I. , Inhibited Virions: a Role for Integrase in Maturation

, J Virol, vol.89, pp.9765-80, 2015.

M. P. Girard, S. Osmanov, O. M. Assossou, and M. P. Kieny, Human immunodeficiency virus 568 (HIV) immunopathogenesis and vaccine development: a review, Vaccine, vol.569, pp.6191-218, 2011.

F. Garcia and J. P. Routy, Challenges in dendritic cells-based therapeutic vaccination in 571 HIV-1 infection Workshop in dendritic cell-based vaccine clinical trials in HIV-1

, Vaccine, vol.29, pp.6454-63, 2011.

F. Garcia, N. Climent, A. C. Guardo, C. Gil, A. Leon et al.,

V. Lorin and H. Mouquet, Efficient generation of human IgA monoclonal antibodies, J 618 Immunol Methods, vol.422, pp.102-112, 2015.

P. D. Kwong and J. R. Mascola, Human antibodies that neutralize HIV-1: identification, 620 structures, and B cell ontogenies, Immunity, vol.37, pp.412-437, 2012.

R. Burrer, S. Haessig-einius, A. M. Aubertin, C. Moog, P. N. Nyambi et al., Neutralizing as well as non-622 neutralizing polyclonal immunoglobulin (Ig)G from infected patients capture HIV-1 via 623 antibodies directed against the principal immunodominant domain of gp41, Virology, vol.624, pp.102-115, 2005.

, J Immunol Methods, vol.253, pp.253-62, 2001.

N. Climent, S. Guerra, F. Garcia, C. Rovira, L. Miralles et al., , p.629

J. M. Gatell, M. Esteban, and T. Gallart, Dendritic cells exposed to MVA-based HIV-1 630 vaccine induce highly functional HIV-1-specific CD8(+) T cell responses in HIV-1-631 infected individuals, PLoS One, vol.6, p.19644, 2011.

K. Peden, M. Emerman, and L. Montagnier, Changes in growth properties on passage in 633 tissue culture of viruses derived from infectious molecular clones of HIV-1LAI, HIV-634 1MAL, and HIV-1ELI, Virology, vol.185, pp.661-72, 1991.

K. Lu, X. Heng, and M. F. Summers, Structural determinants and mechanism of HIV-1

, 1% SDS) puis transférées sur une membrane PVDF (Immunobilon-P, Millipore) dans un tampon de transfert (25 mM Tris, 192 nM de glycine, SDS pH 8,3 complété avec 0,1% SDS et 20% d'éthanol) pendant 2h à 150 V ou pendant la nuit à 20 V. Les membranes sont, vol.20

, contenant 5% de lait pendant 1h sous agitation puis incubées avec l'anticorps primaire dilué dans du TBS 0,05% Tween 20 5% de lait environ 2h à température ambiante ou pendant la nuit à 4°C. Les membranes subissent 4 lavages de 10 mins dans du TBS 0,05% Tween, p.20

, puis elles sont incubées avec l'anticorps secondaire couplé à la peroxydase HRP correspondant, également dilué dans du TBS 0,05% Tween 20 5% de lait, pendant 45 mins à température ambiante

, Les anticorps primaires suivant ont été utilisés en western blot pour reconnaitre les épitopes viraux du VIH-1 : anticorps monoclonal de souris anti-CAp24 VIH-1 Gag (ARP366 ; National Institute for Biotechnology), anticorps de lapin anti-RT VIH-1 (NIH), anticorps monoclonal de souris anti-IN VIH-1

S. C. Biotechnology, anticorps monoclonal de souris anti-Env TMgp41 (41A, Hybridolab) et anticorps monoclonal de souris anti-Env VIH-1

, SUgp120 (110H ; Hybridolab)

, Pour reconnaitre les épitopes du SIV nous avons utilisés : anticorps monoclonal de souris anti-CAp27 SIV Gag (KK64 ; NIH), anticorps monoclonal de souris anti-gp120 SIV

, NIH), anticorps monoclonal de souris anti-gp41 SIV (KK841;NIH) et anticorps de lapin antiNef SIV (ARP4007 ; NIBSC)

, Les anticorps secondaires contre les immunoglobulines G couplées à l'HRP de souris (Polyclonal Rabbit anti-Mouse Immunoglobulins/HRP) ou de lapin (Polyclonal Swine antiRabbit Immunoglobulins/HRP) de chez Dako sont utilisés pour les western blot

, La protéine GST-LEDGF a été produite et purifiée à l'IGBMC (Marc Ruff)

, Le plasmide codant pour la protéine recombinante His-IN VIH

, Le plasmide codant pour la protéine IN-His SIVmac 239 nous a été donné par P

, nous tentons de développer des virus SIV porteurs de mutations « humanisées » sur l'IN afin d'étudier si le phénotype des INLAIs sur le VIH-1 peut ainsi être restauré contre le SIV. Pour l'instant, aucun des mutants que nous avons produits n'est assez infectieux pour envisager ce type d'étude. Une autre possibilité serait d'utiliser un virus chimérique SHIV (Simiain/Human immunodeficiency virus) contenant uniquement l'IN du VIH-1 comme contrôle positif, Nous avons réalisé des expériences préliminaires en produisant un stock de virus chimérique SHIV contenant les gènes codants pour la RT et l'IN du VIH-1 insérés dans un génome viral SIV

, Sachant que la liaison de l'IN à l'ARNv génomique décrite par Kessl et al. affiche une haute sélectivité pour des éléments de structure d'ARN spécifiques sur l'ensemble du génome viral dont les séquences TAR et RRE [442], nous pourrions essayer de déterminer si ces régions sur l'ARNv simien peuvent permettre son interaction avec l'IN SIV. En effet, le SIV est plus proche génétiquement du VIH-2 qui possède une structure TAR très différente de celle du VIH-1 ainsi la fixation de l'IN sur la séquence TAR de l'ARNv pourrait donc être différente selon les lentivirus. La comparaison des éléments structurels d'ARN sur le génome viral VIH-1 et SIV et de leur affinité pour l, Par la suite, il serait donc intéressant de chercher à caractériser l'activité réduite des INLAIs sur les étapes tardives de la réplication du SIV

, ARNv ont pu être identifiés [442] et leur mutation compromet l'interaction IN-ARNv sans affecter d'autres fonctions connues de l'IN ce qui induit la production de virions eccentriques non infectieux. En addition de la comparaison des résidus impliqués dans la fixation des INLAIs sur le dimère CCD-CCD IN, il serait donc intéressant d'étudier les différences de séquences entre IN VIH-1 et, De plus, certains résidus sur le domaine CTD de l'IN du VIH-1 impliqués dans son interaction avec l

, Ainsi l'analyse de l'effet des INLAIs sur SIV

M. S. Gottlieb, R. Schroff, H. M. Schanker, J. D. Weisman, and P. T. Fan, Pneumocystis carinii pneumonia and mucosal candidiasis in previously healthy homosexual men: evidence of a new acquired cellular immunodeficiency, N Engl J Med, vol.305, pp.1425-1431, 1981.

F. Barre-sinoussi, J. C. Chermann, F. Rey, M. T. Nugeyre, and S. Chamaret, Isolation of a Tlymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS), Science, vol.220, pp.868-871, 1983.

R. C. Gallo, S. Z. Salahuddin, M. Popovic, G. M. Shearer, and M. Kaplan, Frequent detection and isolation of cytopathic retroviruses (HTLV-III) from patients with AIDS and at risk for AIDS, Science, vol.224, pp.500-503, 1984.

M. Popovic, M. G. Sarngadharan, E. Read, and R. C. Gallo, Detection, isolation, and continuous production of cytopathic retroviruses (HTLV-III) from patients with AIDS and pre-AIDS, Science, vol.224, pp.497-500, 1984.

J. A. Levy, A. D. Hoffman, S. M. Kramer, J. A. Landis, and J. M. Shimabukuro, Isolation of lymphocytopathic retroviruses from San Francisco patients with AIDS, Science, vol.225, pp.840-842, 1984.

J. Coffin, A. Haase, J. A. Levy, L. Montagnier, and S. Oroszlan, Human immunodeficiency viruses, Science, vol.232, p.697, 1986.

F. Clavel, D. Guetard, F. Brun-vezinet, S. Chamaret, and M. A. Rey, Isolation of a new human retrovirus from West African patients with AIDS, Science, vol.233, pp.343-346, 1986.

J. Liu, A. Bartesaghi, M. J. Borgnia, G. Sapiro, and S. Subramaniam, Molecular architecture of native HIV-1 gp120 trimers, Nature, vol.455, pp.109-113, 2008.

H. R. Gelderblom, M. Ozel, and G. Pauli, Morphogenesis and morphology of HIV. Structure-function relations, Arch Virol, vol.106, pp.1-13, 1989.

D. E. Ott, Cellular proteins detected in HIV-1, Rev Med Virol, vol.18, pp.159-175, 2008.

P. D. Kwong, R. Wyatt, J. Robinson, R. W. Sweet, and J. Sodroski, Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody, Nature, vol.393, pp.648-659, 1998.

C. D. Rizzuto, R. Wyatt, N. Hernandez-ramos, Y. Sun, and P. D. Kwong, A conserved HIV gp120 glycoprotein structure involved in chemokine receptor binding, Science, vol.280, pp.1949-1953, 1998.

A. Bukrinskaya, HIV-1 matrix protein: a mysterious regulator of the viral life cycle, Virus Res, vol.124, pp.1-11, 2007.

J. S. Saad, J. Miller, J. Tai, A. Kim, and R. H. Ghanam, Structural basis for targeting HIV-1 Gag proteins to the plasma membrane for virus assembly, Proc Natl Acad Sci U S A, vol.103, pp.11364-11369, 2006.

J. A. Briggs, K. Grunewald, B. Glass, F. Forster, and H. G. Krausslich, The mechanism of HIV-1 core assembly: insights from three-dimensional reconstructions of authentic virions, Structure, vol.14, pp.15-20, 2006.

I. J. Byeon, X. Meng, J. Jung, G. Zhao, and R. Yang, Structural convergence between Cryo-EM and NMR reveals intersubunit interactions critical for HIV-1 capsid function, Cell, vol.139, pp.780-790, 2009.

O. Pornillos, B. K. Ganser-pornillos, and M. Yeager, Atomic-level modelling of the HIV capsid, Nature, vol.469, pp.424-427, 2011.

J. G. Levin, J. Guo, I. Rouzina, and K. Musier-forsyth, Nucleic acid chaperone activity of HIV-1 nucleocapsid protein: critical role in reverse transcription and molecular mechanism, Prog Nucleic Acid Res Mol Biol, vol.80, pp.217-286, 2005.

B. Berkhout, R. Gorelick, M. F. Summers, Y. Mely, and J. L. Darlix, 6th international symposium on retroviral nucleocapsid, vol.5, p.21, 2008.

J. A. Thomas, T. D. Gagliardi, W. G. Alvord, M. Lubomirski, and W. J. Bosche, Human immunodeficiency virus type 1 nucleocapsid zinc-finger mutations cause defects in reverse transcription and integration, Virology, vol.353, pp.41-51, 2006.

D. Gheysen, E. Jacobs, F. De-foresta, C. Thiriart, and M. Francotte, Assembly and release of HIV-1 precursor Pr55gag virus-like particles from recombinant baculovirus-infected insect cells, Cell, vol.59, pp.103-112, 1989.

L. A. Kohlstaedt, J. Wang, J. M. Friedman, P. A. Rice, and T. A. Steitz, Crystal structure at 3.5 A resolution of HIV-1 reverse transcriptase complexed with an inhibitor, Science, vol.256, pp.1783-1790, 1992.

A. Jacobo-molina, J. Ding, R. G. Nanni, A. D. Clark, J. Lu et al., Crystal structure of human immunodeficiency virus type 1 reverse transcriptase complexed with double-stranded DNA at 3.0 A resolution shows bent DNA, Proc Natl Acad Sci U S A, vol.90, pp.6320-6324, 1993.

J. Zhang, N. Tamilarasu, S. Hwang, M. E. Garber, and I. Huq, HIV-1 TAR RNA enhances the interaction between Tat and cyclin T1, J Biol Chem, vol.275, pp.34314-34319, 2000.

B. R. Cullen, Human immunodeficiency virus: nuclear RNA export unwound, Nature, vol.433, pp.26-27, 2005.

M. D. Daugherty, B. Liu, and A. D. Frankel, Structural basis for cooperative RNA binding and export complex assembly by HIV Rev, Nat Struct Mol Biol, vol.17, pp.1337-1342, 2010.

D. M. D'agostino, B. K. Felber, J. E. Harrison, and G. N. Pavlakis, The Rev protein of human immunodeficiency virus type 1 promotes polysomal association and translation of gag/pol and vpu/env mRNAs, Mol Cell Biol, vol.12, pp.1375-1386, 1992.

X. Yu, Y. Yu, B. Liu, K. Luo, and W. Kong, Induction of APOBEC3G ubiquitination and degradation by an HIV-1 Vif-Cul5-SCF complex, Science, vol.302, pp.1056-1060, 2003.

A. Mehle, B. Strack, P. Ancuta, C. Zhang, and M. Mcpike, Vif overcomes the innate antiviral activity of APOBEC3G by promoting its degradation in the ubiquitin-proteasome pathway, J Biol Chem, vol.279, pp.7792-7798, 2004.

S. Kao, M. A. Khan, E. Miyagi, R. Plishka, and A. Buckler-white, The human immunodeficiency virus type 1 Vif protein reduces intracellular expression and inhibits packaging of APOBEC3G (CEM15), a cellular inhibitor of virus infectivity, J Virol, vol.77, pp.11398-11407, 2003.

R. Goila-gaur and K. Strebel, HIV-1 Vif, APOBEC, and intrinsic immunity, Retrovirology, vol.5, p.51, 2008.

L. Rouzic, E. Benichou, and S. , The Vpr protein from HIV-1: distinct roles along the viral life cycle, Retrovirology, vol.2, p.11, 2005.
URL : https://hal.archives-ouvertes.fr/inserm-00092542

F. Roesch, L. Richard, R. Rua, F. Porrot, and N. Casartelli, Vpr Enhances Tumor Necrosis Factor Production by HIV-1-Infected T Cells, J Virol, vol.89, pp.12118-12130, 2015.
URL : https://hal.archives-ouvertes.fr/pasteur-01372392

R. Y. Zhao and M. I. Bukrinsky, HIV-1 accessory proteins: VpR, Methods Mol Biol, vol.1087, pp.125-134, 2014.

C. Goffinet, I. Allespach, S. Homann, H. M. Tervo, and A. Habermann, HIV-1 antagonism of CD317 is species specific and involves Vpu-mediated proteasomal degradation of the restriction factor, Cell Host Microbe, vol.5, pp.285-297, 2009.

M. Caillet, K. Janvier, A. Pelchen-matthews, D. Delcroix-genete, and G. Camus, Rab7A is required for efficient production of infectious HIV-1, PLoS Pathog, vol.7, p.1002347, 2011.
URL : https://hal.archives-ouvertes.fr/inserm-00693726

N. Roy, G. Pacini, C. Berlioz-torrent, and K. Janvier, Mechanisms underlying HIV-1 Vpu-mediated viral egress, Front Microbiol, vol.5, p.177, 2014.
URL : https://hal.archives-ouvertes.fr/inserm-01068976

A. Landi, V. Iannucci, A. V. Nuffel, P. Meuwissen, and B. Verhasselt, One protein to rule them all: modulation of cell surface receptors and molecules by HIV Nef, Curr HIV Res, vol.9, pp.496-504, 2011.

M. Pizzato, A. Helander, E. Popova, A. Calistri, and A. Zamborlini, Dynamin 2 is required for the enhancement of HIV-1 infectivity by Nef, Proc Natl Acad Sci U S A, vol.104, pp.6812-6817, 2007.

N. Laguette, C. Bregnard, S. Benichou, and S. Basmaciogullari, Human immunodeficiency virus (HIV) type-1, HIV-2 and simian immunodeficiency virus Nef proteins, Mol Aspects Med, vol.31, pp.418-433, 2010.

A. Rosa, A. Chande, S. Ziglio, D. Sanctis, V. Bertorelli et al., HIV-1 Nef promotes infection by excluding SERINC5 from virion incorporation, Nature, vol.526, pp.212-217, 2015.

Y. Usami, Y. Wu, and H. G. Gottlinger, SERINC3 and SERINC5 restrict HIV-1 infectivity and are counteracted by Nef, Nature, vol.526, pp.218-223, 2015.

M. Alizon, P. Sonigo, F. Barre-sinoussi, J. C. Chermann, and P. Tiollais, Molecular cloning of lymphadenopathy-associated virus, Nature, vol.312, pp.757-760, 1984.

S. Wain-hobson, P. Sonigo, O. Danos, S. Cole, and M. Alizon, Nucleotide sequence of the AIDS virus, LAV. Cell, vol.40, pp.9-17, 1985.

A. Marcello, M. Lusic, G. Pegoraro, V. Pellegrini, and F. Beltram, Nuclear organization and the control of HIV-1 transcription, Gene, vol.326, pp.1-11, 2004.

H. L. Robinson, New hope for an AIDS vaccine, Nat Rev Immunol, vol.2, pp.239-250, 2002.

M. Barboric, R. M. Nissen, S. Kanazawa, N. Jabrane-ferrat, and B. M. Peterlin, NF-kappaB binds PTEFb to stimulate transcriptional elongation by RNA polymerase II, Mol Cell, vol.8, pp.327-337, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00641031

K. T. Jeang, H. Xiao, and E. A. Rich, Multifaceted activities of the HIV-1 transactivator of transcription, Tat, J Biol Chem, vol.274, pp.28837-28840, 1999.

C. M. Stoltzfus and J. M. Madsen, Role of viral splicing elements and cellular RNA binding proteins in regulation of HIV-1 alternative RNA splicing, Curr HIV Res, vol.4, pp.43-55, 2006.

S. Schwartz, B. K. Felber, D. M. Benko, E. M. Fenyo, and G. N. Pavlakis, Cloning and functional analysis of multiply spliced mRNA species of human immunodeficiency virus type 1, J Virol, vol.64, pp.2519-2529, 1990.

L. E. Henderson, R. C. Sowder, T. D. Copeland, S. Oroszlan, and R. E. Benveniste, Gag precursors of HIV and SIV are cleaved into six proteins found in the mature virions, J Med Primatol, vol.19, pp.411-419, 1990.

T. Jacks, M. D. Power, F. R. Masiarz, P. A. Luciw, and P. J. Barr, Characterization of ribosomal frameshifting in HIV-1 gag-pol expression, Nature, vol.331, pp.280-283, 1988.

M. Kuzembayeva, K. Dilley, L. Sardo, and W. S. Hu, Life of psi: how full-length HIV-1 RNAs become packaged genomes in the viral particles, Virology, vol.454, pp.362-370, 2014.

B. M. Peterlin and D. Trono, Hide, shield and strike back: how HIV-infected cells avoid immune eradication, Nat Rev Immunol, vol.3, pp.97-107, 2003.

A. Engelman and P. Cherepanov, The structural biology of HIV-1: mechanistic and therapeutic insights, Nat Rev Microbiol, vol.10, pp.279-290, 2012.

K. Hedestam, G. B. Fouchier, R. A. Phogat, S. Burton, D. R. Sodroski et al., The challenges of eliciting neutralizing antibodies to HIV-1 and to influenza virus, Nat Rev Microbiol, vol.6, pp.143-155, 2008.

C. B. Wilen, J. C. Tilton, and R. W. Doms, HIV: cell binding and entry. Cold Spring Harb Perspect Med 2, 2012.

A. G. Dalgleish, P. C. Beverley, P. R. Clapham, D. H. Crawford, and M. F. Greaves, The CD4 (T4) antigen is an essential component of the receptor for the AIDS retrovirus, Nature, vol.312, pp.763-767, 1984.

D. Klatzmann, E. Champagne, S. Chamaret, J. Gruest, and D. Guetard, T-lymphocyte T4 molecule behaves as the receptor for human retrovirus LAV, Nature, vol.312, pp.767-768, 1984.

Y. Feng, C. C. Broder, P. E. Kennedy, and E. A. Berger, HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor, Science, vol.272, pp.872-877, 1996.

G. Alkhatib, C. Combadiere, C. C. Broder, Y. Feng, and P. E. Kennedy, CC CKR5: a RANTES, MIP1alpha, MIP-1beta receptor as a fusion cofactor for macrophage-tropic HIV-1, Science, vol.272, pp.1955-1958, 1996.

E. A. Berger, R. W. Doms, E. M. Fenyo, B. T. Korber, and D. R. Littman, A new classification for HIV-1, Nature, vol.391, p.240, 1998.

V. Buzon, G. Natrajan, D. Schibli, F. Campelo, and M. M. Kozlov, Crystal structure of HIV-1 gp41 including both fusion peptide and membrane proximal external regions, PLoS Pathog, vol.6, p.1000880, 2010.

G. B. Melikyan, Common principles and intermediates of viral protein-mediated fusion: the HIV-1 paradigm, Retrovirology, vol.5, p.111, 2008.

K. Miyauchi, Y. Kim, O. Latinovic, V. Morozov, and G. B. Melikyan, HIV enters cells via endocytosis and dynamin-dependent fusion with endosomes, Cell, vol.137, pp.433-444, 2009.

C. Grewe, A. Beck, and H. R. Gelderblom, HIV: early virus-cell interactions, J Acquir Immune Defic Syndr, vol.3, pp.965-974, 1990.

N. Arhel, Revisiting HIV-1 uncoating, Retrovirology, vol.7, p.96, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02142365

N. J. Arhel, S. Souquere-besse, S. Munier, P. Souque, and S. Guadagnini, HIV-1 DNA Flap formation promotes uncoating of the pre-integration complex at the nuclear pore, EMBO J, vol.26, pp.3025-3037, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00167661

E. M. Campbell and T. J. Hope, HIV-1 capsid: the multifaceted key player in HIV-1 infection, Nat Rev Microbiol, vol.13, pp.471-483, 2015.

F. Guo, S. Cen, M. Niu, H. Javanbakht, and L. Kleiman, Specific inhibition of the synthesis of human lysyl-tRNA synthetase results in decreases in tRNA(Lys) incorporation, tRNA(3)(Lys) annealing to viral RNA, and viral infectivity in human immunodeficiency virus type 1, J Virol, vol.77, pp.9817-9822, 2003.

J. K. Kim, C. Palaniappan, W. Wu, P. J. Fay, and R. A. Bambara, Evidence for a unique mechanism of strand transfer from the transactivation response region of HIV-1, J Biol Chem, vol.272, pp.16769-16777, 1997.

S. H. Hughes, Reverse Transcription of Retroviruses and LTR Retrotransposons, Microbiol Spectr, vol.3, pp.3-0027, 2015.

P. F. Lewis and M. Emerman, Passage through mitosis is required for oncoretroviruses but not for the human immunodeficiency virus, J Virol, vol.68, pp.510-516, 1994.

M. I. Bukrinsky, N. Sharova, M. P. Dempsey, T. L. Stanwick, and A. G. Bukrinskaya, Active nuclear import of human immunodeficiency virus type 1 preintegration complexes, Proc Natl Acad Sci, vol.89, pp.6580-6584, 1992.

B. Hamid, F. Kim, J. Shin, and C. G. , Cellular and viral determinants of retroviral nuclear entry, Can J Microbiol, vol.62, pp.1-15, 2016.

K. Bichel, A. J. Price, T. Schaller, G. J. Towers, and S. M. Freund, HIV-1 capsid undergoes coupled binding and isomerization by the nuclear pore protein NUP358, Retrovirology, vol.10, p.81, 2013.

S. Popov, M. Rexach, L. Ratner, G. Blobel, and M. Bukrinsky, Viral protein R regulates docking of the HIV-1 preintegration complex to the nuclear pore complex, J Biol Chem, vol.273, pp.13347-13352, 1998.

A. Fassati, D. Gorlich, I. Harrison, L. Zaytseva, and J. M. Mingot, Nuclear import of HIV-1 intracellular reverse transcription complexes is mediated by importin 7, EMBO J, vol.22, pp.3675-3685, 2003.

A. C. Hearps and D. A. Jans, HIV-1 integrase is capable of targeting DNA to the nucleus via an importin alpha/beta-dependent mechanism, Biochem J, vol.398, pp.475-484, 2006.

C. Depienne, P. Roques, C. Creminon, L. Fritsch, and R. Casseron, Cellular distribution and karyophilic properties of matrix, integrase, and Vpr proteins from the human and simian immunodeficiency viruses, Exp Cell Res, vol.260, pp.387-395, 2000.

M. Yamashita and M. Emerman, The cell cycle independence of HIV infections is not determined by known karyophilic viral elements, PLoS Pathog, vol.1, p.18, 2005.

L. Krishnan, K. A. Matreyek, I. Oztop, K. Lee, and C. H. Tipper, The requirement for cellular transportin 3 (TNPO3 or TRN-SR2) during infection maps to human immunodeficiency virus type 1 capsid and not integrase, J Virol, vol.84, pp.397-406, 2010.

A. Cribier, E. Segeral, O. Delelis, V. Parissi, and A. Simon, Mutations affecting interaction of integrase with TNPO3 do not prevent HIV-1 cDNA nuclear import, Retrovirology, vol.8, p.104, 2011.
URL : https://hal.archives-ouvertes.fr/inserm-00674026

J. C. Valle-casuso, D. Nunzio, F. Yang, Y. Reszka, N. Lienlaf et al., TNPO3 is required for HIV-1 replication after nuclear import but prior to integration and binds the HIV-1 core, J Virol, vol.86, pp.5931-5936, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00762028

A. De-iaco, F. Santoni, A. Vannier, M. Guipponi, and S. Antonarakis, TNPO3 protects HIV-1 replication from CPSF6-mediated capsid stabilization in the host cell cytoplasm, Retrovirology, vol.10, p.20, 2013.

J. De-rijck and Z. Debyser, The central DNA flap of the human immunodeficiency virus type 1 is important for viral replication, Biochem Biophys Res Commun, vol.349, pp.1100-1110, 2006.

A. Limon, N. Nakajima, R. Lu, H. Z. Ghory, and A. Engelman, Wild-type levels of nuclear localization and human immunodeficiency virus type 1 replication in the absence of the central DNA flap, J Virol, vol.76, pp.12078-12086, 2002.

F. Bushman, M. Lewinski, A. Ciuffi, S. Barr, and J. Leipzig, Genome-wide analysis of retroviral DNA integration, Nat Rev Microbiol, vol.3, pp.848-858, 2005.

M. K. Lewinski, D. Bisgrove, P. Shinn, H. Chen, and C. Hoffmann, Genome-wide analysis of chromosomal features repressing human immunodeficiency virus transcription, J Virol, vol.79, pp.6610-6619, 2005.

H. G. Gottlinger, The HIV-1 assembly machine, AIDS, vol.15, pp.13-20, 2001.

E. O. Freed, HIV-1 assembly, release and maturation, Nat Rev Microbiol, vol.13, pp.484-496, 2015.

K. Maeda, S. A. Almofty, S. K. Singh, M. M. Eid, and M. Shimoda, GANP interacts with APOBEC3G and facilitates its encapsidation into the virions to reduce HIV-1 infectivity, J Immunol, vol.191, pp.6030-6039, 2013.

A. Wlodawer and J. W. Erickson, Structure-based inhibitors of HIV-1 protease, Annu Rev Biochem, vol.62, pp.543-585, 1993.

S. Li, C. P. Hill, W. I. Sundquist, and J. T. Finch, Image reconstructions of helical assemblies of the HIV-1 CA protein, Nature, vol.407, pp.409-413, 2000.

K. Wiegers, G. Rutter, H. Kottler, U. Tessmer, and H. Hohenberg, Sequential steps in human immunodeficiency virus particle maturation revealed by alterations of individual Gag polyprotein cleavage sites, J Virol, vol.72, pp.2846-2854, 1998.

A. H. Kaplan, J. A. Zack, M. Knigge, D. A. Paul, and D. J. Kempf, Partial inhibition of the human immunodeficiency virus type 1 protease results in aberrant virus assembly and the formation of noninfectious particles, J Virol, vol.67, pp.4050-4055, 1993.

T. W. Chun, D. Engel, M. M. Berrey, T. Shea, and L. Corey, Early establishment of a pool of latently infected, resting CD4(+) T cells during primary HIV-1 infection, Proc Natl Acad Sci U S A, vol.95, pp.8869-8873, 1998.

D. A. Cooper, J. Gold, P. Maclean, B. Donovan, and R. Finlayson, Acute AIDS retrovirus infection. Definition of a clinical illness associated with seroconversion, Lancet, vol.1, pp.537-540, 1985.

H. Mitsuya, K. J. Weinhold, P. A. Furman, M. H. St-clair, and S. N. Lehrman, ) 3'-Azido-3'-deoxythymidine (BW A509U): an antiviral agent that inhibits the infectivity and cytopathic effect of human T-lymphotropic virus type III/lymphadenopathy-associated virus in vitro, Proc Natl Acad Sci U S A, vol.82, pp.7096-7100, 1985.

M. A. Fischl, D. D. Richman, M. H. Grieco, M. S. Gottlieb, and P. A. Volberding, The efficacy of azidothymidine (AZT) in the treatment of patients with AIDS and AIDS-related complex. A double-blind, placebo-controlled trial, N Engl J Med, vol.317, pp.185-191, 1987.

S. M. Hammer, D. A. Katzenstein, M. D. Hughes, H. Gundacker, and R. T. Schooley, A trial comparing nucleoside monotherapy with combination therapy in HIV-infected adults with CD4 cell counts from 200 to 500 per cubic millimeter. AIDS Clinical Trials Group Study 175 Study Team, N Engl J Med, vol.335, pp.1081-1090, 1996.

X. Wei, S. K. Ghosh, M. E. Taylor, V. A. Johnson, and E. A. Emini, Viral dynamics in human immunodeficiency virus type 1 infection, Nature, vol.373, pp.117-122, 1995.

D. D. Ho, A. U. Neumann, A. S. Perelson, W. Chen, and J. M. Leonard, Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection, Nature, vol.373, pp.123-126, 1995.

A. S. Perelson, P. Essunger, Y. Cao, M. Vesanen, and A. Hurley, Decay characteristics of HIV-1-infected compartments during combination therapy, Nature, vol.387, pp.188-191, 1997.

A. Burton, Enfuvirtide approved for defusing HIV, Lancet Infect Dis, vol.3, p.260, 2003.

B. Y. Nguyen, R. D. Isaacs, H. Teppler, R. Y. Leavitt, and P. Sklar, Raltegravir: the first HIV-1 integrase strand transfer inhibitor in the HIV armamentarium, Ann N Y Acad Sci, vol.1222, pp.83-89, 2011.

S. Hare, S. J. Smith, M. Metifiot, A. Jaxa-chamiec, and Y. Pommier, Structural and functional analyses of the second-generation integrase strand transfer inhibitor dolutegravir (S/GSK1349572), Mol Pharmacol, vol.80, pp.565-572, 2011.

L. Rong and A. S. Perelson, Modeling latently infected cell activation: viral and latent reservoir persistence, and viral blips in HIV-infected patients on potent therapy, PLoS Comput Biol, vol.5, p.1000533, 2009.

A. S. Perelson, P. Essunger, and D. D. Ho, Dynamics of HIV-1 and CD4+ lymphocytes in vivo, AIDS, vol.11, pp.17-24, 1997.

L. Zhang, C. Chung, B. S. Hu, T. He, and Y. Guo, Genetic characterization of rebounding HIV-1 after cessation of highly active antiretroviral therapy, J Clin Invest, vol.106, pp.839-845, 2000.

B. Ramratnam, J. E. Mittler, L. Zhang, D. Boden, and A. Hurley, The decay of the latent reservoir of replication-competent HIV-1 is inversely correlated with the extent of residual viral replication during prolonged anti-retroviral therapy, Nat Med, vol.6, pp.82-85, 2000.

D. Mascio, M. Markowitz, M. Louie, M. Hogan, C. Hurley et al., Viral blip dynamics during highly active antiretroviral therapy, J Virol, vol.77, pp.12165-12172, 2003.

L. E. Jones and A. S. Perelson, Transient viremia, plasma viral load, and reservoir replenishment in HIV-infected patients on antiretroviral therapy, J Acquir Immune Defic Syndr, vol.45, pp.483-493, 2007.

R. E. Nettles, T. L. Kieffer, P. Kwon, D. Monie, and Y. Han, Intermittent HIV-1 viremia (Blips) and drug resistance in patients receiving HAART, JAMA, vol.293, pp.817-829, 2005.

E. M. Connor, R. S. Sperling, R. Gelber, P. Kiselev, and G. Scott, Reduction of maternal-infant transmission of human immunodeficiency virus type 1 with zidovudine treatment. Pediatric AIDS Clinical Trials Group Protocol 076 Study Group, N Engl J Med, vol.331, pp.1173-1180, 1994.

H. Minkoff, Human immunodeficiency virus infection in pregnancy, Obstet Gynecol, vol.101, pp.797-810, 2003.

M. S. Cohen, Y. Q. Chen, M. Mccauley, T. Gamble, and M. C. Hosseinipour, Prevention of HIV-1 infection with early antiretroviral therapy, N Engl J Med, vol.365, pp.493-505, 2011.

H. F. Gunthard, M. S. Saag, C. A. Benson, C. Del-rio, and J. J. Eron, Antiretroviral Drugs for Treatment and Prevention of HIV Infection in Adults: 2016 Recommendations of the International Antiviral Society-USA Panel, JAMA, vol.316, pp.191-210, 2016.

F. Barre-sinoussi, A. L. Ross, and J. F. Delfraissy, Past, present and future: 30 years of HIV research, Nat Rev Microbiol, vol.11, pp.877-883, 2013.

T. Dragic, A. Trkola, D. A. Thompson, E. G. Cormier, and F. A. Kajumo, A binding pocket for a small molecule inhibitor of HIV-1 entry within the transmembrane helices of CCR5, Proc Natl Acad Sci U S A, vol.97, pp.5639-5644, 2000.

E. J. Arts and D. J. Hazuda, HIV-1 antiretroviral drug therapy, Cold Spring Harb Perspect Med, vol.2, p.7161, 2012.

P. Dorr, M. Westby, S. Dobbs, P. Griffin, and B. Irvine, Maraviroc (UK-427,857), a potent, orally bioavailable, and selective small-molecule inhibitor of chemokine receptor CCR5 with broad-spectrum anti-human immunodeficiency virus type 1 activity, Antimicrob Agents Chemother, vol.49, pp.4721-4732, 2005.

M. Westby, M. Lewis, J. Whitcomb, M. Youle, and A. L. Pozniak, Emergence of CXCR4-using human immunodeficiency virus type 1 (HIV-1) variants in a minority of HIV-1-infected patients following treatment with the CCR5 antagonist maraviroc is from a pretreatment CXCR4-using virus reservoir, J Virol, vol.80, pp.4909-4920, 2006.

J. P. Lalezari, K. Henry, M. O'hearn, J. S. Montaner, and P. J. Piliero, Enfuvirtide, an HIV-1 fusion inhibitor, for drug-resistant HIV infection in North and South America, N Engl J Med, vol.348, pp.2175-2185, 2003.

J. D. Reeves, F. H. Lee, J. L. Miamidian, C. B. Jabara, and M. M. Juntilla, Enfuvirtide resistance mutations: impact on human immunodeficiency virus envelope function, entry inhibitor sensitivity, and virus neutralization, J Virol, vol.79, pp.4991-4999, 2005.

C. A. Derdeyn, J. M. Decker, J. N. Sfakianos, X. Wu, and W. A. O'brien, Sensitivity of human immunodeficiency virus type 1 to the fusion inhibitor T-20 is modulated by coreceptor specificity defined by the V3 loop of gp120, J Virol, vol.74, pp.8358-8367, 2000.

J. P. Lalezari, G. H. Latiff, C. Brinson, J. Echevarria, and S. Trevino-perez, Safety and efficacy of the HIV-1 attachment inhibitor prodrug BMS-663068 in treatment-experienced individuals: 24 week results of AI438011, a phase 2b, randomised controlled trial, Lancet HIV, vol.2, pp.427-437, 2015.

J. Balzarini, P. Herdewijn, D. Clercq, and E. , Differential patterns of intracellular metabolism of 2',3'-didehydro-2',3'-dideoxythymidine and 3'-azido-2',3'-dideoxythymidine, two potent antihuman immunodeficiency virus compounds, J Biol Chem, vol.264, pp.6127-6133, 1989.

P. L. Boyer, S. G. Sarafianos, A. E. Hughes, and S. H. , Selective excision of AZTMP by drugresistant human immunodeficiency virus reverse transcriptase, J Virol, vol.75, pp.4832-4842, 2001.

R. A. Spence, W. M. Kati, K. S. Anderson, and K. A. Johnson, Mechanism of inhibition of HIV-1 reverse transcriptase by nonnucleoside inhibitors, Science, vol.267, pp.988-993, 1995.

Y. Hsiou, J. Ding, K. Das, A. D. Clark, J. Hughes et al., Structure of unliganded HIV-1 reverse transcriptase at 2.7 A resolution: implications of conformational changes for polymerization and inhibition mechanisms, Structure, vol.4, pp.853-860, 1996.

C. Tantillo, J. Ding, A. Jacobo-molina, R. G. Nanni, and P. L. Boyer, Locations of anti-AIDS drug binding sites and resistance mutations in the three-dimensional structure of HIV-1 reverse transcriptase. Implications for mechanisms of drug inhibition and resistance, J Mol Biol, vol.243, pp.369-387, 1994.

C. Dykes, K. Fox, A. Lloyd, M. Chiulli, and E. Morse, Impact of clinical reverse transcriptase sequences on the replication capacity of HIV-1 drug-resistant mutants, Virology, vol.285, pp.193-203, 2001.

D. J. Kempf, K. C. Marsh, G. Kumar, A. D. Rodrigues, and J. F. Denissen, Pharmacokinetic enhancement of inhibitors of the human immunodeficiency virus protease by coadministration with ritonavir, Antimicrob Agents Chemother, vol.41, pp.654-660, 1997.

R. E. Miron and R. J. Smith, Resistance to protease inhibitors in a model of HIV-1 infection with impulsive drug effects, Bull Math Biol, vol.76, pp.59-97, 2014.

A. Molla, M. Korneyeva, Q. Gao, S. Vasavanonda, and P. J. Schipper, Ordered accumulation of mutations in HIV protease confers resistance to ritonavir, Nat Med, vol.2, pp.760-766, 1996.

M. Prabu-jeyabalan, E. Nalivaika, and C. A. Schiffer, Substrate shape determines specificity of recognition for HIV-1 protease: analysis of crystal structures of six substrate complexes, Structure, vol.10, pp.369-381, 2002.

M. N. Nalam, A. Ali, M. D. Altman, G. S. Reddy, and S. Chellappan, Evaluating the substrateenvelope hypothesis: structural analysis of novel HIV-1 protease inhibitors designed to be robust against drug resistance, J Virol, vol.84, pp.5368-5378, 2010.

B. Nowicka-sans, T. Protack, Z. Lin, Z. Li, and S. Zhang, Identification and Characterization of BMS-955176, a Second-Generation HIV-1 Maturation Inhibitor with Improved Potency, Antiviral Spectrum, and Gag Polymorphic Coverage, Antimicrob Agents Chemother, vol.60, pp.3956-3969, 2016.

M. Peeters, D. 'arc, M. Delaporte, and E. , Origin and diversity of human retroviruses, AIDS Rev, vol.16, pp.23-34, 2014.

B. S. Taylor and S. M. Hammer, The challenge of HIV-1 subtype diversity, N Engl J Med, vol.359, pp.1965-1966, 2008.

S. Hue, R. J. Gifford, D. Dunn, E. Fernhill, and D. Pillay, Demonstration of sustained drug-resistant human immunodeficiency virus type 1 lineages circulating among treatment-naive individuals, J Virol, vol.83, pp.2645-2654, 2009.

J. M. Coffin, HIV population dynamics in vivo: implications for genetic variation, pathogenesis, and therapy, Science, vol.267, pp.483-489, 1995.

H. F. Gunthard, D. V. Havlir, S. Fiscus, Z. Q. Zhang, and J. Eron, Residual human immunodeficiency virus (HIV) Type 1 RNA and DNA in lymph nodes and HIV RNA in genital secretions and in cerebrospinal fluid after suppression of viremia for 2 years, J Infect Dis, vol.183, pp.1318-1327, 2001.

D. M. Smith, J. K. Wong, H. Shao, G. K. Hightower, and S. H. Mai, Long-term persistence of transmitted HIV drug resistance in male genital tract secretions: implications for secondary transmission, J Infect Dis, vol.196, pp.356-360, 2007.

S. A. Barber, L. Gama, J. M. Dudaronek, T. Voelker, and P. M. Tarwater, Mechanism for the establishment of transcriptional HIV latency in the brain in a simian immunodeficiency virusmacaque model, J Infect Dis, vol.193, pp.963-970, 2006.

J. N. Blankson, D. Finzi, T. C. Pierson, B. P. Sabundayo, and K. Chadwick, Biphasic decay of latently infected CD4+ T cells in acute human immunodeficiency virus type 1 infection, J Infect Dis, vol.182, pp.1636-1642, 2000.

J. D. Siliciano, J. Kajdas, D. Finzi, T. C. Quinn, and K. Chadwick, Long-term follow-up studies confirm the stability of the latent reservoir for HIV-1 in resting CD4+ T cells, Nat Med, vol.9, pp.727-728, 2003.

F. D. Bushman, T. Fujiwara, and R. Craigie, Retroviral DNA integration directed by HIV integration protein in vitro, Science, vol.249, pp.1555-1558, 1990.

P. Lesbats, A. N. Engelman, and P. Cherepanov, Retroviral DNA Integration, Chem Rev, 2016.

S. Pang, Y. Koyanagi, S. Miles, C. Wiley, and H. V. Vinters, High levels of unintegrated HIV-1 DNA in brain tissue of AIDS dementia patients, Nature, vol.343, pp.85-89, 1990.

P. O. Brown, B. Bowerman, H. E. Varmus, and J. M. Bishop, Retroviral integration: structure of the initial covalent product and its precursor, and a role for the viral IN protein, Proc Natl Acad Sci U S A, vol.86, pp.2525-2529, 1989.

K. Mizuuchi and K. Adzuma, Inversion of the phosphate chirality at the target site of Mu DNA strand transfer: evidence for a one-step transesterification mechanism, Cell, vol.66, pp.129-140, 1991.

S. Hare, S. S. Gupta, E. Valkov, A. Engelman, and P. Cherepanov, Retroviral intasome assembly and inhibition of DNA strand transfer, Nature, vol.464, pp.232-236, 2010.

Y. Li, J. C. Kappes, J. A. Conway, R. W. Price, and G. M. Shaw, Molecular characterization of human immunodeficiency virus type 1 cloned directly from uncultured human brain tissue: identification of replication-competent and -defective viral genomes, J Virol, vol.65, pp.3973-3985, 1991.

N. Yan, P. Cherepanov, J. E. Daigle, A. Engelman, and J. Lieberman, The SET complex acts as a barrier to autointegration of HIV-1, PLoS Pathog, vol.5, p.1000327, 2009.

F. Maldarelli, X. Wu, L. Su, F. R. Simonetti, and W. Shao, HIV latency. Specific HIV integration sites are linked to clonal expansion and persistence of infected cells, Science, vol.345, pp.179-183, 2014.

A. Gerard, E. Segeral, M. Naughtin, A. Abdouni, and B. Charmeteau, The integrase cofactor LEDGF/p75 associates with Iws1 and Spt6 for postintegration silencing of HIV-1 gene expression in latently infected cells, Cell Host Microbe, vol.17, pp.107-117, 2015.

E. Serrao, A. Ballandras-colas, P. Cherepanov, G. N. Maertens, and A. N. Engelman, Key determinants of target DNA recognition by retroviral intasomes, Retrovirology, vol.12, p.39, 2015.

X. Wu, Y. Li, B. Crise, S. M. Burgess, and D. J. Munroe, Weak palindromic consensus sequences are a common feature found at the integration target sites of many retroviruses, J Virol, vol.79, pp.5211-5214, 2005.

M. Kvaratskhelia, A. Sharma, R. C. Larue, E. Serrao, and A. Engelman, Molecular mechanisms of retroviral integration site selection, Nucleic Acids Res, vol.42, pp.10209-10225, 2014.

G. A. Sowd, E. Serrao, H. Wang, W. Wang, and H. J. Fadel, A critical role for alternative polyadenylation factor CPSF6 in targeting HIV-1 integration to transcriptionally active chromatin, Proc Natl Acad Sci U S A, vol.113, pp.1054-1063, 2016.

B. Marini, A. Kertesz-farkas, H. Ali, B. Lucic, and K. Lisek, Nuclear architecture dictates HIV-1 integration site selection, Nature, vol.521, pp.227-231, 2015.

A. Engelman, K. Mizuuchi, and R. Craigie, HIV-1 DNA integration: mechanism of viral DNA cleavage and DNA strand transfer, Cell, vol.67, pp.1211-1221, 1991.

F. D. Bushman and R. Craigie, Activities of human immunodeficiency virus (HIV) integration protein in vitro: specific cleavage and integration of HIV DNA, Proc Natl Acad Sci U S A, vol.88, pp.1339-1343, 1991.

E. Devroe, A. Engelman, and P. A. Silver, Intracellular transport of human immunodeficiency virus type 1 integrase, J Cell Sci, vol.116, pp.4401-4408, 2003.

L. C. Mulder, L. A. Chakrabarti, and M. A. Muesing, Interaction of HIV-1 integrase with DNA repair protein hRad18, J Biol Chem, vol.277, pp.27489-27493, 2002.

A. G. Lloyd, S. Tateishi, P. D. Bieniasz, M. A. Muesing, and M. Yamaizumi, Effect of DNA repair protein Rad18 on viral infection, PLoS Pathog, vol.2, p.40, 2006.

A. Mousnier, N. Kubat, A. Massias-simon, E. Segeral, and J. C. Rain, Hippel Lindau binding protein 1-mediated degradation of integrase affects HIV-1 gene expression at a postintegration step, Proc Natl Acad Sci U S A, vol.104, pp.13615-13620, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00182604

K. E. Yoder and F. D. Bushman, Repair of gaps in retroviral DNA integration intermediates, J Virol, vol.74, pp.11191-11200, 2000.

K. E. Yoder, A. Espeseth, X. H. Wang, Q. Fang, and M. T. Russo, The base excision repair pathway is required for efficient lentivirus integration, PLoS One, vol.6, p.17862, 2011.

A. Cooper, M. Garcia, C. Petrovas, T. Yamamoto, and R. A. Koup, HIV-1 causes CD4 cell death through DNA-dependent protein kinase during viral integration, Nature, vol.498, pp.376-379, 2013.

V. Baekelandt, A. Claeys, P. Cherepanov, D. Clercq, E. et al., DNA-Dependent protein kinase is not required for efficient lentivirus integration, J Virol, vol.74, pp.11278-11285, 2000.

S. Desfarges, S. Filippo, J. Fournier, M. Calmels, C. Caumont-sarcos et al., Chromosomal integration of LTR-flanked DNA in yeast expressing HIV-1 integrase: down regulation by RAD51, Nucleic Acids Res, vol.34, pp.6215-6224, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00166159

O. Cosnefroy, A. Tocco, P. Lesbats, S. Thierry, and C. Calmels, Stimulation of the human RAD51 nucleofilament restricts HIV-1 integration in vitro and in infected cells, J Virol, vol.86, pp.513-526, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00675716

S. Thierry, M. S. Benleulmi, L. Sinzelle, E. Thierry, and C. Calmels, Dual and Opposite Effects of hRAD51 Chemical Modulation on HIV-1 Integration, Chem Biol, vol.22, pp.712-723, 2015.

S. A. Chow, K. A. Vincent, V. Ellison, and P. O. Brown, Reversal of integration and DNA splicing mediated by integrase of human immunodeficiency virus, Science, vol.255, pp.723-726, 1992.

A. Brussel and P. Sonigo, Analysis of early human immunodeficiency virus type 1 DNA synthesis by use of a new sensitive assay for quantifying integrated provirus, J Virol, vol.77, pp.10119-10124, 2003.

R. D. Sloan and M. A. Wainberg, The role of unintegrated DNA in HIV infection, Retrovirology, vol.8, p.52, 2011.

J. M. Kilzer, T. Stracker, B. Beitzel, K. Meek, and M. Weitzman, Roles of host cell factors in circularization of retroviral dna, Virology, vol.314, pp.460-467, 2003.

S. Munir, S. Thierry, F. Subra, E. Deprez, and O. Delelis, Quantitative analysis of the time-course of viral DNA forms during the HIV-1 life cycle, Retrovirology, vol.10, p.87, 2013.

L. Li, J. M. Olvera, K. E. Yoder, R. S. Mitchell, and S. L. Butler, Role of the non-homologous DNA end joining pathway in the early steps of retroviral infection, EMBO J, vol.20, pp.3272-3281, 2001.

S. Thierry, S. Munir, E. Thierry, F. Subra, and H. Leh, Integrase inhibitor reversal dynamics indicate unintegrated HIV-1 dna initiate de novo integration, Retrovirology, vol.12, p.24, 2015.

T. L. Diamond and F. D. Bushman, Role of metal ions in catalysis by HIV integrase analyzed using a quantitative PCR disintegration assay, Nucleic Acids Res, vol.34, pp.6116-6125, 2006.

O. Delelis, V. Parissi, H. Leh, G. Mbemba, and C. Petit, Efficient and specific internal cleavage of a retroviral palindromic DNA sequence by tetrameric HIV-1 integrase, PLoS One, vol.2, p.608, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00211177

O. Delelis, C. Petit, H. Leh, G. Mbemba, and J. F. Mouscadet, A novel function for spumaretrovirus integrase: an early requirement for integrase-mediated cleavage of 2 LTR circles, Retrovirology, vol.2, p.31, 2005.
URL : https://hal.archives-ouvertes.fr/inserm-00090524

A. Engelman, In vivo analysis of retroviral integrase structure and function, Adv Virus Res, vol.52, pp.411-426, 1999.

S. S. Tekeste, T. A. Wilkinson, E. M. Weiner, X. Xu, and J. T. Miller, Interaction between Reverse Transcriptase and Integrase Is Required for Reverse Transcription during HIV-1 Replication, J Virol, vol.89, pp.12058-12069, 2015.

A. Engelman and P. Cherepanov, The lentiviral integrase binding protein LEDGF/p75 and HIV-1 replication, PLoS Pathog, vol.4, p.1000046, 2008.

J. Demeulemeester, J. De-rijck, R. Gijsbers, and Z. Debyser, Retroviral integration: Site matters: Mechanisms and consequences of retroviral integration site selection, Bioessays, vol.37, pp.1202-1214, 2015.

M. Cai, R. Zheng, M. Caffrey, R. Craigie, and G. M. Clore, Solution structure of the N-terminal zinc binding domain of HIV-1 integrase, Nat Struct Biol, vol.4, pp.567-577, 1997.

D. Esposito and R. Craigie, HIV integrase structure and function, Adv Virus Res, vol.52, pp.319-333, 1999.

S. P. Lee, J. Xiao, J. R. Knutson, M. S. Lewis, and M. K. Han, Zn2+ promotes the self-association of human immunodeficiency virus type-1 integrase in vitro, Biochemistry, vol.36, pp.173-180, 1997.

T. S. Heuer and P. O. Brown, Mapping features of HIV-1 integrase near selected sites on viral and target DNA molecules in an active enzyme-DNA complex by photo-cross-linking, Biochemistry, vol.36, pp.10655-10665, 1997.

T. Masuda, V. Planelles, P. Krogstad, and I. S. Chen, Genetic analysis of human immunodeficiency virus type 1 integrase and the U3 att site: unusual phenotype of mutants in the zinc fingerlike domain, J Virol, vol.69, pp.6687-6696, 1995.

A. Ballandras-colas, H. Naraharisetty, X. Li, E. Serrao, and A. Engelman, Biochemical characterization of novel retroviral integrase proteins, PLoS One, vol.8, p.76638, 2013.

J. Kulkosky, K. S. Jones, R. A. Katz, J. P. Mack, and A. M. Skalka, Residues critical for retroviral integrative recombination in a region that is highly conserved among retroviral/retrotransposon integrases and bacterial insertion sequence transposases, Mol Cell Biol, vol.12, pp.2331-2338, 1992.

W. Yang, J. Y. Lee, and M. Nowotny, Making and breaking nucleic acids: two-Mg2+-ion catalysis and substrate specificity, Mol Cell, vol.22, pp.5-13, 2006.

F. Dyda, A. B. Hickman, T. M. Jenkins, A. Engelman, and R. Craigie, Crystal structure of the catalytic domain of HIV-1 integrase: similarity to other polynucleotidyl transferases, Science, vol.266, pp.1981-1986, 1994.

M. Nowotny, Retroviral integrase superfamily: the structural perspective, EMBO Rep, vol.10, pp.144-151, 2009.

R. D. Lins, A. Adesokan, T. A. Soares, and J. M. Briggs, Investigations on human immunodeficiency virus type 1 integrase/DNA binding interactions via molecular dynamics and electrostatics calculations, Pharmacol Ther, vol.85, pp.123-131, 2000.

D. Esposito and R. Craigie, Sequence specificity of viral end DNA binding by HIV-1 integrase reveals critical regions for protein-DNA interaction, EMBO J, vol.17, pp.5832-5843, 1998.

M. C. Lee, J. Deng, J. M. Briggs, and Y. Duan, Large-scale conformational dynamics of the HIV-1 integrase core domain and its catalytic loop mutants, Biophys J, vol.88, pp.3133-3146, 2005.

T. M. Jenkins, D. Esposito, A. Engelman, and R. Craigie, Critical contacts between HIV-1 integrase and viral DNA identified by structure-based analysis and photo-crosslinking, EMBO J, vol.16, pp.6849-6859, 1997.

A. P. Eijkelenboom, R. A. Lutzke, R. Boelens, R. H. Plasterk, and R. Kaptein, The DNA-binding domain of HIV-1 integrase has an SH3-like fold, Nat Struct Biol, vol.2, pp.807-810, 1995.

A. M. Woerner and C. J. Marcus-sekura, Characterization of a DNA binding domain in the Cterminus of HIV-1 integrase by deletion mutagenesis, Nucleic Acids Res, vol.21, pp.3507-3511, 1993.

G. V. Kalpana, A. Reicin, G. S. Cheng, M. Sorin, and S. Paik, Isolation and characterization of an oligomerization-negative mutant of HIV-1 integrase, Virology, vol.259, pp.274-285, 1999.

G. N. Maertens, S. Hare, and P. Cherepanov, The mechanism of retroviral integration from X-ray structures of its key intermediates, Nature, vol.468, pp.326-329, 2010.

J. A. Briggs, M. N. Simon, I. Gross, H. G. Krausslich, and S. D. Fuller, The stoichiometry of Gag protein in HIV-1, Nat Struct Mol Biol, vol.11, pp.672-675, 2004.

C. Calmels, V. R. De-soultrait, A. Caumont, C. Desjobert, and A. Faure, Biochemical and random mutagenesis analysis of the region carrying the catalytic E152 amino acid of HIV-1 integrase, Nucleic Acids Res, vol.32, pp.1527-1538, 2004.

P. Cherepanov, G. Maertens, P. Proost, B. Devreese, and J. Van-beeumen, HIV-1 integrase forms stable tetramers and associates with LEDGF/p75 protein in human cells, J Biol Chem, vol.278, pp.372-381, 2003.

E. Deprez, P. Tauc, H. Leh, J. F. Mouscadet, and C. Auclair, Oligomeric states of the HIV-1 integrase as measured by time-resolved fluorescence anisotropy, Biochemistry, vol.39, pp.9275-9284, 2000.
URL : https://hal.archives-ouvertes.fr/hal-00243075

E. Deprez, P. Tauc, H. Leh, J. F. Mouscadet, and C. Auclair, DNA binding induces dissociation of the multimeric form of HIV-1 integrase: a time-resolved fluorescence anisotropy study, Proc Natl Acad Sci U S A, vol.98, pp.10090-10095, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00246985

J. Y. Wang, H. Ling, W. Yang, and R. Craigie, Structure of a two-domain fragment of HIV-1 integrase: implications for domain organization in the intact protein, EMBO J, vol.20, pp.7333-7343, 2001.

A. Faure, C. Calmels, C. Desjobert, M. Castroviejo, and A. Caumont-sarcos, HIV-1 integrase crosslinked oligomers are active in vitro, Nucleic Acids Res, vol.33, pp.977-986, 2005.

S. Bera, K. K. Pandey, A. C. Vora, and D. P. Grandgenett, Molecular Interactions between HIV-1 integrase and the two viral DNA ends within the synaptic complex that mediates concerted integration, J Mol Biol, vol.389, pp.183-198, 2009.

L. Krishnan and A. Engelman, Retroviral integrase proteins and HIV-1 DNA integration, J Biol Chem, vol.287, pp.40858-40866, 2012.

M. Li, S. Lin, and R. Craigie, Outer domains of integrase within retroviral intasomes are dispensible for catalysis of DNA integration, Protein Sci, vol.25, pp.472-478, 2016.

S. Hare, G. N. Maertens, and P. Cherepanov, 3'-processing and strand transfer catalysed by retroviral integrase in crystallo, EMBO J, vol.31, pp.3020-3028, 2012.

M. S. Benleulmi, J. Matysiak, D. R. Henriquez, C. Vaillant, and P. Lesbats, Intasome architecture and chromatin density modulate retroviral integration into nucleosome, Retrovirology, vol.12, p.13, 2015.
URL : https://hal.archives-ouvertes.fr/pasteur-01416843

D. P. Maskell, L. Renault, E. Serrao, P. Lesbats, and R. Matadeen, Structural basis for retroviral integration into nucleosomes, Nature, vol.523, pp.366-369, 2015.

B. C. Johnson, M. Metifiot, A. Ferris, Y. Pommier, and S. H. Hughes, A homology model of HIV-1 integrase and analysis of mutations designed to test the model, J Mol Biol, vol.425, pp.2133-2146, 2013.

Z. Yin, K. Shi, S. Banerjee, K. K. Pandey, and S. Bera, Crystal structure of the Rous sarcoma virus intasome, Nature, vol.530, pp.362-366, 2016.

A. Ballandras-colas, M. Brown, N. J. Cook, T. G. Dewdney, and B. Demeler, Cryo-EM reveals a novel octameric integrase structure for betaretroviral intasome function, Nature, vol.530, pp.358-361, 2016.

C. G. Shin, B. Taddeo, W. A. Haseltine, and C. M. Farnet, Genetic analysis of the human immunodeficiency virus type 1 integrase protein, J Virol, vol.68, pp.1633-1642, 1994.

A. D. Leavitt, G. Robles, N. Alesandro, and H. E. Varmus, Human immunodeficiency virus type 1 integrase mutants retain in vitro integrase activity yet fail to integrate viral DNA efficiently during infection, J Virol, vol.70, pp.721-728, 1996.

X. Wu, H. Liu, H. Xiao, J. A. Conway, and E. Hehl, Human immunodeficiency virus type 1 integrase protein promotes reverse transcription through specific interactions with the nucleoprotein reverse transcription complex, J Virol, vol.73, pp.2126-2135, 1999.

A. Herschhorn, I. Oz-gleenberg, and A. Hizi, Quantitative analysis of the interactions between HIV-1 integrase and retroviral reverse transcriptases, Biochem J, vol.412, pp.163-170, 2008.

I. Oz, O. Avidan, and A. Hizi, Inhibition of the integrases of human immunodeficiency viruses type 1 and type 2 by reverse transcriptases, Biochem J, vol.361, pp.557-566, 2002.

E. A. Hehl, P. Joshi, G. V. Kalpana, and V. R. Prasad, Interaction between human immunodeficiency virus type 1 reverse transcriptase and integrase proteins, J Virol, vol.78, pp.5056-5067, 2004.

K. Gao, R. J. Gorelick, D. G. Johnson, and F. Bushman, Cofactors for human immunodeficiency virus type 1 cDNA integration in vitro, J Virol, vol.77, pp.1598-1603, 2003.

C. M. Farnet and W. A. Haseltine, Integration of human immunodeficiency virus type 1 DNA in vitro, Proc Natl Acad Sci U S A, vol.87, pp.4164-4168, 1990.

C. M. Farnet and F. D. Bushman, HIV-1 cDNA integration: requirement of HMG I(Y) protein for function of preintegration complexes in vitro, Cell, vol.88, pp.483-492, 1997.

M. S. Lee and R. Craigie, Protection of retroviral DNA from autointegration: involvement of a cellular factor, Proc Natl Acad Sci U S A, vol.91, pp.9823-9827, 1994.

G. V. Kalpana, S. Marmon, W. Wang, G. R. Crabtree, and S. P. Goff, Binding and stimulation of HIV-1 integrase by a human homolog of yeast transcription factor SNF5, Science, vol.266, pp.2002-2006, 1994.

S. Emiliani, A. Mousnier, K. Busschots, M. Maroun, and B. Van-maele, Integrase mutants defective for interaction with LEDGF/p75 are impaired in chromosome tethering and HIV-1 replication, J Biol Chem, vol.280, pp.25517-25523, 2005.

C. W. Lin and A. Engelman, The barrier-to-autointegration factor is a component of functional human immunodeficiency virus type 1 preintegration complexes, J Virol, vol.77, pp.5030-5036, 2003.

R. Reeves and L. Beckerbauer, HMGI/Y proteins: flexible regulators of transcription and chromatin structure, Biochim Biophys Acta, vol.1519, pp.13-29, 2001.

P. Hindmarsh, T. Ridky, R. Reeves, M. Andrake, and A. M. Skalka, HMG protein family members stimulate human immunodeficiency virus type 1 and avian sarcoma virus concerted DNA integration in vitro, J Virol, vol.73, pp.2994-3003, 1999.

L. Li, K. Yoder, M. S. Hansen, J. Olvera, and M. D. Miller, Retroviral cDNA integration: stimulation by HMG I family proteins, J Virol, vol.74, pp.10965-10974, 2000.

C. Van-lint, S. Emiliani, M. Ott, and E. Verdin, Transcriptional activation and chromatin remodeling of the HIV-1 promoter in response to histone acetylation, EMBO J, vol.15, pp.1112-1120, 1996.

A. Henderson, M. Bunce, N. Siddon, R. Reeves, and D. J. Tremethick, High-mobility-group protein I can modulate binding of transcription factors to the U5 region of the human immunodeficiency virus type 1 proviral promoter, J Virol, vol.74, pp.10523-10534, 2000.

A. Henderson, A. Holloway, R. Reeves, and D. J. Tremethick, Recruitment of SWI/SNF to the human immunodeficiency virus type 1 promoter, Mol Cell Biol, vol.24, pp.389-397, 2004.

R. Zheng, R. Ghirlando, M. S. Lee, K. Mizuuchi, and M. Krause, Barrier-to-autointegration factor (BAF) bridges DNA in a discrete, higher-order nucleoprotein complex, Proc Natl Acad Sci U S A, vol.97, pp.8997-9002, 2000.

K. Furukawa, LAP2 binding protein 1 (L2BP1/BAF) is a candidate mediator of LAP2-chromatin interaction, J Cell Sci, vol.112, pp.2485-2492, 1999.

F. Turlure, E. Devroe, P. A. Silver, and A. Engelman, Human cell proteins and human immunodeficiency virus DNA integration, Front Biosci, vol.9, pp.3187-3208, 2004.

M. Mansharamani, D. R. Graham, D. Monie, K. K. Lee, and J. E. Hildreth, Barrier-toautointegration factor BAF binds p55 Gag and matrix and is a host component of human immunodeficiency virus type 1 virions, J Virol, vol.77, pp.13084-13092, 2003.

W. Wang, J. Cote, Y. Xue, S. Zhou, and P. A. Khavari, Purification and biochemical heterogeneity of the mammalian SWI-SNF complex, EMBO J, vol.15, pp.5370-5382, 1996.

M. Maroun, O. Delelis, G. Coadou, T. Bader, and E. Segeral, Inhibition of early steps of HIV-1 replication by SNF5/Ini1, J Biol Chem, vol.281, pp.22736-22743, 2006.

E. Yung, M. Sorin, A. Pal, E. Craig, and A. Morozov, Inhibition of HIV-1 virion production by a transdominant mutant of integrase interactor 1, Nat Med, vol.7, pp.920-926, 2001.

P. Lesbats, Y. Botbol, G. Chevereau, C. Vaillant, and C. Calmels, Functional coupling between HIV-1 integrase and the SWI/SNF chromatin remodeling complex for efficient in vitro integration into stable nucleosomes, PLoS Pathog, vol.7, p.1001280, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00594715

B. Van-maele, K. Busschots, L. Vandekerckhove, F. Christ, and Z. Debyser, Cellular co-factors of HIV-1 integration, Trends Biochem Sci, vol.31, pp.98-105, 2006.

F. Christ, W. Thys, D. Rijck, J. Gijsbers, R. Albanese et al., Transportin-SR2 imports HIV into the nucleus, Curr Biol, vol.18, pp.1192-1202, 2008.

M. C. Lai, R. I. Lin, S. Y. Huang, C. W. Tsai, and W. Y. Tarn, A human importin-beta family protein, transportin-SR2, interacts with the phosphorylated RS domain of SR proteins, J Biol Chem, vol.275, pp.7950-7957, 2000.

N. Kataoka, J. L. Bachorik, and G. Dreyfuss, Transportin-SR, a nuclear import receptor for SR proteins, J Cell Biol, vol.145, pp.1145-1152, 1999.

C. Y. Yun, A. L. Velazquez-dones, S. K. Lyman, and X. D. Fu, Phosphorylation-dependent andindependent nuclear import of RS domain-containing splicing factors and regulators, J Biol Chem, vol.278, pp.18050-18055, 2003.

M. K. Ali, J. Kim, F. B. Hamid, and C. G. Shin, Knockdown of the host cellular protein transportin 3 attenuates prototype foamy virus infection, Biosci Biotechnol Biochem, vol.79, pp.943-951, 2015.

V. B. Shah, J. Shi, D. R. Hout, I. Oztop, and L. Krishnan, The host proteins transportin SR2/TNPO3 and cyclophilin A exert opposing effects on HIV-1 uncoating, J Virol, vol.87, pp.422-432, 2013.

K. E. Ocwieja, T. L. Brady, R. K. Huegel, A. Roth, and S. L. , HIV integration targeting: a pathway involving Transportin-3 and the nuclear pore protein RanBP2, PLoS Pathog, vol.7, p.1001313, 2011.

S. Violot, S. S. Hong, D. Rakotobe, C. Petit, and B. Gay, The human polycomb group EED protein interacts with the integrase of human immunodeficiency virus type 1, J Virol, vol.77, pp.12507-12522, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00119648

V. Parissi, A. Caumont, R. De-soultrait, V. Dupont, C. H. Pichuantes et al., Inactivation of the SNF5 transcription factor gene abolishes the lethal phenotype induced by the expression of HIV-1 integrase in yeast, Gene, vol.247, pp.129-136, 2000.

A. Cereseto, L. Manganaro, M. I. Gutierrez, M. Terreni, and A. Fittipaldi, Acetylation of HIV-1 integrase by p300 regulates viral integration, EMBO J, vol.24, pp.3070-3081, 2005.

E. Strfp and ;. Medicale, Jean-marc (8 rue des Acacias, 77360 Vaires sur Marne, FR), Berrut, Sébastien (21 rue René Leynaud, 69001 Lyon, FR), Barbey, Sabine (4 place des Quatre Vents, 91400 Saclay, FR), (2010) Novel substituted aryl derivatives, their process of preparation and their therapeutical uses as anti-HIV agents, 75019 Paris, FR), Berlioz-torrent, Clarisse (54 Boulevard Exelmans, 75016 Paris, FR), Benarous, Richard (19 rue Croulebarbe, 75013 Paris, FR), p.75013

F. ). Paris, . Centre-national-de, . La, and . Scientifique, , vol.75016

E. Devroe, M. A. Boston, . Us), A. ;. Engelman, . Ndr et al., Devroe, Eric (75 Saint Alphonsus Street #2004, 1944.

Y. Nishizawa, J. Usukura, D. P. Singh, L. T. Chylack, J. Shinohara et al., Spatial and temporal dynamics of two alternatively spliced regulatory factors, lens epithelium-derived growth factor (ledgf/p75) and p52, in the nucleus, Cell Tissue Res, vol.305, pp.107-114, 2001.

H. Ge, Y. Si, and R. G. Roeder, Isolation of cDNAs encoding novel transcription coactivators p52 and p75 reveals an alternate regulatory mechanism of transcriptional activation, EMBO J, vol.17, pp.6723-6729, 1998.

D. P. Singh, A. Kimura, L. T. Chylack, J. Shinohara, and T. , Lens epithelium-derived growth factor (LEDGF/p75) and p52 are derived from a single gene by alternative splicing, Gene, vol.242, pp.265-273, 2000.

P. Cherepanov, E. Devroe, P. A. Silver, and A. Engelman, Identification of an evolutionarily conserved domain in human lens epithelium-derived growth factor/transcriptional coactivator p75 (LEDGF/p75) that binds HIV-1 integrase, J Biol Chem, vol.279, pp.48883-48892, 2004.

G. Maertens, P. Cherepanov, Z. Debyser, Y. Engelborghs, and A. Engelman, Identification and characterization of a functional nuclear localization signal in the HIV-1 integrase interactor LEDGF/p75, J Biol Chem, vol.279, pp.33421-33429, 2004.

F. Turlure, G. Maertens, S. Rahman, P. Cherepanov, and A. Engelman, A tripartite DNA-binding element, comprised of the nuclear localization signal and two AT-hook motifs, mediates the association of LEDGF/p75 with chromatin in vivo, Nucleic Acids Res, vol.34, pp.1653-1665, 2006.

M. Llano, M. Vanegas, N. Hutchins, D. Thompson, and S. Delgado, Identification and characterization of the chromatin-binding domains of the HIV-1 integrase interactor LEDGF/p75, J Mol Biol, vol.360, pp.760-773, 2006.

R. Van-nuland, F. M. Van-schaik, M. Simonis, S. Van-heesch, and E. Cuppen, Nucleosomal DNA binding drives the recognition of H3K36-methylated nucleosomes by the PSIP1-PWWP domain, Epigenetics Chromatin, vol.6, p.12, 2013.

G. Maertens, P. Cherepanov, W. Pluymers, K. Busschots, D. Clercq et al., LEDGF/p75 is essential for nuclear and chromosomal targeting of HIV-1 integrase in human cells, J Biol Chem, vol.278, pp.33528-33539, 2003.

G. N. Maertens, P. Cherepanov, and A. Engelman, Transcriptional co-activator p75 binds and tethers the Myc-interacting protein JPO2 to chromatin, J Cell Sci, vol.119, pp.2563-2571, 2006.

K. Bartholomeeusen, J. De-rijck, K. Busschots, L. Desender, and R. Gijsbers, Differential interaction of HIV-1 integrase and JPO2 with the C terminus of LEDGF/p75, J Mol Biol, vol.372, pp.407-421, 2007.

A. Yokoyama and M. L. Cleary, Menin critically links MLL proteins with LEDGF on cancerassociated target genes, Cancer Cell, vol.14, pp.36-46, 2008.

S. Hughes, V. Jenkins, M. J. Dar, A. Engelman, and P. Cherepanov, Transcriptional co-activator LEDGF interacts with Cdc7-activator of S-phase kinase (ASK) and stimulates its enzymatic activity, J Biol Chem, vol.285, pp.541-554, 2010.

N. Vandegraaff, E. Devroe, F. Turlure, P. A. Silver, and A. Engelman, Biochemical and genetic analyses of integrase-interacting proteins lens epithelium-derived growth factor (LEDGF)/p75 and hepatoma-derived growth factor related protein 2 (HRP2) in preintegration complex function and HIV-1 replication, Virology, vol.346, pp.415-426, 2006.

H. Wang, K. A. Jurado, X. Wu, M. C. Shun, and X. Li, HRP2 determines the efficiency and specificity of HIV-1 integration in LEDGF/p75 knockout cells but does not contribute to the antiviral activity of a potent LEDGF/p75-binding site integrase inhibitor, Nucleic Acids Res, vol.40, pp.11518-11530, 2012.

K. Busschots, J. Vercammen, S. Emiliani, R. Benarous, and Y. Engelborghs, The interaction of LEDGF/p75 with integrase is lentivirus-specific and promotes DNA binding, J Biol Chem, vol.280, pp.17841-17847, 2005.

M. Llano, D. T. Saenz, A. Meehan, P. Wongthida, and M. Peretz, An essential role for LEDGF/p75 in HIV integration, Science, vol.314, pp.461-464, 2006.

E. M. Poeschla, Integrase, LEDGF/p75 and HIV replication, Cell Mol Life Sci, vol.65, pp.1403-1424, 2008.

M. C. Shun, N. K. Raghavendra, N. Vandegraaff, J. E. Daigle, and S. Hughes, LEDGF/p75 functions downstream from preintegration complex formation to effect gene-specific HIV-1 integration, Genes Dev, vol.21, pp.1767-1778, 2007.

L. Vandekerckhove, F. Christ, B. Van-maele, D. Rijck, J. Gijsbers et al., Transient and stable knockdown of the integrase cofactor LEDGF/p75 reveals its role in the replication cycle of human immunodeficiency virus, J Virol, vol.80, pp.1886-1896, 2006.

J. De-rijck, L. Vandekerckhove, R. Gijsbers, A. Hombrouck, and J. Hendrix, Overexpression of the lens epithelium-derived growth factor/p75 integrase binding domain inhibits human immunodeficiency virus replication, J Virol, vol.80, pp.11498-11509, 2006.

S. Hare and P. Cherepanov, The Interaction Between Lentiviral Integrase and LEDGF: Structural and Functional Insights, Viruses, vol.1, pp.780-801, 2009.

M. Llano, S. Delgado, M. Vanegas, and E. M. Poeschla, Lens epithelium-derived growth factor/p75 prevents proteasomal degradation of HIV-1 integrase, J Biol Chem, vol.279, pp.55570-55577, 2004.

M. Llano, M. Vanegas, O. Fregoso, D. Saenz, and S. Chung, LEDGF/p75 determines cellular trafficking of diverse lentiviral but not murine oncoretroviral integrase proteins and is a component of functional lentiviral preintegration complexes, J Virol, vol.78, pp.9524-9537, 2004.

S. Hare, M. C. Shun, S. S. Gupta, E. Valkov, and A. Engelman, A novel co-crystal structure affords the design of gain-of-function lentiviral integrase mutants in the presence of modified PSIP1/LEDGF/p75, PLoS Pathog, vol.5, p.1000259, 2009.

F. Michel, C. Crucifix, F. Granger, S. Eiler, and J. F. Mouscadet, Structural basis for HIV-1 DNA integration in the human genome, role of the LEDGF/P75 cofactor, EMBO J, vol.28, pp.980-991, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00384501

P. Cherepanov, Z. Y. Sun, S. Rahman, G. Maertens, and G. Wagner, Solution structure of the HIV-1 integrase-binding domain in LEDGF/p75, Nat Struct Mol Biol, vol.12, pp.526-532, 2005.

P. Cherepanov, A. L. Ambrosio, S. Rahman, T. Ellenberger, and A. Engelman, Structural basis for the recognition between HIV-1 integrase and transcriptional coactivator p75, Proc Natl Acad Sci U S A, vol.102, pp.17308-17313, 2005.

S. Hare, D. Nunzio, F. Labeja, A. Wang, J. Engelman et al., Structural basis for functional tetramerization of lentiviral integrase, PLoS Pathog, vol.5, p.1000515, 2009.
URL : https://hal.archives-ouvertes.fr/pasteur-01536181

F. Christ and Z. Debyser, The LEDGF/p75 integrase interaction, a novel target for anti-HIV therapy, Virology, vol.435, pp.102-109, 2013.

C. J. Mckee, J. J. Kessl, N. Shkriabai, M. J. Dar, and A. Engelman, Dynamic modulation of HIV-1 integrase structure and function by cellular lens epithelium-derived growth factor (LEDGF) protein, J Biol Chem, vol.283, pp.31802-31812, 2008.

Z. Hayouka, J. Rosenbluh, A. Levin, S. Loya, and M. Lebendiker, Inhibiting HIV-1 integrase by shifting its oligomerization equilibrium, Proc Natl Acad Sci U S A, vol.104, pp.8316-8321, 2007.

J. J. Kessl, M. Li, M. Ignatov, N. Shkriabai, and J. O. Eidahl, FRET analysis reveals distinct conformations of IN tetramers in the presence of viral DNA or LEDGF/p75, Nucleic Acids Res, vol.39, pp.9009-9022, 2011.

D. J. Hazuda, P. Felock, M. Witmer, A. Wolfe, and K. Stillmock, Inhibitors of strand transfer that prevent integration and inhibit HIV-1 replication in cells, Science, vol.287, pp.646-650, 2000.

D. J. Hazuda, J. C. Hastings, A. L. Wolfe, and E. A. Emini, A novel assay for the DNA strand-transfer reaction of HIV-1 integrase, Nucleic Acids Res, vol.22, pp.1121-1122, 1994.

J. M. Murray, S. Emery, A. D. Kelleher, M. Law, and J. Chen, Antiretroviral therapy with the integrase inhibitor raltegravir alters decay kinetics of HIV, significantly reducing the second phase, AIDS, vol.21, pp.2315-2321, 2007.

V. Summa, A. Petrocchi, F. Bonelli, B. Crescenzi, and M. Donghi, Discovery of raltegravir, a potent, selective orally bioavailable HIV-integrase inhibitor for the treatment of HIV-AIDS infection, J Med Chem, vol.51, pp.5843-5855, 2008.

M. Sato, T. Motomura, H. Aramaki, T. Matsuda, and M. Yamashita, Novel HIV-1 integrase inhibitors derived from quinolone antibiotics, J Med Chem, vol.49, pp.1506-1508, 2006.

B. A. Johns, T. Kawasuji, J. G. Weatherhead, T. Taishi, and D. P. Temelkoff, Carbamoyl pyridone HIV-1 integrase inhibitors 3. A diastereomeric approach to chiral nonracemic tricyclic ring systems and the discovery of dolutegravir (S/GSK1349572) and (S/GSK1265744), J Med Chem, vol.56, pp.5901-5916, 2013.

J. A. Grobler and D. J. Hazuda, Resistance to HIV integrase strand transfer inhibitors: in vitro findings and clinical consequences, Curr Opin Virol, vol.8, pp.98-103, 2014.

K. E. Hightower, R. Wang, F. Deanda, B. A. Johns, and K. Weaver, Dolutegravir (S/GSK1349572) exhibits significantly slower dissociation than raltegravir and elvitegravir from wild-type and integrase inhibitor-resistant HIV-1 integrase-DNA complexes, Antimicrob Agents Chemother, vol.55, pp.4552-4559, 2011.

J. A. Grobler, K. Stillmock, B. Hu, M. Witmer, and P. Felock, Diketo acid inhibitor mechanism and HIV-1 integrase: implications for metal binding in the active site of phosphotransferase enzymes, Proc Natl Acad Sci U S A, vol.99, pp.6661-6666, 2002.

F. Damond, S. Lariven, B. Roquebert, S. Males, and G. Peytavin, Virological and immunological response to HAART regimen containing integrase inhibitors in HIV-2-infected patients, AIDS, vol.22, pp.665-666, 2008.

C. Garrido, A. M. Geretti, N. Zahonero, C. Booth, and A. Strang, Integrase variability and susceptibility to HIV integrase inhibitors: impact of subtypes, antiretroviral experience and duration of HIV infection, J Antimicrob Chemother, vol.65, pp.320-326, 2010.

M. G. Lewis, S. Norelli, M. Collins, M. L. Barreca, and N. Iraci, Response of a simian immunodeficiency virus (SIVmac251) to raltegravir: a basis for a new treatment for simian AIDS and an animal model for studying lentiviral persistence during antiretroviral therapy, Retrovirology, vol.7, p.21, 2010.

Y. Koh, K. A. Matreyek, and A. Engelman, Differential sensitivities of retroviruses to integrase strand transfer inhibitors, J Virol, vol.85, pp.3677-3682, 2011.

S. Hare, A. M. Vos, R. F. Clayton, J. W. Thuring, and M. D. Cummings, Molecular mechanisms of retroviral integrase inhibition and the evolution of viral resistance, Proc Natl Acad Sci U S A, vol.107, pp.20057-20062, 2010.

C. Delaugerre, M. A. Valantin, M. Mouroux, M. Bonmarchand, and G. Carcelain, Reoccurrence of HIV-1 drug mutations after treatment re-initiation following interruption in patients with multiple treatment failure, AIDS, vol.15, pp.2189-2191, 2001.

S. Land, K. Mcgavin, C. Birch, and R. Lucas, Reversion from zidovudine resistance to sensitivity on cessation of treatment, Lancet, vol.338, pp.830-831, 1991.

M. A. Wainberg, G. J. Zaharatos, and B. G. Brenner, Development of antiretroviral drug resistance, N Engl J Med, vol.365, pp.637-646, 2011.

M. Markowitz, B. Y. Nguyen, E. Gotuzzo, F. Mendo, and W. Ratanasuwan, Sustained antiretroviral effect of raltegravir after 96 weeks of combination therapy in treatment-naive patients with HIV-1 infection, J Acquir Immune Defic Syndr, vol.52, pp.350-356, 2009.

M. Markowitz, B. Y. Nguyen, E. Gotuzzo, F. Mendo, and W. Ratanasuwan, Rapid and durable antiretroviral effect of the HIV-1 Integrase inhibitor raltegravir as part of combination therapy in treatment-naive patients with HIV-1 infection: results of a 48-week controlled study, J Acquir Immune Defic Syndr, vol.46, pp.125-133, 2007.

J. K. Rockstroh, E. Dejesus, J. L. Lennox, Y. Yazdanpanah, and M. S. Saag, Durable efficacy and safety of raltegravir versus efavirenz when combined with tenofovir/emtricitabine in treatment-naive HIV-1-infected patients: final 5-year results from STARTMRK, J Acquir Immune Defic Syndr, vol.63, pp.77-85, 2013.

F. Raffi, A. G. Babiker, L. Richert, J. M. Molina, and E. C. George, Ritonavir-boosted darunavir combined with raltegravir or tenofovir-emtricitabine in antiretroviral-naive adults infected with HIV-1: 96 week results from the NEAT001/ANRS143 randomised non-inferiority trial, Lancet, vol.384, pp.1942-1951, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01108186

J. Ghosn, A. A. Mazet, V. Avettand-fenoel, G. Peytavin, and M. Wirden, Rapid selection and archiving of mutation E157Q in HIV-1 DNA during short-term low-level replication on a raltegravir-containing regimen, J Antimicrob Chemother, vol.64, pp.433-434, 2009.

D. A. Cooper, R. T. Steigbigel, J. M. Gatell, J. K. Rockstroh, and C. Katlama, Subgroup and resistance analyses of raltegravir for resistant HIV-1 infection, N Engl J Med, vol.359, pp.355-365, 2008.

O. Delelis, I. Malet, L. Na, L. Tchertanov, and V. Calvez, The G140S mutation in HIV integrases from raltegravir-resistant patients rescues catalytic defect due to the resistance Q148H mutation, Nucleic Acids Res, vol.37, pp.1193-1201, 2009.

T. Mesplede and M. A. Wainberg, Resistance against Integrase Strand Transfer Inhibitors and Relevance to HIV Persistence, Viruses, vol.7, pp.3703-3718, 2015.

J. F. Mouscadet, O. Delelis, A. G. Marcelin, and L. Tchertanov, Resistance to HIV-1 integrase inhibitors: A structural perspective, Drug Resist Updat, vol.13, pp.139-150, 2010.

F. Raffi, H. Jaeger, E. Quiros-roldan, H. Albrecht, and E. Belonosova, Once-daily dolutegravir versus twice-daily raltegravir in antiretroviral-naive adults with HIV-1 infection (SPRING-2 study): 96 week results from a randomised, double-blind, non-inferiority trial, Lancet Infect Dis, vol.13, pp.927-935, 2013.

F. Raffi, A. Rachlis, H. J. Stellbrink, W. D. Hardy, and C. Torti, Once-daily dolutegravir versus raltegravir in antiretroviral-naive adults with HIV-1 infection: 48 week results from the randomised, double-blind, non-inferiority SPRING-2 study, Lancet, vol.381, pp.735-743, 2013.

P. Cahn, A. L. Pozniak, H. Mingrone, A. Shuldyakov, and C. Brites, Dolutegravir versus raltegravir in antiretroviral-experienced, integrase-inhibitor-naive adults with HIV: week 48 results from the randomised, double-blind, non-inferiority SAILING study, Lancet, vol.382, pp.700-708, 2013.

M. Oliveira, T. Mesplede, P. K. Quashie, D. Moisi, and M. A. Wainberg, Resistance mutations against dolutegravir in HIV integrase impair the emergence of resistance against reverse transcriptase inhibitors, AIDS, vol.28, pp.813-819, 2014.

P. K. Quashie, T. Mesplede, Y. S. Han, M. Oliveira, and D. N. Singhroy, Characterization of the R263K mutation in HIV-1 integrase that confers low-level resistance to the second-generation integrase strand transfer inhibitor dolutegravir, J Virol, vol.86, pp.2696-2705, 2012.

T. Mesplede, P. K. Quashie, N. Osman, Y. Han, and D. N. Singhroy, Viral fitness cost prevents HIV-1 from evading dolutegravir drug pressure, Retrovirology, vol.10, p.22, 2013.

J. J. Eron, B. Clotet, J. Durant, C. Katlama, and P. Kumar, Safety and efficacy of dolutegravir in treatment-experienced subjects with raltegravir-resistant HIV type 1 infection: 24-week results of the VIKING Study, J Infect Dis, vol.207, pp.740-748, 2013.

A. Castagna, F. Maggiolo, G. Penco, D. Wright, and A. Mills, Dolutegravir in antiretroviralexperienced patients with raltegravir-and/or elvitegravir-resistant HIV-1: 24-week results of the phase III VIKING-3 study, J Infect Dis, vol.210, pp.354-362, 2014.

B. Akil, G. Blick, D. P. Hagins, M. N. Ramgopal, and G. J. Richmond, Dolutegravir versus placebo in subjects harbouring HIV-1 with integrase inhibitor resistance associated substitutions: 48-week results from VIKING-4, a randomized study, Antivir Ther, vol.20, pp.343-348, 2015.

F. Canducci, E. R. Ceresola, E. Boeri, V. Spagnuolo, and F. Cossarini, Cross-resistance profile of the novel integrase inhibitor Dolutegravir (S/GSK1349572) using clonal viral variants selected in patients failing raltegravir, J Infect Dis, vol.204, pp.1811-1815, 2011.

O. Goethals, A. Vos, M. Van-ginderen, P. Geluykens, and V. Smits, Primary mutations selected in vitro with raltegravir confer large fold changes in susceptibility to first-generation integrase inhibitors, but minor fold changes to inhibitors with second-generation resistance profiles, Virology, vol.402, pp.338-346, 2010.

J. A. Wells and C. L. Mcclendon, Reaching for high-hanging fruit in drug discovery at proteinprotein interfaces, Nature, vol.450, pp.1001-1009, 2007.

V. Molteni, J. Greenwald, D. Rhodes, Y. Hwang, and W. Kwiatkowski, Identification of a small-molecule binding site at the dimer interface of the HIV integrase catalytic domain, Acta Crystallogr D Biol Crystallogr, vol.57, pp.536-544, 2001.

K. A. Jurado and A. Engelman, Multimodal mechanism of action of allosteric HIV-1 integrase inhibitors, Expert Rev Mol Med, vol.15, p.14, 2013.

L. Q. Al-mawsawi, F. Christ, R. Dayam, Z. Debyser, and N. Neamati, Inhibitory profile of a LEDGF/p75 peptide against HIV-1 integrase: insight into integrase-DNA complex formation and catalysis, FEBS Lett, vol.582, pp.1425-1430, 2008.

M. Tsiang, G. S. Jones, A. Niedziela-majka, E. Kan, and E. B. Lansdon, New class of HIV-1 integrase (IN) inhibitors with a dual mode of action, J Biol Chem, vol.287, pp.21189-21203, 2012.

F. Christ, A. Voet, A. Marchand, S. Nicolet, and B. A. Desimmie, Rational design of smallmolecule inhibitors of the LEDGF/p75-integrase interaction and HIV replication, Nat Chem Biol, vol.6, pp.442-448, 2010.

F. Christ, S. Shaw, J. Demeulemeester, B. A. Desimmie, and A. Marchand, Small-molecule inhibitors of the LEDGF/p75 binding site of integrase block HIV replication and modulate integrase multimerization, Antimicrob Agents Chemother, vol.56, pp.4365-4374, 2012.

J. J. Kessl, J. N. Koh, Y. Taskent-sezgin, H. Slaughter, and A. , Multimode, cooperative mechanism of action of allosteric HIV-1 integrase inhibitors, J Biol Chem, vol.287, pp.16801-16811, 2012.

M. Balakrishnan, S. R. Yant, L. Tsai, C. O'sullivan, and R. A. Bam, Non-catalytic site HIV-1 integrase inhibitors disrupt core maturation and induce a reverse transcription block in target cells, PLoS One, vol.8, p.74163, 2013.

K. A. Jurado, H. Wang, A. Slaughter, L. Feng, and J. J. Kessl, Allosteric integrase inhibitor potency is determined through the inhibition of HIV-1 particle maturation, Proc Natl Acad Sci U S A, vol.110, pp.8690-8695, 2013.

A. Sharma, A. Slaughter, N. Jena, L. Feng, and J. J. Kessl, A new class of multimerization selective inhibitors of HIV-1 integrase, PLoS Pathog, vol.10, p.1004171, 2014.

J. J. Kessl, J. O. Eidahl, N. Shkriabai, Z. Zhao, and C. J. Mckee, An allosteric mechanism for inhibiting HIV-1 integrase with a small molecule, Mol Pharmacol, vol.76, pp.824-832, 2009.

R. G. Maroun, S. Gayet, M. S. Benleulmi, H. Porumb, and L. Zargarian, Peptide inhibitors of HIV-1 integrase dissociate the enzyme oligomers, Biochemistry, vol.40, pp.13840-13848, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00284952

C. Tintori, J. Demeulemeester, L. Franchi, S. Massa, and Z. Debyser, Discovery of small molecule HIV-1 integrase dimerization inhibitors, Bioorg Med Chem Lett, vol.22, pp.3109-3114, 2012.

L. D. Fader, E. Malenfant, M. Parisien, R. Carson, and F. Bilodeau, Discovery of BI 224436, a Noncatalytic Site Integrase Inhibitor (NCINI) of HIV-1, ACS Med Chem Lett, vol.5, pp.422-427, 2014.

L. Rouzic, E. Bonnard, D. Chasset, S. Bruneau, J. M. Chevreuil et al., Dual inhibition of HIV-1 replication by integrase-LEDGF allosteric inhibitors is predominant at the post-integration stage, Retrovirology, vol.10, p.144, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-00914180

S. Rahman, R. Lu, N. Vandegraaff, P. Cherepanov, and A. Engelman, Structure-based mutagenesis of the integrase-LEDGF/p75 interface uncouples a strict correlation between in vitro protein binding and HIV-1 fitness, Virology, vol.357, pp.79-90, 2007.

B. A. Desimmie, R. Schrijvers, J. Demeulemeester, D. Borrenberghs, and C. Weydert, LEDGINs inhibit late stage HIV-1 replication by modulating integrase multimerization in the virions, Retrovirology, vol.10, p.57, 2013.

M. Shehu-xhilaga, M. Hill, J. A. Marshall, J. Kappes, and S. M. Crowe, The conformation of the mature dimeric human immunodeficiency virus type 1 RNA genome requires packaging of pol protein, J Virol, vol.76, pp.4331-4340, 2002.

J. Fontana, K. A. Jurado, N. Cheng, N. L. Ly, and J. R. Fuchs, Distribution and Redistribution of HIV-1 Nucleocapsid Protein in Immature, Mature, and Integrase-Inhibited Virions: a Role for Integrase in Maturation, J Virol, vol.89, pp.9765-9780, 2015.

N. Van-bel, Y. Van-der-velden, D. Bonnard, L. Rouzic, E. Das et al., The allosteric HIV-1 integrase inhibitor BI-D affects virion maturation but does not influence packaging of a functional RNA genome, PLoS One, vol.9, p.103552, 2014.

R. Schrijvers, J. De-rijck, J. Demeulemeester, N. Adachi, and S. Vets, LEDGF/p75-independent HIV-1 replication demonstrates a role for HRP-2 and remains sensitive to inhibition by LEDGINs, PLoS Pathog, vol.8, p.1002558, 2012.

H. J. Fadel, J. H. Morrison, D. T. Saenz, J. R. Fuchs, and M. Kvaratskhelia, TALEN knockout of the PSIP1 gene in human cells: analyses of HIV-1 replication and allosteric integrase inhibitor mechanism, J Virol, vol.88, pp.9704-9717, 2014.

L. Feng, V. Dharmarajan, E. Serrao, A. Hoyte, and R. C. Larue, The Competitive Interplay between Allosteric HIV-1 Integrase Inhibitor BI/D and LEDGF/p75 during the Early Stage of HIV-1 Replication Adversely Affects Inhibitor Potency, ACS Chem Biol, vol.11, pp.1313-1321, 2016.

C. Fenwick, M. Amad, M. D. Bailey, R. Bethell, and M. Bos, Preclinical profile of BI 224436, a novel HIV-1 non-catalytic-site integrase inhibitor, Antimicrob Agents Chemother, vol.58, pp.3233-3244, 2014.

L. Feng, A. Sharma, A. Slaughter, N. Jena, and Y. Koh, The A128T resistance mutation reveals aberrant protein multimerization as the primary mechanism of action of allosteric HIV-1 integrase inhibitors, J Biol Chem, vol.288, pp.15813-15820, 2013.

B. H. Hahn, G. M. Shaw, D. Cock, K. M. Sharp, and P. M. , AIDS as a zoonosis: scientific and public health implications, Science, vol.287, pp.607-614, 2000.

S. Locatelli and M. Peeters, Cross-species transmission of simian retroviruses: how and why they could lead to the emergence of new diseases in the human population, AIDS, vol.26, pp.659-673, 2012.

M. D. Daniel, N. L. Letvin, N. W. King, M. Kannagi, and P. K. Sehgal, Isolation of T-cell tropic HTLV-III-like retrovirus from macaques, Science, vol.228, pp.1201-1204, 1985.

P. J. Kanki, M. F. Mclane, N. W. King, J. Letvin, N. L. Hunt et al., Serologic identification and characterization of a macaque T-lymphotropic retrovirus closely related to HTLV-III, Science, vol.228, pp.1199-1201, 1985.

P. M. Sharp and B. H. Hahn, Origins of HIV and the AIDS pandemic, Cold Spring Harb Perspect Med, vol.1, p.6841, 2011.

C. Apetrei, A. Kaur, N. W. Lerche, M. Metzger, and I. Pandrea, Molecular epidemiology of simian immunodeficiency virus SIVsm in U.S. primate centers unravels the origin of SIVmac and SIVstm, J Virol, vol.79, pp.8991-9005, 2005.

C. Apetrei, N. W. Lerche, I. Pandrea, B. Gormus, and G. Silvestri, Kuru experiments triggered the emergence of pathogenic SIVmac, AIDS, vol.20, pp.317-321, 2006.

P. N. Fultz, H. M. Mcclure, D. C. Anderson, R. B. Swenson, and R. Anand, Isolation of a Tlymphotropic retrovirus from naturally infected sooty mangabey monkeys, 1986.

, Proc Natl Acad Sci U S A, vol.83, pp.5286-5290

M. Peeters, C. Honore, T. Huet, L. Bedjabaga, and S. Ossari, Isolation and partial characterization of an HIV-related virus occurring naturally in chimpanzees in Gabon, AIDS, vol.3, pp.625-630, 1989.

F. Gao, E. Bailes, D. L. Robertson, Y. Chen, and C. M. Rodenburg, Origin of HIV-1 in the chimpanzee Pan troglodytes troglodytes, Nature, vol.397, pp.436-441, 1999.

E. Bailes, F. Gao, F. Bibollet-ruche, V. Courgnaud, and M. Peeters, Hybrid origin of SIV in chimpanzees, Science, vol.300, p.1713, 2003.

M. M. Vanden-haesevelde, M. Peeters, G. Jannes, W. Janssens, and G. Van-der-groen, Sequence analysis of a highly divergent HIV-1-related lentivirus isolated from a wild captured chimpanzee, Virology, vol.221, pp.346-350, 1996.

B. F. Keele, F. Van-heuverswyn, Y. Li, E. Bailes, and J. Takehisa, Chimpanzee reservoirs of pandemic and nonpandemic HIV-1, Science, vol.313, pp.523-526, 2006.

F. Van-heuverswyn, Y. Li, E. Bailes, C. Neel, and B. Lafay, Genetic diversity and phylogeographic clustering of SIVcpzPtt in wild chimpanzees in Cameroon, Virology, vol.368, pp.155-171, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00412886

Y. Li, J. B. Ndjango, G. H. Learn, M. A. Ramirez, and B. F. Keele, Eastern chimpanzees, but not bonobos, represent a simian immunodeficiency virus reservoir, J Virol, vol.86, pp.10776-10791, 2012.

J. Takehisa, M. H. Kraus, A. Ayouba, E. Bailes, and F. Van-heuverswyn, Origin and biology of simian immunodeficiency virus in wild-living western gorillas, J Virol, vol.83, pp.1635-1648, 2009.

C. Neel, E. L. Li, Y. Takehisa, J. Rudicell, and R. S. , Molecular epidemiology of simian immunodeficiency virus infection in wild-living gorillas, J Virol, vol.84, pp.1464-1476, 2010.

F. Van-heuverswyn, Y. Li, C. Neel, E. Bailes, and B. F. Keele, Human immunodeficiency viruses: SIV infection in wild gorillas, Nature, vol.444, p.164, 2006.

M. D'arc, A. Ayouba, A. Esteban, G. H. Learn, and V. Boue, Origin of the HIV-1 group O epidemic in western lowland gorillas, Proc Natl Acad Sci U S A, vol.112, pp.1343-1352, 2015.

C. Van-tienen, S. Van-der-loeff, M. Whittle, and H. , Effect of HIV-2 infection on HIV-1 disease progression, N Engl J Med, vol.367, 1961.

T. Mourez, F. Simon, and J. C. Plantier, Non-M variants of human immunodeficiency virus type 1, Clin Microbiol Rev, vol.26, pp.448-461, 2013.

M. Worobey, M. Gemmel, D. E. Teuwen, T. Haselkorn, and K. Kunstman, Direct evidence of extensive diversity of HIV-1 in Kinshasa by 1960, Nature, vol.455, pp.661-664, 2008.

B. Korber, M. Muldoon, J. Theiler, F. Gao, and R. Gupta, Timing the ancestor of the HIV-1 pandemic strains, Science, vol.288, pp.1789-1796, 2000.

P. Lemey, O. G. Pybus, A. Rambaut, A. J. Drummond, and D. L. Robertson, The molecular population genetics of HIV-1 group O, Genetics, vol.167, pp.1059-1068, 2004.

R. H. Gray, M. J. Wawer, R. Brookmeyer, N. K. Sewankambo, and D. Serwadda, Probability of HIV-1 transmission per coital act in monogamous, heterosexual, HIV-1-discordant couples in Rakai, Lancet, vol.357, pp.1149-1153, 2001.

R. S. Rudicell, H. Jones, J. Wroblewski, E. E. Learn, G. H. Li et al., Impact of simian immunodeficiency virus infection on chimpanzee population dynamics, PLoS Pathog, vol.6, p.1001116, 2010.

B. F. Keele, J. H. Jones, K. A. Terio, J. D. Estes, and R. S. Rudicell, Increased mortality and AIDS-like immunopathology in wild chimpanzees infected with SIVcpz, Nature, vol.460, pp.515-519, 2009.

J. L. Heeney, E. Rutjens, E. J. Verschoor, H. Niphuis, and P. Ten-haaft, Transmission of simian immunodeficiency virus SIVcpz and the evolution of infection in the presence and absence of concurrent human immunodeficiency virus type 1 infection in chimpanzees, J Virol, vol.80, pp.7208-7218, 2006.

M. Paiardini, I. Pandrea, C. Apetrei, and G. Silvestri, Lessons learned from the natural hosts of HIV-related viruses, Annu Rev Med, vol.60, pp.485-495, 2009.

F. Kirchhoff, Is the high virulence of HIV-1 an unfortunate coincidence of primate lentiviral evolution?, Nat Rev Microbiol, vol.7, pp.467-476, 2009.

S. E. Bosinger, D. L. Sodora, and G. Silvestri, Generalized immune activation and innate immune responses in simian immunodeficiency virus infection, Curr Opin HIV AIDS, vol.6, pp.411-418, 2011.

J. M. Brenchley, G. Silvestri, and D. C. Douek, Nonprogressive and progressive primate immunodeficiency lentivirus infections, Immunity, vol.32, pp.737-742, 2010.

I. Pandrea, D. L. Sodora, G. Silvestri, and C. Apetrei, Into the wild: simian immunodeficiency virus (SIV) infection in natural hosts, Trends Immunol, vol.29, pp.419-428, 2008.

N. Huot, P. Rascle, T. Garcia-tellez, J. B. Muller-trutwin, and M. , Innate immune cell responses in non pathogenic versus pathogenic SIV infections, Curr Opin Virol, vol.19, pp.37-44, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-01419560

L. Micci, E. S. Ryan, R. Fromentin, S. E. Bosinger, and J. L. Harper, Interleukin-21 combined with ART reduces inflammation and viral reservoir in SIV-infected macaques, J Clin Invest, vol.125, pp.4497-4513, 2015.

J. B. Whitney, A. L. Hill, S. Sanisetty, P. Penaloza-macmaster, and J. Liu, Rapid seeding of the viral reservoir prior to SIV viraemia in rhesus monkeys, Nature, vol.512, pp.74-77, 2014.

H. Li, L. E. Richert-spuhler, T. I. Evans, J. Gillis, and M. Connole, Hypercytotoxicity and rapid loss of NKp44+ innate lymphoid cells during acute SIV infection, PLoS Pathog, vol.10, p.1004551, 2014.

H. Xu, X. Wang, A. A. Lackner, and R. S. Veazey, Type 3 innate lymphoid cell depletion is mediated by TLRs in lymphoid tissues of simian immunodeficiency virus-infected macaques, FASEB J, vol.29, pp.5072-5080, 2015.

A. Saez-cirion, J. B. Barre-sinoussi, F. Muller-trutwin, and M. , Immune responses during spontaneous control of HIV and AIDS: what is the hope for a cure, Philos Trans R Soc Lond B Biol Sci, vol.369, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-01420530

E. Pollom, K. K. Dang, E. L. Potter, R. J. Gorelick, and C. L. Burch, Comparison of SIV and HIV-1 genomic RNA structures reveals impact of sequence evolution on conserved and nonconserved structural motifs, PLoS Pathog, vol.9, p.1003294, 2013.

J. L. Affranchino and S. A. Gonzalez, Understanding the process of envelope glycoprotein incorporation into virions in simian and feline immunodeficiency viruses, Viruses, vol.6, pp.264-283, 2014.

Z. Chen, Y. Yan, S. Munshi, Y. Li, and J. Zugay-murphy, X-ray structure of simian immunodeficiency virus integrase containing the core and C-terminal domain (residues 50-293)--an initial glance of the viral DNA binding platform, J Mol Biol, vol.296, pp.521-533, 2000.

S. A. Hassounah, T. Mesplede, P. K. Quashie, M. Oliveira, and P. A. Sandstrom, Effect of HIV-1 integrase resistance mutations when introduced into SIVmac239 on susceptibility to integrase strand transfer inhibitors, J Virol, vol.88, pp.9683-9692, 2014.

S. A. Hassounah, Y. Liu, P. K. Quashie, M. Oliveira, and D. Moisi, Characterization of the Drug Resistance Profiles of Integrase Strand Transfer Inhibitors in Simian Immunodeficiency Virus SIVmac239, J Virol, vol.89, pp.12002-12013, 2015.

D. J. Hazuda, S. D. Young, J. P. Guare, N. J. Anthony, and R. P. Gomez, Integrase inhibitors and cellular immunity suppress retroviral replication in rhesus macaques, Science, vol.305, pp.528-532, 2004.

F. Hladik and M. J. Mcelrath, Setting the stage: host invasion by HIV, Nat Rev Immunol, vol.8, pp.447-457, 2008.

G. Vidricaire and M. J. Tremblay, , 2004.

, Med Sci (Paris), vol.20, pp.784-787

M. K. Norvell, G. I. Benrubi, and R. J. Thompson, Investigation of microtrauma after sexual intercourse, J Reprod Med, vol.29, pp.269-271, 1984.

L. Wu and V. N. Kewalramani, Dendritic-cell interactions with HIV: infection and viral dissemination, Nat Rev Immunol, vol.6, pp.859-868, 2006.

T. B. Geijtenbeek, D. S. Kwon, R. Torensma, S. J. Van-vliet, and G. C. Van-duijnhoven, DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells, Cell, vol.100, pp.587-597, 2000.

T. B. Geijtenbeek, R. Torensma, S. J. Van-vliet, G. C. Van-duijnhoven, and G. J. Adema, Identification of DC-SIGN, a novel dendritic cell-specific ICAM-3 receptor that supports primary immune responses, Cell, vol.100, pp.575-585, 2000.

A. Rubbert, C. Combadiere, M. Ostrowski, J. Arthos, and M. Dybul, Dendritic cells express multiple chemokine receptors used as coreceptors for HIV entry, J Immunol, vol.160, pp.3933-3941, 1998.

S. G. Turville, J. Arthos, K. M. Donald, G. Lynch, and H. Naif, HIV gp120 receptors on human dendritic cells, Blood, vol.98, pp.2482-2488, 2001.

M. Zaitseva, A. Blauvelt, S. Lee, C. K. Lapham, and V. Klaus-kovtun, Expression and function of CCR5 and CXCR4 on human Langerhans cells and macrophages: implications for HIV primary infection, Nat Med, vol.3, pp.1369-1375, 1997.

L. De-witte, A. Nabatov, M. Pion, D. Fluitsma, and M. A. De-jong, Langerin is a natural barrier to HIV-1 transmission by Langerhans cells, Nat Med, vol.13, pp.367-371, 2007.

S. E. Macatonia, R. Lau, S. Patterson, A. J. Pinching, and S. C. Knight, Dendritic cell infection, depletion and dysfunction in HIV-infected individuals, Immunology, vol.71, pp.38-45, 1990.

A. Granelli-piperno, A. Golebiowska, C. Trumpfheller, F. P. Siegal, and R. M. Steinman, HIV-1-infected monocyte-derived dendritic cells do not undergo maturation but can elicit IL-10 production and T cell regulation, Proc Natl Acad Sci U S A, vol.101, pp.7669-7674, 2004.

M. Sapp, J. Engelmayer, M. Larsson, A. Granelli-piperno, and R. Steinman, Dendritic cells generated from blood monocytes of HIV-1 patients are not infected and act as competent antigen presenting cells eliciting potent T-cell responses, Immunol Lett, vol.66, pp.121-128, 1999.

S. Moir, A. Malaspina, K. M. Ogwaro, E. T. Donoghue, and C. W. Hallahan, HIV-1 induces phenotypic and functional perturbations of B cells in chronically infected individuals, Proc Natl Acad Sci U S A, vol.98, pp.10362-10367, 2001.

B. F. Haynes, J. Fleming, E. W. St-clair, H. Katinger, and G. Stiegler, Cardiolipin polyspecific autoreactivity in two broadly neutralizing HIV-1 antibodies, vol.308, pp.1906-1908, 2005.

H. M. Naif, S. Li, M. Alali, A. Sloane, and L. Wu, CCR5 expression correlates with susceptibility of maturing monocytes to human immunodeficiency virus type 1 infection, J Virol, vol.72, pp.830-836, 1998.

C. F. Perno, V. Svicher, D. Schols, M. Pollicita, and J. Balzarini, Therapeutic strategies towards HIV-1 infection in macrophages, Antiviral Res, vol.71, pp.293-300, 2006.

K. Kedzierska, R. Azzam, P. Ellery, J. Mak, and A. Jaworowski, Defective phagocytosis by human monocyte/macrophages following HIV-1 infection: underlying mechanisms and modulation by adjunctive cytokine therapy, J Clin Virol, vol.26, pp.247-263, 2003.

D. Mavilio, G. Lombardo, A. Kinter, M. Fogli, L. Sala et al., Characterization of the defective interaction between a subset of natural killer cells and dendritic cells in HIV-1 infection, J Exp Med, vol.203, pp.2339-2350, 2006.

M. P. Girard, S. Osmanov, O. M. Assossou, and M. P. Kieny, Human immunodeficiency virus (HIV) immunopathogenesis and vaccine development: a review, Vaccine, vol.29, pp.6191-6218, 2011.

S. Rerks-ngarm, P. Pitisuttithum, S. Nitayaphan, J. Kaewkungwal, and J. Chiu, Vaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand, N Engl J Med, vol.361, pp.2209-2220, 2009.

B. F. Haynes, P. B. Gilbert, M. J. Mcelrath, S. Zolla-pazner, and G. D. Tomaras, Immunecorrelates analysis of an HIV-1 vaccine efficacy trial, N Engl J Med, vol.366, pp.1275-1286, 2012.

A. S. Fauci and H. D. Marston, PUBLIC HEALTH. Toward an HIV vaccine: A scientific journey, Science, vol.349, pp.386-387, 2015.

A. S. Fauci, An HIV Vaccine: Mapping Uncharted Territory, JAMA, vol.316, pp.143-144, 2016.

Y. D. Kwon, M. Pancera, P. Acharya, I. S. Georgiev, and E. T. Crooks, Crystal structure, conformational fixation and entry-related interactions of mature ligand-free HIV-1 Env, Nat Struct Mol Biol, vol.22, pp.522-531, 2015.

E. De-clercq, Antiretroviral drugs, Curr Opin Pharmacol, vol.10, pp.507-515, 2010.

R. W. Shafer and J. M. Schapiro, HIV-1 drug resistance mutations: an updated framework for the second decade of HAART, AIDS Rev, vol.10, pp.67-84, 2008.

A. Ciuffi, M. Llano, E. Poeschla, C. Hoffmann, and J. Leipzig, A role for LEDGF/p75 in targeting HIV DNA integration, Nat Med, vol.11, pp.1287-1289, 2005.

J. Demeulemeester, C. Tintori, M. Botta, Z. Debyser, and F. Christ, Development of an AlphaScreen-based HIV-1 integrase dimerization assay for discovery of novel allosteric inhibitors, J Biomol Screen, vol.17, pp.618-628, 2012.

P. J. Klasse and Q. J. Sattentau, Occupancy and mechanism in antibody-mediated neutralization of animal viruses, J Gen Virol, vol.83, pp.2091-2108, 2002.

F. Degorce, A. Card, S. Soh, E. Trinquet, and G. P. Knapik, HTRF: A technology tailored for drug discovery -a review of theoretical aspects and recent applications, Curr Chem Genomics, vol.3, pp.22-32, 2009.

P. Cherepanov, LEDGF/p75 interacts with divergent lentiviral integrases and modulates their enzymatic activity in vitro, Nucleic Acids Res, vol.35, pp.113-124, 2007.

S. Tsantrizos-y, . Street, . Laval, H. Québec, C. ). 2g5 et al., BILODEAU, François, p.2100, 2100.

C. Street, . Laval, H. Québec, C. 2g5, . Morin et al., INHIBITORS OF HUMAN IMMUNODEFICIENCY VIRUS REPLICATION. BOEHRINGER INGELHEIM INTERNATIONAL GmbH (Binger Strasse 173, Ingelheim, Cunard Street, vol.55216, 2009.

S. Harada, Y. Koyanagi, and N. Yamamoto, Infection of HTLV-III/LAV in HTLV-I-carrying cells MT-2 and MT-4 and application in a plaque assay, Science, vol.229, pp.563-566, 1985.

T. Kodama, D. P. Wooley, Y. M. Naidu, H. W. Kestler, and M. D. Daniel, Significance of premature stop codons in env of simian immunodeficiency virus, J Virol, vol.63, pp.4709-4714, 1989.

F. D. Bushman, A. Engelman, I. Palmer, P. Wingfield, and R. Craigie, Domains of the integrase protein of human immunodeficiency virus type 1 responsible for polynucleotidyl transfer and zinc binding, Proc Natl Acad Sci U S A, vol.90, pp.3428-3432, 1993.

J. J. Kessl, S. B. Kutluay, D. Townsend, S. Rebensburg, and A. Slaughter, HIV-1 Integrase Binds the Viral RNA Genome and Is Essential during Virion Morphogenesis, Cell, vol.166, pp.1257-1268, 2016.

M. Mori, L. Kovalenko, S. Lyonnais, D. Antaki, and B. E. Torbett, Nucleocapsid Protein: A Desirable Target for Future Therapies Against HIV-1, Curr Top Microbiol Immunol, vol.389, pp.53-92, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01186130

L. S. Vranckx, J. Demeulemeester, S. Saleh, A. Boll, and G. Vansant, LEDGIN-mediated Inhibition of Integrase-LEDGF/p75 Interaction Reduces Reactivation of Residual Latent HIV, EBioMedicine, vol.8, pp.248-264, 2016.

H. Akiyama, M. Ishimatsu, T. Miura, M. Hayami, and E. Ido, Construction and infection of a new simian/human immunodeficiency chimeric virus (SHIV) containing the integrase gene of the human immunodeficiency virus type 1 genome and analysis of its adaptation to monkey cells, Microbes Infect, vol.10, pp.531-539, 2008.

, Les rétrovirus ont la capacité de rétro-transcrire leur génome ARN en ADN afin qu'il soit intégré dans celui de l'hôte. Les traitements antirétroviraux (ART) actuels combinent plusieurs classes d'antirétroviraux (ARV) ciblant majoritairement les enzymes virales nécessaires à la réplication du VIH-1: la reverse transcriptase (RT), RESUME Le virus de l'immunodéficience humaine

, Les inhibiteurs catalytiques d'IN (INSTIs) utilisés dans les ART ciblent le site actif de l'enzyme et empêchent ainsi la réaction de transfert de brin de l'intégration du VIH-1. La protéine cellulaire Lens Epithelium-Derived Growth Factor (LEDGF/p75), liée à la chromatine, est l'un des principaux cofacteurs de IN. En permettant le ciblage de l'intégration dans des régions actives du génome de l'hôte, l'interaction IN-LEDGF joue un rôle crucial pour la réplication effective du VIH-1 ce qui, L'émergence et la transmission de virus multirésistants à l'ensemble des ARV illustrent la nécessité de développer de nouveaux mécanismes thérapeutiques

, En effet les INLAIs ciblent l'intégration mais possèdent également une seconde activité plus efficace sur les étapes tardives de la réplication du VIH-1. Celle-ci se traduit par la production de virions présentant un défaut d'infectivité. Mon projet de thèse, réalisé en partenariat avec la société biopharmaceutique Mutabilis, s'est intéressé à la caractérisation de l'activité antirétrovirale d'une nouvelle classe d'INLAIs selon deux axes: (1) l'approfondissement des mécanismes d'action de ces INLAIs sur les étapes tardives de la réplication du VIH-1, Au cours de ces dernières années, des inhibiteurs allostériques de l'interaction IN-LEDGF (INLAIs encore appelés LEDGINs ou ALLINIs) ont été développés afin d'inhiber l'étape d'intégration

, Nous avons également évalué l'effet des INLAIs sur la réplication du SIV. Des expérimentations in vitro ont permis de montrer que certaines INLAIs inhibent efficacement l'interaction IN-LEDGF mais n'induisent pas la multimérisation anormale de IN SIV contrairement à ce que nous observons pour IN VIH-1. Ces résultats ont été confirmés in vivo et indiquent que si certaines INLAIs de seconde génération montrent une activité antirétrovirale au cours des étapes précoces, elles ne sont pas capables d'inhiber efficacement les étapes tardives de la réplication du SIV, J'ai pu montrer que les virions produits en présence d'INLAIs développées par Mutabilis présentent un défaut de transcription inverse lors de l'infection des cellules cibles, qui les rend non infectieux. Ces molécules n'influencent pas les étapes tardives de maturation protéique et d'empaquetage de l'ARN du VIH-1 dans les virions

, Mes travaux ont donc permis de mettre en évidence que les virions "inactivés" par ces INLAIs pourraient représenter un nouveau type d'immunogènes pour l'établissement d'une réponse immunitaire anti VIH-1. Cependant l'étude du spectre d'activité suggère que bien que la capacité de certaines INLAIs à inhiber l'interaction IN-LEDGF/p75 semble relativement bien conservée entre le VIH-1 et SIV