M. Lavra and Z. Maria, Incremento da solubilidade e da cinética de dissolução do fármaco Efavirenz através da obtenção de misturas binárias amorfas com matrizes poliméricas, 2016.

, The administration of medicines', Nursing Times, 2007.

J. M. Ting, W. W. Porter, J. M. Mecca, F. S. Bates, and T. M. Reineke, Advances in Polymer Design for Enhancing Oral Drug Solubility and Delivery, Bioconjug. Chem, vol.29, issue.4, pp.939-952, 2018.

J. M. Ting, High-Throughput Excipient Discovery Enables Oral Delivery of Poorly Soluble Pharmaceuticals, ACS Cent. Sci, vol.2, issue.10, pp.748-755, 2016.

G. L. Amidon, H. Lennernäs, V. P. Shah, and J. R. Crison, A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability, Pharm. Res, vol.12, issue.3, pp.413-420, 1995.

A. Dokoumetzidis and P. Macheras, A century of dissolution research: from Noyes and Whitney to the biopharmaceutics classification system, Int. J. Pharm, vol.321, issue.1-2, pp.1-11, 2006.

C. and D. E. Research, Development Resources -Dissolution Methods Database Frequently Asked Questions

H. D. Friedel, FIP Guidelines for Dissolution Testing of Solid Oral Products', J. Pharm. Sci, 2018.

S. Baghel, H. Cathcart, and N. J. O'reilly, Polymeric Amorphous Solid Dispersions: A Review of Amorphization, Crystallization, Stabilization, Solid-State Characterization, and Aqueous Solubilization of Biopharmaceutical Classification System Class II Drugs, J. Pharm. Sci, vol.105, issue.9, pp.2527-2544, 2016.

L. X. Yu, Biopharmaceutics classification system: the scientific basis for biowaiver extensions, Pharm. Res, vol.19, issue.7, pp.921-925, 2002.

J. M. Butler and J. B. Dressman, The developability classification system: application of biopharmaceutics concepts to formulation development, J. Pharm. Sci, vol.99, issue.12, pp.4940-4954, 2010.

E. Gué, Formes galéniques polymériques avec cinétiques de libération améliorée pour le kétoprofène et le fénofibrate, vol.2, 2013.

D. M. Oh, R. L. Curl, and G. L. Amidon, Estimating the fraction dose absorbed from suspensions of poorly soluble compounds in humans: a mathematical model, Pharm. Res, vol.10, issue.2, pp.264-270, 1993.

T. Xie and L. S. Taylor, Dissolution Performance of High Drug Loading Celecoxib Amorphous Solid Dispersions Formulated with Polymer Combinations, Pharm. Res, vol.33, issue.3, pp.739-750, 2016.

H. Lieberman and N. M. Vemuri, Chapter 32 -Chemical and Physicochemical Approaches to Solve Formulation Problems, The Practice of Medicinal Chemistry, pp.767-791, 2015.

A. K. Nayak and P. P. Panigrahi, Solubility Enhancement of Etoricoxib by Cosolvency Approach', International Scholarly Research Notices, p.7, 2012.

J. T. Rubino and S. H. Yalkowsky, Cosolvency and cosolvent polarity, Pharm. Res, vol.4, issue.3, pp.220-230, 1987.

M. T. França, R. Pereira, M. Riekes, J. Munari-oliveira, H. K. Pinto et al., Investigation of novel supersaturating drug delivery systems of chlorthalidone: The use of polymer-surfactant complex as an effective carrier in solid dispersions, Eur. J. Pharm. Sci. Off. J. Eur. Fed. Pharm. Sci, vol.111, pp.142-152, 2018.

R. N. Shamma and M. Basha, Soluplus®: A novel polymeric solubilizer for optimization of Carvedilol solid dispersions: Formulation design and effect of method of preparation, Powder Technol, vol.237, pp.406-414, 2013.

K. T. Savjani, A. K. Gajjar, and J. K. Savjani, Drug Solubility: Importance and Enhancement Techniques, ISRN Pharm, vol.2012, 2012.

S. Baghel, H. Cathcart, and N. J. O'reilly, Polymeric Amorphous Solid Dispersions: A Review of Amorphization, Crystallization, Stabilization, Solid-State Characterization, and Aqueous Solubilization of Biopharmaceutical Classification System Class II Drugs, J. Pharm. Sci, vol.105, issue.9, pp.2527-2544, 2016.

A. C. Vieira, Multicomponent systems with cyclodextrins and hydrophilic polymers for the delivery of Efavirenz, Carbohydr. Polym, vol.130, pp.133-140, 2015.

M. E. Brewster, R. Vandecruys, G. Verreck, and J. Peeters, Supersaturating drug delivery systems: effect of hydrophilic cyclodextrins and other excipients on the formation and stabilization of supersaturated drug solutions, Pharm, vol.63, issue.3, pp.217-220, 2008.

B. Chauhan, S. Shimpi, and A. Paradkar, Preparation and characterization of etoricoxib solid dispersions using lipid carriers by spray drying technique, AAPS PharmSciTech, vol.6, issue.3, pp.405-409, 2005.

S. Kamboj, S. Sethi, and V. Rana, Lipid based delivery of Efavirenz: An answer to its erratic absorption and food effect, Eur. J. Pharm. Sci, vol.123, pp.199-216, 2018.

K. Cerpnjak, A. Zvonar, M. Ga?perlin, and F. Vre?er, Lipid-based systems as a promising approach for enhancing the bioavailability of poorly water-soluble drugs, Acta Pharm. Zagreb Croat, vol.63, issue.4, pp.427-445, 2013.

S. Kalepu, M. Manthina, and V. Padavala, Oral lipid-based drug delivery systems -an overview, Acta Pharm. Sin. B, vol.3, issue.6, pp.361-372, 2013.

R. N. Kamble, P. P. Mehta, and A. Kumar, Efavirenz Self-Nano-Emulsifying Drug Delivery System: In Vitro and In Vivo Evaluation, AAPS PharmSciTech, vol.17, issue.5, pp.1240-1247, 2016.

P. Khadka, Pharmaceutical particle technologies: An approach to improve drug solubility, dissolution and bioavailability, Asian J. Pharm. Sci, vol.9, issue.6, pp.304-316, 2014.

A. T. Serajuddin, Salt formation to improve drug solubility, Adv. Drug Deliv. Rev, vol.59, issue.7, pp.603-616, 2007.

S. J. Dengale, H. Grohganz, T. Rades, and K. Löbmann, Recent advances in coamorphous drug formulations, Adv. Drug Deliv. Rev, vol.100, pp.116-125, 2016.

H. D. Williams, Strategies to Address Low Drug Solubility in Discovery and Development, Pharmacol. Rev, vol.65, issue.1, pp.315-499, 2013.

P. Karande, J. P. Trasatti, and D. Chandra, Chapter 4 -Novel Approaches for the Delivery of Biologics to the Central Nervous System, Novel Approaches and Strategies for Biologics, Vaccines and Cancer, pp.59-88, 2015.

R. Hilfiker, Polymorphism: In the Pharmaceutical Industry, 2006.

R. K. Harris, Polymorphism Studied by Solid-state NMR, Encyclopedia of Spectroscopy and Spectrometry, pp.2237-2246, 2010.

D. D. Le-pevelen, G. E. Tranter, &. Ft-ir, and R. Spectroscopies, Polymorphism Applications, Encyclopedia of Spectroscopy and Spectrometry, pp.750-761, 2017.

J. Deng, S. Staufenbiel, and R. Bodmeier, Evaluation of a biphasic in vitro dissolution test for estimating the bioavailability of carbamazepine polymorphic forms, Eur. J. Pharm. Sci, vol.105, pp.64-70, 2017.

I. Sathisaran and S. V. Dalvi, Engineering Cocrystals of PoorlyWater-Soluble Drugs to Enhance Dissolution in Aqueous Medium, Pharmaceutics, vol.10, issue.3, 2018.

C. M. Keck and R. H. Müller, Drug nanocrystals of poorly soluble drugs produced by high pressure homogenisation, Eur. J. Pharm. Biopharm. Off. J. Arbeitsgemeinschaft Pharm. Verfahrenstechnik EV, vol.62, issue.1, pp.3-16, 2006.

E. M. Merisko-liversidge and G. G. Liversidge, Drug nanoparticles: formulating poorly water-soluble compounds, Toxicol. Pathol, vol.36, issue.1, pp.43-48, 2008.

J. Sun, Effect of particle size on solubility, dissolution rate, and oral bioavailability: evaluation using coenzyme Q10 as naked nanocrystals, Int. J. Nanomedicine, vol.7, pp.5733-5744, 2012.

N. Shah, H. Sandhu, D. S. Choi, H. Chokshi, and A. W. Malick, Amorphous Fed. Pharm. Sci, vol.77, pp.106-111, 2015.

I. U. and A. Chemistry, IUPAC Gold Book -molecule

Y. Chen, Initial Drug Dissolution from Amorphous Solid Dispersions Controlled by Polymer Dissolution and Drug-Polymer Interaction, Pharm. Res, vol.33, issue.10, pp.2445-2458, 2016.

N. Shi, Self-micellizing solid dispersions enhance the properties and therapeutic potential of fenofibrate: Advantages, profiles and mechanisms, Int. J. Pharm, vol.528, issue.1, pp.563-577, 2017.

S. Verma and V. S. Rudraraju, Wetting Kinetics: an Alternative Approach Towards Understanding the Enhanced Dissolution Rate for Amorphous Solid Dispersion of a Poorly Soluble Drug, AAPS PharmSciTech, vol.16, issue.5, pp.1079-1090, 2015.

E. G. Shafrin and W. A. Zisman, CONSTITUTIVE RELATIONS IN THE WETTING OF LOW ENERGY SURFACES AND THE THEORY OF THE RETRACTION METHOD OF PREPARING MONOLAYERS1, J. Phys. Chem, vol.64, issue.5, pp.519-524, 1960.

O. I. Corrigan and C. T. Stanley, Mechanism of drug dissolution rate enhancement from ?-cyclodextrin-drug systems, J. Pharm. Pharmacol, vol.34, issue.10, pp.621-626, 1982.

S. Qi, D. Marchaud, and D. Q. Craig, An investigation into the mechanism of dissolution rate enhancement of poorly water-soluble drugs from spray chilled gelucire 50/13 microspheres, J. Pharm. Sci, vol.99, issue.1, pp.262-274, 2010.

H. Ç. Arca, L. I. Mosquera-giraldo, D. Dahal, L. S. Taylor, K. J. Edgar et al., Anti-HIV Amorphous Solid Dispersions: Nature and Mechanisms of Impacts of Drugs on Each Other's Solution Concentrations, Mol. Pharm, vol.14, issue.11, pp.3617-3627, 2017.

S. Verheyen, N. Blaton, R. Kinget, G. Van-den, and . Mooter, Mechanism of increased dissolution of diazepam and temazepam from polyethylene glycol 6000 solid dispersions, Int. J. Pharm, vol.249, issue.1-2, pp.45-58, 2002.

S. Sh, S. Sb, K. As, and A. Nh, SOLID DISPERSION: A NOVEL APPROACH FOR POORLY WATER SOLUBLE DRUGS', Int. J. Curr. Pharm. Res, vol.7, issue.4, pp.1-8, 2015.

Y. Kojo, S. Matsunaga, H. Suzuki, H. Sato, Y. Seto et al., Improved oral absorption profile of itraconazole in hypochlorhydria by self-micellizing solid dispersion approach, Eur. J. Pharm. Sci. Off. J. Eur. Fed. Pharm. Sci, vol.97, pp.55-61, 2017.

D. Q. Craig, J. M. Newton-;-s, and . Raina, Trends in the Precipitation and Crystallization Behavior of Supersaturated Aqueous Solutions of Poorly Water-Soluble Drugs Assessed Using Synchrotron Radiation, Int. J. Pharm, vol.78, issue.1, pp.1981-1992, 1992.

T. Ohara, S. Kitamura, T. Kitagawa, and K. Terada, Dissolution mechanism of poorly water-soluble drug from extended release solid dispersion system with ethylcellulose and hydroxypropylmethylcellulose, Int. J. Pharm, vol.302, issue.1-2, pp.95-102, 2005.

S. B. Murdande, M. J. Pikal, R. M. Shanker, and R. H. Bogner, Aqueous solubility of crystalline and amorphous drugs: Challenges in measurement, Pharm. Dev. Technol, vol.16, issue.3, pp.187-200, 2011.

B. B. Patel, J. K. Patel, S. Chakraborty, and D. Shukla, Revealing facts behind spray dried solid dispersion technology used for solubility enhancement, Saudi Pharm. J, vol.23, issue.4, pp.352-365, 2015.

A. Singh, G. Van-den, and . Mooter, Spray drying formulation of amorphous solid dispersions, Adv. Drug Deliv. Rev, vol.100, pp.27-50, 2016.

M. Mehta, K. Kothari, V. Ragoonanan, and R. Suryanarayanan, Effect of Water on Molecular Mobility and Physical Stability of Amorphous Pharmaceuticals, Mol. Pharm, vol.13, issue.4, pp.1339-1346, 2016.

K. Lehmkemper, S. O. Kyeremateng, M. Bartels, M. Degenhardt, and G. ,

. Sadowski, Physical stability of API/polymer-blend amorphous solid dispersions, Eur. J. Pharm. Biopharm, vol.124, pp.147-157, 2018.

K. Lehmkemper, S. O. Kyeremateng, O. Heinzerling, M. Degenhardt, and G. Sadowski, Long-Term Physical Stability of PVP-and PVPVA-Amorphous Solid Dispersions, Mol. Pharm, vol.14, issue.1, pp.157-171, 2017.

S. B. Teja, S. P. Patil, G. Shete, S. Patel, and A. K. Bansal, Drug-excipient behavior in polymeric amorphous solid dispersions, J. Excip. Food Chem, vol.4, issue.3, pp.70-94, 2013.

J. A. Baird and L. S. Taylor, Evaluation of amorphous solid dispersion properties using thermal analysis techniques, Adv. Drug Deliv. Rev, vol.64, issue.5, pp.396-421, 2012.

S. Sapkal, M. Babhulkar, A. Rathi, G. Mehetre, and M. Narkhede, An overview on the mechanisms of solubility and dissolution rate enhancement in solid dispersion, Int. J. PharmTech Res, vol.5, pp.31-39, 2013.

Z. Ayenew, A. Paudel, G. Van-den, and . Mooter, Can compression induce demixing in amorphous solid dispersions? A case study of naproxen-PVP K25', Eur. J. Pharm. Biopharm. Off. J. Arbeitsgemeinschaft Pharm. Verfahrenstechnik EV, vol.81, issue.1, pp.207-213, 2012.

X. Liu, X. Feng, R. O. Williams, and F. Zhang, Characterization of amorphous solid dispersions, J. Pharm. Investig, vol.48, issue.1, pp.19-41, 2018.

A. M. Agrawal, M. S. Dudhedia, A. D. Patel, and M. S. Raikes, Characterization and performance assessment of solid dispersions prepared by hot melt extrusion and spray drying process, Int. J. Pharm, vol.457, issue.1, pp.71-81, 2013.

J. S. Lafountaine, J. W. Mcginity, and R. O. Williams, Challenges and Strategies in Thermal Processing of Amorphous Solid Dispersions: A Review, AAPS PharmSciTech, vol.17, issue.1, pp.43-55, 2016.

K. Kv, A. Sr, Y. Pr, P. Ry, and B. Vu, Differential Scanning Calorimetry: A Review, Res. Rev. J. Pharm. Anal, vol.3, issue.3, pp.11-22, 2014.

Y. Sun, J. Tao, G. G. Zhang, and L. Yu, Solubilities of crystalline drugs in polymers: an improved analytical method and comparison of solubilities of indomethacin and nifedipine in PVP, PVP/VA, and PVAc, J. Pharm. Sci, vol.99, issue.9, pp.4023-4031, 2010.

S. Shah, S. Maddineni, J. Lu, and M. A. Repka, Melt extrusion with poorly soluble drugs, Int. J. Pharm, vol.453, issue.1, pp.233-252, 2013.

M. Chang, A. S. Myerson, and T. K. Kwei, The effect of hydrogen bonding on vapor diffusion in water-soluble polymers, J. Appl. Polym. Sci, vol.66, issue.2, pp.279-291, 1997.

K. Pun?ochová, J. Y. Heng, J. Beránek, and F. St?pánek, Investigation of drug-polymer interaction in solid dispersions by vapour sorption methods, Int. J. Pharm, vol.469, issue.1, pp.159-167, 2014.

H. M. Marques, J. Hadgraft, and I. W. Kellaway, Studies of cyclodextrin inclusion complexes. I. The salbutamol-cyclodextrin complex as studied by phase solubility and DSC, Int. J. Pharm, vol.63, issue.3, pp.259-266, 1990.

D. D. Sun, H. Wen, and L. S. Taylor, Non-Sink Dissolution Conditions for Predicting Product Quality and In Vivo Performance of Supersaturating Drug Delivery Systems, J. Pharm. Sci, vol.105, issue.9, pp.2477-2488, 2016.

N. Li and L. S. Taylor, Tailoring supersaturation from amorphous solid dispersions, J. Controlled Release, vol.279, pp.114-125, 2018.

T. Huo, Preparation and comparison of tacrolimus-loaded solid dispersion and self-microemulsifying drug delivery system by in vitro/in vivo evaluation, Eur. J. Pharm. Sci, vol.114, pp.74-83, 2018.

A. Newman, G. Knipp, and G. Zografi, Assessing the performance of amorphous solid dispersions, J. Pharm. Sci, vol.101, issue.4, pp.1355-1377, 2012.

N. Shah, H. Sandhu, D. S. Choi, O. Kalb, S. Page et al., Structured Development Approach for Amorphous Systems', in Formulating Poorly Water Soluble Drugs, pp.267-310, 2012.

K. A. Khan and C. T. Rhodes, Effect of compaction pressure on the dissolution efficiency of some direct compression systems, Pharm. Acta Helv, vol.47, issue.10, pp.594-607, 1972.

S. Dash, P. N. Murthy, L. Nath, and P. Chowdhury, Kinetic modeling on drug release from controlled drug delivery systems, Acta Pol. Pharm, vol.67, issue.3, pp.217-223, 2010.

M. L. Bruschi, 5 -Mathematical models of drug release', in Strategies to Modify the Drug Release from Pharmaceutical Systems, pp.63-86, 2015.

R. W. Korsmeyer, R. Gurny, E. Doelker, P. Buri, and N. A. Peppas, Mechanisms of solute release from porous hydrophilic polymers, Int. J. Pharm, vol.15, issue.1, pp.25-35, 1983.

P. Costa and J. M. Sousa-lobo, Modeling and comparison of dissolution profiles, Eur. J. Pharm. Sci, vol.13, issue.2, pp.123-133, 2001.

N. A. Peppas, Analysis of Fickian and non-Fickian drug release from polymers, Pharm. Acta Helv, vol.60, issue.4, pp.110-111, 1985.

M. J. Abdekhodaie and Y. Cheng, Diffusional release of a dispersed solute from planar and spherical matrices into finite external volume, J. Controlled Release, vol.43, issue.2, pp.175-182, 1997.

M. T. Ansari, Improved physicochemical characteristics of artemisinin using succinic acid, Acta Pol. Pharm, vol.71, issue.3, pp.451-462, 2014.

Z. M. Lavra, D. Pereira-de-santana, and M. I. Ré, Solubility and dissolution performances of spray-dried solid dispersion of Efavirenz in Soluplus, Drug Dev. Ind. Pharm, vol.43, issue.1, pp.42-54, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01619242

Y. Lee, J. G. Song, S. H. Lee, and H. Han, Sustained-release solid dispersion of pelubiprofen using the blended mixture of aminoclay and pH independent polymers: preparation and in vitro/in vivo characterization, Drug Deliv, vol.24, issue.1, pp.1731-1739, 2017.

Y. Wu, Release behavior of alkyl-p-aminobenzoate ester-PVP solid dispersions', Theses Diss, 2015.

A. Althaf, S. , and &. Formulation, Evaluation and Mathematical Modelling of Clopidogrel Bisulphate & Aspirin Immediate Release Bilayer Tablets, Pharm. Anal. Acta, vol.03, issue.09, 2012.

J. S. Changdeo, M. Vinod, K. B. Shankar, and C. A. Rajaram, Physicochemical characterization and solubility enhancement studies of allopurinol solid dispersions', Braz, J. Pharm. Sci, vol.47, issue.3, pp.513-523, 2011.

J. Ihli, A. N. Kulak, and F. C. Meldrum, Freeze-drying yields stable and pure amorphous calcium carbonate (ACC), Chem. Commun. Camb. Engl, vol.49, issue.30, pp.3134-3136, 2013.

S. O. Kyeremateng, M. Pudlas, and G. H. Woehrle, A Fast and Reliable Empirical Approach for Estimating Solubility of Crystalline Drugs in Polymers for Hot Melt Extrusion Formulations, J. Pharm. Sci, vol.103, issue.9, pp.2847-2858, 2014.

J. Thiry, Continuous production of itraconazole-based solid dispersions by hot melt extrusion: Preformulation, optimization and design space determination', Int. J. Pharm, vol.515, issue.1-2, pp.114-124, 2016.

A. Haser, T. Cao, J. Lubach, T. Listro, L. Acquarulo et al., Melt extrusion vs. spray drying: The effect of processing methods on crystalline content of naproxenpovidone formulations, Eur. J. Pharm. Sci. Off. J. Eur. Fed. Pharm. Sci, vol.102, pp.115-125, 2017.

T. Parikh, S. S. Gupta, A. K. Meena, I. Vitez, N. Mahajan et al., Application of Film-Casting Technique to Investigate Drug-Polymer Miscibility in Solid Dispersion and Hot-Melt Extrudate, J. Pharm. Sci, vol.104, issue.7, pp.2142-2152, 2015.

K. Wlodarski, Physicochemical properties of tadalafil solid dispersionsImpact of polymer on the apparent solubility and dissolution rate of tadalafil, Eur. J. Pharm. Biopharm, vol.94, pp.106-115, 2015.

V. Caron, Amorphous Solid Dispersions of Sulfonamide/Soluplus® and Sulfonamide/PVP Prepared by Ball Milling, AAPS PharmSciTech, vol.14, issue.1, pp.464-474, 2013.

A. Mahieu, J. Willart, E. Dudognon, F. Danède, and M. Descamps, A New Protocol To Determine the Solubility of Drugs into Polymer Matrixes, Mol. Pharm, vol.10, issue.2, pp.560-566, 2013.

K. Semjonov, The formation and physical stability of two-phase solid dispersion systems of indomethacin in supercooled molten mixtures with different matrix formers, Eur. J. Pharm. Sci. Off. J. Eur. Fed. Pharm. Sci, vol.97, pp.237-246, 2017.

R. Ghanavati, A. Taheri, and A. Homayouni, Anomalous dissolution behavior of celecoxib in PVP/Isomalt solid dispersions prepared using spray drier, Mater. Sci. Eng. C, vol.72, pp.501-511, 2017.

K. Wlodarski, W. Sawicki, A. Kozyra, and L. Tajber, Physical stability of solid dispersions with respect to thermodynamic solubility of tadalafil in PVP-VA', Eur. J. Pharm. Biopharm. Off. J. Arbeitsgemeinschaft Pharm. Verfahrenstechnik EV, vol.96, pp.237-246, 2015.

J. N. Pawar, Development of amorphous dispersions of artemether with hydrophilic polymers via spray drying: Physicochemical and in silico studies, Asian J. Pharm. Sci, vol.11, issue.3, pp.385-395, 2016.

T. Vasconcelos, S. Marques, J. Das-neves, and B. Sarmento, Amorphous solid dispersions: Rational selection of a manufacturing process, Adv. Drug Deliv. Rev, vol.100, pp.85-101, 2016.

A. Paudel, Z. A. Worku, J. Meeus, S. Guns, G. Van-den et al., Manufacturing of solid dispersions of poorly water soluble drugs by spray drying: Formulation and process considerations, APPLICATION OF SPRAY DRYING TECHNIQUE FOR PREPARATION AMORPHOUS SOLID DISPERSION | INTERNATIONAL JOURNAL OF PHARMACEUTICAL SCIENCES AND RESEARCH, vol.453, issue.1, pp.253-284, 2013.

M. Ré, Formulating Drug Delivery Systems by Spray Drying, Dry. Technol, vol.24, issue.4, pp.433-446, 2006.

A. Kauppinen, Efficient production of solid dispersions by spray drying solutions of high solid content using a 3-fluid nozzle, Eur. J. Pharm. Biopharm, vol.123, pp.50-58, 2018.

O. Níógáin, L. Tajber, O. I. Corrigan, and A. M. Healy, Spray drying from organic solvents to prepare nanoporous/nanoparticulate microparticles of protein: excipient composites designed for oral inhalation', J. Pharm. Pharmacol, vol.64, issue.9, p.14, 2012.

K. Kawakami, Current status of amorphous formulation and other special dosage forms as formulations for early clinical phases, J. Pharm. Sci, vol.98, issue.9, pp.2875-2885, 2009.

M. Davis and G. Walker, Recent strategies in spray drying for the enhanced bioavailability of poorly water-soluble drugs, J. Controlled Release, vol.269, pp.110-127, 2018.

E. D. Ikasari, A. Fudholi, S. Martono, and M. , Investigation of nifedipine solid dispersion with solvent PVP K-30', Int. J. Pharm. Pharm. Sci, vol.7, pp.389-392, 2015.

M. A. Altamimi and S. H. Neau, Investigation of the in vitro performance difference of drug-Soluplus® and drug-PEG 6000 dispersions when prepared using spray drying or lyophilization, Saudi Pharm. J. SPJ Off. Publ. Saudi Pharm. Soc, vol.25, issue.3, pp.419-439, 2017.

F. Wan, Critical solvent properties affecting the particle formation process and characteristics of celecoxib-loaded plga microparticles via spray-drying', Pharm. Res, vol.30, issue.4, pp.1065-1076, 2013.

J. G. Lyons, Preparation of monolithic matrices for oral drug delivery using a supercritical fluid assisted hot melt extrusion process, Int. J. Pharm, vol.329, issue.1-2, pp.62-71, 2007.

A. Patel, A Review of Hot Melt Extrusion Technique, Int. J. Innov. Res

, Sci. Eng. Technol, vol.2, issue.6, pp.2194-2198, 1970.

E. A. Ashour, Hot Melt Extrusion as an Approach to Improve Solubility, Permeability, and Oral Absorption of a Psychoactive Natural Product, Piperine', J. Pharm. Pharmacol, vol.68, issue.8, pp.989-998, 2016.

M. Maniruzzaman, D. Douroumis, J. S. , and M. J. , Hot-Melt Extrusion (HME): From Process to Pharmaceutical Applications', in Recent Advances in Novel Drug Carrier Systems, 2012.

M. A. Repka, Melt extrusion: process to product, Expert Opin. Drug Deliv, vol.9, issue.1, pp.105-125, 2012.

N. Chomcharn and M. Xanthos, Properties of aspirin modified enteric polymer prepared by hot-melt mixing, Int. J. Pharm, vol.450, issue.1-2, pp.259-267, 2013.

D. Leister, T. Geilen, and T. Geissler, Twin-screw Extruders for Pharmaceutical Chapter 2 -Theoretical Section

, Extrusion: Technology, Techniques and Practices', in Hot-Melt Extrusion: Pharmaceutical Applications, pp.23-42, 2012.

A. Almeida, B. Claeys, J. P. Remon, and C. Vervaet, Hot-Melt Extrusion Developments in the Pharmaceutical Industry', in Hot-Melt Extrusion: Pharmaceutical Applications, pp.43-69, 2012.

J. Breitenbach, Melt extrusion: from process to drug delivery technology, Eur. J. Pharm. Biopharm. Off. J. Arbeitsgemeinschaft Pharm. Verfahrenstechnik EV, vol.54, issue.2, pp.107-117, 2002.

J. Thiry, F. Krier, and B. Evrard, A review of pharmaceutical extrusion: Critical process parameters and scaling-up', Int. J. Pharm, vol.479, issue.1, pp.227-240, 2015.

M. Bene?, Methods for the preparation of amorphous solid dispersions -A comparative study, J. Drug Deliv. Sci. Technol, vol.38, pp.125-134, 2017.

Z. Dong, A. Chatterji, H. Sandhu, D. S. Choi, H. Chokshi et al., Influence of preparation methods on solid state supersaturation of amorphous solid dispersions: a case study with itraconazole and eudragit e100, Int. J. Pharm, vol.355, issue.1, pp.775-785, 2008.

Y. Song, Acid-base interactions in amorphous solid dispersions of lumefantrine prepared by spray-drying and hot-melt extrusion using X-ray photoelectron spectroscopy, Int. J. Pharm, vol.514, issue.2, pp.456-464, 2016.

O. Mahmah, R. Tabbakh, A. Kelly, and A. Paradkar, A comparative study of the effect of spray drying and hot-melt extrusion on the properties of amorphous solid dispersions containing felodipine, J. Pharm. Pharmacol, vol.66, issue.2, pp.275-284, 2014.

S. H. Surasarang, J. M. Keen, S. Huang, F. Zhang, J. W. Mcginity et al.,

W. Iii, Hot melt extrusion versus spray drying: hot melt extrusion degrades albendazole, Drug Dev. Ind. Pharm, vol.43, issue.5, pp.797-811, 2017.

J. F. Kelleher, A comparative study between hot-melt extrusion and spraydrying for the manufacture of anti-hypertension compatible monolithic fixed-dose combination products, Int. J. Pharm, vol.545, issue.1-2, pp.183-196, 2018.

V. Bhardwaj, N. S. Trasi, D. Y. Zemlyanov, and L. S. Taylor, Surface area normalized dissolution to study differences in itraconazole-copovidone solid dispersions prepared by spray-drying and hot melt extrusion, Int. J. Pharm, vol.540, issue.1-2, pp.106-119, 2018.

M. T. Davis, C. B. Potter, and G. M. Walker, Downstream processing of a ternary amorphous solid dispersion: The impacts of spray drying and hot melt extrusion on powder flow, compression and dissolution, Int. J. Pharm, vol.544, issue.1, pp.242-253, 2018.

K. Ramesh, B. R. Shekar, P. Khadgapathi, and D. V. Bhikshapathi, Design and evaluation of tolvaptan solid dispersions using hot-melt extrusion and spray drying technique -A comparative study, 2015.

. Shekar, , p.8, 2018.

J. Djuris, I. Nikolakakis, S. Ibric, Z. Djuric, and K. Kachrimanis, Preparation of carbamazepine-Soluplus solid dispersions by hot-melt extrusion, and prediction of drugpolymer miscibility by thermodynamic model fitting, Eur. J. Pharm. Biopharm. Off. J. Arbeitsgemeinschaft Für Pharm. Verfahrenstechnik EV, vol.84, issue.1, pp.228-237, 2013.

D. W. Van-krevelen and K. Nijenhuis, Properties of Polymers: Their Correlation with Chemical Structure; their Numerical Estimation and Prediction from Additive Group Contributions, 2009.

A. L. Sarode, H. Sandhu, N. Shah, W. Malick, and H. Zia, Hot melt extrusion (HME) for amorphous solid dispersions: Predictive tools for processing and impact of drugpolymer interactions on supersaturation, Eur. J. Pharm. Sci, vol.48, issue.3, pp.371-384, 2013.

Y. Sun, J. Tao, G. G. Zhang, and L. Yu, Solubilities of crystalline drugs in polymers: an improved analytical method and comparison of solubilities of indomethacin and nifedipine in PVP, PVP/VA, and PVAc, J. Pharm. Sci, vol.99, issue.9, pp.4023-4031, 2010.

Y. Tian, J. Booth, E. Meehan, D. S. Jones, S. Li et al., Construction of Drug-Polymer Thermodynamic Phase Diagrams Using Flory-Huggins Interaction Theory: Identifying the Relevance of Temperature and Drug Weight Fraction to Phase Separation within Solid Dispersions, Mol. Pharm, vol.10, issue.1, pp.236-248, 2013.

M. M. Knopp, Comparative Study of Different Methods for the Prediction of Drug-Polymer Solubility, Mol. Pharm, vol.12, issue.9, pp.3408-3419, 2015.

P. J. Marsac, S. L. Shamblin, and L. S. Taylor, Theoretical and practical approaches for prediction of drug-polymer miscibility and solubility, Pharm. Res, vol.23, issue.10, pp.2417-2426, 2006.

J. Tao, Y. Sun, G. G. Zhang, and L. Yu, Solubility of Small-Molecule Crystals in Polymers: d-Mannitol in PVP, Indomethacin in PVP/VA, and Nifedipine in PVP/VA', Pharm. Res, vol.26, issue.4, pp.855-864, 2008.

N. Kumar and K. Biswas, Cryomilling: An environment friendly approach of preparation large quantity ultra refined pure aluminium nanoparticles, J. Mater. Res. Technol, 2017.

Z. Yang, K. Nollenberger, J. Albers, and S. Qi, Molecular implications of drugpolymer solubility in understanding the destabilization of solid dispersions by milling, Mol. Pharm, vol.11, issue.7, pp.2453-2465, 2014.

R. Fule and P. Amin, Development and evaluation of lafutidine solid dispersion via hot melt extrusion: Investigating drug-polymer miscibility with advanced characterisation, Asian J. Pharm. Sci, vol.9, issue.2, pp.92-106, 2014.

C. Donnelly, Y. Tian, C. Potter, D. S. Jones, and G. P. Andrews, Probing the effects of experimental conditions on the character of drug-polymer phase diagrams constructed using Flory-Huggins theory, Pharm. Res, vol.32, issue.1, pp.167-179, 2015.

B. Bouillot, Approches thermodynamiques pour la prédiction de la solubilité de molécules d'intérêt pharmaceutique, 2011.

A. Mahieu, Nouvelles méthodes de détermination des diagrammes de solubilité polymère / principe actif, vol.1, 2013.

P. J. Marsac, S. L. Shamblin, and L. S. Taylor, Theoretical and practical approaches for prediction of drug-polymer miscibility and solubility, Pharm. Res, vol.23, issue.10, pp.2417-2426, 2006.

U. Wintergerst, Antiviral efficacy, tolerability and pharmacokinetics of efavirenz in an unselected cohort of HIV-infected children, J. Antimicrob. Chemother, vol.61, issue.6, pp.1336-1339, 2008.

D. A. Chiappetta, C. Hocht, C. Taira, and A. Sosnik, Efavirenz-loaded polymeric micelles for pediatric anti-HIV pharmacotherapy with significantly higher oral bioavailability, Nanomed, vol.5, issue.1, pp.11-23, 2009.

A. Singh, Development and characterization of taste masked Efavirenz pellets utilizing hot melt extrusion, J. Drug Deliv. Sci. Technol, vol.23, issue.2, pp.157-163, 2013.

E. Zaini, F. Rachmaini, F. Armin, and L. Fitriani, Preparation and Characterization of Binary Mixture of Efavirenz and Nicotinamide, Orient. J. Chem, vol.31, issue.4, pp.2271-2276, 2015.

P. T. Koh, J. N. Chuah, M. Talekar, A. Gorajana, and S. Garg, Formulation Development and Dissolution Rate Enhancement of Efavirenz by Solid Dispersion Systems, Indian J. Pharm. Sci, vol.75, issue.3, pp.291-301, 2013.

C. R. Hoffmeister, Efavirenz dissolution enhancement III: Colloid milling, pharmacokinetics and electronic tongue evaluation, Eur. J. Pharm. Sci. Off. J. Eur. Fed. Pharm. Sci, vol.99, p.14, 2017.

X. Ye, Conjugation of Hot-Melt Extrusion with High-Pressure Homogenization: a Novel Method of Continuously Preparing Nanocrystal Solid Dispersions, AAPS PharmSciTech, vol.17, issue.1, pp.78-88, 2016.

M. A. Da-costa, R. C. Seiceira, C. R. Rodrigues, C. R. Hoffmeister, and L. ,

H. V. Cabral and . Rocha, Efavirenz Dissolution Enhancement I: Co-Micronization', Pharmaceutics, vol.5, issue.1, pp.1-22, 2012.

P. Camelo and S. Regina, Encapsulation de molécules hydrophobes par des structures bi-gels générées par prilling : relation structure-propriétés, 2015.

S. Mazumder, A. K. Dewangan, and N. Pavurala, Enhanced dissolution of poorly soluble antiviral drugs from nanoparticles of cellulose acetate based solid dispersion matrices, Asian J. Pharm. Sci, vol.12, issue.6, pp.532-541, 2017.

L. Fitriani, A. Haqi, and E. Zaini, Preparation and characterization of solid dispersion freeze-dried efavirenz u polyvinylpyrrolidone K-30, J. Adv. Pharm. Technol. Res, vol.7, issue.3, pp.105-109, 2016.

J. Pawar, A. Tayade, A. Gangurde, K. Moravkar, and P. Amin, Solubility and dissolution enhancement of efavirenz hot melt extruded amorphous solid dispersions using combination of polymeric blends: A QbD approach, Eur. J. Pharm. Sci. Off. J. Eur. Fed. Pharm. Sci, vol.88, pp.37-49, 2016.

L. Fitriani, M. Fadhila, and E. Zaini, Preparation of Efavirenz -PVP K-30 Solid Dispersionby Spray Drying Technique', Res, J. Pharm. Biol. Chem. Sci, vol.6, issue.6, pp.925-930, 2015.

L. D. Santos-alves, Solid dispersion of efavirenz in PVP K-30 by conventional solvent and kneading methods, Carbohydr. Polym, vol.104, p.14, 2014.

R. S. Bhuptani, Soluplus Based Polymeric Micelles and Mixed Micelles of Lornoxicam: Design, Characterization and In vivo Efficacy Studies in Rats, Indian J. Pharm. Educ. Res, vol.50, issue.2, pp.277-286, 2016.

M. Linn, In vitro characterization of the novel solubility enhancing excipient Soluplus®', In vitro Charakterisierung des neuartigen Lösungsvermittlers Soluplus®, 2011.

J. Kost and R. Langer, Responsive polymeric delivery systems, Adv. Drug Deliv. Rev, vol.46, issue.1-3, pp.125-148, 2001.

A. Fini, C. Cavallari1, S. Ternullo2, F. Tarterini3, A. Fini1 et al.,

. Internationals, Release Problems for Nifedipine in the Presence of Soluplus, J. Pharm. Pharm, vol.3, issue.2, pp.0-0, 2016.

K. Deboyace and P. L. Wildfong, The Application of Modeling and Prediction to the Formation and Stability of Amorphous Solid Dispersions, J. Pharm. Sci, vol.107, issue.1, pp.57-74, 2018.

T. Nishi and T. T. Wang, Melting Point Depression and Kinetic Effects of Cooling on Crystallization in Poly(vinylidene fluoride)-Poly(methyl methacrylate) Mixtures', Macromolecules, vol.8, pp.909-915, 1975.

Y. Zhao, P. Inbar, H. P. Chokshi, A. W. Malick, and D. S. Choi, Prediction of the thermal phase diagram of amorphous solid dispersions by Flory-Huggins theory, J. Pharm. Sci, vol.100, issue.8, pp.3196-3207, 2011.

A. Mahieu, J. Willart, E. Dudognon, F. Danède, and M. Descamps, A New Protocol To Determine the Solubility of Drugs into Polymer Matrixes, Mol. Pharm, vol.10, issue.2, pp.560-566, 2013.

M. M. Knopp, Comparative Study of Different Methods for the Prediction of Drug-Polymer Solubility, Mol. Pharm, vol.12, issue.9, pp.3408-3419, 2015.

C. Donnelly, Y. Tian, C. Potter, D. S. Jones, and G. P. Andrews, Probing the effects of experimental conditions on the character of drug-polymer phase diagrams constructed using Flory-Huggins theory, Pharm. Res, vol.32, issue.1, pp.167-179, 2015.

B. B. Patel, J. K. Patel, S. Chakraborty, and D. Shukla, Revealing facts behind spray dried solid dispersion technology used for solubility enhancement, Saudi Pharm. J, vol.23, issue.4, pp.352-365, 2015.

A. Sosnik and K. P. Seremeta, Advantages and challenges of the spray-drying technology for the production of pure drug particles and drug-loaded polymeric carriers, Soluplus -For better solubility & bioavailability', BASF, vol.223, p.14, 2015.

&. , , p.13, 2018.

, Efavirenz racemic 1234114', Sigma-Aldrich, p.27, 2018.

C. Fandaruff, Polymorphism of Anti-HIV Drug Efavirenz: Investigations on Thermodynamic and Dissolution Properties, vol.14, pp.4968-4975, 2014.

F. Meng, V. Dave, and H. Chauhan, Qualitative and quantitative methods to determine miscibility in amorphous drug-polymer systems, Eur. J. Pharm. Sci. Off. J. Eur. Fed. Pharm. Sci, vol.77, pp.106-111, 2015.

P. T. Koh, J. N. Chuah, M. Talekar, A. Gorajana, and S. Garg, Formulation Development and Dissolution Rate Enhancement of Efavirenz by Solid Dispersion Systems, Indian J. Pharm. Sci, vol.75, issue.3, pp.291-301, 2013.

Z. M. Lavra, D. Pereira-de-santana, and M. I. Ré, Solubility and dissolution performances of spray-dried solid dispersion of Efavirenz in Soluplus, Drug Dev. Ind. Pharm, vol.43, issue.1, pp.42-54, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01619242

M. Lavra and Z. Maria, Incremento da solubilidade e da cinética de dissolução do fármaco Efavirenz através da obtenção de misturas binárias amorfas com matrizes poliméricas. Ecole nationale des Mines d'Albi-Carmaux, p.8, 2016.

J. Djuris, I. Nikolakakis, S. Ibric, Z. Djuric, and K. Kachrimanis, Preparation of carbamazepine-Soluplus solid dispersions by hot-melt extrusion, and prediction of drugpolymer miscibility by thermodynamic model fitting, Eur. J. Pharm. Biopharm. Off. J. Arbeitsgemeinschaft Für Pharm. Verfahrenstechnik EV, vol.84, issue.1, pp.228-237, 2013.

S. Tanida, T. Kurokawa, H. Sato, K. Kadota, and Y. Tozuka, Evaluation of the Micellization Mechanism of an Amphipathic Graft Copolymer with Enhanced Solubility of Ipriflavone, Chem. Pharm. Bull. (Tokyo), vol.64, issue.1, pp.68-72, 2016.

M. Linn, In vitro characterization of the novel solubility enhancing excipient Soluplus®', In vitro Charakterisierung des neuartigen Lösungsvermittlers Soluplus®, 2011.

R. N. Shamma and M. Basha, Soluplus®: A novel polymeric solubilizer for optimization of Carvedilol solid dispersions: Formulation design and effect of method of preparation, Powder Technol, vol.237, pp.406-414, 2013.

Q. Zhang, Preparation of curcumin self-micelle solid dispersion with enhanced bioavailability and cytotoxic activity by mechanochemistry, Drug Deliv, vol.25, issue.1, pp.198-209, 2018.

Y. Zhang, Extruded Soluplus/SIM as an oral delivery system: characterization, interactions, in vitro and in vivo evaluations, Drug Deliv, vol.23, issue.6, pp.1902-1911, 2016.

X. Lian, Soluplus(®) based 9-nitrocamptothecin solid dispersion for peroral administration: preparation, characterization, in vitro and in vivo evaluation, Int. J. Pharm, vol.477, issue.1-2, pp.399-407, 2014.

S. O. Kyeremateng, M. Pudlas, and G. H. Woehrle, A Fast and Reliable Empirical Approach for Estimating Solubility of Crystalline Drugs in Polymers for Hot Melt Extrusion Formulations, J. Pharm. Sci, vol.103, issue.9, pp.2847-2858, 2014.

N. Tung, C. Tran, T. Nguyen, T. Hoang, T. Trinh et al.,

. Nguyen, Formulation and biopharmaceutical evaluation of bitter taste masking microparticles containing azithromycin loaded in dispersible tablets, Innov. Process. Bio-Pharm. Poorly Water-Soluble API, vol.126, pp.187-200, 2018.

M. T. França, R. Pereira, M. Riekes, J. Munari-oliveira, H. K. Pinto et al., Investigation of novel supersaturating drug delivery systems of chlorthalidone: The use of polymer-surfactant complex as an effective carrier in solid dispersions, Eur. J. Pharm. Sci. Off. J. Eur. Fed. Pharm. Sci, vol.111, pp.142-152, 2018.

S. Baghel, H. Cathcart, and N. J. O'reilly, Understanding the generation and maintenance of supersaturation during the dissolution of amorphous solid dispersions using modulated DSC and 1H NMR', Int. J. Pharm, vol.536, issue.1, pp.414-425, 2018.

G. Van-den and . Mooter, The use of amorphous solid dispersions: A formulation strategy to overcome poor solubility and dissolution rate, Drug Discov. Today Technol, vol.9, issue.2, pp.79-85, 2012.

S. Motallae, A. Taheri, and A. Homayouni, Preparation and characterization of solid dispersions of celecoxib obtained by spray-drying ethanolic suspensions containing PVP-K30 or isomalt, J. Drug Deliv. Sci. Technol, vol.46, pp.188-196, 2018.

F. L. Lopez, T. B. Ernest, C. Tuleu, and M. O. Gul, Formulation approaches to pediatric oral drug delivery: benefits and limitations of current platforms, Expert Opin. Drug Deliv, vol.12, issue.11, pp.1727-1740, 2015.

F. Liu, Patient-Centred Pharmaceutical Design to Improve Acceptability of Medicines: Similarities and Differences in Paediatric and Geriatric Populations, Drugs, vol.74, issue.16, pp.1871-1889, 2014.

&. , , p.13, 2018.

O. Mahmah, R. Tabbakh, A. Kelly, and A. Paradkar, A comparative study of the effect of spray drying and hot-melt extrusion on the properties of amorphous solid dispersions containing felodipine, J. Pharm. Pharmacol, vol.66, issue.2, pp.275-284, 2014.

S. N. Bhattachar, J. A. Wesley, A. Fioritto, P. J. Martin, and S. R. Babu, Dissolution testing of a poorly soluble compound using the flow-through cell dissolution apparatus, Int. J. Pharm, vol.236, issue.1, pp.135-143, 2002.

H. D. Friedel, FIP Guidelines for Dissolution Testing of Solid Oral Products', J. Pharm. Sci, 2018.

M. Chang, A. S. Myerson, and T. K. Kwei, The effect of hydrogen bonding on vapor diffusion in water-soluble polymers, J. Appl. Polym. Sci, vol.66, issue.2, pp.279-291, 1997.

Z. M. Lavra, D. Pereira-de-santana, and M. I. Ré, Solubility and dissolution performances of spray-dried solid dispersion of Efavirenz in Soluplus, Drug Dev. Ind. Pharm, vol.43, issue.1, pp.42-54, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01619242

P. T. Koh, J. N. Chuah, M. Talekar, A. Gorajana, and S. Garg, Formulation Development and Dissolution Rate Enhancement of Efavirenz by Solid Dispersion Systems, Indian J. Pharm. Sci, vol.75, issue.3, pp.291-301, 2013.

A. Singh, Development and characterization of taste masked Efavirenz pellets utilizing hot melt extrusion, J. Drug Deliv. Sci. Technol, vol.23, issue.2, pp.157-163, 2013.

A. C. Vieira, Multicomponent systems with cyclodextrins and hydrophilic polymers for the delivery of Efavirenz, Carbohydr. Polym, vol.130, pp.133-140, 2015.

R. N. Shamma and M. Basha, Soluplus®: A novel polymeric solubilizer for optimization of Carvedilol solid dispersions: Formulation design and effect of method of preparation, Powder Technol, vol.237, pp.406-414, 2013.

Y. Lan, S. Ali, and N. Langley, Characterization of Soluplus® by FTIR and Raman Spectroscopy, 2010.

N. Shah, H. Sandhu, D. S. Choi, H. Chokshi, and A. W. Malick, Amorphous Solid Dispersions: Theory and Practice, 2014.

Y. Chen, Initial Drug Dissolution from Amorphous Solid Dispersions Controlled by Polymer Dissolution and Drug-Polymer Interaction, Pharm. Res, vol.33, issue.10, pp.2445-2458, 2016.

J. Kost and R. Langer, Soluplus -For better solubility & bioavailability, Adv. Drug Deliv. Rev, vol.46, issue.1-3, p.8, 2001.

M. Linn, In vitro characterization of the novel solubility enhancing excipient Soluplus®', In vitro Charakterisierung des neuartigen Lösungsvermittlers Soluplus®, 2011.

A. Fini, C. Cavallari1, S. Ternullo2, F. Tarterini3, A. Fini1 et al.,

. Internationals, Release Problems for Nifedipine in the Presence of Soluplus, J. Pharm. Pharm, vol.3, issue.2, pp.0-0, 2016.

J. F. Kelleher, A comparative study between hot-melt extrusion and spraydrying for the manufacture of anti-hypertension compatible monolithic fixed-dose combination products, Int. J. Pharm, vol.545, issue.1-2, pp.183-196, 2018.

J. Djuris, I. Nikolakakis, S. Ibric, Z. Djuric, and K. Kachrimanis, Preparation of carbamazepine-Soluplus solid dispersions by hot-melt extrusion, and prediction of drugpolymer miscibility by thermodynamic model fitting, Eur. J. Pharm. Biopharm. Off. J. Arbeitsgemeinschaft Für Pharm. Verfahrenstechnik EV, vol.84, issue.1, pp.228-237, 2013.

Y. Zhang, Extruded Soluplus/SIM as an oral delivery system: characterization, interactions, in vitro and in vivo evaluations, Drug Deliv, vol.23, issue.6, pp.1902-1911, 2016.

S. Baghel, H. Cathcart, and N. J. O'reilly, Polymeric Amorphous Solid Dispersions: A Review of Amorphization, Crystallization, Stabilization, Solid-State Characterization, and Aqueous Solubilization of Biopharmaceutical Classification System Class II Drugs, J. Pharm. Sci, vol.105, issue.9, pp.2527-2544, 2016.

L. X. Yu, Biopharmaceutics classification system: the scientific basis for biowaiver extensions, Pharm. Res, vol.19, issue.7, pp.921-925, 2002.

J. Pawar, A. Tayade, A. Gangurde, K. Moravkar, and P. Amin, Solubility and dissolution enhancement of efavirenz hot melt extruded amorphous solid dispersions using combination of polymeric blends: A QbD approach, Eur. J. Pharm. Sci. Off. J. Eur. Fed. Pharm. Sci, vol.88, pp.37-49, 2016.

R. W. Korsmeyer, R. Gurny, E. Doelker, P. Buri, and N. A. Peppas, Mechanisms of solute release from porous hydrophilic polymers, Int. J. Pharm, vol.15, issue.1, pp.25-35, 1983.

M. L. Bruschi, 5 -Mathematical models of drug release', in Strategies to Modify the Drug Release from Pharmaceutical Systems, pp.63-86, 2015.

P. Costa and J. M. Sousa-lobo, Modeling and comparison of dissolution profiles, Eur. J. Pharm. Sci, vol.13, issue.2, pp.123-133, 2001.

S. Airaksinen, Role of excipients in moisture sorption and physical stability of solid pharmaceutical formulations, 2005.

S. Airaksinen, Role of water in the physical stability of solid dosage formulations, J. Pharm. Sci, vol.94, issue.10, pp.2147-2165, 2005.

B. Démuth, Development and tableting of directly compressible powder from electrospun nanofibrous amorphous solid dispersion, Adv. Powder Technol, vol.28, issue.6, pp.1554-1563, 2017.

K. Pun?ochová, J. Y. Heng, J. Beránek, and F. St?pánek, Investigation of drug-polymer interaction in solid dispersions by vapour sorption methods, Int. J. Pharm, vol.469, issue.1, pp.159-167, 2014.

, Time)(min))

, 40%EFV.60%SOL.SD.Sink" 70%EFV.30%SOL.SD.Sink

, Time)(min))

, Crystalline"phase"solubility"of"EFV"

, In vitro dissolution profiles of all samples including crystalline EFV, spray-dried and extruded ASDs. (A) SD ASD under Sink dissolution conditions, (B) SD ASD under non-Sink dissolution conditions, (C) HME ASDs under Sink dissolution conditions (D) HME ASD under non-Sink dissolution conditions

, Time)(min))

, 40%EFV.60%SOL.HME.Sink" 70%EFV.30%SOL.HME.Sink

, Time)(min))

, Crystalline"phase"solubility"of"EFV"

S. H. Surasarang, J. M. Keen, S. Huang, F. Zhang, J. W. Mcginity et al.,

W. Iii, Hot melt extrusion versus spray drying: hot melt extrusion degrades albendazole, Drug Dev. Ind. Pharm, vol.43, issue.5, pp.797-811, 2017.

J. M. Keen, J. S. Lafountaine, J. R. Hughey, D. A. Miller, and J. W. Mcginity, Development of Itraconazole Tablets Containing Viscous KinetiSol Solid Dispersions: In Vitro and In Vivo Analysis in Dogs, AAPS PharmSciTech, vol.19, issue.5, 1998.

J. F. Kelleher, A comparative study between hot-melt extrusion and spraydrying for the manufacture of anti-hypertension compatible monolithic fixed-dose combination products, Int. J. Pharm, vol.545, issue.1-2, pp.183-196, 2018.

Y. Song, Acid-base interactions in amorphous solid dispersions of lumefantrine prepared by spray-drying and hot-melt extrusion using X-ray photoelectron spectroscopy, Int. J. Pharm, vol.514, issue.2, pp.456-464, 2016.

A. M. Agrawal, M. S. Dudhedia, A. D. Patel, and M. S. Raikes, Characterization and performance assessment of solid dispersions prepared by hot melt extrusion and spray drying process, Int. J. Pharm, vol.457, issue.1, pp.71-81, 2013.

O. Mahmah, R. Tabbakh, A. Kelly, and A. Paradkar, A comparative study of the effect of spray drying and hot-melt extrusion on the properties of amorphous solid dispersions containing felodipine, J. Pharm. Pharmacol, vol.66, issue.2, pp.275-284, 2014.

M. T. Davis, C. B. Potter, and G. M. Walker, Downstream processing of a ternary amorphous solid dispersion: The impacts of spray drying and hot melt extrusion on powder flow, compression and dissolution, Int. J. Pharm, vol.544, issue.1, pp.242-253, 2018.

Z. M. Lavra, D. Pereira-de-santana, and M. I. Ré, Solubility and dissolution performances of spray-dried solid dispersion of Efavirenz in Soluplus, Drug Dev. Ind. Pharm, vol.43, issue.1, pp.42-54, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01619242

R. N. Shamma and M. Basha, Soluplus®: A novel polymeric solubilizer for optimization of Carvedilol solid dispersions: Formulation design and effect of method of preparation, Powder Technol, vol.237, pp.406-414, 2013.

J. Djuris, I. Nikolakakis, S. Ibric, Z. Djuric, and K. Kachrimanis, Preparation of carbamazepine-Soluplus solid dispersions by hot-melt extrusion, and prediction of drugpolymer miscibility by thermodynamic model fitting, Eur. J. Pharm. Biopharm. Off. J. Arbeitsgemeinschaft Für Pharm. Verfahrenstechnik EV, vol.84, issue.1, pp.228-237, 2013.

A. Fini, C. Cavallari1, S. Ternullo2, F. Tarterini3, A. Fini1 et al.,

. Internationals, Release Problems for Nifedipine in the Presence of Soluplus, J. Pharm. Pharm, vol.3, issue.2, pp.0-0, 2016.

Y. Zhang, Extruded Soluplus/SIM as an oral delivery system: characterization, interactions, in vitro and in vivo evaluations, Drug Deliv, vol.23, issue.6, pp.1902-1911, 2016.

M. Linn, In vitro characterization of the novel solubility enhancing excipient Soluplus®', In vitro Charakterisierung des neuartigen Lösungsvermittlers Soluplus®, 2011.

M. L. Bruschi, 5 -Mathematical models of drug release', in Strategies to Modify the Drug Release from Pharmaceutical Systems, pp.63-86, 2015.

J. S. Changdeo, M. Vinod, K. B. Shankar, and C. A. Rajaram, Physicochemical characterization and solubility enhancement studies of allopurinol solid dispersions', Braz, J. Pharm. Sci, vol.47, issue.3, pp.513-523, 2011.

S. Airaksinen, Role of excipients in moisture sorption and physical stability of solid pharmaceutical formulations, 2005.

K. J. Crowley and G. Zografi, Cryogenic grinding of indomethacin polymorphs and solvates: assessment of amorphous phase formation and amorphous phase physical stability, J. Pharm. Sci, vol.91, issue.2, pp.492-507, 2002.

G. Aguirre-Álvarez, T. Foster, and S. E. Hill, Modelling of isotherms and their hysteresis analysis in gelatin from different sources, CyTA -J. Food, vol.11, issue.1, pp.68-74, 2013.

, Néanmoins, l'effet « parachute » a été limité dans le temps pour l'ASD générée par SD. En effet, pour une durée de 24h, une diminution de la solubilité cinétique a été détectée pour cet échantillon, comportement non observé pour l'ASD extrudée. De plus, le Soluplus présente des caractéristiques intéressantes pour maintenir la sursaturation en formant des micelles, une charge de EFV de 20 % m

, tels que la gélification, des modifications de la conformation des chaînes liées à un comportement thermo-réactif à des températures proches de sa valeur de Température de Solution Critique Inférieure (LCST) de 40 °C. L'effet gélifiant a déjà été mentionné dans d'autres études, Cependant, des concentrations très élevées dans le milieu aqueux peuvent avoir d'autres effets

, Jusqu'à présent, peu d'études ont rapporté les performances de dissolution de l'EFV dans la matrice Soluplus et aucune étude n'a été réalisée comparant les dissolutions dans ces conditions

A. Dokoumetzidis and P. Macheras, A century of dissolution research: from Noyes and Whitney to the biopharmaceutics classification system, Int. J. Pharm, vol.321, issue.1-2, pp.1-11, 2006.

, The administration of medicines', Nursing Times, p.1, 2007.

J. M. Ting, W. W. Porter, J. M. Mecca, F. S. Bates, and T. M. Reineke, Advances in Polymer Design for Enhancing Oral Drug Solubility and Delivery, Bioconjug. Chem, vol.29, issue.4, pp.939-952, 2018.

J. M. Ting, High-Throughput Excipient Discovery Enables Oral Delivery of Poorly Soluble Pharmaceuticals, ACS Cent. Sci, vol.2, issue.10, pp.748-755, 2016.

E. Gué, Formes galéniques polymériques avec cinétiques de libération améliorée pour le kétoprofène et le fénofibrate, vol.2, 2013.

D. M. Oh, R. L. Curl, and G. L. Amidon, Estimating the fraction dose absorbed from suspensions of poorly soluble compounds in humans: a mathematical model, Pharm. Res, vol.10, issue.2, pp.264-270, 1993.

A. Paudel, Z. A. Worku, J. Meeus, S. Guns, G. Van-den et al., Manufacturing of solid dispersions of poorly water soluble drugs by spray drying: Formulation and process considerations, Int. J. Pharm, vol.453, issue.1, pp.253-284, 2013.

T. Vasconcelos, S. Marques, J. Das-neves, and B. Sarmento, Amorphous solid dispersions: Rational selection of a manufacturing process, Adv. Drug Deliv. Rev, vol.100, pp.85-101, 2016.

S. Sareen, G. Mathew, and L. Joseph, Improvement in solubility of poor water-soluble drugs by solid dispersion, Int. J. Pharm. Investig, vol.2, issue.1, pp.12-17, 2012.

S. Baghel, H. Cathcart, and N. J. O'reilly, Polymeric Amorphous Solid Dispersions: A Review of Amorphization, Crystallization, Stabilization, Solid-State Characterization, and Aqueous Solubilization of Biopharmaceutical Classification System Class II Drugs, J. Pharm. Sci, vol.105, issue.9, pp.2527-2544, 2016.

N. Shah, H. Sandhu, D. S. Choi, H. Chokshi, and A. W. Malick, Amorphous Solid Dispersions: Theory and Practice, 2014.

C. L. Vo, C. Park, and B. Lee, Current trends and future perspectives of solid dispersions containing poorly water-soluble drugs, Eur. J. Pharm. Biopharm, vol.85, issue.3, pp.799-813, 2013.

S. Baghel, H. Cathcart, and N. J. O'reilly, Polymeric Amorphous Solid Dispersions: A Review of Amorphization, Crystallization, Stabilization, Solid-State Characterization, and Aqueous Solubilization of Biopharmaceutical Classification System Class II Drugs, J. Pharm. Sci, vol.105, issue.9, pp.2527-2544, 2016.

Y. Chen, Initial Drug Dissolution from Amorphous Solid Dispersions Controlled by Polymer Dissolution and Drug-Polymer Interaction, Pharm. Res, vol.33, issue.10, pp.2445-2458, 2016.

M. E. Brewster, R. Vandecruys, G. Verreck, and J. Peeters, Supersaturating drug delivery systems: effect of hydrophilic cyclodextrins and other excipients on the formation and stabilization of supersaturated drug solutions, Pharm, vol.63, issue.3, pp.217-220, 2008.

N. Shi, Self-micellizing solid dispersions enhance the properties and therapeutic potential of fenofibrate: Advantages, profiles and mechanisms, Int. J. Pharm, vol.528, issue.1, pp.563-577, 2017.

S. Sh, S. Sb, K. As, and A. Nh, SOLID DISPERSION: A NOVEL APPROACH FOR POORLY WATER SOLUBLE DRUGS', Int. J. Curr. Pharm. Res, vol.7, issue.4, pp.1-8, 2015.

S. Baghel, H. Cathcart, and N. J. O'reilly, Understanding the generation and maintenance of supersaturation during the dissolution of amorphous solid dispersions using modulated DSC and 1H NMR', Int. J. Pharm, vol.536, issue.1, pp.414-425, 2018.

S. A. Raina, Trends in the Precipitation and Crystallization Behavior of Supersaturated Aqueous Solutions of Poorly Water-Soluble Drugs Assessed Using Synchrotron Radiation, J. Pharm. Sci, vol.104, issue.6, pp.1981-1992, 2015.

S. K. Sathigari, V. K. Radhakrishnan, V. A. Davis, D. L. Parsons, and R. J. Babu, Amorphous-state characterization of efavirenz-polymer hot-melt extrusion systems for dissolution enhancement, J. Pharm. Sci, vol.101, issue.9, pp.3456-3464, 2012.

N. Ogawa, Improvement in the water solubility of drugs with a solid dispersion system by spray drying and hot-melt extrusion with using the amphiphilic polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer and d-mannitol', Eur. J. Pharm. Sci, vol.111, pp.205-214, 2018.

M. M. Knopp, Comparative Study of Different Methods for the Prediction of DrugPolymer Solubility, Mol. Pharm, vol.12, issue.9, pp.3408-3419, 2015.

D. Q. Craig and J. M. Newton, The dissolution of nortriptyline HCl from polyethylene glycol solid dispersions, Int. J. Pharm, vol.78, issue.1, pp.175-182, 1992.

T. Xie and L. S. Taylor, Dissolution Performance of High Drug Loading Celecoxib Amorphous Solid Dispersions Formulated with Polymer Combinations, Pharm. Res, vol.33, issue.3, pp.739-750, 2016.

S. B. Teja, S. P. Patil, G. Shete, S. Patel, and A. K. Bansal, Drug-excipient behavior in polymeric amorphous solid dispersions, J. Excip. Food Chem, vol.4, issue.3, pp.70-94, 2013.

S. Guns, A. Dereymaker, P. Kayaert, V. Mathot, J. A. Martens et al., Comparison Between Hot-Melt Extrusion and Spray-Drying for Manufacturing Solid Dispersions of the Graft Copolymer of Ethylene Glycol and Vinylalcohol, Pharm. Res, vol.28, issue.3, pp.673-682, 2011.

A. M. Agrawal, M. S. Dudhedia, A. D. Patel, and M. S. Raikes, Characterization and performance assessment of solid dispersions prepared by hot melt extrusion and spray drying process, Int. J. Pharm, vol.457, issue.1, pp.71-81, 2013.

V. Bhardwaj, N. S. Trasi, D. Y. Zemlyanov, and L. S. Taylor, Surface area normalized dissolution to study differences in itraconazole-copovidone solid dispersions prepared by spray-drying and hot melt extrusion, Int. J. Pharm, vol.540, issue.1-2, pp.106-119, 2018.

J. F. Kelleher, A comparative study between hot-melt extrusion and spray-drying for the manufacture of anti-hypertension compatible monolithic fixed-dose combination products, Int. J. Pharm, vol.545, issue.1-2, pp.183-196, 2018.

X. Liu, X. Feng, R. O. Williams, and F. Zhang, Characterization of amorphous solid dispersions, J. Pharm. Investig, vol.48, issue.1, pp.19-41, 2018.

, Efavirenz | C14H9ClF3NO2 -PubChem'

L. Fitriani, A. Haqi, and E. Zaini, Preparation and characterization of solid dispersion freeze-dried efavirenz u polyvinylpyrrolidone K-30, J. Adv. Pharm. Technol. Res, vol.7, issue.3, pp.105-109, 2016.

E. Zaini, F. Rachmaini, F. Armin, and L. Fitriani, Preparation and Characterization of Binary Mixture of Efavirenz and Nicotinamide, Orient. J. Chem, vol.31, issue.4, pp.2271-2276, 2015.

P. T. Koh, J. N. Chuah, M. Talekar, A. Gorajana, and S. Garg, Formulation Development and Dissolution Rate Enhancement of Efavirenz by Solid Dispersion Systems, Indian J. Pharm. Sci, vol.75, issue.3, pp.291-301, 2013.

Z. M. Lavra, D. Pereira-de-santana, and M. I. Ré, Solubility and dissolution performances of spray-dried solid dispersion of Efavirenz in Soluplus, Drug Dev. Ind. Pharm, vol.43, issue.1, pp.42-54, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01619242

C. R. Hoffmeister, Efavirenz dissolution enhancement III: Colloid milling, pharmacokinetics and electronic tongue evaluation, Eur. J. Pharm. Sci. Off. J. Eur. Fed. Pharm. Sci, vol.99, pp.310-317, 2017.

M. A. Da-costa, R. C. Seiceira, C. R. Rodrigues, C. R. Hoffmeister, L. M. Cabral et al., Efavirenz Dissolution Enhancement I: Co-Micronization', Pharmaceutics, vol.5, issue.1, pp.1-22, 2012.

L. Fitriani, M. Fadhila, and E. Zaini, Preparation of Efavirenz -PVP K-30 Solid Dispersionby Spray Drying Technique', Res, J. Pharm. Biol. Chem. Sci, vol.6, issue.6, pp.925-930, 2015.

K. Kawakami, Y. Bi, Y. Yoshihashi, K. Sugano, and K. Terada, Time-dependent phase separation of amorphous solid dispersions: Implications for accelerated stability studies, J. Drug Deliv. Sci. Technol, vol.46, pp.197-206, 2018.

A. Varela-garcia, A. Concheiro, and C. Alvarez-lorenzo, Soluplus micelles for acyclovir ocular delivery: Formulation and cornea and sclera permeability, Int. J. Pharm, vol.552, issue.1-2, pp.39-47, 2018.

, ! Solubility and dissolution studies are currently being performed and stability studies are on going under stress conditions (40°C, 75%RH and compression tests)

K. Wlordaski, W. Sawicki, and A. Kozyra, Physical stability of solid dispersions with respect to thermodynamic solubility of tadalafil in PVP-VA, Eur J Pharm Bio, vol.96, pp.237-246, 2015.

Z. Lu, Y. Yang, and R. Covington, Supersaturated controlled release matrix using amorphous dispersions of glipizide', Int J Pharm, vol.511, pp.957-968, 2016.

B. B. Patel, J. K. Patel, S. Chakraborty, and D. Shukla, Revealing facts behind spray dried solid dispersions technology used for solubility enhancement, Saudi Pharm J, vol.23, pp.352-365, 2015.

C. R. Hoffmeister, C. Fandaruff, and M. A. Costa, Efavirenz dissolution enhancement III: Colloid milling, pharmacokinetics and electronic tongue evaluation', 21 st International Drying Symposium, vol.99, pp.310-317, 2017.

, IDS'2018 -21st International Drying Symposium València, Spain, pp.11-14, 2018.

, At the best of our knowledge, it is the first study reporting such levels of drug loading (>40wt %) in amorphous solid dispersions of EFV

, ! Solubility tests revealed a good solubility enhancement for all ASD compared with crystalline drug solubility

, Physical stability should be a monitoring critical point for EFV-SOL ASDs with EFV loads higher than 70 wt% EFV

K. Wlordaski, W. Sawicki, and A. Kozyra, Physical stability of solid dispersions with respect to thermodynamic solubility of tadalafil in PVP-VA, Eur J Pharm Bio, vol.96, pp.237-246, 2015.

Z. Lu, Y. Yang, and R. Covington, Supersaturated controlled release matrix using amorphous dispersions of glipizide', Int J Pharm, vol.511, pp.957-968, 2016.

B. B. Patel, J. K. Patel, S. Chakraborty, and D. Shukla, Revealing facts behind spray dried solid dispersions technology used for solubility enhancement, Saudi Pharm J, vol.23, pp.352-365, 2015.

C. R. Hoffmeister, C. Fandaruff, and M. A. Costa, Efavirenz dissolution enhancement III: Colloid milling, pharmacokinetics and electronic tongue evaluation', Eur J Pharm Sci, vol.99, pp.310-317, 2017.

J. A. Baird and L. S. Taylor, Evaluation of amorphous solid dispersion properties using thermal analysis techniques, Adv. Drug Deliv. Rev, vol.64, issue.5, pp.396-421, 2012.

, Firstly, a standard solution was prepared with a concentration of 1mg/g of EFV in ACN

, Then, successive dilutions were performed in order to obtain the described calibration curve

, Moreover, witnesses with EFV, ACN and aqueous medium containing 0.25% of SLS were also prepared to support the dissolution analysis by Sink an non-Sink conditions

, SLS. -Non-Sink conditions: in HPLC for EFV y"="38