A. Stefaan-de-wolf, . Descoeudres, C. Zachary, C. Holman, and . Ballif, Highe ciency silicon heterojunction solar cells: A review, vol.2, pp.7-24, 2012.

K. Yoshikawa, H. Kawasaki, W. Yoshida, T. Irie, K. Konishi et al., Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion e ciency over 26%, Nature Energy, vol.2, p.17032, 2017.

J. Burschka, N. Pellet, S. Moon, R. Humphry-baker, P. Gao et al., Sequential deposition as a route to high-performance perovskite-sensitized solar cells, Nature, vol.499, issue.7458, p.316, 2013.

N. Joong-jeon, J. Hong-noh, and Y. C. Kim, Woon Seok Yang, Seungchan Ryu, and Sang Il Seok. Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells, Nature materials, vol.13, issue.9, p.897, 2014.

J. Michael-m-lee, T. Teuscher, . Miyasaka, N. Takurou, H. J. Murakami et al., E cient hybrid solar cells based on meso-superstructured organometal halide perovskites, Science, p.1228604, 2012.

S. Yang, W. Fu, Z. Zhang, H. Chen, and C. Li, Recent advances in perovskite solar cells: e ciency, stability and lead-free perovskite, Journal of Materials Chemistry A, vol.5, issue.23, pp.11462-11482, 2017.

D. Samuel, G. E. Stranks, G. Eperon, C. Grancini, . Menelaou et al.,

, Electron-hole di?usion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber, Science, vol.342, issue.6156, pp.341-344, 2013.

G. Xing, N. Mathews, S. Sun, Y. M. Swee-sien-lim, M. Lam et al., Long-range balanced electron-and hole-transport lengths in organic-inorganic ch3nh3pbi3, Science, vol.342, issue.6156, pp.344-347, 2013.

. Cr-kagan, M. Db, and C. D. Dimitrakopoulos, Organic-inorganic hybrid materials as semiconducting channels in thin-film field-e?ect transistors, Science, vol.286, issue.5441, pp.945-947, 1999.

K. Chondroudis, B. David, and . Mitzi, Electroluminescence from an organicinorganic perovskite incorporating a quaterthiophene dye within lead halide perovskite layers, Chemistry of materials, vol.11, issue.11, pp.3028-3030, 1999.

T. Hattori, T. Taira, M. Era, T. Tsutsui, and S. Saito, Highly e cient electroluminescence from a heterostructure device combined with emissive layered-perovskite and an electron-transporting organic compound, Chemical physics letters, vol.254, issue.1-2, pp.103-108, 1996.

M. Li-na-quan, R. Yuan, O. Comin, E. M. Voznyy, S. Beauregard et al.,

, Ligand-stabilized reduced-dimensionality perovskites, Journal of the American Chemical Society, vol.138, issue.8, pp.2649-2655, 2016.

M. Lee, A. Barragán, M. N. Nair, L. R. Vincent, D. L. Jacques et al., First determination of the valence band dispersion of ch3nh3pbi3 hybrid organicinorganic perovskite, Journal of Physics D: Applied Physics, vol.50, issue.26, pp.26-28, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01572180

Z. Chen, M. Lee, Z. Zhang, H. Diab, D. Garrot et al., Timeresolved photoemission spectroscopy of electronic cooling and localization in ch 3 nh 3 pbi 3 crystals, Physical Review Materials, vol.1, issue.4, p.45402, 2017.

W. Shockley, J. Hans, and . Queisser, Detailed balance limit of e ciency of p-n junction solar cells, Journal of applied physics, vol.32, issue.3, pp.510-519, 1961.

A. Polman, M. Knight, C. Erik, B. Garnett, . Ehrler et al., Photovoltaic materials: Present e ciencies and future challenges, Science, vol.352, issue.6283, p.4424, 2016.

E. Octavi, J. M. Semonin, M. Luther, and . Beard, Quantum dots for nextgeneration photovoltaics, Materials today, vol.15, issue.11, pp.508-515, 2012.

J. Woon-seok-yang, N. J. Hong-noh, Y. C. Jeon, S. Kim, and . Ryu, Jangwon Seo, and Sang Il Seok. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange, Science, vol.348, issue.6240, p.114, 2015.

Y. Martin-a-green, W. Hishikawa, E. D. Warta, . Dunlop, H. Dean et al., Solar cell e ciency tables (version 50), Progress in Photovoltaics: Research and Applications, vol.25, pp.668-676, 2017.

M. Tanaka, M. Taguchi, T. Matsuyama, T. Sawada, S. Tsuda et al., Development of new a-si/c-si heterojunction solar cells: Acj-hit (artificially constructed junction-heterojunction with intrinsic thin-layer), Japanese Journal of Applied Physics, vol.31, issue.11R, p.3518, 1992.

S. Dauwe, J. Schmidt, and R. Hezel, Very low surface recombination velocities on p-and n-type silicon wafers passivated with hydrogenated amorphous silicon films

, Conference Record of the Twenty-Ninth IEEE, pp.1246-1249, 2002.

A. Martin and . Green, Solar cells: operating principles, technology, and system applications, 1982.

I. Santos, M. Cazzaniga, G. Onida, and L. Colombo, Atomistic study of the structural and electronic properties of a-si: H/c-si interfaces, Journal of Physics: Condensed Matter, vol.26, issue.9, p.95001, 2014.

R. A. Street, Hydrogenated Amorphous Silicon. Cambridge Solid State Science Series, 2005.

. Salau, Fundamental absorption edge in pbi2: Ki alloys, Solar Energy Materials, vol.2, issue.3, pp.327-332, 1980.

A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells, Journal of the American Chemical Society, vol.131, issue.17, pp.6050-6051, 2009.

O. Brian, M. Regan, and . Grätzel, A low-cost, high-e ciency solar cell based on dye-sensitized colloidal tio2 films, nature, vol.353, issue.6346, p.737, 1991.

Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu et al., Electron-hole di?usion lengths¿ 175 µm in solution-grown ch3nh3pbi3 single crystals, Science, vol.347, issue.6225, pp.967-970, 2015.

M. Sarah, . Vorpahl, D. Samuel, H. Stranks, G. E. Nagaoka et al., Impact of microstructure on local carrier lifetime in perovskite solar cells, Science, p.115, 2015.

C. Wehrenfennig, E. Giles, . Eperon, B. Michael, and . Johnston,

M. Laura and . Herz, High charge carrier mobilities and lifetimes in organolead trihalide perovskites, Advanced materials, vol.26, issue.10, pp.1584-1589, 2014.

H. Kim, C. Lee, J. Im, K. Lee, T. Moehl et al., Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with e ciency exceeding 9%, Scientific reports, vol.2, p.591, 2012.

J. Im, C. Lee, and J. Park,

, 5% e cient perovskite quantum-dot-sensitized solar cell, Nanoscale, vol.3, issue.10, pp.4088-4093, 2011.

H. Hyung-do-kim, H. Ohkita, S. Benten, and . Ito, Photovoltaic performance of perovskite solar cells with di?erent grain sizes, Advanced materials, vol.28, issue.5, pp.917-922, 2016.

M. Saliba, T. Matsui, K. Domanski, J. Seo, A. Ummadisingu et al.,

A. Hagfeldt, Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance, Science, vol.354, issue.6309, pp.206-209, 2016.

. Giles-e-eperon, D. Samuel, C. Stranks, . Menelaou, B. Michael et al., Formamidinium lead trihalide: a broadly tunable perovskite for e cient planar heterojunction solar cells, Energy & Environmental Science, vol.7, issue.3, pp.982-988, 2014.

J. Even, L. Pedesseau, M. Dupertuis, J. Jancu, and C. Katan, Electronic model for self-assembled hybrid organic/perovskite semiconductors: Reverse band edge electronic states ordering and spin-orbit coupling, Physical Review B, vol.86, issue.20, p.205301, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00753888

F. Sigismund-teunis-alexander-george-melissen, P. Labat, T. Sautet, and . Bahers, Electronic properties of pbx 3 ch 3 nh 3 (x= cl, br, i) compounds for photovoltaic and photocatalytic applications, Physical Chemistry Chemical Physics, vol.17, issue.3, pp.2199-2209, 2015.

M. Labrune, Silicon surface passivation and epitaxial growth on c-Si by low temperature plasma processes for high e ciency solar cells, p.116, 2011.

A. Defresne, Amélioration de la passivation de cellules solaires de siliciumà hétérojonction grâceà l'implantation ionique et aux recuits thermiques, 2016.

P. Roca-i-cabarrocas, . Chévrier, . Huc, . Lloret, J. Parey et al., A fully automated hot-wall multiplasma-monochamber reactor for thin film deposition, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.9, issue.4, pp.2331-2341, 1991.

J. Schmitt, Fundamental mechanisms in silane plasma decompositions and amorphous silicon deposition, Journal of Non-Crystalline Solids, vol.59, pp.649-657, 1983.

E. Yablonovitch, . Dl-allara, . Chang, T. B. Gmitter, and . Bright, Unusually low surface-recombination velocity on silicon and germanium surfaces, Physical review letters, vol.57, issue.2, p.249, 1986.

K. Ouaras, Mécanismes de formation et dynamique du transport des poussières de carbone et de tungstène dans un plasma micro-onde magnétisé et non-magnétisé, 2016.

F. Lédée, G. Trippé-allard, H. Diab, P. Audebert, D. Garrot et al., Fast growth of monocrystalline thin films of 2d layered hybrid perovskite, CrystEngComm, vol.19, issue.19, pp.2598-2602, 2017.

D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu et al., Low trap-state density and long carrier di?usion in organolead trihalide perovskite single crystals, Science, vol.347, issue.6221, pp.519-522, 2015.

V. Pet?í?ek, M. Du?ek, and L. Palatinus, Crystallographic computing system jana2006: general features, Zeitschrift für Kristallographie-Crystalline Materials, vol.229, issue.5, pp.345-352, 2014.

M. George and . Sheldrick, Crystal structure refinement with shelxl, Acta Crystallographica Section C: Structural Chemistry, vol.71, issue.1, pp.3-8, 2015.

. Me and . Becquerel, Mémoire sur les e?etsélectriques produits sous l'influence des rayons solaires, Comptes rendus hebdomadaires des séances de l'Académie des Sciences, vol.9, pp.561-567, 1839.

A. Einstein, Über einen die erzeugung und verwandlung des lichtes betre?enden heuristischen gesichtspunkt, Annalen der physik, vol.322, issue.6, p.117, 1905.

A. Tejeda and D. Malterre, Photoémission dans les solides, 2016.

A. Damascelli, Z. Hussain, and Z. Shen, Angle-resolved photoemission studies of the cuprate superconductors, Reviews of modern physics, vol.75, issue.2, p.473, 2003.

. Fj-himpsel, . Mcfeely, J. A. Taleb-ibrahimi, G. Yarmo?, and . Hollinger, Microscopic structure of the sio 2/si interface, Physical review B, vol.38, issue.9, p.6084, 1988.

K. Siegbahn, Electron spectroscopy for atoms, molecules and condensed matter, Nobel Lectures, 1981.

W. Turner and M. , Determination of ionization potentials by photoelectron energy measurement, The Journal of Chemical Physics, vol.37, issue.12, pp.3007-3008, 1962.

. Ray-f-egerton, Electron energy-loss spectroscopy in the electron microscope, 2011.

P. Seah and W. A. Dench, Quantitative electron spectroscopy of surfaces: A standard data base for electron inelastic mean free paths in solids, Surface and interface analysis, vol.1, issue.1, pp.2-11, 1979.

K. Hirose, . Nohira, T. Azuma, and . Hattori, Photoelectron spectroscopy studies of sio2/si interfaces, Progress in Surface Science, vol.82, issue.1, pp.3-54, 2007.

J. Rubio-zuazo and G. R. Castro, Non-destructive compositional depth profile analysis by hard x-ray photoelectron spectroscopy, vol.100, p.12042, 2008.

H. James and . Scofield, Theoretical photoionization cross sections from 1 to 1500 kev, 1973.

J. J. Yeh and . Lindau, Atomic subshell photoionization cross sections and asymmetry parameters: 1â©oe zâ©oe 103. Atomic data and nuclear data tables, vol.32, pp.1-155, 1985.

. Jb-pendry, Theory of inverse photoemission, Journal of Physics C: Solid State Physics, vol.14, issue.9, p.1381, 1981.

V. Neville and . Smith, Inverse photoemission, Reports on Progress in Physics, vol.51, issue.9, p.1227, 1988.

W. Peter, . Erdman, C. Edward, and . Zipf, Low-voltage, high-current electron gun, Review of Scientific Instruments, vol.53, issue.2, pp.225-227, 1982.

Y. Lin, Functionalization of two-dimensional nanomaterials based on graphene, p.118, 2014.
URL : https://hal.archives-ouvertes.fr/tel-01112919

. Volker-dose, Momentum-resolved inverse photoemission, Surface Science Reports, vol.5, issue.8, pp.337-378, 1985.

F. Himpsel, Inverse photoemission from semiconductors, Surface Science Reports, vol.12, issue.1, pp.3-48, 1990.

. Schäfer, M. Schlüter, and . Skibowski, Conduction-band structure of graphite studied by combined angle-resolved inverse photoemission and target current spectroscopy, Physical Review B, vol.35, issue.14, p.7663, 1987.

. Adawi, Theory of the surface photoelectric e?ect for one and two photons, Physical Review, vol.134, issue.3A, p.788, 1964.

. Gd-mahan, Theory of photoemission in simple metals, Physical Review B, vol.2, issue.11, p.4334, 1970.

W. L. Schaich and . Ashcroft, Theory of photoemission, Solid State Communications, vol.8, issue.23, pp.1959-1963, 1970.

C. N. Berglund and W. E. Spicer, Photoemission studies of copper and silver: theory, Physical Review, vol.136, issue.4A, p.1030, 1964.

. Jb-pendry, Theory of photoemission, Surface Science, vol.57, issue.2, pp.679-705, 1976.

N. Eleftherios and . Economou, Green's functions in quantum physics, vol.3, 1983.

K. Kambe, Theory of low-energy electron di?raction, Zeitschrift für Naturforschung A, vol.22, issue.3, pp.322-330, 1967.

. Jm-maclaren, . Crampin, J. B. Vvedensky, and . Pendry, Layer korringa-kohnrostoker technique for surface and interface electronic properties, Physical Review B, vol.40, issue.18, p.12164, 1989.

J. Minar, 13 theoretical description of arpes: The one-step model, DMFT at 25: Infinite Dimensions: Lecture Notes of the Autumn School on Correlated Electrons, vol.4, 2014.

H. Ebert, D. Koedderitzsch, and J. Minar, Calculating condensed matter properties using the kkr-green's function method-recent developments and applications, Reports on Progress in Physics, vol.74, issue.9, p.96501, 2011.

H. Ebert, The munich spr-kkr package, p.119, 2017.

A. Gonis, H. William, and . Butler, Multiple scattering in solids, 2012.

J. Korringa, On the calculation of the energy of a bloch wave in a metal, Physica, vol.13, issue.6-7, pp.392-400, 1947.

W. Kohn and N. Rostoker, Solution of the schrödinger equation in periodic lattices with an application to metallic lithium, Physical Review, vol.94, issue.5, p.1111, 1954.

. Beeby, The density of electrons in a perfect or imperfect lattice, vol.302, pp.113-136, 1468.

. Faulkner, Scattering theory and cluster calculations, Journal of Physics C: Solid State Physics, vol.10, issue.23, p.4661, 1977.

. Faulkner, Multiple-scattering approach to band theory, Physical Review B, vol.19, issue.12, p.6186, 1979.

G. M. Bl-györ?y and . Stocks, First principles band theory for random metallic alloys, Electrons in Disordered Metals and at Metallic Surfaces, pp.89-192, 1979.

J. S. Faulkner and G. M. Stocks, Calculating properties with the coherent-potential approximation, Physical Review B, vol.21, issue.8, p.3222, 1980.

Y. Onodera and M. Okazaki, Relativistic theory for energy-band calculation, Journal of the Physical Society of Japan, vol.21, issue.7, pp.1273-1281, 1966.

P. Strange, . Ebert, . Staunton, L. Balazs, and . Gyor?y, A relativistic spin-polarised multiple-scattering theory, with applications to the calculation of the electronic structure of condensed matter, Journal of Physics: Condensed Matter, vol.1, issue.18, p.2959, 1989.

P. Strange, Relativistic Quantum Mechanics: with applications in condensed matter and atomic physics, 1998.

H. Ebert, Fully relativistic band structure calculations for magnetic solids-formalism and application, Electronic Structure and Physical Properies of Solids, pp.191-246

. Springer, , 1999.

E. Tamura, Relativistic single-site green function for general potentials, Physical Review B, vol.45, issue.7, p.3271, 1992.

L. Perfetti, A. Panagiotis, M. Loukakos, U. Lisowski, M. Bovensiepen et al., Femtosecond dynamics of electronic states in the mott insulator 1T-TaS 2 by time resolved photoelectron spectroscopy, New Journal of Physics, vol.10, issue.5, p.53019, 2008.

H. Petek and . Ogawa, Femtosecond time-resolved two-photon photoemission studies of electron dynamics in metals, Progress in surface science, vol.56, issue.4, pp.239-310, 1997.

F. Wang, Y. Gao, Z. Pang, L. Yang, and J. Yang, Insights into the role of the interface defects density and the bandgap of the back surface field for e cient p-type silicon heterojunction solar cells, vol.7, pp.26776-26782, 2017.

S. M. Wolfgang, W. Werner, C. J. Smekal, and . Powell, Nist database for the simulation of electron spectra for surface analysis (sessa), 2011.

T. Maruyama and S. Naritsuka, Initial growth process of carbon nanotubes in surface decomposition of sic, Carbon Nanotubes-Synthesis, Characterization, Applications, 2011.

B. Liu, L. Huang, Q. Zhu, F. Qin, and D. Wang, Chemical and electronic passivation of 4h-sic surface by hydrogen-nitrogen mixed plasma, Applied Physics Letters, vol.104, issue.20, p.202101, 2014.

Y. G-le-lay, M. Aristov, and . Fontaine, Surface core-level shifts of si (111) 7x7, Le Journal de Physique IV, vol.4, issue.C9, pp.9-213, 1994.

A. Redondo, I. Wa-goddard, C. A. Swarts, and T. C. Mcgill, Oxidation of silicon surfaces, Journal of Vacuum Science and Technology, vol.19, issue.3, pp.498-501, 1981.

. Gf-cerofolini, L. Galati, and . Renna, Si 2p xps spectrum of the hydrogen-terminated (100) surface of device-quality silicon, Surface and interface analysis, vol.35, issue.12, pp.968-973, 2003.

P. Bibhu, . Swain, M. Nong, and . Hwang, Study of structural and electronic environments of hydrogenated amorphous silicon carbonitride (a-sicn: H) films deposited by hot wire chemical vapor deposition, Applied Surface Science, vol.254, issue.17, pp.5319-5322, 2008.

U. Köster, Crystallization of amorphous silicon films, Physica status solidi (a), vol.48, pp.313-321, 1978.

C. Joseph and . Woicik, Hard X-ray Photoelectron Spectroscopy (HAXPES), 2016.

G. Grancini, . Roldán-carmona, E. Zimmermann, . Mosconi, . Lee et al., One-year stable perovskite solar cells by 2d/3d interface engineering, Nature communications, vol.8, p.121, 2017.

J. Blancon, H. Tsai, W. Nie, C. Costas, L. Stoumpos et al., Extremely e cient internal exciton dissociation through edge states in layered 2d perovskites, Science, p.4211, 2017.

C. Ian, E. T. Smith, D. Hoke, . Solis-ibarra, D. Michael et al., A layered hybrid perovskite solar-cell absorber with enhanced moisture stability, Angewandte Chemie, vol.126, issue.42, pp.11414-11417, 2014.

H. Tsai, W. Nie, J. Blancon, C. C. Stoumpos, R. Asadpour et al., Jared J Crochet

S. Tretiak, High-e ciency two-dimensional ruddlesden-popper perovskite solar cells, Nature, vol.536, issue.7616, p.312, 2016.

F. Zheng, Z. Liang, S. Tan, A. M. Liu, and . Rappe, Rashba spin-orbit coupling enhanced carrier lifetime in ch3nh3pbi3, Nano letters, vol.15, issue.12, pp.7794-7800, 2015.

P. Zhang, . Richard, Y. Qian, X. Xu, H. Dai et al., A precise method for visualizing dispersive features in image plots, Review of Scientific Instruments, vol.82, issue.4, p.43712, 2011.

W. Geng, L. Zhang, Y. Zhang, W. Lau, and L. Liu, Firstprinciples study of lead iodide perovskite tetragonal and orthorhombic phases for photovoltaics, The Journal of Physical Chemistry C, vol.118, issue.34, pp.19565-19571, 2014.

T. Umebayashi, . Asai, A. Kondo, and . Nakao, Electronic structures of lead iodide based low-dimensional crystals, Physical Review B, vol.67, issue.15, p.155405, 2003.

T. Baikie, Y. Fang, J. M. Kadro, M. Schreyer, F. Wei et al., Synthesis and crystal chemistry of the hybrid perovskite (ch 3 nh 3) pbi 3 for solid-state sensitised solar cell applications, Journal of Materials Chemistry A, vol.1, issue.18, pp.5628-5641, 2013.

P. Umari, E. Mosconi, and F. Angelis, Relativistic gw calculations on ch 3 nh 3 pbi 3 and ch 3 nh 3 sni 3 perovskites for solar cell applications, Scientific reports, vol.4, p.4467, 2014.

C. George, . Papavassiliou, . Koutselas, M. Terzis, and . Whangbo, Structural and electronic properties of the natural quantum-well system (c6h5ch2ch2nh3) 2sni4. Solid state communications, vol.91, pp.695-698, 1994.

J. Wan-jian-yin, J. Yang, Y. Kang, S. Yan, and . Wei, Halide perovskite materials for solar cells: a theoretical review, Journal of Materials Chemistry A, vol.3, issue.17, pp.8926-8942, 2015.

F. Brivio, T. Keith, A. Butler, M. Walsh, and . Van-schilfgaarde, Relativistic quasiparticle self-consistent electronic structure of hybrid halide perovskite photovoltaic absorbers, Physical Review B, vol.89, issue.15, p.155204, 2014.

A. Amat, E. Mosconi, E. Ronca, C. Quarti, P. Umari et al., Cation-induced band-gap tuning in organohalide perovskites: interplay of spin-orbit coupling and octahedra tilting, Nano letters, vol.14, issue.6, pp.3608-3616, 2014.

W. Gao, X. Gao, A. Tesfaye, Y. Abtew, S. Sun et al., Quasiparticle band gap of organic-inorganic hybrid perovskites: Crystal structure, spin-orbit coupling, and self-energy e?ects, Physical Review B, vol.93, issue.8, p.85202, 2016.

F. Zheng, H. Takenaka, F. Wang, Z. Nathan, A. M. Koocher et al., First-principles calculation of the bulk photovoltaic e?ect in ch3nh3pbi3 and ch3nh3pbi3-x cl x. The journal of physical chemistry letters, vol.6, pp.31-37, 2014.

Y. Wang, Y. Zhang, P. Zhang, and W. Zhang, High intrinsic carrier mobility and photon absorption in the perovskite ch 3 nh 3 pbi 3, Physical Chemistry Chemical Physics, vol.17, issue.17, pp.11516-11520, 2015.

Y. He and G. Galli, Perovskites for solar thermoelectric applications: A first principle study of ch3nh3ai3 (a= pb and sn), Chemistry of Materials, vol.26, issue.18, pp.5394-5400, 2014.

J. Benjamin, . Foley, L. Daniel, K. Marlowe, . Sun et al., Temperature dependent energy levels of methylammonium lead iodide perovskite, Applied Physics Letters, vol.106, issue.24, p.243904, 2015.

R. Lindblad, D. Bi, B. Park, J. Oscarsson, M. Gorgoi et al., Electronic structure of tio2/ch3nh3pbi3 perovskite solar cell interfaces, The journal of physical chemistry letters, vol.5, issue.4, pp.648-653, 2014.

P. Schulz, E. Edri, S. Kirmayer, G. Hodes, D. Cahen et al., Interface energetics in organo-metal halide perovskite-based photovoltaic cells, Energy & Environmental Science, vol.7, issue.4, pp.1377-1381, 2014.

Y. Kawamura, H. Mashiyama, and K. Hasebe, Structural study on cubic-tetragonal transition of ch3nh3pbi3, Journal of the Physical Society of Japan, vol.71, issue.7, pp.1694-1697, 2002.

R. Ohmann, K. Luis, H. Ono, H. Kim, . Lin et al., Real-space imaging of the atomic structure of organicinorganic perovskite, Journal of the American Chemical Society, vol.137, issue.51, pp.16049-16054, 2015.

L. She, M. Liu, and D. Zhong, Atomic structures of ch3nh3pbi3 (001) surfaces, ACS nano, vol.10, issue.1, pp.1126-1131, 2015.

J. Voit, F. Perfetti, H. Zwick, G. Berger, G. Margaritondo et al., Electronic structure of solids with competing periodic potentials, Science, vol.290, issue.5491, pp.501-503, 2000.

D. Malterre, . Kierren, S. Fagot-revurat, . Pons, C. Tejeda et al., Arpes and sts investigation of shockley states in thin metallic films and periodic nanostructures, New Journal of Physics, vol.9, issue.10, p.391, 2007.

C. Didiot, Y. Tejeda, V. Fagot-revurat, . Repain, . Kierren et al., Interacting quantum box superlattice by self-organized co nanodots on au (788), Physical Review B, vol.76, issue.8, p.81404, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01987585

J. Faure, . Mauchain, . Papalazarou, . Yan, M. Pinon et al., Full characterization and optimization of a femtosecond ultraviolet laser source for time and angle-resolved photoemission on solid surfaces, Review of Scientific Instruments, vol.83, issue.4, p.43109, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01068487

Y. Martin-a-green, A. M. Jiang, A. Soufiani, and . Ho-baillie, Optical properties of photovoltaic organic-inorganic lead halide perovskites. The journal of physical chemistry letters, vol.6, pp.4774-4785, 2015.

H. Zhu, K. Miyata, Y. Fu, J. Wang, P. Prakriti et al., Screening in crystalline liquids protects energetic carriers in hybrid perovskites, Science, vol.353, issue.6306, pp.1409-1413, 2016.

D. Niesner, H. Zhu, K. Miyata, P. Prakriti, . Joshi et al., Persistent energetic electrons in methylammonium lead iodide perovskite thin films, Journal of the American Chemical Society, vol.138, issue.48, p.124, 2016.

H. Tanimura, K. Jun'ichi-kanasaki, J. Tanimura, N. Sjakste, M. Vast et al., Formation of hot-electron ensembles quasiequilibrated in momentum space by ultrafast momentum scattering of highly excited hot electrons photoinjected into the valley of gaas, Physical Review B, vol.93, issue.16, p.161203, 2016.

F. Brivio, M. Jarvist, J. M. Frost, A. J. Skelton, . Jackson et al., Lattice dynamics and vibrational spectra of the orthorhombic, tetragonal, and cubic phases of methylammonium lead iodide, Physical Review B, vol.92, issue.14, p.144308, 2015.

B. Daniel, S. H. Straus, N. Parra, J. Iotov, . Gebhardt et al., Direct observation of electron-phonon coupling and slow vibrational relaxation in organic-inorganic hybrid perovskites, Journal of the American Chemical Society, vol.138, issue.42, pp.13798-13801, 2016.

Y. Yang, Y. Yan, M. Yang, S. Choi, K. Zhu et al.,

C. Matthew and . Beard, Low surface recombination velocity in solution-grown ch 3 nh 3 pbbr 3 perovskite single crystal, Nature communications, vol.6, p.7961, 2015.

L. Rebecca, G. E. Milot, . Eperon, J. Henry, . Snaith et al., Temperature-dependent charge-carrier dynamics in ch3nh3pbi3 perovskite thin films, Advanced Functional Materials, vol.25, issue.39, pp.6218-6227, 2015.

K. Jemli, H. Diab, F. Lédée, G. Trippé-allard, D. Garrot et al., Using low temperature photoluminescence spectroscopy to investigate ch3nh3pbi3 hybrid perovskite degradation, Molecules, vol.21, issue.7, p.885, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01420969

. Deretzis, G. Alberti, E. Pellegrino, F. Smecca, . Giannazzo et al., Atomistic origins of ch3nh3pbi3 degradation to pbi2 in vacuum, Applied Physics Letters, vol.106, issue.13, p.131904, 2015.

, Cinq composants sont nécessaires: La composante du volume associée au c-Si (B), une composante associée aux liaisons pendantes (S1), une composante associée aux atomes de Si lièsà un H (S2), une composante associée aux atomes de Si liès au C (S3) et une composante associée au SiO 2 (S4). (d) Comparaison de la DOS expérimentale de hétérostructures irradiées (courbe rouge) et non irradiées (courbe bleue) dans des (f) d'hétérojonctions de 10 nm de a-Si: H mesuréesà uneénergie de photon de 5 keV, Décomposition du niveau de coeur Si 2p pour les hétérostructures non irradiées et (b) irradiées. Mesures e?ectuéeà uneénergie de photon de 3 keV (c)

.. .. Vbm,

:. Diagramme-desétatsélectroniques-dans-le-a-si and . .. De-photoluminescence, x 6 (a) Schéma de la structure de bande simulée pour la comparaison avec nos résultats expérimentaux. Les coupes verticales fournissent la dispersion en function de k || . Les coupes horizontales fournissent des coupes d'énergie constantes. b) La photoémission inverse (IPES) et la photoémission (PES) permettent d'obtenir les bandes de conduction et de valence respectivement

M. Coupes-d'énergie-constante-de-la-structureélectronique-de, Esquisse des principales bandes attendues dans le plan MXM. (b) Coupe dans le plan GXMà 300 meV en dessous du maximum de la bande de valence. (c) Coupe d'énergie constante calculéeà 500 meV en dessous du maximum de la bande de valence, Les zones de Brillouin cubiques sont représentées par des carrés rouges

, Lesétoiles sont une aide pour la comparaison entre théorie et expérience, p.9

, Carte d'intensité de photoélectrons en fonction de l'énergie cinétique et du retard de la pompe-sonde de (a) unéchantillon non recuit et deséchantillons recuitsà (b) 100 C et (c) 200 C

, Solar spectrum of minimum losses of not absorbed, thermalization, and extraction losses based on SQ limit, representing an upper limit for a single-junction silicon solar cell

]. .. , Light management" relates to the capability of light capturing and it is related to the short circuit current J sc , while the "Carrier management" is related to carriers collection, and can be quantified by the product of the fill factor F F and the open circuit voltage V oc, The theoretical SQ detailed-balance e ciency limit for di?erent solar cell technologies, along with their record e ciencies. The SQ limit of di?erent technologies depends on the band gap of the absorber material, vol.4

, Best research-cell e ciency of di?erent PV technologies as a function of year

, A schematic diagram of HIT solar cells. TCO stands for transparent conducting oxide

, E c is the minimum of the conduction band, and E v is the maximum of the valence band. A larger band o?set of a-Si raises the rear-side field and helps di?using electrons and holes in the solar cells

, The defect gives rise to an excess of density of states shown in red. (b) Density of states corresponding to the system in (a). The gray states correspond to the defects, vol.23

. .. ,

, Schematic band diagram of hydrogenated amorphous silicon (a-Si:H) in the amphoteric model

, Structural evolution of perovskite solar cells from sensitization to meso-superstructure, mesoscopic, and planar structures. HTM stands for the hole transport material and ETM for the electron transport material

, Atomic structure of hybrid organic-inorganic perovskites

, Optical band gap of FAPbI y Br 3 y as a function of its lattice parameter. (a) Depending on the y content of iodine in the material, the lattice parameter varies and the band gap changes accordingly. (b) Photographs of di?erent perovskites with increasing y iodine content from left to right, p.14

, The theoretical electronic band structures of 4F-PEPI

, PbI 4 ) (a) without and (b) with spin-orbit coupling (SOC) calculated by DFT [36]

, Br, I), in di?erent crystallographic phases (cubic, tetragonal) and for calculations from di?erent studies, E?ective masses of electrons and holes in di?erent perovskite materials, namely di?erent methylammonium lead halides (Cl

, Typical timescales (bottom axis) and energy scales (top axis) of coherent phonons, electron-electron (e-e) interaction, electron-phonon (e-ph) interaction and ph-ph interaction in correlated metals. The green and blue line indicate the temporal duration of our pump and probe pulses, respectively

, Time-resolved 2PPE working principle (left) and experimental scheme (right)

, h? 1 is the pump excitation energy and h? 2 is the probe photon energy, p.44

. .. , FemtoARPES experimental setup showing the laser source (left) the optics for generating UV pulses (middle) and the ARPES setup (right), p.45

, Photoluminescence measurements on the non-irradiated, irradiated, and irradiated + annealed samples (adapted from [39]). Here, TA stands for transverse acoustic phonons and TO for transverse optical phonons, p.50

, Simulation of the Inelastic Mean Free Path of Si2p (solid line) and C1s (dotted line) for di?erent layers (L1: red, L2: green, and S: blue) as a function of photon energy. Background colors represent the depth of each layer in the heterostructure (right axis) (b) The photoexcited electrons can be extracted from di?erent depths of the heterojunction with di?erent photon energies, p.52

, Si 2p core level measured under di?erent photon energy for (a) a non-irradiated sample and (b) an irradiated sample. The binding energy is relative to the binding energy of the bulk component (99.4 eV). The increase of Si 4+ component towards the surface shows its surface sensitive (also surface reactivity) property. On the other hand, the bulk component of Si 2p shows a bulk-like behavior at high photon energy since the feature of the Si 2p splitting becomes more evident due to the presence of a unique major component, p.53

, The binding energy is relative to the binding energy of the bulk component (283.0 eV). . . 55 photon energy. Dark blue shows the bulk component with the two spin-orbit splitted peaks (Si 2p 3/2 and Si 2p 1/2 ) appearing at binding energies of 99.4 eV (set as the reference: 0 eV) and 99.9 eV (0.5 eV relatively). The orange component associated to Si 4+ (SiO 2 ). Red circles highlight the spectra regions that are not satisfactorily described with a single component. (b) The final core level fitting of Si 2p with two additional components, C 1s Core level decomposition for irradiated and non-irradiated heterostructures, as a function of the photon energies (3 keV and 5 keV)

, sputtered heterostructure measured at 800 eV and (b) the Ar-irradiated heterostructure consisting of 7 nm a-Si:H and 3 nm a-SiC:H measured under 3 keV

, Si 2p core level decomposition for the non-irradiated and the irradiated heterostructures measured at photon energies 3 keV, 5 keV and 8 keV. Five components are necessary: a bulk component which is meanly from c-Si (B), a dangling bond component (S1), a Si-H bond component (S2), a Si-C component (S3), and a Si 4+ component that is associated to SiO 2 (S4), p.60

, Intensity evolution as a function of the photon energy (shown in axis above) and the escape depth (shown in axis below) of (a) S1 component associated to dangling bonds and (b) S2 component associated to Si-H bonds, p.61

, nm of a-Si:H and 2 nm of a-SiC:H) measured at 3 keV (a) valence band normalized to the density of states and (b) density of states

, Comparison the experimental DOS between irradiated (red curve) and nonirradiated (blue curve) heterostructures on the 10nm a-Si:H heterojunction sample (see the insert). The left panel shows the whole valence band, and the right panel shows the zoom close to the VBM. The defect states

, The mechanism of the photoluminescence presented by band diagrams of c-Si and a-Si:H represented with the defect states

, Vertical slices provide the dispersion vs k || . Horizontal slices provide constant energy cuts. (b) IPES and PES experimental techniques allow to obtain both conduction and valence bands, A schematic of the whole simulated band structure

, 2 (a) Scanning electron microscope image of a thin film of 4F-PEPI. (b) Auger spectra of 4F-PEPI thin films after annealing at di?erent temperatures, p.72

, with a size of about 2.5 mm by 3 mm. (b) Sample mounted on a sample holder with a top post attached, which is used to cleave the sample in ultra-high vacuum

, h0l) plane of the reciprocal space of PEPI measured at room temperature by X-ray di?raction, indicating the projection of the reciprocal unit cells (in red). (b) Refined structure

, 5 (a) Spectrum of photoemission on PEPI before and after irradiation during 18 hours under 130 eV photons. Core levels of (b) Pb 5p, (c) I 4d, and (d) Pb

, Blue-dotted line shows the experimental DOS, green-solid line shows the calculations including the full structure, and the redsolid line shows the calculations without the organic molecules, LIST OF FIGURES 4.6 Density of states (DOS) of PEPI, p.75

, The di?erence of the states in between red and blue calculations, i.e. the organic states. Calculations were performed with Wien2k, Theoretical band structure of PEPI, by including a (a) full structure (red) and the structure without organic molecules (blue). (b)

, DOS of PEPI using (a) scalar relativistic (without SOC) and (b) fully relativistic (with SOC)

. .. , 78 4.11 Y valence band dispersion of PEPI. (a) Raw ARPES data, along with its integration in angle, simulating a density of states, and (b) 2D curvature analysis. (c) ARPES data normalized to the density of states to get rid of the non-dispersing states from organic molecules, and (d) 2D curvature analysis to it. (e) Theoretical simulation of ARPES data, including SOC in a structure without organic molecules, with its angle-integrated spectrum artificially added. (f) Theoretical simulation of ARPES data, Theoretical band structure calculation of PEPI without organic molecules using SPRKKR code (a) with and (b) without SOC. The biggest di?erences are highlighted by the white rectangle, vol.78

, Raw IPES data. (b) IPES data normalized to the angle-integrated spectrum and with a 2D curvature analysis. The calculated ground-state bands superimposed. (c) Simulated IPES spectra including SOC in a structure without organic molecules (with SOC). The calculated ground-state bands are superimposed, Conduction band of PEPI along B . (a)

, Electronic dispersion as a function of the photon energy. Photoemission measurements along a direction containing the normal emission for photon energies of (a) 110 eV, (b) 112 eV and (c) 114 eV. Arrows highlight the evolution of the electronic states. Such an evolution corresponds to electronic states dispersing with k perpendicular to the surface, as expected for a 3D material, vol.85, p.134

, Constant energy cuts of the electronic structure measured (a) out-of-plane (2340 meV below the VBM for photon energies 74 eV < hv < 200 eV) and (b) in-plane (VBM at hv = 130 eV). The size of the lattice vectors for the cubic (red, C) and tetragonal structures (blue, T) are indicated. The spectral weight seems to follow the cubic periodicity

, 0 k l) planes at 200 K. The projected reciprocal unit cells for the tetragonal periodicity (in blue) and cubic periodicity (in red) are indicated with a space group of I4/mcm. The refined structure are projected on (c) the ac plane and (d) on the bc plane. In the tetragonal structure, a distortion of the octahedra lattice promotes a larger unit cell (in blue) with respect to the cubic one (in red). The crystallographic directions are indicated by the tetragonal (T) and cubic (C) lattice vectors, X-ray di?raction measurements of MAPI in the tetragonal phase in the (a) (h 0 l) and (b)

, Constant energy cut of the electronic structure in the GXM plane at a binding energy corresponding to (c) 100 meV, (d) 300 meV, (e) 2500 meV and (f) 2900 meV below the valence band maximum. Corresponding constant energy cuts calculated using the SPRKKR code shown for energies of (g) VBM, (h) 500 meV, (i) 2800 meV, and (j) 3400 meV below the valence band maximum. Cubic Brillouin zones are shown as red squares. The indicated stars are a guide for the comparison between theory and experiment, Constant energy cuts of the electronic structure of MAPI. (a)

, Electronic structure of MAPI hybrid perovskite with k-resolution. (a)Spectrum at normal emission in a wide binding energy range. (b) Integrated valence band in (a) compared to theoretical calculations

, 6 (a) Band structure of MAPI in the tetragonal phase performed with Wien2k by

, 93 LIST OF FIGURES 5.7 Electronic structure with k-resolution of MAPI measured at photon energy of 142 eV. (a) Constant energy cut at 300 meV below the valence band maximum. The cubic Brillouin zone (red rectangle) and the tetragonal Brillouin zone (blue rectangle) are shown together with the cuts along the high symmetry directions, ARPES simulation of tetragonal MAPI

, Simulated ARPES spectra of (b) (bands broadened by a factor of 14 with the density of states superimposed). (d) Second derivative of the raw data in (b)

, Calculated constant energy cut at 300 meV below the valence band maximum. (g) Photoemission measurement along X direction of the cubic phase, Simulated ARPES spectra along M M of the cubic phase. (f)

, Simulated ARPES spectra and (i) second derivative of the raw data in (g). (j) Simulated ARPES spectra along X X direction of the cubic phase. The high symmetry points of the tetragonal and the cubic Brillouin zones are indicated. The dotted rectangles indicate the agreements of the dispersions between the experiments and calculations

, Photoemission measurement along X direction of the cubic phase (cut B in Fig. 5.7). (b) Second derivative of the raw data in (a). (c) Simulated ARPES spectra along X of the cubic phase. (d) Photoemission measurement along M M direction of the cubic phase (cut A in Fig. 5.7). (e) Second derivative of the raw data in (d). (f) Simulated ARPES spectra along M M of the cubic phase, Electronic structure with k-resolution of MAPI measured close to the Fermi level. (a)

. .. , 98 136 LIST OF FIGURES 5.11 (a) Photoelectron intensity map in the as-grown sample as a function of kinetic energy and pump-probe delay. (b) Energy distribution curves acquired at di?erent values of the pump-probe delay and normalized to their maximum value. (c) Evolution of the average kinetic energy as a function of time. The solid line is an exponential fit with time constant ? 1 = 0.25 ps, Phase transition of MAPI as a function of temperature shown in top views and side views. ? ab (=154±4) is the distortion angle in-plane and ? c (=164±4) is the distortion angle out-of-plane. At high temperature (above 330 K), MAPI is in the cubic with a space group Pm-3m, vol.3

, 13 (a) The integrated intensity of the 2PPE signal (black marks) as a function of time is compared with the di?usion model (red line). The dotted blue line at t = 3? 1 indicates the delay time when electrons have fully thermalized. (b) The density profile of photoexcited electrons is calculated by the di?usion model of, vol.5

. Eq, 4) for selected delay times

, Photoelectron intensity map of (a) a non-annealed sample, and samples annealed at (b) 100 C, and (c) 200 C, as a function of kinetic energy and pumpprobe delay

, 15 (a) Photoluminescence spectra acquired from non-annealed, annealed at 100 C, and annealed at 200 C samples. The dashed line shows the development of trapped states upon annealing. (b) Photoluminescence emitted in the visible spectral range from the sample annealed at 200 C and measured at 10 K. The peak located at 2.45 eV arises from carrier recombination in PbI 2 inclusions, p.105

, Temporal evolution of the integrated 2PPE signal in the non-annealed and annealed samples. The arrows indicate the characteristic time scale when electronic trapping takes place

, Inelastic Mean Free Path in the di?erent layers for di?erent photon energies determined from SESSA

, Fitting parameters of the bulk component of Si 2p

, S1(dangling bond), S2 (Si-H), vol.2, p.4

. 4. Si,

, Si-C), and S4 (Si 4+ ) related to the bulk component B. These are the binding energy shifts fitting to our experimental core levels of Si 2p measured in di?erent conditions. In general, dangling bond has a chemical shift around -0.3 eV, Si-H bond has a energy shift around 0, Chemical shift for S1(dangling bond), S2 (Si-H), vol.25

, Si 4+ has a chemical shift around 4.15 eV. The intensity of each peaks will be demonstrated in Fig. 3.8 later on

K. .. , Atomic structure of MAPI at, vol.87

. .. , Atomic positions of MAPI at 200 K shown in reduced units, vol.87

, Thermal parameters of MAPI at 200 K. Thermal parameters, i.e. atomic displacement parameters, represent the temperature dependent vibration of different atoms within the crystalline lattice