D. Motamedi, Thermal ablation of osteoid osteoma: overview and step-by-step guide, vol.29, pp.2127-2168, 2009.

F. Greco, F. Tamburrelli, and G. Ciabattoni, Prostaglandins in osteoid osteoma, vol.15, pp.35-42, 1991.

F. Kayser, « Evidence of the subperiosteal origin of osteoid osteomas in tubular bones: analysis by CT and MR imaging, American Journal of Roentgenology, vol.170, issue.3, pp.609-614, 1998.

C. P. Cantwell, J. Kerr, J. O'byrne, and E. S. Eustace, « MRI features after radiofrequency ablation of osteoid osteoma with cooled probes and impedance-control energy delivery, AJR Am J Roentgenol, vol.186, issue.5, pp.1220-1227, 2006.

M. H. Lee, « Osteoid osteoma treated with percutaneous radiofrequency ablation: MR imaging follow-up », Eur J Radiol, vol.64, issue.2, pp.309-323, 2007.

A. H. Mahnken, P. Bruners, H. Delbruck, R. W. Gunther, and C. Plumhans, « Contrast-enhanced MRI predicts local recurrence of osteoid osteoma after radiofrequency ablation », J Med Imaging Radiat Oncol, vol.56, issue.6, pp.617-638, 2012.

S. Rheinheimer, J. Gorlach, J. Figiel, and A. H. Mahnken, « Diffusion weighted MRI of osteoid osteomas: Higher ADC values after radiofrequency ablation, vol.85, pp.1284-1292

A. Napoli, Noninvasive Therapy for Osteoid Osteoma: A Prospective Developmental Study with MR Imaging-guided High-Intensity Focused Ultrasound, vol.285, pp.186-196, 2017.

L. J. Suva, C. Washam, R. W. Nicholas, and R. J. Griffin, « Bone metastasis: mechanisms and therapeutic opportunities, Nat Rev Endocrinol, vol.7, issue.4, pp.208-226, 2011.

R. E. Coleman, « Clinical features of metastatic bone disease and risk of skeletal morbidity, Clin Cancer Res, vol.12, pp.6243-6249, 2006.

R. E. Coleman and R. D. , Rubens, « The clinical course of bone metastases from breast cancer », Br J Cancer, vol.55, issue.1, pp.61-67, 1987.

R. E. Coleman, Metastatic bone disease: clinical features, pathophysiology and treatment strategies, Cancer Treat Rev, vol.27, issue.3, pp.165-76, 2001.

M. and D. Maio, « Prevalence and management of pain in Italian patients with advanced nonsmall-cell lung cancer », Br J Cancer, vol.90, pp.2288-96, 2004.

G. A. Clines and T. A. Guise, « Molecular mechanisms and treatment of bone metastasis, Expert Rev Mol Med, vol.10, p.7, 2008.

L. Costa, X. Badia, E. Chow, A. Lipton, and A. Wardley, « Impact of skeletal complications on patients' quality of life, mobility, and functional independence, Support Care Cancer, vol.16, issue.8, pp.879-89, 2008.

S. Sousa and P. Clézardin, Bone-Targeted Therapies in Cancer-Induced Bone Disease, vol.102, pp.227-250, 2018.

H. A. Harvey, « Issues concerning the role of chemotherapy and hormonal therapy of bone metastases from breast carcinoma, Cancer, vol.80, pp.1646-51, 1997.

R. E. Coleman, Skeletal complications of malignancy, vol.80, pp.1588-94, 1997.

S. N. Goldberg, « Image-guided tumor ablation: standardization of terminology and reporting criteria, J Vasc Interv Radiol, vol.20, pp.377-90, 2009.

G. Tsoumakidou, X. Buy, J. Garnon, J. Enescu, and A. Gangi, « Percutaneous thermal ablation: how to protect the surrounding organs, Tech Vasc Interv Radiol, vol.14, issue.3, pp.170-176, 2011.

G. Tsoumakidou, M. A. Thenint, J. Garnon, X. Buy, J. P. Steib et al., « Percutaneous Imageguided Laser Photocoagulation of Spinal Osteoid Osteoma: A Single-Institution Series, Radiology, vol.278, issue.3, pp.936-979, 2016.

A. N. Kurup, « Motor evoked potential monitoring during cryoablation of musculoskeletal tumors, J Vasc Interv Radiol, vol.25, issue.11, pp.1657-64

G. Tsoumakidou, J. Garnon, N. Ramamurthy, X. Buy, and A. Gangi, « Interest of electrostimulation of peripheral motor nerves during percutaneous thermal ablation, Cardiovasc Intervent Radiol, vol.36, issue.6, pp.1624-1628, 2013.

S. Abboud, C. Kosmas, R. Novak, and E. M. Robbin, « Long-term clinical outcomes of dual-cycle radiofrequency ablation technique for treatment of osteoid osteoma, Skeletal Radiol, vol.45, issue.5, pp.599-606

M. Sluga, R. Windhager, M. Pfeiffer, M. Dominkus, and R. Kotz, « Peripheral osteoid osteoma. Is there still a place for traditional surgery?, J Bone Joint Surg Br, vol.84, issue.2, pp.249-51, 2002.

I. Ghanem, The management of osteoid osteoma: updates and controversies, vol.18, pp.36-41, 2006.

C. P. Cantwell, J. Obyrne, and E. S. Eustace, « Current trends in treatment of osteoid osteoma with an emphasis on radiofrequency ablation, Eur Radiol, vol.14, issue.4, pp.607-624, 2004.

A. Gangi, H. Alizadeh, L. Wong, X. Buy, J. Dietemann et al., « Osteoid osteoma: Percutaneous laser ablation and follow-up in 114 patients, RADIOLOGY, vol.242, issue.1, pp.293-301, 2007.

J. J. Body, « Breast cancer: bisphosphonate therapy for metastatic bone disease, Clin Cancer Res, vol.12, pp.6258-6263, 2006.

N. Pavlakis, R. Schmidt, and M. Stockler, « Bisphosphonates for breast cancer, issue.3, p.3474, 2005.

R. Wong and P. J. Wiffen, « Bisphosphonates for the relief of pain secondary to bone metastases, Cochrane Database Syst Rev, issue.2, p.2068, 2002.

A. T. Stopeck, « Denosumab compared with zoledronic acid for the treatment of bone metastases in patients with advanced breast cancer: a randomized, double-blind study, J Clin Oncol, vol.28, pp.5132-5141

K. Fizazi, « Denosumab versus zoledronic acid for treatment of bone metastases in men with castration-resistant prostate cancer: a randomised, double-blind study, Lancet, vol.377, pp.813-835

J. J. Body, « Metastatic bone disease: clinical and therapeutic aspects, Bone, vol.13, pp.57-62, 1992.

O. S. Nielsen, A. J. Munro, and I. F. Tannock, Bone metastases: pathophysiology and management policy, vol.9, pp.509-533, 1991.

P. J. Hoskin, « Bisphosphonates and radiation therapy for palliation of metastatic bone disease, Cancer Treat Rev, vol.29, issue.4, pp.321-328, 2003.

H. Mirels, Metastatic disease in long bones. A proposed scoring system for diagnosing impending pathologic fractures, Clin Orthop Relat Res, pp.256-64, 1989.

T. E. Schultheiss, « The radiation dose-response of the human spinal cord, Int J Radiat Oncol Biol Phys, vol.71, issue.5, pp.1455-1464, 2008.

P. W. Townsend, S. R. Smalley, S. C. Cozad, H. G. Rosenthal, and R. E. Hassanein, « Role of postoperative radiation therapy after stabilization of fractures caused by metastatic disease », Int J Radiat Oncol Biol Phys, vol.31, issue.1, pp.43-52, 1995.

F. Bing, « Liquid embolization material reduces the delivered radiation dose: clinical myth or reality?, AJNR Am J Neuroradiol, vol.33, issue.2, pp.320-322, 2011.

R. Camidge and A. Price, « Characterizing the phenomenon of radiation recall dermatitis, Radiother Oncol, vol.59, issue.3, pp.237-282, 2001.

P. L. Munk, K. J. Murphy, A. Gangi, and D. M. Liu, « Fire and ice: percutaneous ablative therapies and cement injection in management of metastatic disease of the spine », Semin Musculoskelet Radiol, vol.15, issue.2, pp.125-159, 2011.

S. Masala, D. Konda, F. Massari, and G. Simonetti, Sacroplasty and iliac osteoplasty under combined CT and fluoroscopic guidance », Spine (Phila Pa 1976), vol.31, pp.667-676, 2006.

T. F. Jakobs, C. Trumm, M. Reiser, and R. T. Hoffmann, Percutaneous vertebroplasty in tumoral osteolysis, vol.17, pp.2166-75, 2007.

D. A. Muller and R. Capanna, « The surgical treatment of pelvic bone metastases, Adv Orthop, vol.2015, p.525363

J. Manabe, N. Kawaguchi, S. Matsumoto, and T. Tanizawa, « Surgical treatment of bone metastasis: indications and outcomes », Int J Clin Oncol, vol.10, issue.2, pp.103-114, 2005.

E. Lanza, « Osteoid osteoma treated by percutaneous thermal ablation: when do we fail? A systematic review and guidelines for future reporting, Cardiovasc Intervent Radiol, vol.37, issue.6, pp.1530-1539

M. R. Callstrom and A. N. Kurup, « Percutaneous ablation for bone and soft tissue metastases--why cryoablation?, Skeletal Radiol, vol.38, issue.9, pp.835-844, 2009.

T. M. Coupal, P. I. Mallinson, P. L. Munk, D. Liu, P. Clarkson et al., « CT-guided percutaneous cryoablation for osteoid osteoma: initial experience in adults, AJR Am J Roentgenol, vol.202, issue.5, pp.1136-1145

A. Basile, « The use of microwaves ablation in the treatment of epiphyseal osteoid osteomas, Cardiovasc Intervent Radiol, vol.37, issue.3, pp.737-779

M. Kostrzewa, « Microwave ablation of osteoid osteomas using dynamic MR imaging for early treatment assessment: preliminary experience, J Vasc Interv Radiol, vol.25, issue.1, pp.106-117

S. Mercadante, P. Klepstad, G. P. Kurita, P. Sjogren, A. Pigni et al., « Minimally invasive procedures for the management of vertebral bone pain due to cancer: The EAPC recommendations, Acta Oncol, vol.55, issue.2, pp.129-162, 2016.

M. , « Percutaneous Thermal Ablation of Breast Cancer Metastases in Oligometastatic Patients, Cardiovasc Intervent Radiol, vol.39, issue.6, pp.885-93, 2016.

R. L. Cazzato, « Over ten years of single-institution experience in percutaneous image-guided treatment of bone metastases from differentiated thyroid cancer », Eur J Surg Oncol, vol.41, issue.9, pp.1247-55, 2015.

F. Deschamps, « Thermal ablation techniques: a curative treatment of bone metastases in selected patients?, Eur Radiol, vol.24, issue.8, pp.1971-80, 2014.

M. P. Goetz, « Percutaneous image-guided radiofrequency ablation of painful metastases involving bone: a multicenter study, J Clin Oncol, vol.22, issue.2, pp.300-306, 2004.

L. Thanos, « Radiofrequency ablation of osseous metastases for the palliation of pain, Skeletal Radiol, vol.37, issue.3, pp.189-94, 2008.

A. Hakime, « Combination of radiofrequency ablation with antiangiogenic therapy for tumor ablation efficacy: study in mice, Radiology, vol.244, issue.2, pp.464-70, 2007.

J. P. Erinjeri, « Image-guided thermal ablation of tumors increases the plasma level of interleukin-6 and interleukin-10, J Vasc Interv Radiol, vol.24, issue.8, pp.1105-1117, 2013.

Z. Alteber, M. Azulay, G. Cafri, E. Vadai, E. Tzehoval et al., « Cryoimmunotherapy with local co-administration of ex vivo generated dendritic cells and CpG-ODN immune adjuvant, elicits a specific antitumor immunity, Cancer Immunol Immunother, vol.63, issue.4, pp.369-80, 2014.

T. A. Mcarthur, C. A. Narducci, P. H. Lander, and R. Lopez-ben, Percutane Image-Guided Cryoablation of Painful Osseous Metastases: A Retrospective Single-Center Review, vol.46, pp.282-287, 2016.

W. Fry, Neurosonic surgery, pp.86-88, 19561955.

W. J. Fry, J. W. Barnard, E. J. Fry, R. F. Krumins, and J. F. Brennan, Ultrasonic lesions in the mammalian central nervous system », Science, vol.122, pp.517-518, 1955.

W. J. Fry, J. W. Barnard, F. J. Fry, and J. F. Brennan, Ultrasonically produced localized selective lesions in the central nervous system », Am J Phys Med, vol.34, issue.3, pp.413-423

L. Marsac, « MR-guided adaptive focusing of therapeutic ultrasound beams in the human head, Med Phys, vol.39, issue.2, p.1141, 2012.

G. R. Torr, The acoustic radiation force, vol.52, pp.402-408, 1984.

E. O. Stejskal and J. E. Tanner, Spin Diffusion Measurements: Spin Echoes in the Presence of a Time-Dependent Field Gradient, vol.42, pp.288-292, 1965.

C. Lewa, Magnetic Resonance Imaging in the Presence of Mechanical Waves, vol.24, pp.55-67, 1991.

R. Muthupillai, P. J. Rossman, D. J. Lomas, J. F. Greenleaf, S. J. Riederer et al., Magnetic resonance imaging of transverse acoustic strain waves, vol.36, pp.266-274, 1996.

N. Mcdannold and S. E. Maier, « Magnetic resonance acoustic radiation force imaging, Med Phys, vol.35, issue.8, pp.3748-3758, 2008.

B. Larrat, « MR-guided transcranial brain HIFU in small animal models. », Physics in medicine and biology, vol.55, issue.2, pp.365-388

D. L. Parker, V. Smith, P. Sheldon, L. E. Crooks, and L. Fussell, « Temperature distribution measurements in two-dimensional NMR imaging, Medical Physics, vol.10, issue.3, pp.321-325, 1983.

B. Quesson, J. A. De-zwart, and C. T. Moonen, « Magnetic resonance temperature imaging for guidance of thermotherapy, J Magn Reson Imaging, vol.12, issue.4, pp.525-533, 2000.

V. Rieke, K. Butts-pauly, and «. Mr, J Magn Reson Imaging, vol.27, issue.2, pp.376-390, 2008.

K. Kuroda, « MR techniques for guiding high-intensity focused ultrasound (HIFU) treatments », J Magn Reson Imaging, vol.47, issue.2, pp.316-331, 2018.

S. A. Sapareto and W. C. Dewey, « Thermal dose determination in cancer therapy, International Journal of Radiation Oncology*Biology*Physics, vol.10, issue.6, pp.787-800, 1984.

R. M. Staruch, « Assessment of acute thermal damage volumes in muscle using magnetization-prepared 3D T2 -weighted imaging following MRI-guided high-intensity focused ultrasound therapy, J Magn Reson Imaging, vol.46, issue.2, pp.354-364, 2017.

D. Harding, « Evaluation of Quality of Life Outcomes Following Palliative Treatment of Bone Metastases with Magnetic Resonance-guided High Intensity Focused Ultrasound: An International Multicentre Study, Clin Oncol (R Coll Radiol), vol.30, pp.233-242, 2018.

M. D. Bucknor, « Bone remodeling after MR imaging-guided high-intensity focused ultrasound ablation: evaluation with MR imaging, CT, Na(18)F-PET, and histopathologic examination in a swine model, Radiology, vol.274, issue.2, pp.387-394, 2015.

M. Anzidei, « Magnetic resonance-guided focused ultrasound for the treatment of painful bone metastases: role of apparent diffusion coefficient (ADC) and dynamic contrast enhanced (DCE) MRI in the assessment of clinical outcome », Radiol Med, vol.121, pp.905-915, 2016.

B. Liberman, « Pain palliation in patients with bone metastases using MR-guided focused ultrasound surgery: a multicenter study, Ann Surg Oncol, vol.16, issue.1, pp.140-146, 2009.

K. Kieran, « Exploring the Acoustic Parameter Space in Ultrasound Therapy: Defining the Threshold for Cavitational Effects, vol.911, pp.185-190, 2007.

B. Hildebrandt, « The cellular and molecular basis of hyperthermia, Critical Reviews in Oncology/Hematology, vol.43, issue.1, pp.33-56, 2002.

H. H. Pennes, Analysis of tissue and arterial blood temperatures in the resting human forearm, J Appl Physiol, vol.1, issue.2, pp.93-122, 1948.

C. R. Hill, J. C. Bamber, and G. R. Ter-haar, Physical Principles of Medical Ultrasonics, 2004.

J. E. Kennedy, G. R. Ter-haar, and E. D. Cranston, High intensity focused ultrasound: surgery of the future?, Br J Radiol, vol.76, pp.590-599, 2003.

A. Partanen, « Mild hyperthermia with magnetic resonance-guided high-intensity focused ultrasound for applications in drug delivery », Int J Hyperthermia, vol.28, issue.4, pp.320-356, 2012.

Y. Kim, H. Rhim, M. J. Choi, H. K. Lim, and E. D. Choi, High-intensity focused ultrasound therapy: an overview for radiologists, vol.9, pp.291-302, 2008.

A. Gasselhuber, « Targeted drug delivery by high intensity focused ultrasound mediated hyperthermia combined with temperature-sensitive liposomes: computational modelling and preliminary in vivovalidation, Int J Hyperthermia, vol.28, issue.4, pp.337-348, 2012.

R. Staruch, R. Chopra, and K. Hynynen, Hyperthermia in bone generated with MR imagingcontrolled focused ultrasound: control strategies and drug delivery, vol.263, pp.117-127, 2012.

R. M. Staruch, K. Hynynen, and R. Chopra, « Hyperthermia-mediated doxorubicin release from thermosensitive liposomes using MR-HIFU: therapeutic effect in rabbit Vx2 tumours, Int J Hyperthermia, vol.31, issue.2, pp.118-133, 2015.

R. M. Staruch, M. Ganguly, I. F. Tannock, K. Hynynen, and R. Chopra, « Enhanced drug delivery in rabbit VX2 tumours using thermosensitive liposomes and MRI-controlled focused ultrasound hyperthermia », Int J Hyperthermia, vol.28, issue.8, pp.776-787, 2012.

K. Hynynen, « Fundamental principles of therapeutic ultrasound, MRI-Guided Focused Ultrasound Surgery, 2008.

T. D. Khokhlova, « Ultrasound-guided tissue fractionation by high intensity focused ultrasound in an in vivo porcine liver model, Proc. Natl. Acad. Sci. U.S.A, vol.111, pp.8161-8166, 2014.

G. Pinton, J. Aubry, E. Bossy, M. Muller, M. Pernot et al., « Attenuation, scattering, and absorption of ultrasound in the skull bone, Med Phys, vol.39, issue.1, pp.299-307

H. M. Eikelder, « Modelling the temperature evolution of bone under high intensity focused ultrasound, Phys Med Biol, vol.61, issue.4, pp.1810-1838, 2016.

T. D. Khokhlova and J. H. Hwang, « HIFU for palliative treatment of pancreatic cancer, J Gastrointest Oncol, vol.2, issue.3, pp.175-184, 2011.

K. Reynders, T. Illidge, S. Siva, J. Y. Chang, and D. De-ruysscher, « The abscopal effect of local radiotherapy: using immunotherapy to make a rare event clinically relevant, Cancer Treat. Rev, vol.41, issue.6, pp.503-510, 2015.

M. A. Postow, « Immunologic correlates of the abscopal effect in a patient with melanoma, N. Engl. J. Med, vol.366, issue.10, pp.925-931, 2012.

Q. Zhou, X. Zhu, J. Zhang, Z. Xu, P. Lu et al., « Changes in circulating immunosuppressive cytokine levels of cancer patients after high intensity focused ultrasound treatment », Ultrasound Med Biol, vol.34, issue.1, pp.81-87, 2008.

F. Wu, High intensity focused ultrasound ablation and antitumor immune response, J. Acoust. Soc. Am, vol.134, issue.2, pp.1695-1701, 2013.

S. Dababou, « High-Intensity Focused Ultrasound for Pain Management in Patients with Cancer, Radiographics, vol.38, issue.2, pp.603-623, 2018.

M. R. Brown, P. Farquhar-smith, J. E. Williams, G. Ter-haar, and N. M. Desouza, « The use of highintensity focused ultrasound as a novel treatment for painful conditions-a description and narrative review of the literature », Br J Anaesth, vol.115, issue.4, pp.520-530, 2015.

H. Liang, J. Tang, and M. Halliwell, « Sonoporation, drug delivery, and gene therapy, Proc Inst Mech Eng H, vol.224, issue.2, pp.343-361, 2010.

E. L. Yuh, « Delivery of systemic chemotherapeutic agent to tumors by using focused ultrasound: study in a murine model, Radiology, vol.234, issue.2, pp.431-437, 2005.

F. Wu, « Activated anti-tumor immunity in cancer patients after high intensity focused ultrasound ablation », Ultrasound Med Biol, vol.30, issue.9, pp.1217-1222, 2004.

Y. H. Hsiao, S. J. Kuo, H. D. Tsai, M. C. Chou, and G. P. Yeh, « Clinical Application of High-intensity Focused Ultrasound in Cancer Therapy, J Cancer, vol.7, issue.3, pp.225-256, 2016.

A. Copelan, J. Hartman, M. Chehab, and A. M. Venkatesan, High-Intensity Focused Ultrasound: Current Status for Image-Guided Therapy, vol.32, pp.398-415

, « DATABASE » IT'IS Foundation

J. Currey, Bone: structure and mecanics, 2006.

J. E. Carlson, J. Van-deventer, A. Scolan, and C. Carlander, « Frequency and temperature dependence of acoustic properties of polymers used in pulse-echo systems, IEEE Symposium on Ultrasonics, vol.1, pp.885-888, 2003.

R. Clattenburg, J. Cohen, S. Conner, and E. N. Cook, « Thermal properties of cancellous bone, J. Biomed. Mater. Res, vol.9, issue.2, pp.169-182, 1975.

A. Feldmann, P. Wili, G. Maquer, and P. Zysset, The thermal conductivity of cortical and cancellous bone, vol.35, pp.25-33, 2018.

S. R. Davidson and D. F. James, « Measurement of thermal conductivity of bovine cortical bone, Med Eng Phys, vol.22, issue.10, pp.741-747, 2000.

S. Biyikli, M. F. Modest, and R. Tarr, « Measurements of thermal properties for human femora, J. Biomed. Mater. Res, vol.20, issue.9, pp.1335-1345, 1986.

W. M. Moses, F. W. Witthaus, H. A. Hogan, and W. R. Laster, « Measurement of the thermal conductivity of cortical bone by an inverse technique, Experimental Thermal and Fluid Science, vol.11, issue.1, pp.34-39, 1995.

C. W. Connor and K. Hynynen, « Patterns of thermal deposition in the skull during transcranial focused ultrasound surgery, IEEE Trans Biomed Eng, vol.51, issue.10, pp.1693-1706, 2004.

K. E. Walker, T. Baldini, and B. G. Lindeque, « Thermal Conductivity of Human Bone in Cryoprobe Freezing as Related to Density, Orthopedics, vol.40, issue.2, pp.90-94, 2016.

J. Lundskog, «. Heat, and . Bone-tissue, An experimental investigation of the thermal properties of bone and threshold levels for thermal injury, Scand J Plast Reconstr Surg, vol.9, pp.1-80, 1972.

Y. Sato and T. Taira, YVO(4), and Y(3)Al(5)O(12) measured by quasi-one-dimensional flash method, The studies of thermal conductivity in GdVO(4), vol.14, pp.10528-10536, 2006.

M. J. Assael, S. Botsios, K. Gialou, and I. N. Metaxa, « Thermal Conductivity of Polymethyl Methacrylate (PMMA) and Borosilicate Crown Glass BK7 », Int J Thermophys, vol.26, issue.5, pp.1595-1605, 2005.

(. «-polymethylmethacrylate and A. Pmma,

D. Sur,

K. Hynynen, D. Deyoung, M. Kundrat, and E. E. Moros, « The effect of blood perfusion rate on the temperature distributions induced by multiple, scanned and focused ultrasonic beams in dogs' kidneys in vivo, Int J Hyperthermia, vol.5, issue.4, pp.485-497, 1989.

H. Huang, T. Shih, and C. Liauh, « Predicting effects of blood flow rate and size of vessels in a vasculature on hyperthermia treatments using computer simulation, Biomed Eng Online, vol.9, p.18, 2010.

B. E. Billard, K. Hynynen, and R. B. Roemer, Ultrasound Med Biol, vol.16, issue.4, pp.409-420, 1990.

B. Y. Lu, R. S. Yang, W. L. Lin, K. S. Cheng, C. Y. Wang et al., « Theoretical study of convergent ultrasound hyperthermia for treating bone tumors, Med Eng Phys, vol.22, issue.4, pp.253-263, 2000.

E. G. Moros, R. B. Roemer, and K. Hynynen, « Pre-focal plane high-temperature regions induced by scanning focused ultrasound beams, Int J Hyperthermia, vol.6, issue.2, pp.351-366, 1990.

M. E. Lyons and K. J. Parker, « Absorption and attenuation in soft tissues, IEEE Trans Ultrason Ferroelectr Freq Control, vol.35, issue.4, pp.511-521, 1988.

M. Tole, Basic Physics of Ultrasonographic Imaging by N M Tole, Who/Diagnostic Imaging and Laboratory Technology | Waterstones, 2005.

M. A. Hakulinen, J. S. Day, J. Töyräs, H. Weinans, and J. S. Jurvelin, « Ultrasonic characterization of human trabecular bone microstructure, Phys Med Biol, vol.51, issue.6, pp.1633-1648, 2006.

K. Hynynen and «. Biophysics, Method of External Hyperthermic Heating, 1990.

K. A. Wear, A. P. Stuber, and J. C. Reynolds, « Relationships of ultrasonic backscatter with ultrasonic attenuation, sound speed and bone mineral density in human calcaneus », Ultrasound Med Biol, vol.26, issue.8, pp.1311-1316, 2000.

K. I. Lee, « Correlations of linear and nonlinear ultrasound parameters with density and microarchitectural parameters in trabecular bone, J. Acoust. Soc. Am, vol.134, issue.5, pp.381-386, 2013.

K. I. Lee, H. Roh, and S. W. Yoon, « Correlations between acoustic properties and bone density in bovine cancellous bone from 0.5 to 2 MHz, J. Acoust. Soc. Am, vol.113, issue.5, pp.2933-2938, 2003.

M. A. Hakulinen, « Prediction of density and mechanical properties of human trabecular bone in vitro by using ultrasound transmission and backscattering measurements at 0.2-6.7 MHz frequency range, Phys Med Biol, vol.50, issue.8, pp.1629-1642, 2005.

K. Lee and M. Choi, « Frequency-dependent attenuation and backscatter coefficients in bovine trabecular bone from 0.2 to 1.2 MHz », J. Acoust. Soc. Am, vol.131, issue.1, pp.67-73

J. Y. Rho, M. C. Hobatho, and R. B. Ashman, « Relations of mechanical properties to density and CT numbers in human bone, Medical Engineering &amp, vol.17, issue.5, pp.347-355, 1995.

J. F. Vivanco, « Estimating the density of femoral head trabecular bone from hip fracture patients using computed tomography scan data, Proc Inst Mech Eng H, vol.228, issue.6, pp.616-626, 2014.

M. R. Sikov, Report of the bioeffects committee of the American Institute of Ultrasound in Medicine, Effect of ultrasound on development, vol.5, pp.577-583, 1986.

R. Ritchie, J. Collin, C. Coussios, and T. Leslie, « Attenuation and de-focusing during high-intensity focused ultrasound therapy through peri-nephric fat », Ultrasound Med Biol, vol.39, issue.10, pp.1785-1793, 2013.

R. G. Holt and R. A. Roy, « Measurements of bubble-enhanced heating from focused, MHz-frequency ultrasound in a tissue-mimicking material », Ultrasound Med Biol, vol.27, issue.10, pp.1399-1412, 2001.

S. D. Sokka, R. King, and K. Hynynen, « MRI-guided gas bubble enhanced ultrasound heating in in vivo rabbit thigh, Phys Med Biol, vol.48, issue.2, pp.223-241, 2003.

M. R. Bailey, « Use of overpressure to assess the role of bubbles in focused ultrasound lesion shape in vitro », Ultrasound Med Biol, vol.27, issue.5, pp.695-708, 2001.

R. L. Clarke and G. R. Ter-haar, « Temperature rise recorded during lesion formation by high-intensity focused ultrasound », Ultrasound Med Biol, vol.23, issue.2, pp.299-306, 1997.

A. Hassanuddin, « Factors affecting tumor ablation during high intensity focused ultrasound treatment, Gut Liver, vol.8, issue.4, pp.433-440, 2014.

K. M. Kang, J. Y. Lee, H. Kim, J. K. Han, and B. Choi, « Gel phantom study with high-intensity focused ultrasound: influence of metallic stent containing either air or fluid », Ultrasound Med Biol, vol.40, pp.2851-2856, 2014.

P. S. Georgiou, « Beam distortion due to gold fiducial markers during salvage high-intensity focused ultrasound in the prostate, Med Phys, vol.44, issue.2, pp.679-693, 2017.

T. J. Faes, H. A. Van-der-meij, J. C. De-munck, and R. M. Heethaar, The electric resistivity of human tissues (100 Hz-10 MHz): a meta-analysis of review studies, vol.20, pp.1-10, 1999.

F. Rachbauer, J. Mangat, G. Bodner, P. Eichberger, and M. Krismer, Heat distribution and heat transport in bone during radiofrequency catheter ablation, vol.123, pp.86-90, 2003.

T. W. Balmer, S. Vesztergom, P. Broekmann, A. Stahel, and P. Büchler, « Characterization of the electrical conductivity of bone and its correlation to osseous structure, Sci Rep, vol.8, issue.1, p.8601, 2018.

A. Greenberg, T. Weyel, J. Sosna, J. Applbaum, and A. Peyser, « The distribution of heat in bone during radiofrequency ablation of an ex vivo bovine model of osteoid osteoma », Bone Joint J, vol.96, issue.5, pp.677-83, 2014.

R. G. Bitsch, R. Rupp, L. Bernd, and K. Ludwig, « Osteoid osteoma in an ex vivo animal model: temperature changes in surrounding soft tissue during CT-guided radiofrequency ablation, Radiology, vol.238, issue.1, pp.107-112, 2006.

L. D. Rybak, A. Gangi, X. Buy, R. La-rocca, E. J. Vieira et al., « Thermal ablation of spinal osteoid osteomas close to neural elements: technical considerations, AJR Am J Roentgenol, vol.195, issue.4, pp.293-298, 2010.

X. Buy, C. Tok, D. Szwarc, G. Bierry, and A. Gangi, « Thermal protection during percutaneous thermal ablation procedures: interest of carbon dioxide dissection and temperature monitoring, Cardiovasc Intervent Radiol, vol.32, issue.3, pp.529-534, 2009.

D. E. Dupuy, R. Hong, B. Oliver, and S. N. Goldberg, « Radiofrequency ablation of spinal tumors: temperature distribution in the spinal canal, AJR Am J Roentgenol, vol.175, issue.5, pp.1263-1266, 2000.

E. Van-der-linden, L. J. Kroft, and P. D. Dijkstra, « Treatment of vertebral tumor with posterior wall defect using image-guided radiofrequency ablation combined with vertebroplasty: preliminary results in 12 patients, J Vasc Interv Radiol, vol.18, issue.6, pp.741-747, 2007.

G. M. Vanderschueren, W. R. Obermann, S. P. Dijkstra, A. H. Taminiau, J. L. Bloem et al., « Radiofrequency ablation of spinal osteoid osteoma: clinical outcome, Spine, vol.34, issue.9, pp.901-904, 2009.

R. Bornemann, « Radiofrequency Ablation: Temperature Distribution in Adjacent Tissues, Z Orthop Unfall, vol.154, issue.3, pp.294-298, 2016.

C. Zhang, X. Han, P. Douglas, Y. Dai, and E. G. Wang, « Bipolar Radiofrequency Ablation of Spinal Tumors: The Effect of the Posterior Vertebral Cortex Defect on Temperature Distribution in the Spinal Canal », AJNR Am J Neuroradiol, vol.39, issue.1, 2018.

A. N. Wallace, « Percutaneous Spinal Ablation in a Sheep Model: Protective Capacity of an Intact Cortex, Correlation of Ablation Parameters with Ablation Zone Size, and Correlation of Postablation MRI and Pathologic Findings », AJNR Am J Neuroradiol, vol.38, issue.8, pp.1653-1659, 2017.

I. Karakitsios, S. Mihcin, T. Saliev, and A. Melzer, « Feasibility study of pre-clinical Thiel embalmed human cadaver for MR-guided focused ultrasound of the spine, Minim Invasive Ther Allied Technol, vol.25, issue.3, pp.154-61, 2016.

S. J. Scott, « Approaches for modeling interstitial ultrasound ablation of tumors within or adjacent to bone: Theoretical and experimental evaluations », Int J Hyperthermia, vol.29, issue.7, pp.629-642, 2013.

S. J. Scott, V. Salgaonkar, P. Prakash, E. C. Burdette, and C. J. Diederich, « Interstitial ultrasound ablation of vertebral and paraspinal tumours: parametric and patient-specific simulations », Int J Hyperthermia, vol.30, issue.4, pp.228-244, 2014.

V. Zderic, A. Keshavarzi, M. A. Andrew, S. Vaezy, and R. W. Martin, Attenuation of porcine tissues in vivo after high-intensity ultrasound treatment », vol.30, pp.61-66, 2004.

N. Ellens and K. Hynynen, « Frequency considerations for deep ablation with high-intensity focused ultrasound: A simulation study, Med Phys, vol.42, issue.8, pp.4896-4810, 2015.

Y. Zhou, Generation of uniform lesions in high intensity focused ultrasound ablation, Ultrasonics, vol.53, issue.2, pp.495-505, 2013.

M. D. Bucknor, V. Rieke, L. Do, S. Majumdar, and T. M. Link, Saeed, « MRI-guided high-intensity focused ultrasound ablation of bone: evaluation of acute findings with MR and CT imaging in a swine model, J Magn Reson Imaging, vol.40, issue.5, pp.1174-1180, 2014.

M. D. Bucknor, E. Ozhinsky, R. Shah, R. Krug, and V. Rieke, « Effect of Sonication Duration and Power on Ablation Depth During MR-Guided Focused Ultrasound of Bone, J Magn Reson Imaging, vol.46, issue.5, pp.1418-1422, 2017.

D. Kopelman, « Magnetic resonance guided focused ultrasound surgery. Ablation of soft tissue at bone-muscle interface in a porcine model, Eur J Clin Invest, vol.38, issue.4, pp.268-75, 2008.

M. D. Hurwitz, « Magnetic resonance-guided focused ultrasound for patients with painful bone metastases: phase III trial results, J. Natl. Cancer Inst, vol.106, issue.5, 2014.

H. Lee, C. Kuo, J. Tsai, C. Chen, M. Wu et al., « Magnetic Resonance-Guided Focused Ultrasound Versus Conventional Radiation Therapy for Painful Bone Metastasis: A Matched-Pair Study, J Bone Joint Surg Am, vol.99, pp.1572-1578, 2017.

K. V. Sharma, « Comparison of Noninvasive High-Intensity Focused Ultrasound with Radiofrequency Ablation of Osteoid Osteoma, J. Pediatr, vol.190, pp.222-228, 2017.

M. Huisman, « Feasibility of volumetric MRI-guided high intensity focused ultrasound (MR-HIFU) for painful bone metastases, J Ther Ultrasound, vol.2, p.16, 2014.

R. Catane, « MR-guided focused ultrasound surgery (MRgFUS) for the palliation of pain in patients with bone metastases--preliminary clinical experience, Ann Oncol, vol.18, issue.1, pp.163-170, 2007.

Y. Kim, « Uterine fibroids: postsonication temperature decay rate enables prediction of therapeutic responses to MR imaging-guided high-intensity focused ultrasound ablation, Radiology, vol.270, issue.2, pp.589-600, 2014.

M. Tillander, « High intensity focused ultrasound induced in vivo large volume hyperthermia under 3D MRI temperature control, Med Phys, vol.43, issue.3, pp.1539-1588, 2016.

M. Viallon, « Experimental methods for improved spatial control of thermal lesions in magnetic resonance-guided focused ultrasound ablation », Ultrasound Med Biol, vol.39, issue.9, pp.1580-95, 2013.

V. Rieke, K. Butts-pauly, and «. Mr, Journal of Magnetic Resonance Imaging, vol.27, issue.2, pp.376-390, 2008.

B. D. De-senneville, C. Mougenot, B. Quesson, I. Dragonu, N. Grenier et al., MR thermometry for monitoring tumor ablation, vol.17, pp.2401-2410, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01503897

D. Schlesinger, S. Benedict, C. Diederich, W. Gedroyc, A. Klibanov et al., « MR-guided focused ultrasound surgery, present and future, Med Phys, vol.40, issue.8, p.80901, 2013.

P. Webb, « Temperatures of skin, subcutaneous tissue, muscle and core in resting men in cold, comfortable and hot conditions », Eur J Appl Physiol Occup Physiol, vol.64, issue.5, pp.471-476, 1992.

E. Ramsay, C. Mougenot, M. Kazem, T. W. Laetsch, and R. Chopra, « Temperature-dependent MR signals in cortical bone: potential for monitoring temperature changes during high-intensity focused ultrasound treatment in bone, Magn Reson Med, vol.74, issue.4, pp.1095-102, 2015.

I. L. Reichert, « Magnetic resonance imaging of cortical bone with ultrashort TE pulse sequences, Magn Reson Imaging, vol.23, issue.5, pp.611-618, 2005.

J. Du and G. M. Bydder, « Qualitative and quantitative ultrashort-TE MRI of cortical bone, NMR Biomed, vol.26, issue.5, pp.489-506, 2013.

T. J. Hudson, « Simulating thermal effects of MR-guided focused ultrasound in cortical bone and its surrounding tissue, Med Phys, vol.45, issue.2, pp.506-519, 2018.

C. W. Huang, M. K. Sun, B. T. Chen, J. Shieh, C. S. Chen et al., « Simulation of thermal ablation by high-intensity focused ultrasound with temperature-dependent properties, Ultrason Sonochem, vol.27, pp.456-465, 2015.

V. Suomi, Y. Han, E. Konofagou, and R. O. Cleveland, « The effect of temperature dependent tissue parameters on acoustic radiation force induced displacements, Phys Med Biol, vol.61, pp.7427-7447, 2016.

T. Wu, J. P. Felmlee, J. F. Greenleaf, S. J. Riederer, and R. L. Ehman, « Assessment of thermal tissue ablation with MR elastography, Magn Reson Med, vol.45, issue.1, pp.80-87, 2001.

E. Sapin-de-brosses, J. Gennisson, M. Pernot, M. Fink, and M. Tanter, « Temperature dependence of the shear modulus of soft tissues assessed by ultrasound, Phys Med Biol, vol.55, issue.6, pp.1701-1718, 2010.

I. R. Webb, S. J. Payne, and C. Coussios, « The effect of temperature and viscoelasticity on cavitation dynamics during ultrasonic ablation, J. Acoust. Soc. Am, vol.130, issue.5, pp.3458-3466, 2011.

S. Rahimian and J. Tavakkoli, « Estimating dynamic changes of tissue attenuation coefficient during high-intensity focused ultrasound treatment, J Ther Ultrasound, vol.1, p.14, 2013.

F. Wu, « Pathological changes in human malignant carcinoma treated with high-intensity focused ultrasound », Ultrasound Med Biol, vol.27, issue.8, pp.1099-1106, 2001.

F. Wu, « Tumor vessel destruction resulting from high-intensity focused ultrasound in patients with solid malignancies », Ultrasound Med Biol, vol.28, issue.4, pp.535-542, 2002.

A. Herman, E. Avivi, T. Brosh, I. Schwartz, and B. Liberman, « Biomechanical properties of bone treated by magnetic resonance-guided focused ultrasound -an in vivo porcine model study, Bone, vol.57, issue.1, pp.92-97, 2013.

S. Y. Yeo, A. J. Moreno, B. Van-rietbergen, N. D. Ter-hoeve, P. J. Van-diest et al., « Effects of magnetic resonance-guided high-intensity focused ultrasound ablation on bone mechanical properties and modeling, J Ther Ultrasound, vol.3, p.13, 2015.

S. Kolmeder, A. Lion, R. Landgraf, and J. Ihlemann, « Thermophysical properties and material modelling of acrylic bone cements used in vertebroplasty, J Therm Anal Calorim, pp.705-718, 2011.

A. Napoli, « Osteoid osteoma: MR-guided focused ultrasound for entirely noninvasive treatment, Radiology, vol.267, issue.2, pp.514-535, 2013.

N. Mcdannold and S. E. Maier, « Magnetic resonance acoustic radiation force imaging, Med Phys, vol.35, issue.8, pp.3748-3758, 2008.

G. J. Hausman and R. G. Kauffman, « The histology of developing porcine adipose tissue, J. Anim. Sci, vol.63, issue.2, pp.642-658, 1986.

T. Koch, S. Lakshmanan, S. Brand, M. Wicke, K. Raum et al., Ultrasound velocity and attenuation of porcine soft tissues with respect to structure and composition: II. Skin and backfat, vol.88, pp.67-74, 2011.

A. I. Chen, « Multilayered tissue mimicking skin and vessel phantoms with tunable mechanical, optical, and acoustic properties, Med Phys, vol.43, issue.6, pp.3117-3131, 2016.

C. M. Moran, N. L. Bush, and J. C. Bamber, Ultrasonic propagation properties of excised human skin », Ultrasound Med Biol, vol.21, issue.9, pp.1177-1190, 1995.

P. He and J. Zheng, Acoustic dispersion and attenuation measurement using both transmitted and reflected pulses, Ultrasonics, vol.39, issue.1, pp.27-32, 2001.

. Inkling, Diagnostic Ultrasound by Carol M. Rumack and Deborah Levine | eBook on Inkling

P. E. Bloomfield, W. Lo, and P. A. Lewin, « Experimental study of the acoustical properties of polymers utilized to construct PVDF ultrasonic transducers and the acousto-electric properties of PVDF and P(VDF/TrFE) films », IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol.47, issue.6, pp.1397-1405, 2000.

M. O. Culjat, D. Goldenberg, P. Tewari, and R. S. Singh, « A review of tissue substitutes for ultrasound imaging », Ultrasound Med Biol, vol.36, issue.6, pp.861-873, 2010.

F. Duck, Physical Properties of Tissue: A, Comprehensive Reference Book, 1990.

J. F. Aubry, M. Tanter, M. Pernot, J. L. Thomas, and M. Fink, « Experimental demonstration of noninvasive transskull adaptive focusing based on prior computed tomography scans, J. Acoust. Soc. Am, vol.113, issue.1, pp.84-93, 2003.

F. J. Fry and J. E. Barger, « Acoustical properties of the human skull, J. Acoust. Soc. Am, vol.63, issue.5, pp.1576-1590, 1978.

D. N. White, G. R. Curry, and R. J. Stevenson, « The acoustic characteristics of the skull, Ultrasound in Medicine and Biology, vol.4, pp.241-252, 1978.

, « Medical ultrasonics, vol.2, issue.6

D. Sur,

Y. S. Kim, « MR thermometry analysis of sonication accuracy and safety margin of volumetric MR imaging-guided high-intensity focused ultrasound ablation of symptomatic uterine fibroids, Radiology, vol.265, issue.2, pp.627-664, 2012.

C. Masciocchi, « Radiofrequency ablation versus magnetic resonance guided focused ultrasound surgery for minimally invasive treatment of osteoid osteoma: a propensity score matching study, Eur Radiol, vol.26, issue.8, pp.2472-81, 2016.

J. Shim, R. M. Staruch, K. Koral, X. Xie, R. Chopra et al., Pediatric Sarcomas Are Targetable by MR-Guided High Intensity Focused Ultrasound (MR-HIFU): Anatomical Distribution and Radiological Characteristics, vol.63, pp.1753-1760, 2016.

M. J. Temple, « Establishing a clinical service for the treatment of osteoid osteoma using magnetic resonance-guided focused ultrasound: overview and guidelines, J Ther Ultrasound, vol.4, p.16, 2016.

F. A. Jolesz, « MRI-guided focused ultrasound surgery, Annu. Rev. Med, vol.60, pp.417-430, 2009.

J. F. Lehmann, B. J. Delateur, C. G. Warren, and J. S. Stonebridge, « Heating produced by ultrasound in bone and soft tissue », Arch Phys Med Rehabil, vol.48, issue.8, pp.397-401, 1967.

M. De-greef, H. P. Kok, D. Correia, A. Bel, and J. Crezee, « Optimization in hyperthermia treatment planning: the impact of tissue perfusion uncertainty, Med Phys, vol.37, issue.9, pp.4540-50, 2010.

M. De-greef, H. P. Kok, D. Correia, P. P. Borsboom, A. Bel et al., « Uncertainty in hyperthermia treatment planning: the need for robust system design, Phys Med Biol, vol.56, issue.11, pp.3233-50, 2011.

H. P. Kok, « Feasibility of on-line temperature-based hyperthermia treatment planning to improve tumour temperatures during locoregional hyperthermia », Int J Hyperthermia, pp.1-10, 2017.

D. K. Filippiadis, S. Tutton, A. Mazioti, and A. Kelekis, « Percutaneous image-guided ablation of bone and soft tissue tumours: a review of available techniques and protective measures, Insights Imaging, vol.5, issue.3, pp.339-346, 2014.

G. Tsoumakidou, X. Buy, J. Garnon, J. Enescu, and A. Gangi, « Percutaneous thermal ablation: how to protect the surrounding organs, Tech Vasc Interv Radiol, vol.14, issue.3, pp.170-176, 2011.

B. Joo, « Pain palliation in patients with bone metastases using magnetic resonance-guided focused ultrasound with conformal bone system: a preliminary report », Yonsei Med J, vol.56, issue.2, pp.503-512, 2015.

A. Muller, L. Petrusca, V. Auboiroux, P. J. Valette, R. Salomir et al., « Management of Respiratory Motion in Extracorporeal High-Intensity Focused Ultrasound Treatment in Upper Abdominal Organs: Current Status and Perspectives, Cardiovasc Intervent Radiol, vol.36, issue.6, pp.1464-1476, 2013.

, Vitesse de propagation de l'onde ultrasonore dans les matériaux | Olympus IMS

D. Sur,

, Comportement mécanique des matériaux -Liste de masses volumiques, modules de Young et coefficients de Poisson

D. Geiger, « MR-guided focused ultrasound (MRgFUS) ablation for the treatment of nonspinal osteoid osteoma: a prospective multicenter evaluation, J Bone Joint Surg Am, vol.96, issue.9, pp.743-51, 2014.

J. Civale, « Calibration of ultrasound backscatter temperature imaging for high-intensity focused ultrasound treatment planning », Ultrasound Med Biol, vol.39, issue.9, pp.1596-1612

W. J. Fry and R. B. Fry, « Determination of Absolute Sound Levels and Acoustic Absorption Coefficients by Thermocouple Probes-Experiment, The Journal of the Acoustical Society of America, vol.26, issue.3, pp.311-317, 1954.

K. Hynynen, C. J. Martin, D. J. Watmough, and J. R. Mallard, « Errors in temperature measurement by thermocouple probes during ultrasound induced hyperthermia, Br J Radiol, vol.56, pp.969-970, 1983.

A. Gulati, « Novel use of noninvasive high-intensity focused ultrasonography for intercostal nerve neurolysis in a swine model, Reg Anesth Pain Med, vol.39, issue.1, pp.26-30, 2014.

E. Chow, J. S. Wu, P. Hoskin, L. R. Coia, S. M. Bentzen et al., « International consensus on palliative radiotherapy endpoints for future clinical trials in bone metastases, vol.64, pp.275-280, 2002.

M. Chan, « Magnetic Resonance-Guided High-Intensity-Focused Ultrasound for Palliation of Painful Skeletal Metastases: A Pilot Study, Technol. Cancer Res. Treat, vol.16, issue.5, pp.570-576, 2017.

P. S. Yarmolenko, « Technical aspects of osteoid osteoma ablation in children using MRguided high intensity focussed ultrasound », Int J Hyperthermia, vol.34, issue.1, pp.49-58, 2018.

C. A. Damianou, N. T. Sanghvi, F. J. Fry, and R. Maass-moreno, « Dependence of ultrasonic attenuation and absorption in dog soft tissues on temperature and thermal dose, J. Acoust. Soc. Am, vol.102, issue.1, pp.628-634, 1997.

J. Wu and F. Cubberley, « Measurement of velocity and attenuation of shear waves in bovine compact bone using ultrasonic spectroscopy », Ultrasound Med Biol, vol.23, issue.1, pp.129-134

, Traitement des lésions osseuses par Ultrasons Focalisés de Haute Intensité : de la simulation aux applications cliniques

, Une simulation a été réalisée avec 2 valeurs de ? (4.7 et 9.9 dB/cm) : l'échauffement est moins important avec ?=4.7. La simulation confirme certains résultats de la thermo-IRM : une élévation thermique maximale au niveau du périoste (zone focale) avec le tir superficiel, un échauffement latéral plus marqué avec le tir profond et une tendance à l'inertie thermique. A partir d'une analyse rétrospective des cas traités par imagerie mini-invasive, l'ablation HIFU semble possible pour 50% des ostéomes ostéoïdes et 35.7% des métastases. 35.9% de cas supplémentaires auraient pu être traités par HIFU si une protection des structures sensibles ou une consolidation étaient réalisées. A 1 MHz, l'interférence des aiguilles avec les US n'était visible qu'avec les aiguilles 13G, Après un état de l'art sur l'ablation des lésions osseuses, les expérimentations HIFU sur l'os présentées ont montré un échauffement périosté plus étendu avec un tir profond

. Mots-clés, on bone lesions ablation techniques, bone experimentations presented showed that deep focalisation allows the best lateral periosteal heating. On cement, from which the coefficient ? was measured, the same thermic curves were observed. A simulation was done osteoid osteomas and 35.7% of metastases were classified as suitable with MRgHIFU alone. 35.9% additional cases may have been treated with dissection or consolidation. At 1 MHz, US distortion due to the presence of needles in the US cone was observed only with the 13-gauge needle. However, if 18 to 22G needles may induce few distortion