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ÉCOLE DOCTORALE INFORMATIQUE, TÉLÉCOMMUNICATIONS ET
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d’être un travail solitaire. En effet, je n’aurais jamais pu réaliser ce travail doctoral
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la rigueur scientifique et la clairvoyance m’ont beaucoup appris et m’ont permis
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Résumé

Les progrès des technologies informatiques et l’augmentation continue des ca-

pacités de stockage ont permis de disposer de masses de données de très grandes

tailles et de grandes dimensions. Le volume et la nature même des données font

qu’il est de plus en plus nécessaire de développer de nouvelles méthodes capa-

bles de traiter, résumer et d’extraire l’information contenue dans de tels types de

données.

D’un point de vue extraction des connaissances, la compréhension de la structure

des grandes masses de données est d’une importance capitale dans l’apprentissage

artificiel et la fouille de données. En outre, contrairement á l’apprentissage super-

visé, l’apprentissage non supervisé peut fournir des outils pour l’analyse de ces

ensembles de données en absence de groupes (classes). Dans cette thèse, nous

nous concentrons sur des méthodes fondamentales en apprentissage non supervisé

notamment les méthodes de réduction de la dimension, de classification simple

(clustering) et de classification croisée (co-clustering).

Notre contribution majeure est la proposition d’une nouvelle manière de traiter

simultanément la classification et la réduction de dimension. L’idée principale

s’appuie sur une fonction objective qui peut être décomposée en deux termes, le

premier correspond á la réduction de la dimension des données, tandis que le sec-

ond correspond á l’objectif du clustering et celui du co-clustering. En s’appuyant

sur la factorisation matricielle, nous proposons une solution prenant en compte

simultanément les deux objectifs : réduction de la dimension et classification.

Nous avons en outre proposé des versions régularisées de nos approches basées sur

la régularisation du Laplacien afin de mieux préserver la structure géométrique des

données. Les résultats expérimentaux obtenus sur des données synthétiques ainsi

que sur des données réelles montrent que les algorithmes proposés fournissent

d’une part de bonnes représentations dans des espaces de dimension réduite et

d’autre part permettent d’améliorer la qualité des clusters et des co-clusters.



Motivés par les bons résultats obtenus par les méthodes du clustering et du co-

clustering basés sur la régularisation du Laplacien, nous avons développé un nou-

vel algorithme basé sur l’apprentissage multi-variétés (multi-manifold) dans lequel

une variété consensus est approximée par la combinaison d’un ensemble de variétés

candidates reflétant au mieux la structure géométrique locale des données.

Enfin, nous avons aussi étudié comment intégrer des contraintes dans les Lapla-

ciens utilisés pour la régularisation á la fois dans l’espace des objets et l’espace

des variables. De cette faon, nous montrons comment des connaissances a priori

peuvent contribuer à l’amélioration de la qualité du co-clustering.



Abstract

Advances in computer technology and recent advances in sensing and storage tech-

nology have created many high-volume, high-dimensional data sets. This increase

in both the volume and the variety of data calls for advances in methodology to

understand, process, summarize and extract information from such kind of data.

From a more technical point of view, understanding the structure of large data sets

arising from the data explosion is of fundamental importance in data mining and

machine learning. Unlike supervised learning, unsupervised learning can provide

generic tools for analyzing and summarizing these data sets when there is no well-

defined notion of classes. In this thesis, we focus on three important techniques

of unsupervised learning for data analysis, namely data dimensionality reduction,

data clustering and data co-clustering.

Our major contribution proposes a novel way to consider the clustering (resp. co-

clustering) and the reduction of the dimension simultaneously. The main idea pre-

sented is to consider an objective function that can be decomposed into two terms

where one of them performs the dimensionality reduction while the other one re-

turns the clustering (resp. co-clustering) of data in the projected space simultane-

ously. We have further introduced the regularized versions of our approaches with

graph Laplacian embedding in order to better preserve the local geometry of the

data. Experimental results on synthetic data as well as real data demonstrate that

the proposed algorithms can provide good low-dimensional representations of the

data while improving the clustering (resp. co-clustering) results.

Motivated by the good results obtained by graph-regularized-based clustering (resp.

co-clustering) methods, we developed a new algorithm based on the multi-manifold

learning. We approximate the intrinsic manifold using a subset of candidate man-

ifolds that can better reflect the local geometrical structure by making use of the

graph Laplacian matrices. Finally, we have investigated the integration of some se-

lected instance-level constraints in the graph Laplacians of both data samples and

data features. By doing that, we show how the addition of priory knowledge can

assist in data co-clustering and improves the quality of the obtained co-clusters.
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1. THESIS OUTLINE

1.1 Introduction

Data analysis has a capital role to play in several real-world domains, such as medicine and

market analysis. Specifically, with recent advances in sensing and storage technology, many

high-volume data collections were created and there is a need for accurate automatic data anal-

ysis tools in order to be able to process these great amounts of data in a timely manner. Lately, a

new fashion of unsupervised data analysis algorithms, which consider the clustering (resp. co-

clustering) and the reduction of the dimension simultaneously, has emerged. These approaches

takes advantage of the mutual reinforcement between a manifold learning technique which

provide a low-dimensional representation of data and a matrix factorization based clustering

(resp. co-clustering) method that learns this low-dimensional representation and lends itself to

a clustering (resp. co-clustering) interpretation.

Clustering is a fundamental topic in unsupervised machine learning. It consists of detect-

ing the best structure inferred by the distribution of a set of non labeled data. In this context, it

aims at organizing the data in homogeneous groups (clusters) by respecting both the cohesion

and the separation. This organization is only made on data samples according to all the data

features. Recently, Non-negative Matrix Factorization (NMF) [Lee and Seung, 1999] has be-

come one of the most frequently used in clustering. NMF was proposed to learn a parts-based

representation, but it focuses on unilateral clustering i.e. on only one of the two sets of samples

or features of a data matrix.

However, in many real world applications, the data set to be analyzed involves two types.

For example, words and documents in document analysis, bloggers and content in social net-

works, users and product in recommendation systems, experimental conditions and genes in

microarray data analysis. In addition, usually there exist close relationships between the two

types of data points, and it is difficult for the traditional clustering algorithms to use this rela-

tionship information efficiently. Motivated by the duality between samples and feature clusters,

a number of different formulations of the co-clustering problem have been proposed to clus-

ter simultaneously samples and features sets, using different mathematical concepts. These

include the bi-clustering model [Cheng and Church, 2000], graph-based methods [Dhillon,

2001a], information-theoretic [Dhillon et al., 2003a,c], model-based co-clustering methods

[Govaert and Nadif, 2003, 2005, 2014] and co-clustering methods based on matrix factoriza-

tion [Anagnostopoulos et al., 2008]. These last, have recently been emerging as a promising

tool for co-clustering, mainly because of the simplicity of the formalization and the close rela-

tionships to other well-studied problems, such as spectral clustering and matrix decomposition

[Ding et al., 2006b; Long et al., 2005]. There are many different Co-clustering approaches

fulfilling this task; see for instance [Anagnostopoulos et al., 2008].
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Despite the popularity of factorization-based clustering and co-clustering methods, one

drawback is that they rest on only a global Euclidean geometry, hence a local manifold geom-

etry is not fully considered. To address this major limitation, some researchers have sought to

take into account a local geometrical structure. In order to take into account the manifold struc-

tures in both sample and feature spaces, many different graph regularization based clustering

(resp. co-clustering) approaches were proposed [Gu and Zhou, 2009; Shang et al., 2012; Wang

et al., 2011b; Wang and Zhang, 2013].

To this end, manifold learning technique can be used to map a set of high-dimensional

data into a low-dimensional space, while preserving the intrinsic structure of the data. These

dimensionality reduction methods include different techniques for capturing the non-linearity

of the underlying manifold, and they incorporate local distance information in different ways.

Furthermore, the effectiveness of different dimensionality reduction methods varies, and it has

been shown that no single method constantly outperforms the others. Rather than choosing

a single method, therefore, we seek to apply a set of dimensionality reduction methods and

to merge the output of the different methods. Indeed, multi-manifold learning was proposed

to approximate the intrinsic manifold using a subset of candidate manifolds, which can better

reflect the local geometrical structure by making use of the graph Laplacian. For example, some

linear approaches for multi-manifold learning were proposed in [Fan et al., 2012; Goldberg

et al., 2009; Lu et al., 2013; Yang et al., 2011]. These multi-manifold learning algorithms aim

to overcome the drawbacks of single manifold learning methods and to combine the different

data structures to which they give rise.

Recently, semi-supervised co-clustering algorithms, referred as constrained co-clustering,

has emerged. These new algorithms can incorporate some background knowledge, allowing

the user to guide the co-clustering process and improve the quality of its results. This a priori

information is given to the algorithm as a set of pairwise constraints involving pairs of data

points and expressing some restrictions or preferences about whether or not these pairs of data

points should be in the same co-cluster. These pairwise constraints do not have to be numerous

or be distributed among the whole data set in order to have a noticeable effect on the co-

clustering process, which enables us to attain large improvements in the final quality of the

co-clusters. Furthermore, using the measure of informativeness, the constrained co-clustering

method selects the constraints that can correct the failures of most of the basic clustering and

co-clustering methods. This is specifically relevant with the presence of some critical data

located on the boundaries among the classes.
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1.2 Motivation

Although clustering and co-clustering techniques represent active research topics in machine

learning that have already proven their efficiency in many real-world applications, several data

mining scenarios may degrade their performance due to different reasons. We can divide these

reasons into those arising from the data structure and those caused by applications constraints.

The former include problems related to high dimensionality, sparsity and heterogeneity of the

data. Indeed, as we are now able to collect and extract a large number of features from raw

data, the dimension of feature vectors increases and may even exceed the size of the vector

of instances. This phenomenon, also known as the curse of dimensionality [Friedman, 1994]

is directly associated with sparsity problems and may yield bad results in terms of clustering.

Indeed, clustering and, by extension, co-clustering aim to group objects that are close and

therefore rely on the notion of distance or similarity. However, in high dimensional data, all

objects tend to be equidistant from one another.

Moreover, the aim of cluster analysis is the discovery of a finite number of homogeneous

classes from data. These classes can be assumed to lie in a low-dimensional subspace of data.

Generally when a user aims to clustering (resp. co-clustering), he then seeks to visualize the

clusters in a reduced dimension space. This procedure can be carried out into two simple steps:

• Step 1. Data Embedding: Principal Component Analysis (PCA) is performed, and the

first few components are retained.

• Step 2. Data Clustering: A clustering method (k-means) is performed on these first

principal components.

This two-step procedure is called tandem clustering by Arabie and Hubert [Arabie and

Hubert, 1994] and has been discouraged by several authors [Arabie and Hubert, 1994; Vichi

and Kiers, 2001]. Because the first few principal components of PCA do not necessarily reflect

the cluster structure in data, therefore the appropriate clustering result may not be obtained by

using the tandem clustering approach. In our thesis, unlike to tandem clustering methods that

combine a dimension reduction method (e.g PCA) and a clustering method (such as k-means)

separately, we provide two convenient ways to integrate the data embedding and the data clus-

tering steps into a single framework which performs the two tasks simultaneously [Timmerman

et al., 2010; Vichi and Saporta, 2009]. This convenience is mainly due to two reasons. Firstly,

clustering and dimension reduction are performed via an iterative optimization procedure to

mutually reinforce the relationships between the coefficients. Secondly, the mutually reinforc-

ing optimization exploits the relationships of the data clustering and dimension reduction and

enables a simultaneous data clustering and embedding. This allows a better approximation of

data reduction by a clustering solution.
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Recently, the use of NMF for partitional clustering has attracted much interest because of

the simplicity of the formalization and its close relationships to other well-studied problems,

such as spectral clustering and matrix decomposition [Ding et al., 2006b; Li and Ding, 2006;

Long et al., 2005]. Indeed, several theoretical papers also appeared proving the equivalence

between NMF, spectral clustering and the k-means algorithm [Ding et al., 2005]. For instance,

Zass and Shashua [2005] show that spectral clustering, normalized cuts, and Kernel k-means

are particular cases of the clustering with NMF under a doubly stochastic constraint. However,

NMF was proposed to learn a parts-based representation, but it focuses on unilateral clustering.

Largely because of this, Nonnegative Matrix Tri-Factorization (NMTF) [Wang et al., 2011a;

Yoo and Choi, 2010] has been developed for co-clustering dyadic data. Motivated by this,

all our proposed clustering and co-clustering methods are based on matrix factorization. In

spite of the very practical nature of these advantages, one drawback of the factorization-based

clustering (resp. co-clustering) methods is that they are based only on the global Euclidean

geometry, and the local manifold geometry is not fully considered. In addition, we known that

most of the dimensionality reduction methods provides an embedding for the data lying on a

linear manifold. However, in many applications, data lie in a non-linear manifold. In order to

tackle this major limitations, motivated by recent progress in matrix factorization and manifold

learning, one popular method is to use the graph Laplacian based embedding to incorporate the

manifold information. Unfortunately, the first graph-regularized-based clustering (resp. co-

clustering) methods fail to maximally approximate the intrinsic manifolds of both sample and

feature spaces. To this end, multi-manifold learning was proposed to approximate the intrinsic

manifold using a subset of candidate manifolds that can better reflect the local geometrical

structure by making use of the graph Laplacian matrices.

Finally, in many real world applications, the data set to be analyzed presents obstacles such

as large dimension, sparsity, heterogeneity and negativity. For this reason, efforts have been

made in recent years to extend existing co-clustering methods to constrained co-clustering

[Chen et al., 2010; Pensa and Boulicaut, 2008; Song et al., 2010; Wang et al., 2008b]. These

last cluster simultaneously samples and feature sets, guided by certain supervisory information.

Usually, this background knowledge can be represented as a set of pairwise constraints that

can be generated from a subset of labeled data. Most of these methods encodes Must-link

(ML) and Cannot-link (CL) constraints by modifying the graph Laplacian, constraining the

underlying eigenspace, or by encoding them as part of a constrained optimization problem. In

our contribution, we propose new applications of constrained co-clustering which, besides the

similarity information encoded in the Laplacian graph in both sample and feature sides, allows

to use label information to modify both Laplacian graphs according to the specified pairwise

constraints.
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1.3 Outline

The main novel contributions of this thesis are presented in chapters 3-7. The thesis manuscript

is organized as follows.

Chapter 2 is a brief survey on clustering and co-clustering topics. First, we introduce basic

principles related to clustering approaches and we describe the criteria that we use in this thesis

in order to evaluate the performance of clustering algorithms. Then, we give a definition of

co-clustering and describe the state-of-the-art methods and theoretical results that exist on this

matter. Finally, we describe several Matrix Factorization based Clustering (resp. Co-clustering)

algorithms which will be used or referenced along this work and we enumerate some research

opportunities still open in this domain, some of which will be addressed in this thesis.

Chapter 3 [Allab et al., 2015b, 2016a] proposes a novel approach to finding an optimal

subspace of multi-dimensional variables for identifying a partition of the set of objects. The

proposed solution, relying on PCA and Semi-NMF, combines simultaneously the dimensional-

ity reduction and the clustering (figure 1.1). The use of a low-dimensional representation is of

help in providing better separated clusters and then easily interpretable.

Figure 1.1 – Schema of SemiNMF-PCA method.

Chapter 4 [Allab et al., 2016b] aims to develop a new method of clustering in a spectral

clustering framework. Spectral clustering is often based on a tandem approach where the two

steps: affinity matrix eigendecomposition and k-means clustering, are performed separately.

In this chapter we propose to perform simultaneously the eigendecomposition of the affin-

ity matrix and clustering tasks, and to use the Power method to speed up the unified process
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convergence (figure 1.2). We show that by doing so, our method can learn low-dimensional

representations that are better suited to clustering.

Figure 1.2 – Schema of PSDEC method.

Chapter 5 [Allab et al., 2016c] presents a novel way to consider the co-clustering and the

reduction of the dimension simultaneously (figure 1.3). We show how we can extend the ap-

proach proposed in chapter 4 to tackle the co-clustering problem.

Figure 1.3 – Schema of SemiNMF-PCA-Coclust method.

Chapter 6 [Allab et al., 2015a] summarises our Multi-Manifold Matrix Decomposition for

Co-clustering (M3DC) algorithm. Specifically, multiple candidate manifolds are constructed

separately to take local invariance into account. Then, multi-manifold learning is employed to

approximate the optimal intrinsic manifold, which better reflects the local geometrical struc-

ture, by linearly combining these candidate manifolds. The candidate manifolds are obtained

using various manifold-based dimensionality reduction methods (figure 1.4).
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Figure 1.4 – Schema of M3DC method.

Chapter 7 [submitted in KBS journal] is devoted to constrained co-clustering methods

under the guidance of some supervisory information. This information can take the form of

pairwise constraints that indicate similarities or dissimilarities in the set of samples and the

set of features. Based on matrix 3−factor decomposition, the aim of the proposed approach,

referred to as Constrained Matrix Decomposition based Co-Clustering (CMDC) (figure 1.5), is

to co-cluster efficiently data sets by introducing the most beneficial background knowledge on

both the sample and feature spaces. Using Laplacian locality preserving, we project the sam-

ples and the features into lower-dimensional subspaces while preserving their local geometry.

Figure 1.5 – Schema of CMDC method.

Finally, we present the conclusions of the thesis and a summary of the future research

directions. Note that we try to keep the chapters introducing the main novel contributions of

the thesis as self-contained as possible each of them contains its an introduction to its specific

topic and its own state-of-the-art.
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Chapter 2

Clustering and Co-clustering: A brief

review
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2.1 Clustering, definitions and algorithms

2.1.1 Clustering and Challenges

Data clustering, is also called cluster analysis, segmentation analysis, taxonomy analysis, or

unsupervised classification. By definition, for a given set of data points and a similarity/dis-

similarity measure, clustering is a method of creating groups of objects (clusters), in such a

way that data objects in the same cluster are as similar as possible and data objects in different

clusters are as dissimilar as possible. Unlike the classification in which the clusters are known,

clustering can be viewed as an exploratory data analysis. Therefore, the explorer might have no

or little information about the parameters of the resulting cluster analysis. Many fundamental

questions arise when dealing with clustering.

- What is the interest in clustering the set of data objects?

- How many clusters?

- What are the relevant objects for the cluster analysis?

- What are the relevant features that describe the objects?

- Can we combine simultaneously clustering and visualization?

- What is suitable algorithm for data clustering?

- What is the quality of the obtained clustering?

In the sequel, we introduce some concepts that will be encountered frequently in cluster

analysis.

2.1.2 Data Samples and Features

In machine learning and statistics, different terms can be used to express the same thing. For

instance, given a data set, the data point, record, instance, observation, individual, record and

sample are all used to denote a single data object. In our work, we will use data point or data

sample to denote a single object. Also, we shall use data feature to denote a record scalar

component. We almost use the case-by-variables data structure [Hartigan, 1975].

Through the thesis, the data set to classify is organized in a matrix. Given a data matrix

X , it contains n objects X := {x1,x2, . . . ,xn} and each object is in a d-dimensional space,

i.e. each object xi = (x1i, x2i, . . . , xji, . . . , xdi)
T is a vector denoting the ith data sample

and xji is a scalar denoting the jth component of xi. The number of features d is also called

10
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dimensionality of the data set. This can be expressed in a matrix format as:

X =




x11 x12 · · · x1n

x21 x22 · · · x2n

· · · · · ·
. . . · · ·

xd1 xd2 · · · xdn




(2.1)

2.1.3 Similarity/Dissimilarity and Distance

A similarity/dissimilarity measures, or a distance are used to describe quantitatively the prox-

imity between two data samples or two clusters. All clustering algorithms are based explic-

itly or implicitly on similarity/dissimilarity measures between data samples [Jain and Dubes,

1988]. Hence, the high quality of clustering is to obtain high within-cluster similarity and low

between-cluster similarity. In addition, when we use the dissimilarity/distance concept, the lat-

ter sentence becomes: the high quality of clustering is to obtain low within-cluster dissimilarity

and high between-cluster dissimilarity.

Various similarity and dissimilarity measures have been discussed [Anderberg, 1973; Everitt

and Dunn, 2001; Gordon, 1999; Sokal and Sneath, 1963]. In the sequel, we present a suite of

measures which are commonly used for calculating the similarity of among objects.

Minkowski Metric Lq. It calculates the distance between the two objects x ans y by com-

paring the value of their d features, cf. Equation 2.2.

Lq(x,y) =
q

√√√√
d∑

i=1

(xi − yi)q. (2.2)

Two important special cases of the Minkowski metric are q = 1 and q = 2, cf. Equations 2.3

and 2.4:

1. Manhattan distance or City block distance or L1 norm:

L1(x,y) =
d∑

i=1

|xi − yi| . (2.3)

2. Euclidean distance or L2 norm :

L2(x,y) =

√√√√
d∑

i=2

(xi − yi)2. (2.4)

11
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Kullback-Leibler Divergence. This divergence (KL) is defined in Equation 2.5; KL is a

measure from information theory which determines the inefficiency of assuming a model dis-

tribution given the true distribution [Cover and Thomas, 1991]. It is generally used for x and

y representing probability mass functions

KL(x ‖ y) =
d∑

i=1

xi × log
xi
yi
. (2.5)

The Kullback-Leibler divergence is not defined in case yi = 0 so the probability distributions

need to be smoothed by performing one of the two variants of KL, information radius or skew

divergence. Both variants can tolerate zero values in the distribution, because they work with

a weighted average of the two distributions compared. Lee [2001] has shown that the skew

divergence is an effective measure for distributional similarity in NLP.

Kendalls τ coefficient [Kendall and Gibbons, 1990]. This coefficient compares all feature

pairs of the two objects x and y in order to calculate their distance. if 〈xi, yi〉 and 〈xj , yj〉 are

two pairs of the features i and j for the objects x and y, the pairs are concordant if xi > xj and

yi > yj . If the distributions of the x and y are similar, a large number of concordances fc is

expected, otherwise a large number of discordances fd is expected. τ is defined in Equation 2.6,

with pc the probability of concordances and pd the probability of discordances; τ ranges from

−1 to 1. The τ coefficient can be applied to frequency and probability values. Hatzivassiloglou

and McKeown [1993] used τ to measure the similarity between adjectives.

τ(x,y) =
fc

fc + fd
−

fd
fc + fd

= pc − pd. (2.6)

Cosine similarity. This similarity allows to measure the similarity between two objects x

and y by calculating the cosine of the angle between their feature vectors. For positive feature

values, the cosine lies between 0 and 1. The cosine measure can be applied to frequency,

probability and binary values.

cos(x,y) =

∑d
i=1 xi × yi√∑d

i=1 x
2
i ×

√∑d
i=1 y

2
i

. (2.7)
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2.1.4 Popular Clustering algorithms

Many algorithms have been proposed to perform the data clustering task. No clustering tech-

nique is universally applicable, and different techniques are in favour for different clustering

purposes. So an understanding of both the clustering problem and the clustering technique is

required to apply a suitable method to a given problem. The choice of a clustering algorithm

determines the setting of the parameters. The clustering problems can be categorized into two

main types: fuzzy clustering and hard clustering. In fuzzy clustering, data points can belong

to more than one cluster with probabilities between 0 and 1 [Bezdek and Pal, 1992; Karaboga

and Ozturk, 2010] which indicate the strength of the relationships between the data points

and a particular cluster. One of the most popular fuzzy clustering algorithms is fuzzy c-mean

algorithm [Bezdek, 1981; Hoppner et al., 1999]. In hard clustering, data points are divided

into distinct clusters, where each data point can belong to one and only one cluster. The hard

clustering is divided into hierarchical and partitional algorithms.

2.1.4.1 Hierarchical clustering

Hierarchical clustering aims to obtain a dendrogram of clusters that shows how the clusters are

related to each other. The clustering result of the data objects can be obtained by cutting the

obtained dendrogram at the suitable level. These methods proceed either by iteratively merging

small clusters into larger ones (agglomerative algorithms) or by splitting large clusters (divisive

algorithms) (figure 2.1). Based on these, it can be classified into the following categories:

Figure 2.1 – Hierarchical clustering algorithms.
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Agglomerative Algorithm: The family of agglomerative algorithms [Jain et al., 1999] is ar-

guably the most popular example of hierarchical clustering algorithms. Agglomerative method

creates the cluster dendrogram in a bottom-up agglomerative fashion, starting with each data

point in its own cluster and merging clusters successively according to a similarity measure

until all the data are merged into a single cluster. According to the definition of the similarity

measure between two clusters, several agglomerative variants exist, but the most commonly

used are the single linkage criterion [Sibson, 1973], the complete linkage criterion [Sorensen,

1948] and the average linkage criterion [Sokal and Michener, 1958]. When the objects are

described by continuous variables, the Ward’s method is frequently used.

Divisive Algorithm: It aims to create the cluster dendrogram in a top-down divisive fashion,

where all the data points initially are in a single cluster. This cluster is then split successively

according to some measurement till each data point is into its own singleton cluster. Note that

stop conditions can be used, and the division into clusters is governed by whether or not a

particular property is satisfied.

2.1.4.2 Partitional Clustering

Partitional clustering attempts to obtain a partition which minimizing the within-cluster sum

of squares or maximizing the between-cluster sum of squares. To guarantee that an optimum

solution has been obtained, one has to examine all possible partitions of the n d-dimensional

patterns into k clusters (for a given k), which is not computationally feasible. Therefore, vari-

ous heuristic methods are used to reduce the search, however, there is no guarantee of optimal-

ity. In the real clustering applications, partitional clustering techniques have been considered

more appropriate for large data sets than hierarchical techniques in which the construction of

the dendrogram is computationally expensive. However, the determination of the number of

clusters is one of the most problematic issues in partitional clustering methods. The partitional

algorithms often use a certain objective function and produce the desired clusters by optimizing

this objective function [Hansen and Jaumard, 1997]. The most popular Partitional clustering

algorithm is k-means [McQueen, 1967]. Due to its simplicity and good performance, k-means

is one of the most widely-used clustering algorithms. It is an iterative algorithm, whose goal

is distributing the data in clusters such that the within-cluster sum of squares W is minimised,

which is defined as

W(P) =
k∑

h=1

∑

x∈Ph

||x− Ph||
2 (2.8)

where P is a partition into k clusters {P1 , . . . ,Pk}, and Ph is the centroid of cluster h.
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The pseudo-code for k-means is shown in Algorithm 1.

Algorithm 1: The k-means algorithm .

Input: - X , the data matrix to cluster;

- k, the number of clusters.

Output: P∗ = {P∗
1, . . . ,P

∗
k}, the partition (k clusters) of data

Initialize: the centroids Ph

while convergence is not attained do

for x ∈ X do

h← argminm∈1...k||x− Ph||
2

Assign(x,Ph)
end

for Ph ∈ P do

Recalculate-Centroid (Ph)

end

end

One of the most important problems of k-means is its dependency on the seeds which have

been chosen in the initialisation phase (the centroids initial values). A good initialization leads

to a good solution while a bad one can lead to to an unsuitable partition. In order to offer better

algorithms than k-means, many variants are proposed. Further, this algorithm has inspired

many other algorithms that can be categorized in various families. Without being exhaustive,

hereafter some different types of clustering algorithms.

Density-based Clustering. These methods model clusters as dense regions and use different

heuristics to find arbitrary shaped high-density regions in the input data space and group points

accordingly. Among the well-known methods, there are Denclue which tries to analytically

model the overall density around a point [Hinneburg and Keim, 1998], and WaveCluster which

uses wavelet-transform to find high density regions [Sheikholesami et al., 1998]. Note that,

density-based methods typically have difficulty scaling up to very high dimensional data (>

10000), which are common in text mining for instance.

Model-based Clustering. The mixture approach assumes that each cluster is generated ac-

cording to a distribution with some specific parameters. The approach relies on the maximi-

sation of the likelihood. The estimation of parameters can be performed by the Expectation

Maximization (EM) algorithm [Dempster et al., 1977]. Many variants of EM were proposed

to overcome some drawbacks of EM. The flexibility of the mixture model makes this approach

very powerful; see for instance [McLachlan and Peel, 2004]. Several criteria used in clustering

context, such as the within-cluster sum squares, are associated to a restricted gaussian mixture

model. Nevertheless, the high dimensionality is a challenge for this type of approach.

15



2. CLUSTERING AND CO-CLUSTERING: A REVIEW

Graph-theoretic Clustering. Another type of clustering algorithms is based on the construc-

tion of similarity graphs in which a given set of data points is transformed into vertices and

edges. The constructed graph can be used to obtain a single highly connected graph that is then

partitioned by edge cutting to obtain sub graphs [Santos et al., 2008; Shi and Malik, 2000]. Ba-

sically, the kinds of graphs are ε-neighborhood, k-nearest neighbor and fully connected graph

[Barbakh and Fyfe, 2008; Luxburg, 2007].

Spectral clustering has many fundamental advantages compared to traditional model-based

clustering algorithms such as k-means. Results obtained by spectral clustering often outper-

form the traditional approaches, and it is very simple to implement and can be solved by com-

puting eigenvalue/eigenvector problem. However, spectral clustering suffers from heavily com-

putations. The core of the spectral clustering algorithms is to use the properties of eigenvectors

of Laplacian matrix for performing graph partitioning [Fielder, 1975; Luxburg, 2007; Ng et al.,

2001; Santos et al., 2008; Verma and Meila, 2003].

In order to address the computational difficulties and to improve the results of spectral

clustering, Chen et al. [2011] proposed sparsification and Nystrom approaches. This latter is a

technique for finding an approximate eigendecomposition. Spectral clustering using Nystrom

method requires less computation and does not need the prespecified number of nearest neigh-

bors as in sparsification method. The spectral clustering using Nystrom method uses randomly

sample data points from the data set to approximate the similarity matrix of all data points in

the data set. Then it finds the first k eigenvectors of the normalized Laplacian matrix of the

Nystrom method and performs k-means to cluster data set.

Matrix Factorization Based Clustering. Recently there has been significant development in

the use of non-negative matrix factorization (NMF) methods for various clustering tasks. NMF

factorizes an input nonnegative matrix into two nonnegative matrices of lower rank. Although

NMF can be used for conventional data analysis, the recent overwhelming interest in NMF

is due to the newly discovered ability of NMF to solve challenging data mining and machine

learning problems. In particular, NMF with the sum of squared error cost function is equiva-

lent to a relaxed k-means. In addition, NMF with the I-divergence cost function is equivalent to

probabilistic latent semantic indexing, another unsupervised learning method popularly used in

text analysis. Many other data mining and machine learning problems can be reformulated as

an NMF problem. In section 2.3, we provide a brief review of non-negative matrix factorization

methods for clustering and co-clustering. In particular, we outline the theoretical foundations

on NMF for clustering, provide an overview of some variants of NMF formulations, and ex-

amine several practical issues.
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2.1.5 Clustering evaluation

To measure the clustering performance, we use the accuracy, the Normalize Mutual Informa-

tion [Strehl and Ghosh, 2002] and the Adjusted Rand Index [Hubert and Arabie, 1985].

2.1.5.1 Accuracy

The clustering accuracy noted (Acc) discovers the one-to-one relationship between two parti-

tions and measures the extent to which each cluster contains data points from the corresponding

class. It is defined as follows:

Acc =
1

n

n∑

i=1

δ(Ci,map(Pi))

where n is the total number of samples, Pi is the ith obtained cluster and Ci is the true ith

class provided by the data set. δ(x, y) is the delta function that equals one if x = y and equals

zero otherwise, and map(Pi) is the permutation mapping function that maps the obtained label

Pi to the equivalent label from the data set. The best mapping can be found by using the

Kuhn-Munkres algorithm [Lovász and Plummer, 2009].

2.1.5.2 Normalized Mutual Information

The second measure employed is the Normalized Mutual Information (NMI); it is estimated by

NMI =

∑
k,ℓ

nkℓ

n log nnkℓ

nkn̂ℓ√
(
∑

k nk log
nk

n )(
∑

ℓ n̂ℓ log
n̂ℓ

n )

where nk denotes the number of data contained in cluster Pk(1 ≤ k ≤ K), n̂ℓ is the number

of data belonging to the class Cℓ(1 ≤ ℓ ≤ K), and nkℓ denotes the number of data that are in

the intersection between cluster Pk and class Cℓ.

2.1.5.3 Adjusted Rand Index

The last measure Adjusted Rand Index (ARI) is a measure of the similarity between two data

clustering partitions. From a mathematical standpoint, the Rand index is related to the accuracy.

The adjusted form of the Rand Index is:

ARI =

∑
k,ℓ

(
nkℓ

2

)
−
[∑

k

(
nk

2

)∑
ℓ

(
n̂ℓ

2

)]
/
(
n
2

)

1
2

[∑
k

(
nk

2

)
+
∑

ℓ

(
n̂ℓ

2

)]
−
[∑

k

(
nk

2

)∑
ℓ

(
n̂ℓ

2

)]
/
(
n
2

) .
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2.1.5.4 Silhouette Score

Silhouette index (noted SIL) is a very well-known clustering evaluation approach that intro-

duces clustering quality scores for each individual point and calculates the final quality index

as an average of the point-wise quality estimates [Rousseeuw, 1987]. Each point-wise estimate

for a point x.p ∈ Pi is derived from two quantities: ai,p and bi,p which correspond to the aver-

age distance to other points within the same cluster and the minimal average distance to points

from a different cluster, respectively. Formally,

ai,p =
1

|Pi| − 1

∑

x.q∈Pi,q 6=p

‖x.q − x.p‖ and bi,p = min
j=1..k,j 6=i

1

|Pj |

∑

x.q∈Pj

‖x.q − x.p‖

For each data point x.p : SIL(x.p) =
ai,p − bi,p

max(ai,p, bi,p)

The Silhouette Score : SIL =
1

n

n∑

p=1

SIL(x.p)

2.2 Co-clustering

Co-clustering consists in performing clustering simultaneously on the sets of samples and fea-

tures. Because of its potential benefit of discovering latent local patterns, in recent years, has

recently received a lot of attention in varied practical applications. In Text mining to identify

document and word clusters from a bag-of-words model represented in a vector space in the

form of word-by-document matrix [Dhillon, 2001b; Dhillon et al., 2002, 2003b; Gao et al.,

2005a; Takamura and Matsumoto, 2003]. In Web mining to extract subsets of user sessions

and Web pageviews to construct a variety of co-clusters [Charrad et al., 2009]. In Bioinformat-

ics to identify groups of similar genes and similar conditions based on their expression levels

[Madeira and Oliveira, 2004]. In Natural language processing, to construct new features in a

more compact but highly informative representation from co-cluster centroids [Freitag, 2004;

Li and Abe, 1998]. In Image retrieval to perform better retrieval performance [Dhillon, 2001b].

In Video content recognition and Auditory scene categorization to detect unusual activity in a

large video set using many simple features [Cai et al., 2005; Guan et al., 2005; Qie, 2004].

In Users and movies in recommender systems to simultaneously obtain user and item neigh-

borhoods via the co-clustering and generate predictions based on the average ratings of the

co-clusters; see for instance [Banerjee et al., 2007].
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Co-clustering is not a recent topic. Hartigan [1972] proposed the direct clustering approach

(Block Clustering) where the initial data matrix is divided into several sub-matrices which cor-

respond to blocks. The division of a block depends on the variance of its values. Indeed, the

lower the variance and the more constant are the values in the block. The partition’s quality

is estimated by the sum of the variances of the blocks. Hartigan [1975] proposed two other

algorithms of bi-clustering: the first algorithm (One-Way Splitting) focuses mainly on the ex-

amples, by trying to build a partition with features having an intra-class variance superior to a

certain threshold to cut the associated class. As any technique of direct clustering, a minimal

threshold yields a significant number of classes of low density and vice-versa. The second al-

gorithm (Two-Way Splitting) proceeds by successive divisions of lines and columns. Since the

work of Hartigan, several papers have appeared often referring to biclustering, co-clustering,

two-mode clustering. In the sequel, we briefly describe the popular methods throughout the

last three decades.

Govaert [1983] proposed three algorithms of co-clustering, Croeuc for continuous data,

Crobin for binary data and Croki2 for contingency tables. The three algorithms are based on

an alternated nuées dynamiques of Diday [1971]. With the advent of bioinformatics appeared

the interest of bi-clustering. Cheng and Church [2000] proposed δ−clusters, another greedy

search based on the creation of bi-clusters by adding lines (or columns) so as to maximize a

local gain. This approach uses the Residual Mean Square as a measure of similarity. Inspired

by δ−clusters, Yang et al. [2003] proposed FLOC (Flexible Overlapped Clusters). They in-

troduced an additional function relative to the processing of missing data and the overlapping.

Moreover, Tanay et al. [2002] proposed a graph-based method called Samba, which enumerates

exhaustively all the cliques modeling the possible bi-clusters in a bipartite graph from the data

matrix. Other approaches in this field exist; see for instance [Klugar et al., 2003; Lazzaroni and

Owen, 2002; Pensa et al., 2010; Pensa and Boulicaut, 2008].

Because the interest of text-mining, probabilistic approaches are appeared. In Hoffman

and Puzicha [1999], the authors proposed the Probabilistic Latent Semantic Analysis (PLSA)

model for co-occurrence data and used it for collaborative filtering. In PLSA, the data objects

are embedded into a low dimensional space using Singular Value Decomposition (SVD) for ef-

ficient pairwise co-clustering. Later, PLSA was further developed into a more comprehensive

generative model, Latent Dirichelt Allocation (LDA), to cluster rows and columns of data si-

multaneously. Within the framework of LDA, many pairwise co-clustering approaches, such as

Infinite Relational Model [Kemp et al., 2006], Mixed Membership Blockmodel [Airoldi et al.,

2008] and Bayesian co-clustering [Shan and Banerjee, 2008], were introduced recently using

different inference engines. Furthermore, Long et al. [2007] proposed the Mixed Membership

Relational Clustering (MMRC) model in which parametric soft clustering results are derived

19



2. CLUSTERING AND CO-CLUSTERING: A REVIEW

using Expectation Maximization (EM) for a large number of exponential family distributions.

Note that the lalent block models developed by Govaert and Nadif [2003, 2008, 2010, 2014]

can be used in this context.

Placing the text-mining area in graph context, Dhillon [2001b] proposed the spectral learn-

ing, such as Bipartite Spectral Graph Partitioning (BSGP) to co-cluster documents and words;

BSGP formulates the data matrix as a bipartite graph and seeks to find the optimal normalized

cut for the graph. In the same manner, Gao et al. [2005b] proposed Consistent Bipartite Graph

Co-partitioning (CBGC) using semi-definite programming for high-order data co-clustering

and applied it to hierarchical text taxonomy preparation. Due to the nature of graph partition-

ing theory, these algorithms have the restriction that clusters from different types of objects

must have one-to-one association. More recently, Long et al. [2006] proposed Spectral Rela-

tional Clustering (SRC), in which they formulated heterogeneous co-clustering as collective

factorization on related matrices and derived a spectral algorithm to cluster multi-type interre-

lated data objects simultaneously; SRC provides more flexibility by lifting the requirement of

one-to-one association in graph-based co-clustering. However, to obtain data clusters, all the

aforementioned graph theoretical approaches require solving an eigen-problem, which compu-

tationally is not efficient for large-scale data sets.

Initially applied to the image and video the matrix factorisation is increasingly popular in

the field of clustering and co-clustering. As in the thesis we focus on both topics under the

matrix factorisation, in the sequel we describe this approach.

2.3 Matrix Factorization Based Clustering and Co-clustering

The aim of Matrix factorisation is to factorise a given matrix into two smaller matrices of

lower rank, so that their product reconstructs the original matrix. k-means can also be seen

as a matrix factorisation method, where the cluster centroids are stored in one matrix and the

cluster indicators in the other. The use of matrix factorisation as a standalone method became

popular when several experiments consistently showed that Non-negative Matrix Factorisation

(NMF) gives better clustering results than k-means.

2.3.1 NMF Formulations

In [Lee and Seung, 1999], the authors formulated NMF as a model based on minimizing a

cost function based on a Poisson likelihood. They also introduced two further cost functions

based on the Frobenius norm and I-divergence (or generalised KL-divergence) [Lee and Seung,

2001]. Algorithms were based on multiplicative updates became the standard in the field of
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Non-negative Matrix Factorisation. Specifically, NMF of a matrix X ∈ R
d×n
+ was formulated

as follows. We wish to compute non-negative (unobserved or latent) matrices F ∈ R
d×k
+ and

G ∈ R
n×k
+ such that X ≈ FG. We do this either by minimising the total square error of

predictions, also called the Frobenius norm:

∥∥∥X − FG⊤
∥∥∥
2

F
=

∑

j,i

(Xji − (FG⊤)ji)
2. (2.9)

or by minimising the I-divergence:

Jbasic(X ‖ FG⊤) =
∑

j,i

(
Xji log

Xji

(FG⊤)ji
−Xji + (FG⊤)ji

)
(2.10)

subject to the constraints F ≥ 0, G ≥ 0.

The following multiplicative updates can be shown to be correct and to converge for the

two cost functions (2.9) and (2.10):

Fjk = Fjk ⊙
(XG)jk

(FGTG)jk
Gik = Gik ⊙

(XTF )ik
(GF TF )ik

(2.11)

Fjk = Fjk ⊙

∑
iGikXji/(FG⊤)ji∑

iGik
Gik = Gik ⊙

∑
j FjkXji/(FG⊤)ji∑

j Fjk
. (2.12)

They showed that these multiplicative updates are essentially gradient descent updates

where the step size is chosen accordingly. At each iteration, we can normalise the rows of

one of the matrices to sum to one. In that case, that matrix gives the cluster indicators, and the

other matrix the cluster centroids. An example of NMF is illustrated as follows:

X =




0.185 0.326 0.761 2.799 2.375 2.970 2.585

0.508 0.380 0.884 2.134 2.374 2.342 2.524

0.452 0.887 0.457 2.065 2.484 2.253 2.163

1.486 1.843 1.858 0.566 0.103 0.417 0.269

1.496 1.806 1.610 0.612 0.158 0.560 0.784




≈ FGT =




1.762 0.217

1.516 0.301

1.439 0.310

0.000 1.042

0.133 0.989



×

[
0.000 0.000 0.052 0.474 0.507 0.520 0.494

0.492 0.610 0.569 0.160 0.021 0.124 0.142

]
(2.13)

In Equation 2.13, based on the membership indicator G, clearly the first three columns

form one cluster, and the last four columns give another.
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2.3.2 Variants of NMF

A lot of application papers followed soon after, often compared the popular clustering methods

(k-means, SVD, spectral clustering) and showed that NMF achieved better clustering perfor-

mances. In addition, NMF has been proved to be very useful for applications such as face

recognition, text mining and DNA gene expression grouping. Many reviews of NMF exist

already. See for example [Berry et al., 2007; Gillis, 2014; Wang and Zhang, 2013].

Local Nonnegative Matrix Factorization. In [Li et al., 2001], the authors proposed the Lo-

cal Nonnegative Matrix Factorization (LNMF). Using the I-divergence as cost function, they

added constraints that aim to minimise the elements in one matrix, and maximise the diago-

nal elements of the other. In simple terms, LNMF imposes the sparseness constraints on G

and locally constraints on F based on the following three considerations: 1) Maximizing the

sparseness in G; 2) Maximizing the expressiveness of F ; 3) Maximizing the column orthogo-

nality of F . The objective function in the model of LNMF can take the following form:

Jbasic(X ‖ FG⊤) + α
∑

i,j

(F TF )ij − β
∑

i

(GTG)ii.

More recently, Xu et al. [2003] use the same model as [Li et al., 2001] but to make the solu-

tion unique, they required that the Euclidean length of the column vector in matrix F is one.

They then used this to cluster documents, it is shown that NMF outperforms spectral methods,

achieving higher clustering accuracy, less computation cost and more intuitive interpretability.

Fjk =
Fjk√∑
j′ F

2
j′k

Gik = Gik

√∑

j′

F 2
j′k.

Sparse Nonnegative Matrix Factorization. First of all, Hoyer [2002] proposed the Nonneg-

ative Sparse Coding (NSC) which only maximizes the sparseness in G. The objective function

to be minimized can be written as:

∥∥X − FGT
∥∥2
F
+ λ

∑

i,j

Gij .

Since the objective function in the above model NSC can be separated into a least squares error

term
∥∥X − FGT

∥∥2
F

and an additional penalty term
∑

i,j Gij , Liu et al. [2003] replaced the

least squares error term with the KL-divergence to get the following new objective function:

Jbasic(X ‖ FG⊤) + λ
∑

i,j

Gij .
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Furthermore, Pauca et al. [2004] also used NMF for text mining, but added the L2 norm on

rows in G to enforce sparsity. The updates for F are the multiplicative updates for minimising∥∥X − FG⊤
∥∥2
F

, but the updates for G are given by the minimisation problem

min
Gi

‖X:i − FGi‖
2
F + λ ‖Gi‖

2
F .

This idea was used by Gao et al. [2005b] to classify cancer types from gene expression

profiles and by Shahnaz et al. [2006] for document clustering and topic detection. Recently,

Pauca et al. [2006] used NMF for spectral data, but add new sparsity constraints that are simply

the Frobenius norm on F and G.

∥∥∥X − FG⊤
∥∥∥
2

F
+ α ‖F‖2F + β ‖G‖2F .

Semi Nonnegative Matrix Factorization. Semi-NMF [Wang et al., 2008a] is designed for

the data matrix X that has mixed signs. In semi-NMF, G is restricted to be nonnegative while

the other factor matrix F can have mixed signs, i.e., semi-NMF can take the following form

X± ≈ F±G
T
±

This model is motivated from the perspective of data clustering. When clustering the columns

of data matrix X , the columns of F can be seen as the cluster centroids and the rows of G denote

the cluster indicators, i.e., the column j of X belongs to cluster k if k = arg maxp {Gjp}. Hence

the nonnegative constraint on F can be relaxed such that the approximation FGT is tighter and

the results are more interpretable.

Wang et al. [2008a] have also considered semi-NMF (constraining G to be non-negative but

X and F can be negative) and introduced constraint matrices Θ indicating rewards (if negative)

or penalties (if positive) for clustering two data points together, making the cost function.

∥∥∥X − FG⊤
∥∥∥
2

F
+ Tr(G⊤ΘG).

Nonnegative Matrix Factorization on manifold. In [Kim and Park, 2007], the authors in-

troduces a model minimising the Frobenius norm, adding the Frobenius norm on F and the L1

norm on rows in G . They give an algorithm based on Alternating Least Squares. The proposed

method was used for gene expression data analysis and cancer-class discovery.

∥∥∥X − FG⊤
∥∥∥
2

F
+ α ‖F‖2F + β

∑

i

‖Gi‖
2
1 .
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Next, Shen and Si [2010] started from the model of Kim and Park [2007] and extended it

by adding multiple manifolds, capturing intrinsic geometrical structure of data. They did this

by first obtaining a manifold matrix S that captures geometrical structure, and then finding a

G such that G ≈ GS. We add the term
∑

i ‖Gi − SGi‖ extra penalisation. Recently, Huang

et al. [2014] extended the model of [Kong et al., 2011] by adding manifold regularisation as

follows: we construct a graph in which, an edge exists between two data points xi, xj if xi is

one of the K nearest neighbors of xj , or vice versa. Let W be the affinity matrix of the graph.

then they compute the graph Laplacian L. The objective function take the following form:

∥∥∥X − FG⊤
∥∥∥
2,1

+ αTr(G⊤LG).

2.3.3 Relations among NMF and popular clustering models

Ding et al. [2005] studied the problem of symmetric NMF (d = n), they proved that the

decomposition into X ≈ FF⊤ is equivalent to kernel k-means clustering and (Laplacian-

based) spectral clustering. They also introduced multiplicative updates for ”weighted NMF”

which is effectively symmetric non-negative matrix tri-factorisation (see later section), and

discussed why this is a better model than X ≈ FF⊤. Next, Ding et al. [2006b] proved that

orthogonal NMF is equivalent to k-means clustering. Finally, Gaussier and Goutte [2005] and

Ding et al. [2006a] showed that probabilistic latent semantic indexing (PLSI) and NMF (with

L1 normalization) optimize the same objective function, although PLSI and NMF are different

algorithms as verified by experiments.

NMF and k-means Clustering. Theoretically, NMF is inherently related to (kernel) k-means

clustering [Li and Ding, 2006]. Indeed, NMF has clustering capabilities which is generally

better than k-means. In k-means, an exact orthogonality of columns of cluster indicator G

implies that each row of G can have only one nonzero element, which implies that each data

object belongs only to one cluster. While in NMF, the near-orthogonality condition of G relaxes

this a bit, i.e, each data object could belong fractionally to more than 1 cluster. This is soft

clustering. Thus, NMF has better clustering flexibility.

NMF and Spectral Clustering. There are three popular objective functions in spectral clus-

tering: the Ratio Cut [Hagen and Kahng, 1992], the Normalized Cut [Shi and Malik, 2000],

and the MinMax Cut [Ding et al., 2001]. Compared to the spectral graph model, NMF does

not require the derived cluster indicator space G to be orthogonal, and it guarantees that each

data takes only non-negative values; these two characteristics make NMF interesting.
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2.3.4 Non-negative Matrix Tri-Factorisation

Unlike NMF which decompose a matrix into two matrices, Non-negative Matrix Tri-Factorisation

(NMTF) decompose it into three matrices,

X ≈ FSG⊤

If we constrain the problem to be non-negative, we have F ∈ R
d×ℓ
+ , G ∈ R

n×k
+ and S ∈ R

ℓ×k
+

where k and ℓ are respectively the number of sample and feature clusters. We now have F

indicating the clustering of data features, and simultaneously G the clustering of data samples.

S relates data features and data samples clusters. Li and Ding [2006] includes a good discussion

as to why matrix tri-factorisation is interesting for detecting biclusters (co-clusters). Note that,

NMTF for symmetrical matrices was introduced by Ding et al. [2005] who called it ”weighted

NMF”, and involved the following decomposition FSF⊤. The aims of NMF and NMTF are

illustrated in Figure 2.2.
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Figure 2.2 – Illustration clustering vs co-clustering

In a similar way to NMTF, Singular Value Decomposition (SVD) decompose a matrix into

three matrices, X = UΣV ∗ , for U ∈ R
d×d
+ , V ∈ R

n×n
+ and Σ ∈ R

d×n
+ . But here we have

U and V both as orthogonal matrices (UU⊤ = I, V V ⊤ = I), and Σ is a diagonal matrix

where its diagonal entries are non-negative values giving the eigenvalues of X . In contrast,

with NMTF we allow the off-diagonal entries to be non-zero so that rows and columns can be

assigned to different clusters. Furthermore, ℓ and k can be chosen to be much lower than d and

n, to provide a low-rank approximation of the data set.
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Nonnegative Matrix Tri-Factorization on manifold. Ding et al. [2006b] introduced the

more general case of NMTF X ≈ FSG⊤, note that without any constraint this is equivalent

to NMF, but with orthogonality constraints on F , G this gives a very different solution. The

papers that followed often added some forms of regularisation, and applied their methods to

clustering data sets. Approaches for manifold regularisation include orthogonality constraint

(FF⊤ = I), constraint matrices (Θ measures dissimilarity between objects or features; then

add Tr(F⊤ΘF )), and Laplacian graphs (we again add Tr(F⊤LF )).

Furthermore, Gu and Zhou [2009] proposed the Dual Regularized Co-Clustering (DRCC)

method, based on graph-regularized semi-NMTF models. The DRCC algorithm inherits the

advantages of NMTF and, in addition, takes into account the manifold structures in both data

and feature spaces (added penalisation based on Laplacian graphs both over the rows/data

points and columns/features). However, the high computational complexity of DRCC usually

makes it unsuitable for large-scale problems.

To reduce the computational complexity of DRCC, Wang et al. [2011b] introduced a faster

algorithm for semi-NMTF by constraining the F and G to be in the cluster indicator space:

each row vector has to contain exactly one 1-entry, and for the rest only 0’s. Laplacian graph

penalisation is added with reducing the computational cost of the eigendecomposition of the

graph Laplacian. The proposed algorithms are referres as to Fast NMTF (FNMTF) and Locally

Preserved FNMTF (LPFNMTF).

Semi-Supervised Co-Clustering. Semi-supervised co-clustering aims to incorporate the pri-

ory knowledge in co-clustering. The partial knowledge can be formulated as must-link and

cannot-link constraints on both data samples and data features. Let Ax contain the must-link

pairs for samples (Ay for features), and Bx contain the cannot-link pairs for samples (By for

features). Then, the semi-supervised co-clustering problem can be formulated as

min
F>0,G>0

∥∥X − FSGT
∥∥2 + Tr

[
αF T (Ax −Bx)F + βGT (Ay −By)G

]
.

where α, β are parameters to control the effects of different types of constraints [Wang et al.,

2008b]. On the other hand, Li et al. [2008] proposed several constrained nonnegative tri-

factorization knowledge transformation method to use the partial knowledge (such as instance-

level constraints and partial class label information) from one type of objects (e.g., terms)

to improve the clustering of another type of objects (e.g., documents). Their models bring

together semi-supervised clustering/co-clustering and learn from labeled features [Sindhwani

et al., 2008]. Another semi-supervised co-clustering method has been proposed in [Chen et al.,

2010] using symmetric NMTF.
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Chapter 3

Simultaneous Data Embedding and

Clustering
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3.1 Introduction

The aim of cluster analysis is the discovery of a finite number of homogeneous classes from

data. These classes can be assumed to lie in a low-dimensional subspace of data. Generally

when users aim to cluster data, they seek to visualize the clusters in a reduced dimension space.

This procedure can be carried out into two simple steps:

• Step 1. PCA is performed, and the first few components are retained.

• Step 2. k-means clustering is performed on these first principal components.

This two-step procedure is called tandem clustering by Arabie and Hubert [Arabie and

Hubert, 1994] and has been discouraged by several authors [Arabie and Hubert, 1994; Vichi

and Kiers, 2001]. Because the first few principal components of PCA do not necessarily reflect

the cluster structure in data, the appropriate clustering result may not be obtained by using the

tandem clustering approach. In order to illustrate the weakness of tandem clustering to preserve

the initial topology and its capability to separate classes, we used Lsun and Chainlink FCPS

data sets. Applying the tandem clustering on these data sets, in Fig. 3.1 we note that the 2D

representation of the obtained clusters does not reflect the real cluster structure.
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(a) Chainlink data set.
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(b) Lsun data set.

Figure 3.1 – Data representation of the FCPS data sets: Lsun and Chainlink. For Chainlink, the

data points are projected into the factorial plane spawned by the two first components obtained

by PCA. Black points represent the misclassified objects obtained by k-means and Acc denotes

the accuracy which is the percentage of objects well classified.

In this chapter we propose a novel approach to finding an optimal subspace of multi-

dimensional variables for identifying a partition of the set of objects. The use of a low-

dimensional representation can be of help in providing simpler and more interpretable solu-

tions. We show that by doing so, our model is able to learn low-dimensional representations

that are better suited for clustering.
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Cluster analysis is often carried out in combination with dimension reduction. For instance,

Semi-Non-negative Matrix Factorization (SemiNMF) that learns a low-dimensional represen-

tation of a data set lends itself to a clustering interpretation. Indeed, PCA and SemiNMF can be

integrated into a single framework of simultaneous data clustering and visualization. Specifi-

cally:

• Unlike to known methods that combine the objective function of PCA and the objective

function of k-means separately, we propose a new single framework to perform SemiNMF

via PCA for dimension reduction and data clustering.

• We show that the objective learning of SemiNMF-PCA can be decomposed into two terms,

the first one is the objective function of PCA and the second is the SemiNMF criterion in a

low-dimensional space. This allows a better approximation of data reduction by a clustering

solution.

• We developed an efficient Fast SemiNMF-PCA based procedure to find simultaneously the

optimal partition and reduced features space.

• We further developed our method to incorporate manifold information and proposed the

graph regularized Fast SemiNMF-PCA method.

The rest of chapter is organized as follows. Section 2 introduces the clustering problem and

the dimension reduction in factorization framework. Section 3 provides a sound SemiNMF-

PCA framework for clustering. Section 4 focuses on some details concerning the proposed

Graph Regularized Fast SemiNMF-PCA algorithm and on the connection between them and

other state of the art clustering methods. Section 5 is devoted to numerical experiments. Finally,

the conclusion summarizes the advantages of our contribution.

3.2 SemiNMF via Principal component analysis (SemiNMF-PCA)

Let X = (xij) be a (n× d) positive data matrix; we assume that X is provided by a collection

of n data row vectors x1, . . . ,xn, each with d features.

SemiNMF [Ding et al., 2010]: SemiNMF relaxes the non-negativity constraint of NMF and

allows the data matrix X and the matrix S to have mixed signs, while it restricts only the data

factor matrix G so that it comprises of strictly non-negative components. It thus approximates

the following factorization:

min
G,S

∥∥∥X −GS⊤
∥∥∥
2

s.t. G ≥ 0. (3.1)
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This is motivated by a clustering perspective. If we view S as the cluster centroids, then G

can be viewed as the cluster indicators for each data point. In fact, if we had a matrix G that

was not only non-negative but also orthogonal, then every column vector would have only one

positive element, making SemiNMF equivalent to k-means. SemiNMF, which does not impose

an orthogonality constraint on its features matrix, can be seen as a soft clustering method where

the features matrix describes the compatibility of each component with a cluster centroid and

a base in S.

Principal Component Analysis [Collins et al., 2001; Jolliffe, 2002]: PCA enabled us to

find the optimal low-dimensional subspace defined by the principal directions Q. The projected

data points in the new subspace are U . PCA finds U and Q by minimizing

min
U,Q

∥∥∥X − UQ⊤
∥∥∥
2
. (3.2)

Solving for the optimal U while fixing Q is given by U = XQ. Plugging U in equation

3.2, holds

min
Q

∥∥∥X −XQQ⊤
∥∥∥
2
. (3.3)

In addition, PCA relates closely to k-means clustering naturally [Ding and He, 2004]. The

principal components U are actually the continuous solution of the membership indicators in

the k-means clustering method. This provides a motivation to relate PCA to Laplacian embed-

ding whose primary purpose is clustering. Next, we see how we can combine simultaneously

both clustering and dimension reduction approaches.

3.2.1 SemiNMF-PCA objective function

Let k be the number of clusters and p the number of components to which the features are

reduced. SemiNMF-PCA clustering is defined as the minimizing problem of the following

criterion:

min
G,S,Q

∥∥∥X −GSQ⊤
∥∥∥
2

s.t. G ≥ 0, Q⊤Q = I. (3.4)

where ||.|| denotes the Frobenius norm.

The binary matrix G = (gij) of size (n× k) specifies cluster membership for each object,

Q = (qij) of size (p × d) is a column-wise orthonormal loading matrix, S = (sk′j) of size

(k × d) is a centroid matrix while sk′ is a centroid of the (k′)th cluster for each k′ = 1, . . . , k.

To solve the problem (3.4), we rely on the following proposition
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Proposition 1. Given G≥ 0 and Q⊤Q = I , the objective function of SemiNMF-PCA can be

decomposed into two terms:

∥∥∥X −GSQ⊤
∥∥∥
2
=

∥∥∥X −XQQ⊤
∥∥∥
2
+ ‖XQ−GS‖2 (3.5)

Proof. We first expand the matrix norm of the left term of Eq. (3.5)

∥∥∥X −GSQ⊤
∥∥∥
2
= ‖X‖2 +

∥∥∥GSQ⊤
∥∥∥
2
− 2Tr(X⊤GSQ⊤) (3.6)

In a similar way, from the two terms of the right term of Eq. (3.5), we obtain

∥∥∥X −XQQ⊤
∥∥∥
2

= ‖X‖2 +
∥∥∥XQQ⊤

∥∥∥
2
− 2Tr(XQQ⊤X⊤)

= ‖X‖2 +
∥∥∥XQQ⊤

∥∥∥
2
− 2||XQ||2

= ||X||2 − ||XQ||2 due to Q⊤Q = I (3.7)

and ‖XQ−GS‖2 = ‖XQ‖2 + ‖GS‖2 − 2Tr(X⊤GSQ⊤)

Due also to Q⊤Q = I , we have

‖XQ−GS‖2 = ||XQ||2 + ||GSQ⊤||2 − 2Tr(X⊤GSQ⊤) (3.8)

Summing the two terms Eq. (3.7) and Eq. (3.8 ) leads to the left term of Eq. (3.5).

‖X‖2 + ‖GS‖2 − 2Tr(X⊤GSQ⊤) =
∥∥∥X −GSQ⊤

∥∥∥
2

(3.9)

Using proposition 1, the objective function of SemiNMF-PCA (3.4) can be decomposed

into two terms: the first one is the objective function of PCA, and the second is the SemiNMF

criterion in a low-dimensional subspace.

3.2.2 Relationships among SemiNMF-PCA and other state-of-the-art clustering

methods

Hereafter we establish the relationships among our proposed approach SemiNMF-PCA and

some various clustering methods.
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3.2.2.1 Relationships with SemiNMF and k-means

The objective function of the SemiNMF method is given by

min
G≥0,F

∥∥∥X −GF⊤
∥∥∥
2
, (3.10)

where F is a (d × k) cluster center matrix. UΛV ⊤ is expressed as the SVD of F where U is

a (d× k) orthonormal matrix, Λ is a (k × k) diagonal matrix, and V is a (k × k) column-wise

orthonormal matrix. The function (3.10) can be expressed as

∥∥∥X −GF⊤
∥∥∥
2
=

∥∥∥X −GUΛV ⊤
∥∥∥
2
. (3.11)

Considering UΛ as a low-dimensional centroid matrix S and V as a loading matrix (we

replace V by Q), the objective function (3.10) is equivalent to that of SemiNMF-PCA (3.4).

Thus, SemiNMF-PCA includes SemiNMF where G ≥ 0, and k-means where G ∈ {0, 1}n×k,

as particular cases.

3.2.2.2 Relationship with Projective NMF

For fixed values of G and Q, the minimization of the SemiNMF-PCA objective function Eq.

(3.4) leads to the optimal S given by

S = (G⊤G)−1G⊤XQ.

Plugging now S in Eq. (3.4) leads to

∥∥∥X −GSQ⊤
∥∥∥
2
=

∥∥∥X −XQQ⊤
∥∥∥
2
+
∥∥∥XQ−G(G⊤G)−1G⊤XQ

∥∥∥
2
. (3.12)

Taking G̃ = G(G⊤G)−1/2, we obtain

∥∥∥X −GSQ⊤
∥∥∥
2
=

∥∥∥X −XQQ⊤
∥∥∥
2
+

∥∥∥XQ− G̃G̃⊤XQ
∥∥∥
2
. (3.13)

The first term of equation (3.13) is the objective function of PCA and the second is the

Semi-Projective NMF criterion in a low-dimensional subspace. The latter is equivalent to the

objective function of PNMF [Zhirong and Laaksonen, 2007], it relaxes the non-negativity con-

straint of PNMF and allows the reduced data matrix XQ to have mixed signs.
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3.2.3 Optimization

To solve (3.4), we use an alternated iterative method.

Computation of S First, fixing G and Q, by setting the derivative of the second term in (3.4)

with respect to S as 0, we obtain:

S = (G⊤G)−1 G⊤XQ (3.14)

Computation of Q Secondly, fixing G and S, we can rewrite (3.4) as:

min
Q⊤Q=I

∥∥∥X −BQ⊤
∥∥∥
2

where B = GS. (3.15)

To solve (3.15) we rely on the following theorem.

Theorem 1. Let Xn×d and Bn×k be two matrices. Consider the constrained optimization

problem

Q∗ = argmin
Q

∥∥∥X −BQ⊤
∥∥∥
2

s.t Q⊤Q = I (3.16)

= argmax
Q

Tr(X⊤BQ⊤) s.t Q⊤Q = I (3.17)

The solution of Eq. (3.17) comes from the singular value decomposition (SVD) of X⊤B.

Let UDV ⊤ be the SVD for X⊤B, then Q∗ = UV ⊤.

Remark 1. Note that the problem in Eq. (3.17) can be considered as a special case of the

Orthogonal Procrustes Problem (OPP) [Schonemann, 1966] in which Q is a square orthogonal

rotation matrix (i.e Q⊤Q = QQ⊤ = I).

Proof. We expand the matrix norm

∥∥∥X −BQ⊤
∥∥∥
2
= Tr(X⊤X)− 2Tr(X⊤BQ⊤) + Tr(QB⊤BQ⊤) (3.18)

Since Q⊤Q = I , the last term is equal to Tr(B⊤B) and hence the original minimization

problem (3.16) is equivalent to the maximization of the middle term, i.e (3.17). With the SVD

of X⊤B = UDV ⊤, this middle term becomes

Tr(X⊤BQ⊤) = Tr(UDV ⊤Q⊤)

= Tr(UDQ̂⊤) where Q̂ = QV

= Tr(Q̂⊤UD). (3.19)
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Denoting U = [u1| . . . |uk] ∈ Rd×k, D = Diag(d1, . . . , dk) ∈ R
k×k
+ and Q̂ = [q̂1| . . . |q̂k] ∈

Rd×k, applying the Cauchy-Shwartz inequality and since U⊤U = I , Q̂⊤Q̂ = I due to V V ⊤ =

I , we have

Tr(Q̂⊤UD) ≤
∑

i

di||ui|| × ||q̂i|| =
∑

i

di = Tr(D).

Then the upper bound is clearly attained by setting Q̂ = U . This leads to Q̂ = QV = U and

QV V ⊤ = UV ⊤. Hence we obtain Q∗ = UV ⊤.

Due to Theorem 1, applying SVD to X⊤B we obtain the expression of Q = UV ⊤.

Computation of G Thirdly, we update G by keeping S and Q fixed at the value computed

in the above steps, as in [Ding et al., 2006b] we obtain

G = G◦

√
[XB⊤]+ +G[BB⊤]−

G[BB⊤]+ + [XB⊤]−
(3.20)

where B = SQ⊤, M+ and M− correspond respectively to positive and negative parts of the

matrix M given by

M+
ik =

1

2
(|Mik|+Mik) and M−

ik =
1

2
(|Mik| −Mik)

In summary, the steps of the SemiNMF-PCA algorithm can be deduced in Algorithm 2.

Algorithm 2: SemiNMF-PCA algorithm.

Input: Data matrix X , k and p
Initialize: - G using k-means, Q arbitrary orthonormal matrix.

repeat
(a) - Update S by Eq. (3.14);

(b) - Update G by Eq. (3.20)

(c) - Update Q by solving Eq. (3.15)

until convergence;

Output: Indicator matrices G for data points and Q for features subspace

3.2.4 Fast SemiNMF-PCA

Despite its mathematical elegance, Eq. (3.4) suffers from two problems that impede its practical

use. First, similar to Eq. (2), the relaxations on G make the immediate outputs of Eq. (3.4) are

not cluster labels and the solution is often not unique. To this end an additional post-processing

step is required.
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Secondly, and more important, Eq. (3.4) is usually solved by an alternately iterative al-

gorithm, and in each iteration step, the intensive matrix multiplications are involved [Ding

et al., 2005, 2010, 2006b; Gu and Zhou, 2009]. Hence the scalability for such algorithms is

problematic due to the expensive computational cost.

In order to tackle the difficulties mentioned above, instead of solving the relaxed clustering

problems as in Eq. (3.4), we propose to solve the following clustering problem.

min
G,S,Q

∥∥∥X −GSQ⊤
∥∥∥
2
, s.t. G ∈ {0, 1}n×k, Q⊤Q = I. (3.21)

Specifically, we constrain the factor G of SemiNMF-PCA to be a cluster indicator matrix.

Similar to SemiNMF-PCA, the objective function of Fast SemiNMF-PCA can be decomposed

into two terms as in Eq. (3.5). The first term is the objective function of the PCA, and the

second is the k-means criterion in a low-dimensional subspace.

The optimization of F-SemiNMF-PCA leads to the similar updating formulas as in SemiNMF-

PCA; S is obtained using Eq. (3.14) and Q is obtained by solving Eq. (3.15).

As G is now a binary cluster indicator matrix, its computation is done as follows: We fix

S, Q and calculate

gik =

{
1 k = argmink′ ||(XQ)i − sk′ ||

2

0 otherwise.
(3.22)

The steps of F-SemiNMF-PCA are summarized in Algorithm 3.

Algorithm 3: F-SemiNMF-PCA algorithm.

Input: Data matrix X , k and p
Initialize: G using k-means, Q arbitrary orthonormal matrix.

repeat
(a) - Update S by Eq. (3.14);

(b) - Update G by Eq. (3.22)

(c) - Update Q by solving Eq. (3.15)

until convergence;

Output: Indicator matrices G for data points and Q for features subspace

Furthermore, we known that PCA provides an embedding for the data lying on a linear

manifold. However, in many applications, data lie in a non-linear manifold. One popular

method is to use the graph Laplacian based embedding. Next we propose a regularized version

of Algorithm 3.
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3.3 Regularized Fast SemiNMF-PCA (RF-SemiNMF-PCA)

3.3.1 Manifold Embedding using Graph Laplacian

We first construct a K-nearest neighbor data graph whose vertices correspond to the n data

samples [x1, . . . ,xn]. We use the 01 weighting scheme to construct the K-nearest neighbor

graph, and define the data weight matrix W as follows,

Wij =

{
1, if xj ∈ N(xi); i, j = 1, · · · , n; i 6= j.

0, otherwise

where N(xi) represents the set of K-nearest neighbors of xi.

The Laplacian embedding [Belkin and Niyogi, 2001; Zhang and Zha, 2004] preserves the

local geometrical relationships and maximizes the smoothness with respect to the intrinsic

manifold of the data set in the low-embedding space. Let G∗ be the embedding coordinates of

the n data points. They are obtained by minimizing minG
∑n

i,j=1Wij ‖gi − gj‖
2
. It is easy to

show that:

G∗ = argmin
G

Tr(G⊤(D −W )G) (3.23)

where D is a diagonal matrix the entries of which are row sums of the weight matrix W given

by Dii =
∑

j Wij . The Laplacian embedding is closely connected with graph clustering. In

fact, the embedding vectors of Eq. (3.23) provides an approximation solution for the Ration

Cut Spectral Clustering [Chan et al., 1994], i.e., they can be seen as the relaxation solution of

the cluster indicators (gi for data i) in the spectral clustering objective function. This is similar

to PCA being the spectral relaxation of k-means clustering [Ding and He, 2004].

3.3.2 RF-SemiNMF-PCA objective function

Graph Laplacian Regularized Fast SemiNMF-PCA clustering is defined as the minimizing

problem of the following criterion:

min
G,S,Q

∥∥∥X −GSQ⊤
∥∥∥
2
+ αTr(G⊤(D −W )G), G ∈ {0, 1}n×k , Q⊤Q = I. (3.24)

where the parameter α is used to trade-off the contribution of the graph regularizing. Note that

the objective function of RF-SemiNMF-PCA can be decomposed into three terms:

∥∥∥X −XQQ⊤
∥∥∥
2
+ ‖XQ−GS‖2 + αTr(G⊤(D −W )G) (3.25)

G ∈ {0, 1}n×k , Q⊤Q = I.
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The first term of equation (3.25) is the objective function of PCA, the second term is the

k-means criterion in a low-dimensional subspace and the third term is the graph Laplacian

regularization. Because G is constrained to be a cluster indicator matrix, it is often difficult

to solve the objective function of our problem (3.24). It is, therefore, important that (3.24) be

reformulated and simplified. To this end, we rely on the following proposition.

Proposition 2. Given a symmetric and positive semi-definite similarity matrix A and its eigen-

decomposition UAΛU
⊤
A , where Λ ∈ Rk×k is a diagonal matrix with diagonal elements as the

k largest eigenvalues, and UA is the corresponding eigenvector matrix. Let B = UAΛ
0.5 and

G is a non-negative partition matrix of size n× k. Consider the orthonormal matrix Q, the

following two optimization problems are equivalent:

min
G

∥∥∥GG⊤ −A
∥∥∥
2
⇔ min

G

∥∥∥G−BQ⊤
∥∥∥
2

s.t. Q⊤Q = I.

Proof. Given a symmetric positive semi-definite similarity matrix A and its eigendecomposi-

tion A = UAΛU
⊤
A . Further, we consider A = GG⊤ as a NMF of A. If G = UGΣV

⊤
G be the

Singular Value Decomposition (SVD) of G, Then A = GG⊤ = UGΣ
2U⊤

G = UAΛAU
⊤
A .

Consequently, we have UG = UA and Λ = Σ2. Let now consider B = UAΛ
0.5, then

there exists an orthonormal matrix Q such that BQ⊤ ≥ 0, thus finding G can be posed as the

following optimization problem: minG
∥∥G−BQ⊤

∥∥2 s.t. Q⊤Q = I.

Using proposition 2 and considering the orthonormal matrix Qg such as Q⊤
g Qg = I , the

expression (3.24) can be written as:

min
G,S,Q,Qg

∥∥∥X −GSQ⊤
∥∥∥
2
+ α ‖G−BQg‖

2
(3.26)

s.t G ∈ {0, 1}n×k , Q⊤Q = I, Q⊤
g Qg = I.

The second term in Eq. (3.27) can be written as

‖G−BQg‖
2 = ‖G‖2 + ‖BQg‖

2 − 2Tr(G⊤BQ⊤
g ) (3.27)

Since G is a cluster indicator matrix, B and Qg are both orthogonal matrices, the two first

terms of Eq. (3.27) are both constant. Then, the optimization problem given in Eq. (3.27) is

equivalent to

min
G,S,Q,Qg

∥∥∥X −GSQ⊤
∥∥∥
2
− 2αTr(G⊤BQ⊤

g ) (3.28)

s.t G ∈ {0, 1}n×k , Q⊤Q = I, Q⊤
g Qg = I.
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Hereafter we present the computation of all matrices and parameters. The optimization of

RF-SemiNMF-PCA leads to the similar updating formulae as in SemiNMF-PCA, S is obtained

using Eq. (3.14) and Q by solving Eq. (3.15).

To calculate Qg, we fix G, Q and S, and solve the following problem:

max
Q⊤

g Qg=I
Tr[G⊤BQg] (3.29)

Due to Theorem 1, applying SVD on G⊤B we obtain: Qg = UgV
⊤
g .

Next, because G is a cluster indicator matrix and is related to the graph Laplacian regular-

ization term, its computation is done as follows: We fix S, Q and Qg, and let B̃g = BgQg.

Each element of G is defined by

gik =

{
1 k = argmink′ ||(XQ)i − sk′ ||

2 − 2α(B̃g)ik′

0 otherwise.
(3.30)

3.3.3 RF-SemiNMF-PCA algorithm

In summary, the steps of the RF-SemiNMF-PCA algorithm can be deduced in Algorithm 4.

Algorithm 4: RF-SemiNMF-PCA algorithm.

Input: Data matrix X , k and p
Initialize: - G using k-means,

- Q and Qg with arbitrary orthonormal matrices.

repeat
(a) - Update S by Eq. (3.14);

(b) - Update G by (3.30)

(c) - Update Q by solving Eq. (3.15)

(d) - Update Qg by solving Eq. (3.29)

until convergence;

Output: Indicator matrices G for data points and Q for features subspace

Illustration Before investigating the behaviors of all proposed algorithms on real data sets,

we propose to illustrate this last version. We applied RF-SemiNMF-PCA on the FCPS data

sets previously defined, i.e, Tetra, Lsun and Chainlink. In Fig. 3.2, we observe the ability of

RF-SemiNMF-PCA to propose a good solution in terms of accuracy and separability between

the clusters.
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Figure 3.2 – RF-SemiNMF-PCA performances on FCPS data sets. Black points represent the

misclassified objects. Acc denotes the accuracy (the percentage of objects well classified).

3.4 Experiments

In the following subsections we discuss some of the advantages of our contribution against two

kinds of clustering methods:

1) NMF-based methods including NMF, PNMF and SemiNMF [Ding et al., 2010].

2) Two-steps-based methods including LDA-k-means, PCA-k-means and Ncut-k-means.

These methods are based on two steps performed separately. The first step consists in perform-

ing an eigendecomposition-based dimensional reduction of the features space and the second

step in applying k-means on the first few principal components.

Performance metrics. To measure the clustering performance of the proposed algorithms we

use the commonly adopted metrics, the accuracy, the Normalized Mutual Information [Strehl

and Ghosh, 2002] and the Adjusted Rand Index [Hubert and Arabie, 1985]. For these three

metrics (Acc, NMI and ARI), a value close to 1 means a good clustering result.
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Parameter settings. We run each method under different parameter settings 50 times and

we report the best result for each method. For all the compared methods, we set the number

of sample clusters equal to the true number of classes in data sets (k) and we use k-means

or spherical k-means (Sk-means) [Dhillon, 2001a] to initialize the sample partition matrix G

according the type of data.

• For NMF, PNMF and SemiNMF the best parameters are used, as suggested in each of the

reference articles (see for details [Ding et al., 2005, 2010; Zhirong and Laaksonen, 2007]).

For Ncut-k-means, we have used the code of Ncut provided by Zhirong et al. [Zhirong and

Laaksonen, 2007]. For, LDA-k-means, we have used the code of LDA provided by Deng

Cai [Cai et al., 2006]. Note that LDA is a supervised method, where its components are

computed using the partition obtained by kmeans rather than the true cluster label that is

assumed to be unknown.

• In order to assess the number of components, for SemiNMF-PCA, F-SemiNMF-PCA, RF-

SemiNMF-PCA, Ncut and PCA, we varied the number of components p between 2 and 10k

and retained the one that optimizes the criterion. For LDA, we set p = k − 1.

• For RF-SemiNMF-PCA, the graph Laplacian is constructed using the K-Nearest Neighbors

(K-NN) in which the neighborhood size is fixed to 10. The regularization parameter α is

searched from the grid (0.01, 0.1, 1, 10, 100, 500, 1000).

• To evaluate all studied methods, we consider three types of data, with different characteris-

tics: sparsity rates, sizes (where n << d and n >> d) and balances. Thus 10 sparse data

sets and 14 not sparse data sets will be considered.

3.4.1 Results on sparse data sets

Data sets. These experiments were performed using some benchmark Document-term data

sets from the clustering literature. Table 3.1 summarizes the characteristics of these data sets.

Table 3.1 – Description of Document-term Data sets

Data sets Characteristics

#Documents #Terms #Clusters Sparsity (%) Balance

CSTR 475 1000 4 96.60 0.399

WebKB4 4199 1000 4 93.90 0.307

WebACE 2340 1000 20 91.83 0.169

NG10 500 2000 10 0.858 1

NG20 19949 43586 20 99.99 0.991

RCV1 9625 29992 4 99.75 0.766

Reviews 4069 18483 5 99.99 0.098

Sports 8580 14870 7 99.99 0.036

Classic3 3891 4303 3 98.0 0.710

Classic4 7095 5896 4 99.41 0.323
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Note that, for all the used document-term data sets, we apply the TF-IDF transformation on

all the document-term frequency matrices. We used the TF-IDF weighting scheme proposed

in scikit-learn [Pedregosa et al., 2011] which is defined by wij = tfij(1 + log( 1+n
1+dj

)), where

wij is the weight of term i in document j, tfij is the frequency of term i in document j, n is

the total number of documents and dj is the number of documents containing term j.

Computation speed. In order to study experimentally the asymptotic behavior of our pro-

posed algorithms and them potential to converge and compare its computation speeds, we re-

peat the clustering 50 times using the different methods with the optimal parameters. The

average computation time of our three proposed methods, i.e, SemiNMF-PCA, F-SemiNMF-

PCA and RF-SemiNMF-PCA, applied to the different text data sets are reported in Table 3.2.

Table 3.2 – Average computation time for convergence on document-term data sets.

Algorithms

Data sets SemiNMF-PCA F-SemiNMF-PCA RF-SemiNMF-PCA

CSTR 0,159 0,142 0,185

WebKB4 1,430 1,235 1,549

WebACE 1,293 1,047 1,323

NG10 0,190 0,151 0,202

NG20 75,300 67,752 80,149

RCV1 15,74 14,462 15,908

Reviews 3,207 2,824 3,263

Sports 15,183 12,840 15,413

Classic3 1,696 1,584 1,718

Classic4 7,804 6,181 8,224
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Figure 3.3 – Illustration of the convergence study of our proposed algorithms on document-

term data sets. ”x” axis is the iteration number and ”y” axis represents the criterion.
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The obtained results illustrate the monotonic (see Fig.3.3) and rapid convergence of our

algorithms (as reported in Table 3.2), and show that F-Semi-NMF-PCA requires less time to

converge than Semi-NMF-PCA. Furthermore, we can observe that, in general, the more the

data dimensions increase, the more the gain in terms of computation time increases too. For

instance, the gain is 0.382 seconds (sec) for Reviews data set (4069 × 18483), 2.343 sec for

Sports data set (8580 × 14870) and 7.548 sec for NG20 data set (19949 × 43586). These

results are consistent with our theoretical analysis in which we have chosen F-SemiNMF-PCA

(faster and more efficient) to be extended to RF-SemiNMF-PCA by introducing the locality

preserving.

Document-term data Clustering performances The assessment of all the algorithms in

terms of Acc, NMI and ARI are reported in Table 3.3. The main comments arising from our

experiments are the following. First, the NMF-based methods including NMF, PNMF and

the SemiNMF give similar results none among them outperforms the others. However, the

Two-steps based methods including Ncut, PCA and LDA are equivalent with a slight advan-

tage for LDA-k-means. Finally, our proposed algorithms give better results than both NMF-

based methods and Two-steps based methods. We observe that RF-SemiNMF-PCA is better

than F-SemiNMF-PCA that is itself better than SemiNMF. In addition we have noted that RF-

SemiNMF-PCA allows a good separability between the clusters as illustrated in Fig. 3.4 for

CSTR data set. We observe a good solution obtained by the simultaneous combination of

SemiNMF and PCA.
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Figure 3.4 – CSTR data set: Projection of the objects into the factorial plane spawned by the

two first components. Initial data X while the clustering is obtained by Sk-means and XQ of

size n × p while the clustering is obtained by RF-SemiNMF-PCA. Black points represent the

misclassified objects obtained by k-means and Acc denotes the accuracy which is the percent-

age of objects well classified. The best Accuracy is obtained with (p = 8).

3.4.2 Results on Non-sparse data sets

To assess our approach on other data types, experiments were performed using some bench-

mark image and microarray data sets from the clustering literature. Table 3.4 summarizes the

characteristics of these data sets.

Like for sparse data, in table 3.5, we report the performances of our best method RF-

SemiNMF-PCA against the best compared methods of each category, i.e, PNMF (NMF-based

methods) and Ncut-k-means (Two-steps-based methods), in terms of Acc, NMI and ARI. We

observe the good performance of our approach for all data sets. It is clear that RF-SemiNMF-

PCA is most effective; the regularization always brings some improvement. First, as illustrated

in Fig. 3.5 and Fig. 3.6, RF-SemiNMF-PCA has a high capability to separate the obtained

clusters.
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Table 3.4 – Image and microarray data sets description.

Data Sets Characteristics

Type #samples #features #classes Sparsity(%)

Coil20 Image 1440 1024 20 34.38

Coil100 Image 7200 1024 20 0

ORL Image 400 1024 40 0

Yale Image 165 1024 15 30.54

USPS Image 9298 256 10 0

PIE Image 2856 1024 68 8.53

MNIST Image 70000 784 10 80.85

Leukemia Microarray 72 1762 2 0

Lung Microarray 203 12600 5 0

Colon Microarray 62 2000 2 0

Breast Microarray 106 9 6 0.21

Yeast Microarray 1484 8 10 12.41

Isolet Microarray 1559 617 26 0.35
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Figure 3.5 – Lung: Projection of the objects into the factorial plane spawned by the two first

components. Initial data X while the clustering is obtained by Sk-means and XQ of size n×p
while the clustering is obtained by RF-SemiNMF-PCA. Black points represent the misclas-

sified objects obtained by k-means and Acc denotes the accuracy which is the percentage of

objects well classified. The best Accuracy is obtained with (p = 12).
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Figure 3.6 – USPS: Projection of the objects into the factorial plane spawned by the two first

components. Initial data X while the clustering is obtained by Sk-means and XQ of size n×p
while the clustering is obtained by RF-SemiNMF-PCA. Black points represent the misclas-

sified objects obtained by k-means and Acc denotes the accuracy which is the percentage of

objects well classified.The best Accuracy is obtained with (p = 14).
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Furthermore, by using the row clusters obtained by PNMF, Ncut-k-means and RF-SemiNMF-

PCA, Fig. 3.7 shows the reorganized images of the USPS data set. It reveals the good result of

our proposed method in image data sets classification.
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Figure 3.7 – Performances of the compared methods, k-means, Ncut-k-means and RF-SemiNMF-PCA,

on USPS image data set.

3.4.3 Statistical tests

The first question addressed is whether there were any significant differences among our three

proposed methods including RF-SemiNMF-PCA, F-SemiNMF-PCA and SemiNMF-PCA? To

this end, we first test for the significance of performance differences between RF-SemiNMF-

PCA, F-SemiNMF-PCA and SemiNMF-PCA. We used the analysis of variance (ANOVA) and

Kruskal-Wallis (KW) tests. The obtained p-values are reported in Table 3.61. As it can be

seen in table 3.6, for each data set the difference among the compared methods is statistically

significant; all p-values are less than 1%.

1We selected two datasets of image, text and microarray to illustrate our comparisons
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Furthermore, we exploit the statistics obtained by ANOVA in applying a post-hoc analysis

of RF-SemiNMF-PCA, F-SemiNMF-PCA and SemiNMF-PCA. The Scheffé’s procedure is the

most popular of the post-hoc procedures (see for instance [Scheffé, 1959]). The obtained results

for studied data sets show that RF-SemiNMF-PCA almost always significantly outperform F-

SemiNMF-PCA and SemiNMF-PCA, we illustrate this performance in Table 3.7. Furthermore,

the Scheffé tests confirm the performance differences between these compared methods; most

of the p-values are less than 5%. The same observations are verified from other data sets.

Table 3.6 – Variance analysis of RF-SemiNMF-PCA, F-SemiNMF-PCA and SemiNMF-PCA

Accuracy’s using ANOVA and Kruskal-Wallis (KW) tests (with α = 0.05) performed on 50

random initialisations.

Data set P-Value

ANOVA KW

CSTR 2.68e-29 9.50e-18

WebAce 4.02e-12 4.83e-05

Coil20 2.14e-72 4.59e-29

USPS 1.64e-45 8.69e-22

Leukemia 3.23e-25 1.53e-19

Lung 1.14e-04 7.24e-04

Table 3.7 – Post-hoc analysis of RF-SemiNMF-PCA, F-SemiNMF-PCA and SemiNMF-PCA

Accuracy’s using Scheffé test (with α = 0.05) performed on 50 random initialisations.

Data set Methods P-Value

F-SemiNMF-PCA SemiNMF-PCA 1.70e-22

CSTR RF-SemiNMF-PCA SemiNMF-PCA 1.02e-25

RF-SemiNMF-PCA F-SemiNMF-PCA 0.047

F-SemiNMF-PCA SemiNMF-PCA 6.35e-02

Webace RF-SemiNMF-PCA SemiNMF-PCA 9.40e-02

RF-SemiNMF-PCA F-SemiNMF-PCA 0.043

F-SemiNMF-PCA SemiNMF-PCA 1.39e-59

Coil20 RF-SemiNMF-PCA SemiNMF-PCA 4.60e-68

RF-SemiNMF-PCA F-SemiNMF-PCA 2.31e-05

F-SemiNMF-PCA SemiNMF-PCA 2.22e-02

USPS RF-SemiNMF-PCA SemiNMF-PCA 8.15e-42

RF-SemiNMF-PCA F-SemiNMF-PCA 3.79e-35

F-SemiNMF-PCA SemiNMF-PCA 0.018

Leukemia RF-SemiNMF-PCA SemiNMF-PCA 3.01e-16

RF-SemiNMF-PCA F-SemiNMF-PCA 1.14e-23

F-SemiNMF-PCA SemiNMF-PCA 0.011

Lung RF-SemiNMF-PCA SemiNMF-PCA 0.079

RF-SemiNMF-PCA F-SemiNMF-PCA 1.15e-04

Secondly, to confirm the performance of RF-Semi-NMF-PCA compared with the best Two-

steps-based method on some representative data sets, i.e, LDA-k-means for document-term

data sets and Ncut-k-means for image and microarray data sets, for each data set, we perform

pairwise t-tests on 50 random initialisations.
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Table 3.8 – RF-SemiNMF-PCA vs LDA-k-means: Evaluation on document-term data sets in

terms of Acc, NMI and ARI; using t-tests performed on 50 random initialisations.

Data set Metric LDA-k-means RF-SemiNMF-PCA P-values

Acc 0.786 ±0.055 0.894 ±0.024 < 0.1%
CSTR NMI 0.575 ±0.069 0.762 ±0.034 < 0.1%

ARI 0.571 ±0.114 0.798 ±0.031 < 0.1%
Acc 0.789 ±0.005 0.786 ±0.034 0.704

WebKB4 NMI 0.521 ±0.001 0.532 ±0.024 < 0.1%
ARI 0.546 ±0.002 0.546 ±0.038 0.519

Acc 0.613 ±0.045 0.618 ±0.027 0.278

WebACE NMI 0.629 ±0.044 0.643 ±0.028 0.042

ARI 0.560 ±0.041 0.613 ±0.039 < 0.1%
Acc 0.466 ±0.004 0.744 ±0.006 < 0.1%

D
o

cu
m

en
t-

te
rm

NG10 NMI 0.407 ±0.003 0.636 ±0.005 < 0.1%
ARI 0.276 ±0.006 0.549 ±0.006 < 0.1%
Acc 0.598 ±0.034 0.673 ±0.052 < 0.1%

Reviews NMI 0.620 ±0.013 0.639 ±0.025 0.001

ARI 0.583 ±0.014 0.649 ±0.029 0.005

Acc 0.528 ±0.039 0.707 ±0.034 < 0.1%
Sports NMI 0.603 ±0.028 0.771 ±0.025 < 0.1%

ARI 0.378 ±0.027 0.569 ±0.026 < 0.1%
Acc 0.903 ±0.018 0.967 ±0.008 < 0.1%

Classic3 NMI 0.767 ±0.027 0.912 ±0.012 < 0.1%
ARI 0.812 ±0.029 0.928 ±0.015 < 0.1%
Acc 0.725 ±0.046 0.818 ±0.039 < 0.1%

Classic4 NMI 0.685 ±0.063 0.731 ±0.035 < 0.1%
ARI 0.566 ±0.083 0.701 ±0.021 < 0.1%

Table 3.9 – RF-SemiNMF-PCA vs Ncut–k-means: Evaluation on image and microarray data

sets in terms of Acc, NMI and ARI; using t-tests performed on 50 random initialisations.

Data set Metric Ncut-k-means RF-SemiNMF-PCA P-values

Acc 0.639 ±0.044 0.745 ±0.004 < 0.1%
Coil20 NMI 0.754 ±0.021 0.804 ±0.005 < 0.1%

ARI 0.562 ±0.045 0.666 ±0.007 < 0.1%
Acc 0.566 ±0.040 0.659 ±0.012 < 0.1%

Im
ag

e

ORL NMI 0.755 ±0.031 0.808 ±0.013 < 0.1%
ARI 0.419 ±0.045 0.514 ±0.016 < 0.1%
Acc 0.426 ±0.040 0.537 ±0.018 < 0.1%

Yale NMI 0.483 ±0.037 0.592 ±0.013 < 0.1%
ARI 0.195 ±0.049 0.342 ±0.015 < 0.1%
Acc 0.789 ±0.044 0.894 ±0.024 < 0.1%

USPS NMI 0.722 ±0.039 0.806 ±0.029 < 0.1%
ARI 0.641 ±0.071 0.779 ±0.065 < 0.1%
Acc 0.772 ±0.060 0.886 ±0.045 0.009

Leukemia NMI 0.263 ±0.243 0.582 ±0.137 0.002

ARI 0.276 ±0.257 0.622 ±0.177 < 0.1%
Acc 0.750 ±0.049 0.813 ±0.022 0.014

M
ic

ro
ar

ra
y Lung NMI 0.466 ±0.083 0.624 ±0.033 0.006

ARI 0.391 ±0.092 0.638 ±0.037 0.003

Acc 0.706 ±0.018 0.721 ±0.011 < 0.1%
Colon NMI 0.110 ±0.034 0.131 ±0.024 < 0.1%

ARI 0.120 ±0.028 0.156 ±0.016 < 0.1%
Acc 0.463 ±0.084 0.531 ±0.035 < 0.1%

Breast NMI 0.418 ±0.126 0.491 ±0.066 < 0.1%
ARI 0.236 ±0.099 0.304 ±0.040 < 0.1%
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In Table 3.8, we show that, for document-term data sets, the improvement between RF-

Semi-NMF-PCA and LDA-k-means is statistically significant; most of the p-values are less

than 0.1%. Similarly, in Table 3.9, we show that, for image and microarray data sets, the

improvement between RF-Semi-NMF-PCA and Ncut-k-means is statistically significant; most

of the p-values are less than 0.1%.

3.4.4 Assessing the number of components

In our experiments and in order to assess the number of components, we varied p between 2

and 10k, and retained the one that optimizes the criterion. The questions that naturally arises

is: how many components are necessary to give a good result?
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Figure 3.8 – Performances of RF-SemiNMF-PCA according to the number of components ”p”

in terms of Acc and NMI.
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In all our experiments, the obtained results in terms of clustering and visualization are

very encouraging and specifically with RF-Semi-NMF-PCA. For all data sets, the retained p

optimizing the criterion (3.28) corresponds to the best result in terms of Acc, NMI and ARI as

illustrated in Fig. 3.8. To confirm these results on these three data sets, we report in Table 3.10

the performances recorded by LDA-k-means for p = k−1, Ncut-k-means and RF-semi-NMF-

PCA for p = k − 1, p = k and p = p∗ where p∗ is equal to the value optimizing the criterion

(3.28).

Table 3.10 – RF-Semi-NMF-PCA vs LDA-k-means vs Ncut-k-means: Comparison of per-

formances according to the number of components p in terms of Acc, NMI and ARI. The

considered values of p are k, k − 1 and p∗ where p∗ denotes the value of p optimizing the

criterion. k is the true number of clusters.

Data set Metric LDA-k-means Ncut-k-means RF-SemiNMF-PCA

(or Sk-means) (or Sk-means)

p = k − 1 p = k − 1 p = k p = p∗ p = k − 1 p = k p = p∗

CSTR Acc 0.905 0.718 0.762 0.771 0.897 0.907 0.924

k = 4 NMI 0.772 0.601 0.695 0.708 0.766 0.773 0.810

ARI 0.811 0.558 0.657 0.686 0.794 0.822 0.847

USPS Acc 0.740 0.818 0.823 0.852 0.904 0.900 0.926

k = 10 NMI 0.676 0.754 0.761 0.772 0.823 0.817 0.842

ARI 0.595 0.715 0.719 0.730 0.808 0.804 0.828

Lung Acc 0.793 0.808 0.793 0.823 0.828 0.862 0.892

k = 5 NMI 0.563 0.631 0.620 0.638 0.634 0.668 0.728

ARI 0.555 0.550 0.536 0.575 0.663 0.728 0.752

In this way, we can compare the three methods and we observe the substantial interest

of RF-semi-NMF-PCA with p∗. Hence our strategy appears effective; given the number of

clusters it can provide the appropriate number of components. According to our experiments

on the 24 data sets, the choice of p between k and 5k seems an appropriate way to assess this

parameter. However, further theoretical investigations are necessary.

3.5 Conclusion

The dual purpose of this paper is to reduce the dimension and the clustering. Based on the

decomposition of the objective function of Semi-NMF-PCA into two terms where the first

one is the objective function of PCA and the second is the Semi-NMF criterion in a low-

dimensional space, we proposed a novel way to consider the clustering and the reduction of the

dimension simultaneously. Our approach takes advantage of the mutual reinforcement between

data reduction and clustering tasks. Such a solution better approximates the relaxed continu-

ous dimension reduction solution by the true discrete clustering solution. We also establish

theoretical connections among our method and NMF, k-means and PNMF; that explains the

performance improvement.
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Three variants of partitioning algorithms have been proposed. On sparse or not sparse data

sets, they give better results in terms of clustering than the state-of-the-art algorithms devoted to

similar tasks for data sets with different sizes, degrees of overlapping and balances. In addition,

They offer good performances in terms of separability between clusters, hence they can also be

beneficial for visualization.

Certainly we proposed a solution to choose of the number of components, the used strategy

relies to a certain extent on the number of classes. It would therefore be interesting to investi-

gate the simultaneous choices of the number of classes and the number of components. This

objective is our major ongoing research activity.
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Chapter 4

Simultaneous Spectral Data

Embedding and Clustering
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4.1 Introduction

Clustering is widely used for exploratory data analysis, with applications ranging from artificial

intelligence, statistics to social sciences. Among various clustering methods in the literature,

spectral clustering is a popular choice. It is easy to implement efficiently and often outper-

forms traditional clustering methods such as k-means. In recent years, the interest in spectral

clustering suitable for various data mining problems has increased. The method has been well

studied in the literature [Bach and Jordan, 2006; Ng et al., 2001], many tutorials giving an

introduction to spectral clustering are available; see for instance [Luxburg, 2007]. The spectral

clustering methods based on the graph partitioning theory focus on finding the best cuts of a

graph that optimize certain predefined criterion functions. Their optimization usually leads to

the computation of singular vectors or eigenvectors of certain graph affinity matrices. Many

criterion functions have been proposed such as the average cut [Chan et al., 1994], the average

association [Shi and Malik, 2000], the normalized cut [Shi and Malik, 2000], and the min-max

cut [Ding et al., 2001]. On the other hand, connections between spectral clustering and other

clustering methods have been established; see for instance [Dhillon et al., 2004; Ding et al.,

2005; Luo et al., 2010; Nie et al., 2010].

Our focus is the area of spectral clustering which uses graph cuts as objective functions for

nonlinear data separation. Spectral clustering algorithms represent data as a graph where data

samples are vertices and edge weights represent the similarity between data samples. Then

data are partitioned by finding a k-way graph cut in two steps:

1. finding a spectral embedding by using an eigendecomposition of the graph Laplacian

matrix; and

2. based on the embedding, finding a partition via a simplified clustering algorithm such as

k-means.

Spectral clustering has the advantage of requiring weak assumptions regarding the shapes

of clusters. Moreover, it is applicable to a wide variety of data types and similarity functions.

However, classical spectral methods such as Ratio Cut [Hagen and Kahng, 1992] and Normal-

ized Cut [Ng et al., 2001; Shi and Malik, 2000] generally use k-means to perform the clustering

on the relaxed continuous spectral vectors in order to obtain the final clusters. The disadvan-

tage of this approach is that it consists in optimizing two different objectives. Hence, spectral

low-dimensional embedding and clustering are successively and not simultaneously used. For

this reason, certain obtained continuous low-dimensional embedding can deviate far from the

clustering solution, thereby affecting the partition quality. Finally, due to the computational

complexity of O(n3) in general, with n the number of data points, the applicability of spectral

clustering for large-scale problems remains limited.
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we address this problem using simultaneous spectral dimensionality reduction and cluster-

ing. We first propose a novel framework referred to as Simultaneous Spectral data Embedding

and Clustering (SDEC) which alternates both tasks iteratively. SDEC relies on a matrix de-

composition technique to simultaneously learning a spectral data embedding B, a clustering

matrix G and a rotation matrix Q which closely maps the continuous spectral embedding to the

clustering solution. As we will show, this usually leads to a better embedding approximation

and improvement in clustering accuracy. It is worth highlighting the novelty of our proposed

framework. It allows

• to propose a unified framework for spectral clustering combining low dimensional em-

bedding learning and clustering in a common procedure. Then the optimization of a

single learning objective function is necessary to achieve simultaneously spectral em-

bedding and clustering tasks.

• to apply the spectral rotation technique to get the continuous spectral vector which is

closer to the cluster membership indicator than existing results.

• to be less costly than traditional spectral clustering and to be better than existing methods

commonly used for the same tasks.

Then, we propose a novel framework, referred to as Power Spectral Data Embedding and

Clustering (PSDEC), which alternates the spectral clustering and the dimensionality reduction

while relying on the classical Power method [Golub and van Loan, 1996]. It is worth highlight-

ing the novelty of PSDEC which make it possible to

• propose a unified framework for spectral clustering combining low-dimensional embed-

ding learning and clustering in a common procedure. Then the optimization of a single

learning objective function is necessary to achieve spectral embedding and clustering

tasks simultaneously.

• perform on a stochastic powered matrix; the purpose of the use of such matrix is twofold.

First, it allows to the use of Power method inside our algorithm in order to speed up the

eigenvectors computation, and secondly to explore the similarity matrix structure via a

random walk process and then make the similarity matrix more suitable for the clustering

task (quasi block diagonal matrix).

The rest of this chapter is organized as follows. Section 2 provides notation and related

works. We formulate the proposed PSDEC framework and provide an effective method to

solve this problem in Section 3. Then, we describe several experiments we have run, compare

our algorithm to other algorithms from the literature on several benchmark image data sets.

Finally, we conclude with additional observations and future work.
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4.2 Spectral and Symmetric NMF approaches

Our work is inspired by spectral clustering for which we review some related work in this

sequel.

4.2.1 Spectral clustering.

Spectral clustering can be presented from different points of views [Luxburg, 2007]; in this

Chapter, we focus on the graph partitioning viewpoint. Given a set of n data samples {x1, . . . ,xn}

with each xi a column vector in Rd, and given a set of similarities, {kij}, between all pairs xi

and xj , where kij ≥ 0. Let G = (V,E) be a graph, where V = {v1, . . . , vn} is the set of vertices

and E the set of edges. Each vertex vi in the graph represents a data sample xi, with the similar-

ities kij treated as edge weights. If there is no edge between vi and vj then kij = 0. Let the ma-

trix K with elements kij be the similarity matrix. This matrix is generally obtained from a ker-

nel function, an example of which is the Gaussian kernel k(xi;xj) = exp(−||xi−xj ||
2/2σ2).

The aim of spectral clustering is to partition the data {x1, . . . ,xn} into k disjoint clusters

{P1, . . . , Pk}, such that the similarity of the samples between clusters is low, and the similarity

of the samples within clusters is high. There are several objective functions that capture this

desideratum; in this subsection we focus on the normalized cut objective.

4.2.1.1 K-way normalized cut.

The k-way normalized cut, Ncut(G), is defined as

Ncut{P1, . . . , Pk} =

k∑

c=1

cut(Pc, V \ Pc)

vol(Pc)

where the cut between sets A,B ∈ V is defined by cut(A;B) =
∑

vi∈A,vj∈B
kij , the degree

di of vertex vi ∈ V is defined as di =
∑n

j=1 kij , the volume of set A ⊆ V is defined by

vol(A) =
∑

i∈A di, and V \ A denotes the complement of A. In this objective function, note

that cut(Pc, V \ Pc) measures the between cluster similarity and the within cluster similarity

captured by the normalizing term vol(Pc).

The next step is to rewrite Ncut(G) using an indicator matrix B of cluster membership of

size n × k and to note that Ncut(G) takes the form of a Rayleigh quotient in B. Relaxing

the indicator matrix to allow its entries to take on any real value, we obtain a generalized

eigenvector problem.

58



4. UNIFIED FRAMEWORK FOR SPECTRAL DATA EMBEDDING AND CLUSTERING

The problem reduces to the following relaxed Ncut minimization:

min
B∈Rn×k

Tr(B⊤LB) s.t. B⊤B = I (4.1)

where L is the normalized graph Laplacian, with L = I − D−0.5KD−0.5, I is an identity

matrix, D is a diagonal matrix whose diagonal entries are the degree di, B is the spectral

embedding matrix and Tr denotes the trace of a matrix.

Minimizing the relaxed Ncut objective is equivalent to maximizing the relaxed normalized

association as follows:

max
B∈Rn×k

Tr(B⊤D−0.5KD−0.5B) s.t. B⊤B = I. (4.2)

The solution is to set B equal to the k eigenvectors corresponding to the largest k eigen-

values of the normalized similarity, W = D−0.5KD−0.5. This yields the spectral embedding.

Based on this embedding, the discrete partitioning of the data is obtained from a ”rounding”

step. One specific rounding algorithm, due to [Ng et al., 2001], is based on renormalizing each

row of B to have unit length and then applying k-means on the rows of the normalized matrix.

We then assign each xi to the cluster that the row bi is assigned to.

4.2.1.2 Random walk view.

Different algorithms use matrix K with different ways to derive an affinity matrix W . In this

paper, we adopt the random walk view [Meila and Shi, 2001] for the definition of the affinity

matrix; W is given by W = D−1K. Note that the sum of each row of W is equal to 1, thus

Wkl can be interpreted as the probability for a random walk that begins at wk and ends up at

wl after a single step. More formally, if we let cj be the location of the walk at time j, then

Wkl = P (cj+1 = wk|cj = wl).

The proposed algorithm by Meila and Shi [Meila and Shi, 2001] assumes that K and the

number of clusters k are given with the data. First the affinity matrix W = D−1K is computed.

Then the top k eigenvectors of W of the generalized eigensystem Kv = λDv or equivalently

Wv = λv are used to cluster the data. Furthermore, we can observe that the Ng-Jordan-

Weiss (NJW) algorithm uses the top k eigenvectors of W = D−0.5KD−0.5 of the eigensystem

Wu = λu to map data. Indeed, we can relate U to V by U = D0.5V . Since D is a diagonal

matrix, when the row is normalized to length 1, the B obtained from V is identical to the B

obtained from U .
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4.2.1.3 Spectral clustering algorithm.

Spectral clustering is a technique that exploits the properties of the Laplacian of the graph,

whose edges denote the similarities between the data points. The top k eigenvectors of the

normalized graph Laplacian are the relaxations of the indicator vectors that assign each node

in the graph to one of the k clusters. Apart from being theoretically well-motivated, spectral

clustering has the advantage of performing well on arbitrary shaped clusters, which is otherwise

a shortcoming of several other clustering algorithms such as the k-means algorithm.

Here we briefly outline the spectral clustering algorithm due to [Meila and Shi, 2001].

Algorithm 5: : Spectral Clustering

Input: Initial data matrix X , cluster number k.

Output: A Partition: ∆ = {A1, A2, ..., Ak}.

1. Construct an n× n positive semi-definite similarity matrix (or kernel) K, where Kij

quantifies the similarity between samples i and j;

2. Compute the normalized graph Laplacian matrix denoted W = D−1K, where D is a

diagonal matrix defined by Dii =
∑

j Kij ;

3. Compute the top k eigenvectors of W , the obtained low-dimensional matrix is referred as

to B;

4. Consider the rows of B as data points, and run k-means algorithm to cluster them into k
clusters;

4.2.2 Symmetric NMF.

As shown above different graph cuts can be reduced to the following trace maximization form

(see equation 4.2), where B ∈ Rn×k satisfies some constraints and indicates the clustering

assignment. A group of successful graph clustering methods-spectral clustering, relaxes the

constraints on B to B⊤B = I . Under such orthogonality constraint on B, we have the equiva-

lence between the two following optimizations [Ding et al., 2005]:

max
B

Tr(B⊤WB) ⇔ min
B

Tr(W⊤W )− 2Tr(B⊤WB) + Tr(I)

⇔ min
B

Tr(W −BB⊤)⊤(W −BB⊤)

⇔ min
B
||W −BB⊤||2F .

Hence, compared to spectral clustering, Symmetric NMF can be seen as a different relax-

ation to minB ||W −BB⊤||2F , i.e. relaxing the constraints on B to be B >= 0.
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According to the constraints on B, spectral clustering and Symmetric NMF have different

properties in the clustering results they generate. Spectral clustering leads to eigenvector-based

solutions of B, which are not necessarily nonnegative; and k-means or more advanced proce-

dures have to be adopted in order to obtain the final clustering assignments. By contrast, the

solution found with Symmetric NMF naturally captures the cluster structure. It also indicates

the clustering assignments without additional clustering procedures, which heavily depends on

initialization, such as k-means. Therefore, after obtaining B via eigen-analysis, we can for-

mulate the recovery of the cluster membership matrix G as follows: BQ = G where Q is an

(k × k) orthonormal rotation matrix which most closely maps B to G. Specifically,

min
B
||BQ−G||2F s.t Q⊤Q = I, G ≥ 0. (4.3)

In the following section we propose a new objective function that combines spectral data

embedding and clustering in a common framework. Thus, we aim to combine both advantages

of spectral clustering and symmetric NMF while avoiding the large computational cost of these

methods.

4.3 Simultaneous Spectral Data Embedding and Clustering (SDEC)

In the sequel, we present the details of the proposed algorithm. A fast iterative method is also

proposed to solve the objective function.

4.3.1 SDEC objective function

Let k be the number of clusters and the number of components to which the data is embedded.

SDEC clustering is defined as the minimizing problem of the following criterion:

min
B,Q,G

∥∥∥W −GQB⊤
∥∥∥
2
. s.t. Q⊤Q = I, B⊤B = I, G ≥ 0. (4.4)

The nonnegative matrix G = (gij) of size (n×k) is a cluster membership matrix, B = (bij)

of size (n×k) is the embedding matrix and Q = (qij) of size (k×k) is an orthonormal rotation

matrix which most closely maps B to G.

Proposition 3. Given G≥ 0, B⊤B = I and Q⊤Q = QQ⊤ = I , the objective function of

SDEC can be decomposed into two terms:

∥∥∥W −GQB⊤
∥∥∥
2
=

∥∥∥W −WBB⊤
∥∥∥
2
+ ‖WB −GQ‖2 (4.5)
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Proof. We first expand the matrix norm of the left term of Eq.(4.5)

∥∥∥W −GQB⊤
∥∥∥
2
= ‖W‖2 +

∥∥∥GQB⊤
∥∥∥
2
− 2Tr(WGQB⊤) (4.6)

In a similar way, we obtain from the two terms of the right term of Eq.(4.5)

∥∥∥W −WBB⊤
∥∥∥
2

= ‖W‖2 +
∥∥∥WBB⊤

∥∥∥
2
− 2Tr(WBB⊤W⊤)

= ‖W‖2 +
∥∥∥WBB⊤

∥∥∥
2
− 2||WB||2

= ||W ||2 − ||WB||2 due to B⊤B = I (4.7)

and ‖WB −GQ‖2 = ‖WB‖2 + ‖GQ‖2 − 2Tr(WBQG⊤) (4.8)

Due also to B⊤B = I , we have

‖WB −GQ‖2 = ||WB||2 + ||GQB⊤||2 − 2Tr(WGQB⊤) (4.9)

Summing the two terms Eq. (4.7) and Eq. (4.9 ) leads to the left term of Eq. (4.5).

‖W‖2 + ‖GQ‖2 − 2Tr(WGQB⊤) =
∥∥∥W −GQB⊤

∥∥∥
2

(4.10)

due to ‖GQ‖2 =
∥∥GQB⊤

∥∥2

Using proposition 3, the objective function of SDEC (4.4) can be decomposed into two

terms: The first one is the objective function of spectral embedding, and the second is the

semi-NMF criterion in a low embedding subspace. To solve the problem (4.4), we rely on the

theorem 1 used previously in Section 3.2.3.

4.3.2 Optimization

To solve (4.4), we propose updating Q, B and G in an alternating fashion.

Computation of Q. First, fixing G and B, problem in Eq. (4.4) is equivalent to:

Eq.(4.4)⇔ min
Q

∥∥∥B̃ −GQ
∥∥∥
2
⇔ min

Q

∥∥∥G− B̃Q⊤
∥∥∥
2

(4.11)

where B̃ = WB. Due to theorem 1, by applying SVD to G⊤B̃, we obtain Q = UV ⊤. we

can observe that this problem turns out to be similar to the well known orthogonal Procrustes

problem [Schonemann, 1966].
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Computation of B. Secondly, given G and Q, minimizing Eq. (4.4) is equivalent to

max
B

Tr(WGQB⊤) s.t. B⊤B = I. (4.12)

Due to theorem 1, by applying SVD to QG⊤W we obtain B = UV ⊤.

Computation of G. Thirdly, update G by keeping B, and Q fixed at the value computed in

the above steps, Eq.(4.4) is equivalent to the following problem

min
G

∥∥∥WBQ⊤ −G
∥∥∥
2

s.t. G ≥ 0. (4.13)

Since G is non-negative, we simply set

G = max(0,WBQ⊤). (4.14)

Since the objective function of SDEC is linear when fixing either of the matrices on the right

side, an alternating least square approach can be used to optimize the solution in each iteration.

In addition, to keep the non-negativity of elements of matrices, we use idea analogous to the

projected gradient methods in iterations of NMF [Lin, 2007]. The projected gradient methods

are typical approaches to solve bound-constrained optimization problems, where variables are

constrained by certain bounds. NMF is a kind of bound-constrained optimization problem.

The basic idea of the projected gradient is to update variables as in normal gradient descent

method, but when the variables are out of the bounds, they are pulled back into the bounds by

projection.

In summary, the steps of the SDEC algorithm can be deduced in Algorithm 6.

Algorithm 6: : SDEC

Input: Similarity matrix W
Initialize:B and Q with arbitrary orthonormal matrix

repeat
(a) - Update G by (4.14)

(b) - Update B by solving Eq. (4.12);

(c) - Update Q by solving (4.11)

until convergence;

Output: - G for data point clustering,

- Q for matrix rotation and

- B for low dimensional embedding.
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4.4 Power Spectral Data Embedding and Clustering (PSDEC)

4.4.1 PSDEC objective function.

Let k be the number of clusters and the number of components to which the data is embedded.

PSDEC clustering is defined as the minimizing problem of the following criterion:

min
B,Q,G

∥∥∥W 2p+1 −GQB⊤
∥∥∥
2
, s.t. Q⊤Q = I, B⊤B = I, G ≥ 0. (4.15)

The nonnegative matrix G = (gij) of size (n×k) is a cluster membership matrix, B = (bij)

of size (n×k) is the embedding matrix and Q = (qij) of size (k×k) is an orthonormal rotation

matrix which most closely maps B to G. To solve the problem (4.15), it suffices to rely on

proposition 3 by postulating S = W 2p+1 (where p is any positive integer). Using proposition

3, the objective function of PSDEC (4.15) can be decomposed into two terms: the first one is

the objective function of spectral embedding, and the second is the semi-NMF criterion in a

low embedding subspace.

4.4.2 Power Method for speeding up eigenvectors computation.

One way to speed up Algorithm 5 is to use the Power method which is a well-known technique

to compute the largest left and right eigenvectors of data matrices [Golub and van Loan, 1996;

Lin and Cohen, 2010]. In Step 4, to quickly approximate the eigenvectors in B; authors in

[Boutsidis et al., 2015] use the Power method: First initialize U ∈ Rn×k with Independent and

identically distributed random Gaussian variables. Let B̃ ∈ Rn×k containing the left singular

vectors of matrix S = (WW⊤)pWU = W 2p+1U ; for some integer p. Then, use B̃ instead of

B in step 4 of algorithm 5.

4.4.3 Powered similarity matrix -Random walk Analysis :

The idea behind the use of W p is to explore the structure of W when random walk takes many

steps instead of only one. It is well known, from the theory of Markov chains [Azran and

Ghahramani, 2006], that W p (where p is any odd positive integer ) is given by multiplying W

with itself p times, so that if W = V ΛV ⊤ then W p = V ΛpV ⊤, where V is the matrix whose

nth column is vn. Thus, if λn, vn is the eigensystem of W , then λp
S , vn is the eigensystem

of W p. Next, if p is odd then the ordering of the eigenvalues is left unchanged and the same

eigenvectors are picked to cluster the data.
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In a prior work by Meila et al [Meila and Shi, 2001], it is noted that for many natural

problems, W is an approximately block stochastic matrix, hence the first k left eigenvectors of

W are approximate piecewise constant over the g almost invariant rows subsets. The iterative

random walk process will converge to the approximated data W p where each row and each

column moves towards their prototypes. In other words, this process converges to an equilib-

rium (steady) state. Matrix W is composed of k << n quasi similar rows, where each row is

represented by its prototype.

Consider using the pth order transition matrix W p as the affinity matrix. W p
mn gives the

total probability that a random walk xj , beginning at wm, will end up in wnafter p steps,

considering all possible paths between the nodes. W p
mn is expected to be high if there is a good

path between wm, wn and low otherwise, hopefully leading to a block diagonal matrix which is

ideal for clustering data [Meila and Shi, 2001] [Azran and Ghahramani, 2006]. However, often

in practice we observe a different behavior of W p. If points i, j are in the same cluster, then

often there are values of p for which W p
i and W p

j , the ith and jth rows of W p, become very

similar. The intuition here is that if points i, j are similar then after a sufficient number of steps

we can expect that a particle that begins a random walk in each of them will have the same

distribution for their locations after p steps. Another observation is that by varying the number

of steps p we explicitly explore similarities at different scales in the data, and as p increases we

expect to find a coarser structure.

To solve the problem (4.15), we rely on the theorem 1 used previously in Section 3.2.3.

4.4.4 Optimization.

To solve Eq.(4.15), we propose updating Q, B and G in an alternating fashion.

Computation of Q. First, fixing G and B, the problem in eq.(4.15) is equivalent to:

Eq.(4.15)⇔ min
Q

∥∥∥B̃ −GQ
∥∥∥
2
⇔ min

Q

∥∥∥G− B̃Q⊤
∥∥∥
2

(4.16)

where B̃ = SB. Due to theorem 1, by applying SVD to G⊤B̃, we obtain Q = UV ⊤.

Computation of B. Secondly, given G and Q, minimizing eq.(4.15) is equivalent to

max
B

Tr(SGQB⊤) s.t. B⊤B = I. (4.17)

Due to theorem 1, by applying SVD to QG⊤S we obtain B = UV ⊤.
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Computation of G. Since the objective function of PSDEC is linear when fixing either of

the matrices on the right side, an alternating least square approach can be used to optimize the

solution. In addition, to keep the non-negativity of elements of matrices, we use idea analogous

to the projected gradient methods in the iterations of NMF [Lin, 2007]. The projected gradi-

ent methods are typical approaches to solve bound-constrained optimization problems, where

variables are constrained by certain bounds.

NMF is a kind of bound-constrained optimization problem. The basic idea of the projected

gradient is to update variables as in the normal gradient descent method, but when the variables

are out of the bounds, they are pulled back into the bounds by projection. Thus, updating G by

keeping B, and Q fixed at the value computed in the above steps, eq.(4.4) is equivalent to the

following problem

min
G

∥∥∥SBQ⊤ −G
∥∥∥
2

s.t. G ≥ 0. (4.18)

Since G is non-negative, we simply set

G = max(0, SBQ⊤). (4.19)

In summary, the steps of the PSDEC algorithm can be deduced in Algorithm 7. Note that

PSDEC and SDEC are equivalent when p = 0.

Algorithm 7: : PSDEC algorithm

Input: Powered similarity matrix S = W 2×p+1

Initialize: B and Q with arbitrary orthonormal matrix;

repeat
(a) - Update G by (4.19)

(b) - Update B by solving Eq. (4.17);

(c) - Update Q by solving (4.16)

until convergence;

Output: - G for data point clustering,

- Q for matrix rotation and

- B for low-dimensional embedding.

4.4.5 Illustration with synthetic data sets.

In order to illustrate the ability of our method to preserve the initial topology and to separate

classes, we used two generated synthetic data sets called: Chainlink (Fundamental Clustering

Problem Suite (FCPS)) and Spiral (Shape).
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Figure 4.1 illustrates the capability of PSDEC to obtain and separate classes of synthetic

data sets commonly used in the spectral clustering context. By applying the PCA, we can show

the 2D-projection of the initial data matrix with: 1) the true labels; 2) the labels obtained by

k-means; 3) the labels obtained by PSDEC (p = 0); 4) the labels obtained by PSDEC (p = p∗).

Moreover, the 2D-projection of the spectral data embedding matrix B shows clearly the good

performances of PSDEC in terms of data dimensionality reduction and clustering.
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Figure 4.1 – Clustering and visualization with SDEC (p = 0), PSDEC (p = p∗) and k-means. p∗

denotes the value of p optimizing the criterion.
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4.4.6 Complexity analysis (Computational cost).

In terms of per-iteration complexity, the matrix multiplications SGQ requires O(n2k) flops

and G⊤SB requires O(nk2) flops, whereas the SVD performed on the relatively small-sized

k × k matrix G⊤SB requires O(k3) flops and the SVD performed on matrix SGQ requires

O(kn2 + nk2 + k3) flops [Golub and van Loan, 1996]. If we assume n ≫ k, which is

typically the case in practice, then the term O(n2k) dominates, which results in a per-iteration

complexity of our both algorithms SDEC and PSDEC.

4.5 Relationship with other state-of-the-art methods

4.5.1 Matrix decomposition and symmetric NMF.

The objective function in eq.(4.4) is equivalent to the following spectral matrix decomposition

problem [Kuang et al., 2012]

min
B,Q,G

∥∥∥W −GQB⊤
∥∥∥
2
⇔ min

B,Q,G

∥∥∥W −BB⊤
∥∥∥
2

(4.20)

s.t. B = GQ Q⊤Q = I, B⊤B = I,G ≥ 0.

In a similar way we can establish the equivalence to symmetric NMF [Kuang et al., 2012]

and we have

min
B,Q,G

∥∥∥W −GQB⊤
∥∥∥
2
⇔ min

B,Q,G

∥∥∥W −GG⊤
∥∥∥
2

(4.21)

s.t. G = BQ Q⊤Q = I, B⊤B = I,G ≥ 0.

Thus, PSDEC objective includes spectral matrix decomposition when B = GQ and symmetric

NMF when G = BQ.

4.5.2 Spectral embedding and Reduced Semi-NMF.

As shown in eq.(4.5), the objective of PSDEC is decomposed into two terms,

∥∥∥W −GQB⊤
∥∥∥
2
=

∥∥∥W −WBB⊤
∥∥∥
2
+ ‖WB −GQ‖2.

The first term (
∥∥W −WBB⊤

∥∥2) is the objective function of spectral embedding (since

S and W have the same eigenvectors). The second term (‖WB −GQ‖2) is the objective

function of reduced semi-NMF recently proposed in [Allab et al., 2015b].
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4.5.3 Orthogonal Procrustes problem.

For fixed B, and G. The second term in eq.(4.5) turns out to be similar to the well known

orthogonal Procrustes problem [Schonemann, 1966].

Power Method [Boutsidis et al., 2015]: We first expand the matrix norm of the left term of

eq.(4.5)

min
B

∥∥∥W −GQB⊤
∥∥∥
2
⇔ min

B
‖W‖2 +

∥∥∥GQB⊤
∥∥∥
2
− 2Tr(WGQB⊤)

Then, for a fixed G, PSEDC turn out to be equivalent to a trace maximization problem

max
B

Tr(WGQB⊤). (4.22)

On the other hand, Boutsidis et al. [2015] authors use the left eigenvectors of B = SV D(WU)

(where U is n×k random matrix), which is the solution of the following optimization problem

min
B

∥∥∥WU −BΛV ⊤
∥∥∥
2
⇔ min

B
‖WU‖2 +

∥∥∥BΛV ⊤
∥∥∥
2
− 2Tr(WUΛV ⊤B⊤).

For fixed Λ and V , the above problem is equivalent to

max
B

Tr(WUΛV ⊤B⊤).

Let Ũ = UΛV ⊤, then this problem is equivalent to our trace maximization problem given in

Eq.(4.22).

4.6 Experiments

In the sequel, we discuss the advantages of our contribution and we compare it against a variety

of state-of-the-art clustering methods.

1. NMF-based methods including NMF and PNMF.

2. Two-steps-based methods including LDA-k-means, PCA-k-means and Ncut-k-means. These

methods are based on two steps which are performed separately. The first step consists in

performing an eigendecomposition-based dimensional reduction of the features space and

the second step is applying k-means on the first few principal components.
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Data Sets. To evaluate all studied methods on clustering, we consider various image real data

sets of which the characteristics are summarized in Table 4.1.

Table 4.1 – Real data set characteristics.

Data sets Type samples features classes

Coil20 Image 1440 1024 20

ORL Image 400 1024 40

Yale Image 165 1024 15

PIE Image 2856 1024 68

USPS Image 9298 256 10

MNIST Image 70000 784 10

Performance metrics. To measure the clustering performance of the proposed algorithms we

use the commonly adopted metrics, the accuracy noted (Acc), the Normalize Mutual Informa-

tion (NMI) [Strehl and Ghosh, 2002] and the Adjusted Rand Index (ARI) [Hubert and Arabie,

1985]. We only focus on the quality of row clustering. Note that, for these three metrics (Acc,

NMI and ARI), a value close to 1 means a good clustering result.

Parameter settings. We run each method under different parameter settings 50 times, and

the best, the worse and the average results for each method are computed.

- For all the compared methods, we set the number of sample clusters equal to the true number

of classes in each data set (k).

- For NMF and PNMF, the best parameters are used, as suggested in each of the reference

articles (see for details [Ding et al., 2005; Zhirong and Laaksonen, 2007].

- For Ncut-k-means, we have used the code of Ncut provided by Zhirong et al. [Zhirong and

Laaksonen, 2007]. For, LDA-k-means, we have used the code of LDA provided by Deng

Cai [Cai et al., 2006]. Note that LDA is a supervised method, where its components are

computed using the partition obtained by k-means rather than the true cluster label that is

assumed to be unknown.

- For the eigendecomposition based methods, PSDEC, Ncut-k-means and PCA-k-means, we

set the number of components equal to the number of sample clusters k. For LDA-k-means,

we set the number of components equal to the number of sample clusters less one (k − 1).

- For PSDEC, the graph Laplacian is constructed using the Euclidean-distance-based KNN.

Also, the neighborhood size is fixed to 5 for the smallest data sets and 10 for the remaining

data sets.
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4.6.1 Empirical convergence study.

Due to limited space, we will not provide the proof of convergence here. As an illustration,

Figure 4.2 shows the empirical convergence behavior of the proposed PSDEC algorithm on

some image data sets. We can observe that PSDEC requires few iterations to converge on the

five data sets: USPS, PIE and MNIST.
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Figure 4.2 – Empirical convergence behavior of PSDEC.

4.6.2 Clustering performances.

The assessment of all algorithms in terms of Acc, NMI and ARI are reported in Table 4.2.

The main comments arising from our experiments are the following. First, all methods appear

almost always better than both k-means in terms of Acc, NMI and ARI. Furthermore, we note

that the NMF-based methods including NMF and PNMF give similar results and none among

them which outperforms the other. Moreover, the Two-steps based methods including Ncut-k-

means, PCA-k-means, LDA-k-means are equivalent with a slight advantage to LDA-k-means.

Finally, we can see that PSDEC performs much better than both NMF-based and Two-steps

based methods on all real image data sets. We observe that PSDEC allows the best separability

between the clusters.
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4.6.3 Statistical tests.

To confirm the performance of PSDEC (p = 0) compared with PSDEC (p = p∗), for each

data set, we perform pairwise t-tests on 50 random initialisations. Table 4.3 shows that the

improvement is statistically significant; most of the p-values are less than 0.1%.

Table 4.3 – SDEC (p = 0) vs PSDEC (p = p∗): Evaluation on image data sets in terms of Acc,

NMI and ARI; using t-tests performed on 50 random initialisations. p∗ denotes the value of p
optimizing the criterion.

Data set Metric PSDEC (p = 0) PSDEC (p = p∗) P-values

Max Min Mean std Max Min Mean std

Acc 0.810 0.606 0.673 0.045 0.882 0.859 0.872 0.004 < 0.1%
Coil20 (-) NMI 0.895 0.788 0.837 0.026 0.965 0.945 0.947 0.001 < 0.1%

ARI 0.750 0.516 0.608 0.057 0.846 0.811 0.824 0.005 < 0.1%
Acc 0.695 0.685 0.688 0.003 0.708 0.703 0.706 0.002 < 0.1%

ORL (-) NMI 0.822 0.810 0.815 0.005 0.827 0.826 0.827 0.000 < 0.1%
ARI 0.552 0.528 0.538 0.010 0.578 0.566 0.575 0.005 < 0.1%
Acc 0.531 0.470 0.489 0.014 0.597 0.594 0.595 0.001 < 0.1%

Yale (-) NMI 0.587 0.557 0.571 0.013 0.635 0.633 0.634 0.001 < 0.1%
ARI 0.324 0.282 0.298 0.015 0.362 0.358 0.360 0.002 < 0.1%
Acc 0.790 0.671 0.708 0.028 0.888 0.873 0.886 0.002 < 0.1%

PIE NMI 0.915 0.862 0.871 0.012 0.956 0.952 0.955 0.001 < 0.1%
ARI 0.803 0.742 0.779 0.022 0.870 0.856 0.868 0.002 < 0.1%
Acc 0.928 0.761 0.807 0.039 0.944 0.930 0.942 0.002 < 0.1%

USPS NMI 0.859 0.804 0.814 0.016 0.876 0.855 0.875 0.003 < 0.1%
ARI 0.862 0.740 0.770 0.029 0.893 0.865 0.892 0.005 < 0.1%
Acc 0.696 0.584 0.622 0.028 0.759 0.699 0.721 0.010 < 0.1%

MNIST NMI 0.621 0.573 0.581 0.015 0.753 0.721 0.739 0.008 < 0.1%
ARI 0.536 0.464 0.482 0.020 0.658 0.611 0.628 0.013 < 0.1%

4.6.4 Real data visualization.

Like in Figure 4.1, we present in Figure 4.3 the obtained clustering results of both k-means,

SDEC and PSDEC on some representative real data sets. Using the first two principal compo-

nents, we can observe the embedding matrix B which is updated and exploited by the approx-

imation process of PSDEC; it reveals a better visualization of clusters. We can note that the

clustering result of k-means is not satisfactory for all data sets where we note several misclas-

sified objects. However, thanks to the embedding matrix B which is the low-dimensional data

representation obtained by our proposed methods, we can observe that PSDEC allows the best

separability between the clusters on both synthetic and real data sets.
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Figure 4.3 – Clustering and visualization with PSDEC (p = 0), PSDEC (p = p∗) and k-means. p∗

denotes the value of p optimizing the criterion.
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4.7 Conclusion

The dual purpose of this paper is spectral embedding and clustering. Based on the decompo-

sition of the objective function of PSDEC into two terms where the first one is the objective

function of spectral embedding while the second is the Semi-NMF criterion in a low embed-

ded space; we proposed a novel way to consider clustering and the reduction of the dimension

simultaneously.

The proposed PSDEC approach performs on a stochastic powered matrix; the purpose of

the use of such matrix is twofold. First, it allows to the use of power method inside our algo-

rithm in order to speed up the eigenvectors computation, and secondly to explore the similarity

matrix structure via a random walk process and then make the similarity matrix more suitable

for the clustering task (quasi block diagonal matrix). As shown in the experiments section, this

usually leads to a better embedding approximation and an improvement in clustering accuracy.

In other words, our approach takes advantage of the mutual reinforcement between data

spectral embedding and clustering tasks. Such a solution approximates better the relaxed con-

tinuous spectral embedding solution by the good obtained partitions. More interestingly, we

established theoretical connections between PSDEC and some well known approaches like

spectral matrix decomposition, semi-NMF, Procrustes problem and Power method. This ex-

plains the performance improvement.

75



4. UNIFIED FRAMEWORK FOR SPECTRAL DATA EMBEDDING AND CLUSTERING

76



5. UNIFIED FRAMEWORK FOR DATA EMBEDDING AND CO-CLUSTERING

Chapter 5

Simultaneous Sparse Data Embedding

and Co-clustering
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5.1 Introduction

In this chapter we proposed a novel way to consider simultaneously the co-clustering and the re-

duction of the dimension. Our approach takes advantage of the mutual reinforcement between

Principal Component Analysis (PCA) which provide a low-dimensional representation of data

and Semi-Nonnegative Matrix Factorization (Semi-NMF) that learns this low-dimensional rep-

resentation and lends itself to a co-clustering interpretation. In other words, the proposed

framework aims to find an optimal subspace of multi-dimensional variables for identifying a

partition of the set of objects. We show that by doing so, our model is able to learn low-

dimensional representations that are better suited for co-clustering, outperforming not only

spectral methods, but also co-clustering graph-regularized-based methods. Specifically:

• Unlike to known methods that combine the objective function of PCA and the objective

function of k-means separately, we propose a new single framework to perform SemiNMF

via PCA for dimension reduction and data co-clustering.

• We show that the objective learning of SemiNMF-PCA-Coclust can be decomposed into

two terms, the first one is the objective function of PCA and the second is the Semi-NMF

criterion in a low dimensional space. This allows a better approximation of data reduction

by a co-clustering solution.

• We further developed our method to incorporate manifold information of both data samples

and data features and proposed the graph Regularized SemiNMF-PCA-Coclust method.

In this chapter, we focused our experiments on the sparse document-term databases. The

objective of co-clustering is to simultaneously group documents and terms into meaningful

clusters. This ability to ”simplify” the data can be used to automatically annotate sets of

documents with suitable descriptive terms, thus having applications for automatic indexing,

information retrieval as well as exploratory visualization of large document corpuses.

This problem attracted many authors these last years even this problem has been first in-

vestigated by Hartigan [1972]. In [Govaert, 1995], the author proposed three algorithms to

perform co-clustering on several kinds of data, namely contingency table, binary and contin-

uous data. For continuous data, the author developed the Croeuc algorithm which consists in

using the principle of double k-means. Later, Dhillon [2001a] proposed the bipartite spectral

graph partitioning algorithm referred as (Spec) in the sequel. This algorithm has some nice

theoretical properties; the singular vectors solve a real relaxation to the NP-complete graph

bipartitioning problem. Other algorithms for co-clustering document-term matrices have been

proposed in the following years. For example, Li [2005] has proposed a block diagonal clus-

tering algorithm that, given a binary document-term matrix, produces a block diagonal matrix
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of ones. This algorithm consists in alternating the clustering of rows and columns minimizing

the squared error between the original X data and its approximation AB⊤ where A and B

are binary matrices. It is worth mentioning the Information-Theoretic Co-clustering (ITCC)

algorithm [Dhillon et al., 2003b] which uses as criterion the minimization of the difference

in mutual information between the original document-term matrix and the aggregated matrix.

More recently, a new direction has been proposed which rely on the maximization of an adapted

version of the graph modularity used for community detection. For example, Labiod and Nadif

[2011] proposed a co-clustering algorithm maximizing a bipartite modularity by using a spec-

tral approach. According to the experiments carried out by the authors, the developed Speco

algorithm appears to perform well in the field of document clustering compared to other binary

clustering methods based on NMF or NMTF.

Despite the popularity of factorization-based co-clustering methods, one drawback is that

they rest on only a global Euclidean geometry, and a local manifold geometry is not fully

considered. To address this major limitation, some researchers have sought to take into account

a local geometrical structure in matrix-factorization-based co-clustering. For instance, Gu and

Zhou [2009] proposed the Dual Regularized Co-Clustering (DRCC) method, which inherits the

advantages of NMTF and, in addition, takes into account the manifold structures in both sample

and feature spaces. However, when dealing with certain types of data that contain negative

values, DRCC is of limited applicability. In addition, its high computational complexity usually

makes DRCC unsuitable for large-scale problems. As a consequence of this, in [Wang et al.,

2011a] the authors proposed the Locally Preserved Fast Nonnegative Matrix Tri-Factorization

algorithm (LpFNMTF), constraining the factors to be cluster indicator matrices and reducing

the computational cost of the eigendecomposition of the graph Laplacian.

The rest of chapter is organized as follows. Section 2 introduces the co-clustering prob-

lem and the dimension reduction in factorization framework. Section 3 provides a sound

SemiNMF-PCA-Coclust framework for co-clustering. Section 4 focuses on some details con-

cerning the proposed Graph Regularized SemiNMF-PCA-Coclust algorithm. Sections 5 and

6 are devoted to numerical experiments on some real document-term data sets. Finally, the

conclusion summarizes the advantages of our contribution.

5.2 SemiNMF-PCA Co-Clustering

Let X = (xij) be a (n× d) positive data matrix; we assume that X is provided by a collection

of n data row vectors {x1, . . . ,xn}, each with d features. Let k be the number of the sample

clusters, ℓ the number of feature clusters and p the number of components to which the features

are reduced. We put nd = n+ d, kℓ = k + ℓ.
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Inspired by Dhillon [2001a], we apply co-clustering to document-term matrices and pose

the co-clustering problem as a bipartite graph partitioning problem. SemiNMF-PCA co-clustering

is defined as the minimizing problem of the following criterion:

min
G,S,Q

∥∥∥M −GSQ⊤
∥∥∥
2

s.t. G ≥ 0, Q⊤Q = I. (5.1)

where ‖.‖ denotes the Frobenius norm. The matrix M of size (nd× nd) can be written in the

form of block matrix as

M =

[
0 X

X⊤ 0

]
, where X is the document-term matrix.

The matrix G of size (nd × kℓ), S of size (kℓ × 2p) and Q of size (nd × 2p) are defined

as follows:

G =

[
G

(n×k)
g 0

0 G
(d×ℓ)
f

]
, Q =

[
Q

(n×p)
g 0

0 Q
(d×p)
f

]
and S =

[
S
(k×p)
g θ

(k×p)
g

θ
(ℓ×p)
f S

(ℓ×p)
f

]
.

where Gg, and Gf are the label matrices obtained by applying k-means on X and X⊤

respectively. Sg = (sk′p) and Sf = (sℓ′p) are centroid matrices while sgk′ is a centroid of the

(k′)th sample cluster for each k′ = 1, . . . , k and sf ℓ′ is a centroid of the (ℓ′)th feature cluster

for each ℓ′ = 1, . . . , ℓ.

Note that Qg, Qf are initialized using Singular Value Decomposition (SVD). Applying

the full SVD to X , we obtain X = UΣV ⊤. Truncating U , Σ and V to the first p singular

components and arbitrarily splitting the singular values between the left and right factors yields

an optimal rank −p approximation of X in the least-squares sense. In fact, U of size (n × p)

and V of size (d× p) are orthonormal matrices and Σ of size (p× p) diagonal containing the p

non-negative singular values of X in non-increasing order on its diagonal. Now we simply put

Qg = UΣ and Qf = V Σ.

5.3 Regularized SemiNMF-PCA for Co-Clustering

Recent research has shown that existing co-clustering algorithms fail to consider the intrinsic

geometric structure in the data which is essential for data clustering on manifolds [Gu and

Zhou, 2009; Wang et al., 2011b]. Furthermore, we known that PCA provides an embedding

for the data lying on a linear manifold. However, in many applications, data lie in a non-linear

manifold.
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One popular method is to use the graph Laplacian based embedding. Laplacian embedding

[Belkin and Niyogi, 2001; Zhang and Zha, 2004] preserves the local geometrical relationships

and maximizes the smoothness with respect to the intrinsic manifold of the data set in the

low-embedding space. We now formulate the Regularized SemiNMF-PCA co-clustering (R-

SemiNMF-PCA-Coclust) problem in the light of this considerations.

We first construct a K-nearest neighbor data graph whose vertices correspond to the n data

samples [x1, . . . ,xn]. We use the 01 weighting scheme to construct the K-nearest neighbor

graph, and define the data weight matrix Wg as follows,

Wg(ij) =

{
1, if xj ∈ N(xi); i, j = 1, · · · , n; i 6= j.

0, otherwise

where N(xi) represents the set of K-nearest neighbors of xi. Then, we define the weight

matrix Wf from the k-nearest neighbor graph whose vertices correspond to the d data features,

in an analogous way. Next, we simply compute the normalized graph Laplacians Lg and Lf ,

respectively.

Lg = D
− 1

2
g WgD

− 1
2

g and Lf = D
− 1

2
f WfD

− 1
2

f

where Dg, Df are diagonal matrices the entries of which are row sums of the matrices Wg and

Wf respectively. Introducing the normalized graph Laplacians Lg and Lf in the matrix M we

obtain

M =

[
αLg X

X⊤ βLf

]

where α and β are the to trade-off parameters used to govern the contribution of Lg and Lf ,

respectively. The Regularized SemiNMF-PCA co-clustering optimization problem (5.1) be-

comes:

min
G,S,Q

∥∥∥M −GSQ⊤
∥∥∥
2

s.t. G ≥ 0, Q⊤Q = I. (5.2)

To solve (5.2), we rely on the following proposition

Proposition 4. Given G≥ 0 and Q⊤Q = I , the objective function of R-SemiNMF-PCA-

Coclust can be decomposed into two terms:

∥∥∥M −GSQ⊤
∥∥∥
2
=

∥∥∥M −MQQ⊤
∥∥∥
2
+ ‖MQ−GS‖2 (5.3)
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Proof. We expand the matrix norm of the left term of Eq. (5.3)

∥∥∥M −GSQ⊤
∥∥∥
2
= ‖M‖2 +

∥∥∥GSQ⊤
∥∥∥
2
− 2Tr(M⊤GSQ⊤)

In a similar way, we obtain from the two terms of the right term of Eq. (5.3)

∥∥∥M −MQQ⊤
∥∥∥
2

= ‖M‖2 +
∥∥∥MQQ⊤

∥∥∥
2
− 2Tr(MQQ⊤M⊤)

= ‖M‖2 +
∥∥∥MQQ⊤

∥∥∥
2
− 2||MQ||2

= ||M ||2 − ||MQ||2, due to Q⊤Q = I (5.4)

and ‖MQ−GS‖2 = ‖MQ‖2 + ‖GS‖2 − 2Tr(M⊤GSQ⊤)

Due also to Q⊤Q = I , we have

‖MQ−GS‖2 = ||MQ||2 + ||GSQ⊤||2 − 2Tr(M⊤GSQ⊤) (5.5)

Summing the two terms Eq. (5.4) and Eq. (5.5 ) leads to the left term of Eq. (5.3).

‖M‖2 + ‖GS‖2 − 2Tr(M⊤GSQ⊤) =
∥∥∥M −GSQ⊤

∥∥∥
2

(5.6)

Using proposition 4, the objective function of R-SemiNMF-PCA-Coclust (5.2) can be de-

composed into two terms: the first one is the objective function of PCA, and the second is the

SemiNMF criterion in a low-dimensional subspace.

5.4 Optimization

To solve (5.2), we use an alternated iterative method.

Computation of S. First, fixing G and Q, by setting the derivative of the second term in (5.2)

with respect to S as 0, we obtain:

S = (G⊤G)−1 G⊤MQ (5.7)

Computation of Q. Secondly, fixing G and S, we can rewrite (5.2) as:

min
Q⊤Q=I

∥∥∥M −BQ⊤
∥∥∥
2

where B = GS. (5.8)
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To solve (5.8) we rely on the Theorem 1. Due to Theorem 1, applying SVD to M⊤B we obtain

the expression of Q = UV ⊤.

Computation of G. Thirdly, update G by keeping S and Q fixed at the value computed in

the above steps, as in [Ding et al., 2006b] we obtain

G = G◦

√
[MH⊤]+ +G[HH⊤]−

G[HH⊤]+ + [MH⊤]−
(5.9)

where H = SQ⊤, A+ and A− correspond respectively to positive and negative parts of the

matrix A given by

A+
ik =

1

2
(|Aik|+Aik) and A−

ik =
1

2
(|Aik| −Aik)

In summary, the steps of the R-SemiNMF-PCA-Coclust can be deduced in Algorithm 8.

Algorithm 8: R-SemiNMF-PCA-Coclust algorithm.

Input: Data matrix X , k, l and p.

Initialize: - G using k-means, Q using SVD.

Step 1 : Compute the normalized graph Laplacians Lg and Lf .

Step 2 : Construct the matrix M .

repeat
(a) - Update S by Eq. (5.7);

(b) - Update G by Eq. (5.9)

(c) - Update Q by solving Eq. (5.8)

until convergence;

Output: - Sample indicator matrix Gg = G[1..n, 1..k]
- Feature indicator matrix Gf = G[n+ 1..nd, k + 1..kℓ]
- Sample embedding matrix Qg = Q[1..n, 1..P ]

5.5 Experiments

The series of experiments presented in this section is devoted to studying the behavior and

performance of R-SemiNMF-PCA-CoClust, and comparing it with other algorithms commonly

used for revealing block and homogeneous co-clusters in the document clustering context. The

competitive algorithms retained for comparison with R-SemiNMF-PCA-CoClust are Croeuc

[Govaert, 1983], Spec [Dhillon, 2001a], ITCC [Dhillon et al., 2003b], SpecCo [Labiod and

Nadif, 2011], DRCC [Gu and Zhou, 2009], FNMTF and LpFNMTF [Wang et al., 2011b].
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Performance metrics. To measure the clustering performance of the proposed algorithms we

use the commonly adopted external metrics, the accuracy, the Normalize Mutual Information

[Strehl and Ghosh, 2002] and the Adjusted Rand Index [Hubert and Arabie, 1985]. We focus

only on the quality of row clustering. For these three metrics (Acc, NMI and ARI), a value

close to 1 means a good clustering result.

Data sets. The experiments were performed using some benchmark Document-term data sets

from the clustering literature. Table 5.1 summarizes the characteristics of these data sets 1.

Table 5.1 – Description of document-term Data sets.

Data sets Characteristics

#Documents #Terms #Clusters Sparsity (%) Balance

CSTR 475 1000 4 96.60 0.399

WebACE 2340 1000 20 91.83 0.169

NG20 19949 43586 20 99.99 0.991

RCV1 9625 29992 4 99.75 0.766

Reviews 4069 18483 5 99.99 0.098

Sports 8580 14870 7 99.99 0.036

Classic3 3891 4303 3 98.0 0.710

Classic4 7095 5896 4 99.41 0.323

Note that, for all the used document-term data sets, we apply the TF-IDF transformation on

all the document-term frequency matrices. We used the TF-IDF weighting scheme proposed in

scikit-learn [Pedregosa et al., 2011].

Parameter settings. We run each method under different parameter settings 50 times and

we report the best result for each method. We set the number of sample clusters equal to the

true number of classes (k) for all the data sets. Also, the number of feature clusters (ℓ) is set to

be the same as the number of sample clusters.

• For all the compared methods, we use spherical k-means (Sk-means) [Dhillon, 2001a] to

initialize the sample partition matrix G according the type of data. Furthermore, the best

parameters are used, as suggested in each of the reference articles (see for details [Dhillon,

2001a; Dhillon et al., 2003b; Govaert, 1983; Gu and Zhou, 2009; Labiod and Nadif, 2011;

Wang et al., 2011b]).

• For graph-regularized-based methods, DRCC, LPFNMTF and R-SemiNMF-PCA-CoClust,

the graph Laplacian matrix is constructed using the cosine-distance-based K-Nearest Neigh-

bors in which the neighborhood size is fixed to 5 for the smallest data sets and 10 for the

remaining data sets.

1The balance coefficient is defined as the ratio of the number of documents in the smallest class to the number

of documents in the largest class.
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• For R-SemiNMF-PCA-CoClust, we varied the number of components p between 2 and k

and retained the one that optimizes the criterion. Furtehermore, the regularization parameter

α is searched from the grid (0.01, 0.1, 1, 10, 100, 500, 1000). Also, we set β = 0.1α.

5.5.1 Global Performance Evaluation

The results reported in table 5.2 were obtained by running each algorithm 50 times with random

initialization. We retained the solution optimizing the associated criterion. It clearly appears

from the results reported in table 5.2 that R-SemiNMF-PCA-CoClust outperforms all the other

compared algorithms most of the time.

Next, we present in Fig. 5.1 the obtained clustering results of both k-means and R-

SemiNMF-PCA-CoClust on some representative real data sets. Furthermore, using the first

p principal components for CSTR (best p = 4), Classic4 (best p = 4), Reviews (best p = 3)

and RCV1 (best p = 3) data sets, we can observe the embedding matrix B which is updated

and exploited by the approximation process of R-SemiNMF-PCA-CoClust; it reveals a better

separability of clusters.

Table 5.2 – Co-clustering on several data sets. The neighborhood size is fixed to 5 for the

smallest data sets indicated by (-) and it is fixed to 10 for the remaining data sets.

Data sets Metric Croeuc Spec ITCC SpecCo DRCC FNMTF LpFNMTF R-SemiNMF-PCA

-Coclust

Acc 0.787 0.838 0.663 0.903 0.865 0.903 0.907 0.924

CSTR (-) NMI 0.688 0.696 0.672 0.771 0.702 0.778 0.805 0.831

ARI 0.634 0.732 0.578 0.810 0.719 0.810 0.833 0.862

Acc 0.545 0.394 0.554 0.542 0.603 0.526 0.639 0.651

WEBACE (-) NMI 0.614 0.532 0.684 0.635 0.633 0.619 0.646 0.669

ARI 0.456 0.361 0.463 0.440 0.513 0.475 0.609 0.613

Acc 0.548 0.195 0.448 0.375 0.392 0.502 0.556 0.665

NG20 NMI 0.547 0.328 0.523 0.464 0.400 0.516 0.533 0.635

ARI 0.408 0.163 0.334 0.262 0.159 0.314 0.347 0.504

Acc 0.681 0.309 0.673 0.396 0.706 0.553 0.619 0.752

RCV1 NMI 0.477 0.012 0.440 0.036 0.468 0.304 0.358 0.517

ARI 0.441 0.005 0.408 0.112 0.455 0.282 0.363 0.509

Acc 0.434 0.527 0.711 0.580 0.720 0.510 0.610 0.750

REVIEWS NMI 0.291 0.312 0.569 0.449 0.527 0.373 0.379 0.657

ARI 0.162 0.197 0.589 0.411 0.533 0.264 0.324 0.638

Acc 0.486 0.564 0.558 0.613 0.565 0.457 0.653 0.704

SPORTS NMI 0.316 0.481 0.579 0.659 0.569 0.369 0.552 0.691

ARI 0.178 0.375 0.394 0.471 0.378 0.203 0.461 0.621

Acc 0.909 0.832 0.986 0.905 0.981 0.922 0.979 0.992

CLASSIC3 (-) NMI 0.775 0.717 0.931 0.771 0.909 0.755 0.905 0.954

ARI 0.838 0.724 0.959 0.813 0.942 0.787 0.940 0.974

Acc 0.763 0.756 0.722 0.563 0.599 0.686 0.743 0.772

CLASSIC4 (-) NMI 0.619 0.675 0.593 0.342 0.579 0.470 0.585 0.686

ARI 0.511 0.526 0.445 0.301 0.449 0.358 0.454 0.541
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Figure 5.1 – Visualization of the obtained clustering results of both k-means and R-SemiNMF-

PCA-CoClust. Visualization of B(a, b): the two selected first principal components a and b of

the embedding matrix B obtained by R-SemiNMF-PCA-CoClust.
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5.5.2 Statistical tests.

The first question attempted to see if there were any significant differences among R-SemiNMF-

PCA-CoClust compared with LpFNMTF?

To this end, we first test for the significance of performance differences between R-SemiNMF-

PCA-CoClust and LpFNMTF. For each data set, we used analysis of variance (One-way ANOVA)

test. We notice that all of the ANOVA p-values are less than 5%. Next, to confirm the perfor-

mance of R-SemiNMF-PCA-CoClust compared with LpFNMTF, we perform pairwise t-tests.

As it can be seen in table 5.3, the improvement is statistically significant; most of the t-test

p-values are less than 5%.

Table 5.3 – R-SemiNMF-PCA-CoClust vs LpFNMTF: Evaluation in terms of Acc, NMI and

ARI; using t-tests performed on 50 random initialisations.

Data sets Metric LpFNMTF R-SemiNMF-PCA- P-values (T-test)

Coclust

Acc 0.885 ±0.013 0.909 ±0.005 1.193e− 20
CSTR NMI 0.757 ±0.030 0.790 ±0.013 2.484e− 10

ARI 0.781 ±0.031 0.828 ±0.010 1.689e− 16
Acc 0.604 ±0.037 0.622 ±0.015 0.002

WEBACE NMI 0.608 ±0.019 0.655 ±0.008 2.756e− 08
ARI 0.522 ±0.048 0.543 ±0.037 0.001
Acc 0.494 ±0.023 0.583 ±0.035 2.776e− 27

NG20 NMI 0.496 ±0.016 0.599 ±0.015 5.796e− 61
ARI 0.312 ±0.020 0.444 ±0.023 1.474e− 51
Acc 0.550 ±0.030 0.747 ±0.004 3.458e− 68

RCV1 NMI 0.225 ±0.063 0.504 ±0.007 1.950e− 52
ARI 0.270 ±0.030 0.500 ±0.005 1.431e− 74
Acc 0.457 ±0.042 0.678 ±0.039 6.782e− 45

REVIEWS NMI 0.271 ±0.040 0.581 ±0.039 1.570e− 58
ARI 0.171 ±0.048 0.556 ±0.053 1.238e− 55
Acc 0.549 ±0.058 0.647 ±0.026 2.346e− 17

SPORTS NMI 0.464 ±0.051 0.650 ±0.025 5.504e− 41
ARI 0.348 ±0.064 0.505 ±0.037 1.111e− 26
Acc 0.977 ±0.002 0.991 ±0.001 1.783e− 18

CLASSIC3 NMI 0.900 ±0.002 0.953 ±0.001 1.346e− 12
ARI 0.937 ±0.001 0.973 ±0.001 2.366e− 12
Acc 0.729 ±0.010 0.738 ±0.009 3.021e− 06

CLASSIC4 NMI 0.559 ±0.016 0.671 ±0.006 7.976e− 68
ARI 0.438 ±0.015 0.472 ±0.013 3.730e− 20

5.5.3 Study on regularization parameters α and β

The choice of parameters α and β is not easy. However, through our experiments, we can give

indications on the appropriate values to be taken for these two parameters. In Figure 5.2, are

reported the performances of our algorithm in terms of Acc, NMI and ARI according values of

parameters α and β varying in the interval 0.001 to 1000, we took α = 0.1β.
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Figure 5.2 – Co-clustering quality for different values of α and β.

For CSTR data set, the performance of R-SemiNMF-PCA-Coclust, grows with α and β, it

is the best when α and β are higher (α = 1000). Furthermore, we note that, for Classic3 data

set, the best performances are obtained with (α = 10). However, for Reviews data set, small

values of α and β appear more interesting. In fact, the number of data features increases the

possibility of the presence of noise. It seems an important element in the choice of α and β.

The same observations are verified from the remaining data sets.

5.6 Co-clustering on Pubmed Data

In the preceding sections, we evaluated the document clusters produced by the algorithm. How-

ever, R-SemiNMF-PCA-Coclust, as a co-clustering algorithm, also produces corresponding

term clusters. It is difficult to assess the quality of these clusters since, contrary to what is

the case for documents, we do not have gold standard labels for terms. However, in this sec-

tion we demonstrate that the term clusters obtained with R-SemiNMF-PCA-Coclust are really

meaningful and in good agreement with the corresponding document clusters.

To do so, we use the 10PUBMED data set used in [Chen et al., 2009]. This data set contains

more than 15,500 MEDLINE biomedical medical abstracts from Medline database, partitioned

across 10 different diseases and published between 2000 and 2008. After pre-processing, the

authors obtained a document-terms matrix of the size (15565 × 22437). The list of diseases

is presented in table 5.4. Furthermore, we have used two other variants of 10PUBMED. In

PUBMED6 data set, we retain the six largest classes including Migraine (3703 documents),

Age-related Macular Degeneration (3283 documents), Otitis (2596 documents), Kidney Cal-

culi (1549 documents), Hay Fever (1517 documents) and Hepatitis A (796 documents). We

removed all terms that do not appear in at least one document. Similarly, in PUBMED5 data

set, we retain only the five largest classes.
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Table 5.4 – Disease clusters in the PUBMED10 data set

Disease class Number of documents

Migraine 3703

Age-related Macular Degeneration 3283

Otitis 2596

Kidney Calculi 1549

Hay Fever 1517

Hepatitis A 796

Chickenpox 732

Gout 543

Jaundice 503

Raynaud Disease 343

Our objective is to illustrate that the corresponding terms of each disease cluster are gen-

erally meaningful and can be used to describe the document clusters. We apply the compared

methods to co-cluster PUBMED10, PUBMED6 and PUBMED5 data sets. Table 5.5 shows the

obtained results. In addition, a reorganisation of the tree matrices according to the co-clusters

obtained by our method are illustrated in figure 5.3. Finally, the 10 top terms PUBMED5 data

set are presented in Table 5.6. The top 10 terms of each co-cluster (numbered in figure 5.3

(a)) were obtained by keeping only the terms that appear in most documents in the considered

cluster.

Table 5.5 – Co-clustering methods on PUBMED data sets

Data sets Metric Croeuc Spec ITCC SpecCo DRCC FNMTF LpFNMTF R-SemiNMF-PCA

-Coclust

Acc 0.343 0.292 0.755 0.388 0.868 0.483 0.894 0.987

Pubmed5 NMI 0.068 0.007 0.671 0.170 0.755 0.316 0.758 0.949

ARI 0.056 0.001 0.684 0.116 0.727 0.196 0.774 0.965

Acc 0.297 0.277 0.674 0.433 0.760 0.480 0.810 0.838

Pubmed6 NMI 0.053 0.008 0.625 0.182 0.701 0.301 0.772 0.810

ARI 0.052 0.001 0.598 0.116 0.657 0.190 0.728 0.758

Acc 0.212 0.471 0.645 0.429 0.646 0.549 0.696 0.716

Pubmed10 NMI 0.039 0.390 0.710 0.166 0.679 0.579 0.712 0.777

ARI 0.032 0.181 0.613 0.122 0.596 0.433 0.627 0.674

Table 5.6 – the 10 top Terms of the obtained Clusters on PUBMED5 data set

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

allerg stone macular aura otiti

rhiniti renal ey migraineur ear

nasal kidnei visual famili media

pollen percutan amd mechan children

season calculi retin neurolog middl

allergen lithotripsi acuiti receptor antibiot

asthma shock degen pathophysiolog effu

allergi uret neovascular cortic aom

immunotherapi nephrolithotomi intravitr hemipleg om

89



5. UNIFIED FRAMEWORK FOR DATA EMBEDDING AND CO-CLUSTERING

The main comments arising from our experiments are the following.

• We have analyzed the five most homogeneous blocks which correspond to the obtained five

sample clusters. Since our method is not diagonal, the overlap is not only tolerable, but

in addition, it is beneficial. For example, there are many common terms between Kidney

Calculi and Otitis disease’s abstracts. This explains why the block 2 and the block 5 are

overlapped in term of features, although the obtained top terms are different.

• The results show that the column clusters are semantically coherent and highly indicative

of the document clusters: Hay Fever (Cluster 1), Kidney Calculi (Cluster 2), Age-related

Macular Degeneration (Cluster3), Migraine (Cluster 4) and Otitis (Cluster 5).

• In Figures 5.3(a),(b) and (c), the dense band of variables are the terms cited in the majority

of the documents and that can be considered as noise. This did not affect the co-clustering

process and has not prevented a correct classification of documents and terms.

(a) Pubmed5 reorganized data. (b) Pubmed6 reorganized data.

(c) Pubmed10 reorganized data.

Figure 5.3 – Co-clustering results on PUBMED data sets.
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5.7 Conclusion

The dual purpose of this paper is reducing the dimension and co-clustering. Based on the

decomposition of the objective function of SemiNMF-PCA-Coclust into two terms where the

first one is the objective function of PCA and the second is the SemiNMF criterion in a low-

dimensional space, we proposed a novel way to consider simultaneously the Co-clustering and

the reduction of the dimension. Our approach takes advantage of the mutual reinforcement

between data reduction and Co-clustering tasks. Such a solution better approximate the re-

laxed continuous dimension reduction solution by the true discrete Co-clustering solution. We

also establish theoretical connections among our method and NMF, k-means and PNMF; that

explain the performance improvement. On sparse data sets, our partitioning algorithms give

better results in terms of clustering than the state-of-art algorithms devoted to similar tasks for

data sets with different sizes, degrees of overlapping and balances.
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Chapter 6

Multi-Manifold Co-clustering
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6.1 Introduction

The co-clustering problem can be formulated as a matrix approximation problem minimizing

the approximation error between the original data X and the reconstructed matrix based on the

cluster structures. This approximation can be solved by an iterative alternating least-squares

optimization procedure (see, for instance [Govaert and Nadif, 2014]). Several algorithms have

been proposed using the principle of double Kmeans [Rocci and Vichi, 2008]. Here, we propose

a new variant formulation of double Kmeans concept, referred in the sequel, Matrix Decompo-

sition based Co-clustering algorithm (MDC).

6.2 Matrix Decomposition based Co-clustering

Given a data set X ∈ Rd×n and defined by X := {xji; j = 1, . . . , d; i = 1, . . . , n},

the co-clustering considers simultaneously the set of samples {x.1, . . . ,x.n} where x.i =

(x1i, . . . , xni) and the set of features {x1., . . . ,xd.} where xj. = (xj1, . . . , xjd) in order to or-

ganize data matrix X into homogeneous blocks. This block structure can be obtained by a cou-

ple of partitions P = {P1 , . . . ,Pk} of columns into k clusters and Q = {Q1 , . . . ,Qℓ} of rows

into ℓ clusters. Then a summary defined by a matrix S := {(sqp; q = 1, . . . , ℓ; p = 1, . . . , k} of

size ℓ× k can be computed. Each summary sqp corresponding to block (q, p) is a real number

and the row and column vectors of S are noted s.q and sp..

The partitions P and Q can be respectively expressed as binary matrices G := {gip; i =

1, . . . , n; p = 1, . . . , k} with gip = 1 if i ∈ Pp and gip = 0 otherwise, and F := {fjq; j =

1, . . . , d; q = 1, . . . , ℓ} with fjq = 1 if j ∈ Qq and fjq = 0 otherwise.

6.2.1 Co-clustering via double Kmeans

The co-clustering problem can be formulated as a matrix approximation problem that consists

in minimizing the approximation error between the original data X and the reconstructed ma-

trix based on P, Q and S. An iterative algorithm attempts to identify optimal partitions P

and Q. The most commonly used criterion to measure the deviation between the data matrix

X = (xji) and the structure described by P, Q and S is defined by

Ψ(X,P,Q, S) =

k∑

p=1

ℓ∑

q=1

∑

i∈Pp

∑

j∈Qq

(xji − sqp)
2

=
n∑

i=1

k∑

p=1

d∑

j=1

ℓ∑

q=1

gipfjq(xji − sqp)
2.
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Several algorithms that consist in using the principle of a double Kmeans have been pro-

posed to minimise this criterion (see for instance [Baier et al., 1997; Cho et al., 2004; Rocci

and Vichi, 2008]). Here, we propose a new parsimonious matrix formulation of this algorithm.

First, it is easy to show that the criterion can be rewritten

Ψ(X,P,Q, S) =
∥∥∥X − FSG⊤

∥∥∥
2

(6.1)

where G ∈ {0, 1}n×k is the sample partition matrix of size (n × k ), F ∈ {0, 1}d×ℓ is the

feature partition matrix of size (d × ℓ) and S represents the block value matrix of size (ℓ× k ).

‖.‖ denotes the the Frobenius norm.

Next, we aim to optimize this criterion. This task is based on the following proposition.

Proposition 5. Given Df = F⊤F and Dg = G⊤G, the criterion to be optimized can be

expressed as the sum of two terms in two different ways:

1.
∥∥∥X − FSG⊤

∥∥∥
2
= ‖X − FZ‖2 +

∥∥∥Z − SG⊤
∥∥∥
2

Df

(6.2)

where Z := {zqi =

∑
j fjqxji

#Qq
; q = 1, . . . , ℓ; i = 1, . . . , n}

2.
∥∥∥X − FSG⊤

∥∥∥
2
=

∥∥∥X −WG⊤
∥∥∥
2
+ ‖W − FS‖2Dg

(6.3)

where W := {wjp =

∑
i gjpxji
#Pp

; p = 1, . . . , k; j = 1, . . . , d}

Proof.

∥∥∥X − FSG⊤
∥∥∥
2

=

k∑

p=1

ℓ∑

q=1

∑

i∈Pp

∑

j∈Qq

(xij − sqp)
2

=
∑

i,p

∑

j,q

gipfjq(xji − sqp)
2 (6.4)

=
∑

i,p

∑

j,q

gipfjq(xji − zqi + zqi − sqp)
2 (6.5)

=
∑

i,p

gip
∑

j,q

fjq(xji − zqi)
2 +

∑

i,p,q

gip(zqi − sqp)
2
∑

j

fjq (6.6)

+ 2
∑

i,p,q

(zqi − sqp)
∑

j

gipfjq(xji − zqi). (6.7)
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It is easy to show that the first term is reduced to

∑

i,j,q

fjq(xji − zqi)
2 = ‖X − FZ‖2

The second term is reduced to

∑

i,p,q

#Qqgip(zqi − sqp)
2 =

∥∥∥Z − SG⊤
∥∥∥
2

Df

where Df = F⊤F

and the third term is null since
∑

j gipfjq(xji − zqi) = 0.

Then we deduce a new formulation of (6.1)

∥∥∥X − FSG⊤
∥∥∥
2
= ‖X − FZ‖2 +

∥∥∥Z − SG⊤
∥∥∥
2

Df

.

The second equation (6.3) can be proved in the same way.

From equation (6.2) we deduce that if Q is fixed,

min
G,F,S

∥∥∥X − FSG⊤
∥∥∥
2
⇐⇒ min

G,S

∥∥∥Z − SG⊤
∥∥∥
2

Df

Note that this minimization is performed on a reduced matrix Z of size ℓ × n. Similarly,

from equation (6.3) we deduce that if P is fixed,

min
G,F,S

∥∥∥X − FSG⊤
∥∥∥
2
⇐⇒ min

F,S
‖W − FS‖2Dg

Note that this minimization is performed on a reduced matrix W of size d× k.

Finally, it is easy to show that with P and Q fixed, the optimal values of sqp are the mean

values of block clusters.

Hereafter we give the matrix expression of matrices Z, W and S:

Z = (F⊤F )−1F⊤X, (6.8)

W = XG(G⊤G)−1, (6.9)

S = (F⊤F )−1 F⊤XG(G⊤G)−1. (6.10)

In summary, the steps of the MDC algorithm can be deduced with a matrix formulation in

Algorithm 9. MDC can be viewed as a double Kmeans but on intermediate reduced matrices

Z and W instead the original data matrix X .
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Algorithm 9: MDC algorithm .

1. Start from an initial position (G(0), F (0));
2. Compute S(0) by using eq.(6.10);

3. t = 0;

repeat

(a) - Update G(t+1) by using (Z)(t), eq. (6.8)

g
(t+1)
ip =

{
1 p = argminp′ ||(z.i)

(t) − s
(t)
p′.||

2
Dg

0 otherwise.

(b) - Update F (t+1) by using (W )(t+1) eq.(6.9)

f
(t+1)
jq =

{
1 q = argminq′ ||(wj.)

(t+1) − s
(t)
q′.)||

2
Df

0 otherwise.

(c) - Update S(t+1) by using eq.(6.10).

until convergence;

Note that MDC and FNMTF proposed in [Wang et al., 2011b] are two equivalent algo-

rithms optimizing the same objective function (both MDC and FNMTF used double Kmeans

technique). However, it is important to emphasize that contrary to FNMTF, MDC does not

require the calculation of G and F by relying on the original data but only on reduced interme-

diate matrices Z, W . We will exploit this important advantage of MDC in the sequel.

6.3 MDC algorithm on manifolds

As shown in Section 6.2.1, co-clustering can be formulated as follow

min
G,F,S

∥∥∥X − FSG⊤
∥∥∥
2
. G ∈ {0, 1}n×k, F ∈ {0, 1}d×ℓ. (6.11)

Recent research has shown that existing Matrix Tri-Factorization based co-clustering meth-

ods fail to consider the intrinsic geometric structure in the data which is essential to data co-

clustering on manifolds [Gu and Zhou, 2009; Wang et al., 2011b].

6.3.1 Locality-preserving

In our approach, we aim to find the best partitions that classify data samples and data features as

accurately as possible and at the same time preserves the geometry of the underlying manifolds.

In order to preserve the geometrical properties of manifold data, two undirected graphs are

97



6. MULTI-MANIFOLD CO-CLUSTERING

constructed to model the local manifold structures. The first is constructed from samples and is

denoted (ðg). Its vertices correspond to the samples and its edge weights represent the affinity

between the samples. The second, denoted (ðf ), is constructed from features, in an analogous

way. Then, and according to the smoothness Assumption, two locality-preserving regularization

terms are used to measure the smoothness with respect to the intrinsic manifolds of samples

and features and are defined by the two following manifold approximation problems

∥∥∥GG⊤ − Lg

∥∥∥
2

and

∥∥∥FF⊤ − Lf

∥∥∥
2

Data samples and data features manifolds are expressed by the normalized graph Lapla-

cians Lg and Lf calculated by

Lg = D
− 1

2
g KgD

− 1
2

g and Lf = D
− 1

2
f KfD

− 1
2

f

where Dg, Df are diagonal matrices whose entries are row sums of the affinity matrices Kg

and Kf respectively. Introducing these terms in (6.1), the new optimization problem becomes:

min
G,F,S

∥∥∥X − FSG⊤
∥∥∥
2
+ α

∥∥∥GG⊤ − Lg

∥∥∥
2
+ β

∥∥∥FF⊤ − Lf

∥∥∥
2

(6.12)

G ∈ {0, 1}n×k, F ∈ {0, 1}d×ℓ

where α and β are regularization parameters to balance the reconstruction error of co-clustering

in the first term, together with labeling smoothness in the sample space and feature space in the

second and third terms.

In Table 6.1, we review the graph-regularized-based methods that we will use in the sequel.

Table 6.1 – Compared co-clustering methods. For each type of initialization, we precise below

the published paper where the initialization was used.

Method Objective Function Initialization

DRCC
∥

∥X − FSG⊤
∥

∥

2
+ αTr(G⊤LgG) + βTr(F⊤LfF ) Kmeans [Gu and Zhou, 2009]

G ∈ Rn×k , F ∈ Rd×ℓ, S ∈ Rℓ×k Random [Wang et al., 2011b]

FNMTF
∥

∥X − FSG⊤
∥

∥

2
, G ∈ {0, 1}n×k , F ∈ {0, 1}d×ℓ, S ∈ Rℓ×k Random[Wang et al., 2011b]

LPFNMTF
∥

∥X − FSG⊤
∥

∥

2
+ αTr(G⊤LgG) + βTr(F⊤LfF ) Random[Wang et al., 2011b]

G ∈ {0, 1}n×k , F ∈ {0, 1}d×ℓ, S ∈ Rℓ×k

MDC
∥

∥X − FSG⊤
∥

∥

2
+ α

∥

∥GG⊤ − Lg

∥

∥

2
+ β

∥

∥FF⊤ − Lf

∥

∥

2
k−means or Sk−means

G ∈ {0, 1}n×k , F ∈ {0, 1}d×ℓ, S ∈ Rℓ×k

98



6. MULTI-MANIFOLD CO-CLUSTERING

6.3.2 Reformulation of (6.12) as an Orthogonal Procrustes Problem

Because F and G are constrained to be cluster indicator matrices, it is difficult to solve the

objective function of our problem (6.12). It is, therefore, important that (6.12) be reformulated

and simplified. Next, we propose to model both matrices G and F .

Given a symmetric positive semi-definite similarity matrix Lg, the following decomposi-

tions can be proposed Lg = BgB
⊤
g s.t B⊤

g Bg = I and Lg = GG⊤ s.t G ≥ 0 leading a relation

between G and Bg. After obtaining Bg via an eigen-analysis, we can formulate the recov-

ery of the cluster membership matrix G as follows G = BgQg + E where Qg is an (k × k)

orthonormal rotation matrix which most closely maps Bg to G, and E denotes the residual

matrix. Specifically, finding G can be posed as the following optimization

min
G,Qg

||G−BgQg||
2 s.t Q⊤

g Qg = I, G ≥ 0. (6.13)

In a similar way, given Bf the eigendecomposition of Lf , the recovery of matrix F can be

posed as the following optimization

min
F,Qf

||F −BfQf ||
2 s.t Q⊤

f Qf = I, F ≥ 0. (6.14)

Using equations (6.13) and (6.14) , the expression of our new objective can be written as:

min
G,F,S

∥∥∥X − FSG⊤
∥∥∥
2
+ α ‖G−BgQg‖

2 + β ‖F −BfQf‖
2

(6.15)

G ∈ {0, 1}n×k , F ∈ {0, 1}d×ℓ, Q⊤
g Qg = I, Q⊤

f Qf = I.

Discussion about the criterion optimized As we have seen below in Eq. 6.12, the MDC

algorithm relies on the optimization of

min
G,F,S

∥∥∥X − FSG⊤
∥∥∥
2
+ α

∥∥∥GG⊤ − Lg

∥∥∥
2
+ β

∥∥∥FF⊤ − Lf

∥∥∥
2
,

G ∈ {0, 1}n×k, F ∈ {0, 1}d×ℓ.

that we have simplified to Eq. 6.15

min
G,F,S

∥∥∥X − FSG⊤
∥∥∥
2
+ α ‖G−BgQg‖

2 + β ‖F −BfQf‖
2

G ∈ {0, 1}n×k , F ∈ {0, 1}d×ℓ, Q⊤
g Qg = I, Q⊤

f Qf = I.
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Herein, we illustrate the impact of this formulation. In Fig. 6.1, we see that the mini-

mization of (6.12) by our algorithm involves the minimization of (6.15). This reinforces our

modeling matrices G and F . Although the results of visualisation and clustering in terms of

Acc, NMI, and ARI are very good, further investigation in the approximation of criterion (6.15)

could be even more profitable.
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Figure 6.1 – Behaviors of criterion (6.12) and criterion (6.15) during iterations of the MDC

6.4 Single-Manifold Learning

Real-world data in nowadays have high dimensionality. In order to reduce the dimensional-

ity, a manifold learning technique can be used to map a set of high-dimensional data into a

low-dimensional space, while preserving the intrinsic structure of the data. In linear methods,

the principal component analysis (PCA) is certainly the best known, however, for better rep-

resentation taking into account clusters of data, the Canonical Discriminant Analysis (CDA)

(see for instance, [Gittins, 1985]) is the more appropriate. It is similar to PCA but specialized

to the context of discriminant analysis; one primary purpose of CDA is to separate clusters
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in a lower dimensional discriminant space. In unsupervised learning, these clusters can be

obtained by any clustering algorithm. More efficient in nonlinear cases, a number of tech-

niques have been proposed, including Multi-Dimensional Scaling (MDS), Isometric Feature

Mapping (ISOMAP), Locally Linear Embedding (LLE), Locally Preserving Projections (LPP)

and Stochastic Neighbor Embedding (SNE). Nevertheless these nonlinear techniques tend to

be extremely sensitive to noise, sample size, choice of neighborhood and other parameters (for

details see for instance [Engel et al., 2012; Gittins, 1985; van der Maaten et al., 2008]).

These dimensionality reduction methods include different techniques for capturing the non-

linearity of the underlying manifold, and they incorporate local distance information in differ-

ent ways. Furthermore, the effectiveness of different dimensionality reduction methods varies,

and it has been shown that no single method constantly outperforms the others. Rather than

choosing a single method, therefore, we seek to apply a set of dimensionality reduction meth-

ods and to merge the output of the different methods. Our multi-manifold learning algorithm

aims to overcome the drawbacks of single manifold learning methods and to combine the dif-

ferent data structures to which they give rise. In order to illustrate the ability of each of these

methods to preserve the initial topology and their capability to separate classes, we used the

generated synthetic data set called SwissRoll (1600 × 3) with 4 classes (400 samples in each

class). Figure 6.2 illustrates the obtained manifold projections where the clusters are obtained

thanks to Kmeans.
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Figure 6.2 – Several low-dimensional manifolds of SwissRoll Data set
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Dimensionality reduction methods are restricted to single manifold data sets. However,

given the rapid growth in the quantity and complexity of data, multi-manifold learning was

proposed to approximate the intrinsic manifold using a subset of candidate manifolds, which

can better reflect the local geometrical structure by making use of the graph Laplacian. For

example, some linear approaches for multi-manifold learning were proposed in [Fan et al.,

2012; Goldberg et al., 2009; Lu et al., 2013; Yang et al., 2011].

6.5 Multi-Manifold Matrix Decomposition

Numerous multi-manifold learning methods have been proposed. k-Manifolds [Souvenir and

Pless, 2005] is the first method to classify unorganized data nearly lying on multiple inter-

secting nonlinear manifolds. Unfortunately, this method is limited to deal with intersecting

manifolds since the estimation of geodesic distances will fail when there are widely separated

clusters. On the contrary, the Spectral Multi-Manifold Clustering (SMMC), proposed in [Wang

et al., 2011c], is able to handle intersections and is well suited to group samples generated from

separated manifolds.

In the context of co-clustering that consists in grouping the samples and features simulta-

neously, in [Li et al., 2012] the authors proposed the Relational Multi-manifold Co-clustering

(RMC). With the help of RMC, they showed that the performance of co-clustering can be per-

formed via manifold ensemble learning. However with RMC, the geometric structure modelled

by the K-nearest neighbour (KNN) graph learns incomplete and inaccurate intra-type relation-

ships; the KNN graph fails to distinguish the manifolds that are intersecting. To address the

above problems, the Robust High-order Co-clustering via Heterogeneous Manifold Ensemble

(RHCHME) method has been developed [Jun and Richi, 2015]. RHCHME incorporates multi-

ple subspace learning with a heterogeneous manifold ensemble to learn complete and accurate

intra-type relationships. However, the high computational cost of RHCHME, like RMC, makes

it unsuitable for large-scale real-world data. Another drawback of both algorithms is that the

compromise manifolds are obtained not only from the informative part, but also from the noisy

part of the different candidate manifolds. Then to overcome this we propose to rely on dimen-

sionality reduction methods that provide different manifold learning techniques for finding a

low-dimensional embedding of the data, while preserving its intrinsic structure.

Motivated by the potential of dimensionality reduction methods, we propose to tackle the

aim of co-clustering via an ensemble learning. First, we consider in this work the follow-

ing well-known dimensionality reduction methods: Canonical Discriminant Analysis (CDA),

Multi-Dimensional Scaling (MDS), Isometric Feature Mapping (ISOMAP), Locally Linear

Embedding (LLE), Locally Preserving Projections (LPP) and Stochastic Neighbor Embedding
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(SNE) (for details see for instance [Engel et al., 2012; Gittins, 1985; van der Maaten et al.,

2008]). This choice can be extended to other methods.

Note that in the literature neither of these methods consistently outperforms the others. For

this reason, we propose to exploit their strengths according to studied data in an unified frame-

work and we propose a novel Multi-Manifold Co-clustering algorithm referred as M3DC. It

attempts to consider simultaneously the diversity of geometric structures in both the sample

manifold and the feature manifold, with the aim of discarding the noisy part in each candidate

manifold. Instead of choosing a single manifold learning technique, M3DC considers the idea

of applying a set of dimensionality reduction methods and extracting the associated manifolds.

By considering both sample and feature manifolds, we aim to develop an effective co-clustering

algorithm.

We now introduce a Multi-Manifold Matrix-Decomposition-based Co-clustering algorithm

(M3DC), which simultaneously considers the geometric structures of both the data manifold

and the feature manifold. We present an optimization scheme based on the iterative updating

rules of three factor matrices to solve its objective function.

6.5.1 Multi-Manifold Learning

To consider different data manifolds, a set of C candidate graph Laplacians is defined. The

intrinsic manifold of the sample or feature space lies in the convex hull of these pre-given

candidate manifolds. This assumption can be seen as constraining the search space, since the

optimal graph Laplacian is an discrete approximation of the intrinsic manifold.

Sample multi-manifold learning means that the manifold ensemble Lg is represented as a

linear combination of the predefined sample candidate manifolds
{
L1
g, . . . , L

C
g

}
. Each candi-

date Lc
g is linked to a coefficient γcg, which is shown by

Lg =
C∑

c=1

γcg L
c
g, s.t

C∑

c=1

γcg = 1, γcg ≥ 0. (6.16)

Since Lg is in a convex hull of C candidate graph Laplacians, it is itself a graph Laplacian.

The coefficients are imposed by the simplex constraints.

Similarly, feature multi-manifold learning means that the manifold ensemble Lf is repre-

sented as a linear combination of the predefined feature candidate manifolds
{
L1
f , . . . , L

C
f

}
.

Lf =

C∑

c=1

γcf Lc
f , s.t

C∑

c=1

γcf = 1, γcf ≥ 0. (6.17)
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In equations 6.16 and 6.17, if we assume that each candidate graph Laplacian contains an

informative part and a noisy part, we may consider that the learned compromise L is made

on both the informative and the noisy parts. In order to discard the noisy part in each of the

candidate manifolds, we propose taking low-dimensional manifold representations into account

using a set of C candidate low-dimensional data representations {B1
g , ..., B

C
g }.

Since G is a binary matrix, the following loss function is used as a measure of disagreement

between each low-rank manifold representation Bc
g and the factor matrix G with respect to Qg:

C∑

c=1

γcg
∥∥G−Bc

gQg

∥∥2, s.t. {Q⊤
g Qg = I} (6.18)

where each candidate distance
∥∥G−Bc

gQg

∥∥2 has a corresponding coefficient γcg.

In the same way, for the feature space, we consider a set of C feature candidate low-

dimensional data representations {B1
f , ..., B

C
f }. Multiple manifolds are integrated using a sim-

ilar loss function:
C∑

c=1

γcf
∥∥F −Bc

fQf

∥∥2 s.t. {Q⊤
f Qf = I}. (6.19)

6.5.2 Candidate manifolds construction

In order to discard the noisy part in each of the candidate manifolds, we use the C selected

dimensionality reduction methods and we construct the low-dimensional data representations:

{B1
g , ..., B

C
g } for samples and {B1

f , ..., B
C
f } for features.

The low-dimensional data representations {Bc}c=1..C are obtained via an eigendecompo-

sition. We distinguish the two cases:

1. For CDA, LLE, LPP, MDS and ISOMAP, we consider Bc
g (resp. Bc

f ) as the

low-dimensional representation provided by these methods. Note that the sought

low-dimensional data set is obtained from solving a trace optimization problem

[Kokiopoulou et al., 2011].

2. For SNE, we obtain Bc
g (resp. Bc

f ) by performing eignedecomposition on the

graph Laplacian Lc
g (resp. Lc

f ) which is constructed from the low-dimensional

data representation given by SNE.

To preserve the local geometrical structure of the spaces of data samples and data features,

we integrate the two multi-manifold regularizer terms defined in equations 6.18 and 6.19. We

also introduce the l2 norm of the variable γ (i.e., ‖γ‖2) to avoid overfitting on only one mani-

fold.
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The M3DC objective function is formulated as:

min
G,F,S

∥∥∥X − FSG⊤
∥∥∥
2
+ α

C∑

c=1

γcg
∥∥G−Bc

gQg

∥∥2 + θg ‖γg‖
2

+β

C∑

c=1

γcf
∥∥F −Bc

fQf

∥∥2 + θf ‖γf‖
2

s.t., Q⊤
g Qg = I,Q⊤

f Qf = I (6.20)

where the parameters α and β are used to tradeoff the contribution of the multi-manifold regu-

larizer. θg and θf controls the regularization terms ‖γg‖
2

and ‖γf‖
2
, respectively. After some

simple algebraic manipulations, the above equation can be rewritten as follows

min
G,F,S

∥∥∥X − FSG⊤
∥∥∥
2
− 2 αTr[G⊤(

C∑

i=c

γcgB
c
g)Qg] + θg ‖γg‖

2

−2 βTr[F⊤(

C∑

c=1

γcfB
c
f )Qf ] + θf ‖γf‖

2

s.t., Q⊤
g Qg = I,Q⊤

f Qf = I. (6.21)

6.5.3 Optimization

To solve (6.21), we use an alternated iterative method. The problem is simplified using Theo-

rem 2. Hereafter we present the computation of all matrices and parameters.

Computation of S: Fixing G and F , by setting the derivative of W (G,F, S) with respect

to S as 0, we obtain:

S = (F⊤F )−1 F⊤XG(G⊤G)−1. (6.22)

Computation of Qg and Qf : Fixing G, F and S, we can separate (6.21) into two subprob-

lems:

max
Q⊤

g Qg=I
Tr[G⊤(

C∑

c=1

γcgB
c
g)Qg] and max

Q⊤
f
Qf=I

Tr[F⊤(
C∑

c=1

γcfB
c
f )Qf ].

Based on theorem 2, by applying SVD on G⊤(
∑C

c=1 γ
c
gB

c
g), we obtain Qg = UgV

⊤
g .

Similarly, applying SVD on F⊤(
∑C

c=1 γ
c
fB

c
f ) yields Qf = UfV

⊤
f .
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Computation of G: We fix S, F and Qg, and let be B̃g = (
∑C

c=1 γ
c
gB

c
g)Qg. G can be

updated by:

g
(t+1)
ip =

{
1 p = argminp′ ||(z.i)

(t) − s
(t+ 1

2
)

p′. ||2Dg
− 2α(B̃g)ip′

0 otherwise.
(6.23)

Computation of F : We fix S,G and Qf , and let be B̃f = (
∑C

c=1 γ
c
fB

c
f )Qf . F can be

obtained by:

f
(t+1)
jq =

{
1 q = argminq′ ||(wj.)

(t+1) − s
(t+ 1

2
)

q′. )||2Df
− 2β(B̃f )jq′

0 otherwise.
(6.24)

Computation of γg and γf : Fixing α, β, G and F , the objective function in equation 6.21

reduces to two subproblems:

1 : max
γg

Tr[G⊤(
C∑

c=1

γcgB
c
g)Qg] + θg ‖γg‖

2 , s.t.,
C∑

c=1

γcg = 1, γcg ≥ 0.

2 : max
γf

Tr[F⊤(

C∑

c=1

γcfB
c
f )Qf ] + θf ‖γf‖

2 , s.t.,

C∑

c=1

γcf = 1, γcf ≥ 0.

To optimize the multi-manifold coefficients γg and γf , we can use the entropic mirror

descent algorithm (EMDA) [Beck and Teboulle, 2003], which is especially well suited for

dealing with convex problems. In the interests of simplicity, we present the EMDA process for

subproblem 1 only.

If θg equals 0, then γg will have the trivial solutions 0 and 1. If θg approaches infinity,

the manifolds Lc
g will be treated equally. Hence, we need to assign a proper value to θg to

guarantee the effectiveness of multi-manifold learning. EMDA can use a general distance-like

function rather than Euclidean squared distance. Since the constraints imposed on γg is a unit

simplex: ∆g =
{
γg ∈ Rc,

∑C
c=1 γ

c
g = 1, γg ≥ 0

}
,

EMDA requires the objective function Φ to be a convex Lipschitz continuous function with

Lipschitz constant ZΦ w.r.t. a fixed norm. In our approach, this Lipschitz constant is computed

for data samples by ‖▽ Φ (γg)‖1 ≤ 2 θg + sg = ZΦ where sg = Tr(G⊤(
∑C

c=1 γ
c
gB

c
g)Qg).

The pseudo-code of EMDA is given in Algorithm 10, and the steps of M3DC are shown in

Algorithm 11.
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Algorithm 10: Entropic Mirror Descent Algorithm .

Input : Lipschitz constant ZΦ, θ, L, G;

Output : Multi-manifold ensemble coefficient γ;

Initialize : γi with identical weights 1
C ;

for c = 1 to C do

repeat

(a) - tm =
√

2 lnC
mZ2

Φ

(b) - γm+1
c ←

γm
c exp

[

−tm Φ
′
(γm

c )
]

∑C
c=1 γ

m
c exp[−tm Φ′ (γm

c )]
, where Φ

′

(γmc ) = 2 θ γmc + smc

until convergence;

Algorithm 11: M3DC algorithm

Input:

- Data matrix X .

- The tradeoff parameters α and β.

- C sample candidate manifolds {B1
g , .., B

C
g }.

- C feature candidate manifolds {B1
f , .., B

C
f }.

Output: Partition matrices G and F
Initialize: G and F using a clustering algorithm

repeat

(a) - Update S(t) by (6.22)

(b) - Compute Q
(t)
g and Q

(t)
f

(c) - Compute γ
(t)
g and γ

(t)
f using the EMDA algorithm.

(d) - Calculate (Z)(t)

(e) - Update G(t+1) by (6.23)

(f) - Calculate (W )(t+1)

(g) - Update F (t+1) by (6.24)

until convergence;

6.6 Numerical experiments

In this section we investigate the use of our proposed M3DC algorithm for image data clus-

tering. The selected dimensionality reduction methods that we compared and combined are

commonly used in image community CDA, LPP, LLE, MDS, ISOMAP and SNE. Note that

CDA is a supervised method, which is why its candidate manifold is computed using the par-

titions obtained by Kmeans rather than the correct data set partitions. Table 6.2 summarizes

some properties of these techniques.
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Table 6.2 – Properties of techniques for dimensionality reduction: ”p” is the ratio of nonzero

elements in the sparse matrix to the total number of elements, ”i” is the number of iterations

and ”k” is the number of neighbors.

method Data Structure Metric Computational

Linearity Preservation (distance) Complexity

CDA Linear Local Euclidean O((n+ d2)d)
LLE Nonlinear Local Euclidean O(pn2)
LPP Linear Local Euclidean O(kn2)
MDS Nonlinear Global Euclidean O(n3)
ISOMAP Nonlinear Global Geodesic O(n3)
SNE Nonlinear Global Euclidean O(in2)

First, we present the performance of M3DC on single manifold. The single candidate

manifold is constructed using each of the dimensionality reduction methods in turn. The re-

sults obtained can then be compared with those of the graph-regularized-based co-clustering

methods DRCC [Gu and Zhou, 2009] and LPFNMTF [Wang et al., 2011b]. Secondly, we eval-

uate the impact that combining all the manifolds has on the quality of the co-clustering, and

we compare the performances of M3DC against the multi-manifold approaches Kmanifolds

[Wang et al., 2010], RHCHME [Jun and Richi, 2015], SMMC [Wang et al., 2011c] and RMC

[Li et al., 2012].

Evaluation metrics. To measure the clustering performance of the compared algorithms we

use the commonly adopted metrics, the accuracy (Acc), the Normalize Mutual Information

(NMI) [Strehl and Ghosh, 2002] and the Adjusted Rand Index (ARI) [Hubert and Arabie,

1985]. We focus only on the quality of row clustering.

Parameter settings. For the sake of fairness we adopt an experimental design similar to

[Wang et al., 2011b]. We run each method under different parameter settings 50 times, and the

average result is computed. We report the best average result for each method.

- We set the number of sample clusters equal to the true number of classes in data sets (k) and

we set the number of feature clusters equal to the number of sample clusters.

- For each of the compared approaches: DRCC, LPFNMTF, Kmanifolds, RHCHME, SMMC

and RMC, the best parameters are used, as suggested in each of the reference articles (see

for details [Gu and Zhou, 2009; Jun and Richi, 2015; Li et al., 2012; Wang et al., 2011b,c]).

- For M3DC, the graph Laplacian is constructed using the distance most suitable for the type

of data, i.e. the Euclidean-distance-based k-NN for microarray and image data sets and the

Cosine-distance-based k-NN for document-term data sets. The neighborhood size is fixed

to 5. Furthermore, the regularization parameter α is searched from the grid (0.01, 0.1, 1, 10,

100, 500, 1000). We set β = α for both the sample and feature graphs.
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6.6.1 Evaluation of M3DC on real data sets

Data sets Numerical experiments were performed using three types of benchmark data sets

from the clustering and co-clustering literature [Ding et al., 2006b; Gu and Zhou, 2009; Wang

et al., 2011b], namely image data, document-term data and microarray data. Table 6.3 sum-

marizes the characteristics of these data sets where only the sample classes are known. Note

that, even if we are interested in clustering along one dimension of data, when dealing with

high-dimensional data, it turns out to be beneficial to employ co-clustering.

Table 6.3 – Data sets description.

Data sets Type samples features classes Sparsity (%)

Leukemia Bio 72 5551 2 0

Lung Bio 203 2008 5 0

Coil20 Image 1440 1024 20 34.38

Coil100 Image 7200 1024 20 0

ORL Image 400 1024 40 0

Yale Image 165 1024 15 30.54

USPS Image 9298 256 10 0

CSTR Document-term 1428 1024 4 96.59

WebACE Document-term 2340 1000 20 91.83

RCV1 Document-term 9625 29992 4 99.75

Ng20 Document-term 19949 43586 20 99.98

6.6.1.1 Computation time and empirical convergence of MDC

In order to prove the convergence of MDC and compare its computation speeds against the

graph-regularized-based co-clustering methods DRCC and LPFNMTF, we repeat co-clustering

50 times, using the different methods, with the optimal parameters for each data set. The

average number of iterations (Iter) and computation time (Time) for the different methods on

the different data sets are reported in Table 6.4.

Table 6.4 – Average number of iterations and computation time (×104 ms) for convergence.

We performed co-clustering on 50 random initialisations.

Algorithms

Data set DRCC LPFNMTF MDC

Iter Time Iter Time Iter Time

Leukemia 85.2 0.61 5.6 0.21 2.8 0.07

Lung 124.6 20.13 18.5 2.81 15.3 1.65

Coil20 51.6 1.76 15.2 0.74 11.6 0.33

Coil100 36.66 41.83 33.71 36.67 13.89 10.09

ORL 69.4 3.67 48.6 2.87 39.9 2.11

Yale 46.1 1.85 13.8 0.69 7.6 0.29

USPS 18.2 3.63 8.6 0.68 5.3 0.36

CSTR 47.9 0.40 15.6 0.38 6.8 0.08

WebACE 62.3 3.44 16.3 1.33 12.6 0.76

RCV1 84.37 154.48 46.33 78.08 26.01 34.04

NG20 129.96 286.28 139.50 238.06 50.98 57.62
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Furthermore, to illustrate the empirical convergence behavior of the proposed MDC, Figure

6.3 shows that MDC, applied on Coil20, USPS, RCV1 and WebACE, requires few iterations

to converge. The same observations are verified from other data sets.
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Figure 6.3 – Empirical convergence behavior of MDC (red line) and LPFNMTF (green line).

The obtained results demonstrate the rapid convergence of our approach, and show that

MDC generally requires fewer iterations and less time to converge, not only in comparison to

DRCC, but also in comparison to LPFNMTF. These results are consistent with our theoretical

analysis.

6.6.1.2 Comparison results

Now, we investigate the effectiveness of M3DC algorithm for document-term, image and mi-

croarray data clustering against some other algorithms designed to solve the same tasks in both

single manifold and multi-manifold cases.

First, we compare the effectiveness of M3DC on a single manifold. The algorithms we

used to construct the candidate manifolds are CDA, LPP, LLE, MDS, ISOMAP (or ISO) and

SNE. The results obtained by M3DC can then be compared with those of the co-clustering

graph-regularized-based methods DRCC and LPFNMTF.

Secondly, we evaluate the performance of M3DC when these algorithms are combined.

The results obtained by M3DC can be compared with those of the multi-manifold approaches

Kmanifolds, RHCHME, SMMC and RMC. Note that in these comparison experiments, for

M3DC we set the number of feature clusters equal to the number of sample clusters (ℓ = k).

All these results are reported in Table 6.5. We observe, for all data sets, that RMC outper-

forms the other compared multi-manifold methods: Kmanifolds, RHCHME and SMMC. We

confirm this thanks to some statistical tests.
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6.6.1.3 Statistical tests

The first question attempted to see if there were any significant differences among the three

multi-manifold co-clustering methods including M3DC, RHCHME and RMC? To this end, we

first test for the significance of performance differences between M3DC, RHCHME and RMC.

We used analysis of variance (ANOVA) and Kruskal-Wallis (KW) tests. The obtained p-values

are reported in Table 6.6.

Table 6.6 – Evaluation of co-clustering methods M3DC, RMC and RHCHME using ANOVA

test and Kruskal-Wallis (KW) test. Then evaluation of M3DC and RMC using t-tests. These

tests are performed on 50 random initializations.

RHCHME RMC M3DC P-values

Data set Metric mean ±std mean ±std mean ±std ANOVA KW t-tests

M
ic

ro
ar

ra
y

(⋆
) Acc 0.688 ±0.018 0.779 ±0.066 0.813 ±0.115 6.46e-13 1.94e-13 0.0362

Leukemia NMI 0.116 ±0.044 0.267 ±0.146 0.378 ±0.240 4.79e-12 3.74e-11 0.0035

ARI 0.119 ±0.027 0.279 ±0.158 0.419 ±0.272 1.34e-12 6.54e-10 0.0013

Acc 0.614 ±0.029 0.731 ±0.041 0.752 ±0.046 5.61e-39 1.16e-21 0.0092

Lung NMI 0.488 ±0.038 0.455 ±0.077 0.536 ±0.088 5.47e-07 0.58e-03 2.72e-06

ARI 0.284 ±0.044 0.368 ±0.078 0.503 ±0.054 4.14e-06 1.73e-60 0.0947

Acc 0.641 ±0.045 0.690 ±0.094 0.867 ±0.011 2.48e-27 1.87e-21 1.10e-13

Coil20 NMI 0.695 ±0.023 0.786 ±0.098 0.899 ±0.020 2.44e-35 9.62e-23 7.97e-11

ARI 0.546 ±0.041 0.694 ±0.100 0.786 ±0.017 1.63e-23 6.55e-20 6.05e-13

Acc 0.625 ±0.016 0.696 ±0.036 0.774 ±0.033 3.49e-52 9.88e-25 6.69e-19

Coil100 NMI 0.794 ±0.005 0.811 ±0.033 0.902 ±0.032 3.15e-45 1.60e-22 9.22e-25

ARI 0.594 ±0.014 0.651 ±0.044 0.733 ±0.042 3.30e-40 2.34e-23 1.48e-15

Im
ag

e
(⋆

) Acc 0.566 ±0.040 0.722 ±0.036 0.792 ±0.012 2.06e-72 6.31e-29 2.86e-19

ORL NMI 0.755 ±0.032 0.854 ±0.023 0.886 ±0.008 8.42e-61 1.50e-27 3.70e-13

ARI 0.420 ±0.045 0.537 ±0.056 0.743 ±0.025 3.15e-74 3.23e-27 3.99e-34

Acc 0.515 ±0.027 0.799 ±0.014 0.823 ±0.006 1.74e-13 7.06e-28 4.99e-16

Yale NMI 0.559 ±0.025 0.852 ±0.013 0.897 ±0.020 6.86e-12 3.21e-28 1.17e-22

ARI 0.424 ±0.033 0.709 ±0.015 0.752 ±0.022 5.55e-11 2.55e-28 2.49e-19

Acc 0.646 ±0.032 0.739 ±0.046 0.843 ±0.057 5.41e-45 4.37e-27 1.57e-16

USPS NMI 0.557 ±0.024 0.710 ±0.036 0.770 ±0.050 8.24e-60 3.88e-24 5.55e-10

ARI 0.509 ±0.027 0.644 ±0.040 0.744 ±0.075 3.21e-48 6.83e-24 3.88e-12

Acc 0.723 ±0.080 0.747 ±0.084 0.897 ±0.010 3.79e-27 2.74e-20 5.49e-17

CSTR NMI 0.507 ±0.114 0.667 ±0.064 0.766 ±0.016 3.03e-35 2.07e-25 8.43e-15

ARI 0.476 ±0.126 0.648 ±0.098 0.802 ±0.019 4.16e-36 2.93e-24 4.35e-15

D
o

cu
m

en
t-

te
rm

(◦
) Acc 0.612 ±0.036 0.687 ±0.026 0.812 ±0.031 1.68e-66 2.10e-26 1.11e-38

WebACE NMI 0.699 ±0.016 0.755 ±0.021 0.901 ±0.024 7.03e-92 1.36e-27 1.31e-52

ARI 0.408 ±0.047 0.516 ±0.011 0.654 ±0.041 1.20e-68 2.06e-28 5.36e-30

Acc 0.569 ±0.054 0.655 ±0.048 0.785 ±0.033 1.25e-49 2.46e-25 6.54e-27

RCV1 NMI 0.326 ±0.079 0.511 ±0.044 0.652 ±0.025 1.77e-62 8.80e-28 7.90e-32

ARI 0.293 ±0.092 0.353 ±0.067 0.523 ±0.034 1.60e-35 1.67e-21 2.34e-25

Acc 0.393 ±0.023 0.446 ±0.022 0.461 ±0.019 7.73e-25 3.43e-19 0.0164

NG20 NMI 0.356 ±0.020 0.448 ±0.019 0.475 ±0.023 9.72e-62 7.77e-25 4.93e-09

ARI 0.160 ±0.024 0.210 ±0.027 0.236 ±0.030 1.38e-28 1.04e-19 7.54e-06
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As it can be seen in table 6.6, for each data set the difference among the compared methods

is statistically significant; all p-values are less than 1%. Furthermore, we exploit the statistics

obtained by ANOVA in applying a post-hoc analysis of M3DC, RMC and RHCHME. The

Scheffé’s procedure is the most popular of the post-hoc procedures (see for instance [Scheffé,

1959]). The obtained results for studied data sets showed that M3DC almost always outperform

significantly RMC and RHCHME, we illustrate this performance in Figure 6.4 and Table 6.7.

Furthermore, Scheffé test (with α = 0.05) confirm the performance differences between these

compared methods. Most of the p-values are less than 5%. The same observations are verified

from other data sets.

The M3DC algorithm which exploits only the informative part of the data and removes

the noisy part, is clearly more efficient than RMC that combines eleven diverse manifolds

generated, directly from the original data matrix, using three kinds of weighting schemes to

construct the graph.
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Figure 6.4 – Post-hoc analysis of M3DC, RMC and RHCHME Accuracy’s using Scheffé test.

These tests are performed on 50 random initialisations.
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Table 6.7 – Post-hoc analysis of M3DC, RMC and RHCHME Accuracy’s using Scheffé test

(with α = 0.05).

Data set Methods F-Value P-value

M
ic

ro
ar

ra
y

RMC M3DC 2.418 0.092

Leukemia RHCHME M3DC 32.143 2.88e-12

RHCHME RMC 16.928 2.50e-07

RMC M3DC 3.520 3.22e-02

Lung RHCHME M3DC 148.881 8.88e-36

RHCHME RMC 106.617 3.89e-29

Im
ag

e

RMC M3DC 69.065 9.33e-22

Coil20 RHCHME M3DC 72.229 4.29e-23

RHCHME RMC 0.132 8.77e-01

RMC M3DC 62.249 3.30e-20

USPS RHCHME M3DC 224.372 5.70e-45

RHCHME RMC 50.257 2.78e-7

D
o

cu
m

en
t-

te
rm

RMC M3DC 60.422 8.85e-20

CSTR RHCHME M3DC 81.424 2.21e-24

RHCHME RMC 1.563 2.13e-01

RMC M3DC 5.118 0.060

NG20 RHCHME M3DC 68.150 1.49e-21

RHCHME RMC 56.849 6.33e-19

6.6.1.4 Clustering evaluation using Silhouette Score

Silhouette index (noted SIL) is a very well-known clustering evaluation approach that intro-

duces clustering quality scores for each individual point and calculates the final quality index

as an average of the point-wise quality estimates [Rousseeuw, 1987]. Each point-wise estimate

for a point x.p ∈ Pi is derived from two quantities: ai,p and bi,p which correspond to the aver-

age distance to other points within the same cluster and the minimal average distance to points

from a different cluster, respectively. Formally,

ai,p =
1

|Pi| − 1

∑

x.q∈Pi,q 6=p

‖x.q − x.p‖ and bi,p = min
j=1..k,j 6=i

1

|Pj |

∑

x.q∈Pj

‖x.q − x.p‖

For each data point x.p : SIL(x.p) =
ai,p − bi,p

max(ai,p − bi,p)

The Silhouette Score : SIL =
1

n

n∑

p=1

SIL(x.p)

In Figure 6.5 are reported the boxplots for four representative data sets to illustrate the good

behavior, in terms of Silhouette Score (SIL), of M3DC comparing to different co-clustering

methods. The same observations are verified from the remaining data sets.
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Figure 6.5 – Performances of the compared co-clustering methods in terms of Silhouette score.

6.6.1.5 Impact of the multi-manifold coefficients γ’s

In M3DC, the candidate manifolds are weighted according to how well they reflect their ability

to the local geometrical structure of data. The multi-manifold coefficients γcg computed by

EMDA are additional indicators of the effectiveness of each method. For all data sets, the

multi-manifold coefficients γcg computed by EMDA and reported in Table 6.8.

One might ask what the most efficient projection methods in M3DC are. Through our

experiments we noticed that LLE, ISOMAP and SNE contribute greatly for all the tested data

sets. In order to visually illustrate the impact of γ’s, in Fig.6.6, we report the single manifolds

with the different methods of projection and multi-manifold combining them.

Note that the candidate manifolds are weighted according to them quality in reflecting the

local geometrical structure of data. We observe that LLE, ISOMAP, SNE presenting the highest

γ values is reflected in the Multi Manifolds while CDA with γCDA
g = 0 does not contribute in

the construction of the intrinsic manifold.
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Table 6.8 – Values of γcg (%).

Data sets Methods

CDA LLE LPP MDS SNE ISO

Leukemia 8.79 24.61 0 10.40 26.20 30.00

Lung 14.47 43.57 0.67 0.04 12.13 29.12

Coil20 0 36.79 14.01 5.29 24.36 19.55

Coil100 8.24 4.01 47.15 2.83 21.67 16.10

ORL 0 20.34 14.60 9.13 22.76 33.17

Yale 2.18 23.86 13.31 24.26 14.96 21.42

USPS 0 18.04 5.46 8.80 41.37 27.33

CSTR 8.79 21.29 18.29 26.42 15.50 9.71

WebACE 0 8.44 23.47 38.59 19.83 9.67

RCV1 9.26 10.91 29.93 17.92 18.77 13.21

NG20 5.52 8.56 39.11 14.46 20.81 11.25
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Figure 6.6 – USPS: Single and multi manifolds with the different methods, CDA is absent

because γCDA
g = 0.
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6.6.1.6 Assessing the number of feature clusters

For all the compared methods, i.e, DRCC, LPFNMTF, Kmanifolds, RHCHME, SMMC and

RMC, it was suggested that the number of feature clusters is equal to the number of sample

clusters (the true number of classes in data sets k). This is why, we set ℓ = k so as to ensure

that the experiments of these methods against M3DC are compared in a fair fashion. However,

in our approach, the candidate manifolds are generated by using some reduction dimension

methods. Taking a small values of ℓ to determine the number of components (dimensions),

may cause a loss of the information provided by the initial features. Contrariwise, a too large

number increases the computational complexity. Then to assess the number of feature clusters,

we varied ℓ between 2 and 100, and retained the values that optimizes the criterion as shown in

Fig.6.7.
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Figure 6.7 – Performances of M3DC on USPS data set. Criterion and NMI according to the number of

feature clusters (ℓ).

We observe that the optimum coincides with the NMI optimum as illustrated in Fig.6.7. For

all tested data sets, we have applied this successfully strategy to assess ℓ. However, we note

that when we exceed this value the optimized criterion starts to increase while the NMI starts

to decrease, thus showing that the quality of the co-clustering degrades and we start to observe

the disadvantages of clustering (when ℓ = n). In other words, the benefit of co-clustering on

clustering starts to decrease.

Hereafter we evaluate the impact of ℓ. So far we have evaluated M3DC in terms of clus-

tering but as we focus on image data, is M3DC really efficient in the restitution of images?

In Fig.6.8 we report the results obtained using USPS data set with the appropriate number of

feature clusters; ℓ = 82 leads to Acc = 0.968, NMI = 0.921 and ARI = 0.939 instead of 0.929,

0.868 and 0.860 respectively for ℓ = 10. The reorganisation of the original image data after

co-clustering requires only the row clusters. This leads to reveal good results of M3DC as

depicted in Fig.6.8.
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Figure 6.8 – Performances of M3DC on USPS image data set.
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6.6.2 Evaluation of M3DC on synthetic data sets

In order to evaluate our approach in term of co-clustering, we propose to evaluate the different

algorithms on simulated data sets generated according a probabilistic model (see Appendix A).

Table 6.9 – Parameters of simulated data sets and error rates for samples, features and global.

Data Dimension Classes Error Rate (%) Proportions of Proportions of

e(G,G′) e(F, F ′) δ = δ(Y, Y ′) sample clusters feature clusters

Data1 8.4 2.6 10

Data2 13.2 7.4 20

Data3 500x500 4x3 25.4 6.2 30 π = [0.2, 0.3, 0.3, 0.2] ρ = [0.3, 0.4, 0.3]
Data4 35.0 7.0 40

Data5 43.0 13.0 50

Data6 38.0 42.8 65

To evaluate the three algorithms taking into account the degree of overlapping, the rate of

sparsity and the proportions, we perform extensive experiments and we present error rates or

accuracy arising from different simulated tables whose parameters are reported in table 6.9.

The main points are the following.

• In Figure 6.9 are reported the performances of all algorithms according degrees of overlap-

ping (10%, 20%, 30%,40%, 50% and 65%). M3DC is always better than LPFNMTF and

DRCC whatever the degree of overlapping.
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Figure 6.9 – Impact of overlapping

• From initial data sets with a degree of overlapping, we measure the impact of sparsity. In

Figure 6.10 are reported the performances of all algorithms according degrees of overlapping
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(10%, 20%, 30%, 40%, 50% or 65%) and rates of sparsity (0%, 20%, 40% or 60%). We

observe the good behavior of M3DC in all situations.
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Figure 6.10 – Impact of sparsity
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• In order to evaluate the three algorithms in term of cluster proportions, we perform sup-

plementary experiments by varying the proportions and the degree of overlapping. To this

end, in Figure 6.11, we present the results obtained with Data7, Data8, Data9 and Data10

described in Appendix A.

- Data7: π = [0.1, 0.4, 0.4, 0.1], ρ = [0.1, 0.8, 0.1];

- Data8: π = [0.1, 0.1, 0.1, 0.7], ρ = [0.1, 0.8, 0.1];

- Data9: π = [0.2, 0.3, 0.3, 0.2], ρ = [0.1, 0.8, 0.1];

- Data10: π = [0.1, 0.1, 0.1, 0.7], ρ = [0.3, 0.4, 0.3].

It appears clearly that M3DC is more robust than LPFNMTF and DRCC; even when the

proportions are dramatically different it remains the most effective.
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Figure 6.11 – Impact of cluster proportions
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6.7 Conclusion

We proposed a novel algorithm which simultaneously considers the geometric structures of

both the sample manifold and the feature manifold. Specifically, we employed multi-manifold

learning to approximate the intrinsic manifold using a subset of candidates, which better re-

flects the local geometrical structure with a graph Laplacian. In order to use the respective

strengths of different dimensionality reduction techniques, we selected six manifold-based di-

mensionality reduction methods that were designed for a variety of purposes and use different

metrics for data similarity. Our candidate manifolds are obtained using these methods. The

regularization terms are then incorporated into a matrix decomposition framework resulting in

a unified objective function. In this way, matrix decomposition becomes an optimization prob-

lem. Note that we also investigated the crucial number of feature clusters and offered a simple

manner to assess this number.

The numerical experiments show that M3DC gives very interesting results in terms of clus-

tering and restitution of initial images. Furthermore it outperforms multi-manifold methods

devoted to the same tasks. In our experiments, we used the popular reduction methods to

generate multi-manifolds. It would be interesting to investigate other reduction methods.
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Chapter 7

Semi-supervised Co-clustering
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7.1 Introduction

Since the advent of Block Clustering [Hartigan, 1972], a number of co-clustering methods have

been proposed in a variety of application domains, including image processing, text mining

and bio-informatics. However, in many real world applications, the data set to be analyzed

presents obstacles such as large dimensions, sparsity and heterogeneity. For this reason, in

recent years there has been a surge of interest of constrained co-clustering methods that can

cluster samples and feature sets at the same time, guided by certain supervisory information.

Usually, this background knowledge can be represented as a set of pairwise constraints that

can be generated from a subset of labeled data. Each constraint indicates that two samples

(or two features) must belong to the same class (Must-link) or that they never be assigned

together (Cannot-link).Furthermore, efforts have been made in recent years to extend existing

co-clustering methods to constrained co-clustering [Chen et al., 2010; Pensa and Boulicaut,

2008; Song et al., 2010; Wang et al., 2008b]. Most of these methods encode Must-link (ML) and

Cannot-link (CL) constraints by modifying the graph Laplacian, constraining the underlying

Eigenspace, or by encoding them as part of a constrained optimization problem. Note that a

measure of informativeness can help to select better constraint sets that improve the results

of co-clustering. This chapter looks at low-rank factorization-based co-clustering for semi-

supervised learning.

7.2 Constrained MDC algorithm (CMDC)

As shown in Section 6.3.1, MDC can be formulated as the following optimization problem:

min
G,F,S

∥∥∥X − FSG⊤
∥∥∥
2
+ α

∥∥∥GG⊤ − Lg

∥∥∥
2
+ β

∥∥∥FF⊤ − Lf

∥∥∥
2

(7.1)

G ∈ {0, 1}n×k, F ∈ {0, 1}d×ℓ.

where α and β are regularization parameters to balance the reconstruction error of co-clustering

in the first term, together with labeling smoothness in the sample space and feature space in the

second and third terms.

7.2.1 Utility of constraints

Pairwise constraints are most often used in order to guide the learning process and to improve

the performance of the model. However, Davidson et al. [Davidson et al., 2006] employed

informativeness to measure the utility of constraint sets and to select the most beneficial ones.
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The informativeness is the amount of conflict between the constraints and the underlying

objective function of an algorithm. It is based on measuring the number of constraints that the

clustering algorithm cannot predict using its default bias [Davidson et al., 2006]. Given a set of

constraints Ω, we generate the partition PA by running an algorithm A on the data set without

any constraints. We set Unsat(ς,P) to 1 if P does not satisfy ς , and 0 otherwise. The subset

of informative constraints is therefore given by:

InfPA
(Ω) = {ς ∈ Ω /Unsat(ς,PA) = 1}.

7.2.2 Integration of constraints

Many clustering and co-clustering methods have been proposed to encode Must-link (ML) and

Cannot-link (CL) constraints by modifying the graph Laplacian directly [Kulis et al., 2005;

Wang et al., 2009]. In our approach we apply a clustering algorithm (k-means or Sk-means)

on both samples and features. P0 and Q0 are the obtained partitions. We then extract all the

ML and CL constraints from labeled data. We denote the set of sample constraints Ωg =

MLg ∪ CLg and the set of feature constraints Ωf = MLf ∪ CLf . Finally, we select the

informative constraints according to P0 and Q0. We denote the obtained informative constraint

sets InfP0(Ωg) and InfQ0(Ωf ).

Let xr be a sample from P0
p and xr′ a sample from P0

p′ :

- If there is an ML constraint between xr and xr′ , the corresponding coefficient of xr and

xr′ in L̂g is replaced by the largest coefficient of the samples belonging to the same clusters as

xr or xr′ . (i.e. : P0
p or P0

p′).

- If there is a CL constraint between xr and xr′ , the corresponding coefficient of xr and xr′

in L̂g is replaced by the smallest coefficient of the samples belonging to the same clusters as

xr or xr′ .

L̃g(rr
′) =

{
maxxi∈P0

r,xi′∈P
0
r′
(L̂g(ii

′)), if (xr, xr′) ∈ InfP0(MLg)

minxi∈P0
r,xi′∈P

0
r′
(L̂g(ii

′)), if (xr, xr′) ∈ InfP0(CLg)

Similarly, let ys be a feature from Q0
q and ys′ a feature from Q0

q′ . We apply the same

transformation on (L̂f ) as follows:

L̃f (ss
′) =

{
maxyj∈Q0

s,yj′∈Q
0
s′
(L̂f (jj

′)), if (ys, ys′) ∈ InfQ0(MLf )

minyj∈Q0
s,yj′∈Q

0
s′
(L̂f (jj

′)), if (ys, ys′) ∈ InfQ0(CLf )
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If we consider the modified graph Laplacians L̃g and L̃f , the problem (6.12) becomes:

min
G,F,S

∥∥∥X − FSG⊤
∥∥∥
2
+ α

∥∥∥GG⊤ − L̃g

∥∥∥
2
+ β

∥∥∥FF⊤ − L̃f

∥∥∥
2

(7.2)

G ∈ {0, 1}n×k, F ∈ {0, 1}d×ℓ.

7.2.3 Optimization

As shown in Section 6.3.2, Eq. (7.2) can be simplified to

min
G,F,S

∥∥∥X − FSG⊤
∥∥∥
2
+ α ‖G−BgQg‖

2 + β ‖F −BfQf‖
2

(7.3)

G ∈ {0, 1}n×k , F ∈ {0, 1}d×ℓ, Q⊤
g Qg = I, Q⊤

f Qf = I.

After some simple algebraic manipulations, the above equation can be rewritten as follows

min
G,F,S

∥∥∥X − FSG⊤
∥∥∥
2
− 2αTr(G⊤BgQ

⊤
g )− 2βTr(F⊤BfQ

⊤
f ) (7.4)

G ∈ {0, 1}n×k , F ∈ {0, 1}d×l , Q⊤
g Qg = I, Q⊤

f Qf = I.

The optimization problem (7.4) can be solved by using alternated iterative method.

- Computation of S: Fixing G and F , by setting the derivative of Ψ(G,F, S) with respect

to S as 0, we obtain:

S = (F⊤F )−1 F⊤XG(G⊤G)−1. (7.5)

- Computation of Qg and Qf : Fixing G, F and S, the computation of Qg and Qf can be

performed by relying on the following theorem

Theorem 2. Let Gn×k and Bn×k be two matrices. Consider the constrained minimization

problem

Q∗ = argmin
Q

∥∥∥G−BQ⊤
∥∥∥
2

subject to. Q⊤Q = I. (7.6)

Let UΛV ⊤ be the (SVD) for G⊤B, then Q∗ = UV ⊤.

Proof. Expanding the matrix norm

∥∥∥G−BQ⊤
∥∥∥
2
= Tr(G⊤G)− 2Tr(G⊤BQ⊤) + Tr(QB⊤BQ⊤). (7.7)
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Since Tr(G⊤G) = n and Q⊤Q = I , the last term is equal to Tr(B⊤B) and the optimization

problem (7.6) is equivalent to

argmax
Q

Tr(G⊤BQ⊤) subject to. Q⊤Q = I. (7.8)

Let G⊤B = UΛV ⊤ be the (SVD) for G⊤B, the Tr(G⊤BQ⊤) term becomes

Tr(UΛV ⊤Q⊤) = Tr((UΛ0.5)(Λ0.5V ⊤Q⊤))

= 〈UΛ0.5,Λ0.5V ⊤Q⊤〉. (7.9)

By the Cauchy-Schwartz inequality, we get

〈UΛ0.5,Λ0.5V ⊤Q⊤〉 ≤ ‖(UΛ0.5)‖‖(Λ0.5V ⊤Q⊤))‖

= ‖Λ0.5‖‖Λ0.5‖

= Tr(Λ)

due to the invariance of ‖ · ‖ under orthogonal transformations. Hence, the sum in (7.9) is

maximized if U⊤QV = I and the solution Q∗ to (7.9) is given by Q∗ = UV ⊤.

As we have seen in (7.8), fixing G, F and S, the computation of Qg and Qf can be per-

formed by:

argmax
Qg ,Q⊤

g Qg=I

Tr(G⊤BgQ
⊤
g ) and argmax

Qf ,Q
⊤
f
Qf=I

Tr(F⊤BfQ
⊤
f ).

By applying SVD to B⊤
g G and due to Theorem 2 we obtain Qg = UgV

⊤
g . Similarly, applying

SVD on B⊤
f F yields Qf = UfV

⊤
f .

- Computation of G: We fix S, F and Qg. Let B̃g = BgQg, G can be updated by g
(t+1)
ip ,

defined as follows:

g
(t+1)
ip =

{
1 p = argminp′ ||(z.i)

(t) − s
(t)
p′.||

2
Dg
− 2α(B̃g)ip′

0 otherwise.
(7.10)
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- Computation of F : We fix S, G and Qf . Let B̃f = BfQf , we similarly obtain F using

f
(t+1)
jq′ , defined as follows:

f
(t+1)
jq =

{
1 q = argminq′ ||(wj.)

(t+1) − s
(t)
q′.)||

2
Df
− 2β(B̃f )jq′

0 otherwise.
(7.11)

Notice that the computation of G and F are performed on intermediate reduced matrices Z

and W instead the original data matrix X .

7.2.4 CMDC algorithm

Our approach, which we have called Constrained Matrix Decomposition based Co-clustering

(CMDC), is summarized in Algorithm 12.

Algorithm 12: CMDC algorithm.

Step 0:

* Initialize G(0) by applying a clustering algorithm on X⊤.

* Initialize F (0) by applying a clustering algorithm on X .

Step 1: Compute the normalized graph Laplacians Lg and Lf .

Step 2: Introduce the selected informative ML and CL constraints in L̃g and L̃f .

Step 3: Computation of S(0) by using Eq.(7.5)

Step 4: Computation of (G(t+1), F (t+1), S(t+1)) starting from (G(t), F (t), S(t));

repeat

(a) - Calculate (Z)(t) by using Eq.(6.8)

(b) - Update G(t+1) by using Eq.(7.10)

(c) - Calculate (W )(t+1) by using Eq.(6.9)

(d) - Update F (t+1) by using Eq.(7.11)

(e) - Update S(t+1) by using Eq.(7.5)

until convergence;

It should be remarked that a variety of clustering algorithms may be used to initialize G

and F . Here we retain Kmeans and SKmeans, and in Section 7.3 we evaluate their impact on

the different algorithms that we are comparing.

7.3 Numerical experiments

In the following subsections we discuss some of the advantages of our contribution in relation

to the graph-regularized-based methods : DRCC[Gu and Zhou, 2009], FNMTF and LPFNMTF
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[Wang et al., 2011b]. We focus only on the quality of row clustering. We begin by giving a

justification for the use of Skmeans in appropriate situations. We then look at the computation

time of these techniques, and evaluate their performance in semi-supervised learning.

Data sets. Numerical experiments were performed using three types of benchmark data sets

from the clustering and co-clustering literature [Ding et al., 2006b; Gu and Zhou, 2009; Wang

et al., 2011b], namely image data, document-term data and microarray data. Table 7.1 summa-

rizes the characteristics of these data sets. Note that, for all the used document-term data sets,

we apply the TF-IDF transformation on all the document-term frequency matrices.

Table 7.1 – Data sets description.

Data sets Type n d k Sparsity (%)

Coil20 Image 1440 1024 20 34.38

Coil100 Image 7200 1024 20 34.38

USPS Image 9298 256 10 0

CSTR Document-term 1428 1024 4 96.59

WebACE Document-term 2340 1000 20 91.83

RCV1 Document-term 9625 29992 4 99.75

Leukemia Bio 72 5551 2 0

Lung Bio 203 2008 5 0

Performance metrics. To measure the clustering performance of the proposed algorithms we

use three commonly adopted metrics. the accuracy, the Normalize Mutual Information [Strehl

and Ghosh, 2002] and the Adjusted Rand Index [Hubert and Arabie, 1985].

Parameter settings. For the sake of fairness we adopt an experimental design similar to

[Wang et al., 2011b]. We run each method mentioned above under different parameter settings

50 times, and the average result is computed. We report the best average result for each method.

We set the number of sample clusters equal to the true number of classes for all the data sets.

- For DRCC, FNMTF and LPFNMTF; the best parameters are then used, as suggested in each

of the reference articles (see for details [Gu and Zhou, 2009; Wang et al., 2011b]). Notice

that it was suggested that the number of feature clusters is set to be the same as the number

of sample clusters.

- For CMDC, we constructed the graph Laplacian matrix using the distance most suitable

for the type of data, i.e. Euclidean distance for image and microarray data sets, and cosine

distance for text data sets. Furthermore, the pairwise constraints are obtained each time from

5% of arbitrarily selected labeled data. Finally, the regularization parameters α and β are all

searched from the grid (0.01, 0.1, 1, 10, 100, 500, 1000) with α = β for both the sample and

feature graphs.
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- For CMDC, we used SKmeans to obtain the initial partition for text data sets. For the image

data set and microarray data sets, we used Kmeans. Moreover, in order to assess the number

of feature clusters, we varied ℓ between 2 and 10k, and retained the one that optimizes the

criterion.

7.3.1 Evaluation of CMDC on real data sets

7.3.1.1 Impact of informative constraints

First, in order to evaluate CMDC in a semi-supervised learning context we applied it on all the

tested data sets, varying the percentage of labeled data (from 5% to 80%). We first randomly

select the labeled data according to the corresponding percentage, from which we extract all

informative ML and CL constraints. We then integrate the result constraint sets in the graph

Laplacian matrices.

The results, reported in Figure 7.1, show clearly that introducing informative ML and CL

constraints consistently improves the co-clustering performance of CMDC for all data.

Secondly, in order to compare fairly CMDC, DRCC and LPFNMTF, we run each method

under different parameter settings 50 times in both constrained (Const.) and unconstrained

(UnConst.) cases. In the constrained case, we introduce the same constraint set in all algorithms

and in the same way. We first randomly select 5% of labeled data, from which we extract all

informative ML and CL constraints. We then integrate the result constraint sets in the graph

Laplacian matrices. The obtained results are reported in Table 7.2.

Otherwise, To confirm the best behavior of CMDC versus DRCC and LPFNMTF and the

impact of ML and CL constraints on CMDC, we conducted appropriated t-tests for both Con-

strained and Unconstrained cases, the p-values computed for all data sets are less than 1%.

It appears clearly that introducing informative ML and CL constraints improves the clustering

quality for all methods but CMDC already provides the best results.

7.3.1.2 Study on regularization parameters α and β

The choice of parameters α and β is not easy. However, through our experiments, we can give

indications on the appropriate values to be taken for these two parameters. In Figure 7.2, are

reported the performances of the three algorithms in terms of Acc and NMI according values

of parameters α and β varying in the interval 0.001 to 1000, we took α = β.

For all data sets and whatever values of α and β, CMDC outperforms LPFNMTF and

DRCC in terms of Acc and NMI. Moreover, for sparse text data sets, the performance of

CMDC, in contrary LPFNMTF and DRCC, grows with α and β, it is the best when α and
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(a) Coil20 Data set
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(b) WebACE Data set
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(c) Leukemia Data set
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(d) Lung Data set

Figure 7.1 – CMDC performance according to labeled data rate.

β are higher ( α = β = 1000). However for non-sparse data sets, i.e, image and microarray

data sets, small values of α and β appear more interesting. In fact, the rate of sparsity seems

an important element in the choice of α and β, we will explore this aspect through simulated

data in next section.

7.3.2 Evaluation of CMDC on synthetic data sets

In order to evaluate our approach in term of co-clustering, we propose to evaluate the different

algorithms on simulated data sets generated according a probabilistic model (see Appendix A).

To evaluate the three algorithms taking into account the degree of overlapping, the rate of
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Table 7.2 – Impact of randomly 5% of labeled data on the compared algorithms.

Data Sets Metric DRCC LPFNMTF CMDC

UnConst. Const. UnConst. Const UnConst. Const.

Acc 0.622 0.640 0.723 0.740 0.760 0.783

Coil20 NMI 0.747 0.768 0.796 0.808 0.813 0.825

ARI 0.585 0.605 0.643 0.664 0.679 0.686

Acc 0.486 0.510 0.534 0.560 0.555 0.580

Coil100 NMI 0.752 0.766 0.793 0.813 0.819 0.837

ARI 0.442 0.463 0.495 0.524 0.514 0.529

Acc 0.655 0.688 0.700 0.716 0.755 0.771

USPS NMI 0.585 0.606 0.610 0.618 0.639 0.656

ARI 0.519 0.548 0.548 0.560 0.580 0.611

Acc 0.883 0.898 0.908 0.921 0.915 0.928

CSTR NMI 0.729 0.732 0.784 0.789 0.794 0.801

ARI 0.735 0.750 0.763 0.802 0.844 0.846

Acc 0.694 0.678 0.731 0.742 0.766 0.780

WebACE NMI 0.642 0.659 0.677 0.682 0.705 0.730

ARI 0.577 0.584 0.609 0.611 0.640 0.666

Acc 0.726 0.742 0.757 0.768 0.767 0.783

RCV1 NMI 0.468 0.486 0.504 0.522 0.539 0.556

ARI 0.455 0.484 0.488 0.503 0.538 0.560

Acc 0.694 0.722 0.736 0.761 0.803 0.819

Leukemia NMI 0.224 0.230 0.275 0.385 0.442 0.465

ARI 0.240 0.285 0.363 0.510 0.537 0.552

Acc 0.639 0.664 0.675 0.681 0.684 0.716

Lung NMI 0.453 0.509 0.537 0.576 0.670 0.688

ARI 0.325 0.366 0.395 0.408 0.452 0.496

Table 7.3 – Parameters of simulated data sets and error rates for samples, features and global.

Data Dimension Classes Error Rate (%) Proportions of Proportions of

e(G,G′) e(F, F ′) δ = δ(Y, Y ′) sample clusters feature clusters

Data1 8.4 2.6 10

Data2 13.2 7.4 20

Data3 500x500 4x3 25.4 6.2 30 π = [0.2, 0.3, 0.3, 0.2] ρ = [0.3, 0.4, 0.3]
Data4 35.0 7.0 40

Data5 43.0 13.0 50

Data6 38.0 42.8 65

sparsity and the proportions, we perform extensive experiments and we present error rates or

accuracy arising from different simulated tables whose parameters are reported in table 7.3.

The main points are the following.

• Figure 7.3 shows that CMDC is always better than LPFNMTF and DRCC whatever the

degree of overlapping (δ = 0%,10%, 20%, 30%,40%, 50% or 65%).

• From initial data sets having various degree of overlapping, we measure the impact of spar-

sity. In Figure 7.4 are reported the performances of all algorithms according degrees of

mixing (δ = 0%,10%, 20%, 30%,40%, 50% or 65%) and rates of sparsity (0%, 20%, 40%

and 60%). We observe the good behavior of CMDC in all situations.

• In order to evaluate the three algorithms in term of cluster proportions, we perform supple-
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(a) WebACE data set : Sparsity rate= 91.83 %

(b) Coil20 data set : Sparsity rate= 34.38 %

(c) Leukemia data set : Sparsity rate= 0 %

Figure 7.2 – Co-clustering quality under different values of α and β.

mentary experiments by varying the proportions and the degree of overlapping. To this end,

in Figure 7.5, we present the results obtained with Data7, Data8, Data9 and Data10 described

in Appendix A. It appears clearly that CMDC is more robust than LPFNMTF and DRCC;

even when the proportions are dramatically different it remains the most effective.

- Data7: π = [0.1, 0.4, 0.4, 0.1], ρ = [0.1, 0.8, 0.1];

- Data8: π = [0.1, 0.1, 0.1, 0.7], ρ = [0.1, 0.8, 0.1];

133



7. SEMI-SUPERVISED CO-CLUSTERING

Figure 7.3 – Impact of overlapping

- Data9: π = [0.2, 0.3, 0.3, 0.2], ρ = [0.1, 0.8, 0.1];

- Data10: π = [0.1, 0.1, 0.1, 0.7], ρ = [0.3, 0.4, 0.3].

• Finally, the obtained results, showed in Figure 7.6, proves that for sparse data sets (Document-

term data sets), the accuracy of CMDC grows with α and β, it is the best when α and β are

higher. However, for data sets with low sparsity rate (image and microarray data sets), small

values of α and β (< 0.1), seems more interesting as we have seen for real data sets.

7.4 Conclusion

In this chapter we describe a novel approach for constrained co-clustering with locality pre-

serving that we called Matrix Decomposition based Co-clustering algorithm (CMDC). This

approach is based on low-rank approximation of the binary cluster indicators and the original

data. In the semi-supervised context, CMDC treats the co-clustering process by integrating

some informative ML and CL constraints. The selected constraints are introduced in the graph

Laplacian matrices in both sample and feature sides. In our experiments on real data sets, it is

notable that CMDC outperforms other algorithms designed to solve the same task. It is not only

more efficient, but it also requires less computation time. Furthermore, using some synthetic

data sets, we investigated the robustness of CMDC in terms of clustering and co-clustering.

The overall results showed that even with higher degree of overlapping, high rate of sparsity

and proportions of clusters dramatically different, CMDC remains significantly efficient.
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(a) Data1: δ=10% (b) Data2: δ=20%

(c) Data3: δ=30% (d) Data4: δ=40%

(e) Data5: δ=50% (f) Data6: δ=65%

Figure 7.4 – Impact of sparsity
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(a) Data7 (b) Data8

(c) Data9 (d) Data10

Figure 7.5 – Impact of cluster proportions
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(a) Data1: δ=10%
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(b) Data2: δ=20%
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(c) Data3: δ=30%
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(d) Data4: δ=40%
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(e) Data5: δ=50%
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(f) Data6: δ=65%

Figure 7.6 – Accuracy in function of α, β and sparsity rate
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Chapter 8

Conclusions and perspectives

139



8. CONCLUSIONS AND PERSPECTIVES

8.1 Conclusion

In this thesis we have investigated how to apply some unsupervised learning techniques, namely

data dimensionality reduction, data clustering and data co-clustering, on the high-dimensional

data sets. Unlike to the existing tandem clustering methods that combine a dimension reduc-

tion method (e.g PCA) and a clustering method (such as k-means) separately, we provided two

convenient ways to integrate the data embedding and the data clustering steps into a single

framework which performs the two tasks simultaneously. Furthermore, we have extended the

proposed basic methods to tackle the co-clustering problem. Finally, we have proposed two

methods to address the problem of co-clustering in two different contexts, the multi-manifold

learning and the semi-supervised learning by integration prior knowledge in the model as pair-

wise must-link and connot-link constraints. Hereafter, we present in detail the main novel

contributions of this thesis in chapters 3-7.

Chapter 3 [Allab et al., 2015b, 2016a]. In the proposed framework, referred to as Simul-

taneous SemiNMF and PCA for data Clustering (SemiNMF-PCA), we showed how PCA and

SemiNMF can be integrated into a single framework to simultaneous data clustering and vi-

sualization. Specifically, we showed that the objective learning of Semi-NMF-PCA can be

decomposed into two terms, the first one is the objective function of PCA and the second is the

Semi-NMF criterion in a low dimensional space. This allows a better approximation of data

reduction integrating a clustering solution. We further developed our method to incorporate

manifold information and proposed the graph Regularized Fast Semi-NMF-PCA method.

Chapter 4 [Allab et al., 2016b]. We have proposed a framework, referred to as Power

Spectral Data Embedding and Clustering (PSDEC), for spectral clustering combining low-

dimensional embedding learning and clustering in a common procedure. Then the optimiza-

tion of a single learning objective function is necessary to achieve spectral embedding and

clustering tasks simultaneously. The spectral rotation technique is applied to get the contin-

uous spectral vector which is closer to the cluster membership indicator than existing results.

Several experiments revealed that PSDEC is less costly than traditional spectral clustering and

better than existing methods commonly used for the same tasks.

Chapter 5 [Allab et al., 2016c]. In the proposed framework, referred to as Regularized

SemiNMF-PCA for Co-Clustering (SemiNMF-PCA-Coclust), we showed how PCA and Semi-

NMF can be integrated into a single framework of simultaneous data co-clustering and visu-

alization. Specifically, we have extended SemiNMF-PCA algorithm presented in Chapter 3 to
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perform SemiNMF via PCA for dimension reduction and data co-clustering. As in chapter 3,

we further developed our method to incorporate manifold information of both data samples and

data features and proposed the graph Regularized SemiNMF-PCA-Coclust method.

Chapter 6 [Allab et al., 2015a]. Motivated by the potential of dimensionality reduction

methods, we proposed to tackle the aim of co-clustering via an ensemble learning. Specifically,

we have considered the following well-known dimensionality reduction methods: Canonical

Discriminant Analysis (CDA), Multi-Dimensional Scaling (MDS), Isometric Feature Map-

ping (ISOMAP), Locally Linear Embedding (LLE), Locally Preserving Projections (LPP) and

Stochastic Neighbor Embedding (SNE). Next, we have proposed a novel Multi-Manifold Co-

clustering algorithm referred as M3DC. It attempts to consider simultaneously the diversity of

geometric structures in both the sample manifold and the feature manifold, with the aim of

discarding the noisy part in each candidate manifold. In other words, instead of choosing a sin-

gle manifold learning technique, M3DC considers the idea of applying a set of dimensionality

reduction methods and extracting the associated manifolds. By considering both sample and

feature manifolds, we aimed to develop an effective co-clustering algorithm.

Chapter 7 [submitted in KBS journal]. The aim of the proposed approach, referred to as

Constrained Matrix Decomposition based Co-Clustering (CMDC), was to co-cluster efficiently

data sets of different types by introducing the most beneficial prior knowledge on both the

sample and feature spaces. Using Laplacian locality preserving, we projected the samples and

features into lower-dimensional subspaces, preserving their local geometry. By replacing the

original high dimensional data matrix by two low-dimensional intermediate matrices and two

low-dimensional landmark-based representations, We have significantly reduced the complex-

ity of the graph construction and the graph Laplacian eigendecomposition. This significantly

reduces computational time. Finally, besides the similarity information encoded in the Lapla-

cian graph in both sample and feature sides, CMDC allows to use label information to modify

the two graph Laplacians according to the specified ML and CL constraints. Furthermore, using

the measure of informativeness, CMDC selects the constraints that can correct the failures of

most of the clustering and co-clustering methods. This is specifically relevant with the presence

of some critical data located on the boundaries among the classes.
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All objectives functions optimized in the thesis are reported in figure 8.1. Note that, they

are based on the Frobenius norm. For future work, a promising direction would be to use the

I-divergence (or generalised KL-divergence). Further, we can also investigate the use of other

regularization terms. For instance, we can add some sparsity constraints by using coordinate

descent, ℓ1,2 regularization or spectral regression. To study the impact of these parameters, a

thorough study deserves to be performed.

In Chapter 3, we have proposed a solution to choose the number of components and re-

tained the one that optimizes the criterion of our proposed method RF-Semi-NMF-PCA [Allab

et al., 2015b, 2016a]. The obtained results in terms of clustering and visualization are very

encouraging. However, the used strategy relies on a certain extent on the number of classes.

It should be more beneficial to investigate simultaneously the choice of the number of classes

and the number of components for all the proposed eigendecomposition based approaches.

This objective will be our major ongoing research activity.
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Introduction. The work summarised in this thesis has implied conducting a wide array of

experiments to test in practice intuitions and insights. This Appendix gathers some aspects

common to these experiments, so as to avoid unnecessary repetitions along the thesis. An

adequate choice of the data collections over which the experiments are going to be performed

is of a capital importance to ensure the validity of the conclusions drawn from them. Not only

the greatest similarity with the data that the clustering algorithms would be dealing with in a

real-world situation should be sought, but also benchmark data sets must be always used, in

so far as possible. In the work summarised in this thesis we have used benchmark and widely

available data sets. The specific details of the data sets and splits used in each experiment will

be discussed in the corresponding chapter of this thesis.

Textual document-term data sets. The experiments were performed using some benchmark

document-term data sets from clustering and co-clustering literature. We used 9 real data sets,

each with different sizes and balances1. Below, we present a description of each used data set.

• CSTR: [Li, 2005] Contains the abstracts of technical reports (TRs) published in the Depart-

ment of Computer Science at University of Rochester from 1991 to 2007. There are 550

abstracts and they are divided into 4 research areas: Natural Language Processing, Robotic-

s/Vision, Systems, and Theory. We also use the category information of terms obtained

from ACM Keywords Taxonomy as prior knowledge.

• WEBACE: [Ding and Li, 2007] Contains news articles partitioned across 20 different topics

obtained from the WEBACE project [Han et al., 1998].

• CLASSIC3 and CLASSIC42 Consists respectively of 3 different document collections:

CISI, CRANFIELD, and MEDLINE for classic3 and 4 different document collections:

CACM, CISI, CRANFIELD, and MEDLINE for classic4.

• NG20: [Zhong and Ghosh, 2005] is a collection of usenet articles divided into 20 different

categories. We also include the NG10 data set, a subset of NG20 that contains the 10 topics.

• RCV1: [He, 2012] is a subset of a newswire stories corpus made available by Reuters

containing 4 categories: C15, ECAT, GCAT, and MCAT.

• SPORTS and REVIEWS: [Zhong and Ghosh, 2005] Are two data sets from the CLUTO3

toolkit that are collected from the San Jose Mercury newspapers articles. Reviews contains

5 document categories (food, movies, music, radio and restaurant) and sports contains 7

documents categories (baseball, basketball, bicycling, boxing, football, golfing and hockey).

1The balance coefficient is defined as the ratio of the number of documents in the smallest class to the number

of documents in the largest class.
2http://www.dataminingresearch.com/index.php/2010/09/classic3-classic4-datasets
3http://glaros.dtc.umn.edu/gkhome/views/cluto
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Image data sets. To assess our approaches on other data with low sparsity, experiments

were performed using some benchmark image data sets from the clustering literature.

• Coil-100: The Columbia object image library (COIL-100)1 is a set of color images of

100 different objects taken from different angles (in steps of 5 degrees) at a resolution of

128× 128 pixels.

Figure 8.2 – Coil-100 Data set

• Coil-20: The COIL-20 database 2 is an image library from Columbia which contains 20

objects. The images of each object were taken 5 degrees apart as the object is rotated on a

turntable and each objects has 72 images. The size of each image is 32 × 32 pixels, with

256 grey levels per pixel.

Figure 8.3 – Coil-100 Data set

• ORL: ORL face database consists of a total of 400 face images, of a total of 40 subjects

(10 samples per subject). The images were captured at different times and have different

variations including expressions (open or closed eyes, smiling or non-smiling) and facial

details (glasses or no glasses). The images were taken with a tolerance for some tilting

and rotation of the face up to 20 degrees. The original images were normalized (in scale

and orientation) such that the two eyes were aligned at the same position. Then, the facial

areas were cropped into the final images for matching. The size of each cropped image is

32× 32 pixels, with 256 grey levels per pixel. Thus, each face image can be represented by

a 1024-dimensional vector.

1available at http://www1.cs.columbia.edu/CAVE/software/softlib/coil-100.php
2available at http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php
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Figure 8.4 – ORL Data set

• Yale: The Yale database consists of 165 face images of 15 individuals. There are 11 images

per subject, one per different facial expression or configuration: center-light, with glasses,

happy, left-light, no glasses, normal, right-light, sad, sleepy, surprised, and wink. We pre-

processed these original images by aligning transformation and scaling transformation so

that the two eyes were aligned at the same position. Then, the facial areas were cropped

into the resulting images.

Figure 8.5 – Yale Data set

• CMU PIE: The CMU PIE face data set contains 41368 facial images of 68 people, The face

images are captured under 43 different light and illumination conditions, and each person

has 42 facial images (each person under 13 different poses and with 4 different expressions).

Original images were normalized (in scale and orientation) so that the two eyes were aligned

at the same position. then, the facial areas were cropped into the final experimental images.

The size of each cropped image is 32×32 pixels, with 256 gray levels per pixel. Thus, each

face image is represented by a 1024-dimensional vector in image space.

Figure 8.6 – CMU PIE Data set
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• USPS: USPS digit database is one of the standard data sets for handwritten digit recogni-

tion. It contains 9298 normalized grey scale images of size 16× 16, divided into a training

set of 7291 images and a test set of 2007 images.

Figure 8.7 – USPS Data set

• MNIST: is a database of handwritten digits, available from this page, has a training set of

60,000 examples, and a test set of 10,000 examples. It is a subset of a larger set available

from NIST. The digits have been size-normalized and centered in a fixed-size image.

Figure 8.8 – MNIST Data set

Microarray data sets. Microarrays allow measuring the expression level of a large number

of genes under different experimental samples or environmental conditions. The data generated

from them are called gene expression data. The extraction of biological relevant knowledge

from this data is not a trivial task.

• Leukemia: Consists of a set of 72 examples and two types of Leukemia, 47 ALL (Acute

Lymphocytic Leukemia) and 25 AML (Acute Myelogenous Leukemia). The data contains

initially 7929 features. In [Busygin et al., 2002] it was suggested deleting the control fea-

tures ”affymetrix” and the features having a value less than 20 (biologically, the low levels

of expression are difficult to interpret), to obtain finally 1762 features.

• Lung cancer: This data set has been obtained from a total of 203 snap-frozen specimens

composed of 186 lung tumors and 17 normal lung samples. Lung tumors include 139 adeno-

carcinomas, 21 squamous cell lung carcinomas, 20 pulmonary carcinoids, and 6 small-cell

lung carcinomas (SCLC). mRNA expression levels of 12, 600 transcript sequences from

samples are hybridized for biologically distinct subclasses of lung adenocarcinoma [Bhat-

tacharjee et al., 2001].

149



8. APPENDIX A

• Colon cancer: Murali and Kasif used a colon cancer data set originated in to test XMOTIF.

The matrix contains 40 colon tumor samples and 22 normal colon samples over about 6500

genes. Colon cancer data set is available at http:// www.weizmann.ac.il/physics.

• Breast Cancer: Contains 78 patient samples, 34 of which are from patients who had devel-

oped distance metastases within 5 years (labeled as relapse), the rest 44 samples are from

patients who remained healthy from the disease after their initial diagnosis for interval of at

least 5 years (labeled as nonrelapse). We used a version of data set contains 23, 625 genes

and 32 relapse samples and 44 non-relapse samples.

• Yeast: We used the same gene expression data sets as used by Cheng and Church [Cheng

and Church, 2000]. The yeast Saccharomyces cerevisiae cell cycle expression data set con-

tains 2884 genes and 17 conditions. The gene expression values were mapped into the range

0 and 600 and missing values were represented by −1 in the yeast data set.

FCPS and Shape synthetic data sets. In order to illustrate the efficiency of some algo-

rithms, we used some generated synthetic data sets selected from the Fundamental Clustering

Problem Suite (FCPS)1 and the Shape data sets2. FCPS and Shape data sets poses some hard

clustering problems.

Figure 8.9 – FCPS and Shape synthetic data sets

1Can be downloaded from: http://www.uni-marburg.de/fb12/datenbionik/data
2Shape: http://cs.joensuu.fi/sipu/datasets/
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SwissRoll data set. In order to illustrate the ability of some methods to preserve the ini-

tial topology and their capability to separate classes, we used a generated synthetic data set

called SwissRoll (1600 × 3) with 4 classes (400 samples in each class). The original data

was created by randomly sampling from a Gaussian Mixture Model with centers/means at

(7.5, 7.5), (7.5, 12.5), (12.5, 7.5) and (12.5, 12.5). The covariance for each Gaussian is the

2 × 2 identity matrix. These points are generated in 2-dimensions, and then map them to

3-dimensions with the Swiss Roll mapping (x, y) 7−→ (x cos(x), y, y sin(y)). Figure 8.10 il-

lustrates some manifold projections obtained using some reduction dimension methods, where

the clusters are obtained thanks to k-means.

Figure 8.10 – SwissRoll Data set

Generated data sets for Co-clustering. Several papers have been devoted to co-clustering,

however in the most cases the proposed algorithms are evaluated only in terms of clustering

and not co-clustering. This is due to the non-availability of real data sets where row and column

classes are generally simultaneously known. To this end, we propose to evaluate the three algo-

rithms on simulated data sets generated according the Latent block model which is extensively

studied in [Govaert and Nadif, 2003, 2005, 2008, 2014].

Latent block model. In the classical mixture model, the mixture density of the observed data

X or likelihood can be expressed

f(X,θ) =
∏

i

∑

p

πpϕ(x.i;λp),

where θ = (π,λ) with π = (π1, . . . , πp) denoting the proportions of clusters and λ =

(λ1, . . . ,λp) denoting the parameters of densities ϕ.

The probability density function f(X,θ) can be written as
∑

G∈G p(G; θ)f(X|G;θ) [Go-

vaert and Nadif, 2003], where G denotes the set of all possible assignments of samples into k
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clusters,

p(G; θ) =
∏

i,p

π
gip
k and f(X|G; θ) =

∏

i,p

ϕ(x.i;λk)
gip .

Table 8.1 – Parameters of simulated data sets and error rates for samples, features and global.

Data Dimension Classes Error Rate (%) Proportions of Proportions of

e(G,G′) e(F, F ′) δ = δ(Y, Y ′) sample clusters feature clusters

Data1 8.4 2.6 10

Data2 13.2 7.4 20

Data3 500x500 4x3 25.4 6.2 30 π = [0.2, 0.3, 0.3, 0.2] ρ = [0.3, 0.4, 0.3]
Data4 35.0 7.0 40

Data5 43.0 13.0 50

Data6 38.0 42.8 65

In co-clustering, the formulation of f(X, θ) can be extended to propose a latent block

model defined by the following probability density function [Govaert and Nadif, 2003]:

f(X,θ) =
∑

(G,F )∈G×F

p(G;θ)p(F ; θ)f(X|G,F ;θ)

=
∑

(G,F )∈G×F

∏

i,p

π
gip
p

∏

j,q

ρ
fjq
q f(X|G,F ;θ),

where θ = (π1, . . . , πp, ρ1, . . . , ρq, λ11, . . . , λpq) and G and F denote the sets of all possibles

assignments G of samples into k clusters and F of features into l clusters.

In this model we also assume local independence i.e., the d × n random variables Xij are

assumed to be independent once F and G are fixed; we have

f(X|G,F ;θ) =
∏

i,j,p,q

ϕ(Xij ;λpq)
gipfjq

where ϕ(.;λpq) is a probability density function defined.

Assuming that for each block kℓ the values Xij are distributed according to a Gaussian

distribution (µpq, σ
2
pq) with µpq ∈ R and σ2

pq ∈ R+, the density ϕ with λpq = (µpq, σ
2
pq) is the

following

ϕ(Xij , µpq, σ
2
pq) =

1√
2πσ2

pq

exp−

{
1

2σ2
pq

(Xij − µpq)
2

}
.

Parsimonious model can be defined by imposing constraints on the proportions or vari-

ances. In [Nadif and Govaert, 2010], considering the co-clustering under the classification

mixture approach, the authors shown that the criterion optimized by Croeuc is associated to a

parsimonious Gaussian latent block model where the proportions of sample clusters and fea-
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ture clusters are assumed equal respectively. Next, we rely on the Gaussian latent block model

to generate the data according different parameters while controlling the degree of mixing.

Different parameters are used and some situations are reported in table 8.1.

Error rate and degree of overlapping One characteristic of a mixture model is the degree of

mixing or overlapping among the components. In the classical situation, this concept of cluster

separation can be visualized, for instance by using principal component analysis (PCA), but

this concept of cluster separation is difficult to be applied to the latent block models. Another

solution is to compute the true error rate associated to the model, which is defined as the

expectation of the misclassification probability E(δ((G,F ), d(X)) where G, F and X are the

random variables associated to the latent block model, d is the optimal Bayes rule d(X) =

(G′, F ′) = argmaxG,F p(G,F |X) associated to this model and δ is the error rate.

This expectation is generally difficult to be computed theoretically, and Monte Carlo sim-

ulations are used to estimated it by the proportion of misclassified, for instance in the classical

clustering situation, between the partition simulated with those we obtained by applying a clas-

sification step from the true parameters θ̂. This parameter being fixed, the problem is to deter-

mine the “best” partitions G and F , that is the pair of partitions G,F maximizing respectively

the posterior probability (for details, see [Govaert and Nadif, 2014]):

{
gip = argmaxp′ πp

∏
j,q ϕ(Xij , µp′q, σ

2
p′q)

fiq

fjq = argmaxq′ ρq
∏

i,p ϕ(Xij , µpq′ , σ
2
pq′)

gip .

The proportion of misclassified can be defined as follows: if C is the confusion matrix between

the two partitions, relabel the components of the partition G′ such that the trace of matrix C

is maximal, then compute e(G,G′) = 1− 1
n

∑
i,p gipg

′
ip which is (1-Acc). This definition can

be extended to the comparison of two pairs of partitions Y = (G,F ) and Y ′ = (G′, F ′) as

follows:

δ(Y, Y ′) = δ((G,F ), (G′, F ′)) = 1−
1

nd

∑

i,j,p,q

yijkℓy
′
ijpq,

where yijpq = gipfjq and y′ijpq = g′ipf
′
jq and, it can be shown that

δ(Y, Y ′) = e(G,G′) + e(F, F ′)− e(G,G′)× e(F, F ′).

Then we can simulate with the expected error. We perform this process several times. First,
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we have simulated data sets of size 500×500 with different degree of overlapping. Figure 8.11

illustrates two data sets with degree of overlapping equal to 10% and 65% .
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Figure 8.11 – Visualisation of simulated data sets by PCA

Furthermore, in order to evaluate some algorithms in term of cluster proportions, we four

simulate data sets of size 500× 500 by varying the proportions and the degree of overlapping.

Figure 8.12 illustrate the obtained data sets. To this end, the generated data sets are obtained

with:

- Data7: π = [0.1, 0.4, 0.4, 0.1],ρ = [0.1, 0.8, 0.1];

- Data8: π = [0.1, 0.1, 0.1, 0.7],ρ = [0.1, 0.8, 0.1];

- Data9: π = [0.2, 0.3, 0.3, 0.2],ρ = [0.1, 0.8, 0.1];

- Data10: π = [0.1, 0.1, 0.1, 0.7],ρ = [0.3, 0.4, 0.3].
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(a) Data7: π = [0.1, 0.4, 0.4, 0.1], ρ = [0.1, 0.8, 0.1]

(b) Data8: π = [0.1, 0.1, 0.1, 0.7], ρ = [0.1, 0.8, 0.1]

(c) Data9: π = [0.2, 0.3, 0.3, 0.2], ρ = [0.1, 0.8, 0.1]

(d) Data10: π = [0.1, 0.1, 0.1, 0.7], ρ = [0.3, 0.4, 0.3]

Figure 8.12 – Simulated data sets with various cluster proportions
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