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Abstract

Formation and consolidation of new memories is one of the fundamental charac-
teristics of the brain, responsible for learning and high cognitive behavior. While
important, the process isn't fully understood to the present day and is the subject of
various studies, spanning from the activity analysis of individual synapses to the re-
construction of brain connectivity maps. In this work, we propose a bold approach,
on which we aim to measuren vivo the activity of every single neuron from the
whole Mushroom body (MB) of theDrosophila melanogasterin a fully automated
procedure. After a 3D image acquisition over time of the MB by means of confocal
microscopy, an automated detection and tracking of the neurons is performed. The
whole process takes place while the y is awake and subjected to di erent odor
stimulations, so that it is possible to associate the activity patterns at the single
cell level to the stimulus that is being received. By comparing the response patterns
from ies that were trained and ies that were not trained to associate an odor with
an electric shock we identi ed changes in neuronal activity, providing information
on how memory is formed. Beyond the methodological innovation that brought the
possibility to track the activity of a large set of single neurons, this work contributed
to the current understanding of long term memory formation.



Ve

Résum é

La formation et la consolidation de souvenirs est I'une des caraceristiques fonda-
mentales du cerveau, responsable de l'apprentissage et de comportements cognitifs
elewes. Malge son importance, ce processus n'est pas enterement comprisa ce
jour et fait I'objet de nombreux travaux de de recherche, allant de I'analyse de
l'activie des synapses individuelles a la reconstruction de cartes de connectivie
du cerveau. Dans ce travail, nhous proposons une approche inegee pour mesurer
in vivo l'activie de chaque neurone du corps pedoncue (Mushroom body, MB) de
la Drosophila melanogasterdans une proedure enterement automatise. |l s'agit
d'imager en 3D et dans le temps le MB dans sa totalie par microscopie confo-
cale et d'operer un suivi temporel de la position de chaque neurone a n de relever
leur niveau individuel d'activie. En utilisant cette approche, nous avons cecouvert
gue pendant la formation de la memoirea long terme, de nouveaux neurones sont
recrues au sein du corps pedoncuks, tandis que l'intensie de la eponse des neu-
rones individuels reste inchangee. Au deh de l'apport nmethodologique qui permet
a pesent de quanti er automatiquement I'activie d'un grand nombre de neurones,

ce travail a contribtea une meilleure compehension de la formation de la memoire

a long terme.
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Chapter 1

Introduction

If the brain were so simple
we could understand it, we
would be so simple we
couldnt.

Lyall Watson

1.1 Context

The brain is one of the most complex
systems known to mankind. This, at
least, according to the brain itself. It
is common for us to separate our con-
sciousness from it | and in fact this was
the common reasoning for thousands of
years | but all of our thoughts, pas-

ing the previously stored memories as
database in this highly nonlinear model.

Thus, for Hawkins, memory is at the

core of intelligent behavior.

In fact, during the past decades we just
started to understand how neurons can
work together to process information.
This brought an enormous impact, not
only because it allows us to better un-
derstand ourselves, but also because it
was the seed that started the current
technological revolution we are experi-
encing, the born and raise of Arti cial
Intelligence.

Computers are more and more able to
behave in a way that can be considered
intelligent, and it all started with the

more than a group of cells ring in the
right order.

But the result of these rather simple
cells working together is something that
is much bigger than the sum of its parts.
The brain likes to label itself as \intel-
ligent", even though this is a term that
is extremely hard to be objectively de-
ned. One of current interpretations,
structured by Je Hawkins on his book
\On Intelligence” [1], is the Memory pre-
diction framework, which states that in-
telligence is nothing more than the abil-
ity to make predictions, based on previ-
ous experiences. Simply put, the brain
is always trying to predict the next stage
of the input signals it is receiving, us-

perceptrons and simple neural networks
[2]. Since then, the increased compu-
tational power allowed the development
of more elaborated networks, capable of
solving complex problems. This new ap-
proach, termeddeep learning(3], Is in-
spired by the way neurons connect in
layers within the brain cortex, and is
able of remarkable achievements, as the
recognition of images with high preci-
sion [4] or the simulation of speak pat-
terns in a way that is indistinguishable
from a real humani(s]. The core of this
success is the fact that neural networks
are capable of learning from presented
data, thus having a memory stored in
the weights that connect the articial
neurons. Something like what the real
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neurons do inside our brains.

None of this would be achievable with-
out an understanding of how neurons are
capable of processing and storing infor-
mation. However, we are still far from
having a complete model of how they are
able of such features, and a better com-
prehension of the mechanisms of mem-
ory could bring astonishing innovations.

The irony is that the brains we need to
learn from are everywhere, waiting to
be investigated. Evolution has shaped
the nervous system for millions of years,
into a superb machine for memorization
and prediction. The problem is that

this machine doesn't come with an in-
structions manual, and the only way to

understand how it works is by explor-
ing and asking the right questions. And
this is the main objective of this thesis,
to delve into the mechanisms of mem-
ory formation and bring new insights on

how memory works.

1.2 Problematic

The biggest challenge to achieve this
goal is methodological. To have a global
view of the neuronal activity, while
memories are being recalled, we need to
be able to check the activity of individ-
ual neuronsin vivo. Furthermore, be-
cause memories are stored in a sparse
distribution within the brain [6], the
whole structure needs to be scanned at
once.

These constrains make two common
approaches, neuronal electrophysiology
(7] and functional magnetic resonance
imaging (fMRI) [g], unqualied. Elec-
trophysiology brings a high resolution,
measuring directly the voltage changes
in the membrane of neurons, but it is
limited to a restricted number of si-

10

multaneous measurements, as a physical
probe is used for the recordings. On the
other side, fMRI is capable of measuring
the activity over the whole brain (even
for the huge mammal brain), but lacks
the capability of single cell resolution.
During a fMRI scan, the brain activity

is measured by changes associated to the
blood ow, which doesn't allow a single
cell resolution. Consequently, the the
recorded activity is assigned to a xed
volume in space, not necessarily a single
cell.

1.2.1 Approach

Therefore, we approach the problem via
uorescent imaging. Further details will
be given upon Chapter 3, but the ba-
sic idea is that by being able to mea-
sure the C&" changes within neurons,
and also having a nuclei marker to iden-
tify individual cells, we will be able to
know the level of activity at the single
cell level. The downside of this approach
is that the desired eld of view should
be imaged, in 3D, fast enough to cap-
ture the responses from the neurons and
with high enough resolution so that indi-
vidual neurons could be detected. The
current state of the art technologies in
microscopy wouldn't allow the acquisi-
tion of a whole vertebrate brain within
these standards.

Although the complexity of a mammal
brain is indisputable, and much can be
studied from it, the bases of the sys-
tem are well found in other organisms.
In our case, is particularly interesting
the model of the fruit y, Drosophila
melanogaster Vastly used in current re-
search for its exibility, it is one of the
most important animal models nowa-
days, and will be further discussed dur-
ing Chapter 2. Besides having a brain
small enough to tinto a single 3D eld
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of view of a confocal microscope, the
fruit y is capable of conditioned learn-
ing, making it an ideal model for the
study of associative memory.

The idea is simple: take a group of ies,
make them learn something and record
the brain activity while they remem-
ber the lesson. As control, also record
the brain of another group of ies that
didn't learned anything. The di erences
between these two groups should show
what were the structural changes within
the brain during the learning process.
The details of the protocol will be ex-
plained within Chapters 2 and 3.

1.2.2 Queries

From this, few questions about the
mechanisms of memory can emerge. Are
new neurons recruited to represent the
acquired information? Is the activity of
the neurons that represent the stimulus
increased, in comparison to the group
that didn't learned? Even simple in-
quires like these were never fully an-
swered in a precise and quantitative way.

Technically challenging, the answer to
these questions rely on the development
of new methodology. For the best of our
knowledge, no research group was able
to perform the extensive 3D recordings
in vivo of a whole Mushroom body, au-
tomatically detect neurons and measure
their activity. The computational tech-
niques that were designed for these goals
are explained in detail during Chapters
4,5, 6and 7.

Being in the intersection of state of the
art technologies from both biology and
computer sciences, the work developed
on this Thesis is highly interdisciplinary.
Aspects regarding the biological bases
will be explained within this Chapter,
in Section 1.4 and the computational as-

pects needed to better comprehend the
methods during Section 1.5.

1.3 Work environment

This work was developed within the
laboratory of Computational Bioimag-
ing and Bioinformatics of thelnstitut de
Biologie de I'Ecole Normale Superieure
(IBENS), under the supervision of Au-
guste Genovesio. The laboratory devel-
ops projects in dierent elds of com-
puter sciences, ranging from image anal-
ysis to bioinformatics, in partnership
with several other Parisian institutions.

The project would not have been
possible without the partnership with
the laboratory of Genes et Dynamique
des Sysemes de Memoirg directed by
Thomas Preat, at the Ecole Supereure
de Physique et de Chimie Industrielles
de la Ville de Paris(ESPCI). Their lab-
oratory is deeply involved in the research
of the mechanisms of memory using the
Drosphila melanogasteias a role model.

1.4 Biological aspects

During this Section we'll explore a few
key points for the better understanding
of the biological aspects of this Thesis.

1.4.1 Memory

For more than a century, one of the
greatest challenges of neuroscience has
been the understanding of the mecha-
nisms of memory formation and restora-
tion. The process of memorization
breaks down into three stages: learning,
storage/consolidation and recall.

Learning is de ned as the acquisition of

11
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information that can be manifested by
a change in behavior based on experi-
ence. The persistence of this behavioral
change over time is the revealer of the
formation of a memory, including the
consolidation phase and the recall phase.

In the human being, memory takes on
di erent facets. Declarative and non-

declarative memories are generally dis-
tinguished [9]. Semantic memory and

episodic memory, which are two systems
of long-term conscious representation,
constitute the declarative memory.

Semantic memory is based on global
knowledge and knowledge of oneself and
the world [10], while episodic memory fo-
cuses on past moments and eventsi).
Nevertheless, episodic memory events
tend to amalgamate to form a seman-
tic corpus. Among the non-declarative
memories, we nd the procedural mem-
ory allowing unconscious kinetic au-
tomatisms, to develop skills such as
walking, playing a musical instrument,
or even artistic abilities like drawing(12].

these memory processes. Although huge
morphological di erences exist between
them, it is possible to compare some ba-
sic principles of functioning of the ner-
vous system, dierences and common
points that can be found between dif-
ferent sorts of brains. This can allow
us to be better equipped to compare
the Drosophila to other species such as
mammals.

Further aspects of memory, in speci c to
the Drosophila model, will be discussed
upon Chapter 2.

1.4.2 Neuronal morphology & physiology

At the anatomical level, neurons are
rather bipolar in the central nervous sys-
tem of mammals, while invertebrates,
and in Drosophilain particular, they are

unipolar (as seen in Figure 1.1). These
neurons are organized into ganglia in the
nervous system of insects, while verte-
brates are more complex. In the lat-

These learnings are unconscious. Fearster, the cerebral hemispheres of prosen-

learned or dislikes involving the amyg-
dala are also forms of non-declarative
memory [13]

Furthermore, it is possible to categorize
memory according to its time course.
Long-term memories can last for days,
months or years, while short-term mem-
ories will fade away more quickly. In
the extreme, working memory is a very
short-term memory, which stores infor-
mation for a few seconds or tens of
seconds, and needs to be re-mobilized
regularly to last a little longer [14, 15].
The subjectivity of this categorization,
particularly related to human language,
makes it di cult to extrapolate to other
animal species.

In most animal species, the nervous sys-
tem serves as a basis for supporting

12

cephalic origin have a particular struc-
ture, the cerebral cortex which itself has
a particular diversity across species. In
reptiles like the alligator, the cortex con-
sists of a single layer of neurons, while
up to six layers can be distinguished
in mammals such as rats or humans.
Without seeking to be exhaustive, we
must note that many other di erences
exist between animal species at di er-
ent levels in the physiology of the ner-
vous system. For example, the propa-
gation of electrical signals is not in the
form of action potentials in the nema-
tode worm, and in insects, and in par-
ticular Drosophila the axonal bers are
not myelinated.

At the neuronal scale, the electrical and
synaptic properties are conserved glob-
ally. Both excitatory neurons and in-
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Figure 1.1: Dierent morphologies of neurons. (A)
Bipolar neuron, where the dendritic compartment is up-
stream of the cell body and downstream is the axonal
compartment. (B) Unipolar neuron, on which the den-
drites and the axon are in continuity, deriving from the
cell body.

hibitory neurons are found in di erent
species. In arelated fashion, most of the
neurotransmitters used in the nervous
system are shared: acetylcholine, glu-
tamate, dopamine, serotonin, GABA,
as well as dierent neuropeptides|is-
18].  All these homologies result from
the existence of orthologous genes be-
tween the dierent species. In this
case, the conservation of neurotransmit-
ters comes from a strong conservation in
the biosynthetic enzymes of these neuro-
transmitters [19].

Synaptic plasticity, a fundamental
mechanism for storing information, is
also very well preserved. We can also
note that synaptic retrograde messen-
gers exist in most speciesDrosophila
for example, exhibits NO-dependent
retrograde communication [20]. In
addition, there may also be non-
synaptic connections between neurons,
via communicating junctions, able to
form electrical synapses, including in
Drosophila [21]. Another very common
feature of central nervous systems in
many species, including the fruit v,

is the presence of glial cells, in greater
or lesser proportion to neurongz2). If
glial cells, and in particular astrocytes,
are predominant in mammals, glial
cells (astrocytes, cortical glia and glean
\sheathing”) remain a minority in
Drosophila However, these glial cells
appear to be able to perform functions
equivalent to those of astrocytes in
mammals, as they surround the cell
bodies and proximal neurites, are
coupled to the vascular network and
are closely associated with synapses
[23-25]. Finally, it can also be noted that
many signal transduction pathways
are conserved and that metabotropic
receptors and ionotropic receptors are
found in di erent species|2s, 27].

At the organization level of the neural
networks, one can still note some simi-
larities. Because of the need to explore
the environment and react, sensory neu-
rons associate in an intermediate stage
which itself contacts, downstream, the
motor neurons. Such an organization is
found both in the re ex arc of mammals
and in the innate responses to aversive
odors inDrosophila Moreover, in di er-
ent organisms, an innate response can
be modulated by learning, involving a
derivation of information to integrating
centers|2s, 29].

1.4.3 Classical conditioning

Most of the questions underlying the
formation of memory relates to the
nature, duration, location and mecha-
nisms of changes in the nervous sys-
tem, changes that are also called mem-
ory traces. One of the rst neurobiolo-
gists to take an interest in these mech-
anisms was lvan Pavlov (1849-1936).
Noticing that dogs tended to salivate be-
fore actually making contact with food,
he decided to investigate this \psychic

13
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secretion" in more detail. Thus, he
discovered the basic laws of acquisi-
tion and the loss of conditional re exes
(which would later become conditioned
responses) that is, re ex responses, such
as salivation, which do occur only con-
ditionally to specic experimental con-
ditions in the animal [30].

He developed the concept of classical
conditioning, which focuses on the con-
sequences of learning related to the as-
sociation between environmental stim-
uli and the automatic reactions of the
body. This notion of involuntary reac-
tion is the main point that di erenti-
ates it from operant conditioning, where
learning leads to a voluntary change in
behavior.

The principle of classical conditioning
has been adapted many times to study
in more detail the mechanisms underly-
ing the formation of these conditioned
re exes. Initial works, on the study
of the defensive re exes ofAplysia (a
gastropod mollusc), in response to tac-
tile stimuli has allowed major advances.
The tactile stimulation of the gills and
the siphon located on the back of this
organism causes a re ex of withdrawal.
Repeated application of this stimulus
and its association with another stim-
ulus causes habituation reactions (grad-
ual decrease in the intensity or frequency
of appearance of the conditioned re ex)
and sensitization (gradual increase in in-
tensity or the frequency of appearance of
the conditioned re ex when associated
with an unpleasant stimulus)[31-33].

The results obtained on Aplysia by E.
Kandel (Nobel Prize in Physiology and
Medicine, 2000) have determined that
learning is based on functional changes
in the e ectiveness of existing excita-
tory connections [34, 35].  This work
also revealed the importance of the
cyclic 3'-5 'adenosine monophosphate
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(cAMP) pathway [36] and protein kinase
A (PKA) in the formation of short-term
memories (sensitization)37] and CREB
transcription factor (CAMP -response
element binding protein) in long-term
memory formation [33]. Thus, it has
been proposed that the formation of
short-term memory is based on changes
in synaptic e ciency while long-term
memory induces changes in the number
of these synapses.

The study of learning and memory also
bene ted from the contribution of an-
other neurobiologist, Seymour Benzer
(1921-2007). He rst became inter-
ested in molecular biology, including the
structure and regulation of genes, and
developed a recombination-based sys-
tem for the systematic study of muta-
tions [39, 40]. He then turned to neu-
roscience, and more particularly to the
neurogenetic mechanisms of behavior in
the fruit y, Drosophila melanogaster
Based on its experience in molecular bi-
ology, Benzer has developed the bottom-
up approach for the study of neurobi-
ological mechanisms. This approach is
based on the principle that a point mu-
tation of a given gene has important
consequences on the physiology and be-
havior of the animal. Thus, the study of
a precise mutation makes it possible to
understand molecular and then cellular
mechanisms involved in a mechanism as
complex as learning41].

Benzer was one of the rst to realize
that understanding the genetic mecha-
nisms of behavior inDrosophila would
help understand the functioning of more
complex brains. S. Benzer's labora-
tory has developed many paradigms for
the study of Drosophila behavior(42].
These have identi ed a number of "be-
havioral genes" such as periog:3], the
rst identi ed circadian rhythm mutant,

or amnesiac (amn)44] and dunce (dnc)
[45], both involved in olfactory learning.
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Nearly 40 years after the identi cation
of the rst mutants, the physiological
role of the genes a ected is still far from
being fully elucidated, despite consider-
able progress.

1.4.4 The Fruit y model

During this thesis, we use thérosophila
melanogasteras a model organism. Be-
sides its small size, the fruit y is the

trolled conditions (temperature, humid-
ity, day/night cycle). On the other
hand, its reproductive cycle is particu-
larly short: 10 days at 25C. This gives
the laboratory the opportunity to obtain
a large number of individuals quickly
and at relative low cost, when compared
to other animal models. The fruit vy
also o ers the possibility of performing
routine genetic manipulations (recombi-
nations of two mutations for example)
in relatively short times (a few weeks).

seat of complex neuronal processes, and Finally, the short reproductive cycle as-

it is proving to be a model of choice for
several studies thanks in particular to
the powerful tools of molecular genetics.

A Drosophila can form an aversive or
appetitive associative olfactory memory,
depending on whether an odor is associ-
ated with a punishment or reward. As
an aversive, if the conditioning is re-
peated at least ve times with intervals
of rest, the memory is consolidated by
involving protein synthesisde novoand
can then last more than a week, being
called Long Term Memory (LTM). In
the context of the appetitive paradigm,
there is also an LTM dependent orde
novo protein synthesis, but its formation
is engaged in the rst cycle of learning.

The Mushroom body is the brain center
where olfactory memory is encoded and
it is composed of about 2000 neurons per
hemisphere, called Kenyon Cells (KCs).
They receive connections from by about
150 cholinergic projection neurons pro-
viding them with olfactory information,
but also by about 130 a erent dopamin-
ergic neurons and only 34 e erent neu-
rons.

The use ofDrosophila as a model or-
ganism derives in particular from ma-
jor practical aspects. In the rst place,
its breeding is simple, taking place in
bottles or tubes of nutrient medium
placed in incubators with nely con-

sociated with behavioral devices that ac-
commodate largeDrosophila groups of-

fers an exceptional statistical dimension
to experiments.

Further aspects of memory conditioning,
as well as more speci ¢ protocols for the
drosophila model, will be explored dur-
ing Chapter 2

1.5 Computational aspects

This section explores a few important
topics linked to the computational as-
pects of the Thesis.

1.5.1 Image analysis

For us, humans, the vision is usually the
rst source of information when trying
to understand a given phenomena. Digi-
tal images are capable of largely expand-
ing the limits of our vision, by broad-
ening the possible frequency spectrum
to wavelengths that our eyes can nor-
mally see, or by revealing small details
that would not usually be distinguish-
able. This makes straightforward the
need to use computers to process digital
images, with the ultimate goal of better
extracting informations from them.

Digital images are composed of a grid
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of units, called pixels The pixel is
the smallest unit of information storage
within an image, that can usually be en-
coded in 8-bit (values ranging from 0
to 255) or 16-bit (from 0 to 65535). In
microscopy, the amount of pixels within
the image is de ned by the camera sen-
sor, which in our case records 512x512
pixels at 16-bit.

To extract the desired information from
these images, innumerous algorithms
and tools have been developed though
the past decades. From spot detection
[46-48] t0 image segmentation49-51] or
particle tracking [52-54], classical sub-
jects have been explored for a long time,
but no standard universal approach ex-
ists to solve every problem. Some soft-
ware packages aim to solve the more
common needs with well established al-
gorithms, as ImageJ/Fiji [55], Icy [56] or
CellPro ller [57]. However, usually state
of the art research demand the develop-
ment of new, custom, tools for specic
problems.

When it comes to developing new soft-
ware for image analysis, dierent pro-
gramming languages can be used, each
with their own strength and weakness.
During the progress of this thesis, we
opted for using Python as a program-
ming language(ss]. It is one of the
biggest growing languages in the world
[59], with a solid open-source communi-
ties for elds like image processingso]
ormMachine learningjs1]. The language
makes prototyping relatively easy, al-
lowing a well needed exploratory phase
during scienti ¢ research, while having
a relatively high e ciency [62].

Especially challenging, the analysis of
3D images is of great importance. The
majority of the available algorithms and

software are suited only for 2D images,
being some times not possible a direct
extrapolation for a 3D space. In case
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the data is truly constituted of a three-

dimensional structure, usual dimension-
ality reductions like axial projections

can lead to wrong interpretations. For

the cases when the data is 3D, but struc-
tures form a 2D-manifold that crosses
the space, the extraction of this man-
ifold directly from the 3D space is of
great help for the further stages of pro-
cessingsa.

1.5.2 Spot detection

Spot detection tools are extensively used
to collect positions of biological ob-
jects and extract quantitative informa-
tion from 3D microscopy images. The
uorescently labeled objects of interest
can range from tiny biological objects
as individual proteins, viral particles or
endosoms to much larger objects such as
cell nuclei or parasites, depending on the
microscope resolution. This is an im-
portant point, as the methodology cho-
sen to detect a certain kind of structure
can completely change, just based on the
scale of the acquisition.

An interesting example is the case of nu-
clei detection. Depending on the species
or tissue, the nuclei size can vary greatly.
Together with the variation of resolution
of the acquisition, the diameter of an in-
dividual nuclei can vary from just a few
pixels to hundreds, as seen in Figure 1.2.

On the left,
Drosophila

Figure 1.2: Comparison of nuclei sizes.

the nuclei from the Mushroom body of the
melanogaster; on the right nuclei from the embryo of

Caenorhabditis elegans. Both images are an axial max
intensity projection, and scale bars are of 10 pum.
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For the case of nuclei the size of the
ones shown for theC. elegans the pro-

image analysis methods on which they
are based can generally be divided into

cess would be more properly addressed two stages: Firstly, a particle detection

as \object" detection, as the structure
is clearly above the resolution of the mi-
croscope. Regarding this case, specic
methodologies have been developed,
65].

When analyzing the image of theD.
melanogaster (thus, the data used for
the development of this Thesis), the
structures are barely above the di rac-
tion limit of the light, resembling true
spots. So, for this case, techniques that
handle sub-resolution spots can be used.

Reliable 3D detection of diraction-
limited spots in uorescence microscopy
images is an important task in subcel-
lular observation. In general, uores-
cence microscopy images are strongly
degraded by noise and non-speci ¢ back-
ground, which makes reliable detection
di cult. Several methods have been de-
veloped for this task during the past
years, and have been compared in recent
reviews[ss, 67].

1.5.3 Obiject tracking

Object tracking refers to the identi ca-
tion of spots through a sequence of im-
ages to determine their evolutionss] and

it is of great importance for the quanti-
tative analysis of intracellular dynamic
processes from temporal microscopy im-
age data. Since manual detection and
tracking of a large number of individual
particles is not feasible, the development
of automated methods for this task is es-
sential .

An \object" can be anything from a sin-
gle molecule to a macromolecular com-
plex, organelle, virus or microsphergo.
Currently, dozens of software tools are
available for particle tracking [70]. The

(the spatial aspect), in which the spots
that stand out from the background ac-
cording to certain criteria are identi ed
and their coordinates estimated at each
image of the image sequence. Secondly,
the data association (the temporal as-
pect), in which the detected particles are
connected from one frame to another us-
ing another set of criteria to form tracks.
For each of these steps, many methods
have been developed over the years -
76], that sometimes are also derived from
other areas of data analysis7, 73].

A recent review on tracking methods
[79] indicates that, at present, there is
no universal method of particle track-
ing, and users should be aware that a
method reported to work for some ex-
periments may not be the right choice
for their application. It is advisable to
use synthetic image data mimicking real
data, both to nd the best parameters
of a given method and to evaluate its
potential performance. Users should be
especially cautious when the Signal to
Noise Ratio (SNR) of their images is sig-
ni cantly less than 4, although in the
case of more diusive (rather than di-
rected) particle motions, most methods
yield accurate estimates of dynamics for
lower SNR.

The same review also points the impor-
tance of parameter tuning and the op-

timal use of prior knowledge about the

data. The authors defend that the com-

prehension of the basic aspects of the
data is crucial for an successful tracking
of the desired objects.
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1.5.4 3D microscopy

If we want to be completely strict, 3D
microscopy doesn't exist at all (or at
least, not with current technology). Ev-
ery microscope that uses a camera to
capture photons (as a Charge-coupled
device |CCD| for example) possess a
2D sensor, thus being capable only of ac-
quiring 2D images. What is commonly
called as a 3D image is in fact a stack of
2D acquisitions, at di erent focal planes.

This fact brings one of the main com-
promises of imaging in depth, the lower
resolution on the axial direction regard-
ing the acquisition plain (as seen in Fig-
ure 1.3. The distance between the focal
planes can be as small as the pixel size
of the camera sensor, but the resolving
power of it will still be limited by the

di raction limit of the light.

Figure 1.3: Point spread function obtained from a u-
orescent bead of size Q1um, schematized in white at
the center of the image. Note how the axial distortion
(vertical axis) is considerably higher than in the XY
plane.
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1.5.5 Super-resolution microscopy

Although not directly used for the
data acquisition of the work presented
here, the concept of super-resolution mi-
croscopy is of great importance, asitis a
recent technological innovation that sur-
passed the diraction limits of light for
microscopy imaging. Besides, the track-
ing methodology exposed in the Chapter
5 is loosely inspired by this methodol-

0gy.

The super-resolution microscopy, which
development brought the 2014 Nobel
Prize of Chemistry to E. Betzig, W. E.
Moerner and S. Hell, aims to exceed the
refraction limit of light by shaping the
excitation beam [so] (STED for Stimu-
lated Emission Depletion), or by sequen-
tially activating the uorophores present
in the sample [81] (PALM for Pho-
toactivated Localization Microscopy, or
STORM for Stochastic Optical Recon-
struction Microscopy).

Nanoscopy techniques represent one of
the major evolutions for the years to
come, but there are still few in vivo ap-
plications in neurobiology so far. These
studies mainly concern the dendritic
spines of neurongs2]. The main lim-
itations of these techniques for their
application to living imaging are their
low signal-to-noise ratio, the di culty
of using them deeply in biological tis-
sues, their weak temporal dynamics (for
use in microscopy systems PALM or
STORM), and the use of high laser pow-
ers (especially for STED microscopy).

The image of a point object is not punc-
tual but consists of a di raction pattern,
called Airy gure for circular pupils,
which is the case of the microscope ob-
jectives used. The obtained Airy gure
is an interference gure that constitutes
the impulse response of the microscope
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otherwise known as point spread func-
tion (PSF). Thus, two objects very close
to one another spatially, separated by a
distanced, will e ectively be perceived
as two distinct objects, according to the
Rayleigh criterion[sz], only if d is greater
than or equal to the radiusr of the spot's
Airy disk, which corresponds to the cen-
tral ring of the di raction pattern.

1.5.6 Two-photon microscopy

Two-photon microscopy is based on a
nonlinear physical process of simulta-
neous absorption of two photons by
the uorophore. This process was the-
oretically planned in 1931 by Maria
Geppert-Mayer but it was only applied
to microscopy much later[s4] thanks to
the technological development of lasers.
The absorbed photons have about half
the energy required to transition from
the ground level to the rst excited
state, but the uorescence emitted by
the uorophore is the same as if it had
been excited by a single-photon absorp-
tion process.

The conditions necessary for the two-
photon absorption are a very high pho-
ton density from a spatial and tempo-
ral point of view to ensure a good ef-
ciency of simultaneous absorption of
two photons by the uorophore. Thus,

the excitation sources mainly used for
the two-photon excitation are intense
pulsed lasers emitting in the near in-
frared, pulse duration of the order of
a few tens of femtoseconds: typically it
is often a laser whose ampli er element
is a sapphire crystal doped with tita-

nium ions. The two-photon absorption
guadratically depends on the intensity
of the excitatory light. Thus, the excited

volume will be limited where the laser
beam is the most focused, spatially lim-
iting the e ects of photobleaching and

phototoxicity.

Nevertheless, the use of pulsed lasers of
high power can lead to a heating of the
sample limiting the bene ts in terms of
phototoxicity of the con nement of the
excitation. This con ning characteris-
tic of the excitation, however, makes
biphotonic microscopy intrinsically con-
focal, without the need to use a ltering
hole. Indeed, unlike confocal microscopy
where the photons not coming from the
focal plane are ltered, the two-photon
excitation produces uorescence only at
the level of the focal volume, thus ensur-
ing a direct optical sectioning.

Typically, to excite EGFP-type uo-
rophores, the optimal two-photon exci-
tation wavelength is about 930 nm ver-
sus 490 nm for linear single-photon ex-
citation [85]. This shift of the wave-
lengths towards the red will make it
possible to image more deeply because
the exciter light will be less diused
and absorbed by the out-of-focus sam-
ple planesiss). In addition, the wave-
length range for the two-photon exci-
tation is less invasive for biological tis-
sues because it corresponds to the "ther-
apeutic window", a spectral region typi-
cally between 700 nm and fum in which
tissue absorption biological is minimal.
Despite all the advantages of biphotonic
microscopy presented above, this tech-
nique su ers from the same limitation
as confocal microscopy because the only
di erence between these two types of
microscopy is the uorescence excita-
tion process. A point-by-point scan of
the sample is required to recreate two-
dimensional optical sections, and then
an axial scan to reconstruct a three-
dimensional image of the sample. In
order to overcome this scanning time,
full- eld microscopy techniques capable
of optical sectioning, such as light-sheet
microscopy or structured illumination
microscopy, have been developed.
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1.6 Plan

This thesis is divided in Chapters, ex-
plaining the main aspects of what was

1.7 Conclusion

The global processes that lead to the
encoding of memories are still barely
understood. Deciphering memory for-

developed, as well as annexes of the re- nation events remains technically chal-

sulting publications.

During the Chapter 2 | Flies, neurons
& memory | in deep details of the bio-
logical model are explained.

Chapter 3 | Data acquisition | deals
with the methodology and problems en-
countered when acquiring the data we
used for the analysis.

The methodology we developed to de-
tect the neurons from the Mushroom
body is explained during Chapter 4 |
Neuron detection.

Once having the detected neurons, their
tracking through time is needed, a pro-
cess detailed in Chapter 5 | Neuron
tracking.

Chapter 6 | Measuring neuronal activ-
ity | deals with the measurement of
the neuronal activity from the acquired
tracks.

The quanti cation of this signal, as well
as the identi cation of the responsive
neurons, is detailed during Chapter 7 |
Memory traces.

General conclusions are given in Chap-
ter 8 | Conclusion | and some remarks

on future works are presented in Chap-
ter 9 | Perspectives.

Chapter 10 | Annexes contains the
publications that were a direct result of
the presented work.
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lenging due to the interconnected nature
of neurons and the sparsity of their re-
sponse to a stimulus. To date, experi-
ments are restricted to partial observa-
tions because researchers need to choose
between monitoring activity of a few in-
dividual neurons at high resolution or
monitoring activity of a larger subset of
the brain at low resolution, without ac-
cess to the individual neuron response.
In any case, we know of no work where
both the observations would be exhaus-
tive enough to encompass every neuron
involved in a given type of stimuli while
being able to capture individual neuron
signal.

However, this combination of dimen-
sions is crucial to further our under-
standing of memory formation. We'll
demonstrate during the next Chapters
of this thesis how an comprehensive view
of the Mushroom body is possible, and
how it can lead to new insights on the
long-term memory mechanisms.
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[Tax] dollars go to projects
that have little or nothing
to do with the public good,
things like fruit y

research in Paris, France.

| kid you not.

Sarah Palin

It might not be so obvious for the eyes
of someone that is not familiar with
the subject, but the fruit y, formally
named asDrosophila melanogaster is
one of the fundamental tools for sev-
eral research elds. From developmen-
tal biology to neuroscience, this small
insect played the main role for six No-
bel prizes, bringing groundbreaking ad-
vances to modern science. Along this
Chapter we'll explore what makes the.
melanogastersuch an important model,
how its brain is organized and how mem-
ories can be stored and retrieved in such
a simple organism.

2.1 Drosophila melanogaster
model organism

as a

The fruit y (shown in Figure 2.1) has
similarities with humans to an unex-

pected degree, being that we share up to
60% of the same DNA sequences. Fur-

thermore, about?1 of the human dis-
ease genes have an ortholog in the.
melanogasters], making it an interest-
ing model for the current studies as, for

~~

3mm

Figure 2.1: Picture of a Drosophila Melanogaster .

exponentially, as seen in Figure 2.2.

2.1.1 Shorter cycles, faster research

One of the main advantages of using
the D. melanogasteras a model is its
short life cycle and fast grow rate. The
ies can be breded and raised in sim-
ple tubes containing a nutritive support
medium, so that thousands of ies lin-
eages can be kept in a rather inexpensive
way. The development is fast, as one life
cycle takes about 30 days at 2€, being
that the development from egg to adult
can be achieved in one week (with a lar-
val period of about 4 days)91]. Just af-
ter 8 to 12 hours succeeding emergence,
the female ies are already receptive to
males, starting a new cycleo2).

example, the research on neurodegener-

ative diseases, especially on the better Thijs allows researchers to breed specic
understanding of the Alzheimer's dis- transgenic lines rather quickly, when
ease[s7-89). compared to other species. One new
lineage can be developed in about 2
months, in contrast to the six months
needed for a new mice lineage.

Nevertheless, the use of the fruit y as a
model organism is not new. It was rst
introduced by W. Castle in 190690] and,

since then the amount of publications
involving the D. melanogsterincreased
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Figure 2.2: Amount of publications containing the term \Drosophila" per decade (source: Google Scholar). The
plot shows how the number of publications increased exponentially (axis in log scale). Pointed are all the Nobel

prizes that included the fruit y as the model organism.
2.1.2 Unlocked genome

Genetic research using theDrosophila
melanogasterhas been progressing for
decades, and is nowadays in highly de-
veloped stage. The fruit y had its
genome fully sequenced in the year 2000
193], being composed of about 140 million
base pairs and contains around 15 thou-
sand genes (for comparison, the human
genome has about 3400 million bases
and may have around 22500 genes).

The fact that several genetic systems
that guide basic developmental pro-

2.2 Savvy ies

The Drosophila melanogasteiis a small
and simple insect, but is capable of some
relatively complex behaviors. Besides
innate tasks, as navigation during ight
and sexual court conduct, fruit ies are
also capable of basic learning. For ex-
ample, they can learn to associate new
odors to a source of food or danger.

In total, the brain is made of about
10° neurons, that form a central ner-
vous system. This is an advantage of

cesses are conserved between dierent the fruit y as a model when compared

species, makes theDrosophila model
even more interesting, as insights and
discoveries can be directly applied to
vertebrate systems. Several research
projects that use the theDrosophila as
a base for the comprehension of hu-
man diseases exist, as the identica-
tion of proteins targeted for degrada-
tion by the UBE3A ubiquitin E3 lig-
ase, which is mutated in Angelman syn-
drome, or that antioxidant proteins (as
TSA and PAG) can be candidates for
causing Alzheimer-related diseases:).

to other simple organisms with a dif-
fuse nervous system, as th€. elegans
as a more direct comparison with the
ways that a vertebrate brain works is
possible. An anatomical analogy can
not, however, be directly made between
the brains of vertebrates and fruit ies
whose organization is radically dier-
ent, but the basic elements constitut-
ing their nervous system are common:
neurons and glial cells. Communication
between neurons is by the same type
of synapses, and many neurotransmit-
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Paired conditioning

Long term
[I— E— I— — memory
(L)
Unpaired control
No associative

Figure 2.3: Conditioning protocol for the

ters, such as glutamate or GABA (-
aminobutyric acid), are identical from
one species to another. The brain of
Drosophila has the advantage of having
simpli ed neural circuits corresponding
nevertheless to complex functions.

2.2.1 Associative memory

Fruit ies have an ability of basic learn-
ing, as they are capable of making asso-
ciation between di erent events. Stan-
dard behavioral tests[os] show that the
fruit y is capable to associate a given
odor to another stimulus, that could be
appetitive or aversive. Being that the
same odor can be associated with both,
we represents a real learning process,
and not just a nasve behavior of the .

Associative conditioning is based on the
use of two stimuli called unconditional
stimulus (CS ) and conditional stimu-
lus (CS"). The unconditional stimulus
induces, by itself, a re ex response. In
our case, it is an aversive stimulus, pro-
duced by the sending of electric shocks,
which causes the ight of theDrosophila
On the contrary, the conditional stimu-
lus, which will be for our experience the
presentation of an odor, does not induce
an answer before learning. Learning in-
volves associating the conditional stim-
ulus followed by the unconditional stim-
ulus.
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|7 memory

Drosophila melanogaster , allowing the formation of long term memories.

The layout for a conditioning system
is presented in Figure 2.3. An air ow
is rst broadcast for 90 seconds. The
odor Octan-3-ol (OCT), is presented
to the y and soon after, the aversive
stimulus is presented. Twelve shocks,
lasting one second, are delivered every
ve seconds for one minute. OCT, a
conditional stimulus, has a predictive
value because it is diused shortly be-
fore sending the unconditional stimulus.
The electroshocks and odor are delivered
in a custom made barrel, designed to
be able to deliver at the same time the
conditional stimulus (ow of OCT dif-
fused thanks to pumps) and the uncon-
ditional stimulus (electric shock thanks
to an electri able grid covering the walls
of the barrel tubes).

2.3 Mushroom body, the center of
olfactory memory

It is well known from the literature that
a speci c part of the y's brain is re-
sponsible for the learning of odors: the
mushroom body[96], seen in Figure 2.4.

It extends in a volume of approximately
150 100 80 pm® on each of the
hemispheres of the brain. The olfac-
tory stimuli passes through the olfac-
tory neurons whose receptors are lo-
cated at the antennas. These neurons
then project information at the anten-
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Figure 2.4: Schematic view of the olfactory system in
the Drosophila melanogaster , showing the Mushroom
body (colored in orange), the olfactory center of insects.

nal lobes composed of glomeruli. The
information is then relayed in part at
the level of the mushroom body by the
antenno-glomerular tract. The MB is
composed of a dense network of neu-
rons called Kenyon cells, about 2000 per
hemisphere[o7). Cell bodies cast their
dendrites at a region called the calyx,
receiving olfactory information from the
antennal lobes.

2.3.1 Axonal projections

As shown in Figure 2.5, there are three
categories of Kenyon cells whose axonal
projections form di erent lobes. The

|/ neurons have their axonal projec-
tions which branch o into a vertical
branch called the lobe and a horizon-
tal branch, the lobe. It is the same
for neurons of type 0/ Owhose axons
bifurcate in two branches forming the 0
and Olobes. The Ilobe is formed by
the axons of neurons which do not bi-
furcate. Each of these types of neurons
plays a special role in learning processes.
For example, / neurons are partic-
ularly involved in the formation of long-
term memory [98]. The cell bodies of
Drosophila neurons are about gm in di-

ameter, small size that makes it di cult
to record their electrical activity by elec-
trophysiology techniqueso9, 100]. Opti-
cal imaging approaches for monitoring
neuronal activity are therefore particu-
larly relevant to the Drosophila model
because they potentially allow access to
information at the cellular level within
a global neural network.

2.4 Memory storage and retrieval

The memory allocation is a set of pro-
cesses on which information is stored in
a neural circuit [101]. The majority of
current studies make a in depth analy-
sis of the anatomical structures, physi-
ological processes, and molecular path-
ways necessary for the capacity of mem-
ory storage, but little is still know on
how individual memories are stored in
the brain [102].

The rst precise insights in how neurons
could store complex informations, while
keeping its plasticity, where given by
the Hebbian theory [103], usually sum-
marized by the sentence \neurons wire
together if they re together" [104]. The
idea behind the theory is that neurons
tend to create stronger synaptic bounds
if they are activated within the same
temporal window. As ultimately the
neuronal activation comes from exter-
nal stimuli, this allows the association
of events to be stored, thus allowing the
formation of memories.

2.4.1 Memory engrams

Memories are physically stored in the
brain, in specic populations of neu-
rons that form \memory engrams”, also
called \memory traces"[105].

The idea is not new, coming from the
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Figure 2.5: Schematic view of the Mushroom body, with the projected axons from the Kenyon cells.

beginning of the 26' century, described
in two books of the German scientist
Richard Semon|ios6, 107]. Semon coined
the term \engram", which he de ned as
\the enduring though primarily latent
modi cation in the irritable sub-stance
produced by a stimulus (from an expe-
rience)" [106]. The term \Engram" is
an equivalent of \Memory trace", more
commonly used by contemporary neuro-
scientists.

Engram is the physical and/or chemi-
cal changes that takes places in the neu-
rons during a learning event, whileEn-
grams cellsare de ned as a population
of neurons that are activated by this
learning [102]. These cells are known
to be spatially distributed in the brain
in a sparse manner,a concept that can
be clearly veri ed by memory manipula-
tion experiments in mice using optoge-
netics [108]. By combining the activity-
dependent, doxycycline-regulated c-fos-
tTA system and ChR2-mediated opto-
genetics, the researchers were able to
label with ChR2 a sparse population
of DG neurons in mice that were ac-
tivated by contextual fear conditioning
memory. Subsequently, when these cells
were reactivated by blue light in a con-
text di erent from the original one used
for the conditioning, these animals dis-
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played freezing behavior as evidence of
fear memory recall.

Regarding theDrosophila melanogaster
when a given odor was paired with an
electric shock, de ned neurons within
the olfactory learning pathway, such as
those in the antennal lobes and mush-
room bodies, changed their responses se-
lectively toward the odor used in the
training [9s, 108]. This suggests the for-
mation of specic engram cells, that
associate both stimuli. Although, the
memory traces were not identi ed at the
single cell level, but rather as a global
response change of the lobes.

2.5 Neuronal activity

Neurons are complex cells capable of
electrical and biochemical activity, and
there are many functional imaging
modalities for the analysis of its activ-
ity in vivo. The developments of genet-
ically encoded reporters make it possi-
ble to follow speci cally in certain neu-
rons the activation of di erent molecu-
lar pathways (better described in Sec-
tion 2.6).
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2.5.1 Ca?' probes

For neurobiology in Drosophilg it is

The G-CaMP probe is a molecule cre-
ated by fusion of the cpEGFP uores-
cent molecule with calmodulin (CaM)
and the peptide sequence called M13.
Calmodulin is a molecule that can bind

common to use probes based on calcium tg four Ca2* ions. When the intracel-

exchange, as intracellular C& calcium

lular Ca?* concentration is low, the G-

ions are universal second messengers in-CaMP molecule is weakly uorescent be-
volved in many physiological processes cause its chromophore is exposed to the

including neuronal communication. The
concentration of calcium ions C& in
the cytoplasm of neurons is about 10
thousand times lower than that of the
extracellular medium, and during the
passage of an action potential, calcium
ions enter the cytoplasm of the neurons,
changing the concentration. To moni-
tor this biochemical signaling pathway is
therefore of great interest for the study
of neuronal activity.

Thus, many calcium indicators have
been developed, such that currently
there are more than a hundred synthetic
or genetically encoded calcium indica-
tors (GECI). All these indicators are

based on the same mode of operation
namely absorption or emission proper-
ties varying according to the coupling
or not to calcium ions. The most com-
monly used calcium indicators up to
a few years ago were synthetic indica-
tors such as fura-2, uo-4 or Oregon
Green BAPTA-1 AM ester. This type

of probe for in vivo studies have limita-

tions such as they cannot be expressed

in sub-populations of specic neurons
or in well-de ned sub-cellular compart-
ments. It is to overcome this limitation

that many families of calcium probes en-

coded genetically have been developed.

intracellular medium. During the pas-
sage of an action potential, membrane
channels open, allowing C4 ions from
the extracellular medium to enter the
cytoplasm. The intracellular concentra-
tion of Ca®* then increases, leading to a
conformational change in the G-CaMP
molecule. This rearrangement results in
a signi cant variation in its uorescence
yield [111].

2.6 Genetic tools

The study of memory in the Drosophila
is profoundly assisted by the genetic

' tools that allows the precise activation

of genes in specic cell types. For our
study, the expression ofmCherry as
a nuclei marker and GCaMP6f as a
neuron activity probe, both expressed
exclusively in the kenyon cells, allows
a global in vivo view of the memory
traces.

2.6.1 UAS/GAL4 system

A transgene is a DNA fragment corre-
sponding to the sequence of the gene

Some of these probes consist of a singlethat one wants to express in a dier-

uorescent protein such as Camgaroo,
Pericam, GECO and G-CaMP and oth-
ers are based on the use of two uores-
cent proteins and the FRET mechanism
(Ferster Resonance Energy Transfer), as
per for example the TN-XXL probe[109]
or the Cameleon probei10].

ent organism, and their transfer in the
Drosophila genome is mainly done using
P-elements112]. For the transgene to be
transmitted to the o spring, it must be
inserted into the germ cells of a young
Drosophila embryo. These P-elements,
also called transposons, lead to the ran-
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dom insertion of the transgene into the
genome. The genetic system allowing
the expression of a transgene in a group
of well-de ned neurons, the most com-
monly used in Drosophila, is called UAS
/| GAL4 [113. A P-element carries the
gene coding for a protein called GALA4.
It is inserted randomly into the genome
of the Drosophila which leads to the
expression of the GAL4 protein under
the control of the endogenous promoter
located upstream of the insertion site.
The expression of this promoter is then
speci ¢ for the subgroup of cells where
this promoter is strongly expressed. For
example, if the P-element bearing GAL4
is inserted downstream of an endogenous
promoter of cytoskeletal proteins such
as tubulin or actin, the GAL4 protein
will be expressed in the vast majority of
cells of the body. This is called a ubiqui-
tous promoter. This is only an example;
in our case, the expression drivers used
will allow a precise spatial targeting of
a small subgroup of neurons.

The GAL4 protein is derived from yeast
and is therefore not naturally present
in Drosophila The endogenous regula-
tory sequences of Drosophila are not ac-
tivated by this protein. The second es-
sential component of the UAS / GAL4
system is the sequence UAS (for "Up-
stream Activation Sequence”) which is
a regulatory sequence activated by the
GAL4 protein. The UAS / GAL4 ex-
pression system thus makes it possible
to generate transgenic models by ge-
netic crossing as shown in FIG. 1.5.
A rst Drosophila, for example a vir-
gin female, carries in its genome the
gene coding for the GAL4 protein down-
stream of a promoter (de ned by the
insertion site of the element-P). The
gene is then transcribed into the cells
where the promoter is active and the
GAL4 protein synthesized. But, this
protein alone has no e ect. The male
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Drosophila carries in its genome a regu-
latory sequence UAS and the gene cod-
ing for the transgene of interest down-
stream thereof. Since the UAS sequence
requires the presence of GAL4 to be ac-
tivated, the transgene is not expressed
in this second Drosophila. By crossing
the two Drosophila presented above, the
genome of the o spring will contain both
the gene coding for the expression of the
GAL4 protein in a cellular subtype but
also the UAS regulatory sequence. The
transgene will therefore be expressed in
the cells where the GAL4 molecule is
present. Originally developed for the
Drosophila model, the UAS / GAL4 ex-
pression system also extends to zebra sh
today.

2.6.2 UAS-mCherry-NLS

For the identi cation of the single neu-
rons, we used a NLS marker with the red
uorescent protein mCherry, so that ev-
ery nuclei of the Mushroom body could
be imaged114].

The mCherry is a red uorescent pro-
tein (uorophore) derived from the pro-
tein drFP583 (also known asDsRed).
It is a 28.8 kDa monomer of 236 amino
acids with a peak uorescent excitation
at 587 nm and emission at 610nm. It is
stable and realtively resistant to photo-
bleaching.

Nuclear Localization Sequence (NLS), is
a small amino acid sequence (from 8 to
10 amino acids) targeting proteins of the
nucleus of the cell.

2.6.3 UAS-G-CaMP6f

We measure the intracellular C&
concentration of the neurons using
GCaMP6f [115]. It is highly correlated
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with the neuronal activity, as it causes
rapid changes in intracellular free cal-
cium [116, 117].

GCaMP is a calcium sensor protein in
which green uorescent protein (EGFP),
calmodulin (CaM), myosin light chain

fragment (M13) is genetically linked.
This protein is formed by binding
calmodulin to one side (N terminal side)
of EGFP and myosin light chain M13
fragment to the other side (C termi-
nal side). When calcium ion binds to
calmodulin, the C&* / CaM complex

interacts with M13 to change the con-
formation of EGFP (the uorophore),

thereby changing the uorescence inten-

sity.

Several versions of the GCaMP complex
have been developed in recent years, and
for our ies we use the latest variety,
GCaMP6f [117].
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Figure 2.6: Excitation spectrum for the green (EGFP)

and red (RFP) proteins used. Doted lines show the ex-
citation spectrum, and full lines the emission. Note the
gap between both pro les, which allows the simultane-
ous use of both proteins without cross-interference.

2.7 Conclusion

The fruit y is a humble organism, but
it is this simplicity that we can ex-
ploit to better understand how the mem-
ory works. By using the Drosophila
melanogasteras a model, we are able to
express speci c markers for nuclei and
neuronal activity exclusively in the de-

sired Kenyon cells. This will allow us to
verify the behavior of the neuronal net-
work after a process of paired learning,
using the protocols described in the fol-
lowing Chapters.
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You can have data without
information, but you
cannot have information
without data

Daniel Keys Moran

All the information needed to elucidate
our questions about how memories are
stored in the y's brain need to be care-
fully acquired. Without well trained
ies, or images acquired with high qual-
ity, none of the processes described in
the following Chapters would be of any
use. During this Chapter we present
how the data were acquired, as well
as the di culties and problems encoun-
tered.

The processes of creating the experimen-
tal groups, the dissection of the ies
and image acquisition were made by
Melanie Pedrazzani PhD student, and
Lisa Scheunemannpost-doc, both from
the laboratory of Genes and Dynamics
of Memory Systems, at ESPCI - Paris,
under the supervision ofThomas Peat
and Paul Tclenio.

3.1 Fly conditioning

Conditioning is fundamental to create

the experimental groups we need to as-
sess the memory traces in the brain.
Two sets of experiments were made,
both using odor stimulation as the con-

ditioned stimulus and electroshocks as
unconditioned.

The conditioned stimulus CS) is a
stimulus | odor, for our case of olfac-
tory conditioning | that gains mean-

ing following pairing with an uncon-
ditioned stimulus. The Unconditioned
stimulus (US) is the stimulus that gen-

erates an unlearned behavioral response:

the shock or sugar in y olfactory con-
ditioning.

3.1.1 Odors as CS

Fruit ies are extremely sensitive to
odors, what suits them well for con-
ditioning tests [42]. Here we use
two odors, 3-octanol OCT ) and 4-
methylcyclohexanol MCH ) as condi-
tioned stimulus, that has proven not
to trigger inherent behavioral response.
Thus, they can be both associate with
an appetitive or aversive response, and
have been widely used for conditioning
experiments inDrosophila

3-octanol (OCT)

Octanol is an organic compound, with
formula CgH,;30 and molecular weight
of 130.231 g/mol. This molecule is nat-
urally found in spearmint oil, oatmeal,
basil, allspice leaves and tru es, serv-
ing also as an alarm pheromone for some
ants [118].

4-methylcyclohexanol (MCH)

Methylcyclohexanol is an organic com-
pound, with formula C;H1,0 and molec-
ular weight of 114.188 g/mol. It is a
colorless liquid that is poorly soluble in
water. The substance is slightly irritat-
ing to the eyes and the skin. Exposure
to high vapor concentrations may cause
irritation of the eyes and upper respira-
tory tract.

3.1.2 Electroshocks as US

Electroshocks are commonly used as a
unconditioned stimulus for paired learn-
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A

OH

CHs

Figure 3.1: Molecular structures for (A) 3-octanol and
(B) 4-methylcyclohexanol

ing, and here we use the standard pro-
tocol adapted by Preat[119].

During training, groups of 50{100 ies
were rst exposed for 60 seconds to a
rst odor (odor A) (either undiluted
OCT or MCH). During this time, they
received an electroshock (ES) (1.5 sec-
ond pulses of DC). After a 45 seconds
rest period, ies were exposed for 60 sec-
onds to the second odor (odor B), which
was not paired with ES. Flies were then
kept in a vial with regular solid food.

3.1.3 Group A (OCT & MCH)

For this rst group, the ies were trained
using two dierent odors, OCT and
MCH, being one of them paired with the
electroshocks and the other left as a con-
trol.

3.1.4 Group B (Only OCT)

This group of ies received only OCT
during the image acquisition
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3.2 Dissection protocol

In order to optically follow the brain
activity of the Drosophila, it is neces-
sary to create an optical access to the
brain. The cuticle of the Drosophila be-
ing highly di using, a micro-surgery was
carried out under a binocular loupe in
order to reveal the brain. The steps in
the preparation of the live sample are
shown in Figure 3.2.

The y is rst glued on a plastic slide,
pierced in the center, without prior anes-
thesia. The glue used is a biocompat-
ible dental glue (3M ESPE Protemp).
An alignment wire keeps the Drosophila
head in a correct position. The orienta-
tion of the head is adapted to the area of
interest to be imaged so as to minimize
the thickness of tissue traversed by the
light.

The second step consisted of opening the
Drosophila head using very thin scalpels
to remove a rectangular cuticle region,
300pm by 400um, which covers the
brain. Underlying fat tissue was pushed
to the corners of the window, and the
tracheae was cut and pushed to clear the
view of the brain. All actions had to be
performed extremely carefully so as not
to damage the glial cells that surround
the brain, as well as the mushroom body
itself. All stages of microsurgery were
performed in the presence of a physio-
logical uid to preserve the brain. The
composition of this aqueous solution,
called Ringer's solution, was as follows:
130 mM NacCl, 5 mM KCI, 2 mM MgCl,,

2 mM CaCl 2, 36 mM GoH»,011 (SU-
crose), 5 mM HEPES-NaOH (Sigma-
Aldrich). The pH of the solution is 7.3
[120].



CHAPTER 3. DATA ACQUISITION

Figure 3.2: Dissection protocol for imaging the Mushroom body. Special care must be taken during this step, so

that the brain is not damaged during the microsurgery.

3.3 Odor delivery system

The olfactory stimulation system is
shown schematically in Figure 3.3. Up-
stream of the system are two pumps.
One of the two pumps feeds a pipe cir-
cuit controlled by a series of solenoid
valves. These solenoid valves make
it possible to generate dierent stim-
ulation con gurations. The pipes
are immersed in bottles containing
neutral paran oil, for \air defect"
and \air control* con gurations, or
with added chemical product: 4-
methylcyclohexanol (MCH, purity equal
to 99%, Fluka 66360 Sigma-Aldrich)
or octan-3-ol (OCT, purity greater
than 95%, Fluka 74878, Sigma-Aldrich).
Since these products are hydrophobic,
the solutions are prepared in odor-
less paran oil (international VWR,
Sigma-Aldrich). These two chemical
odors are naturally repulsive alcohols
for Drosophila and traditionally used in
all associative conditioning protocols in-
volving olfaction. 3 ml of product is dis-
solved in 100 ml of para n oil. The ow
coming out of this part of the assem-
bly corresponds to one third of the total
ow delivered to Drosophila. The other
two thirds of the ow are generated by a
second pump. This second pump is con-
nected to a pipe immersed in a bottle

lled with neutral para n oil which cre-
ates a constant main air ow whatever
the chosen stimulation con guration.

Taking into account the dilution of the
chemicals in the paran oil as well as
the ratio between the odor ow and
the main air ow, the nal concentra-
tion of odor arriving at the level of the
Drosophila antennas is of 1% . Continu-
ous main ow minimizes sudden changes
that could lead to brain activity in the
Mushroom body without this response
being related to olfactory stimulation.
It is to avoid this same artifact that
a con guration called \air control" has
been created. It ensures that the brain
responses observed were not responses
due to air turbulence created by the
mechanical movement of tilting solenoid
valves. This system of sending odors
was coupled to the environmental cell
(a custom-made chamber) placed un-
der the microscope objective, as show in
Figure 3.4.

In order to prevent the odor from stag-
nating in the cell, another pump made
possible to evacuate the odor in order to
avoid desensitization of the olfactory re-
ceptors of the Drosophila. The solenoid
valves were individually controlled by
logic signals from a NI-USB (National
Instrument) card to de ne the desired
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Figure 3.3: Schematization of the odor delivery system.

pacing con guration

3.4 Image acquisition

In traditional confocal microscopy, the
acquisition of the image is done by laser
scanning techniques, exciting the sam-
ple point by point. This imaging tech-
nique is then limited by the lateral scan
speed of the excitation beam, made ei-
ther with piezoelectric shims or galvano-
metric mirrors.

Nevertheless, even for confocal mi-
croscopy, where the dynamics of the
scanning is optimized by the use of
non-mechanical displacements provided
for example by acousto-optical de ec-
tors [121], the scanning speed is limited
by the brightness of the sample. Indeed,
to perform fast confocal microscopy, the
time spent per pixel must be very low,

imposing a large excitation power in or-
der to collect su cient uorescence pho-

tons. This characteristic is a limitation

for in vivo imaging where the sample
must be preserved to the maximum of

response signal caused by photobleach-
ing.

3.4.1 Confocal spinning disk

In confocal microscopy, the acquisition
time of an image depends directly on its
size. To follow the neuronal activity, the
duration of a point scanning laser tech-
nigue is not adapted to the fast three-
dimensional imaging of a living system
that our project requires. The use of a
multiconfocal spinning disk microscope
allows the excitation beam to be paral-
lelized, thus increasing the temporal dy-
namics of imaging.

The microscope used for our data ac-
quisition is a Zeiss Examiner Z1 Axio,
equipped with an EMCCD (Electron
Multiplying Charge Coupled Device,
Photometrics Delta Evolve). The light
excitation is performed by two diode-
pumped lasers emitting at wavelengths
of 491 nm and 561 nm (maximum power
of 50mW, Roper Scienti c). The sam-
ple is scanned using a CSUX1-M1N-E
confocal head. This Nipkow disc, con-
sisting of a spiral arrangement of 20000
50um diameter ltering holes spaced
from each other by 25Qm, rotates at
a maximum speed of 5000 rpm syn-
chronously with a second disc made of
same number of micro lenses of diam-
eter 250um. When the discs rotate,
about 1000 laser beams simultaneously
scan the sample.

This parallelization of the scanning laser
beams increases drastically the imaging
speed. The imaging frequency per plane
is limited to 60 Hz, the limit imposed
by the speed of rotation of the disk. A
set of interference optical Iters (model
59022 ET - EGFP / mCherry, Chroma)

the deleterious e ects of an excess of de ne the di erent spectral paths of the

light excitation, as well as decrease of
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microscope, being that each of the Iters
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Figure 3.4: Photos from data the acquisition process. (A) Fly glued on the coverslip, ready for dissection. (B)
Fly after dissection, with coverslip attached to the custom-made chamber. (C) chamber being attached to the
microcope for image acquisition. (D) Close view of the chamber, with air ducts for odor delivery. (E) Global view
of the acquisition system, with the odor delivery mechanism on the background.

consists of two transmission bands. The
dichroic plate is used to re ect the exci-
tatory light to the sample and transmit
the uorescence emitted to the camera.

Two water immersion microscope ob-
jectives are available on this device:
Zeiss 40x ON 1.0 Vis-IR W apochromat
421462-9900 (working distance::2mm)
and Zeiss 63x ON 1.0 Vis-IR W apoc-
hromat 421480- 9900 (working distance:
2:1mm). Although initial tests were
made with the 63x objective, all the data
acquired for this project uses the 40x.
The higher magni cation could give us
a better resolution for the detection of
nuclei, but it was not possible to accom-
modate the whole MB within the eld
of view of the microscope.

These objectives have a transmission
of the order of 80%, from 400nm to

900 nm. They were mounted on a piezo-
electric shim of 10Qum stroke (Pifoc P-
721.SL2, PI) allowing a ne axial trans-
lation of the lens, of 5 nm resolution, and
the rapid acquisition of stacks of images
in depth. in the sample. The resonance
frequency of the Pifoc loaded at 200 g
is 180 Hz. The maximum acquisition
rate of 60 Hz does not resonate with
that of the piezoelectric shim. The sam-
ple holder was mounted on a translation
plate in order to adjust its position lat-
erally.

A set of mirrors and lters (Dualview

Photometrics DV2) was mounted on the
transmission path of the microscope, up-
stream of the camera, to allow simulta-
neous acquisition at the camera of two
wavelengths (in our case, the RFP as nu-
clei marker and EGFP for neuronal ac-

tivity).
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Figure 3.5: Microscope during image acquisition. While odor stimulation is being given to the y through the
custom chamber, the spinning disk microscope records the 3D+Time images of neuronal activity in the Mushroom

body of the Drosophila melanogaster .

The entire system was controlled by the
VisiView 2.1.3 software (Visitron Sys-
tems GmbH) allowing the easy control
of the exposure time or the gain of the
camera, the multidimensional acquisi-
tion of the images (multispectral and de-
pending on the time) as well as the writ-
ing of macros for the control of materials
attached to the microscope by logic sig-
nals.

3.4.2 Dual-view system

To speed-up the imaging process, we
used a DualView Photometrics DV2 sys-
tem. It made possible to image, in two
distinct spectral bands, the same uo-
rescent object. Its operating principle
is based on the spatial separation, using
mirrors and a diagonal slide, of the two
emission bands.
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The dichroic plate re ects the compo-

nent of the lower wavelength emission,
around 520 nm, while the component of
the highest wavelength emission, around
610nm, is transmitted. Each spectral

component is then imaged simultane-
ously on one half of the EMCCD sensor.

3.4.3 3D+ Time images

Acquiring the images results in a 5 di-
mensional .ti  le, with axis XYZTC
and data recorded at 16-bit format.
Each plane has a size of 256 by 512
pixels, as we use half of the sensor
for each channel (the full resolution
of the camera is of 512x512 pixels).
Each pixel has a size of :06125um X
0:161 25um, resulting that each slice of
the acquired image has a size of £Bum
by 8256um.
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The step size of the acquisition was de-
ned at 1:5pm, with 45 slices being
su cient to cover the whole Mushroom
body. Thus, each stack covers 6Fum
in depth.

Every slice had a exposure time of 20 ms,
so that each stack needs 0.9 seconds to
be acquired. Faster acquisitions would
be desired, for a higher temporal resolu-
tion, but a lower number of slices would
compromise the full recording of the
Mushroom body in depth. Although,
this temporal resolution proved to be
enough to capture the GCaMP6f re-
sponse, recorded in about 2 to 3 frames.

3.5 Data artifacts

While acquiring our images, we pushed
the confocal spinning disk system to the
operational limits regarding the speed
of acquisition. Unfortunately, this led

to some artifacts that were sometimes
not completely understood, but needed
to be handled during post-processing.

3.5.1 Axial motion blur

Fast and deep image acquisition is fun-
damental to resolve the signals from the
whole mushroom body. In total, we
acquire 675um in 0.9 seconds, leaving
only 20ms per slice. This leads to an
axial motion blur artifact, shown in Fig-
ure 3.8. The Figure shows that when
acquiring images with an exposition of
20ms, while the camera registered the
data for the rst slice, the axial posi-
tion of the microscope was still on the
bottom of the stack (from the previous
time frame). As consequence, between
Slice 1 and 2, the axial position needed
to travel the whole stack from bottom to
the top, leaving a motion blur e ect. We
can see, also in Figure 3.8 that having a

higher exposition time of 200 ms solves
the problem, so that we have on the rst
slice the data that actually comes from
the good position (with a close look, it
is still possible to notice a subtle motion
blur on the rst slice).

Figure 3.6: Axial motion blur during image acquisition.

This artifact can be quite common in 3D

microscopy, but it remains often unno-
ticed if the data is only checked and/or

analyzed using axial max projections as,
for this case, the actual position of the
slice on the stack is irrelevant. Never-
theless, for a true 3D analysis of the
data, this problem must be taken into

account.

Although, in our case, the 200 ms image
acquisition was far too slow, such that
we would miss the neuronal response.
We circumvented the problem by acquir-
ing at 20 ms per slice, but making sure
that the rst and last slices of the stack
contained background only, so no data
would be a ected by this issue.

3.5.2 Anchored Z position

This problem is exemplied in Figure
3.7. For the best of our comprehen-
sion, while the microscope scans from
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Figure 3.7: Axial motion blur during image acquisition. The image shows the 3D volumetric reconstruction of the
mCherry channel for three consecutive frames, with the anchored z position being noticeable in the middle frame.
Note that the axial motion blur, described on Subsection 3.5.1, is also present on the top of the image.

the top to the bottom of the stack, the
focal plane gets locked in the same po-
sition for a few frames. Thus, the con-
troller software receives di erent images
and saves them to consecutive frames,
but they are in fact being acquired at
the same position. This gives the elon-
gated e ect that we can see in the mid-
dle panel of Figure 3.7.

One initial hypothesis was that the
problematic slices were just duplicates
of the same acquired image, as result
of a mistake from the software (as a
memory cache problem). However, since
the noise pattern of the \duplicated"
slices was dierent, we concluded that
they were consecutive acquisitions of the
same plane, and not a simple data du-
plication.

This artifact was hard to reproduce,
happening randomly on about half of
the acquisitions, usually after the 100
frame and with variable intensity (some-
times just two or three slices, being
hardly noticeable). Also, the technical
assistance of the microscope could not
identify the source of problem, or x the
issue.

We hypothesize that the problem might
be related to the piezoeletric motor that
controls the focal plane in depth. A me-
chanical problem, or a defective change
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in current, might keep the focal plane
at the same position, while the software
acts as if the focal plane was changing.

Not being able to x the problem di-
rectly on the microscope, we've chosen
to detect and ignore the problematic
frames in a post-processing stage, as de-
scribed in Section 6.2.

3.5.3 Laser intensity drop

Figure 3.8: Axial max projection, showing the sudden
decrease of laser intensity for the red channel.

Another issue, less frequent, happening
in just a small fraction of the acquisi-
tions, was the sudden intensity drop of
the laser used for themCherry channel.
Probably due to some bad contact in the
laser input, the problem was xed after
a revision of the microscope. Interest-
ingly, the proposed algorithm for nuclei
detection, explained in Chapter 4 was
robust enough to keep a good detection
accuracy even for the frames with low
signal.
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3.5.4 Noise ash

One last problem, found in just a few
examples from the dataset, is that full
random frames could be just lled with
random noise. This would drastically af-
fect the detection and signal measure-
ment, so the problematic frame was
completely removed from the sequence,
and replaced by a copy of the previous
frame. An example of this artifact is
shown in Figure 3.9.

Figure 3.9: Sudden noise frame during a image acquisi-
tion.

3.6 Conclusion

The process of acquiring consistent and
high quality 5-dimensional (XYZCT)
data is a great challenge, but of fun-
damental importance to understand
the mechanisms leading to long-term
memory formation in the Drosophila
melanogasterbrain. By using a confocal
spinning disk for a fast 3D acquisition of
two channels (one for nuclei and another
one for neuronal activity), we were able
to record activity from the whole Mush-
room body while the y experienced a
given odor.

The dissection process, necessary to ex-
pose the brain to the image acquisition,
demanded extreme caution and the pro-
tocol took two and a half years to be
ne-tuned. Also, the odor delivery sys-
tem, that was capable of presenting the
odor during the image acquisition, had
to be precisely adjusted to make sure the

air pressure changes wouldn't cause an
over-stimulation of the .

Thus, the presented protocol for data
acquisition was capable to produce a
precise recording of the mushroom body
while the y experienced a memory

event, that could be automatically pro-

cessed with the following the protocol
presented in the next Chapters.
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It has long been an axiom
of mine that the little
things are in nitely the
most important.

Arthur Conan Doyle,
The Memoirs of Sherlock Holmes

If we aim to analyze the memory for-
mation event at the single cell level, the
very rst step needed is to detect the in-
volved neurons as precisely as possible.
This is an important challenge, as we
face relevant constrains: the high den-
sity of neurons in the Mushroom body;
the low spatial resolution of the images
and the axial distortions that are inher-
ent to the 3D image acquisition[122].
On this chapter we'll explore the results
of the current state-of-the-art methods
for 3D detection, how they poorly per-
formed on our dataset and the resulting
method that we developed to solve this
issue.

4.1 Cell localization

The olfactory activity of the brain hap-
pens in the Mushroom body, a struc-
ture that is relatively isolated and con-
stituted of about 2000 neurons. Ideally,
each neuron would have a membrane
marker, and a 3D segmentation would
be performed for every cell, that would
allow to precisely measure the G4 ac-
tivity inside the volume via a GCaMP
marker on another channel. However,
this became impracticable for two main
reasons: rst, the non regular shape of
neurons drastically increases the com-
plexity of a segmentation task. Sec-
ond, for the resolution that we are con-
strained to, neurons would hardly be
distinguishable from each other by a
membrane marker.

The solution came from the detection of

nuclei, via anmCherry marker. Having
the position of the nuclei allowed us to
estimate a central reference point for the
neuron body, which can be further used
to delimitate a volume for signal mea-
surement.

Here it is important to endorse that the

goal was to detect its central position,
and not to perform a segmentation of
the nuclei. Besides not bringing addi-
tional information for our needs, a seg-
mentation of nuclei (that is, the delim-

itation of its boundaries) would hardly

be precise, as for our resolution the nu-
clei approached the Point spread func-
tion (PSF).

Figure 4.1: Middle slice of a typical Mushroom body,
containing the nuclei marked with uorescent mCherry .
Scalebar of 5um

On Figure 4.1 we can see that one nu-
clei is about 1um wide, and it is made

of around 10 pixels. Sizes vary slightly
from nuclei to nuclei, but the average

size remains the same between di erent
ies.

4.2 Ground truth

The only way to asses with precision the
guality of the detections was to have a
ground truth. This is not obvious for the
Mushroom body, for which the literature
shows that about its made of about 2000
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neurons, but their exact location cannot
be obtained in another way.

4.2.1 Manual annotation

One rst possible approach is the man-
ual annotation of the 3D stacks. This
operation can be highly biased, espe-
cially for 3D images, on which the anno-

8. Zoom the image up to 400%
(Ctrl + Scroll Up)

9. Select the Counter Type 1

10. Add the annotations by clicking on

the center of the objects.

11. When nished, click \Save Mark-

ers" to save the results.

tation consists of a visual assessment of One initial unanticipated result is that

the individual slices, truing to determine
which one contains the central position
for every nuclei. The manual annota-
tion was made in one example brain, in-
dependently by two evaluators (myself
and Melanie Pedrazzanij responsible for
the biological assays during the rst half
of the project).

The process used the ImageJ/Fiji plu-
gin Cell Counter [123]. To increase re-
produtibility, the following protocol was
used:

1. Load the 3D stack with Fiji

2. Set the colormap to Grays

(Image! Lookup Tables! Grays)

3. Reset the intensity range of the
colormap. Scroll to a slice where
you can see the objects. Then,
click on Image! Adjust! Bright-
ness/Contrast ! Reset (on the
window that opens)

4. Open the Cell Counter Plugin
(Plugins ! Analyze !
Counter! Cell Counter)

Cell

5. Click the \Remove" button until
there is only one type of counter
(\Type 1"

6. Click on the image window to select
it

7. Click on \Initialize", on the Cell
Counter window

42

it wasn't possible to nd the expected
2000 neurons on the image, being that
the two manual annotations found 1078
and 827 nuclei. This fact can be ex-
plained by the lack of axial resolution for
the images, being that it was common to
nd \merged" nuclei, which could be the
union of two or more individual nuclei
(also making the annotation less precise
and more subjective). This creates an
important constrain on the idea of hav-
ing the single cell information, that will
be handled on the way we capture the
signal (see Chapter 6)

Figure 4.2: Graphical User Interface of Cell Counter,
ImageJ plugin used for annotation

4.2.2 Synthetic images

Another approach to quantify the accu-
racy of the detection methods consisted
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of generating a synthetic image that re-
sembles the real acquisition. On this
computer generated image, we could
easily verify the precision of the detec-
tions, since the true position of the nu-
clei was known.

The main di culty of this approach is

to generate an image that's close enough
to the original, regarding the noise level,
resolution, density of objects, light dif-
fusion and PSF e ects.

Overall idea

Initially, a real image was used as a
base for the generation of an correspond-
ing synthetic image. From this, a 3D
volume corresponding to the foreground
(Mushroom body) was extracted, and a
desired number of spheres were gener-
ated inside this volume. These spheres
were convolved by a PSF, noise was
added and the axial resolution simu-
lated. The coordinates of the spheres
was saved as ground truth in a separated
le.

\Volume extraction

Firstly, we specied a desired volume
for the synthetic Mushroom body (MB).
Usually 1000um?® corresponded roughly
to the structure . The volume can be de-
ned as a set of foreground pixels, but
the intensity threshold that can gener-
ate this foreground, for a given volume,
was initially unknown. To extract the
foreground, an threshold level was iter-
atively increased while the foreground
volume is being checked (basically, the
amount of voxels that pass the thresh-
old multiplied by the individual voxel
volume). The iteration stops when the
desired volume was reached.

Nuclei positioning

On the real MB, the nuclei are approx-
imately distributed in a homogeneous
form. To simulate this, we partitioned
the foreground volume into the num-
ber of desired synthetic nuclei using a
k-means clustering algorithm,k being
the number of desired points. To speed
up the process, a random sub-sampling
of the volume was used, usually taking
1% of the points was enough to obtain
the synthetic nuclei homogeneously dis-
tributed throughout the volume. The
rst steps are shown on Figure 4.3.

Synthetic nuclei

The resulting centroids of the k-means
algorithm were used as the central posi-
tion of the synthetic nuclei, marked as
a single voxel on the 3D image (also,
they were saved as the ground truth of
the images, to verify the detection meth-
ods). To simulate the actual nuclei, with

the obtained centroids we used morpho-
logical operations, dilating initial voxels

using an 3D spherical kernel with the de-
sired nuclei size. At this step we allowed
small random variations of the kernel di-

ameter, up to 3 pixels.

At this stage, the nuclei were solid
spheres with homogeneous intensity,
that is every voxel had intensity 1. To
simulate the uneven distribution of u-
orophores inside a nucleus, every voxel
was given a random value between 0 and
1.

Scattering light

The original image was acquired using
a confocal spinning disk microscope, so
by de nition its resolution was limited
to the diraction limit of the light. To
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Figure 4.3: First steps for the generation for synthetic images. From the left to the right: Original image, extracted

foreground and subsampled image.

simulate this constrain, the image con-
taining the synthetic nuclei was then
convolved by a Point spread function
(PSF) [124] extracted from real micro-
scope images (using uorescent beads
smaller than the microscope resolution).
The extracted PSF is shown at Fig 4.4,
on which we can clearly see the distor-
tion caused by the lower axial resolution.

Figure 4.4: Point spread function used for the convolu-
tion during the creation of synthetic images. The PSF
was extracted by using beads smaller than the micro-
scope resolution.

Additionally, a whole scattering of light

through the MB generates an overall
glow around the foreground. This is
also simulated by adding to the image
an highly blurred version of itself.

Simulated noise

The presence of noise from the cam-
era sensor is inherent to the image ac-
quisition, and this also was taken into

account when generating the synthetic
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images. Poisson noise was applied to
reach a chosen level of signal to noise
ratio (SNR, de ned by the average sig-
nal intensity divided by the standard
deviation of intensities within the syn-
thetic nuclei only) that corresponds to
the original image.

Axial resolution

Typically, the axial (Z) resolution of a
3D image stack is lower relatively to the
camera sensor (XY) resolution. Until
this step the synthetic image contained
isometric voxels, an \ideal" image. To
simulate the real microscopy condition,
the synthetic image was rescaled to the
same size that had the original image it
was based on. Also, the intensity range
of the synthetic image was scaled to the
same levels as the original one. A com-
parison between the synthetic and real
images is shown on Figure 4.5.

4.2.3 Synthetic videos

The synthetic images described so far
were still framesMinhui Wu, intern in

the lab from June to August of 2016,
adapted the algorithm to produce a sim-



CHAPTER 4. NEURON DETECTION

We consider a given detection to be a
True positive if its distance from the
ground truth is smaller than the average
diameter of the nuclei. If no nuclei was
within range, or more than one detec-
tion was close to the same ground truth
points, they were consideredralse posi-
tives.

As measure of accuracy we used the Jac-
card index[125] J, de ned as:

Figure 4.5: Comparison between the synthetic image
(left) and the real acquisition (right). It is possible to
preserve the general shape of the Mushroom body, while
having an image where the true position of the nuclei is
known.

iD\ Gj
iD[ Gj

J(D;G) = (4.1)

whereD is the set of resulting detections

o of the method, G is the set of ground
The changes on individual frames were truth positions (from manual annota-

captured by the foreground extraction, tions or synthetic images).
following the border of the MB for each
frame. In case k-means was performed
independently, the obtained labels of the
centroids wouldn't match, meaning we
wouldn't be able to obtain ground truth
tracks of the nuclei. This problem was
solved by using the resulting centroids TP is the true positive count (elements
of a frame as seed points for the next, Poth in D and G), Fp is the False pos-
and consecutively. This way, a smooth itive count (elements in D but not in
adjustment of the centroid positions be- G) and Fn is the False negative count
tween each frame could be produced (elements inG but not in D). In case

from the new extracted volume. of a high amount of false positivesKp)
or missed detections M), the Jaccard

Figure 4.6 shows consecutive frames of index approaches zero. Oppositely, in
a generated video. From the original le case of perfect match, the Jaccard index
we could see a natural pulsation of the value is one.

brain, that is well re ected on the syn-

thetic video.

ulation over time.

_ Tp
~ Fp+ Tp+ Fn

(4.2)

4.3 Spot detectors

4.2.4 Jaccard Index . .
As nuclei resembles single spots, the

use of methods developed speci cally for

Once the ground truth both from man-  spot detection was rational.

ual annotations and synthetic images
was obtained, it was possible to assess We checked the current state of the art
the accuracy of any detection algorithm for 3D spot detection[126], to identify

(as for the state of the art methods that
will be described on section 4.3).

methods that could identify precisely
the location of spots.
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Figure 4.6: Consecutive time frames from a synthetic video.

Note the movement of the brain within the quadrant

D4, on which nuclei move in and out of focus. On the quadrant E3 is possible to notice a movement where an
compression of the MB displaces a big part of the structure to the bottom-right

The need for estimating the position of
nuclei and spot of various size in gen-
eral is not new and has been the sub-
ject of many studies. In 2D, meth-
ods range from local background sub-
traction and linear or morphological im-
age ltering to wavelet-based multiscale
detectors (see[127] for an overview).
While the need is more recent in 3D,
the methods used are in fact much the
same. A recent comparison the about
e ciency of methods was made in 2015
by Sepka et al. [126]. The 3D mor-
phological maxima (EMAX) presented
by Matula et al. was then suggested
as a method that combines both a high
accuracy and a low number of parame-
ters [128]. Another method, the Undeci-
mated Wavelet transform (UDWT) [129]
is by far the most cited and therefore
probably the most used by the scien-
ti c community for quanti cation. Both
methods are brie y described here.

4.3.1 Undecimated Wavelet (UDWT)

In [129], Olivo-Marin introduced a
method based on the undecimated
wavelet transform. A 3D undecimated
wavelet transform of the image is com-
puted, then non-signi cant wavelet co-
e cients of selected scales are discarded
by a weighted automated threshold-
ing. Spots are enhanced by com-
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puting the product of the denoised
wavelet coe cients. This method re-

quires two parameters: a "wavelet
scales" matching the sizes of the ob-
jects we aim at detecting and a "sen-
sitivity" parameter which corresponds

to the thresholding weight (available

here: http://icy.bioimageanalysis.org/

plugin/Spot _Detector).

4.3.2 3D morphological maxima (EMAX)

In [128], Matula et al. described a
method based on the 3D morphological
maxima transform. First, noise is sup-
pressed with a 3D Gaussian Iter with
corresponding to the expected size of the
spots. Then, a morphological maxima
transform is computed. This transform
identi es those local intensity maxima
whose height exceeds a speci ed thresh-
old h. This method requires two param-
eters: a "smoothing” and a "height" h
(available here: http://cbia. .muni.cz/
acquiarium.html).

4.3.3 Parameter scanning and results

As described on subsections 4.3.2 for
EMAX and 4.3.1 for UDWT, both
methods depend on user tuned param-
eters to properly realize the detection.
To avoid any sort of bias when check-
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ing the accuracy of the methods, a range
of parameters that would maximize the
Jaccard index were scanned, and only
the best parameter set was used for the
index calculation.

Results for UDWT

The detection was performed using the
ICY implementation of the algorithm
[56].

The scale of the wavelet is a free param-
eter, but it was xed according to the
size of the object being detected, as de-
scribed by their authors. However, an-
other parameter calledsensitivity had to
be adjusted, and it was scanned to max-
imize the Jaccard Index.

The detection results were compared
with the two manual annotations of the
Mushroom body (section 4.2.1), and the
algorithm with optimal parameter set
obtained an average of 335 False posi-
tives, 50 True positives and 902.5 False
negatives, resulting in a Jaccard index
of 4%.

For the synthetic image containing 2000
objects, 146 False positives, 103 True

830.5 False negatives, resulting in a Jac-
card index of 8%. For the synthetic im-
age, the results were 586 False positives,
226 True positives and 1774 False nega-
tives, resulting in a Jaccard index o 9%.

4.4 SMAX 3D spot detection

Regarding the low Jaccard indices ob-
tained by both UDWT and HMAX, we
considered the state of the art methods
for spot detection inappropriate for our
data-set. Thus, we proposed a new spot
detection method Smax able to handle
the peculiarities of our system.

4.4.1 Method description

As we mentioned earlier, 3D stacks in
confocal microscopy are made of series
of 2D image acquisitions, as the camera
is composed of a 2D array of sensors.
This usually results in a 3D image with
a lower resolution in thez direction (ax-
ial to the acquisition). This lower reso-
lution is partly due to the fact that the
distance between the acquired 2D im-
ages is always higher than the pixel size
in the x and y directions. It is also due

positives and 1897 False negatives were tg the Point Spread Function (PSF) of

obtained, resulting in a Jaccard index of
5%

Results for EMAX

We used an implementation of the al-
gorithm given by the software package
Acquiarium[130]. Two parameters were
used, an intensity value for thresholding
and a sigma value for Gaussian blurring
for noise removal.

When comparing to the manual anno-
tations, on the average we obtained 483
False positives, 122 True positives and

such an optical system that is typically
wider in the z direction than in the x or
y directions.

A simple but crucial solution to this
anisotropy issue consists in using the ac-
guisition metadata and a cubic spline in-
terpolation [131] in the z direction to gen-
erate intermediary plans to obtain vox-
els with equal size orx, y and z direc-
tions. This dierence in scale can be
better understood on Figure 4.8, on wich
the left voxel spans a whole :5um step
of the microscope. Filling the missing
data with synthetic interpolated plans
does not bring additional information
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Figure 4.7: Summary of SMAX, the proposed method for spot detection. (a) An image stack of the Mushroom body
of Drosophila acquired with a spinning disk microscope (b) Detail of a nucleus (c) A good approximation of the
nucleus diameter (the single input parameter of the method) can be obtained by the Full Width at Half Maximum
(FWHM) of a Gaussian t on an intensity pro le. (d1-3) Stages of the Smax algorithm. (d1) Image interpolation
(d2) Weighted maxima denoising using Gaussian Mixture Model (GMM) followed by maxima accumulation. (d3)
Maxima accumulation image is then convolved with a kernel corresponding to the targeted nucleus size, nal local

maximas are extracted. All processes are performed in 3D.

but makes possible a proper use of iso-

metric 3D kernel and neighborhood in
the following image analysis steps, while
allowing a sub-resolution precision for
the axial direction.

Following this anisotropy correction, a
standard deviation is computed from
a diameter value provided by the user.
For that purpose, it is considered that
this diameter is ideally obtained from
the Full Width Half Maximum (FWHM)
[132] of a Gaussian that would be t
on an average spot intensity pro le (see
Figure 4.7c). This t measured is done
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on a subsample of isolated nuclei, and
measured on thexy plane (minimizing

the PSF eects). Therefore, is re-
versely obtained using:
diameter

= —p— 4.3

2 2In2 (43)

This value can be divided by the pixel
size (extracted from the le metadata)
in case the diameter is provided inm .

A bank of 10 Gaussian lters that span

[ 5. +3]was created to detect slight
variations of size around the average nu-
cleus diameter provided. The number of
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Figure 4.8: Comparison of scale between the voxel on
the original image (left) and an isometric voxel (right)

Iters was set to 10 because we observed
that for most combination of spot sizes
and noise levels related to real applica-
tions, Jaccard indices were not improved
above 3to 5 lters in the bank, depend-
ing on datasets, as shown by Figure 4.9
for simulations using synthetic images
containing 1000 objects. Therefore, a
higher number would in most cases in-
creases the computational cost without
improving the precision. Figure 4.9 also
illustrates that Smax is less accurate on
a dataset with a higher variability of ob-
ject sizes. For each lIter, local max-
ima were detected and collected using
a3 3 3 spherical neighborhood.

At this stage, for each lter, the lo-
cal collected maxima were produced by
actual bright objects or by background
noise. Therefore the distribution of in-
tensities associated to maxima is most
often bimodal (considering that every
object have a similar intensity distri-

bution, that is greater than the back-
ground). The two components of this
distribution were then identi ed for each
scale using a Gaussian Mixture Model
(GMM) with a two components t us-
ing the Expectation-Maximization algo-
rithm. A threshold automatically de-
ned as the value where both compo-
nents are intersecting such as the max-
ima associated with intensities above
this threshold are kept while the max-
ima associated with intensities below
this threshold are discarded. This pro-
cess o ers a stringent denoising process,
independent for each lIter scale (see Fig-
ure 4.7d2).

Following this step, all remaining max-
ima collected for each Iter were ac-
cumulated into a single 3D array. As
objects were supposed to be further
apart than resolution (that is, above the
Nyquist sampling rate of the microscope
[133]), this array should contain local ac-
cumulations of maxima mostly in vol-
umes that are about the size of a nu-
cleus. Therefore, an ultimate 3D Gaus-
sian ltering using was applied. This
Itering was supposed to merge accumu-
lated detections that belong to the same
object into a single Gaussian blob. Fi-
nally, 3D local maxima from this Itered
array were identi ed, representing the -
nal detections, and saved to disk in a
.csv le (see Figure 4.7d3).

The described protocol for Smax can be
summarized in Algorithm 1.

4.4.2 High 3D density

The high density of nuclei on the Mush-
room body makes the detection task
more complex, as the PSF merges nuclei
that are too close together, specially if
they are stacked on the axial direction.

49



CHAPTER 4. NEURON DETECTION

Figure 4.9: Evolution of Smax results with the number of scales used in the Iter bank for three level of object sizes
variability within a given dataset. The plot shows the Jaccard indices obtained on a synthetic images containing
1000 objects of 7 pixels in diameter, with sizes randomly varying from one to three pixels (curves from top to
bottom) around that diameter. The dashed line indicates the chosen number of scales used as a default for the Iter
bank of Smax.

Algorithm 1: SMax
input : 3D Imagel, Full Width at Half Maximum s
output: array of (x,y,z) spot positions| pq
liso  CubicSplinelnterpolationinZ(  1);
0;

l'acc 0;
repeat

I GaussianConvolution( liso, );

| getections ~ MaxDetection( 1 , s);

Iacc | acc T DenOiSing( | detections) ;
+
until < max

| hal MaxDetection( | acc, S)

4.4.3 Single measurable parameter be distinguished.

An advantage of the proposed method
is that it requires only a single param-
eter from the user. Furthermore, this
parameter is a physical quantity: the The method we propose is meant to be
average diameter of the object we aim used to detect a large set of packed ob-
to detect. This value can be easily esti- jects of similar size. By similar size we
mated from the data by computing the mean that there may be a slight vari-
Full Width at Half Maximum (FWHM) ation in the population of object size
of a Gaussian t on the average prole around the expected value but its vari-
of a set of randomly chosen objects (see ance is assumed small. This is the case
Figure 4.7c). This is typically the way for 3D nuclei: they don't have all the
empirical Point Spread Functions (PSF) exact same size, but for an adult popu-
are constructed albeit with under reso- lation, and without the possibility of cell
lution beads while our approach is typ- division, the di erence in size should me
ically suited to packed objects that can minimal. This slight variation is cap-

4.4.4 Slight variations in size
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Figure 4.10: Volumetric reconstruction of the nuclei signal together with the resulting detections.

tured by scanning a tight range of values for the Jaccard index calculation. This
around the speci ed diameter. Filters allowed a more extensive comprehension
that approximately match a nucleus size on the weakness and strengths of the
will produce maxima in a close vicinity methods, as analyzed in Section 4.5.

of each other, thus producing a signal

accumulation that can be clustered in

an ultimate aggregation step. Early embryo

4.45 Supplemental datasets A 3D image of an earlyC. elegansem-
bryo was used to test the e cacy of
the method for objects that were big-
ger than the ones observed in the Mush-
room body (max projection on Figure
4.11). Altough being a realtively sim-
ple case, images of this kind are still be-
ing manually annotated today, and new
methodologies are still being developed
to increase e ciency and accuracy.34].
For this particular case, all the methods
we compared performed relatively well.

Smax was developed with the detec-
tion of nuclei on the Mushroom body in
mind, but the method should be generic
and applicable to other sort of 3D im-
ages, once regarding the fact that the de-
sired objects reassemble spots above the
microscope resolution and no other kind
of objects (laments or cell borders, for
example) are present in the image. We
tested the method (together with the
two other methods presented in section
4.3) with three other datasets, presented
bellow. The real images were manu-
ally annotated using the same procedure
as explained in Section 4.2.For the syn- To better understand the detection of
thetic image, the ground truth was used large objects, another synthetic image

Synthetic image with large objects
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Figure 4.11: Axial max projection of the
bryo.

C.elegans em-

was generated. This image had 50 ob-
jects and was based on th&€. elegans

embryo image, following the size mea-
sured from the embryo nuclei. The max

projection of the image can be seen on
Figure 4.12.

Figure 4.12: Axial max projection of the synthetic im-
age containing large objects, based on the C.elegans
embryo.

Centrioles

For this image, a 3D stack from centri-
oles, the algorithm was tested for the de-
tection of points in di erent densities, as
well in a condition with a high level of
noise. The objects had a more similar
size than in the images of the Mushroom
body, but they tend to form clusters (as
seen on Figure 4.13). Also, as the im-
age is a sectional crop of an much larger
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image, about% of the stack is composed
of only background, which stresses the
ability of the algorithms to ignore back-
ground noise.

Figure 4.13: Axial max projection of image containing
centrioles, especially interesting to test the detection of
clustered objects and resilience to noise.

4.5 Methods comparison

Smax was compared to the state of the

art methods using the 4 datasets pre-
sented. The results can be found in
Figure 4.15. Using the Jaccard index
to assess the accuracy of the detections,
we were able to conclude that for ev-
ery dataset Smax performs equably or

with a higher accuracy, especially for
densely packed objects on a uniform
background.

For the datasets with relatively larger
objects (C. elegans embryo and Syn-
thetic image with 50 objects) the per-
formance is close to 100%, regardless of
the method. These cases present spots
that are composed of several voxels in
diameter, with a relatively high distance
between them, thus being relatively eas-
ler to detect.

For the other datasets (Mushroom body,
synthetic image with 2000 objects and
Centrioles), the accuracy ofSmax was
signi cantly higher than the compared
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methods. The smaller size of the ob-
jects, their relative high proximity and
their stacked position inz made the de-
tection less trivial.

None of the methods from the state of
the art takes into account the lack of
isometry of the image, and we realized
that this feature had an important im-
pact on the accuracy. When correcting
for the isometry of the images before ap-
plying the methods, by using the same
interpolation as for Smax we obtained
a signi cant increase in accuracy for the
other methods, sometimes with a Jac-
card index 15 higher, as seen in Figure
4.16, almost reaching the accuracy lev-
els of Smax This shows that the isom-
etry correction is neglected by the state
of the art methods, despite playing an
important role for the accuracy of the
detection.

A mushroom body of an adult D.
melanogastershould contain about 2000
neurons, according to the literaturg13s],
and for this reason we used a synthetic
image containing 2000 objects. How-
ever, our detection found only 319 True
positives points for the MB (from a to-
tal of 604 detections), with a Jaccard
index of 23%. Although a low value, it
is an improvement of 280% when com-
pared to the state of the art methods.
The missing and inaccurate points were
mainly the result of the low axial reso-
lution of the image, limited both by the
di raction limit of the light and by the
low number of slices that we were con-
strained to acquire because of the tem-
poral resolution.

4.6 Conclusion

The current state of the art methods
couldn't perform accurately enough for
the detection of nuclei on the Mushroom

body of the Drosophila melanogaster
Our proposed method,Smax although
not perfect, but dedicated to our con-
text, increased the accuracy consider-
ably. This allowed us to proceed with
the next step of the process, the neuron
tracking.
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Figure 4.14: Resulting detections of the Smax algorithm for one Mushroom body. From this Figure we can clearly
see how the common aproach of having a axial max projection of the data can cause a huge loss of data. As the
MB is a 3D structure, and a considerable number of neurons are stacked on top of each other, a truly 3D analysis
is fundamental if we seek a comprehensive understanding of the memory patterns inside the brain.
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Figure 4.15: Quantitative comparison of Smax with two state of the art approaches. Smax is compared to UDWT
and eMax approaches using 5 3D stack datasets. From left to right: image of distinguishable nuclei in Caenorhabditis
elegans manually annotated, image of centrioles in mice ependymal cells manually annotated, image of a large
amount of packed nuclei in Drosophila’s mushroom body manually annotated and synthetic images containing 50
objects and 2000 objects for which ground truths are known. From top to bottom a 3D rendering view of the dataset,

a maximum intensity projection on the z axis and the quantitative comparison of spot detection algorithms. Each

box of result indicates from left to right the values of false positives, true positives, false negatives (colored bars
indicating the proportion for each case) and the Jaccard index. A detection is considered as positive when it fall

in a sphere of nucleus size around any of the original objects positions. Smax sole parameter was set to an average
nucleus diameter. Parameters for the two other methods were systematically scanned in order to choose the best
Jaccard Index which in principle unfavors our method (see Figure 4.16).
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Figure 4.16: UDWT and Emax parameter scanning for comparison with Smax. (A) Jaccard indices obtained

by scanning the \sensitivity" parameter of the Icy spot detector (UDWT) for original and image with corrected
anisotropy. Full line shows the average Jaccar index obtained by the the two manual annotations (+ and symbols).
Note that the synthetic images use the computer generated ground truth, not an manual annotation. The scale

for the parameter scan was chosen as matching the objects size (as speci ed by the authors). The values obtained
demonstrate that the quality of the Icy spot detection can be improved for every case, except the embryo image,

by interpolating the image in the z direction prior detection (although, without reaching the accuracy obtained by
Smax). However, the same interpolation step decreases the accuracy of the same detector in the case of the real C.
elegans embryo image, as the False positive rate increases drastically, lowering down the Jaccard index. (B) Jaccard
indices (mean for the two ground truths for manual annotations) obtained by scanning the two parameters of eMax,
applied directly on original images (left side of group) or after anisotropy correction (right side of group). Gray
squares indicate cases where the provided implementation of the algorithm couldn't perform the detection. Color
ranges from red to green, rescaled using all Jaccard index values obtained on each dataset. For both methods, the
parameters corresponding to the best Jaccard index for raw and anisotropy corrected images are emphasized.
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I'm on the right track baby
| was born this way.

Stefani Joanne Angelina Germanotta
(Lady Gaga)

The previous chapter shows how we were
able to detect nuclei from the neurons in
the Mushroom body, with a relatively
high precision. However, these detec-
tions were independent through time,
and if we were willing to measure the
signal from the individual neurons, de-
tected nuclei from the dierent time
frames needed to be linked accordingly.

If the brain was perfectly still through
time, and every nuclei correctly detected
at all the time frames, the tracking task
would be consisted of nding the closest
detection in the next time frame. Un-
fortunately, none of these assumptions
was true. As the ies were imagedn
vivo, there was a natural movement of
the brain, and the nuclei detection were
not consistent for most nuclei during the
whole acquisition. In this Chapter we
present how we minimized the move-
ments of the brain using registration, in
order to correctly track neurons through
time.

5.1 Brain movement

The fact that we acquiredin vivo im-
ages was one of the fundamental aspects
of this research project. This allowed us
to observe the brain as close as possi-
ble to its natural behavior, giving us the
unique change to look deep into how the
memory is organized. But making ann
vivo study came with a price, as we also
needed to deal with the natural move-
ments of the brain. Two strategies could
take place here: rst, trying to minimize
the movement of the brain before the ac-
quisition. Second, perform a numerical
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post-processing stage. Although being
the rst option the common choice for
the majority of current studies regard-
ing the Mushroom body, we discovered
that it may lead to artifacts and behav-
ioral changes, as they will be describes
throughout this chapter.

5.1.1 Origins of movement

During the dissection process, the y
was properly glued to the coverslip,
avoiding global head movements. How-
ever, this process alone wasn't able to
cancel all the movements of the brain.
Two main factors may induce move-
ments on the brain: rst, the expan-
sion and contraction of the proboscis can
considerably push the whole brain struc-
ture. Second, the pulsatile organ, that
allows the air di usion through the linfa
of the y, can generate contractions that
were noticable during the image acquisi-
ton.

Another category of movement that was
encountered in about 10% of the ies
was a relatively huge axial drift, unre-
lated to the movement described above.
In this case, the whole structure drifted
downwards, especially during the rst
third of the acquisition. A reason might
be the settling of the y with an un-
nished xation process, as the y was
held only by the glue during the acqui-
sition. This drift needed to be corrected
in post processing, as described in the
Section 5.2.

5.1.2 Techniques for limiting the move-
ment

As the origin of the movement is known,
it is common to apply several di erent

techniques during the experiment prepa-
ration to minimize its e ects.
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For the rst cause, the proboscis expan-
sion, the most common approach is the
xation using biocompatible glue dur-
ing the y preparation on the coverslip.
This step is done for all of our ies, and
it is common through the bibliography
[136].

The second source of movement is more
complex, and several techniques can be
found to try to minimize it.

Rupture of the muscle

One approach, rather drastic, is to cut
through a cirurgical process the muscle
responsible for the movement of the pul-
satile organ. This technique, although
used by several workgi3s5-137], IS ex-
tremely dicult to be performed (in-
creasing the rate of ies that present ar-
tifacts) and might induce unknown fea-
tures to the behavior of the brain. Thus,
we decided to not perform this process
on our work.

Temperature cooling

Reducing the temperature of the vy, by
the use of dry ice, is a common method
[137-139]. It is used specially when per-
forming the dissection, as the movement
of the y greatly increases the di culty

of the process. Although, in our case, we
decided not to perform the ice cooling,
as its e ects on how the memory traces
are expressed on the brain are unknown.

Neuromuscular blockers

The chemical use of neuromuscular
blockers, as Philanthotoxin [140], a
blocker of muscular glutamate receptors
was also proposedi39], but its use pro-
motes changes in behavior for neuronal

activity [141, 142], so it wasn't indicated
for our case.

Agarose xation

One promising approach was the xa-
tion of the brain using agarose. After so-
lidi cation, it drastically minimized the
movement of the brain, making the ac-
quisition much more stable. However,
after several experimentations, we re-
alized that it possibly caused artifacts
on the brain activity, as increased spo-
radic activity of the brain. This might
be caused by the fact that the agarose
needs to be applied at high temperature,
causing unspeci ed damage to the neu-
rons.

At the end, only the physical xation
of the proboscis was used during our
specimen preparation. All the remain-
ing movement of the brain was xed via
computational means, as explained in
the following sections

5.2 Brain registration

By registration we mean the process of
matching two di erent sets of points. In
our case, this means to match the nu-
clei detection from two dierent time
frames, regardless of the spacial defor-
mation that occurred between them. It
is worth to remind that not only the
movements of the brain were a issue
here, but also the inherent imprecision
of the detection process. Not every nu-
clei was detected at every single time
frame, which created the necessity for
the registration process to handle noise
and missing points.

It is important to state that the regis-
tration process is done by mathematical
transformations of the point-cloud con-
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stituted by the detected nuclei. Two
kinds of transformations exists, rigid
and non-rigid. For the rigid transfor-
mation only translation, scaling and ro-
tation are allowed, thus being that the
general aspect of the point cloud is not
changed. Non-rigid transformations al-
low operations that do change the shape
of the point cloud, as shearing for exam-
ple. The deformations observed on the
brain required a non-rigid transforma-
tion, as usually the deformation was not
similar on every part of the Mushroom
body. Our registration process is com-
posed of two steps, rst an a ne regis-
tration to handle the coarse movements,
and then a Coherent-Point-drift [143] to
make the ne adjustments.

Figure 5.1: Schematic representation of an registration
process. (A) is the base image, used as reference, and
(B) is the image to be registered. (C) shows the result
of a rigid transformation on (B), using rotation and
translation to match the two set of points. Note that
outliers are possible within the registration process, as
it is driven by the global cost minimization of the points
match.

60

5.2.1 Afne registration

The a ne transformation preserves the
collinearity of the points, so that if a
set of points belongs to a line before
the transformation, they will still be-
long to a line (a di erent one, tough) af-
ter the processi44]. This doesn't mean
that the a ne transformation is rigid, as
deformations as translation, scaling, re-
ection, rotation, shear mapping or any
combination of those are possible.

The operation for the a ne transforma-
tion can be de ned in a single matrix,
that once multiplied by the point cloud,
returns the transformed set of points.

Initially, our rst attempt was to set the
middle frame of the acquisition as ref-
erence, and register all the other frames
to it. For the majority of cases this ap-
proached worked well, but for the ies on
which the axial drift was too important,
the cost minimization usually would fall
into a local minima, as the two point
clouds are initially too far apart.

The solution arose by means of ehained
registration. We still kept the middle
frame as nal reference point, but the
registration was done sequentially be-
tween frames until the reference frame
was reached. As the process involved
redundant calculations for when regis-
tering di erent time frames, the speed
of calculation was signi cantly increased
by saving the intermediary transforma-
tion matrices that were common be-
tween intervals that intersect, as seen in
Figure 5.2.

The nal result mostly minimizes the

axial drift of the image. Although be-

ing an improvement, the contractions
caused by the pulsatile organ of the y
are still present, as they were highly
non-rigid deformations that could not be
solved by the a ne transformation.
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Figure 5.2: Schematic representation of the chained reg-
istration process, where each box represents one time
frame t. For the registration of t4, the matrix M 4-5is
computed. But for the registration of t3, only the ma-
trix M 3-4 needs to be computed, as the second needed
matrix, M 4-5, was already calculated and stored.

5.2.2 Coherent point drift

The registration through a ne transfor-
mation was able to correct the coarse
part of the movement, as the axial drift,
but it wasn't capable of xing the small
local deformations of the brain, as they
were highly non-rigid.

As the registration isn't done on the
raster image itself, but rather on the
point cloud that results from the nu-
clei detection, the problem was in fact
a point-set registration. Several algo-
rithms proposed ways to register a set
of points, but the Coherent Point Drift
(CPD) [143], proposed by A. Myronenko
and X. Song, was well indicated in our
case, as it is capable of handling 3D
information, perform local deformations
and is robust to noise, outliers or miss-
ing data.

The method considers the alignment of
the two point-sets as a probability es-
timation problem, where the set to be
registered represents the centroids of a
Gaussian Mixture Model (GMM), which
are tted to the reference point-set by
maximizing the likelihood. The strength
of the method is that the GMM are con-
strained to move coherently as a group,
preserving the overall topological struc-
ture, while allowing for local deforma-
tions.

The process isn't parameter free tough.
Three free parameters exists! , and
The parameter! varies between 0

Figure 5.3: Schematic representation of a non-rigid,
with local deformation, registration process. (A) is the
base image, used as reference, and (B) is the image to be
registered. (C) Is the superimposition of (A) and (B),
without registration. (D) shows the result of a coherent
point drift. Note that here also, outliers are allowed.

and 1, representing an assumption on
the amount of noise present in the data.
represents the trade-o between the
regularization and the overall goodness
of t. is the width of the Gaus-
sian used for the GMM model, and the
higher the value, the more the transfor-
mation approaches a rigid registration.

The parameters! and where left to
the default settings of the algorithm,
while was manually adjusted based on
the visual match between di erent time
frames to reference point. The lack of
ground truth for linking detections made
an automated parameter scanning un-
feasible. The parameter was scanned
to allow small corrections on the point
cloud, as the coarse part of the move-
ment was already corrected by the pre-
vious a ne transformation. However, in
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Figure 5.4: Cost minimization process of the CPD algorithm.

In blue we see the point cloud used as reference, and

black crosses are the points submitted to registration. On the left the two point-sets on the same 3D space, after
the a ne registration, where we can see some mismatch, specially on the bottom right corner. On the right side,
after the CPD registration, the point-set is morphed, better matching the reference frame but without losing the

overall structure of the Mushroom body.

case future work (based on the synthetic

detections (as there is not guaranteed

videos described on Section 4.2.3) would that every nuclei produce a detection at

be able to generate realistic movement
of 3D stacks, we predict that the auto-
matic scanning of the three parameters
needed for CPD could make the ane
registration not needed.

On Figure 5.4 we can see the result
of the minimization process from CPD,
for two frames once the a ne registra-
tion was applied. As the two point
clouds were already globally registered,
the process converged rather quickly, us-
ing just a few seconds per frame.

5.3 Nuclei tracking

Once achieved, the registration process
made that for a given nucleus, the de-
tected points overt time were closer in
the 3D space between di erent frames.
However, these points were not yet
linked, as the detections were indepen-
dent for each time frame. A nasve strat-
egy of linking the closest points between
frames would give better results than
before the registration process, but still
would fail because of noise and missing
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every time frame).

After the registration, the point cloud
made of detections of an individual nu-
cleus over time was much more dense
than before, and the distance be-
tween clouds of distinct nuclei displayed
a higher distance between themselves.
Also, \real" nuclei presented a point
cloud more dense than random noise.
These features allowed us to use a den-
sity based clustering method to identify
the individual nuclei.

The tracking process is summarized in
Algorithm 2

5.3.1 Clustering

To use a clustering method for track-
ing the detections may not be the most
common approach from the literature,
as seen in Section 1.5.3, but taking in
consideration certain aspects of our data
model, it becomes clear how it was an
interesting approach for the tracking of
nuclei.



CHAPTER 5. NEURON TRACKING

Algorithm 2:  ClusterTracks

input : Detections from Smax,D
output: Labeled data frame,D apeled
repeat

Dregistered  AffineRegistration(

Dregistered

t t+1;
until t<t a;
Dlabeled DBSCAMegistered) ;
Diabeled  ClusterFix( Diapeled) ;
Diabeles  TrackSmoothing(D japeled) ;

D1 t1 tref);
CPDregistration( D egistered, t, tref) ;

Usually, tracking algorithms make the
assumption that a given point needs
to be linked to another in a dierent
time frame. Then, hypothesis are built
on how the point position might evolve
though space, taking in consideration
parameters that are know from the data
(as maximum movement speed, possibil-
ity of duplication, maximum displace-
ment etc) [145].

In our case, the clustering approach al-
lows to limit the number of hypothesis
that would need to be set on a usual
tracking scheme. We know that divi-
sion of the tracks are not expected, as
the short time of acquisition don't al-
low cell division. Also, because of the
non-rigid registration of the Mushroom
body, we can assume that detections
from a given nucleus over time are co-
localized, within the precision of the
spot detection method (Chapter 4).

Thus, our approach consisted in per-
forming a clustering on the 3D space
that contains the points from every time
frame, a time projection of all points
into a singe space, from 4D (3D+time)
to 3D. On this time projection, the de-
tected points should form dense clusters,
if the nuclei were detected for the major-
ity of the time frames, and noise should
appear as sparse points.

DBSCAN

Density-based algorithm for discovering
clusters in large spatial databases with
noise (DBSCAN) [146] is a clustering
method that uses the notion of density
from the dataset to form clusters, largely
used by recent works as one of the usual
clustering methodsj147-149]. It is by de-
sign able to handle noise, meaning that
not every point on the data-set is forced
to be part of a given cluster. These
characteristics made the method highly
adapted to our problematic. After the
registration process, detections that cor-
responded to a true nucleus over time
were likely to co-localize, forming dense
clouds of points (thus, easily detected
by DBSCAN). Points corresponding to
noise were not expected to be part of
any cluster, so the fact that the method
is able to label point as noise, was in our
favor.

The method consists in an iterative
scheme that uses two parameter for
the de nition of density, (distance
measurement) andminPts (amount of
points). Firstly, the algorithm de nes a
point set classi ed ascore points called
p, that must have at leastminP ts neigh-
bors closer than the distance. A set
of connected core points de nes a clus-
ter. Any other point within  distance
to a cluster (directly reachable by a core
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point) is grouped to the same cluster.
Points further than to any core point
are labeled as noise.

Figure 5.5: lllustration of the DSCAN de nition of clus-
ters. The distance value is de ned by the radius of the
circles, and for this schematic, the mimPts value is 2.
The points A, B, C and D form the core points, as each
one have at least minPts closer than . The point E is
part of the cluster, because is reachable from C, but it is
not a core point. F and G are labeled as noise, as they
cannot be reached by any core point (G is reachable by
E, but E is not a core point of the cluster). Thus, the
nal cluster is shown by the dotted red line.

5.3.2 Parameter estimation

As stated, DBSCAN isn't a parameter
free method.
some prior information on the data be-
havior, it is possible to estimate the best
parameters for the clustering.

Core point distance

The value is directly correlated with

the size of the nuclei, as the distance
between detections over time from the
same nucleus derivates mainly from the
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detection imprecision. Thus, we apply
the FWHM value used during the nuclei
detection as (see Chapter 4).

Minimum number of points

The minimum number of points can-
not be directly estimated as the value,
mainly because it depends on some un-
controlled factors as the movement of
the brain and proportion of missing de-
tections on certain frames.

We approached the problem through an
iterative process. First, we assumed
that the nal number of detected clus-
ters should be close to the median num-
ber of detections through all the frames.
This supposition is possible because the
real number of neurons does not change
through time, making the process of
independent detections for every time
frame an estimation of the \detectable"
neurons.

Then, the DBSCAN algorithm is ap-
plied for a range oiminP ts values, start-
ing with one. The value is iteratively
increased, and the nal number of clus-
ters measured. TheminPts value that
reaches a number of clusters closer to
the median amount of detections is cho-
sen as parameter for the DBSCAN.

However, as we posseg5.3.3 Fixing clusters

The clustering process, as described so
far, ignores completely the information
that each point had about the time
frame it was acquired. For example, itis
possible that a given cluster have two de-
tections for the same time frame. How-
ever, we know that this should not be
the case, as each cluster should corre-
spond to an unique nucleus, thus having
only one detection per time frame.
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Two process may lead to this: First, by

divided using a k-means algorithms0],

chance a noise can be detected close towith k as the median value.

a real nucleus, thus being part of the
cluster after the DBSCAN. This process
should be rather sporadic, and not hap-
pen often. Second, it is possible that
two groups of points were too close to-
gether, and the two clouds were merged
in a single cluster.

The whole process was computed inde-
pendently for each cluster, but the iden-
ti cation of the condition begins with
the same query: for every cluster, a dis-
tribution of the number of points for the
same time frame, and the median value
of this distribution is taken.

Median O

A median value of zero means that
the cluster has, for the majority of the
frames, missing detection. For this case,
the cluster is excluded from the rest of
the process (all the points are marked as
noise)

Median 1

A median value of one means that for
the majority of time frames the cluster
have only one detection. It is still pos-
sible that some frames have more than
one detection, and on this case the point
closer tho the centroid of the cluster is

chosen, and the other is labeled as noise.

Median 2 or higher

If the median is higher than one, this

The whole process repeats iteratively,
until no cluster contains a median value
higher than one. Figure 5.6 illustrates
the process.

5.3.4 Missing data

Because of the natural movement of the
brain, photo-bleaching of neurons and
noise of the acquisition, it is most of-
ten the case that a given neuron will not
have a detection for every time frame. It
is rather common that for a given track

few points are missing.

As the tracks are going to be used for the
signal measurement (Chapter 6), they
need to be retrieved at every time point.
The missing points are solved by means
of a linear interpolation[151] between the
neighbors in time.

This interpolation approach is possible
for two main reasons: rst, the missing
detections are rather sporadic, because
the clusters that weren't dense enough
were already removed during the DB-
SCAN step, making that if a track still
persists until this stage, it has at least
more than half of the time frames rep-
resented. Second, because of the regis-
tration that was performed prior to the
clustering, we don't expect big move-
ments from the detected nuclei.

Note that the actual signal that needs
to be measured isn't registered, it fol-
lows the \real" coordinates of the points.
The interpolation is made both on the
registered and non-registered spaces (as
a given point have the same label for

means that we have a case of merged both). But, for the measurement of the

clusters, being that the number of
merged clusters is equal to the measured
median. For this case, the cluster was

signal, the tracks on the \real" space are
used.
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Figure 5.6: Using time information to increase the quality of clusters. (A) Schematic representation of a case where
the median value is 2, and thus the cluster is divided. (B) Real data from a case with median 1, so that duplicates
(one example shown being conected by a dashed line) are marked as noise (black dots on the right image) and the
point closer to the centroid is kept. (C) Real data for a case where the median is 2, and the resulting split cluster.

5.3.5 Track smoothing

The inherent imprecision of the detec-
tion, together with smaller movements
that could not be corrected by the reg-
istration process, end up by resulting on
tracks that may sometimes have a con-
siderable noise level. Tracks with low
consistency with the real path of the
neurons is likely to cause artifacts when
we measure the neuron GCaMP signal
(see Chapter 6).

We approach this problem by a sim-
ple, dimension independent, smoothing
of the spatial coordinates vector for ev-
ery neuron. Every track is smoothed by
a convolution with a gaussian kernel, us-
ing the same value of 1. This process
is able to correct the noise of the tracks,
while keeping the normal movement of
the brain
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5.3.6 Track validation

As for the detection of nuclei, the track-
ing must be validated. For this, we per-
formed a similar approach, were both
manual annotations were made and a
synthetic sequence of images was con-
structed.

Fro comparison, the tracking was oper-
ated independently by 3 software pro-
gram 1) ours: memotrack, 2) ICY[152]
and 3) TrackMate [153]. ICY and Track-
Mate were chosen both because they
were available online and because they
received good evaluations from a recent
spot tracking performance review152].
After tracking, trajectories that were in-
terrupted (that is their duration were
shorter than the total sequence) were
discarded as the complete sequence was
needed to read the GFP signal. Dis-
tances between the remaining trajecto-
ries and annotated ground truth (man-
ual or synthetic) were computed and
a trajectories with an average distance
over time from its closest ground truth
larger than 3 times the nucleus size was
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Figure 5.7: Summary of the neuron tracking process. (A) Shows the original set of detected points, color coded
by time. (B) Result of the A ne registration, which mainly corrects the larger drifts of the data. (C) After the
Coherent-Point-Drift (CPD) non-rigid registration, detections are well aligned and can be clustered. (D) Result
of the DBSCAN clustering, with clusters in color and noise in black. (E) Noise is ignored and missing points are
interpolated, making the nal tracks. (F) Detail for one of the clusters, showing that the cluster is a collection of
points from every time frame, thus making a track of the nucleus through time.

considered wrong (mostly to allow for
the imprecision in the axial direction).

Correct trajectories de ned this way
represented the true positives (TP) in
supplementary gures 5.8 and 5.9. False
Negative (FN) were de ned as ground
truth nuclei that did not match any tra-
jectories. False Positive (FP) were soft-
ware de ned trajectories that did not
match any ground truth. Note that this
last category is unavailable for manu-
ally annotated data as it would neces-
sitate to annotate all nuclei of a 3D se-
guence over time (about 250,000 data
points!), which is virtually impossible
for a human being. Finally, note that
there was not such a thing as True
Negative (TN) as software program do
not generally output trajectories corre-

sponding to spurious objects that we
anyway wouldn't have annotated.

The validation leads to the conclusion
that our suggested method has a high
accuracy for detecting the tracks of neu-
rons in the Mushroom body. This is

mainly possible because our method in-
cludes prior knowledge of the data, as
the natural deformations of the brain

and the fact that tracks should not

split or disappear through the whole se-
quence.

5.4 Conclusion

The strategy of registration followed by
clustering, rather than a conventional
tracking approach, allowed us to make
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Figure 5.8: Validation of our tracking approach Memotrack against two other methods, ICY and TrackMate, using
manual annotated and synthetic 3D+time sequences. A. Results obtained using manual annotations and considering
only complete trajectories along the whole sequence. That is, if the duration of a trajectory provided by a software
program was less than the length of the sequence, it was discarded. This is because the signal needs to be captured
along the whole sequence, not during a subpart of it. TP is True Positive, FP is False Positive, FN is False Negative,
Result is the output of a software and Ground is the ground truth. Note that False Positive are not available for
manual annotation because it was impossible to annotate exhaustively all trajectories of a 3D+time sequence.
Memotrack, our method, outperforms other methods with 18 out of the 19 annotated trajectory correctly retrieved.

B. Results obtained using manual annotations and considering trajectories with length at least as long as half of
the whole sequence. This relax in stringency increases the number of successfully tracked nuclei by other software.
Those results would not be acceptable or even useful as such to monitor the signal all along the sequence but they
enable to understand partly the weakness of the other approaches. Other approaches cannot track nuclei over a
long time period without failing because of the low accuracy of spot detection. Our approach, that rely on the non
rigid registration of the whole sequence is very robust to detection errors and actually tracks all nuclei that were
successfully detected enough time to form a cluster. For the same reason, the length threshold cannot improve the
result obtained by our approach as all trajectories retrieved is the length of the full sequence. C. Results obtained
using synthetic annotations and considering only complete trajectories along the whole sequence. Memotrack, our
method, outperforms other methods. D. Results obtained using synthetic annotations and considering trajectories
with length at least as long as half of the whole sequence. Interestingly, while unusable, we see here that this relax in
stringency increases the number of tracked nuclei by other methods but also increases the number of false positive,
indicating that even small trajectories provided by those software program are not necessarily correct.

use of the prior knowledge we have on detection for tissuesin vivo or in cell
how the data behaves, minimizing the culture), these constrains are just the
amount of assumptions and parameters nature of the data.

we would need to scan for a more clas-

sical tracking technique.

The proposed approach should work ac-
cordingly for other datasets with similar
characteristics, such adn vivo tissues
with non-rigid deformations, on which
point clouds are detected. The algo-
rithm has a few inherent restrictions, as
the inability to handle tracks that di-
vide through time (as cells in division)
or points that move freely through the
space (as free particles in solution) How-
ever, for a considerable number of bio-
logical applications (almost every spot
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G

Figure 5.9: Visualization of manually annotated nuclei trajectories (in black, see online methods) and their corre-
sponding trajectories obtained by the tracking software (in color). Top row: only complete trajectories that last
the whole sequence were kept, it is the case we were interested in to monitor the single cell signal all along the
sequence. We can see that, beyond the fact our method tracks correctly most manually annotated nuclei, the closest
trajectories provided by ICY may in fact match other nuclei and be False Positives, an hypothesis that cannot
be validated or unvalidated because it was impossible to manually annotate all trajectories in the sequence of 3D
stacks. Bottom row: result when we allowed the length of the trajectories to be shorter but at least as long as half
of the sequence. Again, those trajectories could not be used for the analysis as they are too short but underline the
main limitation of other approaches: other approaches cannot track object stably over a long period of time due to
the unreliability of the spot detection step.

69



Chapter 6

Measuring neuronal activity

6.1
6.1.1

6.2
6.2.1
6.2.2

6.3
6.3.1
6.3.2

6.4

6.5

Signal localization . . .. ... ... ... ... ... ..., 71
Spacetessellation . .. ... ... ... .. ... .. .. . ... 71
Track quality . . ... ... .. . . . e 72
Centerof mass stability . . ... .. ... ............... 72
Ignoring artifacts . . . . . .. . ... ... e 72
Signal measurement . . . .. .. ... .. ... 000 72
Noise ltering . . . . . . . . . . e 73
Signal normalization . . . . . . ... ... o 73
Odor stimulationregions . . . . . . .. .. ... .. ... .. 74
Conclusion . . . . .. .. 74

70
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And of course, the brain is
not responsible for any of
the sensations at all.

Aristotle

The processes described in Chapters 4

and 5 serve as necessary base for mea-

suring the brain activity at the single
cell level. Once having the tracks of indi-
vidual neurons, it is possible to measure
the actual GCaMP activity, thus bring-
ing a direct measurement on how the
brain operates conditioned to a given
stimulus.

6.1 Signal localization

Our dataset is acquired in two chan-
nels, the rst (mCherry) acts as nu-
clei marker, and was used so far for
the detection of neurons. The second
(GCaMP) is the actual activity of the

neurons, and should be measured and

linked to the corresponding nuclei.

On Figure 6.1 we show how the neuronal
activity is not exactly colocalized with
the nuclei signal. The top panel shows
the correlation between the base level for
both channels. Bottom panel shows how
during an Octan-3-ol (OCT) stimulus,
the increase of GCaMP intensity doesn't
happens where we had the highest in-
tensity of mCherry which corresponds
to the center of the nuclei. The mid-
dle range of the GCaMP signal, when
compared to themCherry, show that the
response is localized around the nuclei,
and not on the center of it.

This means that even tough we tracked
the nuclei, the position of the tracks is

not where we should measure the signal
from the neurons.

Figure 6.1: Intensity co-localization between mCherry
(nuclei) and GCaMP (neuronal activity), shown as 2D
histograms.

6.1.1 Space tessellation

Although not perfectly co-localized, the
response signal of a given neuron should
be within its vicinity. Hence, we proceed
with a Voronoi tessellation [154] of the
space, using as seed points the detected
nuclei.

This allowed a discrete repartition of the
3D space. However, a standard tessel-
lation divides the whole space, which
causes a problem on the borders of the
Mushroom body, as the nuclei on the
extremities would have a much higher
volume, that extends until the edges of
the image. To counter this problem,
we limit the tessellation around each
nucleus to a maximum distance of two
times the average nuclei diameter. This
allows to have an fairly tessellated MB,
without causing artifacts on the borders.

71



CHAPTER 6. MEASURING NEURONAL ACTIVITY

Figure 6.2: Volumetric visualization of the 3D tessella-
tion. Each neuron is de ned by a unique volume in the
3D space, without intersections.

6.2 Track quality

Because of the artifacts that randomly
degraded the image during the acquisi-
tion (as described on Section 3.5.2) not
every time frame could be used for sig-
nal measurement. Thus, we developed
a methodology that could identify the
problematic frames, and interpolate the
dubious data from the neighboring time
frames that don't present the artifact.

6.2.1 Center of mass stability

The process consists on the following
assumption: during a normal acquisi-
tion, the center of mass of the Mush-
room body (based on the detected nu-
clei) should move only slightly through

space. During the artifact, as a consid-
erable part of the MB is missing, the

center of mass should shift rather dras-
tically for one time frame. Thus, we

measured the derivative of the centroid
position through time, value then nor-

malized between 0 and 1.
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6.2.2 Ignoring artifacts

The quality measurement works then as
an indirect way to asses the frames on
which we had the microscope artifact.
We still need to set a threshold as the
minimum quality level that can still be
used for the analysis, and by visual com-
parison of the quality measurement and
the behavior of the 3D stacks the value
was set at 80%. Thus, frames with lower
values were removed, and the values in-
terpolated from the closest neighbors in
time.

6.3 Signal measurement

Once we have a certain volume assigned
to each one of the detected neurons, it is
possible to measure the activity of indi-
vidual cells through time. For each time
frame, and for each volume, we measure
the intensity level on the 99 percentile
and keep it as the neuron activity for
the given time frame.

The measurement of the 99 percentile
instead of an average or the maximum
intensity value is able to avoid certain

artifacts.

In case of the average (or even the me-
dian) the measured value would be sen-
sitive to the size of the volume, espe-
cially on the borders of the Mushroom

body, where a considerable part of the
volume may not have the base back-
ground level that is present on the cen-
tral region of the MB. Thus, the average

(or median) would be abnormally lower

on the borders.

The measurement of the maximum
value within the volume would be highly
sensitive to noise. Avoiding the ab-
solute maximum value also minimizes
the crosstalk signal between neighbor-
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Figure 6.3: Tessellation limits. Increasing the maximum distance for the tessellation allows the inclusion of the
space between nuclei, but values too high might cause problems on the borders. For the nal tessellation we use the
value of 2 times the nuclei diameter (second panel). All images show the middle slice of the tessellated volume.

Figure 6.4: Raw signals from a nave y. (A) shows the measured signals for a group of 432detected neurons. Each
line has its opacity proportional to the standard deviation of the signal. The two groups of peaks correspond to the
response to the OCT stimulus. (B) Isolated tracks of 6 di erent neurons. On the left we can see that the two peaks
are usually formed by the same group of neurons that respond twice. On the right, three examples of neurons that
don't respond to the stimulus, forming the baseline of the response.

ing neurons, because the edges of the cells may also increase the noise level,
voronoi tessellation are probably close, because of the mismatch between the
but not a perfect match, of the cell bor- measured region and the real signal.

ders.
We minimize the noise level, while keep-

ing the peaks relatively sharp by using

. . a low-pass Butterworth lter [156].
6.3.1 Noise ltering

The noise level of the measured signal
is more complex than just the Poisson
noise[i55] derived from the camera sen-
sor. Small incongruences between the Normalization of the signal is fundamen-
detected track and the real path of the tal for the correct interpretation of the

6.3.2 Signal normalization
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neuronal responses, and to enable the
comparison of activity between di erent
ies.

We use the standard normalization
methodology for GCaMP activity in
neuronsis7], shown in Equation 6.1:

F(t) = F_E (6.1)

The uorescence intensityF for a given
time frame t is de ned as the variation
of intensity F divided by the baseline
of the signal, F.

We use as baseline the median of a mov-
ing window of 10 frames before and 10
frames after the timet. This value
was chosen so that the neuron response
wouldn't interfere with the baseline, as
usually the responses are no longer than
3 time frames. Having a moving base-
line, instead of a xed baseline on the
beginning of the acquisition, also com-
pensates for the natural photo-bleaching
of the uorescent marker.

6.4 Odor stimulation regions

Figures 6.4 and 6.5 also show hashed re-
gions, for which the y was exposed to
a certain stimulus, and thus a response
from the brain might be expected. For
every case, the stimulation window took
5 seconds, and the following order was
used:

1. Nothing (S)
During this window, nothing is pre-
sented to the v, it is a control for
the base level of the brain.

. Air (A)
Here the y is exposed to a neu-
tral air ow, without any odor be-
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ing diluted. Although the vy is con-
stantly receiving an air ow, dur-
ing this time window the ux is
switched to another air bottle. This
window can be used as control for
the e ects of pressure change, that
are unrelated to the actual odor
stimulation

. Octanol (O)
This stimulation window is the only
one where we expect peak responses
from the detected neurons. How-
ever, not all neurons should respond
during this window, just a subset of
the whole mushroom body.

. Air (A)
A second air stimulation allows to
verify if the brain returns to a rest-
ing state after the octanol stimula-
tion.

. Octanol (O)
A second Octanol stimulation win-
dow is important to check the con-
sistency of the brain, as the same
neurons (at a similar intensity level)
should respond to both stimulus.

. Nothing (S)
The sequence ends with another
control window without any sort
of stimulation, so that the resting
state of the brain after the stimula-
tions can be veri ed.

6.5 Conclusion

By having the neurons of the Mushroom
body to express a GCaMP marker to-
gether with a mCherry NLS, we were
able to measure the neuronal activity at
the single cell level.

Because the data was subject to acqui-
sition artifacts that made some frames
unreliable, we developed an automated
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Figure 6.5: Normalization process for a nawe y. Each line is the signal of an individual neuron, and the opacity is
proportional to the standard deviation of the signal. (A) The raw signal, measured for 432 neurons. (B) Frequency

Itered signal. (C) Signals after moving baseline normalization.

system to detect the problematic frames
and interpolate the missing data from
the neighborhood frames. We were then
able to tessellate the 3D space using the
detected nuclei as seeds, thus creating a
volume in which we could measure the
Ca?* ions change of the individual neu-
rons.

The raw data needed to be normalized,
and this was done by a frequency |-
ter followed by a base-line normaliza-
tion. This allowed comparison of peaks
between di erent ies, opening the way
for a series of possible analysis, explored
in the following Chapters.
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To observe attentively is to
remember distinctly

Edgar Allan Poe

The methodology explored in the pre-
vious Chapters allowed us to observe
in an automated way the whole Mush-
room Body, at the single neuron level,
while the y experiences an stimulus.
For the best of our knowledge, this has
never been accomplished before. This
opens several opportunities to better un-
derstand how the brain process infor-
mation, and how long term memory is
stored. The ability to measure the ac-
tual memory traces directly from the
individual neurons grants us the abil-
ity to solve in a quantitative way open
guestions of the neuroscience commu-
nity: does learning involves an increased
response from the Kenyon cells ? Does it
involve the recruitment of new neurons
? How is the memory trace distributed
spatially in the brain ?

7.1 Responsive neurons

State of the art work regarding the mem-
ory in the Drosophila's Mushroom Body
make use of manually selected neurons
that are responding to the stimulus,
identi ed by a region of interest de ned
by the user[135]. This creates an im-
portant margin for biased results, as the
users could be cherry-picking the signals
they want to analyze.

Here, we made an automated detec-
tion of every neuron in the Mushroom
body (strictly speaking, every resolv-
able neuron. For details check Chapter
4). This rules out the human interfer-
ence from the data analysis, but brings a
small issue: as expected, the majority of
the neurons were not responding to the

stimulus, remaining at the level of the
background noise. Any sort of compari-
son between the test and control groups
would be a ected by this as, in fact, the
interesting neurons (the ones that re-
spond to the stimulus) are the outliers
of the distribution. The distribution of
all neurons can be seen on Figure 7.3A.

To tackle this issue, we needed an au-
tomated way to identify the responsive
neurons from the ones that remained at
the level of background signal. A thresh-
old could be set as a lter, so that only
neurons with a peak higher than the de-
ned threshold within the octanol stim-
ulation window would be kept for the
future steps of analysis.

Figure 7.3A displays no obvious bimodal
distribution, making a precise assump-
tion of the threshold value not evident
from the data. Thus, we kept the thresh-
old at an arbitrary value of 10%, based
on the expected increased response of
GCaMP6f [117] and the noise baseline
observed from the data.

The usage of this threshold gave us the
distribution observed at Figure 7.3B.
Note that now there is a more clear sep-
aration between the peaks from the two
air and oct windows, indicating that
we are selecting a sub-set of the ensem-
ble that is responding to the stimulus.

7.1.1 Spacial distribution

Following the literature, responsive neu-
rons from the mushroom body should
be organized in a stochastic way:1ss,
159]. A general characteristic of sen-
sory systems is that dense representa-
tions by neurons tuned by the sensory
periphery are transformed into sparse
representations by neurons tightly t-
ting into deeper layers. More speci-
cally, in the olfactory system, olfactory
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Figure 7.1: Tracks of responsive neurons for unpaired control

. The volumetric reconstruction on the left shows

the nuclei marker together with the GCaMP activity during the OCT response, while the volume on the right shows
the detected neurons. Light gray spheres and lines show neurons that were not responsive, and dark gray indicates
responsive neurons (for a 10% intensity gain threshold). Three neurons were highlighted in blue, pink and yellow
to exemplify the signal in di erent parts of the Mushroom body. The plot shows the normalized signal from the

individual neurons, indicating also the stimulation windows.

receptive neurons (ORNSs) respond to a
wide range of dierent odors[ico] and
synapse on projection neurons (PNSs)
of the antennal lobe within structures
called glomeruli . At this layer, synap-
tic and circuit mechanisms produced
even larger tuning curves in PNg161]
while making the responses of di erent
glomerular channels more independent
from each other[i62). Thus, in the an-
tennal lobe, the identity of the odor is

7.2 Consistency of response

It is well known from the literature that

if the same stimulus is presented di er-
ent times to the vy, the same set of neu-
rons should respondi3s]. The idea be-
hind this fact is that the group of neu-
rons that respond to the stimulus is the
spatial representation of that particular

represented by a dense code consisting set of inputs to the mushroom body. So,

of only about 51 di erent PN types.

when receiving the same stimulus for the
second time, the same pattern of acti-

Hence, the detected responsive neurons yation should emerge in the Mushroom

were likely to be uniformly distributed

through the Mushroom body. This can
be veried in two examples shown in
Figures 7.1 & 7.2, in which the respon-
sive neurons are shown in dark gray,
and the non-responsive in white. Tracks

corresponding to each neuron are also

shown.
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body.

As our system allows the tracking of sig-
nal from all the individual neurons, this
assumption can be veried. We expect
the same (or, at least, a very similar)
set of neurons to respond when the OCT
stimulation is presented twice.

Experimentally, the y received a stim-
ulation sequence in the following order:
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Figure 7.2: Tracks of responsive neurons for paired conditioning

. The volumetric reconstruction on the left shows

the nuclei marker together with the GCaMP activity during the OCT response, while the volume on the right shows
the detected neurons. Light gray spheres and lines show neurons that were not responsive, and dark gray indicates
responsive neurons (for a 10% intensity gain threshold). Three neurons were highlighted in blue, pink and yellow
to exemplify the signal in di erent parts of the Mushroom body. The plot shows the normalized signal from the

individual neurons, indicating also the stimulation windows.

1. No stimulation (S)
2. Only air (A)
3. Octanol stimulation ()]
4. Only air (A)
5. Octanol stimulation (O)
6. No stimulation (S)

This sequencesaoaos, allow us to ver-
ify if the response is really caused by the
odor, as we have the air stimulus inter-
calated with the octanol. To compare
the responses from the di erent octanol
stimulations, rst we identify the set of
responsive neurons, the ones that have
a peak response higher than 10% for the
normalized signal.

Afterwards, the set of signals is treated
as an dimensional dataset, where each

neuron within the window of stimula-
tion.

This creates, for each stimulation win-
dow from saoaos, a n dimensional vec-
tor that represents the current state of
activity of the brain. Thus, on this
space, the proximity means similar ac-
tivity pattern of the brain.

A distance matrix between the vectors
of each stimulation window can be done,
by calculating the distance between each
pair of vectorsu and v. As measure-
ment, we use acosine distance de ned
as:

uyv

kuk, kvk, (7.1)

Whereu v is the dot product of the two
vectors, u and v. By using the cosine
distance, we limit the e ects of the high

dimension is one responsive neuron and dimensionality on the spacei163]. More

each feature the peak value of the given

common measurements, as an Euclidean
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Figure 7.3: Distribution of peaks for air and octanol windows, for all ies with paired conditioning of the dataset (A)
Without any threshold, the distribution of intensities is similar in both windows, being just sightly slanted for the
octanol (blue) because of the few responsive neurons. (B) Distribution showing only the neurons with normalized
peak higher than 0.1, making a clear separation between both distributions.

distance for example, loose meaning on
higher dimensions becauseof theurse
of dimensionality [164]. The resulting
signals and matrices for two examples
of ies (control and test groups) can be
seen in Figure 7.4.

It is possible to conclude that similar
patterns of activation of the brain are
seen when the y experiences the same
stimulus, as the distance between the
two OCT is relatively small when com-
pared to the rest of the acquisition.
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7.3 Responsive neuron count

The single neuron tracking allows us to
measure, in a robust and non-biased
way, the amount of neurons that re-

spond to a given stimulus. By count-

ing the number of neurons that re-

spond above the 10% threshold, we can
make the distribution shown in Fig-

ure 7.5, that shows a signicant dif-

ference between the Paired condition-
ing and Unpaired control groups (p-

value: 0.001421, Mann-Whitney two-
sided test).
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This rather simple test is only possi-

ble because of the developed methodol-

ogy, and brings, in a quantitative way,
the answer to a fundamental question:
The formation of Long-term memories
within the Mushroom body is depen-
dent on the recruitment of new neu-
rons. Further implications of this dis-
covery will be discussed within Chapter
8.

7.4 Neuron intensity

Interestingly, intensities of responding

neurons were not di erent between the
paired and unpaired groups, which could
be one of the mechanisms for storing
the memory traces within the Mush-

room body. The results of this analysis
can be seen on Figure 7.6

This conclusion can only be brought by
the single cell analysis. In case this same
experiment were to be veri ed by a mea-
surement of global intensity change in
the whole MB, the conclusion would be
that, for the paired conditioning, there
was an increase in intensity. But what
truly happens is that more neurons are
being recruited, with the same level of
intensity. Further aspects will also be
discussed within Chapter 8.

7.5 Signal cross-talk

It is also important to verify whether the
additional neuron count of the octanol
paired group could result from a cross-
talk of signal.

If the intensity of responsive neurons
increased after conditioning, the in-
creased GCaMP signal could scatter
to the neighborhood, causing a signal
crosstalk. This would mean that ad-

ditional signal could be detected in an
area in which it would be accounted for a
di erent neuron. Thus, if this neighbor
neuron also surpass the threshold level,
the neuron count would arti cially in-
crease.

To test for this possibility, we identi-
ed the signals of neighboring neurons
closer than 2 times the diameter of the
soma and only the neuron with the high-
est response was kept for neuron count.
With this Iter applied, neuron count
for the octanol paired group was still
signi cantly higher compared to the un-
paired group, while MCH paired and un-
paired group did not dier in neuron
count (Figure 7.7).

7.6 Conclusion

The comprehensive 3D tracking of single
neuron activity allowed us to explore the

memory traces in the mushroom body in
ways that weren't possible before.

By measuring the signal of every neu-
ron through time, we could verify that
the same activity pattern of the brain
emerges when a stimulus is presented
twice to the same vy, which conrms
the current understanding of how the
Kenyon cells receive their inputs.

Regarding the intensity level of response
from the single neurons, we can conclude
that the long-term memory formation
has no impact on it. For the two groups
analyzed, unpaired control and paired
conditioning, no statistical signi cance
was observed for the intensities.

However, ies from the paired group
showed a signi cantly higher number of
responsive neurons, leading to the con-
clusion that the long-term memory for-
mation implies neuron recruitment.
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Figure 7.4: Consistency of response to OCT, shown for two examples of ies. On the left we see the tracks of
individual neurons from a single experiment with sequence saoaos, where for visualization the tracks are split so
that the alignment of the stimulation windows is noticeable. On the right we see the distance matrix for each case,
having as labels a number representing the order of the stimulation (1 to 6) and a letter for the category. On the
matrices is observable the proximity of both OCT stimulations, showing that a similar pattern of brain activation

was measured.
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Figure 7.5: Count of responsive neurons, showing a
signi cant di erence between the Paired conditioning
and Unpaired control groups (p-value: 001421, Mann-
Whitney two-sided test).

Figure 7.6: Distribution of mean signal for responsive
neurons from the two groups, showing no statistical dif-
ference (t-test with p-value: 0.24848).
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Figure 7.7: Veri cation of signal crosstalk for all the ies of the dataset. To verify the e ects of crosstalk on our
signal measurement, for every responsive neuron we checked the signal of the neighbours closer than 2 times the
diameter of the soma, and only the highest of them was kept. (A) summary of the dataset, where light gray shows
the number of detected neurons, dark gray the amount of responsive neurons (in average, 13.5% of total detections)
and green only the neurons that passed the crosstalk check (in average, 62.9% of the responsive neurons). (B)
Distribution of dataset for responsive neurons (dark gray in A) showing signi cant di erence between the test group
(p-value: 001421) and no signi cant di erent for the control group (p-value: 0.323919). (C) Distribution after the
crosstalk check, on which the signi cance in test group is kept (p-value: 0.001890) and no dierence for control
group (p-value: 0.323753). For all cases, a Mann-Whitney two-sided test was performed.
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| am turned into a sort of
machine for observing
facts and grinding out
conclusions.

Charles Darwin

Understanding the formation of long-
term memories is a great challenge, and
a large active eld of research in neu-
roscience. The work presented on this
thesis brings to the scientic commu-
nity a new quantitative insight on how
the brain is capable of storing long-term
memories as, for the best of our knowl-
edge, for the rst time we were able
to quantitatively measure, in vivo and
through time, the total ensemble of neu-
rons that forms the Mushroom body of
the Drosophila melanogasterwhile the
y experiences a memory recall.

From this quantitative analysis, we were
able to achieve two important conclu-
sions: Firstly, the paired conditioning
of the ies results in the recruitment
of new neurons for the representation
of long-term memories. Secondly, this

8.1.1 Single cell analysis

One of the main contributions of the
presented methodology when compared
to the state-of-the-art approaches, is the
fact that we are able to detect the signals
at the single cell level. While the usual
approach within the eld is to measure
the signal from a limited number of cells,

8.1.2 Automated detection

Another point that is a strong advantage
of the methodology here proposed is the
fact that the process is fully automated.
Other state of the art methodologies
uses manual or semi-automated proce-
dures for detecting the neuronsi3s),
which might cause biases and strongly
decreases the throughput of the analy-
sis.

8.1.3 Parallelization

The whole process can run indepen-
dently for each y, making a paralleliza-

same process doesn't change the level oftion possible. This is important, as it al-

activity on the individual neronal level.

Those are straightforward conclusions,
that wouldn't have be possibly drawn
without the extensive methodology that
was developed, both on the computa-
tional and experimental sides.

8.1 Main aspects

A few points distinguish our protocol
from the current methodologies, giving
us an unigue setting on which new in-
sights can be achieved.
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lows us to process the complete database
(more than a hundred ies) in a relative
small time, usually of one to two days
for a complete analysis.

8.1.4 Open Source

No great achievement can be done
by one person alone, and this is not
dierent for the work presented here

on this thesis. The methodology we
present was only made possible be-
cause it is based on free & open-
source tools that compose the elemen-
tal bricks needed to construct the soft-

ware. Thus, we also make available to
the community all that was here de-
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Figure 8.1: All the code needed for the analysis pre-
sented on this thesis can be found on GitHub, on the ad-
dress https://github.com/biocompibens/memotrack or
by scanning the QRcode above.

veloped, on the GitHub online reposi-
tory at the address https://github.com/
biocompibens/memotrack. Besides the
analysis itself, the presented code also
generates as report the majority of visu-
alizations seen throughout this thesis.

8.2 Data acquisition

One of the biggest challenges encoun-
tered throughout this Thesis was the
proper acquisition of data that could
sustain our inquiries.

The majority of current research done
in long-term memory of the Mushroom
body make use of a single 2D plane, usu-
ally acquired via 2-photon microscopy.
This provides an image with high spatial
resolution, but lacks the temporal preci-
sion needed for the analysis when cap-
turing the whole 3D structure. Thus,
we make use of a confocal spinning
disk for the acquisition of 5 dimensional
(XYZCT) image stacks.

Also, the preparation of the ies for im-
age acquisition diers in some points
from the previously used protocols. To

Firstly, we avoided the use of anesthetics
procedures, as Cg before the dissec-
tion. This increases the di culty of the
micro-surgery, but minimizes the possi-
bility of having alterations on the nor-
mal behavior o the brain.

Another important aspect is that we
don't make use of the rupture of muscles
to diminish the brain movement. This
also minimizes the possibility of having
artifacts on the acquired signal, but the
increased movement makes so that the
tracking of neurons is more challenging.

Since the beginning of the project,
counting the stages of standardization
of the method, 292 ies were imaged,
resulting in about 2.5 TB of raw data.
About half of the initial data was used
for the standardization of the dissec-
tion and odor stimulation protocols, and
could not be used for the nal analysis.

8.3 Detection & tracking

The relative low spatial resolution of our
data, and the fact that we aim to handle
the whole 3D structure of the MB, while
still having the resulting movements of
the in vivo acquisition, made the detec-
tion and tracking of every neuron par-
ticularly demanding.

When testing current state of the
art methods for nuclei detection, we
couldn't obtain a suitable precision.
The high density of objects, together
with the large anisotropy of the data,
made necessary the development of a
methodology designed specically for
the characteristics of our data.

keep the physiological responses as close

as possible from the real operational
conditions of the brain, two main factors
were important, and made our method
di erent from the others.

For the nal dataset, composed of 122
ies and used for the nal analysis,

our method detected an average of 408
neurons per Mushroom body (as seen
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Figure 8.2: Distribution of detected number of neurons
for each vy, between the di erent test groups, showing
no signi cant di erence between datasets. This allow us
to verify that the di erence in the count of responsive
neurons is not related to the total number of detected
neurons.

in Figure 8.2). Despite being well
known from the literature that the MB
should have about 2000 Kenyon cells,
we proved, by means of synthetic im-
ages and manual annotations, that our
method is close to the actual limit of
objects that can be identi ed, regarding
the resolution of our data. The details
can be found in Chapter 4.

We made sure that, besides the incom-
plete set of detected neurons, all the sig-

through space, with a relatively low
dense set of objects. The common
tracking algorithms are also usually set
to deal with splitting tracks or objects
crossing each other paths. None of these
assumptions were true in our dataset,
where the density of objects is relatively
high, and the movement is the result of
a more global deformations of the brain,
and not the individual displacement of
the neurons. This created the need for
speci ¢ tracking methodology, that we
developed to handle these peculiarities,
as explained during Chapter 5.

Figure 8.3: Result of the tracking for one Mushroom
body. On the left, each color shows one track (labeled
neuron) and each cloud is the ensemble of positions of
that given neuron through time. On the right we see the
detail of one of the detected neurons, with the tracks
linking the positions through time.

nal response was measured by means ofg 4 Memory traces

a 3D tessellation of the space surround-
ing each detection. Furthermore, be-

cause the number of responsive neurons By getting the correct detection and

is usually much inferior than the total
set of 2000 cells, associated with the fact
that the response is known to be sparse,
limited impact can be expected by this
shortage of detections.

The tracking stage can be also under-
stood as the process of giving a label to
each one of the neurons, which is funda-
mental if we aim to analyze their indi-
vidual signals.

Most of the current tracking method-
ologies are adapted for tracking spots
that have an important displacement
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tracking of the neurons from the Mush-
room body, we were able to measure the
response of the ies to the odor stimu-
lation.

We used two groups of ies to identify
the memory traces: for the rst group,
that received a paired conditioning, ies
were trained to associate the odor to an
electroshock, by receiving the two stim-
ulus together. The second group was
the unpaired control, which also receives
both stimulus, but with a time delay be-
tween them, in a way that the associa-
tion was not made possible.
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These groups allowed us to investigate
which are the changes in neuronal activ-
ity that encode the memory traces rep-
resenting the association between odor
and electroshock. A direct compari-
son between brains of ies from the two
groups was not directly possible, as the
axonal inputs of the MB are spatially
arbitrary. Thus, spatial correlations of
response wouldn't re ect the actual dif-
ferences between groups.

However, global comparisons are possi-
ble. For example, the memory trace can
be encoded in newly recruited neurons,
or in a increased response of the same
set of neurons. Our methodology, al-
lowing the measurement and identi ca-
tion of the subset of neurons that are
are activated by the odor stimulation,
could identify that, in fact, the long-
term memory stored within the mush-
room body is the result of the recruit-
ment of a new set of neurons exclusively.
Regarding the intensity of response, we
could verify that the activity level of
individual neurons remained unchanged
between the two groups. This discov-
ery, beyond the method itself, is a ma-
jor contribution of this thesis as, for the
best of our knowledge, no other research
group so far was able to achieve this sort
of response quanti cation from the total
ensemble of neurons from the Mushroom
body.

8.5 Overview

Technically challenging, the in vivo

single neuron analysis of the whole
Mushroom body of the Drosophila

melanogasterwas made possible by the
methodology developed through this
Thesis. Besides revealing that long-term
memories are encoded by the recruit-
ment of new neurons, we make the com-
putational tools needed for this analy-

sis available to the scienti c community,
opening the possibility for new ndings
on how memories are organized within
the brain.
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Carry on my wayward son,
For there'll be peace when
you're done.

Kerry Livgren
(Kansas)

The work developed in this thesis open
the way for several improvements in the
current state of the art for the study of
memory. In this Chapter we'll discuss
some principles of improvement for the
method, as well as some future applica-
tions that could bring other insights on
the memory formation.

9.1 Back projection

The precision of the detected nuclei po-
sition is of great importance for the -
nal accuracy of the measured signal from
the Kenyon cells in the Mushroom body.
It is from these positions that we cre-
ate the individual volumes for the mea-
surement of neuronal activity, so impre-
cise positions would lead to wrong signal
measurement.

However, the precision of the detection
is limited by the actual resolution of the
data. Because of the PSF and close dis-
tance between the nuclei, we can only
assume that the detected position had a
probability of being the true position of
the nuclei.

During the nuclei tracking stage, de-
scribed on Chapter 5, we made use of a
registration procedure to minimize the
movements of the brain. Ideally, after
the registration step, every detection of
a given nuclei should match perfectly in
space, forming a single spot. In real-
ity, we observe that the detections form
a cloud with characteristics of a normal
distribution. This cloud of points is in

fact a multiple sampling of the same nu-

clei through time, it is possible to as-

sume that the center of the cloud cor-
responds to a more precise estimation
of the nuclei position in this registered

space.

The registration procedure purpose is
only to label the neurons. Once each
point is tracked, the labels are passed
to the coordinates of the original detec-
tions. This way we completely lose the
estimation of the real position that could
be done via the centroid of the 3D cloud
in the registered space. We hypothesize
that it is possible to use this information
in a proccess we calback projection

Since we can assume that the brain is
an rather elastic and stable tissue, not
allowing the free movement of the neu-
rons (but only local deformations), the
process would be constituted of the steps
presented in Algorithm 3.

This process might be able to increase
the precision of the detections. Ini-

tial trials were partially successful, only

showing artifacts in regions where the
obtained tetrahedron is almost coplanar,
what interferes with the calculation of

the barycentric coordinates.

9.2 Graph features

Although the process to obtain the brain
responses with single neuron precision
is rather complex, as described through-
out this thesis, the nal conclusions we
obtain from it are based on two sim-
ple measurements: the count of respon-
sive neurons and the intensity of the re-
sponses.

We predict that a more in depth analy-
sis of the data can bring new insights on
the way memory is spatially organized in
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Figure 9.1: Initial trials for the backprojection algorithm. Black arrows indicate examples of cases on which the
barycentric coordinates couldn't be precisely calculated, resulting in artifacts.

the brain. One of the ways we can be- 9.3 Training under the microscope
gin to search for patterns is through the
creation of spatial graphs from the de-

tected neurons. From the graphs, hav- s the work and data described within
ing the response intensity stored on the this thesis is based on the long term
edges or nodes, we could measure a set of,

e memory obtained from the ies. This
features, that could lead to new insights

) means that initially the y is trained and
on how the responsive neurons are orga- js ape to construct the associative mem-
nized. One example of how this graph

) o ory and, only afterwards a consolidation
can be build can be seen in Figure 9.2

< period it is submitted to the dissection
Examples of three features extracted (_Jll- and imaged for analysis.
rectly from the graphs can be found in

Figure 9.3. One interesting alternative would be to
actually see the activity of the neurons
during the memory formation. This
could lead to exciting discoveries on
temporal patterns of activation between
the Keynon cells that receive the pro-
jections from the antennal lobe and the
ones that receive the aversive (shock) in-
formation.

Especially interesting would be the pos-
sibility to compare the obtained features
between dierent ies. A direct rela-

tionship of the patter of response be-
tween dierent individuals is not ex-

pected, but since the features obtained
from the graph can be spatially indepen-
dent, a direct comparison between two

brains would be made possible. To accomplish this, little would need to
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Algorithm 3: Backprojection

input : Labeled dataframe,Djpita
output: Backprojected dataframe,D pack
DistTree BuildDistanceTree( Dinitial) ;

t 0;

repeat
Cluster 0;
repeat

P ointS¢jpsest GetClosestPoints( DistTree, t, Cluster) ;
BarycentricW eights GetBarycentricWeights( P ointS¢psest) ;
Dpack  UpdateCluster( BarycentricW eights, Cluster) ;
Cluster  Cluster +1 ;

until Cluster < Cluster inal ;

t t+1;

until t<t na;

made chamber, as shown in Figure 9.4
was schematized. It would allow the
delivery of electroshocks for conditional
pairing with the odor stimulation. This
way, it would be possible to see the y's
brain response while the association is
being formed.

9.4 Genes knockout

From a genetic point of view, humans
_ , and the fruit y have signi cant similari-
Figure 9.2: Example of graph built from the detected . 0
neurons. The edges are constructed using a Delaunay ties, as about 60% of genes are conserved

triangulation, and store as information the intensity of between the two SpECiES. According to a
the responses (width of the edges). Edges with values . .
lower than a threshold are pruned, resulting in a graph recent analysis, 77% of the genes associ-
that represents the response from the brain to the stim- ated with identi ed human diseases have

lus.
e a homologue in the Drosophila genome

[165]. Thus, the Drosophila melanogaster
be adapted on the detection & tracking is used as a genetic model for various hu-
methods. However, the process of im- man diseases including Parkinson's dis-
age acquisition needs to be highly cus- ease and Huntington's disease.
tomized to support the delivery of elec-

troshocks to the y during the acquisi- The system developed during this thesis
tion itself. allows the precise measurement of the

neuronal activity during memory recall.
This is a great technical challenge, that Being so, it would be also possible to
the laboratory of Thomas Peat started  knockout or modify genes related to hu-
to tackle together with Melanie Pedraz- man diseases and better study how their
zani, during her thesis work. A custom actions change the activity patterns of
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Figure 9.3: Example of three features extracted from graphs. Initial tests showed that features extracted directly
from the graphs can lead to similar conclusions as the neuron count.

Figure 9.4: Custom made chamber for electroshock stimulation during odor delivery. This device would allow the
paired conditioning of ies while the activity of the Mushroom body is being recorded. Image courtesy of Melanie
Pedrazzani.

neuronal activity within the brain.
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Annexes

Article 1 — Smax: accurate detection of packed resolvable ob-
jects in 3D uorescence MIiCroSCoOpPY — « v v v v v v v v e w .

Article 2 — Large-scale analysis of a memory center by auto-
mated tracking of single neuron activity invivo . .....
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RESUME

La formation et la consolidation de souvenirs est I'une des caractéristiques fondamentales du cerveau, responsable
de l'apprentissage et de comportements cognitifs élevés. Malgré son importance, ce processus n'est pas entierement
compris a ce jour et fait I'objet de nombreux travaux de de recherche, allant de I'analyse de l'activité des synapses in-
dividuelles a la reconstruction de cartes de connectivité du cerveau. Dans ce travail, nous proposons une approche
intégrée pour mesurer in vivo l'activité de chaque neurone du corps pédonculé (Mushroom body, MB) de la Drosophila
melanogaster dans une procédure entierement automatisée. Il s'agit d'imager en 3D et dans le temps le MB dans sa
totalité par microscopie confocale et d'opérer un suivi temporel de la position de chaque neurone an de relever leur
niveau individuel d'activité. En utilisant cette approche, nous avons découvert que pendant la formation de la mémoire a
long terme, de nouveaux neurones sont recrutés au sein du corps pédonculés, tandis que l'intensité de la réponse des
neurones individuels reste inchangée. Au dela de I'apport méthodologique qui permet a présent de quanti er automa-
tiquement l'activité d'un grand nombre de neurones, ce travail a contribué a une meilleure compréhension de la formation
de la mémoire a long terme.
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ABSTRACT

Formation and consolidation of new memories is one of the fundamental characteristics of the brain, responsible for learn-
ing and high cognitive behavior. While important, the process isn't fully understood to the present day and is the subject
of various studies, spanning from the activity analysis of individual synapses to the reconstruction of brain connectivity
maps. In this work, we propose a bold approach, on which we aim to measure in vivo the activity of every single neuron
from the whole Mushroom body (MB) of the Drosophila melanogaster, in a fully automated procedure. After a 3D image
acquisition over time of the MB by means of confocal microscopy, an automated detection and tracking of the neurons is
performed. The whole process takes place while the y is awake and subjected to different odor stimulations, so that it is
possible to associate the activity patterns at the single cell level to the stimulus that is being received. By comparing the
response patterns from ies that were trained and ies that were not trained to associate an odor with an electric shock

we identi ed changes in neuronal activity, providing information on how memory is formed. Beyond the methodological
innovation that brought the possibility to track the activity of a large set of single neurons, this work contributed to the
current understanding of long term memory formation.
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