A. Thierry, H. Falentin, S. M. Deutsch, G. Jan, P. F. Fox et al., Propionibacterium spp, Encyclopedia of Dairy Sciences, vol.1, pp.403-411, 2011.

A. Mcdowell, I. Nagy, M. Magyari, E. Barnard, and S. Patrick, The Opportunistic Pathogen Propionibacterium acnes: Insights into Typing, Human Disease, Clonal Diversification and CAMP Factor Evolution, PLoS ONE, vol.8, 2013.

F. J. Cousin, D. D. Mater, and B. Foligne, update): QPS 2013 update. EFSA J. 2013, 11, 3449. Food and Agriculture Organization. WHO Probiotics in Food: Health and Nutritional Properties and Guidelines for Evaluation, EFSA Panel on Biological Hazards (BIOHAZ) Scientific Opinion on the maintenance of the list of QPS biological agents intentionally added to food and feed, vol.91, pp.1-26, 2006.

C. Altieri, Dairy propionibacteria as probiotics: Recent evidences, World J. Microbiol. Biotechnol, vol.32, p.172, 2016.

C. Plé, R. Richoux, J. Jardin, M. Nurdin, V. Briard-bion et al., Single-strain starter experimental cheese reveals anti-inflammatory effect of Propionibacterium freudenreichii CIRM BIA 129 in TNBS-colitis model, J. Funct. Foods, vol.18, pp.575-585, 2015.

F. J. Cousin, B. Foligné, S. Deutsch, S. Massart, S. Parayre et al., Assessment of the Probiotic Potential of a Dairy Product Fermented by Propionibacterium freudenreichii in Piglets, J. Agric. Food Chem, vol.60, pp.7917-7927, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01209320

F. J. Cousin, S. Louesdon, M. Maillard, S. Parayre, H. Falentin et al., The first dairy product exclusively fermented by Propionibacterium freudenreichii: A new vector to study probiotic potentialities in vivo, Food Microbiol, vol.32, pp.135-146, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01209321

F. J. Cousin, S. Jouan-lanhouet, N. Théret, C. Brenner, E. Jouan et al., The probiotic Propionibacterium freudenreichii as a new adjuvant for TRAIL-based therapy in colorectal cancer, Oncotarget, vol.7, pp.7161-7178, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01404971

Y. Okada, Y. Tsuzuki, K. Narimatsu, H. Sato, T. Ueda et al., 1,4-Dihydroxy-2-naphthoic acid from Propionibacterium freudenreichii reduces inflammation in interleukin-10-deficient mice with colitis by suppressing macrophage-derived proinflammatory cytokines

, J. Leukoc. Biol, vol.94, 2013.

C. Plé, J. Breton, R. Richoux, M. Nurdin, S. Deutsch et al., Combining selected immunomodulatory Propionibacterium freudenreichii and Lactobacillus delbrueckii strains: Reverse engineering development of an anti-inflammatory cheese, Mol. Nutr. Food Res, vol.60, pp.935-948, 2016.

Y. Okada, Propionibacterium freudenreichii component 1.4-dihydroxy-2-naphthoic acid (DHNA) attenuates dextran sodium sulphate induced colitis by modulation of bacterial flora and lymphocyte homing, Gut, vol.55, pp.681-688, 2006.

H. Falentin, S. Deutsch, G. Jan, V. Loux, A. Thierry et al., The Complete Genome of Propionibacterium freudenreichii CIRM-BIA1T, a Hardy Actinobacterium with Food and Probiotic Applications, vol.5, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01204238

L. P. Parizzi, M. C. Grassi, L. A. Llerena, M. F. Carazzolle, V. L. Queiroz et al., The genome sequence of Propionibacterium acidipropionici provides insights into its biotechnological and industrial potential, BMC Genom, vol.13, 2012.

O. D. Amund, Exploring the relationship between exposure to technological and gastrointestinal stress and probiotic functional properties of lactobacilli and bifidobacteria, Can. J. Microbiol, vol.62, pp.715-725, 2016.

B. Corcoran, C. Stanton, G. Fitzgerald, and R. Ross, Life under Stress: The Probiotic Stress Response and How it may be Manipulated, Curr. Pharm. Des, vol.14, pp.1382-1399, 2008.

Y. Huang and M. C. Adams, In vitro assessment of the upper gastrointestinal tolerance of potential probiotic dairy propionibacteria, Int. J. Food Microbiol, vol.91, pp.253-260, 2004.

D. Campaniello, A. Bevilacqua, M. Sinigaglia, and C. Altieri, Screening of Propionibacterium spp. for potential probiotic properties, Anaerobe, vol.34, pp.169-173, 2015.

V. Gagnaire, J. Jardin, H. Rabah, V. Briard-bion, and G. Jan, Emmental Cheese Environment Enhances Propionibacterium freudenreichii Stress Tolerance, PLoS ONE, vol.10, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01372936

A. Martinovic, M. E. Brede, G. E. Vegarud, H. M. Østlie, J. Narvhus et al., Survival of lactic acid and propionibacteria in low-and full-fat Dutch-type cheese during human digestion ex vivo, Lett. Appl. Microbiol, vol.62, pp.404-410, 2016.

S. Huang, H. Rabah, J. Jardin, V. Briard-bion, S. Parayre et al., Hyperconcentrated Sweet Whey, a New Culture Medium That Enhances Propionibacterium freudenreichii Stress Tolerance, vol.82, pp.4641-4651, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01454632

C. S. Ranadheera, C. A. Evans, M. C. Adams, and S. K. Baines, Effect of dairy probiotic combinations on in vitro gastrointestinal tolerance, intestinal epithelial cell adhesion and cytokine secretion, J. Funct. Foods, vol.8, pp.18-25, 2014.

C. S. Ranadheera, C. A. Evans, M. C. Adams, and S. K. Baines, In vitro analysis of gastrointestinal tolerance and intestinal cell adhesion of probiotics in goat's milk ice cream and yogurt, In vitro analysis of gastrointestinal tolerance and intestinal cell adhesion of probiotics in goat's milk ice cream and yogurt, Food Res. Int, vol.49, pp.619-625, 2012.

R. Anastasiou, P. Leverrier, I. Krestas, A. Rouault, G. Kalantzopoulos et al., Changes in protein synthesis during thermal adaptation of Propionibacterium freudenreichii subsp. shermanii, Int. J. Food Microbiol, vol.108, pp.301-314, 2006.
URL : https://hal.archives-ouvertes.fr/hal-01453961

G. Jan, P. Leverrier, V. Pichereau, and P. Boyaval, Changes in Protein Synthesis and Morphology during Acid Adaptation of Propionibacterium freudenreichii, Appl. Environ. Microbiol, vol.67, pp.2029-2036, 2001.

P. Leverrier, D. Dimova, V. Pichereau, Y. Auffray, P. Boyaval et al., Susceptibility and Adaptive Response to Bile Salts in Propionibacterium freudenreichii: Physiological and Proteomic Analysis, Appl. Environ. Microbiol, vol.69, pp.3809-3818, 2003.

P. Leverrier, J. P. Vissers, A. Rouault, P. Boyaval, and G. Jan, Mass spectrometry proteomic analysis of stress adaptation reveals both common and distinct response pathways in Propionibacterium freudenreichii, Arch. Microbiol, vol.181, pp.215-230, 2004.

N. Guan, H. Shin, R. R. Chen, J. Li, L. Liu et al., Understanding of how Propionibacterium acidipropionici respond to propionic acid stress at the level of proteomics

N. Guan, L. Liu, H. Shin, R. R. Chen, J. Zhang et al., Systems-level understanding of how Propionibacterium acidipropionici respond to propionic acid stress at the microenvironment levels: Mechanism and application, J. Biotechnol, vol.167, pp.56-63, 2013.

F. S. Cardoso, P. Gaspar, J. Hugenholtz, A. Ramos, and H. Santos, Enhancement of trehalose production in dairy propionibacteria through manipulation of environmental conditions, Int. J. Food Microbiol, vol.91, pp.195-204, 2004.

A. Lan, A. Bruneau, C. Philippe, V. Rochet, A. Rouault et al., Survival and metabolic activity of selected strains of Propionibacterium freudenreichii in the gastrointestinal tract of human microbiota-associated rats, Br. J. Nutr, vol.97, 2007.

E. Argañaraz-martínez, J. D. Babot, M. C. Apella, and A. Perez-chaia, Physiological and functional characteristics of Propionibacterium strains of the poultry microbiota and relevance for the development of probiotic products, Anaerobe, vol.23, pp.27-37, 2013.

C. Hervé, M. Fondrevez, A. Chéron, F. Barloy-hubler, and G. Jan, Transcarboxylase mRNA: A marker which evidences P, p.33

, freudenreichii survival and metabolic activity during its transit in the human gut, Int. J. Food Microbiol, vol.113, pp.303-314, 2007.

T. Saraoui, S. Parayre, G. Guernec, V. Loux, J. Montfort et al., A unique in vivo experimental approach reveals metabolic adaptation of the probiotic Propionibacterium freudenreichii to the colon environment
URL : https://hal.archives-ouvertes.fr/hal-01209705

G. Zárate, J. M. Palacios, J. Villena, and M. E. Zúñiga-hansen, Inhibition of enteropathogens adhesion to human enterocyte-like HT-29 cells by a dairy strain of Propionibacterium acidipropionici, Benef. Microbes, vol.7, pp.431-441, 2016.

G. Zárate, V. Morata-de-ambrosini, A. Perez-chaia, and S. González, Some factors affecting the adherence of probiotic Propionibacterium acidipropionici CRL 1198 to intestinal epithelial cells, Can. J. Microbiol, vol.48, pp.449-457, 2002.

A. C. Ouwehand, S. Tölkkö, J. Kulmala, S. Salminen, and E. Salminen, Adhesion of inactivated probiotic strains to intestinal mucus, Lett. Appl. Microbiol, vol.31, pp.82-86, 2000.

E. M. Tuomola, A. C. Ouwehand, and S. J. Salminen, Human ileostomy glycoproteins as a model for small intestinal mucus to investigate adhesion of probiotics, Lett. Appl. Microbiol, vol.28, pp.159-163, 1999.

M. Ganan, A. J. Martinez-rodriguez, A. V. Carrascosa, S. Vesterlund, S. Salminen et al., Interaction of Campylobacter spp. and Human Probiotics in Chicken Intestinal Mucus: Adhesion of Campylobacter and Interaction with Probiotics, Zoonoses Public Health, vol.60, pp.141-148, 2013.

D. O. Darilmaz, Y. Beyatli, and Z. N. Yuksekdag, Aggregation and Hydrophobicity Properties of 6 Dairy Propionibacteria Strains Isolated from Homemade Turkish Cheeses, J. Food Sci, vol.77, pp.20-24, 2012.

S. Vesterlund, Staphylococcus aureus adheres to human intestinal mucus but can be displaced by certain lactic acid bacteria. Microbiology, vol.152, pp.1819-1826, 2006.

H. Hajfarajollah, B. Mokhtarani, and K. A. Noghabi, Newly Antibacterial and Antiadhesive Lipopeptide Biosurfactant Secreted by a Probiotic Strain, Propionibacterium freudenreichii. Appl. Biochem. Biotechnol, vol.174, pp.2725-2740, 2014.

D. V. Nair and A. Kollanoor-johny, Effect of Propionibacterium freudenreichii on Salmonella multiplication, motility, and association with avian epithelial cells, Poult. Sci, 2016.

L. Maréchal, C. Peton, V. Plé, C. Vroland, C. Jardin et al., Surface proteins of Propionibacterium freudenreichii are involved in its anti-inflammatory properties, J. Proteom, vol.113, pp.447-461, 2015.

H. Falentin, S. Deutsch, V. Loux, A. Hammani, J. Buratti et al., Permanent draft genome sequence of the probiotic strain Propionibacterium freudenreichii CIRM-BIA 129 (ITG P20), Stand. Genom. Sci, vol.11, issue.6, 2016.

L. E. Hudson, S. E. Anderson, A. H. Corbett, and T. J. Lamb, Gleaning Insights from Fecal Microbiota Transplantation and Probiotic Studies for the Rational Design of Combination Microbial Therapies, Clin. Microbiol. Rev, vol.30, pp.191-231, 2017.

S. Fukumoto, T. Toshimitsu, S. Matsuoka, A. Maruyama, K. Oh-oka et al., Identification of a probiotic bacteria-derived activator of the aryl hydrocarbon receptor that inhibits colitis, Immunol. Cell Biol, vol.92, pp.460-465, 2014.

K. Mitsuyama, J. Masuda, H. Yamasaki, K. Kuwaki, S. Kitazaki et al., Treatment of Ulcerative Colitis with Milk Whey Culture with Propionibacterium freudenreichii, J. Intest. Microbiol, vol.21, pp.143-147, 2007.

K. Hojo, N. Yoda, H. Tsuchita, T. Ohtsu, K. Seki et al., Effect of Ingested Culture of Propionibacterium freudenreichii ET-3 on Fecal Microflora and Stool Frequency in Healthy Females, Biosci. Microflora, vol.21, pp.115-120, 2002.

K. Seki, H. Nakao, H. Umino, H. Isshiki, N. Yoda et al., Effects of Fermented Milk Whey Containing Novel Bifidogenic Growth Stimulator Produced by Propionibacterium on Fecal Bacteria, Putrefactive Metabolite, Defecation Frequency and Fecal Properties in Senile Volunteers Needed Serious Nursing-Care Taking Enteral Nutrition by Tube Feeding, J. Intest. Microbiol, vol.18, pp.107-115, 2004.

E. A. Martínez, J. D. Babot, M. J. Lorenzo-pisarello, M. C. Apella, and A. P. Chaia, Feed supplementation with avian Propionibacterium acidipropionici contributes to mucosa development in early stages of rearing broiler chickens, Benef. Microbes, vol.7, pp.687-698, 2016.

A. O'callaghan and D. Van-sinderen, Bifidobacteria and Their Role as Members of the Human Gut Microbiota, Front. Microbiol, vol.7, 2016.

H. M. Wexler, Bacteroides: The Good, the Bad, and the Nitty-Gritty, Clin. Microbiol. Rev, vol.20, pp.593-621, 2007.

K. Isawa, K. Hojo, N. Yoda, T. Kamiyama, S. Makino et al., Isolation and Identification of a New Bifidogenic Growth Stimulator Produced by Propionibacterium freudenreichii ET-3

, Biosci. Biotechnol. Biochem, vol.66, p.34, 2002.

K. Furuichi, K. Hojo, Y. Katakura, K. Ninomiya, and S. Shioya, Aerobic culture of Propionibacterium freudenreichii ET-3 can increase production ratio of 1,4-dihydroxy-2-naphthoic acid to menaquinone, J. Biosci. Bioeng, vol.101, pp.464-470, 2006.

T. Kaneko, A Novel Bifidogenic Growth Stimulator Produced by Propionibacterium freudenreichii, vol.18, pp.73-80, 1999.

S. Yamazaki, K. Kano, T. Ikeda, K. Isawa, and T. Kaneko, Role of 2-amino-3-carboxy-1,4-naphthoquinone, a strong growth stimulator for bifidobacteria, as an electron transfer mediator for NAD(P)+ regeneration in Bifidobacterium longum, Biochim. Biophys. Acta BBA Gen. Subj, pp.241-250, 1428.

T. Kaneko, H. Mori, M. Iwata, and S. Meguro, Growth Stimulator for Bifidobacteria Produced by Propionibacterium freudenreichii and Several Intestinal Bacteria, J. Dairy Sci, vol.77, pp.393-404, 1994.

M. Uchida, H. Tsuboi, M. Takahashi, A. Nemoto, K. Seki et al., Safety of high doses of Propionibacterium freudenreichii ET-3 culture in healthy adult subjects, Regul. Toxicol. Pharmacol, vol.60, pp.262-267, 2011.

M. J. Lorenzo-pisarello, M. L. Gultemirian, C. Nieto-peñalver, and A. Perez-chaia, Propionibacterium acidipropionici CRL1198 influences the production of acids and the growth of bacterial genera stimulated by inulin in a murine model of cecal slurries, Anaerobe, vol.16, pp.345-354, 2010.

J. Luo, C. S. Ranadheera, S. King, C. A. Evans, and S. K. Baines, Potential influence of dairy propionibacteria on the growth and acid metabolism of Streptococcus bovis and Megasphaera elsdenii, Benef. Microbes, vol.8, pp.111-119, 2016.

B. Sánchez, S. Delgado, A. Blanco-míguez, A. Lourenço, M. Gueimonde et al., Probiotics, gut microbiota, and their influence on host health and disease, Mol. Nutr. Food Res, vol.61, 2017.

A. Wasilewski, M. Zieli?-ska, M. Storr, and J. Fichna, Beneficial Effects of Probiotics, Prebiotics, Synbiotics, and Psychobiotics in Inflammatory Bowel Disease. Inflamm. Bowel Dis, vol.21, pp.1674-1682, 2015.

A. Dupont, D. M. Richards, K. A. Jelinek, J. Krill, E. Rahimi et al., Systematic review of randomized controlled trials of probiotics, prebiotics, and synbiotics in inflammatory bowel disease, Clin. Exp. Gastroenterol, vol.7, p.473, 2014.

B. Foligné, J. Breton, D. Mater, and G. Jan, Tracking the microbiome functionality: Focus on Propionibacterium species, Gut, vol.62, pp.1227-1228, 2013.

B. Foligne, S. Deutsch, J. Breton, F. J. Cousin, J. Dewulf et al., Promising Immunomodulatory Effects of Selected Strains of Dairy Propionibacteria as Evidenced In Vitro and In Vivo, Appl. Environ. Microbiol, vol.76, pp.8259-8264, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00684731

A. Oksaharju, T. Kooistra, R. Kleemann, W. Van-duyvenvoorde, M. Miettinen et al., Effects of probiotic Lactobacillus rhamnosus GG and Propionibacterium freudenreichii ssp. shermanii JS supplementation on intestinal and systemic markers of inflammation in ApoE*3Leiden mice consuming a highfat diet, Br. J. Nutr, vol.110, pp.77-85, 2013.

K. Kajander, E. Myllyluoma, M. Rajili?-stojanovi?, S. Kyrönpalo, M. Rasmussen et al., Clinical trial: Multispecies probiotic supplementation alleviates the symptoms of irritable bowel syndrome and stabilizes intestinal microbiota, Aliment. Pharmacol. Ther, vol.27, pp.48-57, 2008.

A. Suzuki, K. Mitsuyama, H. Koga, N. Tomiyasu, J. Masuda et al., Bifidogenic growth stimulator for the treatment of active ulcerative colitis: A pilot study, Nutrition, vol.22, pp.76-81, 2006.

S. Lortal, A. Rouault, B. Cesselin, and U. B. Sleytr, Paracrystalline surface layers of dairy propionibacteria

, Appl. Environ. Microbiol, vol.59, pp.2369-2374, 1993.

R. P. Fagan and N. F. Fairweather, Biogenesis and functions of bacterial S-layers, Nat. Rev. Microbiol, vol.12, pp.211-222, 2014.

N. Ilk, E. M. Egelseer, and U. B. Sleytr, S-layer fusion proteins-Construction principles and applications, Curr. Opin. Biotechnol, vol.22, pp.824-831, 2011.

S. Deutsch, M. Mariadassou, P. Nicolas, S. Parayre, R. Le-guellec et al., Identification of proteins involved in the anti-inflammatory properties of Propionibacterium freudenreichii by means of a multi-strain study
URL : https://hal.archives-ouvertes.fr/hal-01510019

S. Deutsch, S. Parayre, A. Bouchoux, F. Guyomarc'h, J. Dewulf et al., Contribution of Surface-Glucan Polysaccharide to Physicochemical and Immunomodulatory Properties of Propionibacterium freudenreichii, Appl. Environ. Microbiol, vol.78, pp.1765-1775, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01209311

S. M. Deutsch, P. L. Bivic, C. Herve, M. N. Madec, G. Lapointe et al., Correlation of the Capsular Phenotype in Propionibacterium freudenreichii with the Level of Expression of gtf, a Unique Polysaccharide SynthaseEncoding Gene, Appl. Environ. Microbiol, vol.76, pp.2740-2746, 2010.

Y. L. Lightfoot, K. Selle, T. Yang, Y. J. Goh, B. Sahay et al., SIGNR3-dependent immune regulation by Lactobacillus acidophilus surface layer protein A in colitis, EMBO J, vol.34, p.35, 2015.

S. R. Konstantinov, H. Smidt, W. M. De-vos, S. C. Bruijns, S. K. Singh et al., S layer protein A of Lactobacillus acidophilus NCFM regulates immature dendritic cell and T cell functions, Proc. Natl. Acad. Sci, vol.105, pp.19474-19479, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01454074

E. Puertollano, S. Kolida, and P. Yaqoob, Biological significance of short-chain fatty acid metabolism by the intestinal microbiome, Curr. Opin. Clin. Nutr. Metab. Care, vol.17, pp.139-144, 2014.

J. Tan, C. Mckenzie, M. Potamitis, A. N. Thorburn, C. R. Mackay et al., Chapter Three-The Role of Short-Chain Fatty Acids in Health and Disease, In Advances in Immunology

F. W. Alt and . Ed, , vol.121, pp.91-119, 2014.

C. H. Kim, J. Park, and M. Kim, Gut microbiota-derived short-chain Fatty acids, T cells, and inflammation, Immune Netw, vol.14, pp.277-288, 2014.

M. A. Zimmerman, N. Singh, P. M. Martin, M. Thangaraju, V. Ganapathy et al., Butyrate suppresses colonic inflammation through HDAC1-dependent Fas upregulation and Fas-mediated apoptosis of T cells, AJP Gastrointest. Liver Physiol, vol.302, pp.1405-1415, 2012.

F. M. Mcintosh, K. J. Shingfield, E. Devillard, W. R. Russell, and R. J. Wallace, Mechanism of conjugated linoleic acid and vaccenic acid formation in human faecal suspensions and pure cultures of intestinal bacteria, Microbiology, vol.155, pp.285-294, 2009.

J. Jiang, L. Björck, and R. Fonden, Production of conjugated linoleic acid by dairy starter cultures, J. Appl. Microbiol, vol.85, pp.95-102, 1998.

S. Xu, T. D. Boylston, and B. A. Glatz, Conjugated Linoleic Acid Content and Organoleptic Attributes of Fermented Milk Products Produced with Probiotic Bacteria, J. Agric. Food Chem, vol.53, pp.9064-9072, 2005.

A. A. Hennessy, E. Barrett, R. Paul-ross, G. F. Fitzgerald, R. Devery et al., The Production of Conjugated ?-Linolenic, ?-Linolenic and Stearidonic Acids by Strains of Bifidobacteria and Propionibacteria, Lipids, vol.47, pp.313-327, 2012.

L. Gorissen, F. Leroy, L. De-vuyst, S. De-smet, and K. Raes, Bacterial Production of Conjugated Linoleic and Linolenic Acid in Foods: A Technological Challenge, Crit. Rev. Food Sci. Nutr, vol.55, pp.1561-1574, 2015.

A. Rainio, M. Vahvaselkä, T. Suomalainen, and S. Laakso, Reduction of linoleic acid inhibition in production of conjugated linoleic acid by Propionibacterium freudenreichii ssp. shermanii, Can. J. Microbiol, vol.47, pp.735-740, 2001.

A. L. Fontes, L. L. Pimentel, C. D. Simões, A. M. Gomes, and L. M. Rodríguez-alcalá, Evidences and perspectives in the utilization of CLNA isomers as bioactive compound in foods, Crit. Rev. Food Sci. Nutr, vol.57, pp.2611-2622, 2017.

G. Yuan, X. Chen, and D. Li, Conjugated linolenic acids and their bioactivities: A review, Food Funct, vol.5, 1360.

G. Yuan, X. Chen, and D. Li, Modulation of Peroxisome Proliferator-Activated Receptor gamma (PPAR ?) by Conjugated Fatty Acid in Obesity and Inflammatory Bowel Disease, J. Agric. Food Chem, vol.63, pp.1883-1895, 2015.

J. H. Kim, Y. Kim, Y. J. Kim, and Y. Park, Conjugated Linoleic Acid: Potential Health Benefits as a Functional Food Ingredient

, Annu. Rev. Food Sci. Technol, vol.7, pp.221-244, 2016.

I. Churruca, A. Fernández-quintela, and M. P. Portillo, Conjugated linoleic acid isomers: Differences in metabolism and biological effects, BioFactors, vol.35, pp.105-111, 2009.

E. Draper, J. Decourcey, S. C. Higgins, M. Canavan, F. Mcevoy et al., Conjugated linoleic acid suppresses dendritic cell activation and subsequent Th17 responses, J. Nutr. Biochem, vol.25, pp.741-749, 2014.

A. A. Hennessy, P. R. Ross, G. F. Fitzgerald, and C. Stanton, Sources and Bioactive Properties of Conjugated Dietary Fatty Acids, Lipids, vol.51, pp.377-397, 2016.

M. Viladomiu, R. Hontecillas, and J. Bassaganya-riera, Modulation of inflammation and immunity by dietary conjugated linoleic acid, Eur. J. Pharmacol, vol.785, pp.87-95, 2016.

S. J. Bultman, Interplay between diet, gut microbiota, epigenetic events, and colorectal cancer, Mol. Nutr. Food Res, vol.61, p.1500902, 2017.

S. J. O'keefe, Diet, microorganisms and their metabolites, and colon cancer, Nat. Rev. Gastroenterol. Hepatol, vol.13, pp.691-706, 2016.

G. Jan, A. Belzacq, D. Haouzi, A. Rouault, D. Métivier et al., Propionibacteria induce apoptosis of colorectal carcinoma cells via short-chain fatty acids acting on mitochondria, Cell Death Differ, vol.9, pp.179-188, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00088749

A. Lan, D. Lagadic-gossmann, C. Lemaire, C. Brenner, and G. Jan, Acidic extracellular pH shifts colorectal cancer cell death from apoptosis to necrosis upon exposure to propionate and acetate, major end-products of the human probiotic propionibacteria, Apoptosis, vol.12, pp.573-591, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00690344

F. J. Cousin, S. Jouan-lanhouet, M. Dimanche-boitrel, L. Corcos, and G. Jan, Milk Fermented by Propionibacterium freudenreichii Induces Apoptosis of HGT-1 Human Gastric Cancer Cells, PLoS ONE, vol.7, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01209327

A. Lan, A. Bruneau, M. Bensaada, C. Philippe, P. Bellaud et al., Increased induction of apoptosis by Propionibacterium freudenreichii TL133 in colonic mucosal crypts of human microbiota-associated rats treated with 1,2-dimethylhydrazine, Br. J. Nutr, vol.100, p.1251, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01454096

G. Zarate and A. Perez-chaia, Dairy bacteria remove in vitro dietary lectins with toxic effects on colonic cells, J. Appl. Microbiol, vol.106, pp.1050-1057, 2009.

T. Halttunen, M. C. Collado, H. El-nezami, J. Meriluoto, and S. Salminen, Combining strains of lactic acid bacteria may reduce their toxin and heavy metal removal efficiency from aqueous solution: Toxin removal with LAB combination, Lett. Appl. Microbiol, vol.46, pp.160-165, 2007.

Y. K. Lee, H. El-nezami, C. A. Haskard, S. Gratz, K. Y. Puong et al., Kinetics of adsorption and desorption of aflatoxin B1 by viable and nonviable bacteria, J. Food Prot, vol.66, pp.426-430, 2003.

S. Gratz, H. Mykkänen, and H. El-nezami, Aflatoxin B1 binding by a mixture of Lactobacillus and Propionibacterium: In vitro versus ex vivo, J. Food Prot, vol.68, pp.2470-2474, 2005.

S. Gratz, H. Mykkanen, A. C. Ouwehand, R. Juvonen, S. Salminen et al., Intestinal Mucus Alters the Ability of Probiotic Bacteria To Bind Aflatoxin B1 In Vitro, Appl. Environ. Microbiol, vol.70, pp.6306-6308, 2004.

H. El-nezami, H. Mykkänen, P. Kankaanpää, S. Salminen, and J. Ahokas, Ability of Lactobacillus and Propionibacterium strains to remove aflatoxin B, from the chicken duodenum, J. Food Prot, vol.63, pp.549-552, 2000.

H. S. El-nezami, N. N. Polychronaki, J. Ma, H. Zhu, W. Ling et al., Probiotic supplementation reduces a biomarker for increased risk of liver cancer in young men from Southern China, Am. J. Clin. Nutr, vol.83, pp.1199-1203, 2006.

R. A. Kekkonen, R. Holma, K. Hatakka, T. Suomalainen, T. Poussa et al., A Probiotic Mixture Including Galactooligosaccharides Decreases Fecal-Glucosidase Activity but Does Not Affect Serum Enterolactone Concentration in Men during a Two-Week Intervention, J. Nutr, vol.141, pp.870-876, 2011.

K. Hatakka, R. Holma, H. El-nezami, T. Suomalainen, M. Kuisma et al., The influence of Lactobacillus rhamnosus LC705 together with Propionibacterium freudenreichii ssp. shermanii JS on potentially carcinogenic bacterial activity in human colon, Int. J. Food Microbiol, vol.128, pp.406-410, 2008.

M. Saxelin, A. Lassig, H. Karjalainen, S. Tynkkynen, A. Surakka et al., Persistence of probiotic strains in the gastrointestinal tract when administered as capsules, yoghurt, or cheese, Int. J. Food Microbiol, vol.144, pp.293-300, 2010.

A. Thierry, S. Deutsch, H. Falentin, M. Dalmasso, F. J. Cousin et al., New insights into physiology and metabolism of Propionibacterium freudenreichii, Int. J. Food Microbiol, vol.149, pp.19-27, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01454487

G. Zárate, Dairy Propionibacteria: Less Conventional Probiotics to Improve the Human and Animal Health, Probiotic in Animals; InTechOpen: Rijeka, 2012.

A. L. Yee, M. Maillard, N. Roland, V. Chuat, A. Leclerc et al., Great interspecies and intraspecies diversity of dairy propionibacteria in the production of cheese aroma compounds, Int. J. Food Microbiol, vol.191, pp.60-68, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01209716

Y. Piao, M. Yamashita, N. Kawaraichi, R. Asegawa, H. Ono et al., Production of vitamin B12 in genetically engineered Propionibacterium freudenreichii, J. Biosci. Bioeng, vol.98, pp.167-173, 2004.

P. Wang, Z. Zhang, Y. Jiao, S. Liu, and Y. Wang, Improved propionic acid and 5,6-dimethylbenzimidazole control strategy for vitamin B12 fermentation by Propionibacterium freudenreichii, J. Biotechnol, vol.193, p.50, 2015.

F. L. De-carmo, H. Rabah, S. Huang, F. Gaucher, M. Deplanche et al., Propionibacterium freudenreichii surface protein SlpB is involved in adhesion to intestinal HT-29 cells, Front. Microbiol, vol.8, p.1033, 2017.

N. Dohm, A. Petri, M. Schlander, B. Schlott, H. König et al., , 2011.

, Molecular and biochemical properties of the S-layer protein from the wine bacterium Lactobacillus hilgardii B706, Arch. Microbiol, vol.193, pp.251-261

H. S. El-nezami, N. N. Polychronaki, J. Ma, H. Zhu, W. Ling et al., Probiotic supplementation reduces a biomarker for increased risk of liver cancer in young men from Southern China, Am. J. Clin. Nutr, vol.83, pp.1199-1203, 2006.

N. Eslami, R. K. Kermanshahi, and M. Erfan, Studying the stability of S-layer protein of Lactobacillus acidophilus ATCC 4356 in simulated gastrointestinal fluids using SDS-PAGE and circular dichroism, Iran. J. Pharm. Res, vol.12, pp.47-56, 2013.

S. E. Evivie, G. Huo, J. O. Igene, and X. Bian, Some current applications, limitations and future perspectives of lactic acid bacteria as probiotics, Food Nutr. Res, vol.61, p.1318034, 2017.

R. P. Fagan and N. F. Fairweather, Probiotics in Food: Health and Nutritional Properties and Guidelines for Evaluation, of a Joint FAO/WHO Working Group on Drafting Guidelines for the Evaluation of Probiotics in Food, vol.12, pp.211-222, 2006.

B. Foligné, J. Breton, D. Mater, J. , and G. , Tracking the microbiome functionality: focus on Propionibacterium species, Gut, vol.62, pp.1227-1228, 2013.

B. Foligné, S. Deutsch, J. Breton, F. J. Cousin, J. Dewulf et al., Promising immunomodulatory effects of selected strains of dairy propionibacteria as evidenced in vitro and in vivo, Appl. Environ. Microbiol, vol.76, pp.8259-8264, 2010.

, Probiotics in Food: Health and Nutritional Properties and Guidelines for Evaluation, Food and Agriculture Organization of the United Nations, and World Health Organization (FAO/WHO), 2002.

J. Frece, B. Kos, I. K. Svetec, Z. Zgaga, V. Mrsa et al., Importance of S-layer proteins in probiotic activity of Lactobacillus acidophilus M92, 2005.

, J. Appl. Microbiol, vol.98, pp.285-292

M. Gagnon, A. Zihler-berner, N. Chervet, C. Chassard, and C. Lacroix, Comparison of the Caco-2, HT-29 and the mucus-secreting HT29-MTX intestinal cell models to investigate Salmonella adhesion and invasion, J. Microbiol. Methods, vol.94, pp.274-279, 2013.

X. Gao, L. Huang, L. Zhu, C. Mou, Q. Hou et al., Inhibition of H9N2 virus invasion into dendritic cells by the S-Layer protein from L. acidophilus ATCC 4356. Front, Cell. Infect. Microbiol, vol.6, p.137, 2016.

E. Gerbino, P. Carasi, P. Mobili, M. A. Serradell, and A. Gómez-zavaglia, Role of S-layer proteins in bacteria, World J. Microbiol. Biotechnol, vol.31, pp.1877-1887, 2015.

E. Gerbino, P. Carasi, C. Araujo-andrade, E. E. Tymczyszyn, and A. Gómez-zavaglia, Role of S-layer proteins in the biosorption capacity of lead by Lactobacillus kefir, World J. Microbiol. Biotechnol, vol.31, pp.583-592, 2015.

Y. J. Goh, M. A. Azcarate-peril, S. O'flaherty, E. Durmaz, F. Valence et al., Development and application of an upp-based counterselective gene replacement system for the study of the S-layer protein SlpX of Lactobacillus acidophilus NCFM, Appl. Environ. Microbiol, vol.75, pp.3093-3105, 2009.

Y. J. Goh and T. R. Klaenhammer, Functional roles of aggregationpromoting-like factor in stress tolerance and adherence of Lactobacillus acidophilus NCFM, Appl. Environ. Microbiol, vol.76, pp.5005-5012, 2010.

M. A. Golowczyc, P. Mobili, G. L. Garrote, A. G. Abraham, D. Antoni et al.,

E. Serovar, Int. J. Food Microbiol, vol.118, pp.264-273

S. Grosu-tudor, L. Brown, E. M. Hebert, A. Brezeanu, A. Brinzan et al., S-layer production by Lactobacillus acidophilus IBB 801 under environmental stress conditions, Appl. Microbiol. Biotechnol, vol.100, pp.4573-4583, 2016.

T. Halttunen, M. C. Collado, H. El-nezami, J. Meriluoto, S. Salminen et al., Combining strains of lactic acid bacteria may reduce their toxin and heavy metal removal efficiency from aqueous solution, Lett. Appl. Microbiol, vol.46, pp.625-631, 2001.

Y. Hirakata, K. Izumikawa, T. Yamaguchi, S. Igimi, N. Furuya et al., Adherence to and penetration of human intestinal Caco-2 epithelial cell monolayers by Pseudomonas aeruginosa, Infect. Immun, vol.66, pp.1748-1751, 1998.

A. Hollmann, L. Delfederico, G. Glikmann, G. De-antoni, L. Semorile et al., Characterization of liposomes coated with S-layer proteins from lactobacilli, Biochim. Biophys. Acta, vol.1768, pp.393-400, 2007.

A. L. Houwink, A macromolecular mono-layer in the cell wall of Spirillum spec, Biochim. Biophys. Acta, vol.10, pp.360-366, 1953.

J. P. Hymes, B. R. Johnson, R. Barrangou, and T. R. Klaenhammer, Functional analysis of an S-layer-associated fibronectin-binding protein in Lactobacillus acidophilus NCFM, Appl. Environ. Microbiol, vol.82, pp.2676-2685, 2016.

U. Hynönen and A. Palva, Lactobacillus surface layer proteins: structure, function and applications, Appl. Microbiol. Biotechnol, vol.97, pp.5225-5243, 2013.

U. Hynönen, B. Westerlund-wikström, A. Palva, and T. K. Korhonen, Identification by flagellum display of an epithelial cell-and fibronectin-binding function in the SlpA surface protein of Lactobacillus brevis, J. Bacteriol, vol.184, pp.3360-3367, 2002.

F. Ibrahim, T. Halttunen, R. Tahvonen, and S. Salminen, Probiotic bacteria as potential detoxification tools: assessing their heavy metal binding isotherms, Can. J. Microbiol, vol.52, pp.877-885, 2006.

I. Jankovic, M. Ventura, V. Meylan, M. Rouvet, M. Elli et al., Contribution of aggregation-promoting factor to maintenance of cell shape in Lactobacillus gasseri 4B2, J. Bacteriol, vol.185, pp.3288-3296, 2003.

M. E. Johansson, D. Ambort, T. Pelaseyed, A. Schütte, J. K. Gustafsson et al., Composition and functional role of the mucus layers in the intestine, Cell. Mol. Life Sci, vol.68, pp.3635-3641, 2011.

B. Johnson, K. Selle, S. O'flaherty, Y. J. Goh, and T. Klaenhammer, Identification of extracellular surface-layer associated proteins in Lactobacillus acidophilus NCFM, Microbiology, vol.159, pp.2269-2282, 2013.

B. R. Johnson, J. Hymes, R. Sanozky-dawes, E. D. Henriksen, R. Barrangou et al., Conserved S-layer-associated proteins revealed by exoproteomic survey of S-layer-forming lactobacilli, Appl. Environ. Microbiol, vol.82, pp.134-145, 2016.

B. R. Johnson, S. O'flaherty, Y. J. Goh, I. Carroll, R. Barrangou et al., The S-layer associated serine protease homolog PrtX impacts cell surface-mediated microbe-host interactions of Lactobacillus acidophilus, NCFM. Front. Microbiol, vol.8, p.1185, 2017.

K. C. Johnson-henry, K. E. Hagen, M. Gordonpour, T. A. Tompkins, P. M. Sherman et al., Surface-layer protein extracts from Lactobacillus helveticus inhibit enterohaemorrhagic Escherichia coli O157:H7 adhesion to epithelial cells, Advances in Applied Biotechnology, vol.9, pp.356-367, 2007.

M. Khaleghi, R. K. Kermanshahi, M. M. Yaghoobi, S. H. Zarkesh-esfahani, and A. Baghizadeh, Assessment of bile salt effects on S-layer production, slp gene expression and some physicochemical properties of Lactobacillus acidophilus ATCC 4356, J. Microbiol. Biotechnol, vol.20, pp.749-756, 2010.

T. D. Klingberg, M. H. Pedersen, A. Cencic, and B. B. Budde, Application of Measurements of transepithelial electrical resistance of intestinal epithelial 51 cell monolayers to evaluate probiotic activity, Appl. Environ. Microbiol, vol.71, pp.7528-7530, 2005.

S. R. Konstantinov, H. Smidt, W. M. De-vos, S. C. Bruijns, S. K. Singh et al., S-layer protein A of Lactobacillus acidophilus NCFM regulates immature dendritic cell and T cell functions, Proc. Natl. Acad. Sci, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01454074

S. , , vol.105, pp.19474-19479

S. F. Koval and R. G. Murray, The isolation of surface array proteins from bacteria, Can. J. Biochem. Cell Biol. Rev. Can. Biochim. Biol. Cell, vol.62, pp.1181-1189, 1984.

L. Maréchal, C. Peton, V. Plé, C. Vroland, C. Jardin et al.,

, Surface proteins of Propionibacterium freudenreichii are involved in its anti-inflammatory properties, J. Proteomics, vol.113, pp.447-461

S. Lebeer, J. Vanderleyden, D. Keersmaecker, and S. C. , Genes and molecules of lactobacilli supporting probiotic action. Microbiol, Mol. Biol. Rev, vol.72, pp.728-764, 2008.

P. Li, X. Ye, Z. Wang, Q. Yu, Y. et al., Effects of S-layer proteins from Lactobacillus against Salmonella typhimurium adhesion and invasion on Caco-2 cells, Wei Sheng Wu Xue Bao, vol.50, pp.1226-1231, 2010.

P. Li, Q. Yu, X. Ye, Z. Wang, Y. et al., Lactobacillus S-layer protein inhibition of Salmonella-induced reorganization of the cytoskeleton and activation of MAPK signalling pathways in Caco-2 cells, Microbiol. Read. Engl, vol.157, pp.2639-2646, 2011.

Y. L. Lightfoot, K. Selle, T. Yang, Y. J. Goh, B. Sahay et al.,

Y. Lin, S. P. Mcdonough, Y. Sharma, C. , and Y. , The terminal immunoglobulin-like repeats of LigA and LigB of Leptospira enhance their binding to gelatin binding domain of fibronectin and host cells, PLoS One, vol.34, pp.881-895, 2010.

Z. Liu, T. Shen, H. Chen, Y. Zhou, P. Zhang et al., Functional characterization of MIMP for its adhesion to the intestinal epithelium, Front. Biosci, vol.16, pp.2106-2127, 2011.

Z. Liu, T. Shen, P. Zhang, Y. Ma, and H. Qin, , 2011.

, Biol. Rep, vol.38, pp.3471-3480

S. Lortal, A. Rouault, B. Cesselin, and U. B. Sleytr, Paracrystalline surface layers of dairy propionibacteria, Appl. Environ. Microbiol, vol.59, pp.2369-2374, 1993.

S. Lortal, J. Van-heijenoort, K. Gruber, and U. B. Sleytr, S-layer of Lactobacillus helveticus ATCC 12046: isolation chemical characterization and re-formation after extraction with lithium chloride, J. Gen. Microbiol, vol.138, pp.611-618, 1992.

J. J. Maoret, J. Font, C. Augeron, P. Codogno, C. Bauvy et al.,

, A mucus-secreting human colonic cancer cell line. Purification and partial characterization of the secreted mucins, Biochem. J, vol.258, pp.793-799

M. G. Martínez, M. Prado-acosta, N. A. Candurra, and S. M. Ruzal, , 2012.

, S-layer proteins of Lactobacillus acidophilus inhibits JUNV infection, Biochem. Biophys. Res. Commun, vol.422, pp.590-595

D. Martínez-maqueda, B. Miralles, I. ;. Recio, P. Verhoeckx, I. Cotter et al., HT29 cell line, The Impact of Food Bioactives on Health, pp.113-124, 2015.

J. Meng, X. Zhu, S. Gao, Q. Zhang, Z. Sun et al., strains. Int. J. Biol. Macromol, vol.65, pp.110-114, 2014.

M. L. Merroun, J. Raff, A. Rossberg, C. Hennig, T. Reich et al., Complexation of uranium by cells and S-layer sheets of Bacillus sphaericus JG-A12, Appl. Environ. Microbiol, vol.71, pp.5532-5543, 2005.

P. Messner, K. Steiner, K. Zarschler, and C. Schäffer, S-layer nanoglycobiology of bacteria, Carbohydr. Res, vol.343, 1934.

C. Michon, P. Langella, V. G. Eijsink, G. Mathiesen, and J. Chatel,

, Display of recombinant proteins at the surface of lactic acid bacteria: strategies and applications, Microb. Cell Fact, vol.15, p.70

P. Mobili, E. Gerbino, E. Tymczyszyn, and A. Gómez-zavaglia, S-layers in lactobacilli: structural characteristics and putative role in surface and probiotic properties of whole bacteria, Curr. Res. Technol. Educ. Top. Appl. Microbiol. Microb. Biotechnol, vol.22, pp.1224-1234, 2010.

J. Otte and D. K. Podolsky, Functional modulation of enterocytes by gram-positive and gram-negative microorganisms, Am. J. Physiol. Gastrointest. Liver Physiol, vol.286, pp.613-626, 2004.

M. Prado-acosta, S. M. Ruzal, and S. M. Cordo, S-layer proteins from Lactobacillus sp. inhibit bacterial infection by blockage of DC-SIGN cell receptor, Int. J. Biol. Macromol, vol.92, pp.998-1005, 2016.

D. Pum and U. B. Sleytr, Reassembly of S-layer proteins, Nanotechnology, vol.25, p.312001, 2014.

H. Qin, Z. Zhang, X. Hang, and Y. Jiang, L. plantarum prevents enteroinvasive Escherichia coli-induced tight junction proteins changes in intestinal epithelial cells, BMC Microbiol, vol.9, p.63, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02025301

H. Rabah, F. L. Rosa-do-carmo, J. , and G. , Dairy propionibacteria: versatile probiotics, vol.5, p.24, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01524323

J. Rong, H. Zheng, M. Liu, X. Hu, T. Wang et al., , 2015.

, Probiotic and anti-inflammatory attributes of an isolate Lactobacillus helveticus NS8 from Mongolian fermented koumiss, BMC Microbiol, vol.15, p.196

G. Rook, F. Bäckhed, B. R. Levin, M. J. Mcfall-ngai, and A. R. Mclean, Evolution, human-microbe interactions, and life history plasticity, Lancet, vol.390, pp.521-530, 2017.

H. Rothfuss, J. C. Lara, A. K. Schmid, and M. E. Lidstrom, Involvement of the S-layer proteins Hpi and SlpA in the maintenance of cell envelope integrity in Deinococcus radiodurans R1, Microbiol. Read. Engl, vol.152, pp.2779-2787, 2006.

F. Sanchez-muñoz, A. Dominguez-lopez, and J. K. Yamamoto-furusho, Role of cytokines in inflammatory bowel disease, World J. Gastroenterol, vol.14, pp.4280-4288, 2008.

M. Sára and U. B. Sleytr, Crystalline bacterial cell surface layers (Slayers): from cell structure to biomimetics, Prog. Biophys. Mol. Biol, vol.65, pp.83-111, 1996.

M. Sára and U. B. Sleytr, S-Layer proteins, J. Bacteriol, vol.182, pp.859-868, 2000.

B. Schuster and U. B. Sleytr, Relevance of glycosylation of S-layer proteins for cell surface properties, Acta Biomater, vol.19, pp.149-157, 2015.

R. Sengupta, E. Altermann, R. C. Anderson, W. C. Mcnabb, P. J. Moughan et al., The role of cell surface architecture of lactobacilli in host-microbe interactions in the gastrointestinal tract, Mediators Inflamm, p.237921, 2013.

U. B. Sleytr, Basic and applied S-layer research: an overview, FEMS Microbiol. Rev, vol.20, pp.253-260, 1997.

U. B. Sleytr and P. Messner, Crystalline surface layers in procaryotes, 1988.

, J. Bacteriol, vol.170, pp.2891-2897

U. B. Sleytr, M. Sára, D. Pum, and B. Schuster, Characterization and use of crystalline bacterial cell surface layers, Prog. Surf. Sci, vol.68, pp.231-278, 2001.

U. B. Sleytr, B. Schuster, E. Egelseer, and D. Pum, S-layers: principles and applications, FEMS Microbiol. Rev, vol.38, pp.823-864, 2014.

U. B. Sleytr, B. Schuster, E. M. Egelseer, D. Pum, C. M. Horejs et al., Nanobiotechnology with S-layer proteins as building blocks, 2011.

. Prog, Mol. Biol. Transl. Sci, vol.103, pp.277-352

E. Smit, F. Oling, R. Demel, B. Martinez, and P. H. Pouwels, The Slayer protein of Lactobacillus acidophilus ATCC 4356: identification and characterization of domains responsible for S-protein assembly and cell wall binding, J. Mol. Biol, vol.305, pp.245-257, 2001.

G. G. Syngai, R. Gopi, R. Bharali, S. Dey, G. M. Lakshmanan et al., Probiotics -the versatile functional food ingredients, J. Food Sci. Technol, vol.53, pp.921-933, 2016.

V. Taverniti, M. Stuknyte, M. Minuzzo, S. Arioli, I. De-noni et al., S-layer protein mediates the stimulatory effect of Lactobacillus helveticus MIMLh5 on innate immunity, Appl. Environ. Microbiol, vol.79, pp.1221-1231, 2013.

K. Uroi?, J. Novak, U. Hynönen, T. E. Pietilä, A. Lebo?-pavunc et al.,

R. Belkaid, Y. Hand, and T. , Role of the microbiota in immunity and inflammation, Cell, vol.157, pp.121-141, 2014.

G. Bensi, M. Mora, G. Tuscano, M. Biagini, E. Chiarot et al.,

, Multi high-throughput approach for highly selective identification of vaccine candidates: the group a Streptococcus case, Mol. Cell. Proteomics, vol.11

A. Berlec, P. Zadravec, Z. Jevnikar, and B. ?trukelj, , 2011.

, Appl. Environ. Microbiol, vol.77, pp.1292-1300

L. A. Bøhle, T. Riaz, W. Egge-jacobsen, M. Skaugen, Ø. L. Busk et al., Identification of surface proteins in Enterococcus faecalis V583, BMC Genomics, vol.12, p.135, 2011.

D. S. Bouchard, L. Rault, N. Berkova, Y. Le-loir, and S. Even, Inhibition of Staphylococcus aureus invasion into bovine mammary epithelial cells by contact with live Lactobacillus casei, Appl. Environ. Microbiol, vol.79, pp.877-885, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01454235

D. Bouglé, N. Roland, F. Lebeurrier, A. , and P. , , 1999.

K. Bryson, V. Loux, R. Bossy, P. Nicolas, S. Chaillou et al., AGMIAL: implementing an annotation strategy for prokaryote genomes as a distributed system, Nucleic Acids Res, vol.34, pp.3533-3545, 2006.

B. L. Buck, E. Altermann, T. Svingerud, and T. R. Klaenhammer, Functional analysis of putative adhesion factors in Lactobacillus acidophilus NCFM, 2005.

, Appl. Environ. Microbiol, vol.71, pp.8344-8351

. Clinicaltrials and . Gov, Interest of Propionibacterium Freudenreichii for the Treatment of Mild to Moderate Ulcerative Colitis, 2016.

F. J. Cousin, B. Foligné, S. Deutsch, S. Massart, S. Parayre et al.,

, J. Agric. Food Chem, vol.60, pp.7917-7927

F. J. Cousin, S. Jouan-lanhouet, M. Dimanche-boitrel, L. Corcos, J. et al.,

,

F. J. Cousin, D. D. Mater, B. Foligne, J. , and G. , Dairy propionibacteria as human probiotics: a review of recent evidence, Dairy Sci. Technol, vol.91, pp.1-26, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00868601

H. S. De-souza and C. Fiocchi, Immunopathogenesis of IBD: current state of the art, Nat. Rev. Gastroenterol. Hepatol, vol.13, pp.13-27, 2016.

S. M. Deutsch, M. Mariadassou, P. Nicolas, S. Parayre, R. Le-guellec et al., Identification of proteins involved in the anti-inflammatory properties of Propionibacterium freudenreichii by means of a multi-strain study, Sci. Rep, vol.7, p.46409, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01510019

S. Deutsch, S. Parayre, A. Bouchoux, F. Guyomarc'h, J. Dewulf et al., Contribution of surface ?-glucan polysaccharide to physicochemical and immunomodulatory properties of Propionibacterium freudenreichii, Appl. Environ. Microbiol, vol.78, pp.1765-1775, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01209311

R. P. Fagan and N. F. Fairweather, Biogenesis and functions of bacterial Slayers, Nat. Rev. Microbiol, vol.12, pp.211-222, 2014.

B. Foligné, J. Breton, D. Mater, J. , and G. , Tracking the microbiome functionality: focus on Propionibacterium species, Gut, vol.62, pp.1227-1228, 2013.

B. Foligné, S. Deutsch, J. Breton, F. J. Cousin, J. Dewulf et al., Promising immunomodulatory effects of selected strains of dairy propionibacteria as evidenced in vitro and in vivo, Probiotics in Food: Health and Nutritional Properties and Guidelines for Evaluation. Rome: Food and Agriculture Organization, vol.76, pp.8259-8264, 2002.

R. Havenaar, B. T. Brink, and J. H. Veld, Selection of strains for probiotic use, Probiotics, pp.209-224, 1992.

K. Hojo, N. Yoda, H. Tsuchita, T. Ohtsu, K. Seki et al., Effect of ingested culture of Propionibacterium freudenreichii ET-3 on fecal microflora and stool frequency in healthy females, Biosci. Microflora, vol.21, pp.115-120, 2002.

Y. Huang, A. , and M. C. , An in vitro model for investigating intestinal adhesion of potential dairy propionibacteria probiotic strains using cell line C2BBe1, Lett. Appl. Microbiol, vol.36, pp.213-216, 2003.

J. P. Hymes, B. R. Johnson, R. Barrangou, and T. R. Klaenhammer, Functional analysis of an S-Layer-Associated fibronectin-binding protein in Lactobacillus acidophilus NCFM, Appl. Environ. Microbiol, vol.82, pp.2676-2685, 2016.

G. Jan, A. Belzacq, D. Haouzi, A. Rouault, D. Métivier et al., Propionibacteria induce apoptosis of colorectal carcinoma cells via shortchain fatty acids acting on mitochondria, Cell Death. Differ, vol.9, pp.179-188, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00088749

B. Johnson, K. Selle, S. O'flaherty, Y. J. Goh, and T. Klaenhammer, Identification of extracellular surface-layer associated proteins in Lactobacillus acidophilus, NCFM. Microbiol. Read. Engl, vol.159, pp.2269-2282, 2013.

T. Kaneko, A novel bifidogenic growth stimulator produced by Propionibacterium freudenreichii, Biosci. Microflora, vol.18, pp.73-80, 1999.

M. Krishnan, H. M. Penrose, N. N. Shah, R. R. Marchelletta, and D. F. Mccole, VSL#3 probiotic stimulates T-cell Protein tyrosine phosphatasemediated recovery of IFN-?-induced intestinal epithelial barrier defects, Inflamm. Bowel Dis, vol.22, pp.2811-2823, 2016.

U. K. Laemmli, Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, vol.227, pp.680-685, 1970.

A. Lan, D. Lagadic-gossmann, C. Lemaire, C. Brenner, J. et al., Acidic extracellular pH shifts colorectal cancer cell death from apoptosis to necrosis upon exposure to propionate and acetate, major end-products of the human probiotic propionibacteria, Apoptosis Int. J. Program. Cell Death, vol.12, pp.573-591, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00690344

L. Maréchal, C. Peton, V. Plé, C. Vroland, C. Jardin et al.,

, Surface proteins of Propionibacterium freudenreichii are involved in its anti-inflammatory properties, J. Proteomics, vol.113, pp.447-461

S. Lebeer, J. Vanderleyden, D. Keersmaecker, and S. C. , Genes and molecules of lactobacilli supporting probiotic action. Microbiol, Mol. Biol. Rev, vol.72, pp.728-764, 2008.

S. Lebeer, J. Vanderleyden, D. Keersmaecker, and S. C. , Host interactions of probiotic bacterial surface molecules: comparison with commensals and pathogens, Nat. Rev. Microbiol, vol.8, pp.171-184, 2010.

S. Lortal, A. Rouault, B. Cesselin, and U. B. Sleytr, Paracrystalline surface layers of dairy propionibacteria, Appl. Environ. Microbiol, vol.59, pp.2369-2374, 1993.

D. R. Mack, S. Ahrne, L. Hyde, S. Wei, and M. A. Hollingsworth, , 2003.

, Extracellular MUC3 mucin secretion follows adherence of Lactobacillus strains to intestinal epithelial cells in vitro, Gut, vol.52, pp.827-833

D. R. Mack, S. Michail, S. Wei, L. Mcdougall, and M. A. Hollingsworth, , 1999.

, Probiotics inhibit enteropathogenic E. coli adherence in vitro by inducing intestinal mucin gene expression, Am. J. Physiol, vol.276, pp.941-950

A. C. Malik, G. W. Reinbold, and E. R. Vedamuthu, An evaluation of the taxonomy of Propionibacterium, Can. J. Microbiol, vol.14, pp.1185-1191, 1968.

C. Mayrhofer, S. Krieger, G. Allmaier, and D. Kerjaschki, DIGE compatible labelling of surface proteins on vital cells in vitro and in vivo, Proteomics, vol.6, pp.579-585, 2006.

C. Michaux, L. F. Saavedra, F. Reffuveille, B. Bernay, D. Goux et al., Cold-shock RNA-binding protein CspR is also exposed to the surface of Enterococcus faecalis, Microbiol. Read. Engl, vol.159, pp.2153-2161, 2013.

K. Mitsuyama, J. Masuda, H. Yamasaki, K. Kuwaki, S. Kitazaki et al., Treatment of ulcerative colitis with milk whey culture with Propionibacterium freudenreichii, J. Intest. Microbiol, vol.21, pp.143-147, 2007.

M. Moussavi, A. , and M. C. , , 2010.

. Microbiol, , vol.60, pp.327-335

A. C. Ouwehand, H. Lagström, T. Suomalainen, and S. Salminen, Effect of probiotics on constipation, fecal azoreductase activity and fecal mucin content in the elderly, Ann. Nutr. Metab, vol.46, pp.159-162, 2002.

A. C. Ouwehand, S. Tölkkö, J. Kulmala, S. Salminen, and E. Salminen, , 2000.

, Adhesion of inactivated probiotic strains to intestinal mucus, Lett. Appl. Microbiol, vol.31, pp.82-86

C. Plé, J. Breton, R. Richoux, M. Nurdin, S. Deutsch et al., Combining selected immunomodulatory Propionibacterium freudenreichii and Lactobacillus delbrueckii strains: reverse engineering development of an anti-inflammatory cheese, Mol. Nutr. Food Res, vol.60, pp.935-948, 2016.

C. Plé, R. Richoux, J. Jardin, M. Nurdin, V. Briard-bion et al.,

, Funct. Foods, vol.18, pp.575-585

J. Preising, D. Philippe, M. Gleinser, H. Wei, S. Blum et al.,

, Appl. Environ. Microbiol, vol.76, pp.3048-3051

R. Richoux, É. Faivre, and J. Kerjean, , 1998.

, Le Lait, vol.78, pp.319-331

C. U. Riedel, F. Foata, D. R. Goldstein, S. Blum, and B. J. Eikmanns, Interaction of bifidobacteria with Caco-2 cells-adhesion and impact on expression profiles, Int. J. Food Microbiol, vol.110, pp.62-68, 2006.

M. J. Rodríguez-ortega, N. Norais, G. Bensi, S. Liberatori, S. Capo et al., Characterization and identification of vaccine candidate proteins through analysis of the group A Streptococcus surface proteome, Nat. Biotechnol, vol.24, pp.191-197, 2006.

M. Sára and U. B. Sleytr, S-Layer proteins, J. Bacteriol, vol.182, pp.859-868, 2000.

M. Schlee, J. Harder, B. Köten, E. F. Stange, J. Wehkamp et al.,

, Probiotic lactobacilli and VSL#3 induce enterocyte beta-defensin 2, Clin. Exp. Immunol, vol.151, pp.528-535

M. Schlee, J. Wehkamp, A. Altenhoefer, T. A. Oelschlaeger, E. F. Stange et al., Induction of human beta-defensin 2 by the probiotic Escherichia coli Nissle 1917 is mediated through flagellin, Infect. Immun, vol.75, pp.2399-2407, 2007.

K. Seki, H. Nakao, H. Umino, H. Isshiki, N. Yoda et al., Effects of fermented milk whey containing novel bifidogenic growth stimulator produced by propionibacterium on fecal bacteria, putrefactive metabolite, defecation frequency and fecal properties in senile volunteers needed serious nursing-care taking enteral nutrition by tube Feeding, J. Intest. Microbiol, vol.18, pp.107-115, 2004.

A. L. Servin, Antagonistic activities of lactobacilli and bifidobacteria against microbial pathogens, FEMS Microbiol. Rev, vol.28, pp.405-440, 2004.

U. B. Sleytr, A. Thiel, B. Eikmanns, S. Salminen, and A. C. Ouwehand, Basic and applied S-layer research: an overview, FEMS Microbiol. Rev, vol.20, pp.5-12, 1997.

, Ital. J. Food Sci. Available, 2016.

A. Thierry, R. Richoux, and J. Kerjean, Isovaleric acid is mainly produced by Propionibacterium freudenreichii in Swiss cheese, Int. Dairy J, vol.14, pp.801-807, 2004.

A. Tiptiri-kourpeti, K. Spyridopoulou, V. Santarmaki, G. Aindelis, E. Tompoulidou et al., Lactobacillus casei exerts anti-proliferative effects accompanied by apoptotic cell death and up-regulation of TRAIL in colon carcinoma cells, PLoS ONE, vol.11, 2016.

L. Tong, Y. Wang, Z. Wang, W. Liu, S. Sun et al., , 2016.

, Propionate ameliorates dextran sodium sulfate-induced colitis by improving intestinal barrier function and reducing inflammation and oxidative stress, Front. Pharmacol, vol.7, p.253

E. M. Tuomola, A. C. Ouwehand, S. J. Salminen, M. Van-de-guchte, T. Chaze et al., Human ileostomy glycoproteins as a model for small intestinal mucus to investigate adhesion of probiotics, Lett. Appl. Microbiol, vol.28, pp.381-389, 1999.

L. Vitetta, D. Briskey, H. Alford, S. Hall, and S. Coulson, Probiotics, prebiotics and the gastrointestinal tract in health and disease, Inflammopharmacology, vol.22, pp.135-154, 2014.

L. Vitetta, S. Hall, and S. Coulson, Metabolic interactions in the gastrointestinal tract (GIT): host, commensal, probiotics, and bacteriophage influences. Microorganisms, vol.3, pp.913-932, 2015.

M. Ythier, G. Resch, P. Waridel, A. Panchaud, A. Gfeller et al., Proteomic and transcriptomic profiling of Staphylococcus aureus surface LPXTG-proteins: correlation with agr genotypes and adherence phenotypes, Mol. Cell. Proteomics MCP, vol.11, pp.1123-1139, 2012.

G. Zarate, Dairy propionibacteria: less conventional probiotics to improve the human and animal Health, Probiotic in Animals, 2012.

N. Alikhan, N. K. Petty, N. L. Ben-zakour, and S. A. Beatson, BLAST ring image generator (BRIG): simple prokaryote genome comparisons, BMC Genomics, vol.12, p.402, 2011.

R. K. Aziz, D. Bartels, A. A. Best, M. Dejongh, T. Disz et al.,

, The RAST server: rapid annotations using subsystems technology, BMC Genomics, vol.9, p.75

A. Barinov, V. Loux, A. Hammani, P. Nicolas, P. Langella et al.,

, , vol.9, pp.61-73

T. Brettin, J. J. Davis, T. Disz, R. A. Edwards, S. Gerdes et al., , 2015.

, RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes, Sci. Rep, vol.5, p.8365

F. J. Cousin, S. Jouan-lanhouet, N. Théret, C. Brenner, E. Jouan et al., The probiotic Propionibacterium freudenreichii as a new adjuvant for TRAIL-based therapy in colorectal cancer, Oncotarget, vol.7, pp.7161-7178, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01404971

T. Das-gupta, B. Bandyopadhyay, D. Gupta, S. K. De-wouters, T. Jans et al., Adhesion potential of intestinal microbes predicted by physicochemical characterization methods, Microbiology, vol.154, pp.484-490, 2008.

S. Deutsch, M. Mariadassou, P. Nicolas, S. Parayre, R. Le-guellec et al., Identification of proteins involved in the anti-inflammatory properties of Propionibacterium freudenreichii by means of a multi-strain study, Sci. Rep, vol.7, p.46409, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01510019

S. M. Deutsch, S. Parayre, A. Bouchoux, F. Guyomarc'h, J. Dewulf et al., Contribution of surface ?-glucan polysaccharide to physicochemical and immunomodulatory properties of Propionibacterium freudenreichii, Appl. Environ. Microbiol, vol.78, pp.1765-1775, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01209311

U. Distler, J. Kuharev, P. Navarro, Y. Levin, H. Schild et al., Propionibacterium freudenreichii surface protein SlpB is involved in adhesion to intestinal HT-29 cells, Front. Microbiol, vol.11, p.1033, 2014.

R. K. Duary, Y. S. Rajput, V. K. Batish, and S. Grover, Assessing the adhesion of putative indigenous probiotic lactobacilli to human colonic epithelial cells. Ind, J. Med. Res, vol.134, pp.664-671, 2011.

R. P. Fagan and N. F. Fairweather, Biogenesis and functions of bacterial Slayers, Nat. Rev. Microbiol, vol.12, pp.211-222, 2014.

E. L. Folador, S. S. Hassan, N. Lemke, D. Barh, A. Silva et al.,

, An improved interolog mapping-based computational prediction of proteinprotein interactions with increased network coverage, Integr. Biol, vol.6, pp.1080-1087

B. Foligné, S. M. Deutsch, J. Breton, F. J. Cousin, J. Dewulf et al., Promising immunomodulatory effects of selected strains of dairy propionibacteria as evidenced in vitro and in vivo, Probiotics in Food: Health and Nutritional Properties and Guidelines for Evaluation, vol.76, pp.8259-8264, 2002.

A. C. Ford, E. M. Quigley, B. E. Lacy, A. J. Lembo, Y. A. Saito et al., Efficacy of prebiotics, probiotics, and synbiotics in irritable bowel syndrome and chronic idiopathic constipation: systematic review and metaanalysis, Am. J. Gastroenterol, vol.109, p.1562, 2014.

E. Frohnmeyer, P. Deptula, T. A. Nyman, P. K. Laine, H. Vihinen et al., Secretome profiling of Propionibacterium freudenreichii reveals highly variable responses even among the closely related strains, Microb. Biotechnol, vol.11, pp.510-526, 2018.

K. Furuichi, K. Hojo, Y. Katakura, K. Ninomiya, and S. Shioya, Aerobic culture of Propionibacterium freudenreichii ET-3 can increase production ratio of 1,4-dihydroxy-2-naphthoic acid to menaquinone, J. Biosci. Bioeng, vol.101, pp.464-470, 2006.

V. Gagnaire, J. Jardin, H. Rabah, V. Briard-bion, J. et al., Emmental cheese environment enhances Propionibacterium freudenreichii stress tolerance, PLoS ONE, vol.10, p.135780, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01372936

M. Galardini, E. G. Biondi, M. Bazzicalupo, and A. Mengoni, , 2011.

, CONTIGuator: a bacterial genomes finishing tool for structural insights on draft genomes, Source Code Biol. Med, vol.6, p.11

M. Y. Galperin, K. S. Makarova, Y. I. Wolf, and E. V. Koonin, Expanded microbial genome coverage and improved protein family annotation in the COG database, Nucleic Acids Res, vol.43, pp.261-269, 2015.

C. Ghazaei, Role and mechanism of the Hsp70 molecular chaperone machines in bacterial pathogens, J. Med. Microbiol, vol.66, pp.259-265, 2017.

M. Gilar, P. Olivova, A. E. Daly, and J. C. Gebler, Two-dimensional separation of peptides using RP-RP-HPLC system with different pH in first and second separation dimensions, J. Sep. Sci, vol.28, pp.1694-1703, 2005.

K. Giles, J. P. Williams, and I. Campuzano, Enhancements in travelling wave ion mobility resolution, Rapid Commun. Mass Spectrom. RCM, vol.25, pp.1559-1566, 2011.

X. Guo, J. Kim, H. Nam, S. Park, and J. Kim, Anaerobe, vol.16, pp.321-326, 2010.

H. Heberle, G. V. Meirelles, F. R. Da-silva, G. P. Telles, and R. Minghim, InteractiVenn: a web-based tool for the analysis of sets through Venn diagrams, BMC Bioinformatics, vol.16, p.169, 2015.

C. Hill, F. Guarner, G. Reid, G. R. Gibson, D. J. Merenstein et al., Expert consensus document: the international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic, Nat. Rev. Gastroenterol. Hepatol, vol.11, pp.506-514, 2014.

S. Huang, H. Rabah, J. Jardin, V. Briard-bion, S. Parayre et al., Hyperconcentrated sweet whey, a new culture medium that enhances Propionibacterium freudenreichii stress tolerance, Appl. Environ. Microbiol, vol.82, pp.4641-4651, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01454632

U. Hynönen and A. Palva, Lactobacillus surface layer proteins: structure, function and applications, Appl. Microbiol. Biotechnol, vol.97, pp.5225-5243, 2013.

K. Isawa, K. Hojo, N. Yoda, T. Kamiyama, S. Makino et al., Isolation and identification of a new bifidogenic growth stimulator produced by Propionibacterium freudenreichii ET-3, Biosci. Biotechnol. Biochem, vol.66, pp.679-681, 2002.

Y. Ishihama, Y. Oda, T. Tabata, T. Sato, T. Nagasu et al., Exponentially modified protein abundance index (emPAI) for estimation of absolute protein amount in proteomics by the number of sequenced peptides per protein, Mol. Cell. Proteomics MCP, vol.4, pp.1265-1272, 2005.

G. Jan, A. Belzacq, D. Haouzi, A. Rouault, D. Métivier et al., Propionibacteria induce apoptosis of colorectal carcinoma cells via shortchain fatty acids acting on mitochondria, Cell Death Differ, vol.9, pp.179-188, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00088749

G. Jan, A. Rouault, and J. Maubois, Acid stress susceptibility and acid adaptation of Propionibacterium freudenreichii subsp. shermanii, Le Lait, vol.80, pp.325-336, 2000.
URL : https://hal.archives-ouvertes.fr/hal-00895409

J. Jeon, H. J. Mok, Y. Choi, S. C. Park, H. Jo et al., Proteomic analysis of extracellular vesicles derived from Propionibacterium acnes, PROTEOMICS -Clin. Appl, vol.11, p.1600040, 2017.

V. Kainulainen and T. K. Korhonen, Dancing to another tune-adhesive moonlighting proteins in bacteria, Biology, vol.3, pp.178-204, 2014.

M. Khaleghi and R. Kasra, Effect of environmental stresses on S-layer production in Lactobacillus acidophilus ATCC 4356, Advances in Applied Biotechnology, pp.209-224, 2012.

M. Khaleghi, R. K. Kermanshahi, M. M. Yaghoobi, S. H. Zarkesh-esfahani, and A. Baghizadeh, Assessment of bile salt effects on s-layer production, slp gene expression and some physicochemical properties of Lactobacillus acidophilus ATCC 4356, J. Microbiol. Biotechnol, vol.20, pp.749-756, 2010.

A. Knaust, M. V. Weber, S. Hammerschmidt, S. Bergmann, M. Frosch et al., Cytosolic proteins contribute to surface plasminogen recruitment of Neisseria meningitidis, J. Bacteriol, vol.189, pp.3246-3255, 2007.

B. Kos, J. Suskovi?, S. Vukovi?, M. Simpraga, J. Frece et al., , 2003.

, Adhesion and aggregation ability of probiotic strain Lactobacillus acidophilus M92

J. Kuharev, P. Navarro, U. Distler, O. Jahn, and S. Tenzer, In-depth evaluation of software tools for data-independent acquisition based label-free quantification, Appl. Microbiol, vol.94, pp.3140-3151, 2015.

A. Lan, A. Bruneau, M. Bensaada, C. Philippe, P. Bellaud et al., )2-dimethylhydrazine, Br. J. Nutr, vol.100, pp.1251-1259, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01454096

A. Lan, D. Lagadic-gossmann, C. Lemaire, C. Brenner, J. et al., , 2007.

, Apoptosis Int. J. Program. Cell Death, vol.12, pp.573-591

O. Langella, B. Valot, T. Balliau, M. Blein-nicolas, L. Bonhomme et al., X!TandemPipeline: a tool to manage sequence redundancy for protein inference and phosphosite identification, J. Proteome Res, vol.16, pp.494-503, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01484169

L. Maréchal, C. Peton, V. Plé, C. Vroland, C. Jardin et al., Surface proteins of Propionibacterium freudenreichii are involved in its anti-inflammatory properties, J. Proteomics Genomics Res, vol.113, p.13, 2015.

P. Leverrier, D. Dimova, V. Pichereau, Y. Auffray, P. Boyaval et al., Susceptibility and adaptive response to bile salts in Propionibacterium freudenreichii: physiological and proteomic analysis, Appl. Environ. Microbiol, vol.69, pp.3809-3818, 2003.

P. Leverrier, Y. Fremont, A. Rouault, P. Boyaval, J. et al., In vitro tolerance to digestive stresses of propionibacteria: influence of food matrices, Food Microbiol, vol.22, pp.11-18, 2005.
URL : https://hal.archives-ouvertes.fr/hal-01453978

Y. Lin, Y. Liu, J. Li, Y. Zhao, Q. He et al., , vol.31, pp.2705-2713, 2010.

A. C. Malik, G. W. Reinbold, and E. R. Vedamuthu, An evaluation of the taxonomy of Propionibacterium, Can. J. Microbiol, vol.14, pp.1185-1191, 1968.

K. Mitsuyama, J. Masuda, H. Yamasaki, K. Kuwaki, S. Kitazaki et al., Treatment of ulcerative colitis with milk whey culture with Propionibacterium freudenreichii, J. Intest. Microbiol, vol.21, pp.143-147, 2007.

S. J. Oak and R. Jha, The effects of probiotics in lactose intolerance: a systematic review, Crit. Rev. Food Sci. Nutr, vol.9, pp.1-9, 2018.

J. Plaza-díaz, F. J. Ruiz-ojeda, L. M. Vilchez-padial, G. , and A. , Evidence of the anti-inflammatory effects of probiotics and synbiotics in intestinal chronic diseases, Nutrients, vol.9, p.555, 2017.

C. Plé, J. Breton, R. Richoux, M. Nurdin, S. Deutsch et al., Combining selected immunomodulatory Propionibacterium freudenreichii and Lactobacillus delbrueckii strains: reverse engineering development of an anti-inflammatory cheese, Mol. Nutr. Food Res, vol.60, pp.935-948, 2016.

C. Plé, R. Richoux, J. Jardin, M. Nurdin, V. Briard-bion et al.,

, , vol.18, pp.575-585

D. Pum, J. L. Toca-herrera, and U. B. Sleytr, S-layer protein selfassembly, 2013.

, Int. J. Mol. Sci, vol.14, pp.2484-2501

H. Rabah, F. L. Rosa-do-carmo, J. , and G. , Dairy Propionibacteria: versatile probiotics. Microorganisms, vol.5, p.24, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01524323

N. Roland, D. Bougle, F. Lebeurrier, P. Arhan, and J. L. Maubois, , 1998.

M. Rondanelli, M. A. Faliva, S. Perna, A. Giacosa, G. Peroni et al., Using probiotics in clinical practice: where are we now? A review of existing meta-analyses, Gut Microbes, vol.8, pp.521-543, 2017.

F. L. Rosa-do-carmo, H. Rabah, B. Fernandes-cordeiro, S. H. Da-silva, G. Jan et al., Applications of Probiotic Bacteria and Dairy Foods in Health, Current Research in Microbiology, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01583804

L. Ruiz, Y. Couté, B. Sánchez, C. G. De-los-reyes-gavilán, J. Sanchez et al., The cell-envelope proteome of Bifidobacterium longum in an in vitro bile environment, Microbiology, vol.155, pp.957-967, 2009.

L. Ruiz, A. Margolles, and B. Sánchez, Bile resistance mechanisms in Lactobacillus and Bifidobacterium, Front. Microbiol, vol.4, p.396, 2013.

J. Sambrook and D. W. Russell, Molecular Cloning: a Laboratory Manual, 2001.

B. Sánchez, M. C. Urdaci, and A. Margolles, Extracellular proteins secreted by probiotic bacteria as mediators of effects that promote mucosa-bacteria interactions, Microbiol. Read. Engl, vol.156, pp.3232-3242, 2010.

S. Sandes, L. Alvim, B. Silva, L. Acurcio, C. Santos et al., , 2017.

. Res, , vol.200, pp.1-13

P. Schär-zammaretti and J. Ubbink, The cell wall of lactic acid bacteria: surface constituents and macromolecular conformations, Biophys. J, vol.85, pp.4076-4092, 2003.

K. Seki, H. Nakao, H. Umino, H. Isshiki, N. Yoda et al., Propionibacterium on fecal bacteria, putrefactive metabolite, defecation frequency and fecal properties in senile volunteers needed serious nursing-care taking enteral nutrition by tube feeding, J. Intest. Microbiol, vol.18, pp.107-115, 2004.

P. Shannon, A. Markiel, O. Ozier, N. S. Baliga, J. T. Wang et al., Cytoscape: a software environment for integrated models of biomolecular interaction networks, Genome Res, vol.13, pp.2498-2504, 2003.

W. M. Silva, R. D. Carvalho, S. C. Soares, I. F. Bastos, E. L. Folador et al., Label-free proteomic analysis to confirm the predicted proteome of Corynebacterium pseudotuberculosis under nitrosative stress mediated by nitric oxide, BMC Genomics, vol.15, p.1065, 2014.

W. M. Silva, E. L. Folador, S. C. Soares, G. H. Souza, A. V. Santos et al., Label-free quantitative proteomics of Corynebacterium pseudotuberculosis isolates reveals differences between Biovars ovis and equi strains, BMC Genomics, vol.18, pp.76-81, 2006.
URL : https://hal.archives-ouvertes.fr/hal-01593194

F. Valence, S. M. Deutsch, R. Richoux, V. Gagnaire, and S. Lortal, , 2000.

/. S0022029900004118-van-der-mei, H. Van-de-belt-gritter, B. Pouwels, P. Martinez, B. Busscher et al., Cell surface hydrophobicity is conveyed by S-layer proteins-a study in recombinant lactobacilli, Colloids Surf. B Biointerfaces, vol.67, pp.127-134, 2003.

V. Vastano, A. Pagano, A. Fusco, G. Merola, M. Sacco et al., The Lactobacillus plantarum Eno A1 enolase is involved in immunostimulation of Caco-2 cells and in biofilm development, Adv. Exp. Med. Biol, vol.897, pp.33-44, 2016.

J. A. Vizcaíno, A. Csordas, N. Del-toro, J. A. Dianes, J. Griss et al., 2016 update of the PRIDE database and its related tools, Nucleic Acids Res, vol.44, pp.447-456, 2016.

W. W. Wilson, M. M. Wade, S. C. Holman, and F. R. Champlin, Status of methods for assessing bacterial cell surface charge properties based on zeta potential measurements, J. Microbiol. Methods, vol.43, pp.224-228, 2001.

C. C. Wong, D. Cociorva, C. A. Miller, A. Schmidt, C. Monell et al., Proteomics of Pyrococcus furiosus (Pfu): identification of extracted proteins by three independent methods, J. Proteome Res, vol.12, pp.763-770, 2013.

H. Rabah, F. L. Do-carmo, and G. Jan, Dairy Propionibacteria: Versatile Probiotics. Microorganisms, vol.5, 2017.

F. J. Cousin, D. D. Mater, B. Foligne, and G. Jan, Dairy propionibacteria as human probiotics: A review of recent evidence, Dairy Sci. Technol, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00868601

F. J. Cousin, Assessment of the Probiotic Potential of a Dairy Product Fermented by Propionibacterium freudenreichii in Piglets, J. Agric. Food Chem, vol.60, pp.7917-7927, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01209320

B. Foligné, Promising immunomodulatory effects of selected strains of dairy propionibacteria as evidenced in vitro and in vivo, Appl. Environ. Microbiol, vol.76, pp.8259-8264, 2010.

A. Oksaharju, Effects of probiotic Lactobacillus rhamnosus GG and Propionibacterium freudenreichii ssp. shermanii JS supplementation on intestinal and systemic markers of inflammation in ApoE*3Leiden mice consuming a high-fat diet, Br. J. Nutr, vol.110, pp.77-85, 2013.

K. Kajander, Clinical trial: multispecies probiotic supplementation alleviates the symptoms of irritable bowel syndrome and stabilizes intestinal microbiota, Aliment. Pharmacol. Ther, vol.27, pp.48-57, 2008.

C. Plé, Single-strain starter experimental cheese reveals antiinflammatory effect of Propionibacterium freudenreichii CIRM BIA 129 in TNBScolitis model, J. Funct. Foods, vol.18, pp.575-585, 2015.

C. Plé, Combining selected immunomodulatory Propionibacterium freudenreichii and Lactobacillus delbrueckii strains: Reverse engineering development of an anti-inflammatory cheese, Mol. Nutr. Food Res, vol.60, pp.935-948, 2016.

L. Maréchal and C. , Surface proteins of Propionibacterium freudenreichii are involved in its anti-inflammatory properties, J. Proteomics, vol.113, pp.447-461, 2015.

F. L. Do-carmo, Propionibacterium freudenreichii Surface Protein SlpB Is Involved in Adhesion to Intestinal HT-29 Cells, Front. Microbiol, vol.8, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01824996

F. L. Do-carmo, Mutation of the surface layer protein SlpB has pleiotropic effects in the probiotic Propionibacterium freudenreichii 129, Front. Microbiol, vol.9, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01857987

S. Deutsch, Identification of proteins involved in the antiinflammatory properties of Propionibacterium freudenreichii by means of a multi-strain study, Sci. Rep, vol.7, p.46409, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01510019

F. L. Do-carmo, Applications of Probiotic Bacteria and Dairy
URL : https://hal.archives-ouvertes.fr/hal-01583804

D. E. Wilmington, , 2017.

S. T. Sonis, The pathobiology of mucositis, Nat. Rev. Cancer, vol.4, pp.277-284, 2004.

M. M. Antunes, Pretreatment With L-Citrulline Positively Affects the Mucosal Architecture and Permeability of the Small Intestine in a Murine Mucositis Model, JPEN J. Parenter. Enteral Nutr, vol.40, pp.279-286, 2016.

C. Chang, 5-Fluorouracil induced intestinal mucositis via nuclear factor-?B activation by transcriptomic analysis and in vivo bioluminescence imaging, PloS One, vol.7, p.31808, 2012.

A. M. Stringer, Interaction between host cells and microbes in chemotherapy-induced mucositis, Nutrients, vol.5, pp.1488-1499, 2013.

R. D. Carvalho, Use of wild type or recombinant Lactic Acid Bacteria as an alternative treatment for gastrointestinal inflammatory diseases: A focus on, Inflammatory Bowel Diseases and Mucositis. Front. Microbiol, vol.8, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01602781

A. C. Malik, G. W. Reinbold, and E. R. Vedamuthu, An evaluation of the taxonomy of Propionibacterium, Can. J. Microbiol, vol.14, pp.1185-1191, 1968.

R. D. Carvalho, Secretion of biologically active pancreatitisassociated protein I (PAP) by genetically modified dairy Lactococcus lactis NZ9000 in the prevention of intestinal mucositis, Microb. Cell Factories, vol.16, p.27, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01607391

P. M. Soares, Gastrointestinal dysmotility in 5-fluorouracilinduced intestinal mucositis outlasts inflammatory process resolution, Cancer Chemother. Pharmacol, vol.63, pp.91-98, 2008.

J. S. Oliveira, In vitro and in vivo evaluation of two potential probiotic lactobacilli isolated from cocoa fermentation ( Theobroma cacao L.), J. Funct. Foods, vol.47, pp.184-191, 2018.

A. Giulietti, An Overview of Real-Time Quantitative PCR: Applications to Quantify Cytokine Gene Expression, Methods, vol.25, pp.386-401, 2001.

G. Hu, AIM2 contributes to the maintenance of intestinal integrity via Akt and protects against Salmonella mucosal infection, Mucosal Immunol, vol.9, pp.1330-1339, 2016.

R. Tokumasu, Dose-dependent role of claudin-1 in vivo in orchestrating features of atopic dermatitis, Proc. Natl. Acad. Sci, vol.113, pp.4061-4068, 2016.

M. Wlodarska, Antibiotic Treatment Alters the Colonic Mucus Layer and Predisposes the Host to Exacerbated Citrobacter rodentium -Induced Colitis, Infect. Immun, vol.79, pp.1536-1545, 2011.

J. Hellemans, G. Mortier, A. De-paepe, and F. Speleman,

J. Vandesompele, qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data

, Genome Biol, vol.8, p.19, 2007.

E. Gerbino, P. Carasi, P. Mobili, M. A. Serradell, and A. Gómez-zavaglia, Role of S-layer proteins in bacteria, World J. Microbiol. Biotechnol, vol.31, pp.1877-1887, 2015.

U. B. Sleytr, B. Schuster, E. Egelseer, and D. Pum, S-layers: principles and applications, FEMS Microbiol. Rev, vol.38, pp.823-864, 2014.

F. L. Do-carmo, Extractable Bacterial Surface Proteins in Probiotic-Host Interaction, Front. Microbiol, vol.9, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01763214

B. L. Buck, E. Altermann, T. Svingerud, and T. R. Klaenhammer, Functional Analysis of Putative Adhesion Factors in Lactobacillus acidophilus NCFM, Appl. Environ. Microbiol, vol.71, pp.8344-8351, 2005.

J. Preising, Selection of bifidobacteria based on adhesion and antiinflammatory capacity in vitro for amelioration of murine colitis, Appl. Environ. Microbiol, vol.76, pp.3048-3051, 2010.

H. Rabah, Cheese matrix protects the immunomodulatory surface protein SlpB of Propionibacterium freudenreichii during in vitro digestion, Food Res. Int. Ott. Ont, vol.106, pp.712-721, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01707548

T. L. Denning, Expression of IL-10 receptors on epithelial cells from the murine small and large intestine, Int. Immunol, vol.12, pp.133-139, 2000.

A. Jarry, Mucosal IL-10 and TGF-? play crucial roles in preventing LPS-driven, IFN-?-mediated epithelial damage in human colon explants, J. Clin. Invest, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00277246

T. Kucharzik, Acute induction of human IL-8 production by intestinal epithelium triggers neutrophil infiltration without mucosal injury, Gut, vol.54, pp.1565-1572, 2005.

M. Singer and P. Sansonetti, IL-8 is a key chemokine regulating

. Immunol, . Baltim, and . Md, , vol.173, pp.4197-4206, 1950.

A. Bai, Q. Ouyang, W. Zhang, C. Wang, and S. Li, Probiotics inhibit TNF-alpha-induced interleukin-8 secretion of HT29 cells, World J. Gastroenterol. WJG, vol.10, pp.455-457, 2004.

M. Cammarota, In vitro evaluation of Lactobacillus plantarum DSMZ 12028 as a probiotic: Emphasis on innate immunity, Int. J. Food Microbiol, vol.135, pp.90-98, 2009.

R. K. Duary, V. K. Batish, and S. Grover, Immunomodulatory activity of two potential probiotic strains in LPS-stimulated HT-29 cells, Genes Nutr, vol.9, p.398, 2014.

P. Li, Q. Yu, X. Ye, Z. Wang, and Q. Yang, Lactobacillus S-layer protein inhibition of Salmonella-induced reorganization of the cytoskeleton and activation of MAPK signalling pathways in Caco-2 cells, Microbiology, vol.157, pp.2639-2646, 2011.

I. S. Rolny, I. Tiscornia, S. M. Racedo, P. F. Pérez, and . Bollati-fogolín,

M. G. Vizoso-pinto, Lactobacilli stimulate the innate immune response and modulate the TLR expression of HT29 intestinal epithelial cells in vitro, Int. J. Food Microbiol, vol.133, pp.86-93, 2009.

T. H. Mogensen, Pathogen Recognition and Inflammatory Signaling in Innate Immune Defenses, Clin. Microbiol. Rev, vol.22, pp.240-273, 2009.

R. Paolillo, C. Romano-carratelli, S. Sorrentino, N. Mazzola, and A. Rizzo, Immunomodulatory effects of Lactobacillus plantarum on human colon cancer cells, Int. Immunopharmacol, vol.9, pp.1265-1271, 2009.

K. Gao, Immunomodulation and signaling mechanism of Lactobacillus rhamnosus GG and its components on porcine intestinal epithelial cells stimulated by lipopolysaccharide, J. Microbiol. Immunol. Infect, vol.50, pp.700-713, 2017.

M. Kumar, V. Kissoon-singh, A. L. Coria, F. Moreau, and K. Chadee, Probiotic mixture VSL#3 reduces colonic inflammation and improves intestinal barrier function in Muc2 mucin-deficient mice, Am. J. Physiol.-Gastrointest

, Liver Physiol, vol.312, pp.34-45, 2017.

L. M. Trindade, Oral administration of Simbioflora® (synbiotic) 9, pp.477-486, 2018.

J. M. Bowen, VSL#3 probiotic treatment reduces chemotherapyinduced diarrhea and weight loss, Cancer Biol. Ther, vol.6, pp.1449-1454, 2007.

S. Kato, Probiotic Bifidobacterium bifidum G9-1 attenuates 5-fluorouracil-induced intestinal mucositis in mice via suppression of dysbiosisrelated secondary inflammatory responses, Clin. Exp. Pharmacol. Physiol, vol.44, pp.1017-1025, 2017.

N. Y. Lycke and M. Bemark, The regulation of gut mucosal IgA B-cell responses: recent developments, Mucosal Immunol, vol.10, pp.1361-1374, 2017.

D. L. Schmucker, R. L. Owen, R. Outenreath, and K. Thoreux, Basis for the Age-related Decline in Intestinal Mucosal Immunity, Clin. Dev. Immunol, vol.10, pp.167-172, 2003.

D. Corridoni, Probiotic Bacteria Regulate Intestinal Epithelial Permeability in Experimental Ileitis by a TNF-Dependent Mechanism, PLoS ONE, vol.7, p.42067, 2012.

R. Mennigen, Probiotic mixture VSL#3 protects the epithelial barrier

, J. Physiol.-Gastrointest. Liver Physiol, vol.296, pp.1140-1149, 2009.

P. Henderson, J. E. Van-limbergen, J. Schwarze, and D. C. Wilson, Function of the intestinal epithelium and its dysregulation in inflammatory bowel disease, Inflamm. Bowel Dis, vol.17, pp.382-395, 2011.

H. Mi, Bifidobacterium Infantis Ameliorates Chemotherapy-Induced Intestinal Mucositis Via Regulating T Cell Immunity in Colorectal Cancer Rats, Cell. Physiol. Biochem, vol.42, pp.2330-2341, 2017.

P. F. Justino, Regulatory role of Lactobacillus acidophilus on inflammation and gastric dysmotility in intestinal mucositis induced by 5-fluorouracil in mice, Cancer Chemother. Pharmacol, vol.75, pp.559-567, 2015.

B. Foligne, Correlation between in vitro and in vivo immunomodulatory properties of lactic acid bacteria, World J. Gastroenterol, vol.13, pp.236-243, 2007.

C. V. Suschek, O. Schnorr, and V. Kolb-bachofen, The role of iNOS in chronic inflammatory processes in vivo: is it damage-promoting, protective, or active at all?, Curr. Mol. Med, vol.4, pp.763-775, 2004.

. Carvalho, United States) in PBS-casein (0.25%) and then added to the plate. After incubation for 1 h at room temperature, the wells were washed and biotin-conjugated anti-mouse IgA antibody (Southern Biotechnology), p.37, 2017.

?. , United States) and H2O2 t-test, Holm-Sidak t-test, One-Way ANOVA or Two-Way ANOVA followed by the Tukey or Sidak post-test, to streptavidin peroxidases (1:10,000) were added (Southern Biotechnology)

, Asterisks represent statistically significant differences FIGURE 2 | Whey protein isolate (WPI) confers stress tolerance on L. casei BL23 and P. freudenreichii 138. L. casei BL23 was cultured for 24 h in the indicated growth media until stationary phase and then subjected to (A) acid stress (pH 2 for 60 min at 37 ? C); (B) bile salts stress, These assays were performed in triplicate technique and biological triplicate

, E) bile salts stress, or (F) heat stress. Viable bacteria were enumerated by counting colonies in the challenged and control cultures and then, expressed as percent survival FIGURE 5 | Time-course of body weight for mice treated with (A) probiotic beverage fermented by L. casei BL23; (C) probiotic beverage fermented by P. freudenreichii 138 and (E) probiotic beverage fermented by association with L. casei BL23 and P. freudenreichii 138, ? C for 30 min). P. freudenreichii 138 was cultured for 72 h in each culture media until stationary phase, and then subjected to (D) acid stress

, Morphometric analysis of villus height and crypt depth of animals treated with (A,B) beverages fermented by L. casei BL23; (C,D) beverages fermented by P. freudenreichii 138 or (E,F) beverages fermented by the association of both bacteria following 5-FU or saline administration. Values were obtained by measuring ten random images of the ileum of mice, FIGURE 9 | Administration of probiotic beverages improves villus architecture

K. E. Almeida, A. Y. Tamime, and M. N. Oliveira, Influence of total solids contents of milk whey on the acidifying profile and viability of various lactic acid bacteria, LWT Food Sci. Technol, vol.42, pp.672-678, 2009.

M. M. Antunes, P. C. Leocádio, L. G. Teixeira, A. J. Leonel, D. C. Cara et al., , 2016.

, J. Parenter. Enter. Nutr, vol.40, pp.279-286

F. Baruzzi, S. De-candia, L. Quintieri, L. Caputo, D. Leo et al., ). . Microbiol, vol.8, p.640, 2017.

R. W. Bastos, S. H. Pedroso, A. T. Vieira, L. M. Moreira, C. S. França et al., Saccharomyces cerevisiae UFMG A-905 treatment reduces intestinal damage in a murine model of irinotecan-induced mucositis, Benef. Microbes, vol.7, pp.549-558, 2016.

S. C. Bischoff, G. Barbara, W. Buurman, T. Ockhuizen, J. Schulzke et al., Intestinal permeability -a new target for disease prevention and therapy, BMC Gastroenterol, vol.14, p.189, 2014.

J. M. Bowen, A. M. Stringer, R. J. Gibson, A. S. Yeoh, S. Hannam et al., VSL#3 probiotic treatment reduces chemotherapy-induced diarrhoea and weight loss, Cancer Biol. Ther, vol.6, pp.1445-1450, 2007.

F. L. Carmo, H. Rabah, B. Cordeiro, S. Silva, G. Jan et al., Applications of probiotic bacteria and dairy foods in health, Current Research in Microbiology Applications, pp.1-33, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01583804

R. D. Carvalho, N. Breyner, Z. M. Garcia, N. M. Rodrigues, L. Lemos et al., Secretion of biologically active pancreatitis associated protein I ( PAP ) by genetically modified dairy Lactococcus lactis NZ9000 in the prevention of intestinal mucositis, Microb. Cell Fact, vol.16, pp.1-11, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01607391

R. D. Carvalho, F. L. Do-carmo, A. De-oliveira-junior, P. Langella, J. Chatel et al., gastrointestinal inflammatory diseases: a focus on inflammatory bowel diseases and mucositis, vol.8, p.800, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01602781

C. T. Chang, T. Y. Ho, H. Lin, J. A. Liang, H. C. Huang et al., , 2012.

,

M. Ciorba, C. Hellemeier, W. Stenson, P. Parikh, J. C. Clemente et al., Probiotics to prevents gastrointestinal toxicity from cancer therapy: an interpretative review and call to action, Curr. Opin. Support. Palliat. Care, vol.1848, pp.1258-1270, 2012.

C. C. Coghetto, G. B. Brinques, and M. A. Ayub, Probiotics production and alternative encapsulation methodologies to improve their viabilities under adverse environmental conditions, Int. J. Food Sci. Nutr, vol.67, pp.929-943, 2016.

F. J. Cousin, S. Jouan-lanhouet, M. T. Dimanche-boitrel, L. Corcos, J. et al., Milk fermented by Propionibacterium freudenreichii induces apoptosis of HGT-1 human gastric cancer cells, PLoS One, vol.7, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01209327

F. J. Cousin, S. Louesdon, M. B. Maillard, S. Parayre, H. Falentin et al., The first dairy product exclusively fermented by Propionibacterium freudenreichii: a new vector to study probiotic potentialities in vivo, Food Microbiol, vol.32, pp.135-146, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01209321

F. J. Cousin, S. Jouan-lanhouet, N. Theret, C. Brenner, E. Jouan et al., The probiotic Propionibacterium freudenreichii as a new adjuvant for TRAIL-based therapy in colorectal cancer, Oncotarget, vol.7, pp.7161-7178, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01404971

F. J. Cousin, D. D. Mater, B. Foligne, J. , and G. , Dairy propionibacteria as human probiotics: a review of recent evidence, Dairy Sci. Technol, vol.91, pp.1-26, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00868601

A. Da?browska, K. Babij, S. Marek, and J. Chrzanowska, Viability and growth promotion of starter and probiotic bacteria in yogurt supplemented with whey protein hydrolysate during refrigerated storage, Postep. Hig. Med. Dosw, vol.71, pp.952-959, 2017.

J. Eales, P. Gibson, P. Whorwell, J. Kellow, A. Yellowlees et al., Systematic review and meta-analysis: the effects of fermented milk with Bifidobacterium lactis CNCM I-2494 and lactic acid bacteria on gastrointestinal discomfort in the general adult population, Ther. Adv. Gastroenterol, vol.10, pp.74-88, 2017.

M. Faure, C. Mettraux, D. Moennoz, J. Godin, J. Vuichoud et al., Specific amino acids increase mucin synthesis and microbiota in dextran sulfate sodium-treated rats, J. Nutr, vol.136, pp.1558-1564, 2006.

A. A. Ferreira, S. Huang, Í. T. Perrone, P. Schuck, G. Jan et al., Tracking Amazonian cheese microbial diversity: development of a noriginal, sustainable, and robust starter by freeze drying/spray drying, J. Dairy Sci, vol.100, pp.6997-7006, 2017.

B. Foligne, S. Nutten, C. Grangette, V. Dennin, D. Goudercourt et al., Correlation between in vitro and in vivo immunomodulatory properties of lactic acid bacteria, World J. Gastroenterol, vol.13, pp.236-243, 2007.

V. Gagnaire, J. Jardin, H. Rabah, V. Briard-bion, J. et al., Emmental cheese environment enhances Propionibacterium freudenreichii stress tolerance, PLoS One, vol.10, p.135780, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01372936

C. Hill, F. Guarner, G. Reid, G. R. Gibson, D. J. Merenstein et al., Expert consensus document: the international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic, Nat. Rev. Gastroenterol. Hepatol, vol.11, pp.506-514, 2014.

S. Huang, C. Cauty, A. Dolivet, Y. Le-loir, X. D. Chen et al., , 2016.

, J. Funct. Foods, vol.23, pp.453-463

S. Huang, H. Rabah, J. Jardin, V. Briard-bion, S. Parayre et al.,

, Hyperconcentrated sweet whey, a new culture medium that enhances Propionibacterium freudenreichii stress tolerance, Appl. Environ. Microbiol, vol.82, pp.4641-4651

M. E. Johansson, H. Sjövall, and G. C. Hansson, The gastrointestinal mucus system in health and disease, Nat. Rev. Gastroenterol. Hepatol, vol.10, pp.352-361, 2013.

P. F. Justino, L. F. Melo, A. F. Nogueira, C. M. Morais, W. O. Mendes et al., Regulatory role of Lactobacillus acidophilus on inflammation and gastric dysmotility in intestinal mucositis induced by 5-fluorouracil in mice, Cancer Chemother. Pharmacol, vol.75, pp.55-70, 2013.

B. Lee, S. Tachon, R. A. Eigenheer, B. S. Phinney, and M. L. Marco, , 2015.

, Lactobacillus casei low-temperature, dairy-associated proteome promotes persistence in the mammalian digestive tract, J. Proteome Res, vol.14, pp.3136-3147

B. Lee, X. Yin, S. M. Griffey, and M. L. Marco, Attenuation of colitis by Lactobacillus casei BL23 is dependent on the dairy delivery matrix, Appl. Environ. Microbiol, vol.81, pp.6425-6435, 2015.

F. Leroy, D. Vuyst, and L. , Fermented food in the context of a healthy diet: how to produce novel functional foods?, Curr. Opin. Clin. Nutr. Metab. Care, vol.17, pp.574-581, 2014.

Y. D. Livney, Milk proteins as vehicles for bioactives, Curr. Opin. Colloid Interface Sci, vol.15, pp.73-83, 2010.

D. B. Longley, D. P. Harkin, and P. G. Johnston, 5-Fluorouracil: mechanisms of action and clinical strategies, Nat. Rev. Cancer, vol.3, pp.330-338, 2003.

T. D. Luerce, A. C. Gomes-santos, C. S. Rocha, T. G. Moreira, D. N. Cruz et al., Anti-inflammatory effects of Lactococcus lactis NCDO 2118 during the remission period of chemically induced colitis, Gut Pathog, vol.6, pp.1-11, 2014.

N. Y. Lycke and M. Bemark, The regulation of gut mucosal IgA B-cell responses: recent developments, Mucosal Immunol, vol.10, pp.1361-1374, 2017.

A. R. Madureira, C. I. Pereira, A. M. Gomes, M. E. Pintado, X. Malcata et al., Bovine whey proteins -overview on their main biological properties, Food Res. Int, vol.40, pp.1197-1211, 2007.

A. C. Malik, G. W. Reinbold, and E. R. Vedamuthu, An evaluation of the taxonomy of Propionibacterium, Can. J. Microbiol, vol.14, pp.1185-1191, 1968.

K. Marshall, Therapeutic applications of whey protein, Altern. Med. Rev, vol.9, pp.136-156, 2004.

M. Moslemi, R. Mazaheri-nezhad-fard, S. M. Hosseini, A. Homayouni-rad, and A. M. Mortazavian, Incorporation of Propionibacteria in fermented milks as a probiotic, Crit. Rev. Food Sci. Nutr, vol.56, pp.1290-1312, 2016.

A. C. Ouwehand and S. Salminen, In vitro adhesion assays for probiotics and their in vivo relevance: a review, Microb. Ecol. Health Dis, vol.15, pp.175-184, 2003.

O. Pabst, V. Cerovic, and M. Hornef, Secretory IgA in the coordination of establishment and maintenance of the microbiota, Trends Immunol, vol.37, pp.287-296, 2016.

E. Pessione, Lactic acid bacteria contribution to gut microbiota complexity: lights and shadows, Front. Cell. Infect. Microbiol, vol.2, p.86, 2012.

C. Plé, R. Richoux, J. Jardin, M. Nurdin, V. Briard-bion et al., Single-strain starter experimental cheese reveals anti-inflammatory effect of Propionibacterium freudenreichii CIRM BIA 129 in TNBS-colitis model, J. Funct. Foods, vol.18, pp.575-585, 2015.

L. D. Prisciandaro, M. S. Geier, R. N. Butler, A. G. Cummins, and G. S. Howarth, Probiotic factors partially improve parameters of 5-fluorouracilinduced intestinal mucositis in rats, Cancer Biol. Ther, vol.11, pp.671-677, 2011.

H. Rabah, F. Rosa-do-carmo, J. , and G. , Dairy Propionibacteria: versatile probiotics. Microorganisms, vol.5, p.24, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01524323

T. Rochat, L. Bermúdez-humarán, J. J. Gratadoux, C. Fourage, C. Hoebler et al., Anti-inflammatory effects of Lactobacillus casei BL23 producing or not a manganese-dependant catalase on DSS-induced colitis in mice, Microb. Cell Fact, vol.6, pp.1-10, 2007.

A. B. Shori, Influence of food matrix on the viability of probiotic bacteria: a review based on dairy and non-dairy beverages, Food Biosci, vol.13, pp.1-8, 2016.

T. M. Silva, L. Z. Rodrigues, C. F. Codevilla, C. Silva, and C. R. Menezes, Coacervação complexa?: uma técnica para a encapsulação de probióticos, Ciência Nat, vol.37, pp.49-55, 2015.

K. Skryplonek and M. Jasi?ska, Fermented probiotic beverages based on acid whey, Acta Sci. Pol. Technol. Aliment, vol.14, pp.397-405, 2015.

P. M. Soares, J. M. Mota, A. S. Gomes, R. B. Oliveira, A. M. Assreuy et al., Gastrointestinal dysmotility in 5-fluorouracil-induced intestinal mucositis outlasts inflammatory process resolution, Cancer Chemother. Pharmacol, vol.63, pp.91-98, 2008.

S. T. Sonis, A biological approach to mucositis, J. Support. Oncol, vol.2, pp.21-36, 2004.

A. M. Stringer, Interaction between host cells and microbes in chemotherapy-induced mucositis, Nutrients, vol.5, pp.1488-1499, 2013.

A. M. Stringer, R. J. Gibson, J. M. Bowen, R. M. Logan, K. Ashton et al., Gastrointestinal microflora and mucins may play a critical role in the development of 5-fluorouracil-induced gastrointestinal mucositis, Int. J. Exp. Pathol, vol.90, pp.430-441, 2009.

A. M. Stringer, R. J. Gibson, J. M. Bowen, R. M. Logan, A. S. Yeoh et al., Chemotherapy-induced mucositis: the role of gastrointestinal microflora and mucins in the luminal environment, J. Support. Oncol, vol.5, pp.259-267, 2007.

Y. Tang, Y. Wu, Z. Huang, W. Dong, Y. Deng et al., Administration of probiotic mixture DM#1 ameliorated 5-fluorouracil induced intestinal mucositis and dysbiosis in rats, Nutrition, vol.33, pp.96-104, 2017.

N. Tharmaraj and N. P. Shah, Selective enumeration of Lactobacillus delbrueckii ssp. bulgaricus, Streptococcus thermophilus, Lactobacillus acidophilus, bifidobacteria, Lactobacillus casei, Lactobacillus rhamnosus, and propionibacteria, 2003.

, J. Dairy Sci, vol.86, pp.2288-2296

L. M. Trindade, V. D. Martins, N. M. Rodrigues, E. L. Souza, F. S. Martins et al., , vol.9, pp.477-486, 2018.

L. A. Vargas, D. W. Olson, and K. J. Aryana, Whey protein isolate improves acid and bile tolerances of Streptococcus thermophilus ST-M5 and Lactobacillus delbrueckii ssp. bulgaricus LB-12, J. Dairy Sci, vol.98, pp.2215-2221, 2015.

L. Watterlot, T. Rochat, H. Sokol, C. Cherbuy, I. Bouloufa et al., Intragastric administration of a superoxide dismutase-producing recombinant Lactobacillus casei BL23 strain attenuates DSS colitis in mice, Int. J. Food Microbiol, vol.144, pp.35-41, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00600679

, Guidelines for the Evaluation of Probiotics in Food, London: World Health Organization, pp.1-11, 2002.

J. S. Yadav, S. Yan, S. Pilli, L. Kumar, R. D. Tyagi et al., Cheese whey: a potential resource to transform into bioprotein, functional/nutritional proteins and bioactive peptides, Biotechnol. Adv, vol.33, pp.756-774, 2015.

J. Beaulieu, C. Dupont, and P. Lemieux, Anti-inflammatory potential of a malleable matrix composed of fermented whey proteins and lactic acid bacteria in an atopic dermatitis model, Journal of Inflammation, p.6

V. Bell, J. Ferrão, and T. Fernandes, Nutritional Guidelines and Fermented Food Frameworks, Foods, 2017.

R. Bibiloni, VSL#3 probiotic-mixture induces remission in patients with active ulcerative colitis, The American Journal of Gastroenterology, vol.100, issue.7, pp.1539-1546, 2005.

G. Bouma and W. Strober, The immunological and genetic basis of inflammatory bowel disease, Nature Reviews. Immunology, issue.7, pp.521-533, 2003.

B. L. Buck, Functional Analysis of Putative Adhesion Factors in Lactobacillus acidophilus NCFM, Applied and Environmental Microbiology, vol.71, pp.8344-8351, 2005.

R. D. Carvalho, Use of wild type or recombinant Lactic Acid Bacteria as an alternative treatment for gastrointestinal inflammatory diseases: A focus on Inflammatory Bowel Diseases and Mucositis, Frontiers in Microbiology, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01602781

X. Chen, The S-layer proteins of Lactobacillus crispatus strain ZJ001 is responsible for competitive exclusion against Escherichia coli O157:H7 and Salmonella typhimurium, International Journal of Food Microbiology, vol.20, issue.3, pp.307-312, 2007.

F. J. Cousin, Dairy propionibacteria as human probiotics: A review of recent evidence. Dairy Science & Technology, 2 ago, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00868601

F. J. Cousin, Milk fermented by Propionibacterium freudenreichii induces apoptosis of HGT-1 human gastric cancer cells, PloS One, issue.3, p.31892, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01209327

F. J. Cousin, The probiotic Propionibacterium freudenreichii as a new adjuvant for TRAIL-based therapy in colorectal cancer, Oncotarget, issue.6, pp.7161-7178, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01404971

S. Deutsch, Identification of proteins involved in the anti-inflammatory properties of Propionibacterium freudenreichii by means of a multi-strain study, Scientific Reports, issue.7, p.13, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01510019

. Do and F. L. Carmo, Open Access eBooks 919 North Market Street Suite 425 Wilmington, Current Research in Microbiology, p.np, 2017.

. Do and F. L. Carmo, Propionibacterium freudenreichii Surface Protein SlpB Is Involved in Adhesion to Intestinal HT-29 Cells, Frontiers in Microbiology, issue.8, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01824996

. Do and F. L. Carmo, Extractable Bacterial Surface Proteins in Probiotic-Host Interaction, Frontiers in Microbiology, issue.9, p.4, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01763214

N. Dohm, Molecular and biochemical properties of the S-layer protein from the wine bacterium Lactobacillus hilgardii B706. Archives of Microbiology, pp.251-261, 2011.

, Scientific Opinion on the maintenance of the list of QPS microorganisms intentionally added to food or feed, QPS 2009 update, vol.12, p.1431, 2009.

N. Eslami, R. K. Kermanshahi, and M. Erfan, Studying the Stability of S-Layer Protein of Lactobacillus Acidophilus ATCC 4356 in Simulated Gastrointestinal Fluids Using SDS-PAGE and Circular Dichroism, Iranian Journal of Pharmaceutical Research : IJPR, v, vol.12, pp.47-56, 2013.

B. Foligné, Promising immunomodulatory effects of selected strains of dairy propionibacteria as evidenced in vitro and in vivo, Applied and Environmental Microbiology, pp.8259-8264

B. Foligné, Tracking the microbiome functionality: focus on Propionibacterium species. Gut, v. 62, n. 8, pp.1227-1228, 2013.

Y. A. Ghouri, Systematic review of randomized controlled trials of probiotics, prebiotics, and synbiotics in inflammatory bowel disease, Clinical and Experimental Gastroenterology, issue.7, pp.473-487, 2014.

M. Gueimonde, Adhesion and competitive inhibition and displacement of human enteropathogens by selected lactobacilli, pp.467-471, 2006.

X. Guo, Screening lactic acid bacteria from swine origins for multistrain probiotics based on in vitro functional properties, Anaerobe, v, vol.16, issue.4, pp.321-326

R. Havenaar, B. T. Brink, and J. H. Veld, Selection of strains for probiotic use, pp.209-224, 1992.

C. Hill, Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic, Nature Reviews. Gastroenterology & Hepatology, issue.11, pp.506-514, 2014.

A. L. Houwink, A macromolecular mono-layer in the cell wall of Spirillum spec, Biochimica Et Biophysica Acta, issue.10, pp.360-366, 1953.

Y. Huang and M. C. Adams, An in vitro model for investigating intestinal adhesion of potential dairy propionibacteria probiotic strains using cell line C2BBe1, Letters in Applied Microbiology, issue.4, pp.213-216, 2003.

U. Hynönen and A. Palva, Lactobacillus surface layer proteins: structure, function and applications, Applied Microbiology and Biotechnology, vol.12, pp.5225-5243, 2013.

M. E. Johansson, Composition and functional role of the mucus layers in the intestine. Cellular and molecular life sciences: CMLS, v. 68, n. 22, pp.3635-3641, 2011.

P. F. Justino, Regulatory role of Lactobacillus acidophilus on inflammation and gastric dysmotility in intestinal mucositis induced by 5-fluorouracil in mice, Cancer Chemotherapy and Pharmacology, issue.3, pp.559-567, 2015.

D. M. Klinman, FDA guidance on prophylactic DNA vaccines: analysis and recommendations. Vaccine, v. 28, n. 16, pp.2801-2805, 2010.

S. R. Konstantinov, S layer protein A of Lactobacillus acidophilus NCFM regulates immature dendritic cell and T cell functions, Proceedings of the National Academy of Sciences, v. 105, n. 49, vol.9, pp.19474-19479, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01454074

C. Le-maréchal, Surface proteins of Propionibacterium freudenreichii are involved in its anti-inflammatory properties, Journal of Proteomics, vol.113, pp.447-461

S. Lebeer, J. ;. Vanderleyden, and S. C. De-keersmaecker, Host interactions of probiotic bacterial surface molecules: comparison with commensals and pathogens, Nature Reviews. Microbiology, issue.3, pp.171-184, 2010.

P. Li, Lactobacillus S-layer protein inhibition of Salmonella-induced reorganization of the cytoskeleton and activation of MAPK signalling pathways in Caco-2 cells. Microbiology (Reading, England), v. 157, n. Pt 9, pp.2639-2646, 2011.

Y. L. Lightfoot, SIGNR3-dependent immune regulation by Lactobacillus acidophilus surface layer protein A in colitis, The EMBO Journal, vol.1, issue.7, pp.881-895

P. Marteau, Probiotics, prebiotics, synbiotics: ecological treatment for inflammatory bowel disease. Gut, v. 55, n. 12, pp.1692-1693, 2006.

S. Ménard, Bifidobacterium breve and Streptococcus thermophilus secretion products enhance T helper 1 immune response and intestinal barrier in mice, Experimental Biology and Medicine, issue.10, pp.749-756, 2005.

M. Moussavi and M. C. Adams, An in vitro study on bacterial growth interactions and intestinal epithelial cell adhesion characteristics of probiotic combinations, Current Microbiology, issue.5, pp.327-335, 2010.

C. Nutrition and . S. For-f, Generally Recognized as Safe (GRAS). WebContent. Disponível, p.28, 2018.

P. W. O'toole, J. R. Marchesi, and C. Hill, Next-generation probiotics: the spectrum from probiotics to live biotherapeutics, Nature Microbiology, issue.5, 2017.

J. Otte and D. K. Podolsky, Functional modulation of enterocytes by gram-positive and gram-negative microorganisms, American Journal of Physiology. Gastrointestinal and Liver Physiology, 2004.

C. Plé, Single-strain starter experimental cheese reveals anti-inflammatory effect of Propionibacterium freudenreichii CIRM BIA 129 in TNBS-colitis model, Journal of Functional Foods, vol.18, pp.575-585, 2015.

C. Plé, Combining selected immunomodulatory Propionibacterium freudenreichii and Lactobacillus delbrueckii strains: Reverse engineering development of an antiinflammatory cheese. Molecular Nutrition & Food Research, v. 60, n. 4, pp.935-948, 2016.

J. Preising, Selection of bifidobacteria based on adhesion and anti-inflammatory capacity in vitro for amelioration of murine colitis, Applied and Environmental Microbiology, issue.9, pp.3048-3051, 2010.

H. Rabah, . Rosa-do, F. L. Carmo, and G. Jan, Dairy Propionibacteria: Versatile Probiotics. Microorganisms, v. 5, n. 2, 13 maio, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01524323

, Growth, Trends & Forecast 2018-2023. Disponível em, p.28, 2018.

C. U. Riedel, Interaction of bifidobacteria with Caco-2 cells-adhesion and impact on expression profiles, International Journal of Food Microbiology, issue.1, pp.62-68, 2006.

C. Rodríguez, Therapeutic effect of Streptococcus thermophilus CRL 1190-fermented milk on chronic gastritis, World Journal of Gastroenterology, pp.1622-1630, 2010.

J. Rong, Probiotic and anti-inflammatory attributes of an isolate Lactobacillus helveticus NS8 from Mongolian fermented koumiss, BMC microbiology, vol.15, p.196

B. Sánchez, Probiotics, gut microbiota, and their influence on host health and disease. Molecular Nutrition & Food Research, v. 61, p.1600240, 2017.

C. Santos-rocha, Anti-inflammatory properties of dairy lactobacilli, Inflammatory Bowel Diseases, pp.657-666
URL : https://hal.archives-ouvertes.fr/hal-00632487

C. Santos-rocha, Local and systemic immune mechanisms underlying the anti-colitis effects of the dairy bacterium Lactobacillus delbrueckii, PloS One, issue.9, p.85923, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01204288

V. K. Shiby and H. N. Mishra, Fermented milks and milk products as functional foods--a review, Critical Reviews in Food Science and Nutrition, issue.5, pp.482-496, 2013.

U. B. Sleytr, S-layers: principles and applications, FEMS Microbiology Reviews, issue.5, pp.823-864, 2014.

U. B. Sleytr and P. Messner, Crystalline surface layers in procaryotes, Journal of Bacteriology, issue.7, pp.2891-2897, 1988.

E. Smit, The S-layer Protein of Lactobacillus acidophilus ATCC 4356: Identification and Characterisation of Domains Responsible for S-protein Assembly and Cell Wall Binding, Journal of Molecular Biology, issue.2, pp.245-257, 2001.

S. T. Sonis, A biological approach to mucositis, The Journal of Supportive Oncology, issue.1, pp.21-32, 2004.

S. T. Sonis, The pathobiology of mucositis, Nature Reviews. Cancer, pp.277-284, 2004.

A. Sood, The probiotic preparation, VSL#3 induces remission in patients with mild-tomoderately active ulcerative colitis, Clinical Gastroenterology and Hepatology: The Official Clinical Practice Journal of the American Gastroenterological Association, issue.11, pp.1202-1209, 1209.

V. Taverniti, S-layer protein mediates the stimulatory effect of Lactobacillus helveticus MIMLh5 on innate immunity, Applied and Environmental Microbiology, pp.1221-1231, 2013.

A. Thierry, New insights into physiology and metabolism of Propionibacterium freudenreichii, International Journal of Food Microbiology, pp.19-27, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01454487

L. M. Trindade, Oral administration of Simbioflora® (synbiotic) attenuates intestinal damage in a mouse model of 5-fluorouracil-induced mucositis, Beneficial Microbes, issue.9, pp.477-486, 2018.

M. Van-de-guchte, Properties of probiotic bacteria explored by proteomic approaches, Current Opinion in Microbiology, issue.3, pp.381-389, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01191213

A. T. Vieira, M. M. Teixeira, and F. S. Martins, The Role of Probiotics and Prebiotics in Inducing Gut Immunity, Frontiers in Immunology, issue.4, 2013.

W. W. Wilson, Status of methods for assessing bacterial cell surface charge properties based on zeta potential measurements, Journal of Microbiological Methods, issue.3, pp.153-164, 2001.

M. Yamashita, Lactobacillus helveticus SBT2171, a cheese starter, regulates proliferation and cytokine production of immune cells, Journal of Dairy Science, issue.8, pp.4772-4779, 2014.

C. Y. Yeung, Amelioration of chemotherapy-induced intestinal mucositis by orally administered probiotics in a mouse model, PLoS ONE, issue.10, pp.1-16, 2015.

G. D. Zarate and . Propionibacteria, Less Conventional Probiotics to Improve the Human and Animal Health, 2012.

. Zion and . Research-tm, Probiotics Market Size, Share, Growth | Forecast, 2018.

, Disponível