, Images MEB du robinier (haut) et des hydrochars obtenusà partir du robinier pendant, vol.4

, Figure 5.15: Images MEB du hêtre et des hydrochars 6h-180 ? C-10bars, 6h-270 ? C-100bars et 6h-270 ? C-100bars-Acide Formique

, Influence de la pression et de la température sur le carbone organique total (hêtre, eau, 6h), Chapitre 5 -Investigations complémentaires Figure 5, vol.18

Y. Bamberger and B. Rogeaux, Quelles solutions des industriels peuvent-ils apporter aux problèmesénergétiques ?, pp.janvier-février, 2007.

, REN21. Renewables 2013 global status report, 2013.

M. Antonietti and M. Titirici, Coal from carbohydrates : The "chimie douce" of carbon, Comptes Rendus Chimie, vol.13, issue.1-2, pp.167-173, 2010.

C. J. Brinker, Hydrolysis and condensation of silicates -effects on structure, Journal of Non-Crystalline Solids, vol.100, issue.1-3, pp.31-50, 1988.

M. Sevilla and A. B. Fuertes, The production of carbon materials by hydrothermal carbonization of cellulose, Carbon, vol.47, issue.9, pp.2281-2289, 2009.

P. T. Anastas and M. M. Kirchhoff, Origins, current status, and future challenges of green chemistry, Accounts of Chemical Research, vol.35, issue.9, pp.686-694, 2002.

Y. Hayashi, In water or in the presence of water ?, Angewandte Chemie International Edition, vol.118, pp.8281-8282, 2006.

S. Otto and J. Engberts, Diels-alder reactions in water, Pure and Applied Chemistry, vol.72, issue.7, pp.1365-1372, 2000.

M. C. Pirrung and K. D. Sarma, Multicomponent reactions are accelerated in water, Journal of the American Chemical Society, vol.126, issue.2, pp.444-445, 2003.

K. Kumaravel and G. Vasuki, Four-component catalyst-free reaction in water : Combinatorial library synthesis of novel 2-amino-4-(5-hydroxy-3-methyl-1h-pyrazol-4-yl)-4h-chromene-3-carbonitrile derivatives, Green Chemistry, vol.11, issue.12, pp.1945-1947, 2009.

A. A. Galkin and V. V. Lunin, Water in sub-and supercritical states as a universal medium for chemical reactions, Uspekhi Khimi, vol.74, issue.1, pp.24-40, 2005.

F. Bergius, Beiträge zur theorie der kohleentstehung, Naturwissenschaften, vol.1, pp.1-10, 1928.

T. M. Mccollom and J. S. Seewald, Experimental constraints on the hydrothermal reactivity of organic acids and acid anions : I. formic acid and formate, Geochimica Et Cosmochimica Acta, vol.67, issue.19, pp.3625-3644, 2003.

T. M. Mccollom and J. S. Seewald, Experimental study of the hydrothermal reactivity of organic acids and acid anions : Ii. acetic acid, acetate, and valeric acid, Geochimica Et Cosmochimica Acta, vol.67, issue.19, pp.3645-3664, 2003.

A. R. Katritzky, D. A. Nichols, M. Siskin, R. Murugan, and M. Balasubramanian, Reactions in high-temperature aqueous media, Chemical Reviews, vol.101, issue.4, pp.837-892, 2001.

N. S. Kus, Organic reactions in subcritical and supercritical water, Tetrahedron, vol.68, issue.4, pp.949-958, 2012.

L. Ott, M. Bicker, and H. Vogel, Catalytic dehydration of glycerol in sub-and supercritical water : a new chemical process for acrolein production, Green Chemistry, vol.8, issue.2, pp.214-220, 2006.

K. Chandler, C. L. Liotta, C. A. Eckert, and D. Schiraldi, Tuning alkylation reactions with temperature in near-critical water, Aiche Journal, vol.44, issue.9, pp.2080-2087, 1998.

C. M. Comisar and P. E. Savage, Kinetics of crossed aldol condensations in hightemperature water, Green Chemistry, vol.6, issue.4, pp.227-231, 2004.

M. B. Korzenski and J. W. Kolis, Diels-alder reactions using supercritical water as an aqueous solvent medium, Tetrahedron Letters, vol.38, issue.32, pp.5611-5614, 1997.

B. Kayan, R. Ozen, A. M. Gizir, and N. S. Kus, Oxidation of toluenes to aromatic aldehydes with molecular oxygen in subcritical water, Organic Preparations and Procedures International, vol.37, issue.1, pp.83-86, 2005.

C. S. Cundy and P. A. Cox, The hydrothermal synthesis of zeolites : History and development from the earliest days to the present time, Chemical Reviews, vol.103, issue.3, pp.663-701, 2003.

C. S. Cundy and P. A. Cox, The hydrothermal synthesis of zeolites : Precursors, intermediates and reaction mechanism, Microporous and Mesoporous Materials, vol.82, issue.1-2, pp.1-78, 2005.

M. Henry, J. P. Jolivet, and J. Livage, Aqueous chemistry of metal-cations -hydrolysis, condensation and complexation, Structure and Bonding, vol.77, pp.153-206, 1992.

B. L. Cushing, V. L. Kolesnichenko, and C. J. O'connor, Recent advances in the liquidphase syntheses of inorganic nanoparticles, Chemical Reviews, vol.104, issue.9, pp.3893-3946, 2004.

A. Taguchi and F. Schuth, Ordered mesoporous materials in catalysis, Microporous and Mesoporous Materials, vol.77, issue.1, pp.1-45, 2005.

A. Corma, From microporous to mesoporous molecular sieve materials and their use in catalysis, Chemical Reviews, vol.97, issue.6, pp.2373-2419, 1997.

G. Ferey, Microporous solids : From organically templated inorganic skeletons to hybrid frameworks ... ecumenism in chemistry, Chemistry of Materials, vol.13, issue.10, pp.3084-3098, 2001.

G. Ferey, Hybrid porous solids : past, present, future, Chemical Society Reviews, vol.37, issue.1, pp.191-214, 2008.

M. M. Titirici, A. Thomas, S. H. Yu, J. O. Muller, and M. Antonietti, A direct synthesis of mesoporous carbons with bicontinuous pore morphology from crude plant material by hydrothermal carbonization, Chemistry of Materials, vol.19, issue.17, pp.4205-4212, 2007.

A. R. Katritzky, R. Murugan, and M. Siskin, Aqueous high-temperature chemistry of carbocycles and heterocycles .8. aquathermolysis of para-substituted phenols in the presence and absence of sodium bisulfite, Energy & Fuels, vol.4, issue.5, pp.531-538, 1990.

S. Avola, F. Goettmann, M. Antonietti, and W. Kunz, Organic reactivity of alcohols in superheated aqueous salt solutions : an overview, New Journal of Chemistry, vol.36, issue.8, pp.1568-1573, 2012.

M. J. Antal, A. Brittain, C. Dealmeida, S. Ramayya, and J. C. Roy, Heterolysis and homolysis in supercritical water, Acs Symposium Series, vol.329, pp.77-86, 1987.

R. Busey and R. Mesmer, Thermodynamic quantities for ionization of water in sodium chloride matia to 300°c, J. Chem. Eng. Data, vol.23, pp.175-176, 1978.

D. Kopetzki and M. Antonietti, Transfer hydrogenation of levulinic acid under hydrothermal conditions catalyzed by sulfate as a temperature-switchable base, Green Chemistry, vol.12, issue.4, pp.656-660, 2010.

B. Smutek, W. Kunz, and F. Goettmann, Hydrothermal alkylation of phenols with alcohols in diluted acids, Comptes Rendus Chimie, vol.15, issue.1, pp.96-101, 2012.

P. Makowski, R. Rothe, A. Thomas, M. Niederberger, and F. Goettmann, Chlorine borrowing : an efficient method for an easier use of alcohols as alkylation agents, Green Chemistry, vol.11, issue.1, pp.34-37, 2009.

J. Barbier, Relation structure/réactivité en conversion hydrothermale des macromolécules de lignocellulose, 2010.

N. Sun, H. Rodriguez, M. Rahman, and R. D. Rogers, Where are ionic liquid strategies most suited in the pursuit of chemicals and energy from lignocellulosic biomass ?, Chemical Communications, vol.47, issue.5, pp.1405-1421, 2011.

O. Bobleter, Hydrothermal degradation of polymers derived from plants, Progress in Polymer Science, vol.19, issue.5, pp.797-841, 1994.

E. Sjostrom, Wood chemistry : Fundamentals and Applications, Second Edition, 1993.

A. W. Glazer and H. Nikaido, Microbial Biotechnology : fundamentals of applied microbiology, 1995.

R. S. Miller, Structure of Wood. Wood Handbook, USDA Forest Service, 1999.

F. Bertaud, D. Craperi, G. Lenon, M. Curràs-lino, R. Radman et al., Multi-purpose applications of bio-active extractives from knots and barks : assessment of innovative exploitation of industrial wood puplping by-products, 2006.

C. Dupont, S. Rouge, A. Berthelot, D. D. Perez, A. Graffin et al., Bioenergy ii : Suitability of wood chips and various biomass types for use in plant of btl production by gasification, International Journal of Chemical Reactor Engineering, vol.8, 2010.

I. Obernberger, F. Biedermann, W. Widmann, and R. Riedl, Concentrations of inorganic elements in biomass fuels and recovery in the different ash fractions, Biomass & Bioenergy, vol.12, issue.3, pp.211-224, 1997.

D. J. Mead, Forests for energy and the role of planted trees, Critical Reviews in Plant Sciences, vol.24, issue.5-6, pp.407-421, 2005.

A. Damien, La biomasseénergie : Définitions, ressources et modes de transformation, 2013.

F. Bergius, Production of hydrogen from water and coal from cellulose at high temperatures and pressures, J. S. C. I, vol.32, issue.9, p.462, 1913.

E. Berl and A. Schimdt, Über das verhalten der cellulose bei der druckerhitzung mit wasser, Liebigs Ann Chem, vol.461, pp.192-220, 1928.

E. Berl and A. Schimdt, Die inkohlung von cellulose und lignin in neutralem medium, Liebigs Ann Chem, vol.493, issue.1, p.97, 1932.

D. Kreulen and F. Kreulen-van-selms, Thermische zersetzung van lignin and humin bei relativ niedrigen temperaturen. Brennstoff Chemie, vol.38, pp.49-54, 1957.

J. P. Schuhmacher, F. J. Huntjens, and D. W. Vankrevelen, Chemical structure and properties of coal .26. studies on artificial coalification, Fuel, vol.39, issue.3, pp.223-234, 1960.

A. Funke and F. Ziegler, Hydrothermal carbonization of biomass : A summary and discussion of chemical mechanisms for process engineering, Biofuels Bioproducts & Biorefining-Biofpr, vol.4, issue.2, pp.160-177, 2010.

M. Titirici, A. Thomas, and M. Antonietti, Back in the black : hydrothermal carbonization of plant material as an efficient chemical process to treat the co2 problem, New Journal of Chemistry, vol.31, issue.6, pp.787-789, 2007.

S. K. Hoekman, A. Broch, and C. Robbins, Hydrothermal carbonization (htc) of lignocellulosic biomass, Energy & Fuels, vol.25, issue.4, pp.1802-1810, 2011.

Y. Sugimoto, Y. Miki, and K. Hayamizu, Characterization of thermally decomposed cellu lose and red pine at 200°c in water, J Fuel Soc Jpn, vol.75, pp.829-838, 1996.

Y. Sugimoto and T. Miki, Chemical structure of artificial coals obtained from cellulose, wood and peat, 9th International Conference on Coal Science ICCS '97, vol.1, pp.187-190

E. Leibnitz, H. G. Konnecke, and M. Schroter, Zur kenntnis der druckinkohlung von braunkohlen in gegenwart von wasser .4, Journal Fur Praktische Chemie, vol.6, issue.1, pp.18-24, 1958.

M. T. Reza, J. G. Lynam, M. H. Uddin, and C. J. Coronella, Hydrothermal carbonization : Fate of inorganics, Biomass & Bioenergy, vol.49, pp.86-94, 2013.

K. Mochidzuki, N. Sato, and A. Sakoda, Production and characterization of carbonaceous adsorbents from biomass wastes by aqueous phase carbonization, Adsorption-Journal of the International Adsorption Society, vol.11, pp.669-673, 2005.

C. Bergins, Kinetics and mechanism during mechanical/thermal dewatering of lignite, Fuel, vol.82, issue.4, pp.355-364, 2003.

A. A. Peterson, F. Vogel, R. P. Lachance, M. Froeling, M. J. Antal et al., Thermochemical biofuel production in hydrothermal media : A review of sub-and supercritical water technologies, Energy & Environmental Science, vol.1, issue.1, pp.32-65, 2008.

J. Stemann, A. Putschew, and F. Ziegler, Hydrothermal carbonization : Process water characterization and effects of water recirculation, Bioresource Technology, vol.143, pp.139-146, 2013.

I. Oliveira, D. Bloehse, and H. Ramke, Hydrothermal carbonization of agricultural residues, Bioresource Technology, vol.142, pp.138-146, 2013.

M. D. Lewan, Experiments on the role of water in petroleum formation, Geochimica Et Cosmochimica Acta, vol.61, issue.17, pp.3691-3723, 1997.

M. J. Kotarba and M. D. Lewan, Characterizing thermogenic coalbed gas from polish coals of different ranks by hydrous pyrolysis, Organic Geochemistry, vol.35, issue.5, pp.615-646, 2004.

Q. Wang, H. Li, L. Q. Chen, and X. J. Huang, Monodispersed hard carbon spherules with uniform nanopores, Carbon, vol.39, issue.14, pp.2211-2214, 2001.

X. M. Sun and Y. D. Li, Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles, Angewandte Chemie-International Edition, vol.43, issue.5, pp.597-601, 2004.

;. X. Bibliographie, T. J. Li, X. M. Lou, Y. D. Sun, and . Li, Highly sensitive wo3 hollow-sphere gas sensors, Inorganic Chemistry, vol.43, issue.17, pp.5442-5449, 2004.

M. Zheng, J. Cao, X. Chang, J. Wang, J. Liu et al., Preparation of oxide hollow spheres by colloidal carbon spheres, Materials Letters, vol.60, issue.24, pp.2991-2993, 2006.

M. Titirici, M. Antonietti, and A. Thomas, A generalized synthesis of metal oxide hollow spheres using a hydrothermal approach, Chemistry of Materials, vol.18, issue.16, pp.3808-3812, 2006.

X. M. Sun, J. F. Liu, and Y. D. Li, Use of carbonaceous polysaccharide microspheres as templates for fabricating metal oxide hollow spheres, Chemistry-a European Journal, vol.12, issue.7, pp.2039-2047, 2006.

C. Wang, X. Chu, and M. Wu, Highly sensitive gas sensors based on hollow sno2 spheres prepared by carbon sphere template method, Sensors and Actuators B-Chemical, vol.120, issue.2, pp.508-513, 2007.

M. Sevilla, G. Lota, and A. B. Fuertes, Saccharide-based graphitic carbon nanocoils as supports for ptru nanoparticles for methanol electrooxidation, Journal of Power Sources, vol.171, issue.2, pp.546-551, 2007.

M. Sevilla and A. B. Fuertes, Chemical and structural properties of carbonaceous products obtained by hydrothermal carbonization of saccharides, Chemistry-a European Journal, vol.15, issue.16, pp.4195-4203, 2009.

M. Titirici, M. Antonietti, and N. Baccile, Hydrothermal carbon from biomass : a comparison of the local structure from poly-to monosaccharides and pentoses/hexoses, Green Chemistry, vol.10, issue.11, pp.1204-1212, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00480514

M. Li, W. Li, and S. Liu, Hydrothermal synthesis, characterization, and koh activation of carbon spheres from glucose, Carbohydrate Research, vol.346, issue.8, pp.999-1004, 2011.

M. Li, W. Li, and S. Liu, Control of the morphology and chemical properties of carbon spheres prepared from glucose by a hydrothermal method, Journal of Materials Research, vol.27, issue.8, 2012.

A. J. Romero-anaya, M. Ouzzine, M. A. Lillo-rodenas, and A. Linares-solano, Spherical carbons : Synthesis, characterization and activation processes, Carbon, vol.68, pp.296-307, 2014.

L. Qiao, J. Chen, Y. Ying, J. Zheng, and L. Jiang, Influence of nh4+ on the preparation of carbonaceous spheres by a hydrothermal process, Journal of Materials Science, vol.48, issue.9, pp.3341-3346, 2013.

O. Bobleter, R. Niesner, and M. Rohr, Hydrothermal degradation of cellulosic matter to sugars and their fermentative conversion to protein, Journal of Applied Polymer Science, vol.20, issue.8, pp.2083-2093, 1976.

G. Bonn, R. Concin, and O. Bobleter, Hydrothermolysis -a new process for the utilization of biomass, Wood Science and Technology, vol.17, issue.3, pp.195-202, 1983.

S. Karagoz, T. Bhaskar, A. Muto, and Y. Sakata, Comparative studies of oil compositions produced from sawdust, rice husk, lignin and cellulose by hydrothermal treatment, Fuel, vol.84, issue.7-8, pp.875-884, 2005.

G. W. Huber, S. Iborra, and A. Corma, Synthesis of transportation fuels from biomass : Chemistry, catalysts, and engineering, Chemical Reviews, vol.106, issue.9, pp.4044-4098, 2006.

T. Sakaki, M. Shibata, T. Miki, H. Hirosue, and N. Hayashi, Reaction model of cellulose decomposition in near-critical water and fermentation of products, Bioresource Technology, vol.58, issue.2, pp.197-202, 1996.

A. Demirbas, Progress and recent trends in biofuels, Progress in Energy and Combustion Science, vol.33, issue.1, pp.1-18, 2007.

S. E. Olson, Conversion of lignocellulosic material to chemicals and fuels, 2011.

C. Falco, N. Baccile, and M. Titirici, Morphological and structural differences between glucose, cellulose and lignocellulosic biomass derived hydrothermal carbons, Green Chemistry, vol.13, issue.11, pp.3273-3281, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01457045

U. T. Shaka and S. , Chemical conversion of various celluloses to glucose and its derivatives in supercritical water, Cellulose, vol.6, issue.3, p.177, 1999.

L. Lomba, B. Giner, I. Bandres, C. Lafuente, and M. R. Pino, Physicochemical properties of green solvents derived from biomass, Green Chemistry, vol.13, issue.8, pp.2062-2070, 2011.

N. Villandier and A. Corma, One pot catalytic conversion of cellulose into biodegradable surfactants, Chemical Communications, vol.46, issue.24, pp.4408-4410, 2010.

R. A. Sheldon, Green and sustainable manufacture of chemicals from biomass : state of the art, Green Chemistry, vol.16, issue.3, pp.950-963, 2014.

B. P. Lavarack, G. J. Griffin, and D. Rodman, The acid hydrolysis of sugarcane bagasse hemicellulose to produce xylose, arabinose, glucose and other products, Biomass & Bioenergy, vol.23, issue.5, pp.367-380, 2002.

H. Wang, M. Tucker, and Y. Ji, Recent development in chemical depolymerization of lignin : A review, Journal of Applied Chemistry, issue.9, 2013.

H. Zhu, D. Areskogh, M. Helander, and G. Henriksson, Investigation on enzymatic oxidative polymerization of technical soda lignin, Current Organic Chemistry, vol.16, issue.16, pp.1850-1854, 2012.

S. Gouveia, C. Fernández-costas, M. A. Sanromán, and D. Moldes, Polymerisation of kraft lignin from black liquors by laccase from myceliophthora thermophila : Effect of operational conditions and black liquor origin, Bioresource Technology, vol.131, issue.0, pp.288-294, 2013.

T. J. Wells, A. J. Kosa-m-fau-ragauskas, and R. A. , Polymerization of kraft lignin via ultrasonication for high-molecular-weight applications, Ultrason Sonochem, vol.20, issue.6, pp.1463-1472, 2013.

E. Dinjus, A. Kruse, and N. Troeger, Hydrothermal carbonization-1. influence of lignin in lignocelluloses, Chemical Engineering & Technology, vol.34, issue.12, pp.2037-2043, 2011.

H. Pinkowska, P. Wolak, and A. Zlocinska, Hydrothermal decomposition of alkali lignin in sub-and supercritical water, Chemical Engineering Journal, vol.187, pp.410-414, 2012.

T. Stein, P. M. Grande, H. Kayser, F. Sibilla, W. Leitner et al., From biomass to feedstock : one-step fractionation of lignocellulose components by the selective organic acid-catalyzed depolymerization of hemicellulose in a biphasic system, Green Chemistry, vol.13, issue.7, pp.1772-1777, 2011.

M. Sevilla, J. A. Macia-agullo, and A. B. Fuertes, Hydrothermal carbonization of biomass as a route for the sequestration of co2 : Chemical and structural properties of the carbonized products, Biomass & Bioenergy, vol.35, issue.7, pp.3152-3159, 2011.

Y. Sasaki, T. Endo, N. Tanaka, and H. Inoue, Pretreatment of lignocellulosic biomass associated with the autoxidation of ethanol to acetal, Green Chemistry, vol.11, issue.1, pp.27-30, 2009.

Z. Liu, A. Quek, S. K. Hoekman, and R. Balasubramanian, Production of solid biochar fuel from waste biomass by hydrothermal carbonization, Fuel, vol.103, pp.943-949, 2013.

R. Hashaikeh, Z. Fang, I. S. Butler, J. Hawari, and J. A. Kozinski, Hydrothermal dissolution of willow in hot compressed water as a model for biomass conversion, Fuel, vol.86, pp.1614-1622, 2007.

L. P. Xiao, Z. J. Shi, F. Xu, and R. C. Sun, Hydrothermal carbonization of lignocellulosic biomass, Bioresource Technology, vol.118, pp.619-623, 2012.

B. M. Wood, L. R. Jader, F. J. Schendel, N. J. Hahn, K. J. Valentas et al., Industrial symbiosis : Corn ethanol fermentation, hydrothermal carbonization, and anaerobic digestion, Biotechnology and Bioengineering, vol.110, issue.10, pp.2624-2632, 2013.

T. Rogalinski, T. Ingram, and G. Brunner, Hydrolysis of lignocellulosic biomass in water under elevated temperatures and pressures, Journal of Supercritical Fluids, vol.47, issue.1, pp.54-63, 2008.

X. J. Cui, M. Antonietti, and S. H. Yu, Structural effects of iron oxide nanoparticles and iron ions on the hydrothermal carbonization of starch and rice carbohydrates, Small, vol.2, issue.6, pp.756-759, 2006.

B. Hu, S. Yu, K. Wang, L. Liu, and X. Xu, Functional carbonaceous materials from hydrothermal carbonization of biomass : an effective chemical process, Dalton Transactions, issue.40, pp.5414-5423, 2008.

G. B. Barin, I. D. Gimenez, L. P. Da-costa, A. G. Souza-filho, and L. S. Barreto, Hollow carbon nanostructures obtained from hydrothermal carbonization of lignocellulosic biomass, Journal of Materials Science, vol.49, issue.2, pp.665-672, 2014.

K. Aydincak, T. Yumak, A. Sinag, and B. Esen, Synthesis and characterization of carbonaceous materials from saccharides (glucose and lactose) and two waste biomasses by hydrothermal carbonization, Industrial & Engineering Chemistry Research, vol.51, issue.26, pp.9145-9152, 2012.

J. Poerschmann, I. Baskyr, B. Weiner, R. Koehler, H. Wedwitschka et al., Hydrothermal carbonization of olive mill wastewater, Bioresource Technology, vol.133, pp.581-588, 2013.

J. Poerschmann, B. Weiner, and I. Baskyr, Organic compounds in olive mill wastewater and in solutions resulting from hydrothermal carbonization of the wastewater, Chemosphere, vol.92, issue.11, pp.1472-1482, 2013.

L. Li, R. Diederick, J. R. Flora, and N. D. Berge, Hydrothermal carbonization of food waste and associated packaging materials for energy source generation, Waste Management, vol.33, issue.11, pp.2478-2492, 2013.

L. Li, J. R. Flora, and N. D. Berge, Conversion of food waste to valuable energy sources via hydrothermal carbonization. Abstracts of Papers of the, p.245, 2013.

S. M. Heilmann, L. R. Jader, L. A. Harned, M. J. Sadowsky, F. J. Schendel et al., Hydrothermal carbonization of microalgae ii. fatty acid, char, and algal nutrient products, Applied Energy, vol.88, issue.10, pp.3286-3290, 2011.

E. Kativu, D. Hildebrandt, T. Matambo, and D. Glasser, Effects of co2 on south african fresh water microalgae growth, Environmental Progress & Sustainable Energy, vol.31, issue.1, pp.24-28, 2012.

B. S. Sturm, E. Peltier, V. Smith, and F. Denoyelles, Controls of microalgal biomass and lipid production in municipal wastewater-fed bioreactors, Environmental Progress & Sustainable Energy, vol.31, issue.1, pp.10-16, 2012.

A. Broch, U. Jena, S. K. Hoekman, and J. Langford, Analysis of solid and aqueous phase products from hydrothermal carbonization of whole and lipid-extracted algae, Energies, vol.7, issue.1, pp.62-79, 2014.

Y. Chisti, ;. Sheehan, T. Dunnahay, J. Benemann, and P. A. Roessler, A look back at the u.s. department of energy's aquatic species program-biodiesel from algae, Biotechnology Advances, vol.25, issue.3, pp.294-306, 1998.

O. Pulz and W. Gross, Valuable products from biotechnology of microalgae, Applied Microbiology and Biotechnology, vol.65, issue.6, pp.635-648, 2004.

M. A. Brzezinski, The si-c-n ratio of marine diatoms -interspecific variability and the effect of some environmental variables, Journal of Phycology, vol.21, issue.3, pp.347-357, 1985.

R. J. White, M. Antonietti, and M. Titirici, Naturally inspired nitrogen doped porous carbon, Journal of Materials Chemistry, vol.19, issue.45, pp.8645-8650, 2009.

N. Brun, L. Edembe, S. Gounel, N. Mano, and M. M. Titirici, Emulsion-templated macroporous carbons synthesized by hydrothermal carbonization and their application for the enzymatic oxidation of glucose, Chemsuschem, vol.6, issue.4, pp.701-710, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00814389

L. Chen, H. Lang, Y. Lu, C. Cui, and S. Yu, Synthesis of an attapulgite clay@carbon nanocomposite adsorbent by a hydrothermal carbonization process and their application in the removal of toxic metal ions from water, Langmuir, vol.27, issue.14, pp.8998-9004, 2011.

E. Unur, Functional nanoporous carbons from hydrothermally treated biomass for environmental purification, Microporous and Mesoporous Materials, vol.168, pp.92-101, 2013.

J. P. Paraknowitsch, A. Thomas, and M. Antonietti, Carbon colloids prepared by hydrothermal carbonization as efficient fuel for indirect carbon fuel cells, Chemistry of Materials, vol.21, issue.7, p.1170, 2009.

W. Zhen-bo, L. Cun-zhi, G. Da-ming, and Y. Ge-ping, Carbon riveted ptru/c catalyst from glucose in-situ carbonization through hydrothermal method for direct methanol fuel cell, Journal of Power Sources, vol.238, pp.283-292, 2013.

X. M. Sun and Y. D. Li, Ga2o3 and gan semiconductor hollow spheres, Angewandte Chemie-International Edition, vol.43, issue.29, pp.3827-3831, 2004.

R. J. White, V. Budarin, R. Luque, J. H. Clark, and D. J. Macquarrie, Tuneable porous carbonaceous materials from renewable resources, Chemical Society Reviews, vol.38, issue.12, pp.3401-3418, 2009.

R. Demir-cakan, P. Makowski, M. Antonietti, F. Goettmann, and M. M. Titirici, Hydrothermal synthesis of imidazole functionalized carbon spheres and their application in catalysis, Catalysis Today, vol.150, issue.1-2, pp.115-118, 2010.

P. Makowski, R. D. Cakan, M. Antonietti, F. Goettmann, and M. M. Titirici, Selective partial hydrogenation of hydroxy aromatic derivatives with palladium nanoparticles supported on hydrophilic carbon, Chemical Communications, issue.8, pp.999-1001, 2008.

J. Matos, M. Rosales, R. Demir-cakan, and M. M. Titirici, Methane conversion on ptru nanoparticles alloy supported on hydrothermal carbon, Applied Catalysis a-General, vol.386, issue.1-2, pp.140-146, 2010.

H. Kaper, A. Grandjean, C. Weidenthaler, F. Schueth, and F. Goettmann, Surface diels-alder reactions as an effective method to synthesize functional carbon materials, Chemistry-a European Journal, vol.18, issue.13, pp.4099-4106, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00733412

P. Regmi, J. L. Moscoso, S. Kumar, X. Cao, J. Mao et al., Removal of copper and cadmium from aqueous solution using switchgrass biochar produced via hydrothermal carbonization process, Journal of Environmental Management, vol.109, pp.61-69, 2012.

D. Mohan, A. Sarswat, Y. S. Ok, and C. U. Pittman, Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent -a critical review, Bioresource Technology, issue.0, 2014.

M. C. Rillig, M. Wagner, M. Salem, P. M. Antunes, C. George et al., Material derived from hydrothermal carbonization : Effects on plant growth and arbuscular mycorrhiza, Applied Soil Ecology, vol.45, issue.3, pp.238-242, 2010.

F. Douard, Transformer les bio-déchets en bio-charbon, la carbonisation hydrothermale, 2010.

C. Glasner, G. Deerberg, and H. Lyko, Hydrothermal carbonization : A review, Chemie Ingenieur Technik, vol.83, issue.11, pp.1932-1943, 2011.

R. Zanzi, D. T. Ferro, A. Torres, P. Beaton, E. Soler et al., Biomass torrefaction, 2004.

A. Demirbas and G. Arin, An overview of biomass pyrolysis, Energy Sources, vol.24, issue.5, pp.471-482, 2002.

B. Iea, , 2006.

G. Brunette, Les produits issus de la pyrolyse, 2011.

F. Gobeil, Pyrolyse et utilisation du biochar, 2012.

A. Dutta and M. A. Leon, Pros and cons of torrefaction of woody biomass, 2011.

M. J. Prins, K. J. Ptasinski, and F. Janssen, Torrefaction of wood -part 2. analysis of products, Journal of Analytical and Applied Pyrolysis, vol.77, issue.1, pp.35-40, 2006.

M. J. Van-der-stelt, H. Gerhauser, J. H. Kiel, and K. J. Ptasinski, Biomass upgrading by torrefaction for the production of biofuels : A review, Biomass & Bioenergy, vol.35, issue.9, pp.3748-3762, 2011.

N. D. Berge, K. S. Ro, J. Mao, J. R. Flora, M. A. Chappell et al., Hydrothermal carbonization of municipal waste streams, Environmental Science & Technology, vol.45, issue.13, pp.5696-5703, 2011.

K. Wiedner, C. Naisse, C. Rumpel, A. Pozzi, P. Wieczorek et al., Chemical modification of biomass residues during hydrothermal carbonization -what makes the difference, temperature or feedstock ?, Organic Geochemistry, vol.54, pp.91-100, 2013.

M. T. Reza, Hydrothermal carbonization of lignocellulosic biomass, 2011.

B. Erlach, B. Harder, and G. Tsatsaronis, Combined hydrothermal carbonization and gasification of biomass with carbon capture, Energy, vol.45, issue.1, pp.329-338, 2012.

S. G. Wettstein, D. M. Alonso, E. I. Gürbüz, and J. A. Dumesic, A roadmap for conversion of lignocellulosic biomass to chemicals and fuels, Current Opinion in Chemical Engineering, vol.1, issue.3, pp.218-224, 2012.

V. K. Jopp, Biokohleüber nacht

J. Tranchant, Chromatographie en phase gazeuse, Techniques de l'ingénieur Chromatographie et techniques séparatives, (ref. article : p1485), 1996.

J. Mermet, J. Frayret, and H. Paucot, Icp-oes : couplage plasma induit par haute fréquence -spectrométrie optique, Techniques de l'ingénieur Spectrométries, (ref. article : p2719), 2012.

X. Hou and B. T. Jones, Encyclopedia of Analytical Chemistry : inductively coupled plasma optical emission spectroscopy, 2008.

S. Jacob, D. Da-silva-perez, C. Dupont, J. M. Commandré, F. Broust et al., Short rotation forestry feedstock : Influence of particle size segregation on biomass properties, Fuel, vol.111, issue.0, pp.820-828, 2013.

M. Schwanninger and B. Hinterstoisser, Klason lignin : Modifications to improve the precision of the standardized determination, Holzforschung, vol.56, issue.2, p.161, 2002.

M. W. Davis, A rapid modified method for compositional carbohydrate analysis of lignocellulosics by high ph anion-exchange chromatography with pulsed amperometric detection (hpaec/pad), Journal of Wood Chemistry and Technology, vol.18, issue.2, pp.235-252, 1998.

J. M. Genco, N. Busayasakul, H. K. Medhora, and W. Robbins, Hemicellulose retention during kraft pulping, Tappi J, vol.73, p.223, 1990.

J. Ruste, Microscopieélectroniqueà balayage principe etéquipement. Techniques de l'ingénieur Techniques d'analyse par imagerie, (ref. article : p865), 2013.

M. Dalibart and L. Servant, Spectroscopie dans l'infrarouge. (ref. article : p2845), 2000.

C. Chachaty, Spectrométrie par résonance magnétique nucléaire. Techniques de l'ingénieur Spectrométries, (ref. article : p2880), 1984.

A. Corma, S. Iborra, and A. Velty, Chemical routes for the transformation of biomass into chemicals, Chemical Reviews, vol.107, issue.6, pp.2411-2502, 2007.

N. Baccile, G. Laurent, F. Babonneau, F. Fayon, M. Titirici et al., Structural characterization of hydrothermal carbon spheres by advanced solid-state mas c-13 nmr investigations, Journal of Physical Chemistry C, vol.113, issue.22, pp.9644-9654, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00393439

S. Avola, Salt effects in hydrothermal synthesis, 2012.

M. Guillot, D. Da-silva-perez, S. Pellet-rostaing, and F. Goettmann, Procédé de préparation d'un matériau carbone aromatique par voie hydrothermale, 2013.

B. Smutek, Organic reactions of alcohols under hydrothermal conditions, 2011.

G. Wühlisch, Technical guidelines for genetic conservation and use -european beech. EUFORGEN Technical Guidelines for Genetic Conservation and Use, vol.13, pp.978-92, 2008.

C. Carrignon, Synthèse/extraction de lévulinate d'éthyle de la biomasse lignocellulosique et valorisation chimique de ce composé, 2010.

N. Jendoubi, Mécanismes de transfert des inorganiques dans les procédés de pyrolyse rapide de la biomasse, 2011.

T. Zhang, R. Kumar, and C. E. Wyman, Enhanced yields of furfural and other products by simultaneous solvent extraction during thermochemical treatment of cellulosic biomass, vol.3, pp.9809-9819, 2013.

R. Becker, U. Dorgerloh, E. Paulke, J. Mumme, and I. Nehls, Hydrothermal carbonization of biomass : Major organic components of the aqueous phase, Chemical Engineering & Technology, vol.37, issue.3, pp.511-518, 2014.

A. Mandalika and T. Runge, Enabling integrated biorefineries through high-yield conversion of fractionated pentosans into furfural, Green Chemistry, vol.14, issue.11, pp.3175-3184, 2012.

Y. Benoît, Le guide des essences de bois. Eyrolles, 2008.

M. Moller and U. Schroder, Hydrothermal production of furfural from xylose and xylan as model compounds for hemicelluloses, RSC Adv, vol.3, pp.22253-22260, 2013.

C. Joussot-dubien, G. Didier, and H. Turc, Procede et dispositif pour l'oxydation en eau supercritique de matieres, 2002.

C. Joussot-dubien and H. Turc, Procédé et dispositif pour l'oxydation en eau supercritique de matières. Nuclear waste conditioning, pp.23-26, 2009.

, Pour surmonter ces difficultés, la torréfaction est la méthode la plus connue, mais elle induit une augmentation des taux de cendres et une perte de matière. La carbonisation hydrothermale (HTC) est une alternative possible. L'objet de cette thèse est l'étude de la HTC comme moyen de bonifier la biomasse lignocellulosique. Trois axes principaux ontété considérés : augmentation de la densitéénergétique, récupération de molécules, et minéraux d'intérêt. L'étude porte d'abord sur la HTC de systèmes moléculaires représentatifs de ceux présents dans le bois. Le hêtre aétéétudié comme biomasse modèle, permettant de déterminer des conditions expérimentales optimales, appliquées ensuiteà diverses biomasses. Enfin d'autres méthodes d'activation ontété testées telles que les micro-ondes et les fluides supercritiques. Les hydrochars obtenus après HTC présentent une diminution concomitante des ratios atomiques H/C et O/C. La phase liquide contient différentes molécules d'intérêt (furfural, Mots clés : Biomasse, Polysaccharides, Carbonisation Hydrothermale