
HAL Id: tel-02178374
https://theses.hal.science/tel-02178374

Submitted on 9 Jul 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Can the dynamic of milk Ca content throughout
lactation be an indicator of the effects of management
system and diets on bone mobilization in dairy cows ?

Pierre Gaignon

To cite this version:
Pierre Gaignon. Can the dynamic of milk Ca content throughout lactation be an indicator of the effects
of management system and diets on bone mobilization in dairy cows ?. Animal biology. Agrocampus
Ouest, 2018. English. �NNT : 2018NSARB316�. �tel-02178374�

https://theses.hal.science/tel-02178374
https://hal.archives-ouvertes.fr


THESE DE DOCTORAT DE 

 
 
 

AGROCAMPUS OUEST  

COMUE UNIVERSITE BRETAGNE LOIRE 
 

ECOLE DOCTORALE N° 600  
Ecole doctorale Ecologie, Géosciences, Agronomie et Alimentation  
Spécialité : « Biologie et physiologie animales » 
 

« Can the dynamic of milk Ca content throughout lactation be an 
indicator of the effects of management system and diets on bone 
mobilization in dairy cows? »  
 
Thèse présentée et soutenue à Rennes, le 22 Octobre 2018  
Unité de recherche : Physiologie, Environnement et Génétique pour l’Animal et les Systèmes d’Elevage 
(PEGASE), INRA, Agrocampus Ouest 
Thèse N° : 2018-18_B-316 

Par 

« Pierre GAIGNON» 

 

 

Rapporteurs avant soutenance : 
 
Annette LIESEGANG  Professeure, Institute of Animal Nutrition, Vetsuisse-Faculty, University of Zürich 
Stephen Tood ANDERSON Professeur, School of Biomedical Sciences, The University of Queensland  

 
Composition du Jury :  
Président : David CAUSEUR  Professeur, Agrocampus Ouest.  
Examinateurs :  Agnès NARCY   Ingénieur de Recherche, INRA, UMR BOA 

Jean-Yves DOURMAD  Ingénieur de Recherche, INRA, UMR PEGASE 
Michel DUCLOS  Directeur de Recherche, INRA, UMR BOA 

Dir. de thèse : Catherine HURTAUD  Ingénieur de Recherche, INRA, UMR PEGASE 
Encadrante principale : Anne BOUDON  Chargée de Recherche, INRA, UMR PEGASE  
 
 

Invité(s) 
Anca-Lucia KNOERR-LAZA   Directrice R&D Nutrition Animale, CMI Roullier 
Karine LEGRAND   Directrice de l’Innovation, Phosphea Groupe Roullier 
 





 
 
 
 
 
 
 
 

THESE / AGROCAMPUS OUEST 

Sous le label de l’Université Européenne de Bretagne 

pour obtenir le diplôme de :  

DOCTEUR  DE L'INSTITUT SUPERIEUR DES SCIENCES AGRONOMIQUES, 
AGRO-ALIMENTAIRES, HORTICOLES ET DU PAYSAGE 

Spécialité : « Biologie et physiologie animales » 

Ecole Doctorale : « Ecologie Géologie Agronomie Alimentation » 

 
présentée par : 

 
PIERRE GAIGNON 

 
 

CAN THE DYNAMIC OF MILK CA CONTENT 
 

THROUGHOUT LACTATION BE AN INDICATOR  
 

OF THE EFFECTS OF MANAGEMENT SYSTEM AND DIETS 
 

ON BONE MOBILIZATION IN DAIRY COWS? 
 

soutenue le 22 Octobre 2018 devant la commission d’Examen 
 
 
Composition du jury :  
 
 Annette Liesegang  Rapporteur 
 Stephen Anderson  Rapporteur 
 Agnès Narcy   Examinatrice 
 David Causeur  Examinateur  
 Jean-Yves Dourmad  Examinateur 
 Michel Duclos   Examinateur 
 Catherine Hurtaud  Directrice de thèse 
 Anne Boudon   Co-encadrante 
 Anca-Lucia Laza-Knoerr Membre invitée  
 
 

  
   





"First of all, to tell you that I am immensely fond of you all, and

that eleventy-one years is too short a time to live among such

excellent and admirable hobbits.

I don’t know half of you half as well as I should like; and I like

less than half of you half as well as you deserve.

Finally, I wish to make an ANNOUNCEMENT. I regret to

announce that - though, as I said, eleventy-one years is far too

short a time to spend among you - this is the END. I am going.

I am leaving. NOW. GOOD-BYE!"

Bilbo Baggins, The Lord of The Rings: The

Fellowship of the Ring. J.R.R. Tolkien





Remerciements

Un grand merci aux membres du jury: Annette Liesegang, Stephen Anderson,

David Causeur, Agnès Narcy, Jean-Yves Dourmad, Michel Duclos, Anca

Laza-Knoerr et Karine Le Grand pour avoir accepté d’évaluer ce travail, et les

échanges que nous avons pu avoir lors de la soutenance. I would like to specifically thank

Annette and Stephen for being rapporteur. I know that it is not that easy to follow a

presentation that you may not totally understand as it was in French.

Je voudrais également remercier le Groupe Roullier et la Région Bretagne pour le

financement de cette thèse et qui ont donc permis à cette thèse de voir le jour. Je remercie

aussi remercier le groupe Roullier pour avoir financé les expérimentations de cette thèse.

Je voudrais également remercier l’UMR PEGASE de m’avoir accueilli pendant ces trois

longues/courtes années. Merci à tous le personnel croisé, que ce soit rapidement ou plus

durablement pour les échanges que j’ai pu avoir au cours de ces trois ans et des poussières.

Mes Encadrantes

Anne, encadrante du quotidien, et quel quotidien pourra-t-on dire. Les mots ne suffiront

pas à te dire le grand MERCI que je t’adresse et tout ce que tu m’as apporté au cours de ces

trois ans. Merci de m’avoir donné l’occasion de faire cette thèse, malgré ma formation qui

n’était pas si proche. Merci pour ta patience à toute épreuve, malgré le fait que je sois têtu

(comme tu l’as si bien souligné le jour de la soutenance). Merci pour tes conseils nombreux

et précieux qui m’ont permis d’avancer pendant ces trois ans. Merci pour ta bienveillance au

quotidien, ta compréhension quand je n’avais pas forcément la tête à avancer sur ma thèse,

ta disponibilité pour répondre à mes questions (mêmes les plus bêtes), mes états d’âmes

ou simplement mes doutes. Merci de m’avoir guidé dans ce voyage qu’est le fait de devenir

docteur, de m’avoir amené à bon port. Le terme de voyage me semble adapté lorsqu’on voit

tous ces lieux que nous avons visités au cours de ces trois ans, que ce soit Le Pin (pour les

essais), Chamberet (pour le DXA), Nîmes (pour EDEN) ou même Pittsburgh (pour l’ADSA).

On peut dire que cette réussite est aussi la tienne. Encore un très grand merci. Je ne te dis

pas adieu, mais seulement au revoir. J’espère du fond du cœur que nous aurons l’occasion

de retravailler ensemble et de nous recroiser à l’avenir.



Catherine, directrice de thèse. Qui peut se targuer d’avoir fait un tour en bateau sur

les canaux de Venise avec sa directrice de thèse ? Ce voyage pour le Mountain Cheese et

cette journée à Venise en aura rendu plus d’un jaloux. Un voyage dont je retiendrai surtout

les galères de deux éclopés crapahutant à travers les dolomites pour ne pas être distancé

par leurs collègues (en plus du bon fromage et des repas italiens). Merci d’avoir été une

oreille attentive quand je me plaignais de certaines choses que je ne comprenais pas. Tu

connais désormais mon amour pour les démarches administratives. Même si tu n’as pas

pleuré le jour de ma soutenance (comme tu m’avais bien prévenu à ce sujet), je ne t’en tiens

pas rigueur et espère te recroiser à l’avenir (Pourquoi pas au hasard d’un petit village de

Mayenne). Mon seul regret aura été de ne pas avoir rencontré ton fils, à qui tu aimais tant

me comparer.

Merci à vous deux d’avoir fait un duo de choc pendant ces trois ans pour m’aider au cours

de cette thèse. Il n’en fallait pas moins pour m’encadrer sur ce temps bien trop court.

L’équipe "Labo"

Maryline, merci à la "nouvelle stagiaire". Quelle rencontre ce fut. On pensait que tu

pourrais te reposer maintenant que je suis parti, mais te voilà déjà partie dans une nouvelle

aventure avec ta formation à St-Malo. Tu seras quand même plus tranquille maintenant

que je ne serai plus là pour te demander toujours de nouveaux dosages au labo. Merci pour

ta bonne humeur, ta capacité à toujours être disponible quand j’en avais besoin, que ce soit

pour le labo ou pour l’extérieur. Je te souhaite bien du courage pour les années à venir, mais

je ne doute pas de ta réussite.

Merci également à Sabrina qui a été d’un bon renfort dans les analyses, et qui malgré

tout restait de bonne humeur et prête à donner un coup de main. Agnès, même si au final

on ne s’est croisé que pendant un an, on a eu le temps de vivre de sacrées aventures avec

ces déplacements au Pin qui ont été une supérieure occasion de te connaître. Même si tu

es partie vers une nouvelle voie, je ne t’oublie pas et espère avoir l’occasion de te recroiser.

Thibaud, la touche métaleeeeuuhh du labo, je garderai de bons souvenirs de tes très fins

(hum hum) traits d’esprits et jeux de mots, des pauses cafés et des mots fléchés. Nicole,

merci pour ta bonne humeur, tes sourires dès que l’on se croisait, même si au final on n’a

que peu travaillé ensemble.



Les collègues de couloirs (et parfois un peu plus loin)

Un grand merci à Marine et tous les échanges que nous avons pu avoir, que ce soit

pendant le comité de thèse mais surtout au cours de l’analyse des données de PhénoFinLait.

J’espère avoir l’occasion de retravailler avec toi à l’avenir. Merci à Sophie et Marion pour

les échanges, scientifiques ou pas, que j’ai eu avec vous au cours de cette thèse.

Jean-Noël, merci pour ces moments échangés, ces recherches de traits fins et subtils,

ton érudition des mots croisés et ce savoir que tu as essayé de nous transmettre. Une petite

pensée également pour Anne-Isabelle qui m’a fortement conseillé lors de mon stage de M2

à l’IRISA dans mes questions sur la thèse, et que j’ai eu le plaisir de retrouver au sein de

PEGASE.

Merci à Zakaria, Luc, Ewen et Romain, qui ont également participé à la réalisation

de cette thèse pendant leurs stages. Merci à vous de m’avoir donné l’occasion de m’initier à

l’encadrement.

Merci à Emma, Colomba, Elise, Clémence, Julien, Margot, Xiao, Cléo, Sophie,

Luc, Elise et Lin Chi avec qui j’ai partagé ce bureau, qui fut autrefois bien poussiéreux

(N’est-il pas Luc quand on essaye d’arracher la moquette des murs ?) mais qui rend

désormais tout le monde jaloux. Merci à vous d’avoir supporté mes taquineries et parfois

ma mauvaise humeur dans les dernières semaines de rédaction. Une petite pensée

également pour les nombreux voisins Magdalena, Séverine, Sandy, David, Hieu et

Farouk qui n’étaient pas bien loin et qui étaient presque avec nous dans le bureau. Une

petite pensée pour le bureau qui a donc bien changé au cours de ces trois ans, et

notamment à cette moquette murale qui ne manque à personne.

Je tiens à remercier également tous les membres des stations expérimentales du

Pin et de Méjusseaume pour le travail qui a été accompli, leur bonne humeur et leur

accueil toujours chaleureux au cours de ces trois ans. J’ai une pensée particulière pour les

personnes en charge de doser les minéraux un par un, et ce tous les jours, lors du dernier

essai, et pour la patience dont vous avez fait preuve pour cette tâche fastidieuse.



Les Amis

Merci à Alice (et un peu son bébé loup) que j’ai pu rencontrer au cours de cette thèse,

avec qui j’ai traversé cette thèse, que ce soit dans les bons moments ou dans les épreuves

au cours de ces trois ans. Une amitié qui me reste cependant parfois difficile à assumer

de par tes origines bretonnes et ta passion "poneyiesque" débordante. Un gros merci Elise

qui m’a notamment appris qu’il ne fallait pas embêter un thésard de 3e année en cours de

rédaction. Merci à toi de m’avoir guidé dans mes premiers pas à l’INRA et m’avoir rassuré

sur mes craintes de début de thèse. Merci d’avoir été là même une fois que tes pas t’ont

mené loin de Saint-Gilles (Le Rheu, ce n’est pas si proche quand même) et de m’avoir donné

les clefs d’une bonne relation avec sa directrice (pour savoir l’amadouer). Camille, même

si on n’a pas eu tant l’occasion de se voir au cours de ses 3 ans, ses échanges (sporadiques

de par ma faute, je l’avoue) ont fait écho à nos moments passés au cours de nos années

d’ingénieurs. Une pensée pour ce week-end passé à Tours avec des aventures improbables

dans ta méhari. A ma partenaire d’aventure Clémence depuis le M2, avec ce projet en

réalité virtuelle qui nous aura fait tirer une partie de nos cheveux, et de ce trépied à 2.

Content de t’avoir retrouvé pendant ces 3 ans, à partager ce bureau et nos aventures qui

nous ont mené jusqu’à New-York (Et comme on l’a dit, ce qui se passe à New-York reste à

New-York), et de voir que même si nos chemins s’éloignent on aura l’occasion de se recroiser.

David, ou comme on pourrait t’appeler la caution NSFW de l’INRA, mais tu as le mérite de

dépoussiérer tout cela. A tes remarques improbables et extraordinaires et ta bonne humeur

communicative. Je garderai comme maxime "On juge, certes, mais avec bienveillance !" de ces temps

passés avec toi. Même si on s’est connu que tardivement p’tite Sophie, je garderai un bon

souvenir de ces échanges bien trop courts mais qui ont marqué mes derniers mois de thèse.

Même si tu n’étais pas de chez nous (i.e. de Pegase), je t’aimais bien quand même (car t’es

bouchon). Merci à Cléo pour nos échanges sur nos thèses et nos visions de ce cadre de

travail que nous avons partagé pendant ces 2 ans. A notre si beau tournoi de badminton

et les émotions qu’il nous a procurées. Je te souhaite bien du courage pour cette dernière

année qui t’attend même si je sais que ça roulera sans problème. Une pensée aussi pour

Dorianne, que je n’ai pas pu voir également autant que je le souhaiterai au cours de ces

trois ans, même si Paris n’est pas si loin au final. De beaux souvenirs quand même lors

ce week-end où on s’est retrouvé malgré nous au départ du vent des globes et de ta survie



sans portefeuille suite à ta visite de la Mayenne. Merci à Lucile pour ces échanges de

douceur et d’amabilité qui agrémentaient et égayaient mon quotidien à St-Gilles (Va chier!

♥ ♥ paillettes). Emma & Colomba, mes deux compères d’aventure lorsque je suis arrivé à

l’INRA dans ce petit bureau au sous-sol. Que de bons souvenirs, de bonnes raclettes et de

supers soirées pour les quelques mois que j’ai pu partager avec vous. Bien sûr, une petite

pensée aussi pour Goonie, cette mignonne petite mascotte. Merci aussi à Hieu, Mathilde,

Les Chats’Mouraïs, les Accrobads, Yentel, Cervin, Anaëlle, Arthur, Laure, Esther

pour les moments partagés aux cours de ces trois années (voir plus pour certains). Petite

pensée pour Florianne et son "roux" Ambroise avec qui j’ai passé quelques soirées dans la

faille de l’invocateur à qui je dirai "gg ez & Report Teemo"

La Famille

Merci aux parents, aux frangines et aux "beaufs", pour leur patience et leur

compréhension pendant ces trois ans, mais également pour leur soutien indéfectible.

Merci à eux de ne pas avoir tenu compte de mes absences, notamment pendant la dernière

année, et qui ont toujours été là pour moi, même pour les demandes les plus bêtes parfois.

Une petite pensée pour les neveux et nièces qui ont bien grandi au cours de ces trois ans,

et qui restent adorables malgré tout.

Pour finir, un grand merci à tous ceux que j’ai croisé au cours de ces trois belles années.

Merci pour les échanges que j’ai pu avoir.





Contents

List of Figures xiii

List of Tables xv

Abbreviation - Glossary xvii

List of Communications xix

Résumé de la Thèse xxi

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi

Chapitre I : Homéostasie de Ca et de P, cycles de mobilisation et reconstitution

osseuses et variabilité des teneurs en Ca et P du lait chez la vache laitière . . xxiv

Stratégie de thèse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxv

Chapitre II : Facteurs de variations non-génétiques de la teneur en Ca du lait . . .xxviii

Chapitre III : Effets de la parité et de la variabilité individuelle sur l’accrétion et

la résorption osseuses et la teneur en Ca et P du lait chez la vache laitière en

lactation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxix

Chapitre IV : Effets de la race et de la stratégie d’alimentation sur l’accrétion et la

résorption osseuses et la teneur en Ca et en P du lait chez la vache laitière en

lactation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxx

Chapitre V : Effets de l’apport en Ca et du bilan alimentaire cation-anion en

début de lactation sur les dynamiques de mobilisation osseuse au cours de la

lactation chez la vache laitière . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxxi

Chapitre VI : Discussion générale . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xxxii

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xxxiv

Introduction 1

i



CONTENTS

Chapter I: About Ca and P homeostatis, cycles of mobilization and

reconstitution of bones and variability of milk Ca and P

contents in dairy cows 5

A) Regulation of Calcemia and Phosphatemia . . . . . . . . . . . . . . . . . . . . 7

1 Repartition of Ca and P in body pools and major roles . . . . . . . . . . 7

a Calcium repartition and roles in mammals . . . . . . . . . . . 7

b Phosphorus repartition and role in mammals . . . . . . . . . . 8

2 Systemic regulation of calcemia in non-lactating animals . . . . . . . . 8

a Flows susceptible to affect calcemia in non-lactating animals . 8

b Systemic hormonal regulation of calcemia . . . . . . . . . . . . 10

c Effect of 1,25-(OH)2-vitamin D on intestinal absorption of Ca . 14

3 Systemic regulation of phosphatemia in non-lactating animals . . . . . 16

a Flows susceptible to affect phosphatemia in non-lactating

animals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

b Systemic hormonal regulation of phosphatemia . . . . . . . . 19

c Effect of 1,25-(OH)2-vitamin D and FGF 23 on intestinal

absorption of P . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Specificities of calcemia and phosphatemia regulations during lactation 21

a The high exportation of Ca and P in milk is a challenge for

calcemia and phosphatemia regulation . . . . . . . . . . . . . 21

b Place of the mammary gland in the regulation of calcemia and

phosphatemia . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

B) Requirements of Ca and P in dairy cows . . . . . . . . . . . . . . . . . . . . . . 26

1 Objectives of Ca and P supplementation and consequences of an

inadequate supplementation . . . . . . . . . . . . . . . . . . . . . . . . . 26

2 Estimations of Ca and P requirements and supplies, used for

optimizing Ca and P supplementation . . . . . . . . . . . . . . . . . . . 32

a Estimations of Ca and P requirements . . . . . . . . . . . . . . 32

b Estimations of Ca and P supplies . . . . . . . . . . . . . . . . . 33

c A focus on the estimation of the fecal endogenous losses of Ca

and P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

ii



CONTENTS

d Data used for comparisons of feeding systems providing an

estimation of Ca and P requirements and supplies . . . . . . . 37

e Comparisons of Ca and P requirements, supplies and

differences between both according to AFRC, INRA and NRC 37

C) Bone remodeling in relation with regulation of calcemia and phosphatemia

and cycle of bone mobilization and reconstitution in dairy cows . . . . . . . . . 41

1 Bone structure and mechanisms of bone remodeling . . . . . . . . . . . 41

a Composition and structure of bones . . . . . . . . . . . . . . . 41

b Two cell lineages are involved in bone remodeling . . . . . . . 42

c The cycle of bone remodeling . . . . . . . . . . . . . . . . . . . 43

2 Methods for the evaluation of dynamics of bone mobilization and

reconstitution during cycles of lactation and gestation in dairy cows . 44

a Use of Ca and P radio-isotopes . . . . . . . . . . . . . . . . . . 44

b Measurement of input-output balance of Ca and P . . . . . . . 45

c Bone biopsy, DXA or X-ray photometry measurements . . . . 46

d Blood biomarkers of bone accretion and resorption . . . . . . . 46

3 Quantification of bone mobilization and reconstitution during cycles of

lactation and gestation in dairy cows . . . . . . . . . . . . . . . . . . . . 48

D) Milk Ca and P Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

1 Organisation of the mammary epithelial cells and secretion of Ca and

P into milk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2 Forms of Ca and P present in milk . . . . . . . . . . . . . . . . . . . . . 54

3 Factors of variations of milk Ca and P contents . . . . . . . . . . . . . . 56

4 A suspicion of a link between milk Ca content and bone mobilization in

case of low calcemia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Thesis strategy 61

Chapter II: Non-genetic factors of variation of milk Ca content 65

A) Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

B) Material and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

1 Study design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

iii



CONTENTS

2 Prediction of milk calcium content using MIR spectra . . . . . . . . . . 68

3 Characterization of feeding strategies . . . . . . . . . . . . . . . . . . . 68

4 Statistical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

C) Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

1 Prediction of milk calcium content using MIR spectra . . . . . . . . . . 70

2 Effects of stage of lactation and parity . . . . . . . . . . . . . . . . . . . 70

3 Characterization of feeding strategies . . . . . . . . . . . . . . . . . . . 71

4 Effect of feeding strategy and calendar month on milk calcium content 73

5 Effect of feeding strategy and calendar month on milk production and

amount of calcium secreted daily in milk . . . . . . . . . . . . . . . . . . 75

6 Effect of feeding strategies on milk protein content and Ca content-to-

protein content ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

D) Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

1 Quality of MIR prediction and relevance of the PhénoFinLait program 77

2 Effects of breeds stage of lactation and parity on milk Ca content . . . 79

3 Effect of feeding, strategy and seasonality on milk Ca content . . . . . 79

E) Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Chapter III: Effects of parity and individual variability on bone accretion

and resorption and milk calcium and phosphorus content

during lactation in dairy cows 85

A) Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

B) Material and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

1 Animals and monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

2 Blood and milk samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3 Chemical analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4 Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5 Statistical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

C) Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

1 Differences in milk quality and Ca metabolism due to parity . . . . . . 92

2 Characterization of dynamics of milk Ca content . . . . . . . . . . . . . 96

iv



CONTENTS

3 Relationship between plasmatic components related to bone

metabolism and potential milk biomarkers . . . . . . . . . . . . . . . . 98

D) Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

1 An effect of parity on bone remodelling and on dynamics of bone

resorption during lactation related to that of milk content of Ca . . . . 100

2 The shape of the dynamics of milk Ca content does not allow a

prediction of the shape of the dynamics of bone mobilization during

the lactation but may reflect a lower coverage of Ca requirements . . . 102

3 The milk Ca to P ratio: an indicator of bone mobilization? . . . . . . . . 103

E) Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Chapter IV: Effects of breed and feeding strategies on bone accretion and

resorption and milk calcium and phosphorus content during

lactation in dairy cows 107

A) Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

B) Material and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

1 Animals, diets, management, and experimental design . . . . . . . . . 112

2 Blood and milk samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

3 Chemical analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4 Statistical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

C) Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

1 Milk production, milk protein and fat contents . . . . . . . . . . . . . . 116

2 Plasma concentrations of Ca, Pi, OC, CTX and NEFA . . . . . . . . . . 118

3 Milk Ca and P contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4 Relationship between plasma OC to CTX ratio and milk Ca to P ratio . 123

D) Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

1 Differences on milk production and composition due to feeding

strategies and breed along lactation and repartition of cows . . . . . . 124

2 Bone and adipose tissue mobilization during lactation according to

feeding strategies, parity and breed . . . . . . . . . . . . . . . . . . . . . 125

3 Dynamics of milk Ca, P and Ca to protein ratio during lactation

according to feeding strategies, parity and breed . . . . . . . . . . . . . 127

v



CONTENTS

4 Can milk ratio Ca to P be a predictor of plasma ratio OC to CTX within

individual? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

E) Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

Chapter V: Effect of Calcium intake and dietary cation anion difference

in early lactation on bone mobilization dynamics all over

lactation in dairy cows 131

A) Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

B) Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

1 Animals and experimental design . . . . . . . . . . . . . . . . . . . . . . 137

2 Diets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

3 Blood and milk sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

4 Measurement of Ca and P retention in cows . . . . . . . . . . . . . . . . 140

5 Chemical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6 Statistical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

C) Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

1 Ca, P and DM intake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

2 Plasma concentrations of biomarkers of bone accretion and resorption,

Ca and Pi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

3 Ca and P partitioning and retention . . . . . . . . . . . . . . . . . . . . 145

4 Milk production and composition . . . . . . . . . . . . . . . . . . . . . . 148

5 Milk Ca and protein partitioning between soluble and colloidal phases 150

D) Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

1 A limited effect of dietary Ca supply and DCAD on the dynamics of bone

mobilization and reconstitution during lactation . . . . . . . . . . . . . 150

2 Dairy cows have adapted to low dietary Ca supplies by increasing

digestive absorption of Ca in early lactation . . . . . . . . . . . . . . . . 154

3 The relation between the dynamics of milk Ca content and bone

accretion and resorption during lactation . . . . . . . . . . . . . . . . . 155

4 A possible effect of restricted Ca intake on milk production and cow

longevity? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

E) Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

vi



CONTENTS

Chapter VI: General Discussion 161

A) Non-genetic factors of variation of milk P content . . . . . . . . . . . . . . . . . 165

1 Complements of Material and Methods . . . . . . . . . . . . . . . . . . . 165

2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

a Prediction equation of milk P content from MIR spectra . . . . 166

b Description of the database and restrictions . . . . . . . . . . . 166

c Non-genetic factors of variation of milk P content . . . . . . . 166

d Non-genetic factors of variation of milk Ca to P ratio . . . . . . 170

3 Conclusion about non-genetic factors of variation of milk contents of Ca

and P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

B) Can the dynamics of milk Ca content during lactation be used to predict that

of bone mobilization and reconstitution? . . . . . . . . . . . . . . . . . . . . . 175

1 Methods for cross analysis of the 3 experiments carried out in this thesis175

2 An important variability of the dynamics of plasma CTX across

experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

3 A weak link between the variability of milk Ca content and that bone

resorption at the scale of the whole lactation . . . . . . . . . . . . . . . 181

a Cross-analysis of milk Ca content . . . . . . . . . . . . . . . . . 181

b Cross-analysis of milk Ca to protein ratio . . . . . . . . . . . . 183

c Cross-analysis of milk Ca to P ratio . . . . . . . . . . . . . . . . 187

C) The role of the mammary gland in the regulation of calcemia . . . . . . . . . . 193

1 Temporal integration of organ responses for the regulation of plasma

Ca concentration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

2 Can milk Ca content be a more efficient indicator of short term

variation of regulation of plasma Ca concentration than of the shape

of bone mobilization at the scale of the lactation? . . . . . . . . . . . . . 195

3 Is the effect of the mammary gland on the regulation of plasma Ca

concentration mainly mediated by the modulation of the milk Ca content?197

Conclusion 199

References 201

vii



Appendix 229

Appendix 1 - Abstract: ADSA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

Appendix 2 - Abstract: Mountain Cheese . . . . . . . . . . . . . . . . . . . . . . . . 233

Appendix 3 - Poster: Journées d’Animations Scientifiques du département PHASE 237

Appendix 4 - Poster: 10th International Symposium on the Nutrition of Herbivores 239

Appendix 5 - Abstract: Rencontres Recherches Ruminants (3R) 2018 . . . . . . . . 241

viii



List of Figures

Chapter I: About Ca and P homeostatis, cycles of mobilization and

reconstitution of bones and variability of milk Ca and P

contents in dairy cows

I.1 Intern Ca flows in a non-lactating dairy cows . . . . . . . . . . . . . . . . . . . 9

I.2 Major effectors of calcemia regulation in mammals . . . . . . . . . . . . . . . 11

I.3 PTH secretion rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

I.4 Resume of factors affecting hydroxylation of vitamin D . . . . . . . . . . . . . 13

I.5 Intestinal Ca absorption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

I.6 P flows in a lactating cow obtained thanks a dynamic mechanistic and

compartimental model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

I.7 Actions of FGF 23 on phosphatemia regulation . . . . . . . . . . . . . . . . . . 19

I.8 Intestinal P absorption. Model of intestinal P transport . . . . . . . . . . . . 21

I.9 Intern Ca flows in a lactating dairy cows . . . . . . . . . . . . . . . . . . . . . 22

I.10 Comparison of PTH and PTHrP amino acids sequences . . . . . . . . . . . . . 24

I.11 Comparison of PTHrP amino acids sequences between species . . . . . . . . . 25

I.12 Role of PTHrP and Ca-sensing receptor (CaSR) within the lactating breast . 26

I.13 Sequences of biochemical changes leading to clinical signs in dietary

deprivation of Ca . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

I.14 Sequences of biochemical changes leading to clinical signs in dietary

deprivation of P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

I.15 Evolution of P use in the last 50 years . . . . . . . . . . . . . . . . . . . . . . . 31

I.16 Zootechnical characteristic of the cow for the comparison of feeding systems . 38

I.17 Comparison of estimation of absorbable Ca and P requirements over lactation 39

I.18 Comparison of absorbed Ca and P according to dietary systems during lactation 39

I.19 Comparison of Ca and P balances according to dietary systems during lactation 40

ix



LIST OF FIGURES

I.20 Bone remodeling cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

I.21 Relation between Ca and energy metabolisms . . . . . . . . . . . . . . . . . . 45

I.22 Molecular basis of PICP and PINP . . . . . . . . . . . . . . . . . . . . . . . . . 47

I.23 Molecular basis of the used markers of collagen degradation . . . . . . . . . . 48

I.24 Ways of Ca secretion into milk . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

I.25 Pi Secretion into milk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

I.26 Equilibrium of Ca forms in milk . . . . . . . . . . . . . . . . . . . . . . . . . . 55

I.27 Relation between Ca and casein concentrations in the milks of different species 56

Chapter II: Non-genetic factors of variation of milk Ca content

II.1 Frequency distribution of the dates of calving during the survey period . . . 71

II.2 Evolution of the mean stage of lactations of cows during the visits . . . . . . 71

II.3 Effects of the stage of lactation, within each breed, on milk Ca content, milk

production and amount of Ca secreted daily in milk . . . . . . . . . . . . . . . 72

II.4 Evolution of the mean diet during the survey period for the 6 feeding strategies 74

II.5 Effect of feeding strategy and calendar month on milk Ca content for the 3

breeds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

II.6 Effect of calendar month and feeding strategy in Holstein on amount of Ca

secreted in milk and milk production . . . . . . . . . . . . . . . . . . . . . . . 77

II.7 Effect of calendar month and feeding strategy in Hoslteins on protein content

in milk and the ratio of Ca content to protein content in milk . . . . . . . . . 78

Chapter III: Effects of parity and individual variability on bone accretion

and resorption and milk calcium and phosphorus content

during lactation in dairy cows

III.1 Effect of parity and stage of lactation on daily milk production, milk protein

content, milk Ca content, milk Ca to protein ratio, Ca supply - requirements

and plasma Ca concentration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

III.2 Effect of parity and stage of lactation on milk P content, milk Ca to P ratio,

Plasma Pi concentration and plasma Ca to P ratio . . . . . . . . . . . . . . . . 95

x



LIST OF FIGURES

III.3 Effect of parity and stage of lactation on plasma osteocalcin concentration and

plasma CTX concentration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

III.4 Effect of cluster of milk Ca dynamic and stage of lactation on milk Ca

content, plasma Ca concentration, plasma OC concentration,plasma CTX

concentration, milk P content, milk Ca to P ratio, Ca supply-requirements

and milk Ca to protein ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

III.5 Relationship between plasma OC to CTX ratio and milk Ca to P ratio. . . . . 99

Chapter IV: Effects of breed and feeding strategies on bone accretion and

resorption and milk calcium and phosphorus content during

lactation in dairy cows

IV.1 Effect of breed and feeding strategy on milk production and milk protein

content according to parity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

IV.2 Effect of breed and feeding strategy on plasma concentrations of OC, CTX,

and NEFA according to parity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

IV.3 Effect of breed and feeding strategy on plasma concentrations of Ca and Pi

according to parity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

IV.4 Effect of breed and feeding strategy on milk Ca content and Ca to protein

ratio according to parity and time of sampling . . . . . . . . . . . . . . . . . . 122

IV.5 Effect of breed and feeding strategy on milk P content according to parity and

time of sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

IV.6 Relationship between plasma OC to CTX ratio and milk Ca to P ratio in the

high feeding strategy and the low feeding strategy . . . . . . . . . . . . . . . . 124

Chapter V: Effect of Calcium intake and dietary cation anion difference

in early lactation on bone mobilization dynamics all over

lactation in dairy cows

V.1 Differences between cows according to their treatments on milk production,

mature equivalent milk production, milk protein content and milk fat content

during the first 32 wks of the preceding lactation . . . . . . . . . . . . . . . . 143

xi



LIST OF FIGURES

V.2 Effect of dietary content of Ca and DCAD between d 5 and d 70 of lactation

on Ca intake and DM intake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

V.3 Effect of dietary content of Ca and DCAD between d 5 and d 70 of lactation

on plasma OC concentration and plasma CTX concentration . . . . . . . . . . 146

V.4 Effect of dietary content of Ca and DCAD between d 5 and d 70 of lactation

daily Ca intake, fecal losses of Ca, Ca secretion in milk, urinary losses of Ca,

apparent digestibility of Ca and Ca balance . . . . . . . . . . . . . . . . . . . . 147

V.5 Effect of diet content of Ca and DCAD between d 5 and d 70 of lactation on

daily milk production, milk Ca content, milk protein content and milk fat

content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

V.6 Effect of dietary content of Ca and DCAD between d 5 and d 70 of lactation on

morning milk casein content, ratio of colloidal Ca to N casein content, ratio

of soluble Ca to total Ca content and ratio Ca to protein content . . . . . . . . 151

Chapter VI: General Discussion

VI.1 Effet of stage on lactation, within each breed, on milk P content and milk

ratio Ca to P content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

VI.2 Effet of calendar month and feeding strategy on milk P content according to

breeds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

VI.3 Effet of calendar month and feeding strategy on milk Ca to P ratio acconding

to breeds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

VI.4 Effect of the experimental group on the dynamics of the plasma osteocalcin

(OC) concentration over lactation . . . . . . . . . . . . . . . . . . . . . . . . . . 178

VI.5 Effect of the experimental group on the dynamics of the plasma carboxy-

terminal cross-linking telopeptides of collagen type I (CTX) concentration

over lactation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

VI.6 Effect of the experimental group on the dynamics of the plasma OC to CTX

ratio over lactation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

VI.7 Effect of the experimental group on the dynamics of the milk Ca content over

lactation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

VI.8 Regression between milk Ca content and protein content . . . . . . . . . . . . 184

xii



VI.9 Effect of the experimental group on the dynamics of the milk protein content

and Ca to protein ratio over lactation . . . . . . . . . . . . . . . . . . . . . . . 186

VI.10Effect of the experimental group on the dynamics of the milk P content and

Ca to P ratio over lactation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

VI.11Regression between milk Ca to P ratio and plasma OC to CTX ratio within

each treatment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

VI.12Regression between milk Ca to P ratio and plasma OC to CTX ratio within

each treatment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

xiii



xiv



List of Tables

I.1 Estimation of Ca and P requirements according to AFRC (1991), INRA (2010)

and NRC (2001) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

I.2 Real Coefficent of Absorption of P and Ca of the forages in the INRA system . 34

I.3 Real Coefficent of Absorption of P and Ca of the main deed materials and

minerals in the INRA system . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

I.4 Cows’ diet composition and characteristics for the systems comparisons . . . . 37

I.5 Milk mineral composition in different species . . . . . . . . . . . . . . . . . . . 55

II.1 Results of milk Ca content prediction from mid-infrared spectra . . . . . . . . 70

II.2 Effect of parity on milk Ca content for each breed . . . . . . . . . . . . . . . . . 72

II.3 Distribution of milk samples among breeds and feeding strategies . . . . . . . 75

III.1 Repartition of cows between milk Ca content dynamics according to their parity 96

III.2 Prediction of bone metabolism by potential milk biomarker . . . . . . . . . . . 99

IV.1 Table of diet composition according to season and feeding strategies . . . . . . 113

IV.2 Repartition of cows between breed, parity, feeding strategy and month of calving116

V.1 Diet centesimal composition and nutritional value . . . . . . . . . . . . . . . . 139

VI.1 Effect of parity on milk P content for each breed . . . . . . . . . . . . . . . . . 167

VI.2 Effect size of explanatory variables of milk P and Ca contents and milk Ca to

P ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

VI.3 Effect of parity on milk Ca to P ratio for each breed . . . . . . . . . . . . . . . 171

VI.4 Number of cows constituting the 13 groups used for cross analysis of the 3

experiments described in this PhD thesis . . . . . . . . . . . . . . . . . . . . . 176

xv



xvi



Abbreviation - Glossary

5HT : 5-hydroxytryptamine or serotonin

ACA : Apparent Coefficient of Absorption

BW : Body Weight

CaSR : Calcium Sensing Receptor

CTX : Carboxy-Terminal cross-linking

telopeptides of collagen type I

DCAD : Dietary Cation-Anion Difference

DPD : deoxypuridinoline

DMI : Dry Matter Intake

DIM : Days in Milk

FGF 23 : Fibroblast Growth Factor 23

ITPR : Inositol 1,4,5-triphosphate receptors

MEC : Mammary epithelial cells

MIR : Medium Infra-Red

MP : Milk Production

NPT2b: Sodium-dependent phosphate co-

transporter 2b

NTX : Amino-Terminal cross-linking

telopeptides of collagen type I

OC : Osteocalcin

PDI : Protein Digestible in the Intestine

Pi : inorganic Phosphorus

PICP : Carboxy-terminal of propetides of

collagen types I

PINP : Amino-terminal of propetides of

collagen types I

PMCA : Plasma Membrane Ca2+-ATPase

PTH : Parathyroid hormon

PTHrP : Parathyroid hormon-related-

Protein

PYD : Pyridinoline

RCA : Real Coefficient of Absorption

SERCA2 : Sarco Ebdoplasmic reticulum

Ca2+-ATPase

SPCA : Secretory Pathway Ca2+ ATPase

TMR : Total Mixed Ration

TRPV : Transcient Receptor Potential

Voltage

VDR : 1,25-(OH)2-vitamin D Receptor

xvii



xviii



List of Communications

Scientific Articles

Gaignon P., Gelé M., Hurtaud C., Boudon A. 2018. Characterization of the nongenetic

causes of variation in the calcium content of bovine milk on French farms. Journal of Dairy

Science. 101:4554-4569

P.Gaignon, P.Faverdin, A.Laza-Knoerr, K. Le Grand , C.Hurtaud , A.Boudon 2018.

Effects of parity and individual variability on bone accretion and resorption and milk

calcium and phosphorus content during lactation in dairy cows. animal. Submitted.

P. Gaignon, K. Le Grand, A. Laza, C. Hurtaud, A. Boudon. 2018. Effect of calcium intake

and dietary cation anion difference in early lactation on bone mobilization dynamics all over

lactation in dairy cows. Journal of dairy Science. Submitted.

P.Gaignon, L.Delaby, A.Laza-Knoerr, K. Le Grand, C.Hurtaud, A.Boudon. 2018. Effects

of breed and feeding strategies on bone accretion and resorption and milk calcium and

phosphorus content during lactation in dairy cows. animal. In preparation.

Oral Presentations in International Congress

Gaignon P., Gelé M., Hurtaud C., Boudon A. Characterization of the non-genetic causes

of variation of bovine milk calcium concentrations on French farms. Annual Meeting of

American Dairy Science Association, 25-18 June 2017, Pittsburgh,PA (USA). Journal of

Dairy Science, 100, Supplement 2:423. Appendix 1

Gaignon P., Gelé M., Hurtaud C., Boudon A. Characterization of the non-genetic causes of

variation of bovine milk calcium concentrations on French farms. 12th International Meeting

on Montain Cheese, 20-22 June 2017, Padova (Italy). p25-28. Appendix 2

Gaignon P., Le Grand K., Laza-Knoerr A., Hurtaud C., Boudon A. Effect of parity and age

at first calving of dairy cows on dynamics of milk calcium contents and blood biomarkers of

bone accretion and resorption throughout lactation.International Symposium on the

Nutrition of Herbivores (ISNH), 2-6 September 2018, Clermont-Ferrand (France).

xix



Gaignon P., Le Grand K., Laza-Knoerr A., Hurtaud C., Boudon A. Effet d’une restriction des

apports en calcium en début de lactation sur la production laitière, la composition du lait et

les dynamiques de mobilisation et de reconstitution osseuse au cours de la lactation chez la

vache laitière. Rencontres Recherches Ruminants (3R), 5-6 December 2018, Paris (France).

Appendix 5

Posters in International Congress

Gaignon P., Le Grand K., Laza-Knoerr A., Hurtaud C., Boudon A. Effect of parity and

age at first calving of dairy cows on dynamics of milk calcium contents and blood

biomarkers of bone accretion and resorption throughout lactation.International

Symposium on the Nutrition of Herbivores (ISNH), 2-6 September 2018, Clermont-Ferrand

(France). Appendix 4

Internal Oral Presentations

Gaignon P., Hurtaud C., Boudon A. Étude de la variabilité individuelle des dynamiques

de teneur en calcium du lait et des teneur sanguines en biomarqueurs d’accrétion et de

résorption osseuse au cours de la lactation chez la vache laitière. XVIe Journée de

l’animation transversale de "Glande mammaire, lait". 14th November 2017, Paris (France)

Gaignon P., Faverdin P., Sidaner D., Hurtaud C., Boudon A. Etude de l’effet de la parité et de

la variabilité individuelle sur les dynamiques de mobilisation et de reconstitution osseuse

au cours de la lactation en relation avec la teneur en calcium du lait. Journée d’Animations

Scientifique du département PHASE. Avril 2018, Rennes (France). Appendix 3

xx



������ �� �� �����

Introduction

Chez la vache laitière, le calcium (Ca) et le phosphore (P) sont des éléments essentiels à

la croissance et à la production laitière. Les conséquences des carences alimentaires de ces

éléments ont déjà été démontrées au début du XXe siècle (Becker et al., 1934, Suttle,

2010). Pour cette raison, une supplémentation minérale, fournissant entre autres Ca et P,

est généralement fournie aux vaches laitières en fonction de leurs besoins. Les

estimations actuelles des besoins de Ca et de P sont basées sur des approches factorielles

dans plusieurs systèmes d’alimentation (AFRC, 1991, NRC, 2001, INRA, 2010). Pour les

vaches laitières, ces approches factorielles consistent à diviser les besoins en Ca et en P en

quatre composantes : entretien (excrétions fécale et urinaire inévitables), croissance

(accrétion osseuse), gestation (accrétion osseuse fœtale) et production de lait (sécrétion

dans le lait). Pour estimer les besoins totaux, les quatre composantes des besoins sont

estimées indépendamment, puis additionnées. Le principe de ces approches factorielles

est de remplacer les pertes ou les rétentions de Ca ou de P dans les os ou les tissus des

vaches laitières à l’échelle de la journée.

Cependant, toute la complexité de l’homéostasie de Ca et de P n’est pas prise en compte

dans ces approches factorielles d’estimation des besoins. Plus précisément, le fait que les

vaches laitières soient soumises à des cycles importants de mobilisation et de reconstitution

osseuses n’est pas considéré (Ekelund et al., 2006, Puggaard et al., 2014). La prise en compte
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de ces cycles pourrait permettre une plus grande précision dans l’estimation des besoins

en Ca et P et une intégration de ces exigences à l’échelle du cycle de production, en tenant

compte de la mobilisation et de la reconstitution des réserves corporelles. Le premier objectif

de l’homéostasie de Ca et de P est de maintenir une stabilité relative des concentrations

plasmatiques de ces éléments et d’éviter l’hypocalcémie ou l’hypophosphatémie lorsque les

besoins ne sont pas couverts. Les os jouent un rôle important dans cette homéostasie car

ils constituent la première réserve de Ca et de P dans l’organisme. La mobilisation de Ca

et de P à partir des os est permet la restauration des concentrations plasmatiques de Ca et

de P lorsque l’apport de ces éléments est trop faible, (Horst et al., 2005). Chez les vaches

laitières, les situations de sous-apports sont courantes pour le Ca après le vêlage, à la mise

en place de la lactation, en raison de la forte augmentation des exportations de Ca dans le

lait. Une conséquence est une mobilisation osseuse en début de lactation, difficile à éviter

(Horst et al., 2005). Cette mobilisation est compensée après trois mois de lactation par une

reconstitution osseuse. Actuellement, la mobilisation osseuse en début de lactation n’est pas

considérée comme un apport de Ca ou de P dans les approches factorielles de détermination

des besoins en Ca et en P et la reconstitution osseuse comme un besoin.

La prise en compte des cycles de mobilisation et de reconstitution osseuses dans la

définition des besoins en Ca et P permettrait également d’intégrer une partie des

interactions entre le métabolisme de Ca et de P. En effet, Ca et P sont liés ensemble dans

l’os sous forme d’hydroxyapatite (Moreira et al., 2009, Elizondo Salazar et al., 2013). Ainsi,

un apport insuffisant en un minéral pourrait avoir des conséquences sur la quantité à

fournir pour l’autre. Par exemple, on peut considérer que la mobilisation osseuse, souvent

considérée comme inévitable en début de lactation, induit une libération de P par l’os et

que, par conséquent, l’apport alimentaire de P pourrait être réduit à ce stade. Au

contraire, il faudrait peut-être augmenter les apports de P, avec l’apport en Ca après le

troisième mois de lactation, lorsque les vaches reconstituent leurs os. L’approche devrait

permettre à la fois une meilleure utilisation de P avec moins de risques de rejet dans

l’environnement et d’eutrophisation et une meilleure reconstitution osseuse en fin de

lactation, peut-être en relation avec la prévention des problèmes de santé et la longévité

des vaches.

Pour intégrer les cycles de mobilisation et de reconstitution osseuse dans les
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estimations des besoins et des apports en Ca et P pour les vaches laitières, il est nécessaire

de disposer de bases de données conséquentes quantifiant ces cycles par rapport à la

lactation. Actuellement, il n’existe pas de méthode rapide, économique et efficace pour

suivre l’évolution de la mobilisation osseuse et qui pourrait être utilisée à grande échelle.

Les méthodes actuellement disponibles ne peuvent pas être utilisées sur un grand nombre

d’animaux en raison de coûts élevés (biomarqueurs sanguins de l’os, Liesegang et al.,

2007), d’un besoin important en main d’œuvre (bilan minéral total, Taylor et al., 2009), d’

enjeux environnementaux (radio-isotopes, Ramberg et al., 1970) ou de questions éthiques

liées à l’expérimentation animale (biopsies osseuses répétées, Beighle, 1999). Les

résultats publiés au cours des 15 dernières années suggèrent que la teneur en Ca du lait

pourrait refléter un apport insuffisant en Ca et une mobilisation osseuse accrue chez les

mammifères (VanHouten et al., 2004). Des résultats récents suggèrent également qu’une

partie de la variabilité de la teneur en Ca du lait pourrait être liée à la stratégie

alimentaire des vaches (Hurtaud et al., 2014, Boudon et al., 2016). La variation de la

composition minérale du lait, et plus particulièrement de la teneur en Ca et peut-être en P

du lait, pourrait permettre une prédiction de la mobilisation osseuse des vaches. Avec

l’utilisation croissante de la technologie du moyen infrarouge (MIR) pour analyser la

composition du lait, notamment la teneur en Ca (Soyeurt et al., 2009), le Ca pourrait être

un biomarqueur simple et peu coûteux de la mobilisation osseuse chez les vaches laitières.

L’objectif de cette thèse était de comprendre comment les variations de la teneur en Ca

du lait pourraient être associées aux variations de l’accrétion et de la résorption osseuses

durant la lactation chez les vaches laitières, en relation avec plusieurs facteurs de variation

de ces dynamiques tels que l’individu, la parité, la race ou la stratégie d’alimentation. La

première partie de cette thèse a consisté à établir un état des lieux sur l’homéostasie et les

besoins en Ca et P, les cycles de mobilisation et de reconstitution des os et la variabilité des

teneurs en Ca et P du lait chez les vaches laitières. Dans une seconde partie, une analyse

des principaux facteurs de variation de la teneur en Ca du lait de vache a été réalisée grâce

à une base de données des résultats de la composition laitière issue d’une enquête réalisée

avant le début de ma thèse dans environ un millier d’exploitations françaises. Dans les

troisième, quatrième et cinquième parties, les résultats de trois expériences consistant à

caractériser simultanément les cycles de mobilisation et de reconstitution osseuses et la
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variabilité laitière des teneurs en Ca et P du lait chez la vache laitière pendant toute la

lactation sont présentés. Un essai a évalué l’effet de la parité et de la variabilité individuelle.

Le deuxième essai s’est intéressé à l’effet de la race et de la stratégie d’alimentation alors

que dans le dernier essai, nous avons suivi la lactation complète des vaches ayant un apport

en Ca insuffisant en début de lactation.

Chapitre I : Homéostasie de Ca et de P, cycles de

mobilisation et reconstitution osseuses et variabilité

des teneurs en Ca et P du lait chez la vache laitière

La calcémie, c’est à dire la concentration du plasma en Ca, est très finement régulée

avec de très faibles variations. Cette régulation très fine est permise par l’action de trois

hormones, la parathormone (PTH) et la vitamine D en cas d’hypocalcémie et la calcitonine

en cas d’hypercalcémie. Ces trois hormones modifient l’activité des principaux organes

impliqués dans la régulation de la calcémie, notamment l’intestin (pour l’absorption du Ca

alimentaire), le rein (pour la ré-absorption du Ca excrété dans l’urine) et l’os (pour la

mobilisation/reconstitution des réserves). La phosphatémie est, quant à elle, moins

finement régulée que la calcémie, avec des variations plus importantes à l’échelle de la

journée. Une hormone participant à sa régulation, le FGF 23 a été découverte récemment.

Les régulations de la calcémie et de la phosphatémie sont liées, car Ca et P sont liés dans

l’os sous forme d’hydroxyapatite. La régulation de la calcémie et de la phosphatémie est

particulière chez les animaux en lactation, en lien avec les grandes quantités de Ca et P

qui sont sécrétées dans le lait.

Des apports inappropriés en Ca et/ou P peuvent avoir des conséquences sur la santé et

les performances des vaches laitières mais aussi en termes de résultats économiques et

environnementaux pour les élevages. Des estimations des besoins en Ca et P ont été

proposées par plusieurs systèmes (AFRC, INRA et NRC), menant à des estimations

relativement proches à l’échelle de la lactation. L’objectif des systèmes actuels est de

pallier aux pertes journalières, liées aux Ca urinaire, fécal, endogène ou secrété dans le

lait. La plus grande différence entre les systèmes concerne les parts de Ca et de P
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alimentaires qui sont absorbés par la vache. De fortes disparités existent entre les trois

systèmes étudiés sur la part absorbable, notamment pour le Ca, menant donc à des

pratiques de supplémentation minérale disparates selon le système considéré.

Le squelette de la vache laitière est seul organe de stockage de Ca dans l’organisme, et

le principal de P. Sa structure séparée en une phase minérale et une phase protéique est à

l’origine de sa structure et sa solidité. La possibilité de mobiliser et de reconstituer ces

réserves vient du fait que l’os est sans cesse en renouvellement, par des phénomènes

d’accrétion et de résorption, sous l’effet de cellules, les ostéoblastes et les ostéoclastes.

Pour suivre ces phénomènes d’accrétion et de résorption osseuses, plusieurs méthodes ont

été employées, comme les radio-isotopes, des bilans entrée-sortie, des biopsies ou des

biomarqueurs sanguins. Ces méthodes ont notamment permis d’étudier les variations

existantes de mobilisation osseuse au cours de la lactation chez la vache laitière. Pour la

sécrétion de Ca et de P dans le lait, la glande mammaire doit faire face à d’importants flux

de ces éléments. Pour éviter de fortes variations des concentrations intracellulaires au

sein de la cellule épithéliale mammaire et une altération de l’activité de ces dernières,

plusieurs voies de sécrétions ont été mises en place. Ca et P peuvent être sécrétées sous

plusieurs formes, solubles ou liés à des composant du lait comme les caséines, dans le lait,

qui résultent d’équilibres entre leur différentes formes. Cependant, la teneur en minéraux

peut varier selon les animaux et les conditions environnementales.

Stratégie de thèse

L’organisme des vaches laitières en lactation fait face à d’importants flux de Ca et de P

en raison de la sécrétion de lait. Pour cette raison, la plupart des vaches laitières en

lactation reçoivent une supplémentation minérale en Ca et P après évaluation des apports

et des besoins quotidiens en Ca et en P grâce à des modèles élaborés dans des systèmes

d’alimentation publiés. Les recommandations actuelles de ces systèmes d’alimentation

sont de remplacer les pertes quotidiennes des vaches, à savoir les excrétions fécales et

urinaires et la sécrétion de lait par un apport alimentaire adéquat. Cependant, il est

probable que les vaches en lactation acquièrent la capacité de mobiliser Ca et P à partir de

leurs os au début de leur lactation et qu’elles restaurent leurs pools de Ca et de P à la fin
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de leur lactation. On pourrait alors considérer qu’il serait préférable de raisonner la

supplémentation minérale à l’échelle de la lactation en tenant compte des cycles de

mobilisation et de reconstitution osseuses pendant la lactation et la gestation. Pour y

parvenir, une première étape consisterait à disposer de méthodes permettant de quantifier

ces cycles pendant une longue période sur un nombre représentatif de vaches.

Comme il a été démontré chez la souris que la glande mammaire peut en même temps

diminuer la quantité de Ca secrétée dans le lait et augmenter la résorption osseuse en cas

d’hypocalcémie, l’hypothèse de cette thèse est que la teneur en Ca du lait pourrait être un

biomarqueur de la mobilisation osseuse. Ainsi, le but de ce travail était d’étudier si la

teneur en Ca du lait pouvait refléter la mobilisation osseuse chez les vaches laitières en

lactation. Comme on sait que la génétique est un déterminant majeur de la teneur en Ca

du lait, il est hautement prévisible que la teneur en Ca du lait ne pourra être utilisée que

comme biomarqueur dynamique. Ainsi, la question principale de cette thèse était de

déterminer si la dynamique de la teneur en Ca du lait au cours de la lactation

peut permettre de prédire celles des biomarqueurs de la résorption osseuse, ou

peut-être un ratio entre marqueurs de résorption et d’accrétion osseuses. Trois

sous-questions ont été traitées dans cette thèse.

La première sous-question était de déterminer si la teneur en Ca du lait était

variable chez les vaches laitières, en excluant l’effet génétique, et à quantifier

l’importance relative des facteurs de variation de la teneur en Ca du lait. La

première étape était donc de caractériser les facteurs de variations non génétiques de la

teneur en Ca du lait chez les vaches laitières. Cette caractérisation a été réalisée en

utilisant les résultats d’une grande enquête réalisée dans les 3 principales régions

françaises de production laitière, impliquant environ 1 000 exploitations. Les données

obtenues ont permis d’étudier les facteurs de variations non génétiques de la teneur en Ca

du lait à grande échelle et d’identifier ainsi les facteurs conduisant à de faibles variations

de la teneur en Ca du lait. L’existence d’une variabilité de la teneur en Ca du lait expliquée

par un facteur de variation autre que celui lié à la race et à la génétique était une première

condition permettant d’identifier la teneur en Ca du lait comme un biomarqueur de la

résorption osseuse. L’analyse de l’enquête a été réalisée en collaboration avec IDELE, ce

qui nous a permis de calculer la teneur en Ca du lait à partir des spectres MIR.
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La deuxième sous-question était de déterminer si une relation pouvait être

identifiée entre la dynamique des biomarqueurs plasmatiques de l’accrétion et

de la résorption osseuses pendant la lactation et celle de la teneur en Ca du lait.

La deuxième étape de ma thèse a donc consisté en un travail expérimental consistant à

suivre les deux dynamiques pendant la lactation dans diverses conditions chez les vaches

laitières. Les principaux facteurs de variation considérés étaient la parité, le stade de

lactation et l’individu. Une première expérience a eu lieu dans la ferme expérimentale de

Méjusseaume (INRA, Bretagne). Elle a consisté à mesurer les deux dynamiques dans un

troupeau de 33 vaches laitières Holstein (50% de primipares), toutes nourries avec la même

ration. Une seconde expérience a été menée au domaine expérimental du Pin-au-Haras

(INRA, Normandie). Elle a consisté à mesurer les deux dynamiques dans un troupeau de 13

vaches laitières Holstein et 17 vaches laitières Normande nourries avec avec des régimes à

densité énergétique élevée ou faible en adéquation avec deux stratégies d’alimentation,. La

dynamique de l’accrétion et de la résorption osseuses a été mesurée grâce aux biomarqueurs

plasmatiques. Ces expériences ont été initialement conçues pour deux projets qui n’étaient

pas directement liés à ma thèse.

La dernière sous-question était de déterminer si une mobilisation osseuse

accrue en début de lactation par un apport en Ca plus faible et / ou un faible

bilan alimentaire cation-anion (BACA) entraînait une diminution de la teneur

en Ca du lait. La dernière étape de ma thèse a consisté en un essai qui a eu pour objectif

d’induire une plus forte mobilisation osseuse grâce à une faible teneur en Ca alimentaire

ou à une faible teneur en Ca alimentaire et un BACA favorisant la mobilisation osseuse et

à comparer les dynamiques d’accrétion et résorption osseuses et celles des teneurs en Ca

du lait pendant la lactation avec celles de 5 vaches témoins. Un deuxième objectif de cette

expérience était de déterminer comment les vaches reconstituent leurs os après une

mobilisation osseuse accrue au début de la lactation. Cette expérience a été conçue

spécifiquement pour ma thèse et a été réalisée à la ferme expérimentale de Méjusseaume.

La mobilisation osseuse a été mesurée à l’aide de deux méthodes : les biomarqueurs osseux

plasmatiques et le bilan entrée-sortie en minéraux des vaches au cours de la lactation.
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Chapitre II : Facteurs de variations non-génétiques de la

teneur en Ca du lait

Le lait est une source importante de Ca dans les régimes alimentaires occidentaux. Le

Ca du lait est important pour la fabrication du fromage et pourrait être un biomarqueur

utile de la régulation du Ca chez la vache laitière. L’objectif de cette étude était d’identifier

et de quantifier les facteurs de variation non génétiques affectant la teneur en Ca du lait

de vache. Lors du programme PhénoFinLait, une enquête a été menée dans 3 grands

zones géographiques de production de lait en France. Cette enquête consistait à collecter

des échantillons de lait, ainsi que des informations sur la gestion des troupeaux et

l’alimentation des vaches laitières, à partir de 924 exploitations commerciales. Plus de

200 000 échantillons de lait individuels ont été prélevés et leurs spectres MIR ont été

mesurés. Chaque ferme a été enquêtée à plusieurs reprises au cours de l’année et 3 à 6

échantillons de lait ont été prélevés sur chaque vache. Une équation permettant de prédire

la teneur en Ca du lait à partir des spectres MIR a été développée sur la base des teneurs

en Ca de 292 échantillons de lait, et les teneurs en Ca dans les 200 000 échantillons ont

ensuite été prédites. La teneur en Ca du lait était la plus faible chez les vaches Holstein,

intermédiaire chez les vaches Montbéliardes et la plus élevée chez les vaches Normandes.

Pour toutes les 3 races, le Ca du lait a diminué pendant le premier mois de lactation et

augmenté après le 4ème mois de lactation, l’écart entre valeurs minimales et maximales

étant le plus grand chez les Holstein, intermédiaire chez les Montbéliardes et le plus petit

chez les vaches Normande. La teneur en Ca du lait diminue également avec la parité dans

les trois races. En utilisant l’analyse factorielle multiple, 6 grandes stratégies

d’alimentation existant dans les exploitations laitières françaises ont été caractérisées sur

la base des données de l’enquête. La stratégie d’alimentation par mois et par vache a eu

une incidence sur la teneur en Ca du lait, qui a baissé au printemps pendant la période de

pâturage et était plus faible lorsque les vaches étaient nourries avec de l’herbe fraîche et

conservée. En conclusion, en plus de la génétique des vaches, des facteurs

environnementaux affectent la la teneur en Ca du lait. Dans plusieurs des conditions

testées, des augmentations de la production de lait et de la quantité de Ca sécrétée

quotidiennement dans le lait étaient associées à une diminution de la teneur en Ca du lait
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comme si la glande mammaire limitait l’exportation de Ca lorsque la production laitière

augmentait rapidement. Ce résultat suggérerait que la teneur en Ca du lait pourrait être

un biomarqueur de la régulation du Ca chez les vaches laitières.

Chapitre III : Effets de la parité et de la variabilité

individuelle sur l’accrétion et la résorption osseuses et

la teneur en Ca et P du lait chez la vache laitière en

lactation

Les recommandations actuelles concernant la supplémentation en Ca et en P chez la

vache laitière ne tiennent pas compte de la dynamique de mobilisation/reconstitution

osseuse qui se produit pendant la lactation. Cette étude visait à déterminer si la

dynamique de la teneur en Ca du lait pendant la lactation pouvait permettre de prédire la

dynamique de la mobilisation/reconstitution osseuse. Elle consistait à mesurer les teneurs

mensuelles en Ca et en P du lait et les concentrations plasmatiques des biomarqueurs de

l’accrétion (OC) et de la résorption osseuses (CTX) chez 33 vaches laitières Holstein en

première (n = 17), deuxième (n = 10) et troisième ou plus (n = 6) lactations à partir de 15

jours avant le vêlage jusqu’à la fin du 9ème mois de lactation. Les vaches ont reçu la même

ration complète pendant toute l’expérience. Les vaches primipares ont présenté des

concentrations plasmatiques en OC et en CTX plus élevées que les vaches multipares (P

<0,01). L’augmentation du CTX au cours des premiers mois de lactation a été plus

importante également chez les primipares (P <0,05). Les vaches primipares ont également

montré une plus forte diminution de la teneur en Ca du lait du soir (P <0,03),

concomitante à l’augmentation du CTX, suggérant qu’une réduction de la sécrétion de lait

pourrait permettre à l’animal de réguler sa calcémie au cours du premier mois de

lactation. Cependant, la dynamique individuelle de la teneur en Ca du lait n’a pas permis

d’estimer la forme de la dynamique individuelle de l’accrétion et de la résorption osseuses.

Le ratio Ca/P du lait semblait être un indicateur prometteur du rapport OC/CTX

plasmatique chez les individus. La cohérence de cet indicateur reste à évaluer dans des
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situations difficiles pour l’homéostasie du Ca chez les vaches laitières.

Chapitre IV : Effets de la race et de la stratégie

d’alimentation sur l’accrétion et la résorption osseuses

et la teneur en Ca et en P du lait chez la vache laitière

en lactation

Les recommandations actuelles pour la supplémentation en Ca et en P chez la vache

laitière ne tiennent pas compte de la dynamique de la mobilisation/reconstitution osseuses

qui se produit pendant la lactation. Cette étude a consisté à déterminer si la dynamique

de la teneur en Ca du lait pendant la lactation pouvait permettre de prédire la dynamique

de la mobilisation/reconstitution osseuses chez les vaches nourries avec deux stratégies

d’alimentation différentes. Elle a consisté à mesurer les teneurs mensuelles en Ca et P du

lait et les concentrations plasmatiques des biomarqueurs de l’accrétion osseuse (OC) et de

la résorption (CTX) sur 30 vaches laitières Holstein et Normande nourries avec avec des

régimes à densité énergétique élevée ou faible en adéquation avec deux stratégies

d’alimentation pendant toute leur lactation. Les vaches multipares ont présenté des

concentrations plasmatiques en OC et CTX plus élevées chez les vaches Normande que

chez les vaches Holstein (P <0,01), mais aussi des concentrations plasma
tiques plus

élevées dans la stratégie d’alimentation "Haut" (P <0,01). Ce résultat était lié à une

augmentation importante de la production de lait (P <0,01) chez les vaches recevant une

alimentation avec une densité énergétique plus élevée. Les vaches primipares ont montré

un effet de la stratégie d’alimentation mais sur l’accrétion osseuse (P = 0,05), mais aucune

différence due aux races ou sur la résorption osseuse. Cependant, les différences liées à la

stratégie d’alimentation et la race sur l’accrétion et la résorption osseuses n’ont pas pu

être liées aux variations de la teneur en Ca du lait. La possibilité d’utiliser le ratio Ca/P

du lait pour estimer le ratio plasmatique OC/CTX, comme cela a été suggéré dans la

littérature, a été également insatisfaisante, notamment pour les vaches recevant une

alimentation avec une faible densité énergétique.
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Chapitre V : Effets de l’apport en Ca et du bilan

alimentaire cation-anion en début de lactation sur les

dynamiques de mobilisation osseuse au cours de la

lactation chez la vache laitière

Cette étude a visé à évaluer les conséquences d’une mobilisation osseuse accrue en

début de lactation sur la dynamique de la teneur en Ca du lait pendant la lactation et la

reconstitution osseuse en fin de lactation. Quinze vaches Holstein multipares ont été

réparties entre 3 traitements 5 semaines avant leur date de vêlage prévue. Ces 3

traitements ont consisté en 3 supplémentation minérales distinctes entre 5 jours après le

vêlage et 10 semaines de lactation. Pendant cette période, le traitement témoin (NCa) a

consisté à couvrir 100% des besoins en Ca, avec un bilan alimentaire cation-anion

(BACA/DCAD) de 200 mEq/kg MS. Les traitements LCa (Bas Ca) et LCaLD (Bas Ca, Bas

BACA) ont consisté à couvrir 70% des besoins en Ca, avec un BACA de 200 et 0 mEq/kg de

MS respectivement pour LCa et LCaLD. Après 10 semaines de lactation, toutes les vaches

ont reçu la même ration qui a été formulée pour couvrir à 100% des besoins en Ca, avec un

BACA de 200 mEq/kg MS. LCa et LCaLD ont eu tendance à diminuer la rétention

corporelle de Ca à 3 semaines de lactation par rapport à NCa (-0,95 vs 8,10 g/j, P <0,09),

mais n’ont pas affecté pas la dynamique des biomarqueurs sanguins de l’accrétion osseuse

(OC) et de la résorption (CTX) pendant les 32 semaines de lactation ou la rétention

corporelle de Ca à 17 semaines de lactation. Les vaches ont compensé presque

entièrement la diminution de l’apport en Ca dans les traitements LCa et LCaLD par

rapport au traitement NCa en augmentant leur absorption digestive apparente de Ca à 3

semaines de lactation (39,6 vs 30,1 %, P = 0,03), alors que l’absorption digestive apparente

n’était pas affectée par les traitements à 17 semaines de lactation. La teneur en Ca du lait

du matin était plus élevée avec les traitements LCa et LCaLD qu’avec NCa, mais comme

cette différence n’est apparue qu’après 10 semaines de lactation, elle peut être attribuée

aux différences génétiques entre les vaches. La production de lait a été plus faible (P =

0,09) pendant la lactation avec LCa et LCaLD par rapport à NCa, avec une différence

moyenne de 2 kg/j, bien que la production laitière n’ait pas été différente au cours de la
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lactation précédente entre les groupes de vaches. Cette étude a montré que la mesure de

la dynamique de la teneur en Ca du lait pendant la lactation ne peut pas être utilisée pour

estimer indirectement la dynamique de l’accrétion et de la résorption osseuses des vaches.

Elle a montré qu’à 3 semaines de lactation, une augmentation de l’absorption digestive

apparente du Ca était le principal moyen pour les vaches de s’adapter à un faible apport

en Ca. Ce résultat suggère qu’un apport limité de Ca en début de lactation peut avoir un

effet délétère sur la production de lait.

Chapitre VI : Discussion générale

En complément du chapitre II, les facteurs de variations non-génétiques de la teneur

en P du lait ont été étudiés. Pour cela, une équation de prédiction de la teneur en P du

lait a été réalisée et appliquée aux spectres MIR de la base de données PhénoFinLait. Le

même modèle d’analyse que pour le Ca a été utilisé pour étudier les variations de P et Ca/P

du lait. Il en a résulté que la teneur en P du lait est plus affectée par la parité que par le

stade de lactation, contrairement au Ca. Comme pour le Ca, les effets de la saison et de

l’alimentation étaient moins importants. L’hypothèse sur le lien entre Ca/P et OC/CTX est

que le sens dépend du facteur à l’origine de la mobilisation osseuse. Si le Ca est limitant, la

relation pourra être positive. Si c’est le P, la relation deviendrait négative, mais cela reste

à vérifier.

Une analyse conjointe des trois essais réalisés au cours de cette thèse a été réalisée,

pour avoir un aperçu plus global des variations des phénomènes d’accrétions et de

résorptions osseuses au cours de la lactation. Pour cela, 13 groupes de vaches

transversaux aux essais ont été constitués et chaque groupe consistait en un arrangement

d’un traitement (alimentation dans chaque essai), d’une parité (primi ou multipare) et

d’une race (Normande ou Holstein). L’accrétion osseuse, suivie par la teneur plasmatique

en OC a montré peu de variations, quelles que soit les conditions expérimentales. Les

dynamiques étaient similaires, avec juste des différences de concentrations moyennes.

Cependant, de fortes variations dans les dynamiques de CTX (marqueur de la résorption)

ont pu être observées entre les essais, notamment avec de fortes variabilités sur les

groupes de vaches issus de l’essai du Pin au Haras. De même, les dynamiques de Ca du
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lait étaient plus variables pour les groupes issus de l’essai du Pin au Haras. Les variations

du rapport Ca sur taux protéique (TP) ont aussi été étudiées car VanHouten et al. (2004)

ont démontré que l’effet sur le Ca du lait était obtenu sur le Ca rapporté par gramme de

protéine. Cependant, les variations de Ca et du TP n’étaient pas concomitantes au cours

de la lactation, et le Ca ne peut être déterminé par le TP même si ces deux éléments du

lait sont liés. Les régressions de Ca en fonction du TP ont montré que la relation était

individu-dépendante. Le lien entre Ca et TP demeure à cause de la place du Ca dans la

structure des micelles des caséines. Cependant, l’incorporation du Ca dans ces structures

résulte d’un équilibre global du lait. La part de Ca associé aux caséines reste donc

variable. L’hypothèse du lien entre Ca/P et OC/CTX a été testé de façon plus globale, mais

a montré de mauvais résultats en terme de qualité de régression, que ce soit sur

l’ensemble des données ou en intra-essai. Il serait possible d’utiliser le P inorganique du

lait plutôt que le P total du lait, car il refléterait mieux les variations de la phosphatémie à

l’échelle de l’organisme aux vues des connaissances actuelles. Ces dernières restent trop

incomplètes actuellement pour permettre une utilisation à bon escient d’un ratio Ca sur P

inorganique dans le lait.

Dans la dernière partie de cette discussion générale, il s’est agi de mieux définir la place

de la glande mammaire dans le système de régulation de la calcémie. Si la vitesse de mise

en place des différentes réponses à une hypocalcémie chez un animal non lactant a été bien

décrite, la place de la glande mammaire et la rapidité de son action par la PTHrP est moins

connue. Sa vitesse de mise en place peut être cependant considérée comme plus lente que

celle de la PTH qui se fait dans l’ordre de la minute. Cependant, les réponses mises en

place pour une hypocalcémie ou un déficit d’apport dans le temps ne semblent pas être les

mêmes. Dans un tel cas, l’augmentation de l’absorption digestive semble être privilégiée à

la mobilisation osseuse. L’hypothèse de suivre le Ca comme indicateur de la mobilisation

osseuse ne semble cependant pas adaptée à l’échelle de la lactation, mais à des échelles de

pas de temps plus courts, comme cela a pu être observé dans les chapitres II, IV et V. A

l’aide de la technologie MIR, il serait possible de suivre les variations journalières et donc

de détecter d’éventuels problèmes dans les apports de Ca.

xxxiii



Conclusion

Cette thèse a montré que les variations de la teneur en Ca du lait, à l’échelle d’une

mesure par mois, pendant la lactation ne peuvent pas constituer un bon indicateur de

l’amplitude de la mobilisation osseuse pendant la lactation. Il est possible que la pression

de mesure, avec un intervalle d’échantillonnage d’un mois dans la plupart des cas, soit

trop faible pour permettre de détecter les variations de la teneur en Ca du lait liées à la

régulation de la calcémie chez la vache laitière. Une pression d’échantillonnage plus élevée,

avec de plus grands défis de régulation de la calcémie, pourrait être nécessaire pour étudier

comment les animaux régulent la sécrétion de Ca dans le lait pour maintenir la calcémie.

Cependant, nos résultats suggèrent qu’avec une fréquence d’échantillonnage mensuelle et

dans certaines conditions, la dynamique du rapport Ca / P du lait pourrait donner une

idée grossière de l’évolution de l’équilibre entre l’accrétion osseuse et la résorption tout

au long de la lactation. Cette thèse a permis d’identifier des facteurs pouvant affecter le

remodelage osseux ou l’amplitude de la mobilisation osseuse pendant la lactation chez la

vache laitière. Le régime alimentaire des vaches et notamment la densité énergétique de

l’alimentation ont fortement influencé l’amplitude de la mobilisation osseuse pendant la

lactation, en relation avec l’augmentation de la production de lait induite par ces régimes

alimentaires. Au contraire, aucun effet de la teneur en Ca alimentaire n’a été observé.

Les races laitières présentaient également des différences d’amplitude de la mobilisation

osseuse pendant la lactation, avec une mobilisation osseuse plus élevée chez les Normandes

que chez les Holstein. Le remodelage osseux également plus élevé chez les primipares que

chez les multipares et les vaches primipares pouvaient également avoir une plus grande

amplitude de mobilisation osseuse pendant la lactation que les vaches multipares. Ce

dernier résultat reste néanmoins à confirmer et semble dépendre fortement des conditions

environnementales.

Cette thèse a également montré que la mobilisation osseuse n’est pas la seule réponse à

une situation d’hypocalcémie au cours de la lactation. Il a ainsi été clairement montré, que

sur des vaches laitières à 3 semaines de lactation, une augmentation de l’absorption

digestive de Ca peut suffire à maintenir la calcémie sans mobilisation osseuse du moins si

la source de Ca est facilement absorbable par l’animal. Cela signifierait que la
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mobilisation osseuse ne constitue pas une réponse préférentielle à un déficit de Ca

durable, du moins si l’absorption digestive peut être améliorée. Les résultats obtenus au

cours de cette thèse ont également soulevé la question d’un effet possible d’un apport

alimentaire faible en Ca en début de lactation sur la production laitière dans l’ensemble

de la lactation. Ce résultat surprenant doit être confirmé à plus grande échelle. S’il était

vérifié, ce résultat serait une démonstration de la nécessité de complémenter les vaches

laitières pour couvrir leurs besoins en Ca au début de leur lactation. Les conséquences

d’un faible apport de Ca au début de la lactation sur la santé et les performances

reproductives des vaches devraient également être étudiées. Enfin, il serait également

intéressant de déterminer si la variation quotidienne de la teneur en Ca du lait peut

refléter un défaut de régulation de la calcémie en début de lactation, et donc constituer un

outil de détection d’hypocalcémie subclinique. Cette possibilité permettrait mieux adapter

les conduites de préparation au vêlage et d’anticiper les conséquences des hypocalcémies

post-partum sur la santé et les performances des vaches.
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In dairy cows, Ca and P are essential elements for both growth and milk production and

consequences of the dietary deficiencies in these elements have been already demonstrated

at the beginning of the XXth century (Becker et al., 1934, Suttle, 2010, McDowell, 2017). For

that reason, a mineral supplementation, providing, inter alia, Ca and P is generally supplied

to dairy cows according to their requirements. Current estimations of requirements of Ca

and P are based on factorial approaches that have been included in several feeding systems

(AFRC, 1991, NRC, 2001, INRA, 2010). For dairy cows, these factorial approaches consist

in splitting Ca and P requirements into four components: maintenance (inescapable fecal

and urinary excretions), growth (bone fixation), gestation (fetal bone fixation) and milk

production (secretion into milk). To estimate total requirements, the four components of

requirements are estimated independently and then summed. The idea of these factorial

approaches is to replace mineral losses or fixations of dairy cow day-to-day.

However, the whole complexity of Ca and P homeostasis is not taken into account in the

factorial approaches of determination of requirements. More specifically, the fact that dairy

cows are submitted to important cycles of bone mobilization and reconstitution (Ekelund

et al., 2006, Puggaard et al., 2014) is not considered. The consideration of those cycles

could allow a higher precision of the Ca and P requirements and an integration of those

requirements at the scale of the whole cycle of production, with a consideration of the

body reserve mobilization and reconstitution. The first aim of Ca and P homeostasis is

to maintain a relative stability of plasma concentrations of those elements and to avoid
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hypocalcemia or hypophosphatemia when requirements are not covered. The bones play a

prominent role in this homeostasis because they constitute the first reserve of Ca and P in

the organism. The mobilization of Ca and P from bones is a leverage to allow restauration

of plasma Ca and P concentrations when supply of those elements are too low (Horst et al.,

2005). In dairy cows, situations of undersupply are common for Ca after calving, at the set

up of lactation, due to the sharp increase in exportation of Ca in milk. A consequence

is a bone mobilization in early lactation, which is difficult to avoid (Horst et al., 2005).

This mobilization is compensated after three months of lactation by a bone reconstitution.

Currently, the bone mobilization at the beginning of lactation is not considered as a supply

in the factorial approaches of determination of requirements of Ca and P and the bone

reconstitution is not considered as a requirement.

The consideration of the cycles of bone mobilization and reconstitution in the definition

of Ca and P requirements would also allow integrating a part of the interactions between

Ca and P metabolism. Indeed, Ca and P are bound together in bone in the form of

hydroxyapatite (Moreira et al., 2009, Elizondo Salazar et al., 2013). Thus, insufficient

supply of one mineral could have consequences of the amount to be supplied for the other.

For instance, it can be considered that bone mobilization, often considered as unavoidable

at the beginning of lactation, induces a release of P and thus that P supply could be

reduced at this stage. On the contrary, P supply could have to be reallocated, with Ca

supply after the third month of lactation, when cows reconstitute their bones. The

approach should allow both a better use of P with less rejection and eutrophication risks

and a better bone reconstitution in late lactation, maybe in relation with prevention of

health problems and impaired longevity of cows.

To integrate bone mobilization and reconstitution cycles in estimations of Ca and P

requirements and supply in dairy cows, it will be necessary to dispose of consequent sets of

data quantifying these cycles over lactation. Currently, there is no fast, cheap and efficient

method to follow evolution of bone mobilization, which could be used in large scale. Current

available methods cannot be used on large number of animals due to either high cost (blood

bone biomarkers, Liesegang et al., 2007), time-consuming procedure (total mineral balance,

Taylor et al., 2009), environmental issues (radio-isotopes, Ramberg et al., 1970) or ethical

issues related to animal experimentation (repeated bone biopsies, Beighle, 1999). Results
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INTRODUCTION

published in the last 15 years suggest that milk Ca content could reflect insufficient Ca

supply and bone mobilization in mammals (VanHouten et al., 2004). Recent results also

suggest a variability of milk Ca content that could be linked to the feeding strategy of the

cows (Hurtaud et al., 2014, Boudon et al., 2016). These results highlight the possibility

that the variation of milk mineral composition, and more specifically that of Ca and maybe

of P contents of milk, could allow a prediction of the bone mobilization of cows. With the

increasing use of med infra-red (MIR) technology to analyze milk composition, notably Ca

content (Soyeurt et al., 2009), milk Ca could be a cheap and simple biomarker of bone

mobilization along lactation in dairy cows.

The objective of this PhD thesis was to understand how variations of milk Ca content

and bone accretion and resorption during the lactation, could be linked in dairy cows, in

relation with several factors of variation of those dynamics such as, the individual, the

parity, the breed or the feeding strategy. The first part of this thesis consist in establishing

a state of the art about Ca and P homeostasis and requirements, cycles of mobilization and

reconstitution of bones and variability of milk Ca and P contents in dairy cows. In a second

part, an analysis of the main factors of variation of milk Ca content of cow was performed

thanks to a database of results of milk composition obtained from a survey performed before

the initiation of my PhD thesis in about a thousand of French commercial farms. In the

third, fourth and fifth parts, the results of three experiments consisting in characterizing

simultaneously bone mobilization and reconstitution cycles and variability milk of Ca and P

contents in dairy cows during the whole lactation are presented. The third part consisted in

evaluating the effect of the parity and the individual variability. The fourth part consisted in

evaluating the effect of the breed and the feeding strategy whereas the last part consisting

in following whole lactation of cows with inadequate Ca supply in early lactation.
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CHAPTER I. BIBLIOGRAPHY

A) Regulation of Calcemia and Phosphatemia

Ca and P are quantitatively the most important mineral elements of the human, or

bovine body, representing together more than 70% of the mineral content of the body

(McDowell, 2017). The regulations of their content in the plasma are partly joined, notably

because they are stocked together in bone as hydroxyapatite, with a constant ratio

between the two minerals (Bullough, 2010). In this section, the main roles of Ca and P in

the organism will be briefly described. Then, the principles of the systemic regulation of

the body contents of these elements will be given for non-lactating animals before a

description of the specificities of lactating animals is given.

1 Repartition of Ca and P in body pools and major roles

a Calcium repartition and roles in mammals

Ca is the fifth most present chemical element in the body, after C, O, H and N (Blanco

and Blanco, 2017a). Between 95 and 99% of body Ca is present in bones and teeth (Flynn

and Cashman, 1997, Mundy and Guise, 1999). The remaining part is split between non-

blood extra-cellular fluids and within cells. In an adult dairy cow, total body Ca is estimated

around 10 kg (Martín-Tereso and Martens, 2014).

Ca2+ is a common messenger in cells. Indeed, Ca2+ extra-cellular concentration is ten

thousand times more important than intracellular concentration (Brown et al., 1995), and

it can be increased by ten in just few milliseconds (Blanco and Blanco, 2017a). The

concentration of Ca2+ is around 100 nM in cytosol and 1.2 mM in extra-cellular

compartments (Hennings et al., 1980). Ca is involved in muscle contraction, nervous

transmissions, (Brown, 1991, Reinhardt et al., 1988) and so, cardiac contraction (Lakatta

et al., 2010).

Calcemia is defined as the plasma concentration of total Ca. Variations of calcemia

are very low, under 3% for most mammals (Blanco and Blanco, 2017b). In dairy cows,

calcemia is considered to be in a normal range between 80 to 120 mg/L (McDowell, 2003,

Goff, 2008, Reinhardt et al., 2011, Martinez et al., 2012), but the lower limit has been

recently questioned. Some authors proposed 85 mg/L as a threshold for hypocalcemia with

clinical consequences (Neves et al., 2017, Rodríguez et al., 2017). Around the onset of
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A). REGULATION OF CALCEMIA AND PHOSPHATEMIA

lactation, the main difficulty in the choice of the threshold for hypocalcemia is to identify

the moment when the organism is affected by hypocalcemia with clinical manifestations.

Rodriguez et al. (2017) found several threshold of hypcalcemia around calving according to

animals, and more specifically parity. In blood, 40 to 45% of Ca is linked to plasma proteins,

5% is bonded to other organic elements like citrate or inorganic element, and around 50 %

is circulating as soluble, or ionized Ca2+ (NRC, 2001).

b Phosphorus repartition and role in mammals

Unlike Ca, only 80% of body P is present in bone whereas almost 20% is present in cells

and about 0.3% is present in extra-cellular fluids (Blanco and Blanco, 2017b). P is a

constituent of several structural components of cells such as DNA, RNA, ATP and other

molecules involved in energy metabolism (ADP, UTP, CTP, GTP, glusose-6-P), and

phospholipids allowing the double lipid layer structure in membranes (Soares Jr, 1995).

Phosphatemia is the concentration of total plasmatic inorganic P (Pi). For a normal

adult dairy cow, normal range of phosphatemia is between 40 and 60 mg/L (NRC, 2001).

This range of variation is high compared to that of Ca. Only 30% of blood P is in the form of

Pi, with 2 forms HPO2−

4
and H2PO−

4
, which proportions depend on blood pH. The remaining

70% of plasma P is present in proteins. Total blood P, including Pi, P in plasma and in red

blood cells, range from 350 to 450 mg/L (McDowell, 2003).

2 Systemic regulation of calcemia in non-lactating animals

a Flows susceptible to affect calcemia in non-lactating animals

Even for a non-lactating cow, calcemia could be easily affected, in absence of regulation,

by important Ca flows that can be quantified at the scale of the animal or its organs. This is

illustrated on figure I.1, representing Ca flows from the blood pools of a non-lactating cows

that were quantified thanks to radio-isotopes of Ca (45Ca, Ramberg et al., 1970). It clearly

appears from these data that the flows that affect more the non-skeletal Ca pools are the flow

of Ca absorption from the feed by the digestive tract (21 g/d), that relies on the amount of Ca

ingested by the animal (67.7 g/d) and on the part of Ca absorbed from the diet (0.31 g/g), the

flows of bone accretion and resorption (9.78 and -4.3 g/d respectively) and more marginally

the flow of endogenous loss in the feces (6.3 g/d). Urinary losses are very low. The flow of

total Ca fecal losses (53 g/d) consists in the sum of the Ca flow that has not been absorbed
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CHAPTER I. BIBLIOGRAPHY

the digestive tract (46.7 g/d) and of that of Ca endogenous loss. Endogenous Ca loss in the

feces consists mainly in desquamation debris of cells from the digestive tract mucosa and

digestive secretions and is mostly determined by the importance of intestine flow and total

dry matter intake (DMI, Meschy, 2010, Vitti and Kebreab, 2010). In this example, the fact

that the cow was a multiparous cow considered during a dry period may explained the high

flow of bone accretion compared to bone resorption, leading to a net Ca flow of 15 g/d from

blood to bone and thus a net flow of bone reconstitution.

Figure I.1: Intern Ca flows in a non-lactating dairy cows (Ramberg et al., 1970). The central box represents
repartition of non-skeletal Ca in the model. Repartition of non-skeletal Ca between compartiments cannot be
alocated to one specific anatomic or physiological entity (blood for example). Compartiments (within rounds)
are in grams and rate of Ca transport (arrows) in g/d. Vi: Ca intake; Ve: non-absorbed Ca in fecal excretion;
α: part of Ca absorbed from diet; Va: Absorbed Ca from diet; Vo− : Bone resorption; VT : Total Ca inflow;
Vo+ : Bone accretion; Vf : Fecal endogeneous losses; Vu: Urinary losses, Vm: Secretion in milk; �: difference
between accretion and resroption (g/d)

Bone is the only organ that can stock Ca in the organism. Two cell types are involved in

bone Ca accretion and resorption: osteoblasts and osteoclasts. Osteoblasts are responsible

of bone accretion and fixation of Ca in hydroxyapatite and osteoclasts are responsible of

bone resorption, releasing Ca into blood (Durand and Beaudeux, 2011). These two types

of cells are always conjunctively active, and the net flow between blood, leading to bone

mobilization or reconstitution is dependent on the relative difference of activities of both

cells. In an organism that is not either mobilizing or reconstituting bone, equivalents

flow of bone accretion and resorption are maintained thanks to activity of both osteoblasts

and osteoclasts, which constitues bone remodeling (Ross et al., 2011). A specific part of
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A). REGULATION OF CALCEMIA AND PHOSPHATEMIA

this bibliography will later focus on the dynamics of the equilibrium of bone accretion and

resorption during the lactation-gestation cycle in dairy cows (Section C of this chapter).

Excretion of Ca in urine represents a small flow at the level of the organism.

b Systemic hormonal regulation of calcemia

Major effectors of calcemia regulation are resumed in figure I.2. Calcemia is very finely

regulated at the level of the organism thanks to a complex system of three hormones, the

parathormon secreted by the pathyroid glands (PTH), the 1,25-(OH)2-vitamin D at the

level of the kidney and the calcitotin secreted by the thyroid. These hormones allow the

maintenance of a constant calcemia, by modulating activities of kidney, bone and intestine

that modify Ca flows from and into blood.

The parathyroid glands are able to detect very low and rapid variation of calcemia, which

contributes to the accuracy of the calcemia regulation (Brown, 1991). Hypocalcemia is

mainly detected by a Ca-Sensitive Receptor (CaSR) in chief cells of parathyroid glands that

secrete PTH. This constitutes the first step of the response of the organism to a decreased

calcemia. PTH is a 84 length amino acids peptide (Mundy and Guise, 1999), obtained after

several cleavages of an initial 115 length amino acids peptide (Durand and Beaudeux, 2011).

This hormone has a very short half-life, below 4 minutes, because of fast degradation by the

Kuppfer liver cells (Mundy and Guise, 1999). Normal or high calcemia in plasma activates

the CaSR on chief cell, leading to an inhibition of PTH transcription (Brown et al., 1993).

The rate of secretion of PTH by the parathyroid glands is very sensitive to variations of

calcemia (Brown, 1991), as illustrated in figure I.3. Brown (1991) even suggested that

the rate of decrease of calcemia may also influence the rate of PTH secretion, with higher

immediate release of PTH with faster decrease of calcemia. PTH is secreted in blood by

exocytosis. Chief cells of parathyroid glands have a stock allowing PTH secretion during

1 to 1.5 hours, but 12 hours are necessary to replace the entire stock. After 40 min of

PTH secretion, the rate of PTH secretion decreases to avoid a lack of PTH in the chief

cells, even with persistent hypocalcemia (Brown et al., 1995). If calcemia remains low for a

long time, chief cells can multiply, but this requires several days. PTH action on bone and

kidney mainly is mediated by several receptors, but PTHR1 (PTH receptor of type 1) is the

main and is coupled with a G protein (Durand and Beaudeux, 2011). PTH promotes the

activation of 25-OH-vitamin D into 1,25-(OH)2 vitamin D at the level of the kidney (Taylor
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Figure I.2: Major effectors of calcemia regulation in mammals (Blanco and Blanco, 2017a). PTH: Parathyroid
hormon; ECL: Extra-cellular liquid

et al., 2008), bone resorption and renal tubulat re-absorption of Ca. It also increases activity

of osteoclasts, and thus bone resorption (Mundy and Guise, 1999).

The involvement of vitamin D is a second step in the regulation of calcemia in case of

hypocalcemia. It allows a more durable action than PTH alone. The main circulating form

of vitamin D is 25-OH-vitamin D which is inactive for the regulation of calcemia. The blood

concentration of 25-OH-vitamin D defines the vitamin D status of the organism. The blood

concentration of 25-OH-vitamin D in the organism depends either on ingestion of vitamin

D2 (ergocalciferol) of plant origin, or on ingestion of vitamin D3 (cholecalciferol) mainly of

animal origin, or on endogenous synthesis of vitamin D3 from ultraviolet radiation of sterols
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Figure I.3: PTH secretion rate (Brown, 1991) . Four-parameter model of inverse sigmoidal relationship
between extracellular Ca2+ and PTH release: Vs =

A−D

1+Ca

C
)B

, with A : maximal rate of secretion; B : slope

of curve at its midpoint; C : Ca concentration producing half maximal change in PTH release; D : minimal
secretory rate

(7-dehydrocholestol) present in the skin (Hymøller and Jensen, 2010). Two hydroxylations of

vitamin D are necessary to activate vitamin D. These transformations are resumed in figure

I.4. The first one is performed in the liver by 25-hydroxylase-cytochrome P45 and transforms

vitamin D into 25-OH-vitamin D, evocated earlier in this text and also called calcidiol.

The product of this first hydroxylation inhibits its own production. 25-OH-vitamin D is

transferred from liver to kidneys by vitamin D-binding protein (Reinhardt et al., 1988). Only

around 5% of 25-OH-vitamin D circulates without being bonded because it is a hydrophobic

vitamin (Mundy and Guise, 1999). The second hydroxylation occurs in the kidney and

produced 1,25-(OH)2-vitamin D, the calcitriol, under the action of 25-OH-vitamin D-1α-

hydroxylase (Henry, 2011). This second hydroxylation is enhanced by PTH but is inhibited

by its own product. Other hydroxylated forms of 25-OH-vitamin D are produced in kidney,

notably the 24,25-(OH)2-vitamin D that is the second major product of hydroxylation in

kydneys . It may have a specific role on systemic regulation of calcemia or it may constitute

a way to eliminate excess of 25-OH-vitamin D (Bouillon et al., 1995). The position of second

hydroxylation of 25-OH-vitamin D, i.e. 1 or 24, seems to be mainly determined by the

potential necessity of the organism to increase calcemia. In case of hypocalcemia, renal

hydroxylation on position 1 is more important, whereas renal hydroxylation on position 24
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Figure I.4: Resume of factors affecting hydroxylation of vitamin D (Horst, 1986)

will be predominant when calcemia is high (Henry, 2011).

1,25-(OH)2-vitamin D receptors (VDR) are present on enterocytes, osteoblasts and

osteoclasts. 1,25-(OH)2-vitamin D stimulates TRPV6, calbindinin 9K and ATP-Ca pump

activities in enterocytes. 1,25-(OH)2-vitamin D receptors may also be phosphorylated after

binding to 1,25-(OH)2-vitamin D, which allows them to bind to 9-cis-retinoic acid receptor

(RXR) and to form a VDR/RXR heterodimer. This induces a conformational change,

allowing the VDR/RXR heterodimer to enter the nucleus (Blanco and Blanco, 2017a). The

VDR/RXR heterodimer presents a strong affinity for promoter areas of several genes

(Durand and Beaudeux, 2011). By this mechanism, 1,25-(OH)2-vitamin D stimulates

active Ca and P absorption by action of the VDR/RXR heterodimer on nucleus, but the

effectiveness of this mechanism decreases with aging (Goff, 2000, McDowell, 2003). The

fixation of the VDR/RXR heterodimer on promoter areas results in more synthesis of

calbindin, which is involved in Ca transport through intestine cells (McDowell, 2003, Vitti

and Kebreab, 2010). In bones, 1,25-(OH)2-vitamin D promotes cell differentiations of

osteoclasts, leading to a more important bone resorption and bone Ca and P release in

blood (Bouillon et al., 1995, Horst et al., 1997). 1,25-(OH)2-vitamin D also increases Ca

reabsorption in the kidney, while decreasing P reabsorption to avoid hyperphosphatemia
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(Vitti and Kebreab, 2010).

In case of hypercalcemia, calcitonin, a 32 amino acids peptide, is secreted by the

parafollicular cells of the parathyroid glands (Muff et al., 1988, Mundy and Guise, 1999).

Its secretion rate is determined by the ionized Ca concentration in plasma (Vitti and

Kebreab, 2010). Calcitonin actions are opposed to that of 1,25-(OH)2-vitamin D. Receptors

of calcitonin are present in kidney, where their stimulation inhibits renal tubular

reabsorption of Ca. Calcitonin also favors the second hydroxylation of 25-(OH)-vitamin D

on position 24 and inhibits osteoclast activity, which decreases bone resorption. The action

of calcitonin is quite fast, as its effect can be observed within minutes after secretion

(Mundy and Guise, 1999). Reponses of the organism to hypercalcemia were less studied

than responses to hypocalcemia because hypercalcemia is less frequent. However, it is

likely that calcitonin action is not limited to cases of hypercalcemia.

c Effect of 1,25-(OH)2-vitamin D on intestinal absorption of Ca

As described previously, a systemic regulation of calcemia is possible thanks to the action

of 3 hormones on intestinal absorption of Ca, bone accretion and resorption and renal

tubular reabsorption of Ca. The flow of urinary excretion of Ca is very low compared to

that of excretion of Ca in feces or associated to bone accretion and resorption and thus, the

specific mechanisms of action of PTH on this flow will not be detailed in this thesis. The

effect of PTH will be described in section C of this bibliography. This part will focus on the

mechanisms of intestinal absorption of Ca and the implication of 1,25-(OH)2-vitamin D on

them.

Two mechanisms of Ca absorption have been described in the intestine and consist in

either an active transcellular transport of Ca or a passive paracellular absorption of Ca

(Bronner, 1987, Bronner, 2003, Vitti and Kebreab, 2010, Puggaard et al., 2011). Both

mechanisms of Ca absorption co-exist simultaneously but the predominant mechanism

depends on intestinal Ca concentration. Passive paracellular absorption of Ca is negative

when intestinal Ca concentration is lower than 1 mmol/l, whereas active transcellular

transport of Ca is predominant but active transport becomes overloaded when intestinal

Ca concentration is over 4 mmol/l. Both ways are resumed in figure I.5.

The active transcellular transport allows an increased absorption rate when Ca

concentration in intestine is low (Vitti and Kebreab, 2010). Ca is transported through
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Figure I.5: Intestinal Ca absorption according to the model of Christakos et al. (2014) . This model comprises
a transcellular active mechanism allowing transport of Ca when dietary Ca intake is normal or low and
a paracellular passive mechanism triggered when dietary Ca intake is high. VDR: 1,25-(OH)2-vitamin D
Receptor; PMCA: Plasma Membrane Ca2+-ATPase; TRPV: Transcient Receptor Potential Voltage

intestinal mucosal cell from apical to basal surface with the intervention of calbindin that

is a Ca-binding protein allowing the transport of Ca across the cell (Feher et al., 1992).

This mechanism of absorption involved three steps. At a first step, Ca penetrates the

enterocytes by a Ca transporter, the transcient receptor potential voltage 6 (TRPV6),

under the action of calmodulin that is a multifunctional intermediate Ca-binding

messenger protein (Bronner, 2003, Christakos et al., 2014). The TRPV6 are situated on

the brush border of intestinal epithelium. The presence of TRPV6 greatly increases

permeability of cell membranes to Ca. Permeability to Ca through Ca transport is also

regulated by intracellular Ca concentration that determines the fixation of calmodulin to

TRPV6, with a Mickaelis-Menten relationship. At a second step, Ca is transported to

basal surface of the enterocyte bound to calbindin-D9k, a Ca binding protein (CaBP,

Bronner, 1987, Feher et al., 1992). The main function of calbindin-D9k is to limit the

increase in intracellular Ca concentration. About 90% of transported Ca through the cell

is bound to calbindin, to avoid toxic concentration for the cell. At a third step, Ca is

expulsed from enterocytes at basal surface, by active transport, against the gradient of Ca

concentration, Ca being more concentrated in extracellular compartment than in cell. The

active transcellular transport is performed by Mg-ATPase, exchanging Ca from cytoplasm
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and extracellular Na.

As evocated before, the active transcellular transport of Ca is particularly efficient for

low Ca concentration in intestine lumen and can be upregulated by the action of

1,25-(OH)2-vitamin D in case of Ca deficiency at the level of the organism. However, when

the Ca concentration in intestine lumen becomes high, the active transcellular transport of

Ca become overloaded, and then the passive paracellular absorption becomes predominant

(Bronner, 1987). This passive paracellular absorption is enhanced by Ca concentrations

difference between blood and intestinal lumen, with Ca transfer through intercellular

tight junctions. It requires, to be effective, a luminal Ca concentration of at least 1 mmol/L

(Meschy, 2010). As Ca passive paracellular absorption is directly dependent on difference

between two concentrations, there is no theoretical superior limit for Ca transfer by

paracellular transport (Bronner, 1987). It is suspected that the passive transport of Ca

could be also modulated by the action of 1,25-(OH)2-vitamin D (Christakos et al., 2014). As

passive Ca absorption is negative for low Ca concentration in intestinal lumen,

1,25-(OH)2-vitamin D would decrease the opening of tight junctions to limit Ca losses.

Ca can be absorbed at multiple sites along the digestive tract and a specific question for

ruminants is the relative contributions of rumen and intestine in Ca absorption (Bronner,

2003, Meschy, 2010). The intestine has been considered for a while as the only site of Ca

absorption in dairy cows, but it has been established in the early 1980s that Ca can also be

absorbed through rumen wall (Höller et al., 1988). However, intestinal absorption of Ca has

been well described whereas the mechanism of ruminal Ca absorption remains uncertain

(Khorasani et al., 1997).

3 Systemic regulation of phosphatemia in non-lactating

animals

a Flows susceptible to affect phosphatemia in non-lactating animals

As in the case of Ca flows, daily P flows at the scale of the organism are important

enough to potentiate high variations of phosphatemia in absence of regulation, even for

a non-lactating cow (Hill et al., 2008). Even though the amounts of P supplied to cows are

generally lower than that of Ca, at least if current feeding recommendations are respected,

most P flows in the organism are higher than those of Ca, except maybe those related to
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bone accretion and resorption. This is mainly explained by a higher absorption rate of P

compared with Ca and the presence of a flow of P recycling in the rumen. The importance

of the flow of P recycling in the rumen is illustrated in figure I.6 for a dairy cow (Hill et al.,

2008). As flows of P were estimated for a lactating cow in this figure, they cannot be directly

compared to the flows of Ca illustrated in figure I.1. It clearly appears that the flow of P

exiting the rumen (128 g/d) is higher than that of P ingested (75 g/d) and that the difference

between both flows arise from salivation and P recycling. About 47 g/d of Pare excreted in

feces, resulting in a net absorption of 28 g/d but a real absorption of more about 82 g/d of

P. In the case of P and unlike that of Ca, P saliva losses in feces are an important source of

endogenous loss of Ca that have to be added to P losses due to desquamation debris of cells

from the digestive tract mucosa and digestive secretions.

Figure I.6 also illustrated important flows of P between bone and blood with comparable

flow of accretion and resorption. In this example, the cow is almost in a situation of strict

bone remodeling with a negligible net bone reconstitution (483 g/d of P for bone resorption vs

487 g/d offor bone accretion). Flows of Ca and P from bones are largely correlated due to fact

that the mineral matrix of bone is mainly constituted of hydroxyapatite Ca10(PO4)6(OH)2

with a mass ratio Ca/P of 2.15. However, bone mobilization occurs after a longer time of

deficiency for P than for Ca (Suttle, 2010). Bone allows P storage, as Ca, but, in case of

hyperphosphatemia, saliva can also constitute a storage pool. For P, blood can be considered

as a storage pool, due to its capacity to endure higher variations of phosphatemia than for

calcemia (Suttle, 2010).

A part of P is also excreted in urine but this represents a very small flow, around 1 g/d,

even if variations are more important than for Ca. Urine P losses are a way of excretion

of excess of P. However, in the specific case of ruminants, fecal excretion of saliva P can

also have an excretory function in case of hyperphosphatemia (Puggaard et al., 2011), even

though saliva P flows hardly decrease under a certain limit in case of hypophosphatemia

(Puggaard et al., 2011). This last point may constitute a protective mechanism to maintain

rumen function given that saliva brings at least 50% of P needed by micro-organisms in

normal feeding conditions (Vitti and Kebreab, 2010) and that, activity of micro-organisms

in rumen depends on P supply (Meschy, 2010). The first effect of a low dietary P supply

for ruminants is a deterioration of ruminal micro-organisms activity and a decrease of dry
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matter intake (Meschy, 2010, Suttle, 2010).

Figure I.6: P flows in a lactating cow obtained thanks a dynamic mechanistic and compartimental model (Hill
et al., 2008). Boxes with solid lines represent pools, boxes with dashed lines represent compartments, and
solid arrows represent fluxes. Numbers associated with arrows are the predicted flows (g/d). PT = total P; PP

= phytic P; PO = Organic P excluding phytate; Pi = inorganic P; Pm = microbial P
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b Systemic hormonal regulation of phosphatemia

Variations in phosphatemia are far more important than for calcemia. In humans,

variations of phosphatemia can be as high as to 25 mg/L within a day whereas it barely

exceeds 5 mg/L for calcemia (Jubiz et al., 1972). Even though feed intake can explain an

important part of the variations of phosphatemia, many variations remain unexplained

and the specific mechanisms of regulation of phosphatemia remain far less described than

those of regulation of calcemia. However, as P and Ca are linked in the bone structure, it

is clearly established that hormones that affect bone accretion and resorption to regulate

calcemia also affect phosphatemia and that regulation of both calcemia and phosphatemia

are linked (Horst, 1986). More specifically, it has been established that phosphatemia can

influence the hydroxylation of 25-OH-vitamin D in 1,25-(OH)2-vitamin D (active form) in

the kidney (Cunningham and Klein, 2007). Phosphatemia may also directly influence PTH

secretion. Phosphorus restriction prevents parathyroid gland growth. High P diet directly

stimulate PTH secretion in vitro (Slatopolsky et al., 1995). However the higher variation of

phosphatemia compared with that calcemia let think that the regulation of phosphatemia

has less priority than regulation of calcemia.

Figure I.7: Actions of FGF 23 on phosphatemia regulation (Saito and Fukumoto, 2009)

Hyperphosphatemia is not really a problem for ruminants as they have multiple ways to

excrete excess P, i.e. saliva recycling increase and intestinal absorption decrease that were

evocated earlier in this text (Puggaard et al., 2011). An hormone specific to phosphatemia
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regulation has been recently discovered, the fibroblast growth factor 23 (FGF23, Hardcastle

and Dittmer, 2015). This hormone is secreted by osteocytes and osteoblasts as a 227 amino

acids peptide (Durand and Beaudeux, 2011). Its synthesis is upregulated under the action

of 1,25-(OH)2-vitamin D (Saito and Fukumoto, 2009) but recent discoveries suggest that

its synthesis can be directly regulated by high phosphatemia (Figure I.7, Hardcastle and

Dittmer, 2015). Even if FGF23 is classified as a fibroblast, its endocrine action is more

similar to an hormonal action. The active form of FGF23 reduces the formation of 1,25-

(OH)2-vitamin D, in favor of the 24,25-(OH)2-vitamin D, by regulating expression of genes

of enzymes catalyzing the reactions (Saito and Fukumoto, 2009). FGF23 also limits P

reabsorption in proximal tubes and P absorption in intestine, by suppressing expression

of NPT2B in intestine (Hardcastle and Dittmer, 2015).

c Effect of 1,25-(OH)2-vitamin D and FGF 23 on intestinal absorption of

P

Absorption of P in the digestive tract has been less described than that of Ca. It seems

that ruminal absorption of P is not quantitatively important and that most P absorption

occurs at the beginning of the small intestine (duodenum and jejunum, Meschy, 2010). As

for Ca, two mechanisms of absorption of P have been described, a passive paracellular

absorption and an active transcellular absorption (Figure I.8). The passive paracellular

absorption is dependent on differences between intestinal lumen and blood concentrations

and occurs through tight junctions (Reinhardt et al., 1988). It has been recently stated

that in case of hyperphosphatemia, P is still absorbed from the diet but with a lower

efficiency (Christakos et al., 2014). This decrease in passive absorption rate is under the

control of FGF 23, a hormone secreted by the osteocytes and osteoblasts in situation of

hyperphosphatemia (Christakos et al., 2014), that may close tight junction (Saito and

Fukumoto, 2009). The active transcellular absorption of P is less known and P has been

thought to be only passively absorbed until recently (Meschy, 2010, Christakos et al.,

2014). This active absorption occurs principally on the brush border of intestinal

epithelium. It occurs with Na absorption thanks to the NPT2B transporter (Na-dependent

phosphate co-trasnporter 2b, Christakos et al., 2014). It has been suggested that

1,25-(OH)2-vitamin D can interfere on P absorption (Horst, 1986, Vitti and Kebreab,

2010, Christakos et al., 2014).
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Figure I.8: Intestinal P absorption. Model of intestinal P transport (Christakos et al., 2014). VDR : 1,25-
(OH)2-vitamin D receptor. NPT2b: Na-dependent phosphate co-transporter 2b

4 Specificities of calcemia and phosphatemia regulations

during lactation

a The high exportation of Ca and P in milk is a challenge for calcemia

and phosphatemia regulation

At the beginning of lactation, dairy cows face an homeostasis challenge in the relation

with the high increase in Ca and P secretions with milk production (Figure I.9, Horst, 1986,

Horseman and Hernandez, 2014). At the peak of lactation, a dairy cow can secrete up

to 80 g/d of Ca in milk, leading a total blood Ca replacement between 20 and 30 times a

day (Horst et al., 2005). This increase in Ca and P requirements for milk production is

fast during the first days of lactation and the cows need to adapt quickly. When they do

not adapt quickly enough, a decrease in calcemia can induce milk fever, which prevalence

is comprised between 3 and 7% (Reinhardt et al., 2011). This metabolic disease is quite

specific to dairy cows, maybe because the Ca demand is relatively low in that specie before

parturition and increases very sharply after calving (DeGaris and Lean, 2008). Even though

the beginning of lactation is an acute phase of challenge for Ca homeostasis, the quantity

of Ca exported in milk remains important throughout the lactation. It has been estimated

that a Holstein cow producing 9,000 kg of milk over a lactation, secreted 11 kg of Ca in milk
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for the lactation, which represents more than its total body Ca content (Horst, 1986, Martín-

Tereso and Martens, 2014).

Even though dairy cow faces a specific challenge that can drive to Ca homeostasis failure

at the beginning of lactation, it remains impossible for all mammals to cover the increase in

Ca requirements at the very beginning of lactation by only increasing intake. Thus, a first

answer at the onset of lactation is the mobilization of Ca stock, i.e. bone, before a progressive

increase in intake and in intestinal capacity of Ca absorption (Horst et al., 2005, Kovacs,

2016). In ruminants, this was first demonstrated in ewes thanks to the use of radio-istopes

of Ca and P (Braithwaite, 1983a, Braithwaite, 1983b). Since the early 2000s, the existence

of the increase in bone mobilization has been illustrated also in several publications with

dairy cows thanks to the development of plasma biomarkers (Liesegang et al., 2000, Taylor

et al., 2008, Sato et al., 2011).

Figure I.9: Intern Ca flows in a lactating dairy cows (Ramberg et al., 1970). The central box represents
repartition of non-skeletal Ca in the model. Repartition of non-skeletal Ca between compartiments cannot be
alocated to one specific anatomic or physiological entity (blood for example). Compartiments (within rounds)
are in grams and rate of Ca transport (arrows) in g/d. Vi: Ca intake; Ve: non-absorbed Ca in fecal excretion;
α: part of Ca absorbed from diet; Va: Absorbed Ca from diet; Vo− : Bone resorption; VT : Total Ca inflow;
Vo+ : Bone accretion; Vf : Fecal endogeneous losses; Vu: Urinary losses, Vm: Secretion in milk; �: difference
between accretion and resroption (g/d)

Even though, P secretion in milk sharply increased at the onset of lactation, clinical

signs specific to failure of P homeostasis are anecdotic. However, physiological responses to

hypophosphatemia are less known (Klop et al., 2013). It is believed that low phosphatemia

per se is barely a specific factor of bone mobilization (Elizondo Salazar et al., 2013), but it
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is known that excessive dietary P could aggravate lack of plasma Ca by inhibiting the

hydroxylation of 25-OH-vitamin D into 1,25-(OH)2-vitamin D, leading to subclinical

hypocalcemia or milk fever (Meschy, 2010). As for Ca, an increase in P absorption could

also be an answer to this increase in P requirements (Christakos et al., 2014).

b Place of the mammary gland in the regulation of calcemia and

phosphatemia

Even though an important amount of Ca is secreted in milk during lactation, several

studies found that hormones involved in the homeostasis of non-lactating organisms do not

affect milk production or milk Ca content (Horst et al., 1997, Kovacs, 2016), suggesting a

missing link in the Ca homeostasis of lactating cows. More specifically, it has been shown

that ablation of parathyroid glands in rats did not affect calcemia and phosphatemia directly,

suggesting that mammary gland has a function in regulation of calcemia and phosphatemia

during lactation (Garner et al., 1990). In the early 90s, the discovery of a specific hormone,

the PTH-related protein (PTHrP), allows characterizing a specific role of the mammary

gland in calcemia regulation. PTHrP was first detected in hypercalcemic cancer (Thiede

and Rodan, 1988, Law et al., 1991, Yamamoto et al., 1992, Uemura et al., 1997), because its

serum concentration is vely low in healthy non-lactating animal (Sato et al., 2014). In the

first days of lactation, blood PTHrP concentration has been shown to increase by a factor

4 in dairy cows (Kocabagli et al., 1995). Even if it is present in blood, PTHrP is five to ten

thousand times more concentrated in milk (Thiede, 1994, Uemura et al., 1997, Wojcik et al.,

1998). First demonstrated role of PTHrP was to favor the development of the mammary

gland during embryonic growth (Dunbar et al., 1999) and during adolescence in human

(Hiremath and Wysolmerski, 2014).

PTHrP was named after its sequence homology with PTH (Mundy and Guise, 1999). In

bovine, the amino acids sequence 1-34 is almost identical between PTH and PTHrP (Thiede,

1994). The figure I.10 shows the very good homology of sequence between PTHrP and

PTH for several species (chicken, human and rat). This figure, as well as the figure I.11,

illustrates that PTHrP sequences have also been highly conserved between species (Thiede,

1994, Wojcik et al., 1998), which can be explained by a same ancestor gene (VanHouten

et al., 2004). This sequence homology between species is particularly high at the beginning

of the amino acids chains. For example, the sequence homology on 1-112 is 90% between
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Figure I.10: Comparison of PTH and PTHrP amino acids sequences (Thiede, 1994). Comparison of the amino
acid sequences of parathyroid hormone-related protein (PTHrP) and parathyroid hormone (PTH) from chicken
(c), rat (r), and human (h). The top line (cPRP) represents the amino acid sequence of cPTHrP that was deduced
from a cDNA isolated from a 10-d chicken embryo library. This sequence is compared with the corresponding
sequences of the rPRP and hPRP PTHrP and the cPTH, rPTH and hPTH. Residues that show identity with
the cPTWP are designated by an asterisk. A consensus (Con) sequence for those residues between 1 and 40
that are shared by cPTHrP, rPTHrP and hPTHrP and cPTH, rPTH and hPTH is presented on the bottom line.

human and bovine PTHrP but falls to 67% on 112-141 (Figure I.11, Wojcik et al., 1998).

The sequence homology between PTHrP and PTH makes that PTHrP has similar effect

than PTH, i.e. an increase in bone resorption, a decrease in renal tubular reabsorption of

Ca and an increase in 1,25-(OH)2-vitamin D formation and Ca absorption in the intestine

(Cornish et al., 1997). In particular, it has been shown, in mice, that a depletion of PTHrP

gene leads to a conservation of bone mass during lactation (VanHouten et al., 2003). It

has also been shown that PTHrP may modify blood flow (Roca-Cusachs et al., 1991), and

particularly increase blood flow in mammary gland (Davicco et al., 1993). Due to its large

scale of action, PTHrP is classified as cytokine (VanHouten et al., 2004). An important effect

of PTHrP is also to modulate Ca and P secretion in milk, which was first shown in goats

by Barlet et al. (1992). These authors observed than injecting supraphysiological dose of

PTHrP increased Ca and P contents in milk in the following hours, possibly due to high

Ca and P release from bone. However, a more integrated view of the part of mammary
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Figure I.11: Comparison of PTHrP amino acids sequences between species (Wojcik et al., 1998). Comparison
of amino acid sequences of mature PTHrP from bovine, human, rat, mouse, canine, and chicken. The top
line represents the deduced amino acid sequence of bovine PTHrP derived from a bovine brain cDNA library.
Conserved residues in human, rat, mouse, canine, and chicken are designated by a dot.

gland and PTHrP in the homeostasis of lactating mammals was proposed by VanHouten

et al. (2004). These authors observed a decrease in milk production and in the milk Ca to

protein ratio in mice fed low Ca diets. These authors also demonstrated that both PTHrP

production and Ca transport in mammary epithelial cells are regulated by extracellular

Ca acting through the CaSR situated on basal surface of mammary epithelial cells. These

results have led to a model of the implication of the mammary gland in the regulation of

calcemia in lactating animals (Figure I.12).

Recent results also suggest that serotonin (5HT), also secreted by the mammary gland,

is also involved calcemia regulation (Matsuda et al., 2004, Laporta et al., 2014, Weaver et al.,

2016, Hernández-Castellano et al., 2017) but the whole mechanism is less clear. It has been

shown that 5HT can affect PTHrP production in lactating animals (Laporta et al., 2015) and

25



B). REQUIREMENTS OF CA AND P IN DAIRY COWS

Figure I.12: Role of PTHrP and Ca-sensing receptor (CaSR) within the lactating breast (Kovacs, 2016).The
Ca receptor (represented schematically) is expressed by lactating mammary epithelial cells. It monitors the
systemic concentration of Ca to control PTHrP synthesis and, thereby, the supply of Ca to the breast. An
increase in serum Ca or administration of a calcimimetic inhibits PTHrP expression (A), whereas a decrease
in serum Ca or ablation of the Ca receptor from mammary epithelial cells stimulates PTHrP expression (B).
The Ca receptor also directly regulates the Ca and fluid composition of milk independent of PTHrP.

that a high 5HT concentration could be associated with a decrease in bone mineral density

(Ducy, 2011).

B) Requirements of Ca and P in dairy cows

Lactation is responsible of high increases in Ca and P exportation in milk, which is an

important challenge for Ca and P homeostasis, especially for dairy cows that have been

selected for milk production. Thus, to keep healthy and productive dairy cows, a mineral

supplementation, relying of the evaluation of the cow’s requirement of mineral and

evaluation of mineral supply from feeds is preconized.

1 Objectives of Ca and P supplementation and consequences of

an inadequate supplementation

The first aim of the supplementation of Ca and P is to avoid health problem and

suboptimal productive performance of dairy cows. The necessity to specifically supplement
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dairy cows in Ca and P has been demonstrated at the beginning of the 20th century

(McDowell, 2017). One of the first results justifying this practice was the measurements of

the increased daily exportations of Ca during lactation in lactating goats thanks to

mineral balances trials (Steenbock and Hart, 1913). This study also demonstrated that a

subsequent part of the Ca supplied by the feeds was not absorbed. P deficiency was also

identified in sick cattle and sheep craving for bones of dead animals in the South African

bush (Suttle, 2010). Osteomalacia in dairy cows due to P deficiency in Norwegian soil was

also observed in 1923 (Tuff, 1923). A first real evidence of importance of Ca and P was

established in 1936, in a study showing that supplemented bone meal to Jerseys cows

increased milk production (+50%) on the whole lactation, with a higher production at the

peak of lactation and a better persistence of lactation (Becker et al., 1934, Arnold and

Becker, 1936).

Since these pioneered studies, the consequences of low feed supply of Ca and P have

been synthetized to several published reviews. As explained earlier, Ca and P stocks are

flexible and dairy cows can mobilize up to 25% of their mineral bone mass in case of low

dietary supplies of Ca and P (Meschy, 2010). However, symptoms of Ca and P deficiency

may appear and they depend on the mineral element considered and the duration of the

period of low dietary Ca and/or P supplies (Goff, 2000, Suttle, 2010). Given that calcemia

is very finely regulated, notably thanks to bone mobilization, and that bone is an important

storage pool for Ca, effects of a chronic dietary Ca deprivation needs long time, i.e. months

or even years, to appear (Figure I.13, Suttle, 2010). In that case, the effect of dietary Ca

deprivation will be an insufficient bone mineralization (Meschy, 2010). The appearance

of clinical symptoms of bone insufficient mineralization will be correlated to the duration

of the deprivation (Meschy 2010, Suttle, 2010). On young animals, a chronic dietary Ca

deprivation can lead to a failure of bone mineralization and a retarded growth (NRC, 2001).

However, when the Ca deprivation is higher and acute, it can happen that the bone cannot be

mobilized rapidly enough to allow maintenance of the calcemia and thus the first symptom

of Ca deprivation would be a very rapid decrease of calcemia and an associated deterioration

of the function of transmission of nerve impulses (Figure I.13, Suttle, 210). An example of

these symptoms is milk fever even though it is not related to dietary Ca deprivation at the

very beginning of lactation (DeGaris and Lean, 2008). In the first 24 hours after calving, a
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cow may lose 23 g of Ca in colostrum whereas the quantity of Ca in the total bloodstream

is 3 g (Suttle, 2010). However, it is important to specify that milk fever is above all due to

a homeostasis default in postpartum dairy cows and not to a dietary deprivation of Ca. A

reduction of Ca supplementation is even proposed as a preventive strategy before calving

to favor a quicker bone mobilization after calving by stimulating pre-calving PTH secretion

(Goff, 2008).

Figure I.13: Sequences of biochemical changes leading to clinical signs in (a) chronic dietary deprivation (i.e.
skeletal disorders) and (b) acute metabolic deprivation of Ca, e.g. milk fever (Suttle, 2010)

Given that phosphatemia is more loosely regulated than calcemia, a first consequence

of a dietary P deprivation is a decrease in phosphatemia and this decrease occurs very
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rapidly even in case of small deprivation (Figure I.14, Suttle, 2010, Anderson et al., 2017,

Meschy, 2017). The first symptom of a moderate P deprivation will be a rapid decrease in

the amount of dry matter intake (NRC, 2001, INRA, 2010, Meschy, 2010, Suttle,

2010, Puggaard et al., 2014) due to the high dependence of ruminal micro-organism and

fiber digestion to P (Meschy 2010, Suttle 2010). According to the importance and the

duration ofthe dietary deprivation, other symptoms such as difficulty to move, growth and

milk production decreases could be associated (Meschy, 2010). Pica that can be described

as a specific appetence for soil or dead animals is also a sign of dietary P deprivation

(Meschy, 2010, Suttle 2010). On a long time, P deprivation may induce insufficient bone

mineralization (Bortolussi et al., 1999, Meschy, 2010).

Figure I.14: The sequence of pathophysiological changes that occurs when livestock are given an inadequate
dietary P supply. Unlike with most minerals, the transport pool shows an early decline and appetite is lost
long before the skeleton becomes clinically affected (Suttle, 2010)

If a Ca and P supplementation can be necessary in dairy cows to avoid health problems

and suboptimal productive performances, an excessive supplementation can have

deleterious effects, above all from a socio-economic point of view. Indeed, from an animal

health point of view, specific pathologies due to excessive dietary supplies of Ca and P are

quite uncommon in dairy cows, at least if the very specific period of prepartum is excluded

(NRC, 2001). Possible effects of excessive Ca supplies could be a decrease in some trace

mineral absorption such as Mn and Zn (INRA, 2018) or the occurrence of urinary stones

(NRC, 2001). Ruminants are particularly insensible to P excess thanks to their the

capacity of P excretion in saliva and urine (Klop et al., 2014).
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There is currently a concern to adjust as much as possible the dietary P supply to the

animal requirement 1) because the world P stocks are limited and localized in a very few

countries, which represents an economic and political issue (Chen and Graedel, 2016) and

2) because excessive P supplementation leads to an increase of environmental risks of

eutrophication (Kebreab et al., 2008). The question of the management of the world P

stocks (Steen, 1998) arose at the end of the 20th century. At this moment, world mineral P

stocks were estimated to last from 50 to 120 years (Steen, 1998) but this estimation may

not be accurate anymore because global P consumption was multiplied by five in 50 years

(Figure I.15, Chen and Graedel, 2016). It has been estimated that more than 90% of P is

used for food production (Gunther, 2005), among which 80% is used as mineral fertilizer

and 5% for animal feeding, at least if P used to grow plants to feed animals is not

considered. The other issue is that P supplemented in excess to animals is mainly excreted

as soluble P from urine and feces and that soluble P has an important potential to increase

eutrophication risks of waterways (Dou et al., 2002, Valk et al., 2002, Alvarez-Fuentes

et al., 2016). As a consequence, since the early 2000s, a series of studies was published

showing that a slight decrease of the current recommendations of P supply to dairy cows,

and thus of P supplementation, is possible without affecting their health and productive

capacity (Wu et al., 2000, Odongo et al., 2007, Ferris et al., 2010a, Elizondo Salazar et al.,

2013). However, some of these studies reached a deleterious limit (Puggaard et al., 2014).

The P requirements of a lactating dairy cows can be grossly estimated to be around 0.40

g/kg DM (Dry matter) according to the NRC recommendations (2001) that are the most

broadly used recommendations in the world. Some authors suggested that those P

requirements could be lowered to 0.35 g/kg DM without affecting performances or health

of dairy cows. Wu et al. (2000) observed that total dietary P supply to lactating dairy cows

could be lowered from 0.49 to 0.40 g/kg DMI without affecting either milk production, or

milk composition or reproduction performance and with a decrease of P fecal losses of

about 25%, but they also observed that lowering total dietary P supply to 0.31 g/kg DM can

have deleterious effect. Lopez et al. (2004) observed no effect of a reduction of daily P

supplies from 0.57 to 0.37 g/kg DMI on either milk production or composition. Kebreab et

al. (2008) suggested that daily P supplies could be lowered from 0.41 to 0.35 g/kg without

impairing cow health or productivity. Ferris et al. (Ferris et al., 2010a, Ferris et al., 2010b)
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observed, during a 2-year study, that lowering daily P supply from 0.45 to 0.36 g/kg DM

had no effect of milk production and composition and reproduction performance even

though body condition score slightly decreased. However, Puggaard et al. (2014) clearly

showed that a decrease in daily P supply from 0.34 to 0.23 g/kg DM has very strong and

deleterious effects on cow health and productive capacity even though milk production

remained possible with 0.28 g/kg DM.

Figure I.15: Evolution of major use of mineral P for the last 50 years (Chen and Graedel, 2016)

No economic and environmental issues around excessive Ca supplementation aroused

recent increase in the amount of studies aiming redefining the daily Ca requirement of

dairy cows. However, a recent series of studies highlighted that, even in the absence of

milk fever, subclinical hypocalcemia after calving can have important effects on cow health

and production during the following lactation, with lower reproduction performances

(Caixeta et al., 2017), higher risks of acetonemia (Rodríguez et al., 2017) and higher risks

of metritis or culling (Wilhelm et al., 2017). Effect of preparation for calving, by decreasing

dietary cation-anion difference (DCAD, Leno et al., 2017, Neves et al., 2017), or by

different strategies of oral Ca supplementation (McArt and Oetzel, 2015) has been

investigated to limit subclinical hypocalcemia with contrasted results (Teramura et al.,

2015, Amanlou et al., 2016, Miltenburg et al., 2016, Venjakob et al., 2016, Leno et al.,

2017, Neves et al., 2017). The link between the risks of subclinical hypocalcemia and the

strategies of Ca and P supplementation during previous lactation, that could have affected

bone metabolism have not been studied.
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2 Estimations of Ca and P requirements and supplies, used for

optimizing Ca and P supplementation

To ensure that dairy cows received enough Ca and P to cover their requirements for

lactation and maintenance, eventually thanks to a specific supplementation, a first step is

the estimation of requirements. Requirements are always estimated on a basis of absorbable

Ca and P. However, as evocated earlier in this bibliography, a substantial part of dietary

Ca and P are not absorbed in the digestive tract. Thus, a second step is the calculation

of the absorbable Ca and P supplies from the Ca and P contents of the feed of the diet.

Many systems propose estimation of requirements and supplies for Ca and P. AFRC (1991),

NRC (2001) and INRA (Meschy, 2010, INRA, 2018) propose estimations of requirements

and supplies for both Ca and P whereas the Dutch (Valk et al., 2002) and Danish (Sehested,

2004) systems proposes estimations of requirements and supplies of P. This part of the

bibliography will propose a comparison of the AFRC (1991), NRC (2001) and INRA (2010)

systems. The NorFor system (Volden, 2011) was discarded from the comparison because it

uses NRC estimations of requirements for Ca and P with only minor modifications.

a Estimations of Ca and P requirements

In the three compared systems (AFRC, 1991, NRC, 2001, Meschy, 2010), estimations

of Ca and P requirements are based on the factorial approach that consists, for an adult

dairy cow, in summing Ca and P requirements for maintenance, gestation and lactation.

Maintenance requirements consist in the minimal daily amount of fecal and urine losses of

Ca and P, able to sustain the productive level of the cow. Gestation requirements consist

in the daily amount of Ca and P retained in the fetus, whereas lactation requirements

consist in the daily amount of Ca and P secreted in milk. Thus, Ca and P requirements

are supposed to be the amount of Ca and P to be supplied to replace the daily losses of

Ca and P from the organism. The three parts of mineral requirements previously cited, i.e.

maintenance, gestation and lactation, are considered as independent. For a growing animal,

such as a primiparous dairy cow, growth requirements would also have to be considered.

Estimations according to systems are in table I.1. The milk P content used for the estimation

requirements of lactation is the same for the 3 systems, i.e. 0.9 g/L whereas the considered

milk Ca contents vary according to the system and NRC even considered a different milk
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Ca content according to the breed of the cow. It is interesting to notice also, that the NRC

is the only system that does not consider the effect of DMI on maintenance requirements of

Ca, whereas it considers it for maintenance requirements of P. For none of the 3 systems,

the effect of the stage of lactation on requirements is considered and it is assumed that it is

described by DMI and milk composition. Ca and P requirements for gestation are negligible

before the last three months of gestation in the three systems.

Ca requirements

Maintenance Lactation Gestation

AFRC -0.74+0.0079 BW+0.66 DMI 1.2 MP 0.0399 e-0.003DG+11.952+13.161×e-0.003DG

INRA 0.663 DMI + 0.008 BW 1.25 MP
23.5

1+e18.8-5.03×ln(WG)

NRC 0.031 BW β MP
0.02456(e(C-H× DG)DG

-e(C-H(DG-1))(DG-1))

P requirements

AFRC 1.6×(-0.06+0.693 DMI) 0.9 MP 0.433 e-0.003DG + 10.73 -12.750×e-0.003DG

INRA 0.83 DMI+0.002 BW 0.9 MP
7.38

1+e19.1*-5.46× ln(WG)

NRC DMI + 0.002 BW 0.9 MP
0.02743(e(C-(H×DG))DG

-e(C-H(DG-1))(DG-1))

Table I.1: Estimation of Ca and P requirements according to AFRC (1991), INRA (2010) and NRC (2001). BW:
Body Weight; DMI: Dry Matter Intake; MP: Milk Production; DG: Days of gestation; WG: Week of gestation.
β value depends on the breed (1.22 g/kg for Holstein, 1.45 g/kg for Jersey and 1.37 g/kg for other breeds). C

equals 0.05581 for Ca and 0.05527 for P. H equals 0.00007 for Ca and 0.000075 for P.

b Estimations of Ca and P supplies

As cow’s Ca and P requirements are estimated on absorbable Ca and P, the 3 compared

systems also proposed an estimation of the absorbability of Ca and P from the feeds. The

absorbability of Ca and P is defined as part of total Ca and P contents of the feed that

can be absorbed throughout digestive tract by the cows. The absorbability is generally

approximated by the Real Coefficient of Absorption (RCA) that is, for either Ca or P, the

ratio between the element intake minus its fecal excretion of the non-absorbed form and

the element intake. The fecal excretion of the non-absorbed form is calculated as the total

fecal excretion minus the endogenous fecal excretion for the considered element. Thus, the
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estimation of the RCA, as well as that of maintenance requirements of Ca and P, requires

an estimation of the endogenous part of the fecal excretion of Ca and P. The Apparent

Coefficient of Absorption (ACA), i.e. the ratio between the element intake minus its total

fecal excretion and the element intake, is easier to measure but estimating the absorbability

of Ca and P by their ACA would not allow to sum the amounts of Ca and P provided by the

feeds that constitutes the diet. Indeed, as we saw previously, endogenous fecal losses are

very dependent of the total amount of DMI and for P, of the total amount of P provided by

the diet. For Ca particularly, the RCA has to be measured in situation in which the amount

of Ca offered to the animal is close or lower to the total animal requirements of Ca.

The three compared systems based the estimation of the absorbability of Ca and P

requirements on data basis of experimental measurements of Ca and P flows at the scale

of bovine animal. In some cases, the experimental results also include a measurement of

endogenous fecal loss thanks to radio-isotopes. The number of coefficients of absorbability

to compare the variety of feed that a cow can consume differed greatly between the 3

compared systems. AFRC (1991) uses only one coefficient per element for all feeds, 0.68 for

Ca and 0.58 for P. NRC (2001) considers 3 categories of feed, i.e. forages, non-forages and

mineral, which coefficients are 0.3, 0.6 and 0.7, respectively for Ca and 0.64, 0.7 and 0.7

respectively for P. INRA considers about 20 categories of feed which contrasted

absorbability of Ca and P given in tables I.2 and I.3. The pinciples of the calculation of

those RCA for Ca are given in box 1.

RCA of P RCA of Ca
Fresh Silage Hay Fresh or conserved

Permanent grasslands 0.70 0.60 0.65 0.35
Grasses Rye grass 0.60 0.60 0.65 0.40

Other grasses 0.70 0.60 0.65 0.40
Cereal forages Maize 0.70 0.70 - 0.40

Other cereals 0.66 0.66 - 0.40
Legumes Lucerne 0.70 0.65 0.60 0.30

Clover 0.70 0.65 0.60 0.30
Other legumes 0.70 - - 0.30

Protein crops 0.70 0.65 - 0.30
Asteraceae (sunflower. ...) 0.70 0.65 - 0.30
Crucicfers 0.70 0.65 - 0.30

Table I.2: Real Coefficent of Absorption (RCA) of P and Ca of the forages in the INRA system (INRA, 2018)
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Box 1: Estimation of RCA of Ca in the three feeding systems

AFRC: To estimate the RCA of Ca retained in the system, i.e. 0.68, a first database, constituted

from data resulting from of studies using radio-isotopes of Ca in the diet, was used to established

that RCA and ACA could be linked by a linear relationship,RCA = ACA + 0.016BW. A second

database, constituted from data of balance trials (about 600 data for Ca), was used to calculate

RCA with the assumption that the amount of absorbed Ca was either equal to the requirement

(R) when the intake (I) of absorbable Ca mineral, RCA×I, is sufficient to cover the requirements,

or to RCA×I when the intake of absorbable Ca is not sufficient to cover the requirement (ARC,

1980). Within that frame, ACA of Ca and P retained in the system were estimated as the

maximum ACA measured from the groups of data with the highest requirement to intake ratios.

Then, RCA of Ca was obtained thanks to the relationship evocated above. No differences between

feedstuffs are considered in this system.

NRC: The selection of the studies used for the determination of the RCA of Ca relied on the

principles that the cows needed to be fed under their requirement to activate all the mechanisms

of Ca absorption (cf. case where R > RCA×I for AFRC). RCA of Ca for mineral feed were derivate

from solubility measurements, considering that the RCA of Ca in CaCl2 is 0.95 (study with six

one month old calves from Hansard et al., 1954) and that CaCl2 is 1.2 to 1.32 more soluble than

CaCO3 which RCA has been estimated to 0.75 (0.95/1.26). Because it was assumed to be less

available than Ca from pure CaCO3, the RCA of Ca from limestone was decreased to 0.70. RCA of

Ca for forages was based on estimation of RCA from alfalfa because alfalfa is a major contributor

of Ca in dairy rations in US, obtained as an average RCA obtained from 3 studies, i.e. 0.30 (Ward

et al., 1972, Hibbs and Conrad, 1983, Martz et al., 1990). RCA of Ca for non-forage feedstuffs

was estimated at 0.60 without use of experimental data, which is slightly lower than the RCA of

CaCO3.

INRA: For the 20 categories of feed (11 for forage, and 9 for concentrates and animal feed), RCA

were estimated from data issued from 77 balance trials with lactating cows considering 117

diets and 424 observations (Meschy, 2002, Meschy and Corris, 2005). Trials in which Ca intake

represented more than 150% of Ca requirements were discarded to avoid an under-estimation of

RCA, except if a specific feedstuff, with natural high Ca content and that is not a mineral feed,

was included in the diet. For trials that only measured ACA, RCA was estimated considering

that fecal endogenous losses were equal to maintenance requirement (0.008 BW + 0.663 DMI for

Ca). Estimation of RCA of Ca of concentrates may not be as good as that of forages because they

do not have a high Ca content and they only marginally contributed to the amount of absorbable

Ca intake. 35
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RCA of P Rca of CA
Cereals 0.75* 0.55*

Wheat 0.72
Barley 0.76

Meals 0.68* 0.55*
Groundnut 0.65
Rapeseed 0.71
Cotton 0.63
Linseed 0.67
Soy bean 0.70
Sunflower 0.65

Others Dehydrated lucerne 0.70 0.30
Rice bran 0.64 0.55
Brewers’ drierd grain 0.78 0.55
Gluten corn feed 0.68 0.55
Sugar beet or citrus pulp 0.90 0.20
Cotton seed 0.74 0.55

Mineral 0.701 0.401

Table I.3: Real Coefficent of Absorption (RCA) of P and Ca of the main deed materials and minerals in the
INRA system (INRA, 2018). * = mean of the category; 1: may variate according to considered mineral

c A focus on the estimation of the fecal endogenous losses of Ca and P

The estimation of the endogenous fecal losses of Ca and of P is important in the feeding

system to estimate the maintenance requirements of those elements and their RCA. For

years, the best methods to measure endogenous fecal losses of Ca and of P have been based

on the use of radio-isotopes that allow the concomitant measurement of endogenous fecal

loss and non-absorbed mineral in fecal loss (Hansard et al., 1957, Martz et al., 1990, Vitti

and Kebreab, 2010). However, the higher legal requirement in radio-protection makes these

methods extremely difficult to use on ruminants nowadays. Alternative consisting in using

Ca or P free diets for a limited time has already been used also in the past but this method

extremely limits the panel of diets that can be tested (Stein et al., 2006). A slope-ratio

method may also be considered to compare feed (Vitti and Kebreab, 2010). By increasing

proportions of a considered feed included in the diet, the estimations of the endogenous

loss would be obtained by the extrapolation of the regression between fecal losses (response

variable) and element intake (explanatory variable) with a null value of element intake.

However, this method is not much used for ruminants, as it would require a large number

of animals and it would not be relevant for P given the importance of excretion of P in
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endogenous fecal losses when P intake increases.

d Data used for comparisons of feeding systems providing an

estimation of Ca and P requirements and supplies

Even though differences between systems for daily estimations of Ca requirements can be

estimated as quite low when looking at the equation, the accumulation of these differences

during several months of lactation may lead to significant differences of supplementation.

To evaluate this, data from an experiment involving multiparous dairy cows during 220

days of lactation have been used to compare the cumulative estimation of requirements of

Ca and P according to three systems over several months of lactation. An average cow was

estimated from these data. She was fed with two diets given alternatively during the first

70 days of lactation and after this period (Table I.4) and the diets were calculated to cover

the Ca and P requirements according to the French system (INRA).

Diet composition (%) Mineral composition
Stage of lactation 0-70 days 71-220 days

Ca (g/kg DM) P (g/kg DM)
Corn silage 70.2 72.9 2.3 1.8
Energetic concentrate 15.3 10.4 3.71 4.6
Tanned meal 10.2 0.0 4.1 8.4
Soybean meal 0.0 13.5 4.1 7.8
Urea 1.3 0.7 0.0 0.0
Mineral (0-70d) 3.0 0.0 200.8 44.4
Mineral (71-220d) 0.0 2.5 212.7 45.6

Table I.4: Cows’ diet composition and characteristics for the systems comparisons.

The milk production (MP), milk protein content, body weight (BW) and DMI of the

average cow are given in figure I.16. The cow was in early stage of lactation during the

experiment (< 220 days), and thus no estimation of gestation requirement was included in

the comparisons because the daily gestation requirements for Ca and P were never above 0.5

and 0.6 g/d respectively. As the cow was multiparous, no estimation of growth requirement

was included either.

e Comparisons of Ca and P requirements, supplies and differences

between both according to AFRC, INRA and NRC

Estimations of daily absorbable Ca and P requirements over 220 days of lactation are

resumed in figure I.17. The differences between the cumulated daily estimations over 220
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Figure I.16: Zootechnical characteristic of the cow for the comparison of feeding systems on A) milk production,
B) milk protein content, C) body weight and D) dry matter intake

days of lactation were extremely low, i.e. less than 0.6 kg for absorbable Ca and 0.8 for

absorbable P, for an average cumulated requirement of 14.2 kg of Ca and 12.1 for P over 220

days of lactation. Differences in estimations of absorbable Ca and P requirements used to

be more important between systems in the past, varying up to 100% for Ca between NRC

(1988) and ARC (1980) (Martz et al., 1990).

Estimated supplies of absorbed Ca and P are presented in figure I.18. Differences

between systems, in the estimations of cumulated daily supplies of absorbed Ca and P over

220 days of lactationwere largely higher than those of requirements. With identical DMI,

estimation of cumulated daily supplies of absorbed Ca was lower for INRA than for AFRC

and NRC. The maximal difference was 8.3 kg over 220 days of lactation for an average

cumulated supply of 22.2 kg for the 3 systems (16.7, 24.8 and 25.0 kg for INRA, NRC and

AFRC, respectively). Differences in estimation of cumulated daily supplies of absorbed P

were not as important as for Ca. Estimations from INRA and NRC were very similar

whereas AFRC had lower estimations. The difference in cumulated supplies was less than
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Figure I.17: Comparison of systems for the estimation of absorbable Ca P requirements for a dairy cow during
lactation (AFRC, 1991, NRC, 2001, INRA, 2010). AFRC = red, INRA = green, NRC= blue

3 kg between the two extreme systems, for an average of 13.5 kg (14.3, 13.9 and 11.8 kg for

INRA, NRC and AFRC, respectively). This result may due to increase in estimation of P

absorbability in the literature during the last years (McDowell, 2017), and the fact that

AFRC is at least 15 years older than the two other systems.

Figure I.18: Comparison of A) absorbed Ca and B) absorbed P according to dietary systems during lactatio
AFRC = red, INRA = green, NRC= blue

Consequently, the estimations of daily differences between supplies and requirements

of Ca and P (Ca and P balance) were quite different (Figure I.19). Proximity to zero, i.e.

39



C). BONE REMODELING

equilibrium between requirements and supplies, is not the relevant question here as the

cow’s ration was established with the INRA system. The oversupply of P, considering the

INRA system, has to be related to variation of the feed content of P during the experiment.

Differences in cumulated daily balances over 220 days of lactation were far more important

for Ca than for P. The maximal difference for Ca was 8.9 kg, with an average cumulated

daily balance of 7.9 kg for 220 days of lactation (2.3, 11.1 and 10.4 kg for INRA, AFRC and

NRC, respectively). Those differences were lower for P, with a maximal difference of 2.9 kg

for an average cumulated daily balance of 1.1 kg for 220 days of lactation (2.3, 1.6 and -0.6 kg

for INRA, NRC and AFRC, respectively). The main difference in estimations of cumulated

daily Ca balances between systems was related to the differences of diet absorbability of Ca.

Figure I.19: Comparison of A) Ca balance and B) P balance according to dietary systems during lactation.
AFRC = red, INRA = green, NRC= blue
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C) Bone remodeling in relation with regulation of

calcemia and phosphatemia and cycle of bone

mobilization and reconstitution in dairy cows

As explained earlier in this text, bone can be mobilized in response to insufficient Ca and

P supplies or increased requirements and dairy cows are submitted to an important increase

of the exportation of Ca, and P in milk, particularly at the beginning of their lactation.

Thus, it is important to understand how bone can respond to the fluctuation of supply and

requirement of Ca and P by dairy cows during the cycle of lactation-gestation.

1 Bone structure and mechanisms of bone remodeling

a Composition and structure of bones

Bones have several roles in mammals, but the most evident is the protection of organs,

with a solid and articulated framework. Even though bone is mainly composed of

minerals, it comprises about one third of organic compounds. Rough average composition

of bone in mammals is 45% of water, 25% of ashes, 20 % of protein and 10% of fat but it

evolves with growing and aging (Bullough, 2010). The mineral content of bone is lower in

young mammals (AFRC, 1991) and increases with growing to improve the load bearing

capacity of bones as well as its storage capacity of Ca and P (Bonjour et al., 2014). Bone

water content decreases while growing (Bonjour et al., 2014). Ca and P are present with a

constant mass ratio of 2.15, as they are linked together in mineral bones, more specifically

in hydroxyapatite. Ca and P respectively represent around 39 and 17% of bone mineral

composition (Keene et al., 2004). Even though hydroxyapatite is highly predominant in

bone (Jong, 1926), Ca and P can be bound with others molecules, essentially at the surface

of mineral phases of bone, in a hydrated layer (Rey et al., 2009), such as Ca phosphate

Ca3(PO4)2 but these molecules are very labile and quantitatively less importan,t and their

formation is irreversible for some of them (Wu et al., 2001).

Bone matter can be split in two parts, the organic matrix and the mineral phase. The

organic matrix gives to the bone its ability to resist to tension (Buckwalter et al., 1996).

Initially, bone matter is only constituted of this organic matrix, which is established before
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the mineral phase (Buckwalter et al., 1996). This organic matrix is composed of more than

90% of type I collagen, even though others forms such as type IV and V collagens are

present. The organic matrix also comprises non-collagenous glycoproteins and

bone-specific proteoglycans that assemble collagens together (Bullough, 2010). Mineral

phase is accumulated around organic matrix. It allows resistance of bone to compression

(Buckwalter et al., 1996) and gives the bone its capacity to store Ca and P. It is mostly

composed of hydroxyapatite, but others forms like apatite are present (Buckwalter et al.,

1996). The mineral phase of the bone constitutes important Ca and P stocks, with

respectively 95 and 70% for Ca and P of the organism being located in bones. For Ca, bone

is the only stock in the organism, whereas for P, plasma may also be considered as a stock

(Hill et al., 2008).

Even with similar matrix composition, bones can be categorized into two categories, with

specific characteristics and functions, i.e. cortical and trabecular bones (McDowell, 2003,

Durand and Beaudeux, 2011). Cortical bone is a thin and dense layer of calcified tissue.

It is rigid and constitutes tubular bones such as femur or humerus. Trabecular bone is

spongy, balancing strength and elasticity. It constitutes the major portion of axial skeleton,

i.e. vertebrae and rib inter alia. All bones are not equally sensible to Ca deprivation and

for instance, axial skeleton, and particularly the vertebrae between crane and pelvis, is less

sensible, to avoid lower protection of organs (Benzie et al., 1955).

b Two cell lineages are involved in bone remodeling

Bone mineral phase is always renewed, even in adult animals, due to the activity of two

types of cells, the osteoblasts and the osteoclasts. Those two types of cells are permanently

active in the cycle of bone remodeling. Osteoblasts are involved in bone accretion that

consists in synthesis of the protein extra-cellular matrix, i.e. the organic matrix, and its

mineralization. They are derived from mesenchymal stem cells in bone marrow (Durand

and Beaudeux, 2011) and lined up along the osteoid marrow, which is the limit of the

non-mineralized part of the organic matrix. During the mineralization, they can “brick

themselves up” in the mineralized part of the organic matrix, becoming then osteocytes.

Osteoclasts are involved in bone resorption that consists in lysis of the mineralized part of

the organic matrix of the bone. They are derived from hematopoietic stem cells and

contained several nuclei. They are linked to bone matrix by integrins (Durand and
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Beaudeux, 2011). In adult organism without deficiency of Ca or P, there is an equilibrium

between bone accretion and resorption (Horst, 1986), but accretion is more intense in

young growing organisms and resorption is more intense in aging organisms leading to

pathology such as osteoporosis.

c The cycle of bone remodeling

Activity linked to osteoblasts and osteoclasts can be resumed in a cycle decomposed in

six steps (Bonjour et al., 2014), that is resumed in figure I.20. During the first step, called

quiescence, the surface of the mineralized bone matrix is covered with osteoblasts in

terminal phase of differentiation. During the second step, called activation, the

osteoclastic precursors are differentiated from the hematopoietic stem cells into mature

osteoclasts. During the third step, called resorption, strictly speaking, osteoclasts start

lysing the mineralized part of the organic matrix, bone lacunae appears and osteoclasts

disappear. During the fourth step, called reversal, osteoblast precursors colonize the

lacunae, proliferate and differentiate. During the fifth step, called formation, proteins of

the organic matrix, and specially type I collagen, are synthetized by the osteoblasts.

During the sixth step, called mineralization strictly speaking, the organic protein matrix

is mineralized by osteoblasts, using Ca and P to form hydroxyapatite. These cycles occurs

simultaneously in the structure of all bones, whatever the age or the activity of the animal.

The activity of osteoblasts and osteoclasts can be modulated by several hormones or

other molecules, allowing the integration of the bone in the regulation of calcemia and

phosphatemia as evocated in part A of this chapter. Specifically, it is known that osteoblasts

have receptor for both PTH and 1,25-(OH)2-vitamin D (Vitti and Kebreab, 2010), modulating

the activity of an alkaline phosphatase and Ca transport. The activity of osteoclasts is

also inhibited by calcitonin (Mundy and Guise, 1999). Recently, a system of interactions

between energy and Ca metabolisms, relying in relationship between activities osteoblasts,

beta cells of the pancreas and adipocytes have been highlighted in mice (Figure I.21, Lean

et al., 2014). This system would induce concomitant decrease in energy storage in adipose

tissue and Ca storage in bone. Link between P and energy metabolism is also possible

but it does not involve bone. It has been shown that 25-OH-vitamin D depletion leads

to a secretion of insulin, through 1,25-(OH)2-vitamin D receptor in beta cells of pancreas

(Bouillon et al., 1995, Henry, 2011) and that insulin secretion could stimulate P uptake in
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Figure I.20: Bone remodeling cycle. Bone turnover follows a sequence of events that includes activation,
recruitment of osteoclasts (Ocl) to begin resorption, degradation and removal of bone, reversal, and formation
of new bone by osteoblasts (Ob). After this phase a quiescent or resting period occurs. LC, lining cell; Oc,
osteocyte (Bonjour et al., 2014)

mammary epithelial cells to increase milk P content (Rillema, 2002).

2 Methods for the evaluation of dynamics of bone mobilization

and reconstitution during cycles of lactation and gestation

in dairy cows

Bones are submitted to permanent remodeling processes but accretion and resorption

are not always in a perfect balance which can induce either net bone mobilization or

reconstitution, which may be especially the case during the lactation-gestation cycle of

dairy cows. Several methods have been used to estimate the dynamics of bone mobilization

and reconstitution that can occur after various events in animals but the methods often

determine the kind of information that will be provided. Thus a good strategy could be to

combine several methods (Ekelund et al., 2006, Taylor et al., 2009).

a Use of Ca and P radio-isotopes

The use of radioactive isotopes of Ca and P, i.e. 45Ca and 32P, allowed quantifying daily

Ca and P flows flows within body and more specifically between plasma/serum, bones,

digestive tract, kidneys and mammary gland. The method consists in incorporating

radio-isotopes in cow’s diet, or injecting them directly into blood, and following the
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Figure I.21: Relation between Ca and energy metabolisms (Wolf, 2008). Adipocytes secrete the adipokine
leptin that influences bone metabolism. Leptin binds to leptin receptors in the brain. The leptin signal causes
stimulation of the sympathetic nervous system and activation of the β2-adrenergic receptor gene (Adrβ2) in
bone, which decreases osteoblast proliferation and bone formation. The osteoblast, in turn, influences energy
metabolism by expressing osteotesticular protein tyrosine phosphatase (OT-PTP), a product of the Esp gene.
OT-PTP apparently influences the vitamin K-dependent γ-carboxylation of osteocalcin, an osteoblast-specific
protein that acts in a hormone-like manner to affect adipocytes and β cells in the pancreas. Uncarboxylated
osteocalcin increases β cell proliferation and insulin secretion in the pancreas, and further influences energy
metabolism by affecting adipocyte secretion of adiponectin, an insulin-sensitizing adipokine.

evolution of the radioactivity in several kinds of samples from animal (blood, urine, feces,

milk for instance). In early lactating ewes, this method highlighted the importance of bone

mobilization in late pregnancy or early lactation and the necessity of a bone reconstitution

during the end of lactation and the beginning of gestation (Braithwaite, 1983a). This

method allows a very specific estimation of equilibrium between bone accretion and bone

resorption via estimation of mineral flows between bones and serum/plasma. However, due

to a better knowledge of environmental risks and more severe radioprotection regulation,

this method became very difficult to apply even on small ruminants and last results

obtained by these methods on dairy cows date from 1970 (Ramberg et al., 1970).

b Measurement of input-output balance of Ca and P

The principle of this method is very simpler as it consists in quantifying all the input of

Ca and P, i.e. mainly dietary intake and eventually Ca and P ingested with free water, and

all the output, i.e. excretion of Ca and P in milk, urine and feces. The difference between

daily input and output can be defined as the retention and, as Ca and P are mainly stored
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in bones, it can constitute an indirect measurement of Ca and P mobilized from bones or

Ca and P retained in bone (Ender et al., 1971). However, this method may be less precise

for P than for Ca given that blood also has a role of P storage in the organism (Ekelund

et al., 2006). These measurements also allow the estimation of ACA of a diet. A major limit

remains that daily total collection of urine and feces is time consuming and impossible to

apply on an important number of animals in the case of dairy cows.

c Bone biopsy, DXA or X-ray photometry measurements

Those methods, based on direct measurements on bones, allow the quantification of

the bone status of the animal that can be considered as its density, its mineral content or

more specifically its histological evaluation. Direct measurements of bone composition have

been performed on slaughtered animal and more specifically on cows (Benzie et al., 1955,

Beighle, 1999, Taylor et al., 2009). They allowed comparison of bones and their capacity to

be mobilized (Benzie et al., 1955) but they do not allow the dynamics measurement of bone

evolution for a given animal. Bone biopsy, and more specifically rib biopsy have been used

in cows (Dixon et al., 2017). However, for obvious reason of animal health and welfare, bone

biopsies cannot be repeated with a high frequency. The estimation of bone density could

be an interesting alternative to increase the frequency of measurements for evaluation of

the bone status. A method to estimate bone density was developed on metacarpe of alive

horse using dual-energy x-ray absorptiometry (DXA) with a limited number of animals

(Donabedian et al., 2005). However, DXA remained hard to applicate in dairy cows because

of its cost and the maximal animal weight allowed by the apparatus. This method needs to

be improve,d as it was highly operator dependent and only applicable to trained animals,

but it gave a good relationship between bone mineral content estimated by DXA and direct

measure. However, other studies showed no relation between bone mineral content and

DXA or radiographic photometry in dairy cows (Keene et al., 2004).

d Blood biomarkers of bone accretion and resorption

Activity of osteoblasts and osteoclasts can be estimated with the serum/plasma

concentration of some molecules, called biomarkers of bone accretion and resorption

(Liesegang et al., 2000, Seibel, 2000). Four biomarkers of accretion are more currently

used to estimate bone accretion. The bone specific alkaline phosphatase (BALP) is a

membrane-bound protein specific to the bone, but non-bone-specific isoforms exist (Allen,
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2003). The osteocalcin (OC), also known as serum bone-Gla protein is synthetized in

osteoblast and megakaryocytes, which are the cells of bone marrow producing blood

thrombocytes. Serum/plasma OC concentration reflects osteoblast activity (Allen, 2003)

even though its role is still not yet really well understood. OC is suspected to have a role in

synthesis of organic matrix of bone (Buckwalter et al., 1996). The PICP and the PINP,

which are the carboxy- and amino-terminal of propeptides of collagen types I, are

synthetized by osteoblasts in a late stage of the formation of a new bone (Figure I.22).

Their concentrations reflect synthesis of collagen of type I but their use remain uncertain

in dairy cows (Allen, 2003).

Figure I.22: Molecular basisof PICP and PINP (Seibel, 2000). The carboxy- (PICP) and amino-terminal
propeptides (PINP) are cleaved by specific propetidases are partly released into the circulation

Four bone biomarkers of resorption have been described in the literature and most of

them are products of degradation of the organic matrix of bone by osteoclasts (Figure I.23).

CTX and NTX are carboxy- and amino-terminal cross-linking telopeptides of collagen type

I and are issued from the destruction of the collagen type I (Seibel, 2000). Pyridinoline

(PYD) and deoxypuridinoline (DPD) are residues of molecules binding collagen type I

together. PYD is more related to amino-terminal and DPD to carboxy-terminal collagen

(Allen, 2003). All the cited biomarkers, for accretion and resorption, can be analyzed in

serum and sometimes in plasma but only 2 biomarkers of resorption, PYD and DPD, can

be analyzed in urine with a correction by creatinine excretion (Seibel, 2000).

The serum concentrations of biomarkers allow measuring relative dynamics of bone

accretion and resorption over time but they hardly allow a quantification of the flows. It

can even be stated, that because the basal concentrations of these biomarkers vary between

individuals, they must be used for dynamics measurements, especially in lactating animals

(Liesegang et al., 2000). A limit in the use of these bone biomarkers, beside the cost, is

the factors affecting their concentration independently of the bone accretion and resorption
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Figure I.23: Molecular basis of the used markers of collagen degradation (Seibel, 2000)

dynamics. Effects of physical activity and diurnal variations have been quantified in human

(Hannon and Eastell, 2000). Effect of sex and ethnicity have been highlighted in humans

(Allen, 2003). To avoid these biases, plasma has to be sampled with a strict protocol, at

a given time of day notably. Some biomarkers, DPD and PYD, were inadequate to detect

variation of bone mobilization at the beginning of lactation (Liesegang et al., 2000). Samples

must be stored frozen at -20°C or they may degrade. This is particularly true for OC than is

recommended to be stored at -80°C. OC, associated with CTX, are the biomarkers the most

commonly used in dairy cows to estimate bone accretion and resorption dynamics (Liesegang

et al., 2000).

3 Quantification of bone mobilization and reconstitution

during cycles of lactation and gestation in dairy cows

It has been clearly established that a net bone mobilization occurs at the beginning of

lactation of cows (or ewes or goats) and that a net bone reconstitution occurs at the end of

the lactation or during gestation. This was illustrated thanks to several methods evocated

before, like radio-isotope (Ramberg et al., 1970, Braithwaite, 1983a), bone biomarkers

(Liesegang et al., 2000, Ekelund et al., 2006), mineral balance (Taylor et al., 2009) or bone

biopsy (Beighle, 1999, Keene et al., 2004). The coexistence of both net bone mobilization at

the beginning of lactation, and net bone reconstitution at the end of lactation, has been

firstly highlighted with radio-isotopes of Ca and P in dairy cows (Ramberg et al., 1970) and

ewes (Braithwaite, 1983a, Braithwaite, 1983b). In these experiments, the model used to

adjust the decrease in radioactivity in the followed pools allowed estimated both flows of

bone accretion and resorption, and thus net bone mobilization or reconstitution resulting
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from the differences between accretion and resorption. In the study of Ramberg et al.

(1970), a net mobilization was observed at one month of lactation and a net reconstitution

was observed in non-lactating cow. Braithwaite (1983) illustrated the dynamics of bone

mobilization and reconstitution during the whole cycle of lactation and gestation in ewes.

The application of blood biomarkers of bone accretion and resorption to ruminants in the

90s allowed several publications indirectly quantifying the shape of the dynamics of bone

accretion and resorption during lactation and gestation in lactating ruminantss and more

specifically cows, in a more continuous way. Relative dynamics of bone biomarkers of

accretion and resorption during lactation are quite different. Most studies observed, with

Holstein cows, a very transient decrease of plasma/serum concentrations of biomarker of

bone accretion, mostly osteocalcin, during the first and sometimes the second month of

lactation and a more or less steady plateau after (Liesegang et al., 2000, Iwama et al.,

2004, Liesegang et al., 2007, Taylor et al., 2009, Sato et al., 2011). Only, Holtenius et al.

(2005) and Ekelund et al. (2006) observed an important decrease after calving and a slow

increase all over lactation, which can be attributed to either a different breed, i.e. Swedish

Red and White, or maybe a different kit for OC analysis. At the contrary, plasma/serum

concentrations of biomarker of bone resorption (CTX) increased more or less sharply at the

beginning of the lactation, with a significant variability between studies, but always

decreased slowly and regularly after few months of lactation until next caving (Liesegang

et al., 2000, Iwama et al., 2004, Holtenius and Ekelund, 2005, Ekelund et al., 2006, Taylor

et al., 2009, Puggaard et al., 2014).

Even though blood biomarkers allow quantification of the shape of the dynamics of

bone accretion and resorption, they do not allow the quantification of the net flows of bone

mobilization and reconstitution. Taylor et al. (2009), measured with repeated

measurement of Ca input-output balance in cows that both daily flows of net mobilization

and reconstitution could represent between 10 and 30% of the daily flow of Ca intake in

cows producing 30 kg milk/d on average over 20 weeks of lactation. In the study of Taylor

et al. (2009), both input-output measurement during lactation and bone biopsies (ribs)

confirmed the occurrence of a net bone mobilization at the beginning of lactation, until 5

weeks of lactation with adapted dietary Ca supply, and a net reconstitution after. Direct

quantifications of bone mobilization and reconstitution are difficult to establish from
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studies consisting in analyzing bones. A first reason is that there is big variation in the

bone composition and its evolution during lactation according to the considered bone

(Beighle et al., 1993). A second reason is that Ca and P contents are often not very variable

when expressed in proportion of mineral mater because bone is constituted mainly of

hydroxyapatite (Jong, 1926). Despite this, a small decrease of ash Ca and P contents could

be observed during the first three months of lactation in cows (Beighle, 1999, Keene et al.,

2004). Ca and P densities in fresh bone, expressed in mg/cm3, are more variable but more

barely reported (Little, 1972). Beighle et al. (1999) observed that cortical bone Ca content

(ribs biopsy) could decrease of 13% between 0 and 2 months of lactation.

A variability of either the dynamics of bone accretion and resorption during lactation or

the bone status of the cows has been described according to the parity or the age of the cows

and their milk production. A concomitant increase in plasma/serum concentrations of bone

biomarkers of accretion and resorption has been observed in younger cows at the beginning

of their lactation (Iwama et al., 2004, Kurosaki et al., 2007, Taylor et al., 2008, Sato et al.,

2011, Sato et al., 2014), indicating a higher bone remodeling in those cows. However, no data

reported differences of the amplitude of bone mobilization at the beginnig of lactation with

age and parity. It has been shown also that the bone P content (Taylor et al., 2009), or bone

Ca content (Keene et al., 2004) can also be lower in primiparous than in second-lactation

cows, the effect depending on the considered bone. These results are coherent with the fact

that younger cows are still growing and that the mineral phase of their bone is not totally set

up (Bonjour et al., 2014). When cows get older, the results of Keene et al. (2004) illustrated

that bone Ca content (caudal vertebra) decreased with parity after the 2nd lactation. It has

also been observed that the amplitude of variation of serum concentration of biomarkers of

bone resorption (CTX) is higher in cows producing high quantity of milk (Liesegang et al.,

2000), which could means that those cow have higher amplitude of bone mobilization during

lactation.

Low dietary Ca and P content can induce higher bone resorption and likely more bone

mobilization. It has been observed that decreasing dietary Ca content, in a range of

variation between 1.0 and 0.5% DM of Ca, increased the blood concentration of biomarker

of bone resorption without effecting those of bone accretion (Moreira et al., 2009) and

decreased the body Ca retention (or increased the Ca mobilization, input - output balance
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measurement, Taylor et al., 2009). If the decreased dietary Ca content is applied during

the whole lactation, Taylor et al. (2009) observed that the Ca body retention remained

negative for a longer time at the beginning of lactation, this time varying between 2 weeks

and 3 months. The effects of decreasing dietary P content on bone mobilization has been

far more studied than those of decreasing dietary Ca content (Wu et al., 2001, Ekelund

et al., 2006, Moreira et al., 2009, Puggaard et al., 2011, Elizondo Salazar et al., 2013). In

lactating dairy cows, the bone mobilization dynamics seems to be affected when dietary P

content decreased below 0.4% DM. With dietary P content between 0.4 and 0.3% DM, it

has been observed a decrease in both P body retention (Wu et al., 2000) and bone contents

of either P or mineral matter (Wu et al., 2001). Similarly to Taylor et al. (2009) with a

dietary Ca restriction, Wu et al. (2000) observed that, when a decreased dietary P content

is applied during the whole lactation, (0.4 vs. 0.3% DM), the P body retention remained

negative for a longer time at the beginning of lactation, this time varying between 2 weeks

for a dietary P content of 0.4% DM and 8 weeks for a dietary P content of 0.3% DM. Few

studies highlighted an effect of the dietary P content of serum/plasma biomarker of bone

resorption or accretion if dietary P content remained above 0.3% DM. Only Puggaard et al.

(2014) reported an increase in blood biomarker of bone resorption (CTX) with decreasing P

dietary content but the P dietary content was decreased to very low values in this study

(0.23% DM). An effect of the DCAD was shown on OC concentration in middle lactation

cows, with a decrease of OC with lower DCAD (Boudon et al., 2016), but similar treatment

did not result into differences in early lactation (Liesegang et al., 2007).
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D) Milk Ca and P Contents

1 Organisation of the mammary epithelial cells and secretion

of Ca and P into milk

Milk production induces huge Ca and P flows into the mammary gland. To avoid toxicity,

the cytosol concentration of Ca must not exceed 10−5M (Horst et al., 1997). Ca is also far

more concentrated in milk than in cells or plasma. Consequently, the mammary epithelial

cells (MEC) insure the function of transfer of Ca from blood to milk with strong constraints

which are a strong contrary gradient of concentration and the necessity to keep cytosolic Ca

concentration under the toxicity threshold. MEC are less sensible to P excess as they face

important quantity of Pi for the energetic metabolism.

The way that Ca enters the MEC is actually not totally understood, even though recent

studies increased actual knowledge of this phenomenon. Two channels, TRPV5 and

TRPV6 (TRPV for Transient Receptor Potential Voltage) are suspected to be involved in

entrance of Ca into MEC (Lee et al., 2006, VanHouten and Wysolmerski, 2007). Ca cannot

be transported from basal to apical face of the MEC in its ionic form, because it would

exceed toxicity threshold of Ca concentration. Thus, Ca is either transported across the

MEC according to two distinct ways, via the Golgi apparatus and the endoplasmic

epithelium which was the first way of Ca transport in the MEC that have been described

(Horst et al., 1997), or associated to a Ca-binding protein, which has been more recently

described (Reinhardt et al., 2004). These ways of Ca transport across the MEC are

resumed in figure I.24. Considering the way of Ca transport via the Golgi apparatus and

the endoplasmic epithelium, Golgi cisterna has a higher Ca concentration, above 200 M,

than cytosol (Lee et al., 2006) and thus Ca is pumped inside by active transporters, SPCA1

and SPCA2 (Secretory Pathway Ca2+ ATPase, VanHouten et Wysolmerski, 2007). In the

Golgi, Ca starts to bind with other milk components, notably caseins and citrate. In the

endoplasmic reticulum, Ca is pumped by Ca-ATPase, like in Golgi apparatus, except that

the pump is SERCA2 (Sarco Endoplasmic reticulum Ca2+ ATPase). Ca crosses the cell

through the endoplasmic reticulum. At the basal face of the MEC, Ca returns to cytosol by

ITPR (Inositol 1,4,5-triphosphate receptors) (Neville, 2005). This way of Ca secretion was

discovered, suggesting that all Ca transport was totally concomitant with protein
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transport (Neville and Peaker, 1979), and leading to the idea that Ca content is

determined by protein content (Alais, 1984). The discover of the way of Ca transport by

Ca-binding protein questionned this idea. In that case, the considered binding proteins

are calbindins-D9K and D28K . Non-bonded calbindins to Ca are supposed to increase Ca

entry into MEC by TRPV6 (VanHouten and Wysolmerski, 2007). In the continuity with

the Golgi apparatus, Ca is secreted into the lumen via an exocytosis (Neville, 2005). The

second way of secretion into the lumen via a Ca-ATPase pump, the PMCA2bw (Plasma

Membrane Ca2+-ATPase) was later described (Reinhardt et al., 2004). About 60% of Ca is

secreted by PMCA2bw. Once Ca is secreted into milk, equilibrium between Ca and other

milk components, caseins in particular, sets up to determine the part of Ca that will be

soluble or colloidal, i.e. associated to casein (Malacarne et al., 2014).

Figure I.24: Ways of Ca secretion into milk by mammary epithelial cells as proposed by VanHouten et al.
(2007). After entering the MEC, Ca can be transported through MEC by Ca-binding protein in the cytosol or by
entering Golgi apparatus and exocytosis into milk. ITPR: Inositol 1,4,5-triphosphate receptors; PMCA: Plasma
Membrane Ca2+-ATPase; SERCA: Sarco Endoplasmic reticulum Ca2+ ATPase; SPCA: Secretory Pathway Ca2+

ATPase

Way of P secretion in MEC has been less investigated than Ca secretion, even though the

first description of the way of secretion for these both elements were concomitant (Neville

and Peaker, 1979, Shennan and Peaker, 2000). The ways of P transport across the MEC are
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resumed in figure I.25. P can be excreted as Pi or as P integrated in other milk components.

For P present in milk components, the way of secretion depends on the component and its

specific way of secretion in milk. For Pi secretion, only one way was described, via exocytosis,

but it is very likely that it is the only one because apical MEC membrane has been showed

to be impermeable to Pi (Neville and Peaker, 1979). Pi enters MEC on the basal face with

a Na+ co-transporter (Shillingford et al., 1996). Pi is then incorporated in cell metabolism.

It can be included in some cytosolic proteins that will be secreted in milk, or can be bonded

in ATP and entered Golgi apparatus. ATP is hydrolyzed during the formation of lactose

and part of resulting Pi remains in Golgi vesicles where it can either remain as Pi or be

integrated in proteins like caseins. In both case, P is then secreted via exocytosis in lumen

(Shennan and Peaker, 2000).

Figure I.25: Pi secretion into milk by mammary epithelial cells as proposed by Shennan and Peaker (2000)

2 Forms of Ca and P present in milk

Milk Ca and P contents are quite important in dairy cattle compared to other mammal

species (Table I.5). They are far more important in dairy cow’s milk than in woman’s milk.

These important differences are at the origin of the recommendation of the use of dairy
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products in westernized diets in human to insure sufficient supply of Ca (Ross et al., 2011).

Even though cow’s milk Ca and P contents were said to be constant (Alais, 1984), it has now

been demonstrated that some variations exist (Kaufmann and Hagemeister, 1987, Kume

et al., 1998, Poulsen et al., 2015, Toffanin et al., 2015b, Alvarez-Fuentes et al., 2016). Milk

Ca and P contents have been increasing for the last 50 years (Bijl et al., 2013). Ca and P

are present in milk in two forms, soluble or colloidal (Neville et al., 1994, Bijl et al., 2013).

Around 30-40% of milk Ca is present in the soluble form, and the remainder being bound

to organic molecules in the colloidal form (Kaufmann and Hagemeister, 1987, Flynn and

Cashman, 1997). Soluble Ca can be either ionic Ca2+ or Ca complexed with other non-

organic element like citrate or phosphate (Figure I.26, Neves et al., 2017). Milk content of

soluble Ca has been shown to be correlated to milk content of soluble citrate (Holt and Muir,

1979). The distribution of P is significantly different with about 45% of soluble P, mainly

inorganic, 30% of inorganic colloidal P and 25% organic colloidal P (Walstra, 1999).

Ca P Ca/P
Cow 1,250 950 1.32
Goat 1,350 1,000 1.35

Sheep 1,900 1,500 1.27
Woman 320 160 2.00
Donkey 807 638 1.26

Deer 2,330 1,640 1.42

Table I.5: Milk mineral composition (g/kg) in different species. Data from (Mahieu et al., 1977, Gallego et al.,
2006, Fantuz et al., 2012)

Figure I.26: Equilibrium of Ca forms in milk (Neville et al., 1995)

One role of caseins is to solubilize Ca, thanks to its colloidal form bounded to caseins,

to avoid the formation of insoluble precipitate (Farrell et al., 2006). A relationship between
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milk Ca content and casein contnthas has been observed when comparing species (Figure

I.27). However, variations in the ratio of milk contents of Ca to casein exist in dairy cows as

the equilibrium between Ca and casein is always adjusting to physico-chemical variations of

milk (Farrell et al., 2006). Repartition and equilibrium of P forms in milk were less studied

(Walstra, 1999). P is also linked to caseins as it participates in the elaboration and the

stability of casein micelles (Holt, 2004).

Figure I.27: Relation between Ca and casein concentrations in the milks of different species (Jenness, 1979).
1, Long-tailed bat; 2, little brown bat; 3, tree-tailed bat; 4, rabbit; 5, baboon, 6, human; 7, hamster; 8, rat; 9,
mouse; 10, guinea pig; 11, dog; 12; black bear; 13, grizzly bear; 14, polar bear; 15, fur seal; 16, elephant seal;
17, harp seal; 18, Indian elephant; 19, aardvark; 20, horse; 21, burro; 22, rhinoceros; 23, pig; 24, camel; 25,
reindeer; 26, giraffe; 27, cow; 28, buffalo; 29, goat, 30, sheep; 31, pygmy sperm whale; 32, fin whale; and 33,
blue whale.The best-fitting line had a slope of 8.7 mM/g casein and an intercept of 9.1 mM/kg milk.

3 Factors of variations of milk Ca and P contents

The number of studies focusing on the variations of milk Ca and P contents in dairy

cows is low, and most results are issued from studies focusing on a unique factor of variation

(Forar et al., 1982, Glantz et al., 2009). Few studies allowed a quantification of the relative

part of variation explained by several factors (Van Hulzen et al., 2009, Toffanin et al., 2015b)

and a confusion, between seasonality and stage of lactation, can be present in those latter

studies.

Among the factors that can affect milk Ca content, the most important is the genetics of
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the cow. It was first described through a high effect of breed (Cerbulis and Farrell,

1976, Hermansen et al., 2005, Chassaing et al., 2016). Hermansen et al. (2005) showed an

average Ca content of 1.23 g/kg for Jersey cows when it was 1.09 g/kg for Holstein cows.

Milk Ca content heritability varies from 0.10 (Toffanin et al., 2015b) to 0.57 in Holstein

cows (Van Hulzen et al., 2009), and 0.60 whatever the breed (Buitenhuis et al., 2015).

These differences may partially due to a less complex model for Buitenhuis et al. (2015)

and Toffanin et al. (2015) than for Van Hulzen et al. (2009), increasing the relative

importance of residual, and thus decreasing the estimation of the heritability (heritability

is defined as the ratio between standard deviation attributed to genetics and sums of

standard deviation of genetics and residuals). A second well described factor of variation of

the milk Ca content is the stage of lactation of cows, with a sharp decrease in early

lactation followed by a smooth increase during the rest of lactation (Hidiroglou and Proulx,

1982, Kaufmann and Hagemeister, 1987, Gaucheron, 2005). Other factors of variation

have been suspected. Primiparous cows seem to present higher milk Ca content than

multiparous cows but this has been observed only in early lactation (Kume and Tanabe,

1993). Several studies highlighted an effect of the season on milk Ca content (Poulsen

et al., 2015, Toffanin et al., 2015a, Chassaing et al., 2016). It is difficult to dissociate the

specific effect of the season, i.e. meteorological conditions or light for instance (Boudon

et al., 2016), from those related to the stage of lactation, and to the diet of the cows. The

nature of the forage, grazing vs. corn silage, is also suspected to affect milk Ca content,

with higher contents with diet based on corn silage. Hurtaud et al. (2014) observed higher

milk Ca content in winter with feeding system based on corn silage than with feeding

system favoring grass whereas no difference was observed in spring and autumn, when

both feeding systems used diets based on grazing. This effect was also suspected by

Poulsen et al. (2015).

Variations of milk P content have been less studied than those of Ca. A high correlation

between milk Ca and P contents, among cow’s milk has been illustrated (Poulsen et al.,

2015), with the idea of a domain of coexistence between Ca and P contents (Kaufmann and

Hagemeister, 1987). However, current knowledge of Ca and P secretion cannot confirm the

hypothesis that milk Ca and P contents are dependent on each other. As for Ca, a high effect

of the genetics of the cows has been demonstrated. Holstein cows have a milk P content of
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985 mg/L when Jerseys had a milk P content of 1,330 mg/L (Cerbulis and Farrell, 1976),

and a high heritability, 0.62 (Van Hulzen et al., 2009). Some studies, however, obtained

much lower heritability, under 0.15 (Toffanin et al., 2015b, Buitenhuis et al., 2015). This

difference may be due to differences in experimental design and models. Buitenhuis et al.

(2015) and Toffanin et al. (2015) included only effect of parity and stage of lactation when

Van Hulzen et al. (2009) included effect like season and sire, using only primiparous cows.

Those differences may explain the difference between the studies, the first ones explaining

less variability, and thus have higher residuals and lower heritability. The effect of the

stage of lactation on milk P content is unclear. Some studies demonstrated an effect on

milk P content similar to htat observed for Ca (Toffanin et al., 2015b), when others studies

did observe any significant of effect (Forar et al., 1982, Van Hulzen et al., 2009). It seems

that dietary content of P and Ca do no affect milk P content (Forar et al., 1982, Ferris et al.,

2010a). Only a meta-analysis (Alvarez-Fuentes et al., 2016) found an increase in milk P

content with lower dietary Ca content. Some studies also observed higher milk P content in

winter (Forar et al., 1982), when other studies observed higher contents in summer (Glantz

et al., 2009). Milk P content seems to be lower with high ambient temperature (Kamiya

et al., 2010).

4 A suspicion of a link between milk Ca content and bone

mobilization in case of low calcemia

As written previously in section A, it has been shown in mice that a low Ca intake

induces several responses in early lactation such as a higher PTHrP secretion, a lower

milk Ca to content ratio and a lower milk production measured by the evolution of pups

weight (VanHouten et al., 2004), suggesting that the mammary gland can both adapt milk

Ca content and induce bone mobilization to regulate calcemia. This response is mediated

by CaSR that are present on the basal face of MEC. Their activation depends on calcemia,

hypocalcemia leading to a lower activation of those receptors. Van Houten et al. (2004)

showed that activation of CaSR inhibits PTHrP synthesis and activates Ca transport into

milk. It was shown later that CaSR also participates in the regulation of water transport

into milk (Kovacs, 2016). However, no differences were found in the premature evolution of

mammary gland, thus this decrease in milk production did not seem to be due to difference
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of MEC proliferation (VanHouten et al., 2004).

A question remains on how these results could be extrapolated to dairy cows. It has been

shown in dairy cows milk a negative correlation between milk Ca content and milk PTHrP

concentration in the first week of lactation (Kocabagli et al., 1995), but this was contradicted

by other studies correlation over lactation (Law et al., 1991, Onda et al., 2006), suggesting

that the decrease in milk secretion of Ca is not a regulation response concomitant with that

of PTHrP secretion all over lactation, but maybe only during early lactation. However, the

conclusion cannot be firmly stated given that the mechanism of transfer of PTHrP into milk

is unknown and that a specific effect of the stage of lactation on milk contents of both Ca

and PTHrP is possible.
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The organism of lactating dairy cows faces important Ca and P flows due to milk secretion.

For that reason, most of the lactating dairy cows receive specific dietary supplementation

of Ca and P formulated by evaluating the daily input and output of Ca and P thanks to

models elaborating in published feeding systems. Current recommendations of those

feeding systems are to replace day-to-day cows’ losses, i.e. fecal and urinal excretions and

milk secretion by adequate dietary supply. However, it is likely that lactating cows develop

the ability to mobilize Ca and P from their bones at the beginning of their lactation and

that they restore their pools of Ca and P at the end of their lactation. Then, it could be

considered that it would be better to reason mineral supplementation at the scale of the

lactation, taking into account the cycles of bone mobilization and reconstitution during

lactation and gestation. To achieve this, a first step would be to dispose of methods

allowing the quantification of those cycles during long period of time on representative

numbers of cows.

Because it has been shown in mice that the mammary gland can, at the same time

decrease the amount of Ca exported in milk and increase the bone resorption in case of

hypocalcemia, the hypothesis of this PhD thesis is that milk Ca content could be a

biomarker of bone mobilization. Thus, the aim of this work was to study if milk Ca content

could reflect bone mobilization in dairy cows along lactation. As genetics is known be a

major determinant of milk Ca content, it is highly foreseeable that milk Ca content could

only use as a dynamic biomarker. Thus, the main question of this thesis was to
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determine if the dynamics of milk Ca content over lactation could allow

predicting those of biomarkers of bone resorption, or maybe a ratio between

resorption and accretion. Three sub-questions were considered.

The first sub-question was to determine if milk Ca content was variable in

dairy cows, when excluding the genetics effect, and to quantify the relative

importance of the factors of variation of milk Ca content. Thus, the first step of

this thesis was to characterize the non-genetics factors of variation of milk Ca content in

dairy cows. This characterization was realized using results from a large enquiry realized

in the 3 majors French regions of milk production, involving about 1,000 farms. The data

obtained from this allowed studying the non-genetic factors of variations of milk Ca

content at a large scale, and thus identifying factors leading to low variations of milk Ca

content. The existence of a variability of milk Ca content explained by factor of variation

other than those related to the breed and the genetics was a first condition allowing to

identifying milk Ca content as a biomarker of bone resorption. The analysis of the enquiry

was realized in collaboration with IDELE that allowed us the calculation of milk Ca

content from MIR spectra.

The second sub-question was to determine if a relationship could be identified

between dynamics of plasma biomarkers of bone accretion and resorption during

lactation and those of milk Ca content. Thus, the second step was an experimental work

consisting in measuring concomitantly both dynamics during lactation in various conditions

in dairy cows. The main factors of variation considered were the parity, the stage of lactation

and the individual. A first experiment was in the Méjusseaume farm (INRA, Brittany). It

consisted in measuring both dynamics in a herd of 33 Holstein cows with half primiparous

and half multiparous, all fed with a unique total mixed ration. A second experiment was

run at the experimental farm of Le Pin (INRA, Normandy). It consisted in measuring both

dynamics in a herd of 13 Holstein and 17 Normande cows fed with two feeding strategies,

with high or low energy density diets. Dynamics of bone accretion and resorption were

measured thanks to plasma biomarkers. These experiment were initially conceived for two

projects that were not directly related to my thesis.

The last sub-question was to determine if an enhanced bone mobilization in

early lactation by lower Ca intake and/or low DCAD would lead to a decrease in
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milk Ca content. It consisted in inducing an enhanced bone mobilization in 10 cows

thanks to either low dietary Ca content or both dietary Ca content and DCAD and to

compare dynamics of bone accretion and resorption and milk contents during lactation to

those of 5 control cows. A second question of this experiment was to determine how cows

replenish their bones after an enhanced bone mobilization at the beginning of lactation.

This experiment was designed specifically for my thesis and run at the experimental farm

of Méjusseaume. Bone mobilization was measured with two methods, plasma bone

biomarkers and cow’s mineral input-output balance along lactation.
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ABSTRACT

Milk is an important source of Ca in Western diets. 
Milk Ca is important for the cheesemaking process 
and could be a useful biomarker of Ca regulation in 
cows. The objective of this study was to identify and 
quantify nongenetic factors affecting the variation of 
Ca content in bovine milk. During the PhénoFinLait 
program, a survey was performed in 3 major areas 
of milk production in France. This survey consisted 
of collecting milk samples, together with information 
about herd management and cow nutrition, from 924 
commercial farms. More than 200,000 individual milk 
samples were collected, and Ca content was measured 
by mid-infrared spectroscopy. Each farm was surveyed 
several times during the year, and 3 to 6 milk samples 
were collected from each cow. An equation to predict 
milk Ca content from mid-infrared spectra was devel-
oped based on the Ca contents of 292 milk samples, 
and the milk Ca contents of the 200,000 samples were 
then predicted. Milk Ca content was lowest in Holstein 
cows, intermediate in Montbéliarde cows, and highest 
in Normande cows. For all 3 breeds, milk Ca decreased 
during the first month of lactation and increased after 
the fourth month of lactation, with the range between 
minimum and maximum values largest in Holsteins, 
intermediate in Montbéliardes, and smallest in Nor-
mandes. Milk Ca content also decreased with parity 
in all 3 breeds. By using multiple factorial analysis, 
6 major feeding strategies employed on French dairy 
farms were characterized based on the data from the 
survey. Calendar month and cow feeding strategy af-
fected milk Ca content, which dropped in the spring 
during grazing turnout and was lower when cows were 
fed fresh and conserved grass rather than corn silage. In 

conclusion, environmental factors induce variations in 
milk Ca content in addition to the genetics of the cows, 
which to date have been identified as a main factor of 
variation of milk Ca content in dairy cows. In several 
of the tested conditions, increases in milk production 
and in the amount of Ca daily secreted in milk were as-
sociated with a decrease in milk Ca content as though 
the mammary gland operated to limit the exportation 
of Ca when milk production rapidly increased. This 
result would suggest that milk Ca content could be a 
biomarker of Ca regulation in dairy cows.
Key words: dairy cow, calcium, milk

INTRODUCTION

Calcium is the major mineral contained in bovine 
milk, with a mean content of 1.25 g/kg (Alais, 1984). 
Bovine milk and dairy products are the main sources 
of Ca in the diets of many countries, especially West-
ern diets, and account for 75% of human Ca needs in 
the Netherlands (Flynn and Cashman, 1997). Milk Ca 
content is also an important determinant of milk co-
agulation and cheesemaking capability (Malacarne et 
al., 2014). However, large variations of milk Ca content 
exist around the cited average of 1.25 g/kg, with con-
tents ranging between 0.9 and 1.4 g/kg (van Hulzen 
et al., 2009; Hurtaud et al., 2014; Poulsen et al., 2015; 
Chassaing et al., 2016). A better quantification and un-
derstanding of milk Ca content variation is necessary 
to evaluate the consequences of these variations on the 
amount of Ca contained in milk in human diets or on 
cheese production process. It would also allow explora-
tion of the possibility of using milk Ca content as a 
biomarker of bone accretion and resorption in dairy 
cows.

Several studies showed that Ca secretion by mam-
mary glands could be dependent on Ca regulation in 
mammals, and more specifically in cows (Horst et al., 
1997; VanHouten et al., 2004). VanHouten et al. (2004) 
described in mice that a decrease in blood Ca, caused 
by decreasing diet Ca content, increased the expression 
and secretion of parathyroid hormone-related protein 
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(PTHrP) and decreased the secretion of Ca into milk, 
resulting in a 50% decrease in milk Ca content. These 
effects were mediated by the Ca-sensing receptor of 
the mammary epithelial cell. This suggests a possibil-
ity that milk Ca could be a biomarker of some events 
involved in Ca regulation in cows, such as postpartum 
hypocalcemia or bone accretion and resorption dynam-
ics during the lactation and gestation cycle. It is known 
that lactating cows undergo important cycles of bone 
resorption and accretion during lactation (Ekelund et 
al., 2006), but these cycles are difficult to quantify in 
large numbers of animals. The idea that milk Ca con-
tent could be a biomarker of these cycles would allow 
better understanding of, for instance, the consequences 
of mineral nutrition on those cycles or of cumulative 
unbalanced bone accretion and resorption during sev-
eral lactations on cow longevity.

Variations in milk Ca content have been clearly re-
lated to the genetics of the cows, through systematic 
breed differences or high heritability within a breed 
(Hidiroglou and Proulx, 1982; van Hulzen et al., 2009; 
Buitenhuis et al., 2015; Toffanin et al., 2015b). The 
relationship between milk Ca content and cow diet, 
its evolution during the year, or its relationships with 
other effects, such as the stage of lactation or seasonal-
ity, have been less studied and have even been consid-
ered to be negligible compared with the relationship 
between milk Ca content and the genetics of the cows 
(Alais, 1984; Hermansen et al., 2005). Several studies 
showed an effect of lactation and seasonality on milk Ca 
content, but with contrasting results (Gaucheron, 2005; 
van Hulzen et al., 2009; Toffanin et al., 2015b; Chassa-
ing et al., 2016). van Hulzen et al. (2009) described an 
increase in milk Ca content, of 0.578 mg/kg per day of 
lactation, throughout lactation, whereas Toffanin et al. 
(2015b) described a decrease of more than 100 mg/kg 
during d 5 to 35 and 36 to 65 of lactation, followed by 
a similar increase until the end of lactation. A possible 
reason for the discrepancies between these studies is the 
significant difficulty in dissociating the effects of the 
stage of lactation, the cows’ diet, and the season.

The PhénoFinLait program (Gelé et al., 2014) con-
sisted of surveying 945 farms between November 2009 
and October 2010. The aim of our study was to use the 
samples and the data collected during this program to 
better quantify and characterize the nongenetic factors 
affecting variations of Ca content in bovine milk. Our 
assumption was that the high numbers of participating 
farms and the resulting diversity of milk production 
systems would allow for the dissociation and character-
ization of the effects of the stage of lactation, diet, and 
season to allow a better understanding of variations in 
Ca content in bovine milk.

MATERIALS AND METHODS

Study Design

The data used in our study were collected through 
the PhénoFinLait program, which consisted of a survey 
performed in the major areas of milk production in 
France (i.e., Alsace, Brittany, Franche-Comté, Nor-
mandy, and Pays de Loire). Between November 2009 
and October 2010, 945 farms were surveyed. During 
this period, several visits (between 2 and 8, averaging 
5) were performed at each farm to follow the evolution 
of the herd and cow diets over the course of a complete 
year. During each visit, interviewers collected data 
about the dairy cows (breed, parity, stage of lactation, 
stage of gestation, age of first calving, milk production) 
and their diet (description of the composition of the 
diets by using 54 variables). They also collected indi-
vidual milk samples, and mid-infrared (MIR) spectra 
of the samples of each cow were measured in the labora-
tory. The survey resulted in 252,519 milk spectra, 9,180 
frozen milk samples, 4,825 visits, and 63,818 dairy 
cows divided among the 3 main breeds in France (i.e., 
Holstein, Montbéliarde, and Normande) spread over 5 
regions. The initial aim of the project was to character-
ize the effect of genomics and feeding on milk fatty acid 
and protein composition across the diversity of French 
dairy farms for 3 species (i.e., cattle, sheep, and goats; 
Sanchez et al., 2016). The PhénoFinLait program has 
been fully described by Gelé et al. (2014).

Prediction of Milk Calcium Content  

Using MIR Spectra

A prediction equation specific to our study was de-
veloped to predict milk Ca content from MIR spectra. 
To achieve this, the milk Ca contents of 292 frozen milk 
samples taken from the bank of samples of the Phéno-
FinLait program were analyzed by atomic absorption 
spectrometry after mineralization and dilution of the 
samples with nitric acid (AFNOR NF ISO 8070, 2007). 
Those samples were chosen to maximize the diversity 
of the potential factors affecting variations in Ca con-
tent (i.e., parity, lactation stage, breed, localization, 
cow diet, milk yield, and protein yield). The samples 
were split into 2 groups: the first group contained 205 
samples for calibrating the prediction equation, whereas 
the second group contained 87 samples used as external 
data to validate the equation.

Characterization of Feeding Strategies

For each visit to each farm, the mean diet was esti-
mated by averaging the proportions of each feed in the 
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diet. To characterize the effect of seasonality, the feed-
ing strategies of the farms were characterized over 3 pe-
riods: the winter period, from November 15 to the end 
of March; early summer period, from April 1 to June 
15; and late summer period, from June 16 to October 
15. Only farms that were investigated every period were 
used to characterize feeding strategies. A multiple fac-
tor analysis (MFA) was therefore performed to charac-
terize feeding strategies (Escofier and Pagès, 1994) with 
R (R Development Core Team, 2013) and the package 
FactoMineR. An MFA is a generalization of principal 
component analysis for the comparison of multiple data 
tables (Abdi et al., 2013). For our study, each table was 
a group of variables describing the diet for a period 
and each individual was a farm. There were 3 groups 
for the analysis, 1 per period, each with the same 54 
variables, with each variable being the proportion of 
a feed in the diet. As all variables had the same unit, 
the data were not reduced. An ascending hierarchical 
classification was then performed on the factor scores, 
using Ward’s criterion to select the number of clusters. 
The best number of clusters was given by a high ratio 
of the loss of inertia between n + 1 clusters and n clus-
ters. To confirm the results, the pseudo-T2 test was also 
used to select the final clusters (Nakache and Confais, 
2004). Another restriction was to produce several clus-
ters between 5 and 15. The hypothesis was that fewer 
than 5 clusters was too few to represent the diversity 
of feeding strategies and that more than 15 clusters 
was too many to be characterized and differentiated. 
A consolidation was performed based on the results of 
hierarchical classification using k-means clustering and 
virtual centers of clusters as initial individuals.

For farms that were only represented in 2 periods, 
missing factor scores for the third period were input 
with R and the package missMDA, using an iterative 
MFA (Husson and Josse, 2013). Those farms were used 
as supplementary individuals in the MFA, so they 
were not included in the characterization of feeding 
strategies, but it was possible to use those data for 
the analysis of Ca content. Supplementary farms (i.e., 
illustrative individuals) were affected by the nearest 
feeding strategy after the classification and the consoli-
dation and before analyses of the Ca content variations. 
The data were checked to ensure that feeding strategy 
characteristics were not affected by the implemented 
data. Farms that were investigated for only 1 period 
were removed from all analyses.

Statistical Analysis

The prediction of milk Ca contents from MIR spectra 
was performed with a partial least square regression 

using the PLS procedure in SAS (SAS Institute, 2013) 
with the data of the calibration group (Ferrand-Calmels 
et al., 2014). The selection of the number of latent 
variables was performed using the root mean squared 
error of prediction with the objective of achieving the 
smallest possible value. This method has already been 
used several times to predict different minerals in milk 
(Soyeurt et al., 2009; Toffanin et al., 2015a). Several 
statistical parameters of the prediction regression were 
used to estimate the accuracy of the prediction: the 
coefficient of determination (R2cv), the validation co-
efficient of determination (R2v), the root mean squared 
error (RMSE), and the ratio of the standard error of 
cross-validation to standard deviation.

A mixed-model ANOVA was performed using PROC 
MIXED in SAS to characterize the factors affecting 
variations in Ca content. The selected model, which 
was the same for the 3 breeds, was

Yijklm = µ + Month of Lactationi + Parityj   

+ Calendar Monthk + Feeding Strategyl  

+ (Calendar Month × Feeding Strategy)kl  

+ Herdm + εijklm,

where Yijklm was a dependent variable of a cow in the 
herd m, with parity j during month of lactation i, dur-
ing the calendar month k, in the feeding strategy l, and 
εijklm was the residual error. With the exception of the 
herd factor, which was a random factor, all other fac-
tors were fixed. For each breed, some feeding strategies 
were removed from the analyses, as they did not have 
enough data and were too unbalanced throughout the 
year. Data from d 1 to 8 of lactation were removed 
to avoid the effect of colostrum in the analysis. Data 
after d 360 of lactation were also removed. Parities of 
5 or greater were regrouped. Cows with only 1 milk 
sample were removed from the analyses. The analy-
ses were performed independently for each breed. The 
same model was used to characterize the effects of the 
same factors on daily milk production, protein content, 
amount of Ca secreted daily in milk (i.e., Ca content × 
daily milk production), and the ratio of Ca content to 
protein content.

Because of the large amount of data gathered in the 
data basis, P-values could easily be low (<0.001). Thus, 
the effect size (ES) of each simple fixed factor included 
in the ANOVA model for all explicated variables was 
also estimated according to the formula given by Cohen 
(1988):

 ES =
σ
σ
m ,  
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where σ was the standard deviation of the overall breed 
for the considered character, and σm was the standard 
deviation due to the considered effect, and defined as

 σm i ii

I
p y y= −( )

=∑
2

1
,  

where I was the number of levels of the considered fac-
tor m, pi the proportion of the total population charac-
terized with the ith level of factor m, yi the mean for 
the i-th level and y  the corrected mean of overall popu-
lation. The ES of the interaction between calendar 
month and feeding strategy and of the combined effects 
of feeding strategy, calendar month, and the interaction 
between both were also estimated according to the 
modifications of the formulae suggested by Cohen 
(1988). The combined effects of feeding strategy, calen-
dar month, and the interaction between those factors 
are described as combined effects in the following sec-
tions.

RESULTS

Prediction of Milk Calcium Content  

Using MIR Spectra

The partial least squares regression resulted in the 
use of 11 partial least squares. The quality of predic-
tion was good, with high coefficients of determination 
for both calibration and validation. It resulted in an 
R2cv of 0.75 for the calibration and an R²v of 0.80 
for the validation (Table 1). The slope of the regres-
sion between the measured and predicted values was 
close to 1 in both cases, with values between 0.96 and 
1.00. The RMSE was 56.0 for the calibration and 44.5 
for the validation. The ratio of the standard error 
of cross-validation to standard deviation was always 
above 2.00, meaning that the accuracy of prediction 
was good.

Effects of Stage of Lactation and Parity 

The numbers of data points involved in the mixed 
model we used were 75,120, 59,595, and 77,443 for the 
Holstein, Montbéliarde, and Normande breeds, respec-
tively. The 3 breeds have very similar distributions 
of dates of calving during the survey period, with a 
maximum frequency of calving between September and 
January (Figure 1). The difference in the mean stages 
of lactation at each visit between the 3 breeds only 
exceeded 15 d in November, with a difference of 25 d 
between Holsteins and Montbéliardes for that month 
(Figure 2). For the 3 breeds, the mean stage of lacta-
tion increased between January and July, from d 110 
to 205 of lactation. The correlation between stage of 
lactation (in days) and visit calendar date was low (R2 
<0.14 within every breed), and these variables were 
considered as independent. This was also illustrated by 
the low differences between minimum and maximum 
average stages of lactation between calendar months 
(less than 100 d, Figure 2); therefore, both variables 
were included in the mixed models.

Within each breed, Ca content was affected by the 
stage of lactation (ES = 0.33 for Holstein, 0.35 for Mont-
béliarde, and 0.21 for Normande; P < 0.0001; Figure 3), 
with an important range of variation between months 
of lactation. For the 3 breeds, Ca content decreased 
between the first and second months of lactation, with 
the greatest decrease, 80.3 ± 1.8 mg/kg (−6.6% of the 
mean of the first month), in Ca content in the Mont-
béliardes and the smallest decrease, 39.3 ± 1.7 mg/kg 
(−5.7% of the mean of first month), in the Normandes. 
The lowest Ca contents were observed between mo 2 
and 4 of lactation; Ca content then increased from mo 
5 of lactation until the end of lactation, reaching values 
as high as or higher than those observed during mo 1 
of lactation. The range of variation of Ca content in 
milk during lactation was greater for Holsteins (110.7 
± 2.6 mg/kg between mo 3 and 12 of lactation; i.e., 9% 
variation of Holstein milk Ca content mean) than for 

Table 1. Results of Ca content (mg/kg) prediction from mid-infrared spectra with partial least squares 
regression

Item 1st group (calibration) 2nd group (validation)

N 205 87
Mean (mg/kg) 1,235.2 1,239.1
SD 112.5 99.4
Predicted mean (mg/kg) 1,235.2 1,231.0
R2 0.75 0.80
Root mean squared error 56.0 45.5
RPD1 2.00 2.22
1RPD = ratio of the standard error of cross-validation to standard deviation.

C). RESULTS

70



4558 GAIGNON ET AL.

Journal of Dairy Science Vol. 101 No. 5, 2018

the 2 other breeds (66.6 ± 2.9 mg/kg, 5.1% variation 
of breed mean, between mo 3 and 12 of lactation for 
Normandes; 98.9 ± 1.7 mg/kg, 8.0% variation of breed 
mean, between mo 1 and 4 of lactation for Montbé-
liardes). In contrast to milk Ca content, the amount of 
Ca secreted daily in milk decreased throughout lacta-

tion regardless of the breed (ES = 0.47 for Holstein, 
0.56 for Montbéliarde, and 0.59 for Normande; Figure 
3B) and was always highest in Holsteins and lowest in 
Normandes, with intermediate values in Montbéliardes. 
These results were linked to milk production, which 
was highest in Holsteins, with a peak at 33.7 kg/d, 
whereas Normandes and Montbéliardes had maximum 
milk productions of 27.3 and 30.2 kg/d, respectively. 
For Holsteins and Montbéliardes, milk production 
increased between mo 1 and 2 of lactation and then 
decreased throughout the rest of the lactation period, 
whereas milk production decreased throughout the 
entire lactation period in Normandes (ES = 0.54 for 
Holstein, 0.59 for Montbéliarde, 0.62 for Normande; 
Figure 3A).

The milk Ca content decreased with parity for all 
breeds (ES = 0.10 for Holstein and Montbéliarde, 0.16 
for Normande; P < 0.0001; Table 2). The difference 
between lactation 1 and ≥5 was approximately 30 mg/
kg, which represents 2.3 to 2.4% of the average milk Ca 
content, depending on the breed. In Normandes, the 
maximum difference between lactation 1 and ≥5 was 
36.8 ± 1.3 mg/kg, which represents 2.8% of the average 
milk Ca content. Milk production and the amount of 
Ca secreted daily in milk increased between parities, 
with the sharpest increase occurring between parities 
1 and 2 for the 3 breeds (data not shown). In contrast, 
the decrease in milk Ca content was not consistently 
greater during this period.

Characterization of Feeding Strategies

Of the 945 farms involved in the survey, 627 were vis-
ited at least once during each of the 3 defined periods 
and then retained in the analysis used to characterize 
the feeding strategies. Two hundred forty-seven farms 
were visited at least once during 2 of the 3 defined pe-
riods and were used as supplementary individuals after 
missing factors had been assessed, whereas 40 farms 
were removed completely because they were visited 
during only 1 of the 3 defined periods. Some variables 
and, more specifically, some feed proportions in the diet 
were removed for specific periods because they did not 
vary between farms and were null for those periods.

The first 3 dimensions of the MFA, respectively, ex-
plained 50.6, 13.0, and 8.6% of the inertia. After the 10th 
dimension, each factorial axis explained less than 1% of 
the inertia. The first dimension contrasted corn silage 
for the 3 periods with hay during the winter period and 
pasture during the early and late summer periods. The 
second dimension contrasted mixed hay in the winter 
period and grass pasture in the early summer period 
with winter corn silage and mixed pasture in the early 
summer period. The third dimension contrasted 2 kinds 

Figure 1. Frequency distribution of the dates of calving during the 
survey period for Holstein (dashed line), Montbéliarde (solid line), and 
Normande (dotted line). Color version available online.

Figure 2. Evolution of the mean stage of lactation of cows during 
the visits for Holstein (dashed line), Montbéliarde (solid line), and 
Normande (dotted line). Color version available online.
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of hay in the winter period, field-cured and barn-dried. 
The construction of the principal components was 
mostly affected by the variables corresponding to the 
proportions of forage included in the diet. One reason 
for this was that the data were not scaled to the unit 
and forages were the components of the diet with the 
highest proportion. Corn silage was important in the 
construction of principal components for the 3 periods, 
but hay was only important for the winter period and 
pasture for the early and late summer periods. Most of 
the proportions of feed that were less than 1% of the 
diets (as feed basis) did not contribute to the construc-
tion of principal components.

Figure 3. Effect of the stage of lactation, within each breed, on (A) milk Ca content, (B) milk production, and (C) amount of Ca secreted 
daily in milk for Holstein (■), Montbéliarde (●), and Normande (▲). Letters (a–l) indicate the results of comparison between the stages of lacta-
tion within a breed; different letters indicate significant differences in Ca content (P < 0.001). Color version available online.

Table 2. Effect of parity (P < 0.0001) on milk Ca content (mg/kg) 
for each breed

Parity Holstein Montbéliarde Normande

1 1,230.9 ± 1.7e 1,243.6 ± 2.3d 1,316.1 ± 1.6d

2 1,223.6 ± 1.7d 1,230.8 ± 2.4c 1,316.0 ± 1.7d

3 1,216.8 ± 1.8c 1,224.6 ± 2.4b 1,293.4 ± 1.7c

4 1,211.0 ± 1.9b 1,224.5 ± 2.5b 1,284.6 ± 1.8b

5+ 1,203.5 ± 2.0a 1,221.4 ± 2.4a 1,279.3 ± 1.8a

a–eLetters indicate the results of comparison between parities within a 
breed. Different letters indicate significant differences in Ca content 
(P < 0.001).
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Classification was performed on the first 40 principal 
components of the MFA, corresponding to more than 
99% of the initial inertia. Classification resulted in 6 
feeding strategies. The ratio of relative loss of inertia 
for n + 1 clusters on n clusters was the highest for 6 
clusters. At the same time, the pseudo-T2 test showed 
an increase of 50% from 6 to 7 feeding strategies, the 
highest possible in our range of restriction. Thus, there 
was a local minimum with a large increase afterward, 
which confirmed the first results for the number of feed-
ing strategies. They were mostly distinguished by the 
evolution of forage in the diet throughout the 3 periods. 
Descriptions of the feeding strategies over the survey 
period are summarized in Figure 4.

Strategies were named according to the relative im-
portance of the main forages and the distribution of 
their contribution to the diet during the year or accord-
ing to specific use of forages during a given period. The 
strategies “grazing and FC hay” and “grazing and BD 
hay” represented feed systems based on grazed pasture 
during the early and late summer periods and on field-
cured (FC) or barn-dried (BD) hay during the winter 
period. More than 90% of farms described by these 
strategies were in the northeastern part of France, more 
precisely in Franche-Comté, with almost exclusively 
Montbéliardes. In this area, most dairy farms produce 
Protected Designation of Origin cheeses with specifica-
tions prohibiting corn silage. Additionally, more than 
75% of all organic farms involved in the survey were 
described by these 2 feeding strategies. The proportion 
of organic farms that used these 2 strategies was 15%, 
whereas for all the farms, it was only approximately 5%. 
The strategy “maximum grazing” consisted of a maxi-
mal use of grazing in early and late summer periods 
followed by diets based on corn silage during the winter 
period. This strategy is under-represented in Franche-
Comté, but at least 4,000 milk samples were classified 
in this strategy for each of the 3 breeds. “Maximum 
grazing” was the counterpart of the 2 previous feeding 
strategies for other regions of France, with corn silage 
instead of hay in winter. The strategies “grazing and FC 
hay,” “grazing and BD hay,” and “maximum grazing” 
included a large proportion of grazing as forage in the 
summer periods, but 80% of farms in the “grazing and 
FC hay” and “grazing and BD” hay strategies were in 
Franche-Comté whereas 89% of farms in the “maximum 
grazing” were in western regions. The strategy grazing 
and corn silage was based on corn silage, but with lower 
contributions from pasture than for the maximum graz-
ing strategy (28 and 61% of pasture in late summer 
period for strategies “grazing and corn silage” and 
“maximum grazing,” respectively). The strategy “graz-
ing and corn silage” was more represented in north-

western France, but this strategy was well represented 
in each breed. The strategy “corn silage” was based on 
this forage for all periods. It was highly represented 
in the extreme northeast of France, in Alsace, where 
at least 65% of farms were classified in this strategy, 
even though this strategy was represented in all regions 
and was well represented in each breed. A gradient in 
the diet compositions, from pasture-based diets to corn 
silage-based diets in the early and late summer periods, 
was discernable for the 3 strategies “maximum graz-
ing,” “grazing and corn silage,” and “corn silage.” The 
strategy “grazed temporary pasture” was based on non-
permanent pasture during the early and late summer 
periods and on corn silage and a substantial amount 
of grass silage in the winter. It was associated with a 
use of temporary pasture, which was over-represented 
in western regions of France (21% of farms in those 
regions characterized by the strategy versus 6% on av-
erage for all studied regions). It was under-represented 
in Montbéliarde cows, with only 0.71% of the samples 
collected from Montbéliarde cows classified in this 
strategy (Table 3).

Effect of Feeding Strategy and Calendar Month  

on Milk Calcium Content

For the mixed-model analysis within breed, under-
represented feeding strategies (fewer than 2,000 milk 
samples, Table 3) were removed. Thus, the strategies 
“grazing and FC hay” and “grazing and BD hay” were 
not included for Holsteins and Normandes, and the 
strategy “grazed temporary pasture” was not included 
for Montbéliardes. Feeding strategy, calendar month, 
and their interaction clearly affected milk Ca content 
(P < 0.0001; Figure 5), but, more generally, all effects 
included in the mixed model were highly significant (P 
< 0.0001; Table 2, Figure 3) for every predicted vari-
able. Feeding strategy had a higher P-value in Holsteins 
(ES = 0.05; P = 0.0012). P-values were only given if 
they were higher than 0.0001, but ES were given be-
cause they brought information about the variability 
due to each effect. For the 3 breeds, model milk Ca con-
tent estimations were more accurate between December 
and July with low mean standard errors, whereas at the 
beginning and the end of the investigation the mean 
standard errors were higher due to smaller amounts 
of data. For instance, the mean standard error of the 
mean milk Ca content for all the feeding strategies was 
9.07 and 10.18 mg/kg for Holsteins in August and Sep-
tember, respectively, whereas it did not exceed 6 mg/
kg for the other months. The results from August and 
September will be less discussed, as the adjustment of 
the models was not as good as for the other calendar 
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months. For each breed, the differences in the mean 
stages of lactation between the feeding strategies and 
within each calendar month were low (data not shown).

For the 3 breeds, Ca content clearly decreased between 
March and May, regardless of feeding strategy, and 
started increasing from July onwards (ES of calendar 

Figure 4. Evolution of the mean diet during the survey period for the 6 feeding strategies (gray/purple = feed concentrate and minerals; 
black/dark green = grass silage; white = corn silage; gray with black stripes/yellow = hay; black with white stripes/light green = grass; white 
with black stripes/gray = oil meal and oleaginous seeds). FC = field-cured; BD = barn-dried. Color version available online.
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month = 0.24 for Holstein and Montbéliarde, 0.16 for 
Normande; Figure 5). The period between March and 
May corresponded to pasture turn-out for all feeding 
strategies (Figure 4), whereas the proportion of grazed 
pasture started to decline after July for all strategies 
except those combining grazing and hay (“grazing and 
FC hay” and “grazing and BD hay”).

For Holsteins, milk Ca content in the winter (i.e., 
mainly January and February) was higher with the 
strategy “grazed temporary pasture” compared with 
the other strategies, whereas in the summer (i.e., in 
June and July) it was higher with the strategy “corn si-
lage” compared with the other strategies (ES of feeding 
strategy = 0.05; Figure 5). The drop in Ca content be-
tween March and June was higher for strategies based 
on higher proportions of pasture. The largest decrease 
was for “maximum grazing,” with a decrease of 86.1 ± 
5.3 mg/kg (−6.9% of the mean of the feeding strategy 
in March) over this period, whereas “grazed temporary 
pasture” showed a decrease of only 22.7 ± 2.4 mg/kg 
(−1.9%; ES of combined effects = 0.25).

For Montbéliardes, the strategies “grazing and FC 
hay” and “grazing and BD hay” resulted in lower milk 
Ca content from November to April compared with 
the 3 other strategies (i.e., “corn silage,” “grazing and 
corn silage,” and “maximum grazing”). The difference 
between these 2 specific feeding strategies and the oth-
ers was approximately 50 mg/kg (4.1% of the breed 
mean) for this period. In winter, these 2 strategies were 
based on hay, whereas the 3 other feeding strategies 
were based on corn silage (ES of feeding strategy = 
0.16; Figure 4). The decrease between the winter period 
and the early summer period was less important for the 
strategies “grazing and FC hay” and “grazing and BD 
hay” than for the other strategies (ES of interaction = 
0.13, combined effects = 0.31; Figure 5). After turn-out 
to pasture, in April, these 2 strategies were not different 
from the others. Between April and June, higher values 
were obtained for strategies based on a higher propor-
tion of corn silage (“grazing and corn silage” and “corn 
silage”) rather than grazed pasture (“grazing and BD 
hay,” “grazing and FC hay,” and “maximum grazing”).

For Normandes, differences between feeding strate-
gies were less important than for the other 2 breeds 
(ES = 0.05 for feeding strategy and interaction, ES = 
0.18 for combined effects). Only the strategy “grazed 
temporary pasture” resulted in lower milk Ca content 
from November to June compared with other strate-
gies. Differences between the 3 other strategies were 
rarely more than 30 mg/kg (2% of breed mean) within 
a calendar month and were rarely significant, except 
during the diet transition in March and April. For 
Holsteins and Montbéliardes, higher Ca content was 
obtained with a higher proportion of corn silage rather 
than pasture, and these effects were greater for Holstein 
and Montbéliarde than for Normande.

Effect of Feeding Strategy and Calendar Month  

on Milk Production and Amount of Calcium  

Secreted Daily in Milk

For Holsteins, milk production increased from No-
vember to April, regardless of feeding strategy, and 
then started decreasing until August (ES of calendar 
month = 0.13; Figure 6A). Milk production was higher 
with the feeding strategy “corn silage” from December 
to July, except for April, and was lower with the feeding 
strategy “maximum grazing” (ES of feeding strategy = 
0.15, interaction = 0.05, and combined effects = 0.20). 
The higher the proportion of corn silage in the diet 
was, the higher the milk production. The amount of 
Ca secreted daily in milk increased from November to 
April, decreased until August, and then increased as the 
proportion of corn silage in the diet increased (Figure 
6B). However, the relative increase in the amount of Ca 
secreted daily in milk between January and April was 
less important than the increase in milk production. 
For instance, for the strategy “maximum grazing,” milk 
production showed an increase of 12.3%, whereas the 
amount of Ca secreted daily in milk showed an increase 
of 7%, which was concomitant with an important drop 
in milk Ca content. The same trends were observed for 
the other strategies but with lower amplitudes. Similar 
trends were also observed for Montbéliardes and Nor-
mandes (data not shown; ES of combined effects = 0.24 
for both breeds).

Effect of Feeding Strategies on Milk Protein Content 

and Ca Content-to-Protein Content Ratio 

Milk protein content was significantly affected by the 
feeding strategy, but the differences did not exceed 1 
g/kg in Holstein cows in a given month (ES of feeding 
strategy = 0.03; Figure 7). For Montbéliardes and Nor-
mandes, the differences between feeding strategies in a 
given month exceeded 1 g/kg only in August, Septem-

Table 3. Distribution of milk samples among breeds and feeding 
strategies

Feeding strategy

Breed

Holstein Montbéliarde Normande

Grazing and field-cured hay 1,529 23,042 1,270
Grazing and barn-dried hay 387 14,363 1,674
Maximum grazing 9,857 4,318 22,443
Grazing and corn silage 30,592 7,443 40,251
Corn silage 27,538 10,429 7,496
Grazed temporary pasture 7,409 430 7,253
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Figure 5. Effect of feeding strategy and calendar month on milk Ca content for the 3 breeds. Letters (a–d) represent each feeding strategy 
over a side-by-side comparison within a month (P < 0.0001): grazing and field-cured hay (◇), grazing barn-dried hay (□), maximum grazing 
(■), grazing and corn silage (▲), corn silage (●), grazed temporary pasture (+). Color version available online.
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ber, and November, when estimations were less accu-
rate (data not shown; ES of feeding strategy = 0.08 for 
Normande and 0.09 for Montbéliarde). Protein content 
decreased from November to July and then increased 
until the end of the survey period. The ratio of Ca 
content to protein content was clearly affected by the 
calendar month, with variations greater than 2 mg/g 
between months (ES of calendar month = 0.18 for Hol-
stein, 0.24 for Montbéliarde, and 0.20 for Normande). 
In Holsteins, it increased slightly between December 
and March and decreased sharply between March and 
April due to the Ca content in milk. After April, the 
ratio started decreasing again until July, when protein 
content was lowest for every feeding strategy.

The feeding strategy always affected the dynamics of 
the ratio of milk Ca content to protein content and of 
the milk protein content for the 3 breeds (ES for com-
bined effect = 0.19 for Holstein, 0.32 for Montbéliarde, 
0.22 for Normande; Figure 7 for Holsteins, data not 
shown for Montbéliardes and Normandes). For Nor-
mandes, “maximum grazing” had the lowest protein 

content for the majority of the survey period, lead-
ing to the highest ratio of milk Ca content to protein 
content compared with the other feeding strategies;
however, variations due to calendar month were still 
more important than those due to feeding strategy. 
For Montbéliardes, the trends were the same as they 
were for Holsteins, but the variation range was greater, 
between 35.2 and 40.5 mg/g (14% of variation of breed 
mean) from December to July. “Grazing and BD hay” 
and “grazing and FC hay” had lower ratios in winter 
than the other feeding strategies due to lower milk Ca 
content, with a difference of at least 1 mg/g for that 
season.

DISCUSSION

Quality of MIR Prediction and Relevance  

of the PhénoFinLait Program 

The quality of prediction of the Ca content in milk 
was similar to those that were performed previously 

Figure 6. Effect of calendar month and feeding strategy in Holstein on (A) amount of Ca secreted in milk and (B) milk production. Letters 
(a–d) represent each feeding strategy over a side-by-side comparison within a month (P < 0.0001): maximum grazing (■), grazing and corn 
silage (▲), corn silage (●), grazed temporary pasture (+). Color version available online.
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(Soyeurt et al., 2009; Toffanin et al., 2015a). The mean 
milk Ca content we observed in this study (i.e., 1,230 
mg/kg) was in the same order of magnitude as those 
obtained by Soyeurt et al. (2009) and Toffanin et al. 
(2015a) in the databases they used to develop MIR 
prediction equations. The R2cv we obtained was similar 
to that of Toffanin et al. (2015a; 0.75), but was lower 
than that obtained by Soyeurt et al. (2009; 0.97). The 
better R2cv of Soyeurt et al. (2009) is likely linked with 
their validation data that were split into 2 distinct and 
extreme groups, with a range of approximately 400 
mg/kg without data. This should have increased the 
R2cv of the regression with data that were not normally 
distributed, according to the hypothesis of the general-
ized linear model; RMSE was not reported by Soyeurt 
et al. (2009). Toffanin et al. (2015a) had an RMSE 
of approximately 85, depending on the software used, 
whereas ours did not exceed 56. The large number of 
samples used in our study, 292 vs. 203 for Toffanin et al. 
(2015a) and 87 for Soyeurt et al. (2009), did not seem 
to increase the quality of prediction but was necessary 
to obtain a large panel for the source of variability in 
milk Ca content. It may have increased the inference in 
the prediction equation.

The PhénoFinLait program constituted a very good 
opportunity to study nongenetic factors affecting varia-
tions of Ca content in milk. Compared with previously 

published studies that aimed to characterize the vari-
ability of milk Ca content (van Hulzen et al., 2009; 
Poulsen et al., 2015; Chassaing et al., 2016), our study 
had the disadvantage of using MIR predictions of milk 
Ca content instead of direct measurements, as in Tof-
fanin et al. (2015b), but had the advantage of relying on 
individual milk sampling, several times during the year, 
from a large number of cows and with a high diversity 
of diets with relatively well-described compositions. 
van Hulzen et al. (2009) and Toffanin et al. (2015b) 
both worked on individual samples of milk, but their 
studies did not involve more than 2,500 cows, and each 
cow was only sampled once per study. In contrast, the 
PhénoFinLait program involved over 50,000 cows with 
several samples during the same lactation. Toffanin et 
al. (2015b) did not give any information about cow 
diet, and Van Hulzen et al. (2009) had only 1 diet for 
all cows in the study. van Hulzen et al. (2009) only had 
1 sampling date, whereas the sampling lasted almost 
1 yr for Toffanin et al. (2015b), although no effect of 
season was included in the latter study. Only Chassaing 
et al. (2016) included the effect of seasonality, with 5 
periods of sampling, and included diet, but it was less 
well described than in PhénoFinLait. However, that 
study was done on tank milk and it was not possible to 
assess the effects of the stage of lactation or parity on 
milk Ca content.

Figure 7. Effect of calendar month and feeding strategy in Holsteins on (A) protein content in milk and (B) the ratio of Ca content to pro-
tein content in milk: maximum grazing (■), grazing and corn silage (▲), corn silage (●), grazed temporary pasture (+). Different letters (a–c) 
indicate significant differences between feeding strategies within a calendar month (P < 0.001). Color version available online.
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Effects of Breed, Stage of Lactation, and Parity  

on Milk Ca Content

The effect of breed, and more generally of the genet-
ics of cows, on milk Ca content is well known and has 
been described several times (Hermansen et al., 2005; 
van Hulzen et al., 2009; Chassaing et al., 2016). For 
instance, Jersey cows have a higher milk Ca content 
than Holstein cows (Hermansen et al., 2005), and high 
heritability of milk Ca content was found in Holsteins 
with a value of 0.57 (van Hulzen et al., 2009). However, 
as milks were sampled on the same date, from only pri-
miparous cows, and as cows were fed the same ration, 
this heritability may have been overestimated. In our 
study, we observed large differences in milk Ca content 
between Holstein, Montbéliarde, and Normande cows, 
with higher values for Normandes.

The effect of the stage of lactation on milk Ca content 
had already been described in dairy cows (Kaufmaan 
and Hagemeister, 1987; Gaucheron, 2005; Hermansen 
et al., 2005). A sharp decrease between the first 2 mo 
of lactation has often been described, followed by a 
smooth increase until the end of lactation (Kaufmaan 
and Hagemeister, 1987). Our results confirmed these 
dynamics but showed different orders of magnitude 
between breeds, with Holstein cows having the largest 
decrease in milk Ca content during the beginning of 
lactation, Normande cows the smallest decrease, and 
Montbéliarde cows an intermediate decrease. It can 
be noted from our results that the magnitude of milk 
Ca content variation during lactation was negatively 
related between breeds to the amount of Ca secreted 
daily in milk. To explain this, we hypothesized that 
the larger drop in Ca content at the beginning of lac-
tation in breeds with higher amounts of Ca secreted 
daily in milk could be explained by a greater solici-
tation of operating organs involved in the regulation 
of calcemia, including the mammary gland. Indeed, it 
has been observed in mice (VanHouten et al., 2004) 
that the milk Ca content could decrease to increase 
calcemia in cases of hypocalcemia. If we assume that 
such mechanisms exist in dairy cows, a reduction in 
milk Ca content could be a mechanism for cows with 
high milk production to maintain their calcemia. This 
reduction of Ca content would result from the detection 
of an insufficient Ca supply by the Ca receptor of the 
mammary epithelial cells that would induce a secre-
tion of PTHrP by the mammary gland. The PTHrP 
could then increase bone Ca mobilization (VanHouten 
et al., 2004; Kovacs, 2005). After mo 2 of lactation, 
we can assume that the decrease in milk production 
and amount of Ca secreted daily in milk would likely 
result in a lower need for Ca mobilization from bone 
and possibly in a lower reduction of Ca secretion by the 

mammary gland, which might explain the limitation of 
the Ca content drop. In this scenario, the increase of Ca 
content after mo 4 of lactation, which occurred at the 
same time for every breed, could also be related to the 
continuous decrease in the total amount of Ca secreted 
daily in milk during lactation.

A decrease in milk Ca content with the parity of the 
cow has been described by Kume and Tanabe (1993) 
in colostrum. In our experiment, milk Ca content de-
creased with parity regardless of the stage of lactation. 
This result may not be dissociated from the fact that 
older cows are known to have greater difficulty in mo-
bilizing Ca from bone and in absorbing Ca from their 
digestive tract and are therefore more susceptible to 
postpartum hypocalcemia (Horst, 1986; Reinhardt et 
al., 2011). It might be assumed that in those cows a 
decrease in Ca secretion by the mammary gland could 
be a more important mechanism to conserve Ca and 
to regulate calcemia than in younger cows, according 
to the mechanism previously described in mice by 
VanHouten et al. (2004); this mechanism would even 
be amplified if we considered that the amount of Ca 
secreted daily in milk is higher in older cows.

Effect of Feeding Strategy and Seasonality  

on Milk Ca Content

The data obtained from the PhénoFinLait program 
were very useful in our study to characterize the effects 
of season, stage of lactation, and cow diets on milk Ca 
content and to dissociate them from each other as much 
as possible. Our objective was to explain the discrepan-
cy observed between studies by characterizing the effect 
of the stage of lactation or season on milk Ca content 
that was likely linked to a partial confusion between 
these 2 parameters (Toffanin et al., 2015b; Chassaing 
et al., 2016). In our case, seasonality was sufficiently 
uncorrelated with the stage of lactation to consider 
that the variations in milk Ca content according to the 
stage of lactation that we observed were independent 
of the season and may also be independent of the feed-
ing strategy, as calving dates were distributed equally 
between strategies.

However, we also showed that, at least in the con-
text of milk production in France, the effects of the 
feeding strategy and seasonality on milk production 
parameters could not be totally dissociated. Indeed, 
our study confirmed that the cow diets are very specific 
to season and region in relation to climate parameters 
controlling the supply of certain forage types (Figure 
4). We made a choice to characterize the effect of an-
nual feeding strategy on milk Ca content rather than 
that of individual cow diets, as they were described 
previously in the PhénoFinLait program (Gelé et al., 
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2014). The main advantage of that choice was to in-
clude potential delayed and remnant effects of diets on 
the phosphocalcic metabolism of cows, and thus milk 
Ca content, which could be inferred given the duration 
of the bone accretion or resorption cycles during lacta-
tion and gestation in cows (Ekelund et al., 2006; Taylor 
et al., 2009). Another advantage was the ability to use 
a complete block design between feeding strategy and 
calendar month.

We clearly showed an effect of the feeding strategy 
on milk Ca content that has been rarely described in 
the literature. Milk Ca content was often lower with 
diets based on pasture or conserved grass, such as silage 
or hay, than with diets based on corn silage. This was 
observable in our study in the winter and the spring in 
Montbéliarde cows and in the summer in Normande 
and Holstein cows. The difference in milk Ca content 
between diets could be high, with a difference between 
corn silage and hay of approximately 50 mg/kg in 
Montbéliardes. Hurtaud et al. (2014) also reported 
lower Ca content in cows grazing or fed conserved grass 
than in cows fed corn silage, although the difference 
was not significant. Poulsen et al. (2015) suspected an 
effect of cow diet on the milk Ca content, but did not 
have records of their diet. Chassaing et al. (2016) no-
ticed milk Ca content variations possibly linked to the 
effect of the diet, but the effect of the diet was confused 
with a lot of other environmental effects in our study.

Because March to April is a major period of pasture 
turnout between winter diets and grazing, the drop in 
milk Ca content systematically observed during that 
period for the 3 breeds could also be linked, at least 
partly, to the nature of the diets fed to the cows. This 
would confirm the idea that milk Ca content is lower 
when cows are fed fresh or conserved grass rather than 
corn silage. Such an effect of the month of the year has 
been described previously, with higher milk Ca content 
in winter than in summer (Poulsen et al., 2015; Chas-
saing et al., 2016). It is impossible to confirm that it 
is not also linked at least partially to seasonal speci-
ficities, such as climatic conditions or day length. How-
ever, Boudon et al. (2016) found that increased day 
length increased Ca content in milk, but the increase 
they measured could only explain a small part of the 
drop observed between March and April. The drop in 
milk Ca content between March and April could also be 
explained by the increase in milk yield, and thus the in-
creased demand for Ca secretion in milk, that occurred 
between February and April (data shown in Holstein 
cows; Figure 6). The concomitance of these 2 phenom-
ena, the decrease of milk Ca content and the increase 
of the amount of Ca secreted daily in milk, is consistent 
with the hypothesis that Ca content could be a mecha-
nism to regulate calcemia by decreasing the amount of 

Ca secreted in a given milk yield (VanHouten et al., 
2004). A maximal milk yield in March is understand-
able, given that, in the French dairy system, March is 
a period of high nutrient supply due to the association 
of good quality of grazed herbage and supplementation 
with winter diets. If a decrease in milk Ca content can 
occur quickly to regulate calcemia when the milk yield 
increases, a delay in the increase in milk Ca content 
occurs when the milk yield decreases. Indeed, this is 
illustrated by the fact that the decrease in milk yield 
in July occurred with all feeding strategies, and the 
amount of Ca secreted daily in milk (Figure 6) was 
thus only accompanied by a delayed increase in milk 
Ca content in August.

The fact that one of the chief functions of casein 
micelles in milk could be to solubilize the Ca and 
phosphate and avoid the formation of insoluble pre-
cipitates (Farrell et al., 2006) implies that the milk 
micellar Ca-to-soluble Ca ratio and the milk total Ca 
content-to-protein content ratio should vary within 
a very narrow range (Alais, 1984; Gaucheron, 2005). 
Our results showed that the milk total Ca content-to-
protein content ratio can vary according to the diet of 
the cows, the season, or both, from 35 to 40.2 mg/g. 
These results tempered the idea that the milk total Ca 
content-to-protein content ratio is constant and that 
the main determinant of milk Ca content is the ca-
sein content. The reasons for the variation in the milk 
total Ca content-to-protein content ratio are unclear. 
It would have been very useful to know the micellar 
and soluble Ca contents in the milk in our study, but 
MIR equations to predict micellar and soluble Ca were 
not developed. These results raised the question of the 
interaction of the systemic regulation and secretion of 
Ca in milk via the Ca receptor and the regulation of the 
partition of Ca in the mammary epithelial cells between 
the Golgi apparatus and the cytoplasm (Kovacs, 2016). 
We did not observe any effect of the breed on the milk 
total Ca content-to-protein content (data not shown), 
in contrast to what was previously observed (Alais, 
1984; Gaucheron, 2005).

We have shown that, even though genetics is consid-
ered the major determinant of Ca milk content in cows, 
nongenetic factors also affect milk Ca content. In our 
study, variations in milk Ca contents due to stage of 
lactation or interacting effects of seasonality and diet 
could even be higher than differences between breeds. 
High heritability of milk Ca content has been shown 
in the literature by van Hulzen et al. (2009) and Bu-
itenhuis et al. (2015). The heritabilities they obtained 
differed between breeds, with a higher heritability for 
Holsteins (0.72) than for Jerseys (0.63; Buitenhuis 
et al., 2015), but also differed between studies. Tof-
fanin et al. (2015b) found a low heritability for milk 

D). DISCUSSION
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Ca content (0.11), but data they used included more 
environmental sources of variability in milk Ca content 
with a higher diversity of sampling seasons, parities, 
or diets. Heritability is always estimated as the ratio 
between variance due to individual and the sum of 
variance due to individual and residual variance after 
correction for nongenetic factors (i.e., environment and 
physiological status; van Hulzen et al., 2009). Thus, a 
high heritability of milk Ca content in studies where 
environmental factors of variation of milk Ca contents 
are well controlled or described can be associated with 
a high variability of milk Ca content due to nongenetic 
factors.

CONCLUSIONS

This study illustrated that genetics is not the only 
factor that affects Ca content in bovine milk. The stage 
of lactation, parity, seasonality, and cow diet, and more 
specifically the nature of the forage, also explained a 
significant range of variation in milk Ca content. Varia-
tions in milk Ca content within a single lactation can 
be at least as important, depending on the breed, as the 
variations between breeds at the same stage of lacta-
tion. Cow diet and seasonality had lesser effects on milk 
Ca content than breed or stage of lactation, but these 
effects remained non-negligible. However, differences in 
milk Ca content due to parity were small compared 
with those explained by the factors previously cited, 
with a 5 mg/kg decrease in lactation. We also observed 
that those nongenetic factors affecting milk Ca content 
may be related to the fact that the mammary gland is 
also an organ involved in the Ca regulation of lactating 
cows, as well as bones, the digestive tract, and kid-
neys, suggesting that milk Ca content may be an easy 
way to follow the evolution of the Ca status of cows 
through lactation and between lactations. However, the 
observed effect of the cow diet and more specifically of 
the nature of the forages on milk Ca content remains 
to be explained. A remaining question is to determine 
whether this effect could be related to the Ca content 
of the diets, which could not be quantified with the 
required precision in this study.
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CHAPTER III. EFFECTS OF PARITY AND INDIVIDUAL VARIABILITY
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Abstract

Current recommendations for Ca and P supplementation in dairy cows do not take into

account the dynamics of bone mobilization/reconstitution that occur during lactation. This

study aimed to determine if the dynamics of milk Ca content during lactation could allow for

the prediction of the dynamics of bone mobilization/reconstitution. It consisted of measuring

monthly milk Ca and P contents and the plasma concentrations of biomarkers of bone

accretion (OC) and resorption (CTX) on 33 Holstein cows in their first (n=17), second (n=10),

and third or greater (n=6) lactation from 15 days before expected calving to the end of the 9th

month of lactation. Cows were fed a unique total mixed ration during the whole experiment.

Primiparous cows showed higher plasma OC and CTX concentrations (P < 0.01) and a higher

increase in CTX during the first months of lactation than that in multiparous cows (P < 0.05).

They also showed a higher decrease in evening milk Ca content (P < 0.03), concomitant to

the increase in CTX, suggesting that a reduction in milk Ca secretion could be a way for the

animal to regulate its calcemia during the first month of lactation. However, the individual

dynamics of milk Ca content did not allow the estimation of the shape of the individual

dynamics of bone accretion and resorption. The milk Ca to P ratio seemed to be a promising

indicator of the plasma OC to CTX ratio within individuals. The consistency of this indicator

remains to be estimated in challenging situations for Ca homeostasis in dairy cows.

Keywords: dairy cow, calcium, phosphorus, bone, parity
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A). INTRODUCTION

Implications

In dairy farms, Ca and P supplementation is at the heart of rising concerns, due to its

multiple impacts on dairy cows’ health, reproduction and production, as well as the

economic or environmental performances of the farms. To increase the efficiency of

mineral supplementation, it has been suggested that Ca and P supplementation should

not be considered on a day-to-day basis but on a larger time scale that needs better

knowledge of the dynamics of bone mobilization on the scale of lactation. The milk Ca to P

ratio could be an indirect indicator.

A) Introduction

Current recommendations for Ca and P supplementation in dairy cows are based on a

factorial approach of requirements that consists of replacing day-to-day, unavoidable Ca

and P losses, as well as the accumulation of Ca and P in tissues linked to growth or

gestation, in an animal with a given production level (AFRC, 1991, NRC, 2001, INRA,

2010). In this approach, there are requirements for maintenance, lactation, gestation and

growth. For dairy cows, specific Ca and P supplies that can be drawn from bone

mobilization at the beginning of lactation are not included, and neither are the specific Ca

and P requirements for bone reconstitution that arise after the first third of lactation

(Horst et al., 2005). At the beginning of lactation, all mammal females are submitted to a

strong exportation of Ca, and P to a lesser extent, in milk, which is a main reason for the

strong bone mobilization observed in dairy cows (Horst et al., 2005). This mobilization is

at least partly compensated by a bone reconstitution after the first third of lactation (Horst

et al., 2005). Bone mobilization and reconstitution are mainly driven by Ca homeostasis

but are also involved in a release of or a P supply because bone is mainly composed of

hydroxyapatite, which is a Ca phosphate (Ekelund et al., 2006). This fact highlights the

advantage that can arise from considering both minerals together (Moreira et al.,

2009, Elizondo Salazar et al., 2013). An expected benefit of taking account of the bone

mobilization-reconstitution for both Ca and P requirements during lactation could be a

reallocation of both mineral supplies from the beginning of lactation to the end of

lactation, with the objective to reduce P rejection in early lactation and to enhance bone
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reconstitution in late lactation. However, to achieve this outcome, a better quantification

of bone accretion and resorption cycles over lactation is necessary, requiring the

development of a fast and efficient method of estimation.

Available methods to follow bone cycles in dairy cows, such as bone biomarkers (Seibel,

2000), biopsies (Beighle, 1999) or input/output balances (Taylor et al., 2009), are efficient

but also expensive or too time-consuming to be used in large numbers of cows. It has been

described in mice that, in the case of Ca intake deficiency, milk Ca content can decrease in

relation to a decrease in blood Ca detected by the Ca-sensing receptor of the mammary

epithelial cell (VanHouten et al., 2004). This phenomenon also induces a secretion of

parathyroid hormone-related protein (PTHrP), which is responsible for bone mobilization.

A hypothesis arising from this mechanism is that milk Ca content variations could be a

potential indicator of bone metabolism throughout lactation. With the possibility of using

medium infrared spectra to determine milk Ca content, it would be a very useful way to

follow cows’ bone cycles throughout lactation. The aim of this study was to analyze

variability in milk Ca and P content dynamics during lactation inherent to cow and the

parity in relation with the variability of the dynamics of plasma biomarkers of bone

accretion and resorption, i.e., osteocalcin (OC) and C-terminal telopeptide (CTX).

B) Material and methods

1 Animals and monitoring

This study involved 33 Holstein cows in their first (n=17), second (n=10), and third or

greater (n=6) lactation, from 15 days before expected calving to the end of the 9th month

of lactation, from September 2015 to June 2016. Cows were offered a unique total mixed

ration (TMR) ad libitum throughout the lactation, which was composed of 63% corn silage,

11% dehydrated alfalfa, 11% soybean meal and 15% energy concentrate and minerals. The

composition of the TMR was calculated to cover the NEL (Net Energy for Lactation), protein

(PDI, protein digestible in the intestine), absorbable Ca and P, and other minerals; the

requirements of cows after the lactation peak (INRA, 2010), with a PDI/NEL of 90 g PDI

for 6 726 kJ of NEL, showed absorbable Ca and P contents of 2.86 g/kg and 1.94 g/kg DM,

respectively. Cows were housed in a free stall barn with a cubicle covered with rubber carpet.
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The TMR was distributed twice a day by an automatic dispenser into an individual trough

specific to each animal, owing to RFID identification. Cows had free access to the trough

and to water during the day. Straw was added for the first 15 days of lactation (500 g/day).

Cows were milked twice a day, at 0630 h and 1630 h. Milk production and DM intake were

recorded daily individually. Milk composition (fat and protein contents) and somatic cell

count were measured twice a week, upon evening and morning milking.

2 Blood and milk samples

Blood was sampled 15 days prior to the estimated date of calving, 15 days after calving

and every 4 weeks after. Cows were grouped for sampling according to stage of lactation (±

3.5 days), so that all blood samples could be collected every Thursday. Blood was sampled

after milking, before cows were fed, by venipuncture of the tail vessels into Vacutainer

tubes coated with lithium heparin for Ca and inorganic P (Pi) analyses, and EDTA for OC

and CTX. Plasma was recovered after centrifugation at 3 000 x g for 12 minutes within 30

minutes of sampling and stored at -80°C for OC analysis and at -20°C for other analyses.

Milk was sampled for Ca and P analyses the previous evening and on the morning of blood

samples and was stored at -20°C.

3 Chemical analyses

Feed samples were dried and ground, and subsamples were mineralized by calcination

at 550 °C for 5 hours in a muffle furnace. Feed, plasma and milk were analyzed by atomic

absorption spectrophotometry (Spectra-AA20 Varian, Les Ulis, France) for Ca contents

(Murthy and Rhea, 1967, Brûlé et al., 1974) and by the Allen method using a KONE PRO

multi-parameter analyzer (Thermo Fisher Scientific, Illkirch, France) for P contents (Pien,

1969). Milk fat and protein concentrations were determined by a commercial laboratory

using mid-infrared analysis (MyLab, Chateaugiron, France). Plasma CTX and OC

concentrations were determined by ELISA with a Crosslaps kit from IDS (Paris, France)

for CTX and a kit for OC from Quidel (San Diego, CA).

4 Calculation

The differences in absorbable Ca and P (Caabs and Pabs) supply – requirements were

calculated according to absorption coefficient and cow requirements proposed by INRA
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(2010), except that the actual Ca and P milk contents were used instead of the default

values of 1.25 g/kg for Ca and 0.90 g/kg for P. Morning and evening milk production and

DM intake were averaged on plus or minus 3 days to avoid effect of daily fluctuation.

5 Statistical analysis

Variables related to milk production and composition, plasma composition for explained

variable and mineral requirement coverage were analyzed with a mixed-model ANOVA,

using PROC MIXED in SAS (SAS Institute, 2013):

Yijk = µ+ StageofLactationi + Parityj+

Stage of Lactation : Parityij + Cowk + �ijk

where Yijk was the explained variable, stage of lactation and parity were qualitative fixed

effects, and cow was a random effect.

To classify the shapes of individual dynamics of milk Ca content throughout lactation

and relate it to those of plasma concentrations of OC and CTX, principal component analysis

was performed with R (R Development Core Team, 2008) and the package FactoMineR. In

the table, the columns corresponded to a combination of a stage of lactation and a time of

milk sampling (morning or evening) and the lines corresponded to a cow. As average milk

Ca content varies between animals and as our objective was to classify dynamics, the data

were scaled to limit the individual effect:

x�

ij =
xij−xi

xi

Where xij is the considered value for cow i at the stage of lactation x time of sampling

j, xi is the base value for cow i (i.e., average of the considered data after the 6th month of

lactation) and x�

ij is the new scaled value. As all the data had the same unit, the data were

not scaled for the principal component analysis. An ascending hierarchical classification was

then performed on the factor scores using Ward’s criterion to select the number of clusters.

The best number of clusters was given by a high ratio of the loss of inertia between n+1

clusters and n clusters. Effect of clusters of milk Ca dynamics was analyzed by ANOVA

using PROC MIXED in SAS with the following model:

Yijk = µ+ Stage of Lactationi + of milk Ca Dynamicj+

Stage of Lactation : Cluster of milk Dynamicij + Cowk + �ijk
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where Yijk was the explained variable, and stage of lactation and cluster of milk Ca

dynamic were considered as qualitative fixed effects; cow was a random effect. Finally,

regressions were performed between variables related to plasma concentrations of

biomarkers, Ca and Pi (plasmatic component related to bone metabolism) and milk related

to milk Ca and P contents (potential milk biomarker of bones), using PROC GLM in SAS:

Yij = µ+ x+ Cowi + Cowi : x+ �ij

where x is a milk potential biomarker, Y is a plasmatic component related to bone

metabolism, and cow is the fixed effect of the i-th animal. Only morning milk contents

were kept, as their samples were done at the same time as that of the blood samples.

C) Results

1 Differences in milk quality and Ca metabolism due to parity

Milk production was lower for primiparous cows than for multiparous (Figure III.1A),

with an average daily milk production of 29.5 kg for the primiparous cows and 36.8 kg for

the multiparous cows during the 9 months of lactation. The primiparous cows had a less

differentiated peak of lactation and a better persistency than multiparous cows (Stage of

lactation:Parity, P < 0.01). Milk protein content was not affected by parity (Figure III.1B).

Milk Ca content varied from 957 to 1,816 mg/kg, with a mean of 1,249 mg/kg and a

standard deviation of 113.0 mg/kg. Both morning and evening milk Ca contents decreased

in early lactation and increased at the end of lactation (Stage of lactation, P < 0.01) but

they were unaffected by the parity (P > 0.05, Figure III.1C). However, evening milk Ca

content remained relatively steady throughout the lactation in cows in the third month of

lactation or later, whereas it decreased during the 1st month of lactation and continuously

increased after in primiparous cows, the dynamics being intermediate for second lactation

cows (Stage of Lactation:Parity, P < 0.05). The interaction between parity and stage of

lactation was not significant for morning milk Ca content. Morning and evening milk Ca

to protein ratios increased during the first month of lactation and decreased after to reach

a minimum between the 7th and the 8th month of lactation, and they slightly increased
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Figure III.1: Effect of parity and stage of lactation on A) daily milk production, B) milk protein content,
C) milk Ca content, D) milk Ca to protein ratio, E) Ca supply - requirements, F) plasma Ca concentration.
First Lactation •/◦, second lactation: �/�, third or more lactation: �/�. White filled shape and straight line:
morning sample, color filled shape and dotted line: evening sample.
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afterward, regardless of the parity (Stage of lactation, P < 0.01, Figure III.1D). Both milk

Ca contents and milk Ca to protein ratio were lower in the morning.

The difference in Caabs supply - requirements varied between -7.7 to 25.9 g/day (Figure

III.1E). It increased from calving to the 7th month of lactation and decreased after (Stage of

lactation, P < 0.01). It tended to be higher for primiparous throughout the lactation (parity,

P < 0.10), but the discrepancy was above all important during the first 4 months of lactation

(Stage of lactation:Parity, P < 0.05). Individual plasma Ca concentrations
were between 71.4

and 120.8 mg/L, and only one cow had a plasma Ca concentration lower than 80 mg/L, which

indicated that no cow was submitted to subclinical hypocalcemia in this trial (Taylor et al.,

2008). Lower plasma Ca concentrations were reached during the first or the second month

of lactation and then increased to values higher than pre-calving values (Stage of lactation,

P < 0.01, Figure III.1F). After the second month of lactation, plasma Ca concentrations

remained relatively steady. This outcome was clearer in primiparous than in multiparous

cows, even though the interaction stage of lactation:parity was not significant. Primiparous

cows also tended to have higher plasma Ca concentrations (P < 0.10, Figure III.1F).

Morning and evening milk P contents decreased during the first 2 months of lactation

and then remained stable until the end of the lactation (Figure III.2A, P < 0.01) They were

also higher for primiparous than for multiparous (P < 0.02). Unlike milk Ca content, milk P

content was higher for evening milk. Milk Ca to P ratio slightly increased all over lactation

(Figure III.2B, P < 0.01) and was lower for primiparous cows (P < 0.01). The group average of

plasma Pi concentration (Figure III.2C) ranged from 39.8 to 63.5 mg/L. Primiparous had a

tendency to have a lower plasma Pi concentration (47.6 vs. 50.8 mg/L average on lactation,

P < 0.10, Figure III.2C). Plasma Pi was clearly affected by the stage of lactation, with a

decrease after calving and then an increase until the end of lactation, regardless of the

parity (P < 0.001).

Plasma concentrations of both OC (biomarker of bone accretion) and CTX (biomarker

of bone resorption) were clearly higher in primiparous cows than those in second parity

cows and higher in second parity cows than those in third or higher parity cows (Figures

III.3A and B, P < 0.01). The plasma OC concentration clearly decreased after calving for

all parities and increased during the second month of lactation to reach a plateau specific

to each parity (Figure III.3A, stage of lactation, P < 0.1, stage of lactation:parity, P > 0.15).
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Figure III.2: Effect of parity and stage of lactation on A) milk P content, B) milk Ca to P ratio, C) Plasma Pi
concentration, D) Plasma Ca to P ratio. First Lactation •/◦, second lactation: �/�, third or more lactation:
�/�. White filled shape and straight line: morning sample, color filled shape and dotted line: evening sample.

Plasma CTX concentration increased after calving to reach a maximum during the second

month of lactation, then it decreased in primiparous and second parity cows and remained

stable in third and higher parity cows (Figure III.3B, stage of lactation, P < 0.02). The

amplitude of the variations of plasma CTX concentrations throughout lactation was higher

in primiparous than that in the second lactation cows and higher in the second lactation

than that in the third or higher lactation cows (stage of lactation:parity, P < 0.05). When

considering only primiparous cows, the 13 2-year-old cows tended to have higher plasma OC

concentrations than those of the 2 3-year-old cows (83.8 vs 70.2 ng/mL, on average during

lactation, P = 0.06, data not shown, same model as that described to study parity effect,
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Figure III.3: Effect of parity and stage of lactation on A) plasma osteocalcin concentration and B) plasma CTX
concentration. First Lactation •, second lactation: �, third or more lactation: �

on interaction effect). However, the age of primiparous cows did not affect plasma CTX

concentrations.

2 Characterization of dynamics of milk Ca content

Three clusters of dynamics of the milk Ca content were characterized from principal

component analysis and hierarchical ascendant classification (Figure III.4A). Clusters of

dynamics were named according to the form of the milk Ca curves. The cluster “Increasing”

dynamic was characterized by an increase in milk Ca content throughout lactation. It

involved 9 cows, mainly primiparous (Table III.1). The “Curving” dynamic was characterized

by a decrease in milk Ca content from the beginning of the lactation to 4.5 months of

lactation for morning and evening milks and then by an increase until the end of lactation.

It involved 8 cows. The “Flat” dynamic was characterized by a stable Ca content all over

lactation and involved 16 cows with an almost homogenous partition of parity. The milk

Ca content was not affected by the cluster of dynamics; this outcome was expected but was

clearly affected by the stage of lactation and the interaction dynamic:stage of lactation.

Milk Ca Dynamic 1st Lactation 2nd Lactation 3rd Lactation or more
“Increasing” 7 1 1
“Curving” 4 3 1
“Flat” 6 6 4

Table III.1: Repartition of cows between milk Ca content dynamics according to their parity
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Figure III.4: Effect of cluster of milk Ca dynamic and stage of lactation on A) milk Ca content, B) Plasma Ca
concentration, C) Plasma OC concentration, D) Plasma CTX concentration, E) Milk P content, F) Milk Ca to P
ratio, G) Ca supply-requirements, H) Milk Ca to protein ratio. "Increasing" Dynamic: •/◦, "Curved" Dynamic:
�/�, "Flat" Dynamic: �/�. White filled shape and straight line: morning sample, color filled shape and dotted
line: evening sample.
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Neither the plasma concentrations of OC and CTX, nor their dynamics throughout

lactation, were significantly affected by the three clusters of dynamics of milk Ca contents

(Figures III.4C and D, P > 0.10). Milk production was not affected either by these clusters.

Milk protein content was lower (P < 0.05, data not shown), and milk Ca to protein ratio

was higher for the “Curving” dynamic (Figure III.4B, P < 0.001), with a higher variation

during the first 5 months of lactation (interaction P < 0.01 in the evening). With the

“Curving” cluster, the Ca supply – requirement was also clearly lower than those of both

other clusters in the first four months of lactation, increased after the fifth month of

lactation to reach similar values than those of both other clusters and decreased again

after the 6th month of lactation (Interaction, P < 0.03). Plasma Ca concentration was lower

after calving with the “Curving” than with both other clusters (P < 0.01). Morning and

evening milk P contents were higher with the “Increasing” cluster (Figure III.4G, P <

0.05). Morning milk P content increased after the 6th month of lactation with the

“Increasing” dynamic cluster, whereas it remained flat with the “Curving” and “Flat”

dynamics (Figure III.4G, P < 0.05). Morning and evening milk Ca to P ratios were lower

for the “Increasing” clusters compared with the “Curving” and “Flat” clusters (Figure

III.4H, P < 0.05) and increased more during lactation (Figure III.4F, P < 0.06).

3 Relationship between plasmatic components related to bone

metabolism and potential milk biomarkers

Four milk variables identified a priori as potential indicators of bone metabolism were

tested: Ca content, P content, Ca to P ratio, and amount of Ca daily secreted in milk. They

were used as predictive variables in regression to estimate plasma concentrations of Ca, Pi,

CTX, OC and OC to CTX and CTX to OC ratios (Table III.2). About half of the tested models

were not significant (P > 0.05). Among the significant models, a prediction of the plasma OC

to CTX ratio from the milk Ca to P ratio showed a very significant effect of the predictor (P

< 0.001), and no effect of either individual intercept or interaction between individual effect

and milk ratio. When considering this latter relationship, most of the individual regression

had a positive slope between milk Ca to P ratio on the plasma OC to CTX ratio with a similar

slope coefficient (Figure III.5). Among the four cows with a negative slope, three had a very

bad quality of regression.
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Heading Tested effect
Milk Ca Milk P Milk Ca Daily Ca
content content to P ratio secreted in milk

Plasma OC Predictor 0.217 < 0.001 0.002 < 0.001
Individual < 0.001 < 0.001 0.038 < 0.001
Interaction < 0.001 < 0.001 0.64 < 0.001

Plasma CTX Predictor 0.293 0.072 0.007 0.696
Individual < 0.001 0.170 0.001 0.014
Interaction < 0.001 0.293 0.008 0.310

Plasma Ca Predictor 0.745 0.479 0.304 < 0.001
Individual < 0.001 0.170 < 0.001 < 0.001
Interaction < 0.001 0.293 < 0.001 < 0.001

Plasma Pi Predictor 0.332 0.003 0.186 0.011
Individual 0.229 0.067 0.137 0.089
Interaction 0.231 0.049 0.154 0.127

Plasma OC Predictor 0.582 0.005 < 0.001 0.093
to CTX ratio Individual 0.086 0.252 0.813 < 0.001

Interaction 0.036 0.155 0.726 < 0.001
Plasma CTX Predictor 0.235 0.006 < 0.001 < 0.001
to OC ratio Individual < 0.001 < 0.001 < 0.001 < 0.001

Interaction < 0.001 < 0.001 < 0.001 < 0.001

Table III.2: Prediction of bone metabolism by potential milk biomarker

Figure III.5: Relationship between plasma OC to CTX ratio and milk Ca to P ratio. Black bold line = inter-
individual regression. Intra-individual regression = green straight line for 1st lactation, orange dashed line
for 2nd lactation, purple dotted line for 3rd or more lactation.
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D) Discussion

1 An effect of parity on bone remodelling and on dynamics of

bone resorption during lactation related to that of milk

content of Ca

An effect of parity on bone remodeling and on the dynamics of bone resorption during

lactation related to that of the milk content of Ca. The increasing plasma concentrations

of OC and CTX with decreasing parities observed in this experiment can be related to the

fact that primiparous cows and, to a less extent, 2nd lactation cows are still growing, as

well as to the fact that bone turnover is higher in those animals than that in 3rd or higher

rank lactation cows. OC is a hydroxyapatite-binding protein synthetized by osteoblasts; this

protein is suspected to be active in the organization of the extracellular matrix of bone, and

thus, it constitutes a plasmatic biomarker of bone accretion that is widely used, especially in

cows (Seibel, 2000). In contrast, CTX is a degradation product of bone collagen constituted

by a crosslink containing the collagen telopeptide, which constitutes a plasmatic biomarker

of bone resorption. The fact that plasma OC concentration increased with parity can be

clearly related to the animal growth, and this outcome has been observed at least during

the first months of lactation in several studies (Iwama et al., 2004, Taylor et al., 2008, Taylor

et al., 2009, Sato et al., 2011, Sato et al., 2013). The fact that plasma CTX also increased

is less intuitive, but it illustrates that bone is a metabolically active tissue that undergoes

continuous remodeling with concomitant accretion and resorption, and this remodeling is

more active in young animals throughout lactation. Similar results have been observed by

Iwama et al. (2004) and Taylor et al. (2009) during the first month of lactation, but with

deoxypyridinoline instead of CTX.

Monitoring whole lactation in this study allows us to show that the relative increase in

plasma CTX at the beginning of lactation was proportionally higher in primiparous cows

and, to a lesser extent, in 2nd lactation cows compared to higher rank lactation cows. It is

known, in particular, owing to the analyses of plasma biomarkers of bone accretion and

resorption, that a decrease in bone accretion consistently occurs during the first month of

lactation and that an increase in bone resorption occurs during the first months of
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lactation (Liesegang et al., 2000, Taylor et al., 2008, Taylor et al., 2009, Puggaard et al.,

2014). Our results confirmed this outcome, but the bone resorption increase was likely

higher in younger animals when considering CTX measurements. This result would be

coherent with the idea that in younger cows, bone 1,25-(OH)2- vitamin D receptor activity

is higher, which gives younger animals a higher ability than older cows to mobilize Ca

from bone store (Horst et al., 1990). Such results have been suggested by Iwama et al.

(2004) and Taylor et al. (2009), but as these authors measured plasma biomarkers during

1 to 4.5 months, it was difficult to conclude from their results whether the higher CTX

concentration of young animals during the first month of lactation was a higher bone

remodeling or an increase of net bone mobilization. In our study, the fact that plasma CTX

increased and decreased during the first 4 months of lactation, with a higher amplitude in

younger animals, indicates that net bone mobilization should have been higher in those

animals. It cannot be considered in our experiment that primiparous cows mobilized their

bone more in relation with their specific Ca supply, because their Ca requirements

coverage tended to be higher than those of older cows.

An interesting result was that the greater amplitude of the increase in CTX at the

beginning of lactation in primiparous cows was accompanied by a greater amplitude of the

decrease in milk Ca content during the same period, at least when considering the evening

milk sampling. Animals with higher ranks of lactation even showed an almost steady

curve of milk Ca content at the evening sampling. This coincides with our hypothesis that

the dynamic of milk Ca content could be used as an indicator of dynamic of bone

mobilization during lactation. This hypothesis is based on the observation that the

extracellular Ca-sensing receptor of the mammary gland would allow sensing of the

calcemic status of the cows, in order to maintain or drive Ca in the blood circulation when

there are strong Ca demands by organs, by both decreasing Ca secretion in milk and

increasing bone resorption by PTHrP secretion (VanHouten et al., 2004). Whether this

effect of the interaction parity:stage of lactation is only observed in evening and not in

morning milk remained unclear. It is known that melatonin, secreted during the night,

can affect bone accretion-resorption balance (Cardinali et al., 2003) and that the higher

milking interval during the night is susceptible to affect milk composition because of the

higher accumulation of some milk compounds in the udder cisterns. The interaction
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parity:stage of lactation did not affect either the milk Ca to protein ratio, even though a

part of Ca is secreted in milk with casein via the Golgi apparatus with a necessity of

presence of Ca for stability of casein (VanHouten and Wysolmerski, 2007). This outcome

shows that the effect of the interaction parity:stage of lactation on milk Ca content is not

mediated by the casein secretion in milk, confirming that milk casein content can only

explain a part of the milk Ca content (Gaignon et al., 2018b).

We did not observe any effect of the parity on milk Ca content, which contrasts with the

results of Gaignon et al. (2018b), who showed that milk Ca content decreased in cows with

high parity. However, the effect of parity observed by Gaignon et al. (2018b) remained low,

less than 7 mg/kg, between two successive parities of Holstein cows and was negligible

compared to individual genetic effect on milk Ca content (Gaignon et al., 2018b). Given the

relatively low number of cows involved in our study, it is likely that the absence of parity

effect in the present study could be explained by the difference of detection threshold in

statistical analysis between our study and that of Gaignon et al. (2018b). The tendency for

a higher calcemia in primiparous cows compared with higher parity cows could be related

to both results; those cows may have a better ability to mobilize bone for calcemic

regulation, and their Ca requirement coverage also tended to be better. However, the

calcemia variations in our experiment remained minor, which shows that calcemia was

well regulated.

2 The shape of the dynamics of milk Ca content does not allow a

prediction of the shape of the dynamics of bone mobilization

during the lactation but may reflect a lower coverage of Ca

requirements

The use of principal component analysis and hierarchical classification shows that a

variability of dynamics of milk Ca contents during lactation exists between individuals

and that this variability is not entirely explained by the parity, even though one cluster of

dynamics of milk Ca contents included mainly primiparous cows. However, the dynamics

of plasma concentrations of either OC or CTX were unaffected by the cluster of dynamics

of milk contents of Ca during lactation, suggesting that the relationship between the

dynamics of plasma CTX and milk Ca that we observed between parities could not be
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extrapolated between individuals. Several reasons for this could be evocated. It can be

considered that OC and CTX are only biomarkers of bone accretion and resorption and

that their measurement at one time during a month may not be precise enough to

characterize the variability of dynamics of bone mobilization throughout lactation that

could occur between individuals. From this point of view, milk samples present the

advantage of giving a relatively integrative image of physiological processes over a period

of a few hours. It can also be considered that the time scale at which milk Ca secretion or

bone mobilization may be involved to regulate calcemia may not be concomitant during

lactation but also between individuals.

It is interesting to notice that the “Curving” cluster is the only one in which the dynamics

of milk Ca content is totally consistent with those described in the literature (Kaufmann

and Hagemeister, 1987, Gaignon et al., 2018b) . This cluster corresponded to cows having a

lower coverage of their Ca requirements in the first 4 months of lactation and concomitant

decreasing milk Ca contents, as well as lower calcemia 15 days after calving. It cannot

be excluded that a decrease in milk Ca secretion at this time did not contribute to the Ca

homeostasis and that mammary glands may adapt to a lower Ca supply by decreasing the

milk Ca content. This outcome was not concomitant to bone mobilization, possibly because

this cluster integrated mainly multiparous cows for which bone mobilization seemed less

readily involved.

3 The milk Ca to P ratio: an indicator of bone mobilization?

Our initial hypothesis was that the dynamics of milk Ca content during lactation could

reflect the dynamics of bone mobilization because a decrease in milk Ca content could be a

leverage to reduce milk Ca exportation and to maintain calcemia when the homeostasis is

challenged. We observed that this hypothesis may be valid when comparing parities, but

not when considering variations between individuals. However, we also observed a clear

effect of parity on milk P contents, with higher contents in primiparous cows, which may

be related also to the better of ability of these cows to mobilize their bones. A higher

plasma Pi concentration in primiparous cows was expected (Forar et al., 1982, Anderson

et al., 2017) but not observed in our experiment. Evocated reasons for this expected higher

plasma Pi concentration in primiparous cows are both high growth-hormone contents,

which can increase renal phosphate reabsorption, and high bone turnover observed in
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young animals (Anderson et al., 2017). A reason for the absence of higher plasma Pi

concentration in primiparous cows may be the fact that plasma sampling frequency was

low in our experiment, whereas an effect of the time of sampling on plasma Pi

concentration exists (Forar et al., 1982). However, we observed a clear increase in the milk

P contents in primiparous cows, which is also consistent with other studies (Forar et al.,

1982). This could suggest that P can be secreted in milk when bone mobilization or

remodeling is increased. As more bone remodeling is occurs in first lactation cows, it is

possible to consider that greater P flows are present throughout the body. Saliva is known

to be a great way to excrete excess P, which could occur during high bone remodeling. It is

possible that a part of this excess flow is also transferred into milk. Alvarez-Fuentes et al.

(2016) showed that a decrease in Ca intake, likely generating bone resorption, led to an

increase in milk P content, likely in relation with more P released from the bone into the

organism. However, this mechanism remained a hypothesis, given that the process of P

secretion in milk is not well known, although an active mechanism of secretion via Golgi

apparatus has been suggested (Neville and Peaker, 1979, Shennan and Peaker, 2000).

Our data suggest that the milk Ca to P ratio seems appropriate to estimate relative

variation of plasma OC to CTX ratio at least within individuals. Even though the effects of

individual and interaction predictor:individual on the plasma OC to CTX ratio were

non-significant, it is likely that the relationship may not be strong enough for an

inter-individual prediction, even though it certainly contributed to estimate the variability

between primiparous and multiparous cows. Indeed, using the regression intra-stage of

lactation to explain the OC to CTX ratio by the milk Ca to P ratio (by including an effect of

the stage of lactation, instead of an effect of the cows, in the model) did not give a

significant effect on the milk Ca to P ratio (data not shown). The link between those ratios

is biologically consistent. On the one hand, the plasma OC to CTX ratio constitutes a

relative estimation of net bone reconstitution, because it gives an idea of the equilibrium

between OC, a biomarker of bone accretion, and CTX, a biomarker of bone resorption. On

the other hand, the milk Ca to P ratio is also expected to increase when net bone

reconstitution increases because milk Ca is expected to decrease with bone mobilization

according to our hypothesis, and milk P is expected to increase according to the results

discussed above. It is interesting to consider that the Ca to Pi ratio has also been
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investigated in blood and showed a good relationship with plasma CTX concentration in

beef cows (Anderson et al., 2017). However, given the limited knowledge of P regulation

and P secretion in milk, notably their link with Ca in the context of lactation, the relevance

of the milk Ca to P ratio to predict bone net reconstitution remains to be consolidated. The

characterization of clusters of individual dynamics of the milk Ca to P ratio did not allow

either to predict the individual dynamic of plasma OC to CTX ratio (data not shown).

E) Conclusion

This experiment confirms that primiparous cows are better able to mobilize their bone

at the beginning of lactation to regulate their calcemia and shows that the increase in bone

mobilization in these animals was concomitant to a decrease in milk Ca content. However,

individual dynamics of milk contents of Ca during lactation did not allow the prediction of

individual dynamics of bone mobilization/reconstitution at the scale of the lactation. The

milk Ca to P ratio could be an interesting indicator of bone mobilization within individuals.

This indicator would have to be confirmed in a challenging situation for calcemia regulation.
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CHAPTER IV. EFFECTS OF BREED AND DIET

Abstract

Current recommendations for Ca and P supplementation in dairy cows do not take

account of the dynamics of bone mobilisation/reconstitution that occurs during lactation.

This study aimed to determine if the dynamics of milk Ca content during lactation could

allow predicting the dynamics of bone mobilisation/reconstitution for cows fed with two

different feeding strategies. It consisted in measuring monthly milk Ca and P contents

and plasma concentrations of biomarkers of bone accretion (OC) and resorption (CTX) on

30 Holstein and Normande cows spread between two feeding strategies, based on different

energy density, from 15 days before expected calving to the end of lactation. Multiparous

cows showed higher plasma OC and CTX concentrations in Normande cows than in

Holstein cows(P < 0.01) but also higher plasma biomarkers concentrations in the high

feeding strategy than in the low feeding strategy (P < 0.01). This point was related with an

important increase in milk production (P < 0.01) with the cows having a higher diet energy

density. In the same time, primiparous cows only showed effect of feeding strategy on bone

accretion (P = 0.05), but no differences due to breeds or on bone resorption. However,

differences related to breed and feeding strategy on bone accretion and resorption could

not be related to variations in milk Ca content over lactation. The possibility to use the

milk Ca to P ratio to estimate plasma OC to CTX ratio as it was suggested in the

literature was also unsatisfactory, notably for the cows receiving low diet energy density.

Keywords: Dairy cows, calcium, diet, bone, breed
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Effects of breed and feeding strategies on bone accretion and
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A) Introduction

Important flows of Ca and P occur in dairy cows’ organism during lactation, mainly

because of important flow of Ca and P excretion in milk (Horst et al., 1997). Bones play a

major role in the regulation of calcemia and phosphatemia, notably in early lactation when

Ca and P supplies cannot cover requirements (Horst et al., 2005). Bones allow then

mobilization of their mineral phase, largely composed of Ca and P bound hydroxyapatite

molecules (Buckwalter et al., 1996). Bones are also able to store Ca and P again when

supply of those mineral exceeds the requirements (Braithwaite, 1983a). Bone tissue is

constantly being renewed thanks to combined existence of accretion and bone resorption

flows (Ramberg et al., 1970, Braithwaite, 1983a, Seibel, 2000). The difference between

these flows of accretion and resorption features either a net bone mobilization or a net

bone reconstitution (Ramberg et al., 1970; Braithwaite, 1983). The beginning of lactation

in lactating cows is associated with a relatively higher bone resorption than bone accretion

(Ekelund et al., 2006; Puggaard et al., 2014) and thus often a net bone mobilization

(Ramberg et al., 1970; Taylor et al., 2009). At the contrary, after 3 months of lactation,

accretion becomes relatively higher than resorption leading to a bone reconstitution

(Ekelund et al., 2006; Taylor et al., 2009; Puggaard et al., 2014). Consequences of the

amplitude and completeness of these cycles of bone mobilization and reconstitution during

lactation on reproduction and health of cows have been suspected but not demonstrated

yet (McNeill et al., 2002, Oetzel and Miller, 2012, Dixon et al., 2017).

Several studies showed that a variability of the amplitude and completeness of cycles

of bone mobilization and reconstitution exists in dairy cows but quantifications are too
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scarce to allow a characterization of their effects on reproduction performances or health

of cows. It has been observed that parity (Gaignon et al., 2018a) or milk yield (Liesegang

et al., 2000) affected the amplitude of those cycles, with higher bone resorption variation

during lactation in primiparous or high producing cows. Dietary contents of Ca and P

have been also shown to clearly affect either the amplitude of those cycles (Braithwaite,

1983; Taylor et al., 2009; Elizondo Salazar et al., 2013; Puggaard et al., 2014) or their

completeness (Braithwaite 1983). However, a major limit in the characterization of cycles

of bone mobilization and reconstitution is that methods available to quantify them cannot

be applied on a high number of animals. The measurement of input and output flows of Ca,

and eventually P, at the scale of the animal, eventually coupled to radio-isotope, supplies

interesting information about the net daily flow of body retention and mobilization of those

elements, and thus on bone mobilization and reconstitution if we consider that more than

99% of Ca is stored in bones (Ramberg et al., 1970; Taylor et al., 2009). However, those

methods require blocking animals to daily collect urine and feces, that is difficult to perform

at the scale of a whole herd, and regulation about radio-isotope makes their use almost

impossible with large animals. The use of blood biomarkers of accretion and resorption

allowed numerous studies quantifying the amplitude of the bone cycles in the last 20 years

(Liesegang et al., 2000; Ekelund et al., 2006; Puggaard et al., 2014), but the cost of the

analyses relatively limits the number of animals involved in those studies. Bone biopsies

(Beighle, 1999, Dixon 2017) gives information about either the chemical composition or

histomorpholgy of bones but repetitions of those measurements are technically challenging

and can be ethically controverted

The possibility to use milk Ca content to reflect variations in bone resorption could be

suggested from the results of VanHouten et al. (2004), who showed a decrease in milk

Ca content with increased bone resorption in mice. Gaignon et al. (2018a) suggested

that the milk Ca to P ratio may better reflect variations in the equilibrium between bone

accretion and resorption than milk Ca alone in dairy cows. With the possibility to use

MIR spectra to predict milk mineral content (Soyeurt et al., 2009; Gaignon et al., 2018b),

this milk ratio could allow the possibility to follow bone mobilization during lactation on a

large number of dairy cow. Gaignon et al. (2018a) observed that milk Ca to P ratio was

correlated to the ratio between a blood biomarker of bone accretion, i.e. osteocalcin (OC),
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and a blood biomarker of bone resorption, i.e. C-terminal telopeptide of type I collagen

(CTX) when considering both effect of the stage of lactation and parity. Questions remained

to determine if this correlation is still significant when considering variability arising from

feeding strategies at the scale of the lactation or breeds. Normande cows, in comparison to

Holstein cows, are characterized by a lower milk production and higher milk protein and fat

contents (Delaby et al., 2009). Even though milk Ca content in Normande is higher than in

Holstein, Normande secrete lower amount of Ca in milk daily (Gaignon et al., 2018b). The

consequences of those traits on dynamics of bone accretion and resorption during lactation

have never been measured. It has also been suggested that bones can be involved in energy

systemic regulation (Wolf, 2008), which could suggest that feeding strategies differentiated

on the energy density of the diet could affect the dynamics of bone accretion and resorption

at the scale of the lactation. Our hypothesis was that testing the consequences of these

factors of variation on the correlation between milk Ca to P ratio and plasma OC to CTX

ratio would allow determining if this correlation is generalizable to various conditions of

lactation, which would mean that milk Ca to P ratio could be an interesting predictor of

dynamics of bone accretion and resorption at the scale of the lactation.

During one year, measurements of blood biomarkers of accretion and resorption and

milk contents of Ca and P were added to the multi-annual experimental design described

by Bedere et al. (2017). The first aim was to investigate the effect of breed and energy

density in diet on dynamics of bone accretion and resorption along lactation. The second

aim was to test the hypothesis of the milk Ca to P ratio as a biomarker of bone accretion

and resorption equilibrium in various conditions of lactation in dairy cows.

B) Material and methods

1 Animals, diets, management, and experimental design

Thirty cows were involved in this study between 2 months before their expected date

of calving in November 2015, and the end of the lactation in December 2016. These cows

were taken from the 60 cows annually involved in a multi-annual experimental design that

takes place, since 2006, at the dairy research farm of Le Pin-au-Haras (48.448N, 0.098E,

Normandy, France). The experimental design has been described by Bedere et al. (2017).
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Each year, about 60 cows constituted the experimental herd, with half Normande and half

Holstein. Within each breed, half cows were managed under a ‘High’ feeding strategy (FS)

that consisted in higher energy density of diets enabling higher milk yield while limiting

body condition (BC) loss; and half cows were managed under a ‘Low’ FS that consisted in

diets with lower energy density, limiting milk yield while inducing a large BC loss (Table

IV.1). Cows were randomly assigned to the feeding strategies three weeks before their first

calving and remained in it until they were culled due to lack of pregnancy, severe health

problem or accidental death.

Season
Winter Summer

Feeding strategy High Low High Low
Ration Type TMR1 TMR1 PMR2 Grazing
Corn Silage 57% - 0-4 kg DM/d -
Dehydrated Alfalfa 12% -
Energy concentrate3 31% -
Grass Silage - 51%
Big Hale Haylage - 47%
Energy concentrate4 - - 4 kg DM/d -
CMV5 - 2%

Diet Feeding Value6

PDI/UF (g/ 1700 kcal) 96.3 103.4
CP (g/kg DM) 151.7 162.1
Ca (g/kg DM) 9.1 11.2
P (g/kg DM) 3.6 4.7

Grazing7

Surface (ha/cow) - - 0.33 0.55
PDI/UF (g/ 1700 kcal) 108.2 106.1
CP (% DM) 17.7 16.7
Ca (g/kg DM) 6.5 7.1
P (g/kg DM) 3.2 3.3

Table IV.1: Table of diet composition according to season and feeding strategies. 1: TMR = Total Mixed Ration.
2: Partial Mixed Ration. 3: 12% wheat, 12% corn, 12% barley, 11% beet pulp, 45% soybean meal, 1% soybean
oil, 2% melasse, 4% CMV, 1% chloride sodium. 4: 21%, 21% corn, 21% barley, 21% beet pulp, 12% tanned
soybean meal, 2% vegetal fat, 1% melasse, 1% chloride sodium. 5: 50% lime, 22% monocalcium phosphate,
15% magnesia, 4% chloride sodium, 3% melasse, 2% sodium sulfate, 1% water. 6: for TMR and non-grazing
part of PMR. 7: for grazing and grazing part of PMR.

The thirty cows involved in our experiment were selected in October 2015, about two

months before the average calving date of the herd, with half cows taken from the high
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FS and half taken from the low FS. The first criteria of selection was their expected date

of calving with the objective to obtain a group with calving date as gathered as possible

around a week of similar rank within each month to allow one milk and blood sampling

every 4 weeks, gathered at similar stages of lactation among involved cows. Repartition of

cows according to breed, FS, parity and month of calving are presented in table IV.2.

Cows started to receive the winter diet, according to the FS they are attributed, three

weeks before expected calving. Cows were housed in a free stall barn in winter. A total

mixed ration was distributed once a day by an automatic dispenser at 0900 h. Cows had

free access to the trough and to water. Orts were recorded daily before the a.m. feedings.

Lactating cows were fed ad libitum and offered quantities were calculated to allow 10% orts.

Cows were milked twice a day, at 0800 h and 1645 h. Milk production was recorded daily

individually. Milk composition (fat and protein contents) was measured six times a week on

evening and morning milking and somatic cell count was measured once every two weeks.

Cows were weighted once a week. From 23rd March to 1st December, cows grazed permanent

grassland with rotational grazing, paddock changes being decided according to the decline

of milk production of the herd (Hoden et al., 1991).

2 Blood and milk samples

Blood was sampled 15 days prior expected calving date, 15 days after actual calving date

(± 3 days) and every 4 weeks after. Blood was obtained, after milking, before cows were

fed, by venepuncture of the tail vessels into Vacutainer tubes coated with lithium heparin

for Ca, inorganic P (Pi) and Non Esterified Fatty Acids (NEFA) analyses, and EDTA for OC

and CTX. Plasma was recovered after centrifugation at 3 000 x g for 12 minutes within 30

minutes of sampling, and stored at -80°C for OC analysis and at -20°C for other analyses.

Milk was sampled for Ca and P analyses on the previous evening and the morning of blood

samples and was stored at -20°C.

3 Chemical analyses

Plasma and milk were analysed by atomic absorption spectrophotometry (Spectra-AA20

Varian, Les Ulis, France) for Ca content (Murthy and Rhea, 1967; Brûlé et al., 1974) and by

the Allen method using a KONE PRO multi-parameter analyzer (Thermo Fisher Scientific,

Illkirch, France) for P content (Pien, 1969). Milk was mineralized (550°C, 8h) for analyses of
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P contents. Milk fat and protein contents were determined by a commercial laboratory using

mid-infrared analysis (Lilano, Saint-Lô, France). Plasma CTX and OC concentrations were

determined by ELISA with a Crosslaps kit from IDS (Paris, France) for CTX and a kit for OC

from Quidel (San Diego, CA). Plasma NEFA concentrations were determined by enzymatic

colorimetry on a multiparameter analyser (Kone Instruments Corporation, Espoo, Finland).

4 Statistical Analysis

A generalized linear mixed model was used to analyze the using PROC GLIMMIX in

SAS (SAS Institute, 2013):

Yijkl = µ+ Stage of Lactationi + Breedj + Feeding Strategyk+

Stage of Lactation : Breedij + Stage of Lactation : Feeding Strategyik+

Breed : Feeding Strategyjk+

Stage of Lactation : Breed : Feeding Strategyijk + Cowl + �ijkl

where Yijkl was the explained variable, stage of lactation (i ∈ [1,9]), breed (j ∈ [1,2]) and

feeding strategy (k ∈ [1,2]) were qualitative fixed effects, and cow, within a breed and a

feeding strategy, a random effect. Repeated values were on the cow according to stage of

lactation. Selection for the best covariance matrix was performed using AIC for every

variable. Morning and evening milk mineral contents were analyzed separately.

Primiparous and multiparous were analyzed separately, as parity has an important effect

on bone mobilization (Iwama et al., 2004; Taylor et al., 2009; Gaignon et al., 2018a). Due

to high number of elements in the statistical model, non-given p-values in the figures

mean absence of significant effect (P > 0.10). Regressions between plasma OC to CTX ratio

and milk Ca to P ratio were also calculated, using the following model

Yij = µ+ x+ Cowi + Cowi : x+ �ij

where x is the milk Ca to P ratio, Y is the plasma OC to CTX ratio, cow is the fixed effect

of the i-th animal. Only morning milk contents were kept for these analysis because their

sampling were concomitant to that of blood.
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Table IV.2: Repartition of cows between
breed, parity, feeding strategy and month of
calving. FS: Feeding strategy; *: Rank of
lactation between parenthesis is the average
rank of lactation without primiparous

a

C) Results

Due to differences in reproduction

performances between breeds (Bedere et al.,

2017) and to constraints on calving date specific

to our experiment, the proportion of primiparous

and multiparous cows differs between modalities

of breed and feeding strategy. The proportion

of primiparous cows was higher for Holstein

with high feeding strategy compared to the 3 other

FS x breed intersections (Table IV.2). The average

rank of lactation of Holstein were 1.5 (± 0.34) and

2.8 (± 0.70) for high and low FS respectively while

the average rank of lactation of Normande were

3.3 (± 0.95) and 2.7 (± 0.57) for high and low FS.

1 Milk production, milk protein

and fat contents

Milk production was lower for Normande

compared with Holstein for both primiparous and

multiparous (P < 0.01 for both, Figure IV.1A and

B). On average over the 40 weeks of lactation, it

was 20 ± 2.03 and 28.6 ±3.05 kg/d for primiparous

and multiparous, respectively, in Holstein

whereas it was 15.9 ± 2.24 and 19.3 ± 2.22 kg/d in

Normande. Milk production was higher for high FS

compared to low FS (P < 0.01 for primiparous and

multiparous, 27.6 ± 3.05 vs 20.2 ± 2.23 kg/d for

high and low FS, respectively, for multiparous and
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Figure IV.1: Effect of breed and feeding strategy on milk production (A and B) and milk protein content (C
and D) according to parity. Dotted lines and white-filled shape are for the low feeding strategy and straight
lines and color-filled shapes for the high feeding strategy. Holstein: �/�; Normandes: �/�

19.9 ± 2.24 vs 16.2 ± 2.03 kg/d for high FS and low FS, respectively, for primiparous). Milk

production at the peak of lactation was higher and peak of lactation was more pronounced

with Holstein fed with high FS, leading to significant effects of the interactions stage of

lactation x breed, stage of lactation x FS, and stage of lactation x breed x FS. Milk protein

content was higher for Normande compared to Holstein, whatever the FS (P < 0.01, Figure

IV.1C and D) over 40 weeks of lactation (33.6 ± 0.34 vs 29.1 ± 0.47 g/kg for multiparous

Normande and Holstein, respectively). Milk protein content was also higher for the high

FS compared with low FS for both primiparous and multiparous (P < 0.001, 32.3 ± 0.34 vs

30.4 ± 0.46 g/kg in multiparous fed with high vs low FS).
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2 Plasma concentrations of Ca, Pi, OC, CTX and NEFA

For multiparous and primiparous cows, plasma OC, which is the blood biomarker of

bone accretion, clearly decreased after calving to reach a minimum at 0.5 months of

lactation, increased until 3 months of lactation, remained stable then before a decrease in

late lactation after 8 months of lactation (Figure IV.2A and B, P < 0.01). OC concentrations

were numerically more important for primiparous than multiparous (difference not

tested). In primiparous cows, plasma OC was higher with high FS compared with low FS

(P = 0.05, Figure IV.2A), especially at the end of lactation (P = 0.08). In multiparous cows,

plasma OC was higher for Normande compared with Holstein (44.7 ± 3.87 vs. 26.7 ± 5.34

ng/ml on average over the 10 sampling times, P < 0.01, Figure IV.2B), particularly between

the 3rd and the 8th month of lactation (P < 0.01 for interaction stage of lactation × breed)

For primiparous cows, plasma CTX, which is the blood biomarker of bone resorption,

clearly increased after calving until 2.5 months of lactation in primiparous and decreased

after 4 months of lactation (P < 0.001, Figure IV.2C). It was unaffected by the breed, the

feeding strategy or their interactions. For multiparous cows, plasma CTX was relatively

steady during the lactation with the low FS whereas it increased sharply after calving and

decreased also sharply after 3 months of lactation with the high FS (P < 0.01 for stage and

interaction stage x FS, Figure IV.2D). Plasma CTX was higher for Normande than Holstein

(2.2 ± 0.23 vs. 1.5 ± 0.32 ng/mg on average over the 10 sampling times, P < 0.01), with

higher amplitude of variation during the lactation (P < 0.01 for interaction stage of lactation

× breed).

In primiparous cows, plasma NEFA increased after calving and decreased after the 2nd

month of lactation (P < 0.01, Figure IV.2E), with maximal values being reached at 0.5

month of lactation. Plasma NEFA was unaffected by the breed, the feeding strategy or

their interactions. In multiparous cows, with high FS, plasma NEFA hugely and sharply

increased after calving, with values over 800 µmol/l during the 2nd month of lactation,

whereas, with low FS the amplitude of variation were much lower (P < 0.01 for stage of

lactation and its interaction with FS, Figure IV.2F). Plasma NEFA was also lower in

Normande compared with Holstein (P < 0.01), mostly because Holstein showed a higher

increase in NEFA concentrations after calving with the low FS.

Averaged plasma Ca per modalities of stage of lactation, parity, breed and feeding
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Figure IV.2: Effect of breed and feeding strategy on plasma concentrations of OC (A and B), CTX, (C and D)
and NEFA (E and F) according to parity. Dotted lines and white-filled shape are for the low feeding strategy
and straight lines and color-filled shapes for the high feeding strategy. Holstein: �/�; Normandes: �/�

strategy was always comprised between 95 and 120 mg/L (Figure IV.3A and B), which is

within the physiological range of variation for dairy cows. Only one cow was in
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Figure IV.3: Effect of breed and feeding strategy on plasma concentrations of Ca (A and B) and Pi (C and D)
according to parity. Dotted lines and white-filled shape are for the low feeding strategy and straight lines and
color-filled shapes for the high feeding strategy. Holstein: �/�; Normandes: �/�

hypocalcemia 15 days before calving, with a calcemia of 69.6 mg/L which is under 80 mg/L

(Data not shown, Holstein cow within high FS). Plasma Ca remained relatively stable

during the whole lactation (P > 0.10). Plasma Pi showed higher variations throughout

lactation than plasma Ca, with average values over the 10 samplings times between 30

and 65 mg/L. For primiparous cows, plasma Pi was lower with high FS than with low FS

until 3 months of lactation whereas it was lower after (P < 0.01 for interaction stage of

lactation × FS). It was also lower with Normande than Holstein until 3 months of lactation

whereas it was lower after and tended to be lower with Normande compared with Holstein

over the lactation (P = 0.03 for interaction stage of lactation × breed, P = 0.08 for breed).
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3 Milk Ca and P contents

In primiparous cows, both morning and evening, milk Ca content were higher with

Normande compared with Holsetain (Figure IV.4A and C, P < 0.01 for morning and P =

0.07 for evening). In the morning, milk Ca tended to increase at the beginning of lactation

and to decrease after for Normande whereas it tended to decrease at the beginning of

lactation and increase after for Holstein (P = 0.07, interaction stage of lactation × breed,

Figure IV.4C). In the morning at 3 and 4 months of lactation, milk Ca tended also to be

higher with high FS compared with low FS for Normande whereas the contrary tended to

be observed for Holstein (P = 0.08, interaction stage of lactation × breed × FS, Figure IV.4C).

In multiparous cows, milk Ca clearly decreased at the beginning of the lactation to reach a

minimum between 3 and 4 months of the lactation and increased after whatever the breed

or the FS (P < 0.01 in both morning and evening, Figures IV.4B and IV.4D). Milk Ca content

was also higher in Normande than Holstein in both morning and evening whatever the FS

(P < 0.01, figure IV.4B and D, with for evening, average milk Ca over lactation of 1.3 ± 0.02

g/kg for Normande and 1.2 ± 0.02 g/kg for Holstein). Amplitude of variations of milk Ca

during lactation was also higher in Holstein (P = 0.04 interaction stage of lactation × breed

in the evening). Milk Ca was also higher with high than low FS (P = 0.01 in the evening,

Figure IV.4B), especially after the 5th month of lactation (Stage of lactation × FS, P = 0.05

in the morning, P < 0.01 in the evening),.

For primiparous cows, milk Ca to protein ratio did not significantly vary with the stage

of lactation (P > 0.10, Figure IV.4E), whereas, in the evening, it increased during the 1st

month of lactation, reached a maximum between the 2nd and the 4th month of lactation and

decreased after (P < 0.01, Figure IV.4G). It also tended to be lower with high FS compared

to low FS in the evening (P = 0.10, Figure IV.4G). For multiparous cows, as for primiparous

cows, the effect of the stage of lactation on milk Ca to protein ratio was limited (P = 0.10 for

stage of lactation or P = 0.09 for the interaction stage of lactation× breed×FS, Figure IV.4F)

but in the evening milk Ca to protein ratio followed a dynamic during lactation comparable

to that of primiparous cows (P < 0.01). Milk Ca to protein ratio was high with high compared

to low FS whatever the breed in the morning (P < 0.01, Figure IV.4F) or tended to be higher

in the evening (P = 0.10). In the evening, amplitude of variation of the milk Ca to protein

ratio during lactation was higher with the high FS (P < 0.01, interaction stage of lactation
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Figure IV.4: Effect of breed and feeding strategy on milk Ca content (A, B, C and D) and Ca to protein ratio
(E, F, G an and H) according to parity and time of sampling. Dotted lines and white-filled shape are for the
low feeding strategy and straight lines and color-filled shapes for the high feeding strategy. Holstein: �/�;
Normandes: �/�
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× FS). In both evening and morning or for both primiparous or multiparous cows, the effect

of the breed on the milk Ca to protein ratio was barely significant.

For primiparous cows, milk P did not significantly vary with the stage of lactation, except

a transient increase at 5 months of lactation in the morning (P = 0.02 in the morning and

P > 0.10 in the evening, Figure IV.5A and C). For multiparous cows, it decreased after the

1st month of lactation (P < 0.01 in the morning, P = 0.10 in the evening, Figure IV.5B and

D). For both primiparous and multiparous cows, milk P was unaffected by either the breed

or the FS.

Figure IV.5: Effect of breed and feeding strategy on milk P content (A, B, C and D) according to parity and
time of sampling. Dotted lines and white-filled shape are for the low feeding strategy and straight lines and
color-filled shapes for the high feeding strategy. Holstein: �/�; Normandes: �/�

4 Relationship between plasma OC to CTX ratio and milk Ca to

P ratio

Plasma OC to CTX ratio only tended to be affected by milk Ca to P ratio when considering

all the data of the experiment (P = 0.07), and was unaffected by either the cow or the

interaction cow × milk Ca to P ratio (respectively P = 0.42 and P = 0.40). Considering
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only data obtained with Normande or with Holstein did not improve the model. When

considering only data obtained within the high FS, plasma OC to CTX ratio was affected

by milk Ca to P ratio (P = 0.05, Figure IV.6A) whereas it was unaffected by the same ratio

when considering only data obtained with the low FS (P = 0.41, Figure IV.6B). However, the

quality of the regressions remained low in both cases, respectively 0.34 and 0.42 respectively

for the high and the low FS. Two of 12 cows in the high FS presented a negative relationship

between plasma OC to CTX ratio and milk Ca to P ratio whereas 7 of 18 cows were in this

case in the low FS. For both FS, plasma OC to CTX ratio was unaffected by either the cow

of the interaction cow × milk Ca to P ratio.

Figure IV.6: Relationship between plasma OC to CTX ratio and milk Ca to P ratio in A) the high feeding
strategy; B) The low feeding strategy. Bold line = inter-individual regression. Intra-individual regression =
straight lines for high feeding strategy, dashed lines for low feeding strategy. Holstein: blue; Normandes: red

D) Discussion

1 Differences on milk production and composition due to

feeding strategies and breed along lactation and repartition

of cows

Compared with previous results obtained from the same experiment (Bedere et al.,

2017), the effects of feeding strategies and breed on milk production and composition were

expected. High FS led to higher milk production than low FS in relation with the higher
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energy density of the diets fed within the high FS. Normande produced less milk than

Holstein but with higher protein and fat contents, which is a well described characteristic

of the breed (Delaby et al., 2009, Cutullic et al., 2009, Dezetter et al., 2015). Amplitude of

variation of milk production and fat and protein contents between feeding strategies and

breeds were systematically lower in primiparous than multiparous.

2 Bone and adipose tissue mobilization during lactation

according to feeding strategies, parity and breed

Whatever the parity, the dynamics of plasma biomarkers of both bone accretion, i.e. OC,

and bone resorption, i.e. CTX, were very similar to those described in the literature with a

sharp and transient decrease in bone accretion after calving and a more smooth and lasting

effect on bone resorption (Liesegang et al., 2000, Taylor et al., 2009, Puggaard et al., 2014,

Gaignon et al., 2018a). Both plasma biomarkers of accretion and resorption were mostly

higher in primiparous than in multiparous cows as observed previously, indicating a higher

bone remodeling (Iwama et al., 2004, Taylor et al., 2009, Gaignon et al., 2018a). Gaignon et

al. (2018a) also observed a higher amplitude of variation of plasma CTX during lactation in

primiparous than in multiparous cows. In the present experiment, this higher amplitude

could only be observed when the dynamics of CTX of primiparous were compared to those

of the multiparous cows fed the low FS.

In multiparous cows, amplitude of variation of plasma biomarker of bone resorption

during lactation was clearly higher in high than in low FS. This was accompanied by a higher

amplitude of variation of plasma NEFA. These results indicated that the multiparous cows

with high FS mobilized more their bone and their adipose tissue than the multiparous cows

fed the low FS (Cunningham and Klein, 2007). This should likely be explained, at least,

partially, by the higher milk production of the cows fed with the high FS, leading to higher

Ca, P and NEL requirements and maybe a more negative balance of those nutrients at the

beginning of lactation. Liesegang et al. (2000) also described, in dairy cows, an increased

bone mobilization with increasing milk production. Lean et al. (2014) highlighted a possible

role of bone in energy regulation, which could be especially important in the case of dairy

cows. However, the link they proposed was related to adiponectin, osteoblast activity and

osteocalcin production but we did not observe any effect of the treatment of plasma OC in
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the present experiment and thus there is no evidence that such mechanisms could have

been involved. In primiparous cows, no effect of the feeding strategy on either plasma

biomarkers of bone accretion or resorption or plasma NEFA could have been observed. This

has to be related to the limited effect of the feeding strategy on the milk production of those

cows. It is also likely that the high basal bone remodeling activity in those animals allow

a maintenance of the higher calcemia, as numerically observed in figure IV.3, leading to a

lower necessity of bone resorption for calcemia regulation. It is known also that younger

cows present higher ability for digestive absorption of Ca, and it is possible that digestive

absorption can also be involved more effectively for calcemia regulation in those animals

(Horst et al., 1990). This shows the importance to consider the that diet effect on body

reserve mobilization can be very different according to the parity of the cows.

An original result of the present study was that breed affected the dynamics of plasma

biomarkers of both bone accretion and resorption, with higher amplitude of variation of both

OC and CTX in Normande than in Holstein for multiparous cows. This showed a higher

increase in bone remodeling and a relatively higher increase in bone resorption during

lactation with Normande compared to Holstein. These differences could not be attributed

to higher milk production given that milk production of Normande was lower than that of

Holstein. These differences were not associated either to higher adipose tissue mobilization

in Normande. It has been observed in human that ethnic origin can affect the basal level of

blood biomarkers (Seibel, 2000). Such explanation should apply to breed for cows. However,

whether or not these differences of dynamics of plasma biomarkers between cows could

be related to actual differences of bone net mobilization remained to be determined. In

primiparous cows, the effect of breed on the dynamics of plasma bone biomarkers was

not significant, suggesting that the “basal level” would not be so different between breed

but rather that the involvement of bone in calcemia regulation could be different between

breeds. As evocated above, the fact that the effect of breed on plasma bone biomarker was

not significant in young cows could be related to the fact that calcemia regulation would be

easier in those animals due to higher basal bone remodeling and higher ability of digestive

absorption of Ca.

The absence of effect of FS on plasma Ca is not surprising as it is very finely regulated

(Horst et al., 1997), with very low variation all over the dataset. In contrast, plasma Pi
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showed important variations along lactation, but they remained hard to explain. Plasma

Pi is known to be more variable because it is less regulated (Horst et al., 2005). It can be

noticed than phosphatemia decreased sometimes under 40 mg/mL, especially for Holstein

of the high FS, meaning a possible P dietary deficiency for dairy cows (INRA, 2018).

3 Dynamics of milk Ca, P and Ca to protein ratio during

lactation according to feeding strategies, parity and breed

The milk Ca content we observed in Normande has already been described (Gaucheron,

2005, Gaignon et al., 2018b). It was partly explained by the higher protein content in that

breed, as suggested by the less significant effect of the breed on milk Ca to protein ratio

compared to milk Ca. The dynamics of milk Ca content during lactation with multiparous

cows was totally in accordance with that described by Gaignon et al. (2018b), with a clear

decrease at the beginning of lactation and an increase at the end of lactation. The amplitude

of dynamics was less pronounced in primiparous cows with limited effect of the stage of

lactation. This could be due to low number of primiparous cows as the intersection between

FS and breed leading to a high threshold of detection of significant effect. However, some of

the dynamics of milk Ca measured for primiparous cows were similar to those reported by

Gaignon et al. (2018a), with a constant increase along lactation. The results of the present

study also illustrated a high variability of the milk Ca to protein ratio, suggested that milk

Ca content is not determined by milk protein content even though Ca has an important

place in casein micelle structure (Farrell et al., 2006). The ratio between Ca and casein in

milk is as more determined by the equilibrium in the milk between Ca and micelles than

by common pattern of secretion between casein and Ca (Farrell et al., 2006, VanHouten

and Wysolmerski, 2007). Milk P content was mainly affected by the stage of lactation as

described in the literature (Kaufmann and Hagemeister, 1987).

An hypothesis of this study was that the dynamics of milk Ca content would be related

to that of plasma bone biomarkers. However, the clear positive effect of the high FS on the

amplitude of variation on plasma bone biomarker of accretion was not accompanied by a

higher decrease in milk Ca during lactation as we assumed from the study of VanHouten et

al. (2004). This indicates that milk Ca alone may not be a good indicator of the amplitude

of bone mobilization during lactation when comparing diets. A reason could be that several
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organs interact to regulate plasma Ca, and that the role of the mammary gland in plasma

Ca regulation may be limited at the scale of the whole lactation.

4 Can milk ratio Ca to P be a predictor of plasma ratio OC to

CTX within individual?

Gaignon et al. (2018a) suggested that variations of milk Ca to P ratio could reflect

those of plasma OC to CTX ratio during lactation within cows. Thanks to the use of rapid

methods of analyses of milk contents of Ca and P, such as MIR spectrometry analyses,

this relationship could be an interesting tool to measure the shape of the dynamics of the

equilibrium between bone accretion and resorption during lactation in important numbers

of cows. The relevance of such a relationship partly relies on a negative relationship between

milk Ca content and plasma CTX concentration that could be explained by the fact that the

mammary gland is able to reduce Ca secretion in milk and to secrete PTHrP that increases

bone mobilization, in case of low Ca diet, as observed in mice by VanHouten et al. (2004).

The fact that Gaignon et al. (2018a) observed that milk Ca to P ratio could be a better

predictor of bone mobilization than Ca remained unexplained. Anderson et al. (2017)

highlighted that plasma ratio Ca to Pi can be high in case of dietary P deficiency in some

studies with ruminants. This difference could be the fact that breeder cows observed by

Anderson et al. (2017) were facing a P deficiency, when dairy cows may be more subject to

face Ca deficiency.

In the present experiment, the effect of the milk Ca to P ratio on plasma OC to CTX ratio

was not as clear as that observed by Gaignon et al. (2018a) given that it was even hardly

significantly when considering all the data. It became significant when considering only

the data with the high FS, which corresponded better to the conditions in which Gaignon

et al. (2018a) obtained their relationship. The fact that milk ratio Ca to P did not affect

plasma ratio OC to CTX with the low FS may be due low diet energy density limited bone

mobilization and thus that maybe mammary gland did not have to adapt milk Ca content for

regulation of plasma Ca concentrations (VanHouten et al., 2004). Our results could suggest

that milk Ca to P ratio could only be used as a bone biomarker in a case of sufficient energy

density in the diet. However, this impossibility to use the milk Ca to P as bone biomarker

ratio with low energy intake significantly decreases its field of application to follow bone
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mobilization in commercial farms. In France, many dairy farms use pasture based diet in

spring and summer with low or no energy supplementation (Gaignon et al., 2018b), making

almost impossible to use this milk Ca to P ratio as a bone biomarker in commercial dairy

farms.

E) Conclusion

This experiment clearly illustrated that feeding strategy based on the NEL density of the

diets can strongly affect the bone mobilization of cows. In the present experiment, the cows

that mobilized the more their bones were those that mobilized the more their adipose tissue

likely because of a high milk production with high feeding strategy. This experiment also

illustrated that the bone mobilization may be different according to the breed and this effect

would not be related to difference in milk production. In this experiment, the dynamics of

milk Ca during lactation would not have allowed to predict that the cows within the high

feeding strategy would have more mobilized their bones. This experiment also suggest that

milk Ca to P ratio can be related to the equilibrium between bone accretion and resorption

but only with high feeding strategy making difficult the general use of this ration as a

predictor. From this study, it could be imagined that considering the breed and the parity

in the calculation of absorbable requirement could be justified.
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Abstract

This study aimed to evaluate the consequences of increased bone mobilization in early

lactation on the dynamics of the milk Ca content during lactation and bone reconstitution

in late lactation. Fifteen multiparous Holstein cows were distributed among 3 treatments

5 weeks before their expected calving date. Those treatments consisted of the provision of

different diets beginning at 5 d after calving and continuing through 10 wks of lactation.

During that period, the control treatment (NCa) consisted of a diet providing 100% of the

Ca requirements, with a dietary cation-anion difference (DCAD) of 200 mEq/kg DM. The

treatments LCa (Low Ca) and LCaLD (Low Ca, Low DCAD) consisted of diets providing

70% of the Ca requirements, with a DCAD of 200 and 0 mEq/kg DM for LCa and LCaLD,

respectively. After 10 wks of lactation, all cows received the same total mixed ration which

was formulated to meet 100% of the Ca requirements, with a DCAD of 200 mEq/kg DM.

LCa and LCaLD tended to decrease the body retention of Ca at 3 wks of lactation

compared with NCa (-0.95 vs 8.10 g/d, P< 0.09), but did not affect either the dynamics of

the blood biomarkers of bone accretion (osteocalcin) and resorption (CTX) during the 32

wks of lactation or the body retention of Ca at 17 wks of lactation. Cows almost entirely

compensated for the decrease in Ca supply in the LCa and LCaLD compared with the NCa

by increasing their apparent digestive absorption of Ca at 3 wks of lactation (39.6 vs

30.1%, P = 0.03), whereas the apparent digestive absorption was unaffected by the

treatments at 17 wks of lactation. The morning milk Ca content was higher with the LCa

and LCaLD compared to that with the NCa, but as they only appeared after 10 wks of

lactation, those differences may be attributed to genetic differences between cows. Milk

production tended (P = 0.09) to be lower throughout lactation with the LCa and LCaLD

compared with the NCa, with a mean difference of 2 kg/d, whereas milk production did not

differ between the groups of cows affected by the treatments during the previous lactation.

This study indicated that measuring the dynamics of the milk Ca content during lactation

cannot be considered effective for indirectly estimating the dynamics of bone accretion and

resorption of cows. The results also showed that at 3 wks of lactation, an increase in the

apparent digestive absorption of Ca is a main way for cows to adapt to a low Ca supply and

suggested that limited Ca intake at the beginning of lactation can have deleterious effect

on milk production.
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Interpretive Summary

The dynamics of the milk Ca content was measured in dairy cows during lactation to

determine whether an increased bone mobilization could be detected by milk Ca content

dynamic at the beginning of lactation and to quantify the consequences of increased bone

mobilization during early lactation on bone reconstitution in late lactation. Lowering the

supply of dietary Ca to cows at the beginning of lactation only slightly increased bone

mobilization, which was unexpected, but increased digestive absorption of Ca by cows.

However, this experiment showed that such a practice could have a deleterious effect on

milk production.

Keywords: dairy cows, calcium, lactation, bone, milk composition

A) Introduction

Dairy cows excrete an important amount of Ca during lactation due to the high milk Ca

content (Horst et al., 1997), and this Ca flow suddenly and importantly increases later in

lactation (Horst et al., 2005). During the first months of lactation, the dietary intake of Ca

is generally lower than the amount of Ca secreted in the milk, feces or urine (Horst et al.,

1997), and several responses occur to face this unbalance. The first response is an increase

in bone resorption, mediated by the secretion of 2 hormones, PTH and PTHrP, which allow

the use, by other organs, of the Ca contained in the mineralized matrix of bone (Mundy and

Guise, 1999). The net mobilization of bone resulting from this increase in bone resorption at

the beginning of lactation can reach up to 10 to 20% of the bone mass during lactation, with
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the amount of mobilized Ca being replenished later in lactation (Benzie et al., 1955, Suttle,

2010, Dixon et al., 2017). The other responses, such as an increase in the intestinal Ca

absorption or a decrease in urinary loss, occur later (Horst, 1986, Reinhardt et al., 1988),

explaining the existence of cycles of bone mobilization and reconstitution during lactation

in cows (Beighle et al., 1993, Ekelund et al., 2006, Taylor et al., 2009, Elizondo Salazar et al.,

2013, Puggaard et al., 2014).

Questions remain about the consequences of the amplitude and the completeness of

those cycles of bone mobilization and reconstitution on the health and productivity of

dairy cows. Incomplete bone reconstitution at the end of the lactation can result in a

higher susceptibility of cows to the restricted supply of P during the following lactation,

with suboptimal production performances, as highlighted for sucker cows by Dixon et al.

(2017), or maybe to higher susceptibility of milk fever at the beginning of the next

lactation (McNeill et al., 2002). The effects of dietary Ca and P content and strategies for

the supplementation of Ca and P on the amplitude and the completeness of the cycle of

bone accretion and resorption have been quantified in several experiments in lactating

ruminants (Braithwaite, 1983a, Ekelund et al., 2006, Moreira et al., 2009, Taylor et al.,

2009, Elizondo Salazar et al., 2013, Puggaard et al., 2014).

Confirmation of an effect of the amplitude and completeness of the bone cycles on the

health and productivity of dairy cows would consequently affect the estimations of the Ca

and P requirements of those animals. Current recommendations are based on the

principle that daily excretions of Ca and P allow a certain production level, with minimal

fecal and urinary losses and with replacement by an equivalent amount of daily intake of

those elements (AFRC, 1991, NRC, 2001, INRA, 2010). This principle does not consider

that bone mobilization in early lactation and the reconstitution in late lactation that could

constitute either an extra-supply or a specific requirement. Possibly, a strategy of

supplementation would have to be determined at the scale of the whole cycle of

lactation-gestation. However, the amount of published research available remains too

limited to allow a definition of an optimal supplementation strategy of Ca and P at the

scale of lactation (AFRC, 1991, NRC, 2001, INRA, 2010).

A major limit to addressing these issues is the lack of fast and cost-efficient methods for

evaluating, in a significant number of cows, the amplitude and eventually the
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completeness of the cycles of bone mobilization and reconstitution during lactation and

gestation. Measurements of retained Ca and P at the animal scale (Taylor et al., 2009)

allow an evaluation of the daily net flow of mobilized and reconstituted Ca and P reserves,

but it is very time-consuming and requires keeping the animals individually stabled. Bone

biopsies (Beighle, 1999) allow a good evaluation of bone reserve of Ca and P, but the

number of repetitions of the measurement per animal cannot be multiplied on an

important number of animals because of the time, cost and ethics. The concomitant use of

blood biomarker analyses of bone accretion and resorption increased during the last 20

years, and this interesting method allows monitoring of the relative dynamics of bone

accretion and resorption during lactation (Liesegang et al., 2000, Puggaard et al.,

2014, Anderson et al., 2017). This method can be applied to a relatively high number of

cows but is limited by the necessity for conducting several blood samplings during

lactation, with relatively expensive analyses.

VanHouten et al. (2004) showed that a decrease in Ca intake in mice induced a lower

Ca secretion in milk and a higher bone resorption mediated by PTHrP secretion, with both

mediated by the Ca-sensing receptor (CaSR) in the mammary gland; those results suggest

that the monitoring of milk Ca content during lactation could be an inexpensive way to

indirectly estimate the dynamics of bone resorption. Mid-infrared spectra technology

allows a rapid and inexpensive way to determine the milk Ca content (Soyeurt et al.,

2009, Gaignon et al., 2018b). Data collected during several stages of lactation in dairy

cows with different parities (Gaignon et al., 2018a) suggested that milk Ca and P contents

could be related to the plasma concentrations of biomarker of bone accretion and

resorption. However, whether those variations are specifically related to the cycle of bone

accretion and mobilization or other interfering effects is unknown. Thus, the objective of

this experiment was to induce bone mobilization in lactating cows through dietary

treatments and to determine the consequences on (1) the dynamics of milk Ca and P

contents, of the plasma concentrations of biomarkers of bone accretion and resorption, and

the retention of Ca and P by the body, and (2) on bone reconstitution dynamics in late

lactation. The dietary treatments either supplied Ca and P according to the French

recommendation (INRA, 2010), restricted the Ca supply, or restricted the Ca supply and

decreased the dietary anion cation difference (DCAD) known to increase bone resorption.
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B) Materials and Methods

1 Animals and experimental design

The 3 compared treatments consisted of 3 differentiated mineral supplementations

delivered between 5 d after calving and 10 wks from the beginning of lactation. The Ca

content of the supplement was either calculated to allow a fully meet the Ca requirements

of the cows according to the INRA feeding system (INRA, 2018), with a DCAD of 200

mEq/kg DM (Normal Ca, NCa), or it was calculated to provide only 70% of the Ca

requirements of the cows, with a DCAD of either 200 (Low Ca, LCa) or 0 (Low Ca and Low

DCAD, LCaLD) mEq/kg DM. These 3 treatments were planned to allow comparisons

among the 15 lactating cows according to a complete randomized block design, with

lactation stage as the blocking factor. Five wks before the calving date of the cow that was

expected to calve first, 18 multiparous Holstein cows were blocked into three groups of 6

cows according to their expected dates of calving. Cows were assigned to the three

treatments to allow a homogenous representation of groups and parity within each

treatment, and as similar as possible, similar averages of mature equivalent milk

production and milk protein contents as observed in the first 32 wks of the previous

lactation between treatments. The mature equivalent milk production was estimated as

equivalent to milk production for a third lactation cow, i.e., 120% of the milk production for

primiparous cows and 104% for cows lactating for a second time, as established from the

data used by Gaignon et al. (2018b). Measurement started 3 wks before the average

expected date of calving for each group, on 5 cows of the initial 6, with the extra cow being

kept only for blood analyses to replace a cow whose actual calving date might occur too far

from the expected date.

The experiment was conducted at the INRA experimental farm of Méjusseaume

(longitude -1.71°, latitude +48.11°, Brittany, France) from September 1st 2016 to June 30th

2017. During the experiment, the cows were housed in a free-stall barn cubicle, covered

with rubber carpet, except during 3 periods of 3 wks, for measurements of Ca retention,

during which they were transferred to individual tie stalls (1.4 × 2.0 m). The individual

stalls were also covered with a rubber mat with individual troughs and individual water

bowls. During lactation, a total mixed ration (TMR) was distributed twice a day, in 2
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equal-sized meals, at 0830 h and 1630 h. The TMR was distributed by an automatic

dispenser into the individual troughs, specific to each animal, identified by RFID, in the

free-stall barn and directly by animal technicians in the individual tie stalls. Cows always

had free access to the trough and to water during the day. Lactating cows were fed ad

libitum and offered quantities calculated to allow 10% orts. Orts were weighed daily

before the morning feeding. Cows were milked twice a day, at 0630 h and 1630 h. Milk

production and DMI were recorded daily for each individual. Milk composition (fat and

protein contents) and somatic cell count were measured twice a week, at the evening and

morning milkings. Before calving, each cow was fed a fixed amount of diet, with one

distribution per day. Procedures related to care and use of animals for the experiment

were approved by an animal care committee of the French Ministry of Agriculture, in

accordance with French regulations (project number, 7096-20 16082515505689v2).

2 Diets

During the experiment, cows were fed 4 or 5 successive diets according to their

physiological stage and the treatment to which they were assigned (Table V.1). During the

dry period, the offered diets were formulated to cover the requirements for NEL, protein

digestible in the intestine (PDI) and minerals and vitamins of cows according to the INRA

recommendations (INRA, 2010), with restricted quantities offered. The diets offered

during the far-off period, i.e., more than 3 wks before the expected calving date, and the

close-up period, i.e., less than 3 wks before the expected calving date, differed with the

specific objective to lower the dietary Ca and the DCAD. For the first 5 d of lactation, all

cows received the TMR corresponding to the NCa treatment, whose composition was

formulated to cover requirements for NEL, PDI, macrominerals, trace minerals, and

vitamins of cows according the INRA recommendations (INRA, 2010), with a target DCAD

of 200 mEq/kg DM. DCAD is defined as the sum of the diet content of Na+ and K+ minus

the sum of the dietary content Cl- and S2- content, which are expressed in mEq/kg DM.

Five d after calving and until the end of the 10th wk of lactation, cows were assigned to one

of 3 TMRs corresponding to the compared treatments. The LCa and LCaLD TMRs were

formulated to meet the requirements for NEL, PDI, and all macrominerals and trace

minerals, except for Ca, of cows, according to the INRA recommendations (INRA, 2010).

The treatment diets were isocaloric and isonitrogenous with a similar content of P.
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From -5 to -3 weeks 0 to 70 days After 70 days

-3 weeks to calving of lactation of lactation

NCa LCa LCaLD

Offered amount
12 15

TMR TMR TMR TMR
(kg DM/d) ad lib ad lib ad lib ad lib

Ingredients, % of DM

Corn Silage 53.7 80.5 70.0 70.2 70.1 72.1
Hay 14.6 0.0 0.0 0.0 0.0 0.0
Hay (wrapping) 24.5 0.0 0.0 0.0 0.0 0.0
Energy concentrate 0.0 4.1 15.6 15.7 15.1 11.1
Tanned meal 0.0 0.0 10.3 10.3 10.2 0.0
Soybean meal 0.0 10.1 0.0 0.0 0.0 13.1
Colza meal 5.9 0.0 0.0 0.0 0.0 0.0
Straw 0.0 3.3 0.0 0.0 0.0 0.0
Urea 0.0 0.0 1.3 1.3 1.3 0.7
Mineral Feed 0 0.7 2.9 2.3 3.3 2.5
Commercial Mineral

1.311 1.322 0.0 0.0 0.0 0.0
Feed

Mineral Feed g/kg of DM

Calcium Carbonate 0.0 0.0 10.7 4.7 4.4 9.9
Dicalcium phosphate 0.0 0.0 5.3 4.6 4.4 4.7
Sodium Sulfate 0.0 0.0 2.7 2.3 2.3 2.4
Sodium bicarbonate 0.0 0.0 2.2 2.8 0.0 2.4
Sodium carbonate 0.0 0.0 3.1 3.7 0.0 0.0
Magnesium oxide 0.0 0.0 0.9 0.9 0.0 1.4
Hexahydrate Magnesium

0.0 6.7 3.6 3.7 21.5 3.8
chloride

Premix3 0.0 0.0 0.2 0.2 0.2 0.2

Nutrient Content

CP (g/100 g DM) 11.1 10.5 15.5 15.5 15.5 12.7
NEL (MJ/kg) 3.9 6.4 6.7 6.7 6.7 6.6
PDI/NEL (g/MJ) 9.5 11.0 15.8 15.8 15.8 11.9
Ca (g/ kg DM) 0.74 0.42 0.83 0.60 0.58 0.78
P (g/ kg DM) 0.37 0.30 0.41 0.39 0.39 0.40
DCAD (mEq/kg DM) 156.8 34.8 218.0 279.5 0.0 219.9

Table V.1: Diet centesimal composition and nutritional value
1: Kéomine Repro Semoulette; 2: Kéomine Prépa Taries: 3: 3 for trace elements and vitamins. CP: Crude
protien; PDI: Protein digestible in the instestine; NEL: NEt energy for lactation
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Differences in the Ca content and DCAD between the 3 TMRs were achieved only by

formulating different mineral supplements, with all cows receiving the same base ration.

3 Blood and milk sampling

For each group, blood was sampled 3 wks before the average expected date of calving in

the group and at 1, 3, 8, 12, 17, 22, 27 and 31 wks of lactation (average stage of lactation

of the group). After being milked, before being fed, and while restrained in self-locking

head gates at the feedline, the cows were sampled for blood by venipuncture of the tail

vessels. The samples were collected in vacutainer tubes (Monovette, Sarstedt, Nümbrecht,

Germany) coated with lithium heparin for Ca and inorganic P (Pi) analyses, and in tubes

coated with EDTA for osteocalcin (OC) and carboxy-terminal telopeptide of type I collagen

(CTX). OC and CTX are, respectively, biomarkers of bone accretion and resorption (Seibel,

2000). Plasma was recovered after centrifugation at 3,000 x g for 12 min within 30 min of

sampling and stored at -80°C for OC analysis and at -20°C for other analyses. Milk samples

were collected during the morning milking preceding blood sampling. They were stored at

4°C for analyses of fat and protein contents and for separation of the N, crude protein, Ca

and P fractions (i.e., non-protein nitrogen (NPN), non-casein nitrogen (NCN), urea, soluble

Ca and P) and frozen at −20°C for analysis of the total Ca and P contents. Additional

samples of milk were also collected at the morning and evening milkings, twice per wk for

determination of milk fat and protein contents (stored at 4°C before analyses), and on wks

1, 3, 6, 8, 10, 12, 14, 17, 19, 22, 24, 27, 29 and 31 of lactation, samples were collected for

analyses of the milk total Ca and P content (frozen at -20°C before analyses).

4 Measurement of Ca and P retention in cows

For each group, all input (feed and water intake) and output (excretion in milk, urine and

feces) flows of Ca and P were measured 3 times during the experiment, i.e., 3 wks before the

average expected calving date of the group and 3 and 17 wks after the average calving date.

For each measurement, cows were moved from the free-stall barn 2 wks before beginning

the measurements and sent to individual tie stalls for habituation. The individual tie stalls

were located in the same building as the free-stall barn. All cows were kept in a same room

and were able to smell and hear each other. The feeding modalities remained similar to

those applied in the free stall barn. To determine the fecal excretion of Ca and P, large
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trays were positioned behind the cows on d 15 after the entry of the cows into the stall at

0900 h. Gross fecal output was weighed and sampled from d 16 at 0900 h to d 19 at 0900

h. Two representative samples (500 g fresh each) were dried in a forced air oven (80°C, 72

h) to determine the daily amount of fecal DM excreted. These dried samples were pooled

by cow and period for the Ca and P determination. The daily volume of excreted urine was

measured from d 15 at 0900 h to d 19 at 0900 h, by equipping cows with urinary catheters

connected by a Tygon tube to a 25-L container, which was closed with a rubber plug. To

prevent urine deterioration, 250 mL of sulfuric acid (20% vol/vol) was added to the container.

The urine was weighed and emptied daily at 0900 h. Each day and for each cow, a sample

of 1% of the daily excreted volume was stored at −20°C. At the end of the experiment, these

samples were pooled by animal and by period for further Ca and P content analyses.

5 Chemical analysis

Samples of the offered diets, orts, and feces were ground with a 3-blade knife mill

through a 0.8-mm screen. Ash was determined by calcination at 550°C for 5 h in a muffle

furnace. Nitrogen concentration was determined by the Dumas method, according to the

Association Française de Normalisation (AFNOR, 1997), on a LECO apparatus (LECO, St.

Joseph, MI). The dietary, fecal, urine and milk Ca contents were measured by atomic

absorption spectrophotometry (Spectra-AA20 Varian, Les Ulis, France) after

mineralization of the solid samples (500°C for 12 h). Phosphorus contents were

determined using a KONE PRO multi-parameter analyzer (Thermo Fisher Scientific,

Illkirch, France) by the Allen method for P (Pien, 1969). Milk fat and protein contents

were determined by a commercial laboratory using mid-infrared analysis (Mylab,

Châteaugiron, France). Milk content of total N (Kjeldahl), nonprotein N (precipitation at

pH 4.6 with trichloroacetic acid and filtration), NCN (precipitation at pH 4.6 with 10%

acetic acid and 1 M sodium acetate) content, and urea (colorimetric analysis) were

determined according to the methods described in Hurtaud et al. (2000). Plasma OC and

CTX concentrations were determined by ELISA with a CrossLaps kit from IDS (Paris,

France) for CTX and a kit from Quidel (San Diego, CA) for OC.
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6 Statistical analysis

Data were analyzed using PROC GLIMMIX in SAS (SAS Institute, 2013), with a

generalized linear mixed model with repeated values given here:

Yijk = µ+ Treatmenti + Stage of lactationj+

Treatment : Stage of lactationij + Cow(Treatment)k + �ijk

where Yijk was a dependent variable of a cow k, within treatment i at the stage of lactation

j. Treatment, stage of lactation and their interaction were fixed factors, and the cow was a

random factor. Measurements repeated over the stage of lactation were considered by using

a covariance matrix. The choice of the structure of the matrix was determined according to

the structure of the data and then was performed using an AIC for analyses of all variables.

Average flows of Ca and P during the 4 d of measurements were also analyzed independently

during each stage of lactation with a generalized linear model using proc GLM in SAS and

included only the fixed effect of the treatment. These analyses supplemented the previous

analyses, performed with the complete model because it has been shown that with a lower

number of data, the inclusion of repeated measurements in a generalized linear mixed

model can deteriorate the quality of detection of significant effect by increasing the second

species risk (Liu et al., 2012).

C) Results

The distribution of the cows among the 3 treatments had to be modified before the

differentiation of the TMR 5 d after calving. Two cows calved more than 2 wks before

the expected calving: one was assigned to the NCa treatment; the other, to the LCaLD

treatment. They were removed from the experiment and replaced by the extra cows, kept

in each of the considered group, and only one blood sampling before calving was performed

for each replacement cow. Another cow, initially assigned to the LCaLD treatment and

diagnosed with a milk fever, was replaced by a cow initially assigned to the NCa treatment

and belonging to the same group of calving date. At wk 7 of lactation, one cow of the

NCa treatment died due to bowel obstruction, and its data were removed from the data

set. Despite these events, the pre-experimental characteristics of the 3 experimental lots

142



CHAPTER V. EFFECTS OF CA INTAKE ON BONE MOBILIZATION

Figure V.1: Differences between cows according to their treatments on A) milk production, B) mature
equivalent milk production, C) milk protein content and D) milk fat content during the first 32 wks of the
lactation preceding that described in this chapter. NCa: normal line, LCa: dashed line, and LCaLD: dotted
line

remained similar. Average parities were 2.4 for the LCaLD and 3.0 for the TEM and LCa.

Milk production during the first 32 wks of the previous lactation was not affected by the

treatments (Figure V.1A, P = 0.92 for the treatment effect, and P = 0.93 for the effect of the

interaction treatment × stage of lactation). Mature milk yield was not different between

the treatment either (Figure V.1B, P = 0.99 for the treatment effect, and P = 0.95 for the

effect of the interaction treatment × stage of lactation). The average mature equivalent

milk productions over the first 32 wks of lactation were 33.6 (± 3.94), 33.2 (± 3.52) and 33.1

(± 3.52) kg/d for the treatments NCa, LCa and LCaLD, respectively. Neither milk protein

content (Figure V.1C, P = 0.62) nor milk fat content (Figure V.1D, P = 0.58) were affected by
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the treatments during the first 32 wks of the previous lactation, but individual variability of

those last parameters was high. The average milk protein contents over the 32 first wks of

lactation were 29.8 (± 0.97), 31.0 (± 0.87) and 31.0 (± 0.87) g/kg for the treatments NCa, LCa

and LCaLD, respectively. The average milk fat contents over the first 32 wks of lactation

were 36.8 (± 2.48), 40.3 (± 2.22) and 39.3 (± 2.22) g/kg for the treatments NCa, LCa and

LCaLD, respectively.

1 Ca, P and DM intake

During the period of differentiation of the TMR between treatments, i.e., between d 5 and

d 70 of lactation, the Ca intake was significantly lower with the LCa and LCaLD treatments

compared with NCa (Figure V.2A, P < 0.01). During this period, the average daily intake

of Ca was 136.0 (± 4.98) g/d and 126.5 (± 4.98) g/d for LCa and LCaLD, respectively, and

184.1 (± 5.06) g/d for NCa, leading to Ca intake that was 31% lower for the LCa and LCaLD

treatment compared with the NCa, as expected. During the same period, the fulfillment of

Ca requirements, i.e., the difference between the Ca intake and Ca requirements calculated

according the INRA feeding system (INRA, 2010), was negative for the LCa and LCaLD

treatments (-13.4 ± 1.36 and -15.5 ± 1.36 g/d, respectively), whereas it was positive for the

NCa treatment (5.4 ± 1.42 g/d, P < 0.01, data not shown). After d 70 of lactation, when cows

received the same ration, the Ca intake (Figure V.2B) was not affected by the treatments,

and the fulfillment of the Ca requirements always remained positive, with an average value

of 10.9 ± 1.12 g/d. The DMI tended (P = 0.08, Figure V.2B) to be higher for LCa compared

with the LCaLD and NCa treatments, with DMIs of 23.0 ± 0.4, 21.6 ± 0.4 and 22.0 ±

0.5 kg/d for the treatments LCa, LCaLD and NCa, respectively, throughout the lactation.

Consequently, the P intake also tended (P = 0.08, data not shown) to be higher with LCa

compared with the LCaLD and NCa treatments across lactation, with P intake of 91.8 ±

1.70, 86.1 ± 1.7 and 89.4 ± 1.90 g/d for the treatments LCa, LCaLD and NCa, respectively.

Required P coverage was, on average, 4.09 ± 0.90 g/d during the first 70 d of lactation.

2 Plasma concentrations of biomarkers of bone accretion and

resorption, Ca and Pi

The plasma concentrations of OC and CTX were affected neither by the treatments

nor by the interaction treatment × stage of lactation (Figure V.3). For all treatments,
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Figure V.2: Effect of dietary content of Ca and DCAD between d 5 and d 70 of lactation on A) Ca intake and
B) DM intake. NCa: normal line, LCa: dashed line, and LCaLD: dotted line

plasma OC concentrations decreased after calving to reach a minimal value one wk after

calving, whereupon it increased sharply for 10 wks and then more slowly until the end

of the lactation (Stage of lactation, effect P < 0.01). For all treatments, the plasma CTX

concentrations increased sharply after calving to reach a maximal value between wk 3 and

8 of lactation and then decreased until the end of lactation (Stage of lactation effect P <

0.01). The plasma Ca concentration was, on average, 100.3 (± 1.84) mg/L, and individual

values always remained between 80 to 120 mg/L, with only one cow in hypocalcemia at one

wk of lactation (76 mg/L). Plasma Ca concentration tended to be lower at 1 and 3 wks of

lactation compared with the other sampling times (Stage of lactation effect P = 0.06, data

not shown) but was affected neither by the treatments (P = 0.63) nor by the interaction

treatment × stage of lactation (P = 0.31). Plasma Pi concentration was 50.7 (± 1.78) mg/L

on average. Some individual values could be lower than 40 mg/L at 3 weeks of lactation, but

no individual data were higher than 80 mg/L. Plasma Pi sharply decreased after calving,

at 1 wk and 3 wks of lactation, increasing afterward and leveling off at 17 wks of lactation

(stage of lactation effect, P < 0.01, data not shown). It was affected neither by the treatment

(P = 0.89) nor by the interaction treatment × stage of lactation (P = 0.63).

3 Ca and P partitioning and retention

During the 4 d of measurement of Ca and P retention, the Ca intake was lower for the

LCa and LCaLD treatments compared with the NCa at 3 wks of lactation, i.e., during the
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Figure V.3: Effect of dietary content of Ca and DCAD between d 5 and d 70 of lactation on A) plasma OC
concentration and B) plasma CTX concentration. NCa: normal line, LCa: dashed line, and LCaLD: dotted
line

period of TMR differentiation between treatments (P < 0.05, Figure V.4A), whereas the Ca

intake was not affected by the treatment 3 wks before calving and at 17 wks of lactation (P >

0.10 for both stages, interaction treatment × stage of lactation P < 0.001). The daily amount

of Ca excreted in the feces was also lower for the LCa and LCaLD treatments compared with

the NCa at 3 wks of lactation (P < 0.001, Figure V.4B) and was not affected by the treatment 3

wks before calving and at 17 wks of lactation (P > 0.10 for both stages, interaction treatment

× stage of lactation P < 0.001). Apparent digestibility of the Ca increased after calving

(Figure V.4C, P < 0.001) from 21.0% (± 2.33) 3 wks before calving to 36.4% (± 2.10) and

33.4% (± 2.10) at 3 and 17 wks of lactation, respectively. Apparent digestibility of Ca was

not affected by the treatments 3 wks before calving and at 17 wks of lactation but it was

higher for the LCa and LCaLD treatments compared with NCa at 3 wks of lactation (P =

0.03, average of 37.3 ± 3.5% for LCa, 41.7 ± 3.5% for LCaLD and 30.1 ± 3.9% for NCa).

Daily amounts of Ca excreted in urine were low, 2.0 g/d on average, compared to the other

flows of the input-output retention, as expected, and this flow tended to be affected only by

the stage of lactation (P = 0.09, Figure V.4D). However, the daily amount of Ca excreted in

the urine was higher with the LCaLD treatment compared with the NCa treatment and the

LCa treatment at 3 wks of lactation (P < 0.05, interaction treatment × stage of lactation P

= 0.004, 4.4 ± 0.5 g/d for LCaLD vs. 0.5 ± 0.6 g/d for NCa and 0.7 ± 0.5 g/d for LCa). The
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Figure V.4: Effect of dietary content of Ca and DCAD between d 5 and d 70 of lactation A) daily Ca intake,
B) fecal losses of Ca, C) Ca secretion in milk, D) urinary losses of Ca, E) apparent digestibility of Ca and F)
Ca balance. Boxplots are obtained from mean data per animal. Signs give p-values of the dietary effect for
intra-period analyses: ns = not-significant (P > 0.10); T = Tendency (P<0.10), * = significant (P<0.05), ** =
significant (P < 0.01); *** = significant (P < 0.001)
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daily amount of Ca secreted in milk was on average 48.2 ±1.42 g/d at 3 wks of lactation and

42.7 ±1.42 g/d at 17 wks (Figure V.4E). The amount of Ca secreted in milk daily decreased

slightly between 3 and 17 wks of lactation (P < 0.001) and was not affected by the treatments

at any stage. Daily Ca retention, i.e., the difference between input and output of Ca, was

very positive before calving (+17.3 ± 2.84 g/d, Figure V.4F), decreased at 3 wks of lactation to

an average value close to 0 (2.1 ± 2.62 g/d) and increased at 17 wks of lactation to a positive

value (+16.7 ± 2.62 g/d, stage of lactation P < 0.001). At 3 wks of lactation, the daily Ca

retention tended to be lower for the LCa and LCaLD treatments compared with the NCa

treatments (P = 0.09), with values around equilibrium for the LCa and LCaLD (-2.1 ± 4.3

g/d for LCa, + 0.3 ± 4.3 g/d for LCaLD and + 8.1 ± 4.8 g/d for NCa). The daily Ca retention

was unaffected by the treatment 3 wks before calving and at 17 wks of lactation (P > 0.10).

Neither the DMI, intake of P, fecal or the excretion of DM and P were affected by the

treatment or the interaction treatment × stage of lactation (Data not shown). Both the

apparent digestibility of the DM and P increased at calving and leveled off after 3 wks of

lactation. Apparent DM digestibility was 65.1 ± 0.86 at 3 wks before calving, 72.7 ± 0.79%

at 3 wks of lactation and 71.6 ± 0.79% at 17 wks of lactation (P < 0.001), and apparent P

digestibility was 10.9 ± 2.17% 3 wks before calving, 54.7 ± 1.98% at 3 wks of lactation and

47.5 ± 1.98% at 17 wks of lactation (P < 0.001). Daily P retention tended to increase at 17

wks of lactation compared with both other stages of maturity, with values of 4.3 ± 1.66 g/d

at 3 wks before calving, 7.9 ± 1.48 g/d at 3 wks of lactation and 10.0 ± 1.48 g/d at 17 wks of

lactation (P = 0.08).

4 Milk production and composition

Milk production tended to be lower throughout the 32 weeks of lactation for treatments

LCa and LCaLD compared with treatment NCa (P = 0.09, Figure V.5A), with average values

of 36.8 ± 0.9 kg/d for LCa, 35.9 ± 0.9 kg/d for LCaLD and 39.2 ± 1.1 kg/d for NCa. This

production led to a difference in cumulative milk production at 200 d of lactation between the

low Ca treatments (LCa and LCaLD) and the control treatment NCa of more than 400 kg.

The difference in milk production between the low Ca treatments and NCa was maximal at

the fourth week of lactation, with a milk production difference of more than 4.5 kg/d. Milk Ca

content sharply decreased to reach a minimal value at 3 wks of lactation (Stage of lactation

effect, P < 0.01, Figure V.5B). Then, after 8 wks of lactation, the milk Ca content increased
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Figure V.5: Effect of diet content of Ca and DCAD between d 5 and d 70 of lactation on A) daily milk production,
B) milk Ca content, C) milk protein content and D) milk fat content. NCa: normal line, LCa: dashed line,
and LCaLD: dotted line. For milk Ca content, color-filled shapes are for morning milk Ca content and the
white-filled shapes for evening milk Ca content.

for the LCa and LCaLD treatments, whereas it remained stable for NCa (interaction stage

of lactation × treatment P < 0.01 in the morning, non-significant in the evening). After the

24th wk of lactation, the morning milk Ca contents were 1230 (± 48.4) and 1228 (± 48.4)

mg/kg for the LCa and LCaLD treatments, respectively, and 1128 (± 54.2) mg/kg for NCa

(P < 0.01). Milk protein content was numerically higher for cows affected by the treatments

LCa and LCaLD compared with those affected by the NCa between 5 and 9 wks of lactation

and after 20 wks of lactation, but the treatment effect was not significant (Figure V.5C).
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Milk fat content was also unaffected by the interaction of stage of lactation × treatment

(Figure V.5D, P > 0.10).

5 Milk Ca and protein partitioning between soluble and

colloidal phases

Milk casein content was higher with the LCa and LCaLD treatments compared with the

NCa (Figure 6A, P < 0.001), with this difference being more distinct after 17 wks of lactation

(interaction stage of lactation × treatment, P < 0.01). At the end of the period of diet

differentiation between treatments, the milk casein content of the NCa treatment increased

transitorily. The ratio between the milk contents of colloidal Ca and casein increased at the

beginning of the lactation and remained relatively stable after 8 wks of lactation at a value

approaching 36 mg/g (Figure 6B). This ratio was not affected by either the treatments or the

interaction stage of lactation × treatment (P > 0.10). The proportion of soluble Ca among

total Ca was lower for the LCa and LCaLD treatments compared with the NCa (Figure 6C, P

< 0.01). This proportion decreased transitorily at the end of the period of diet differentiation

between treatments for the NCa treatment (Interaction stage of lactation × treatment, P =

0.03). On average, 27% of the milk Ca was in the soluble form. The ratio between the milk

Ca and protein contents increased at the beginning of the lactation to peak at approximately

6-8 wks of lactation and then decreased to level off after 17 wks of lactation to a value close

to 39 mg/g on average (Figure 6D, P < 0.001). It was affected neither by the treatment nor

by the interaction stage of lactation × treatment.

D) Discussion

1 A limited effect of dietary Ca supply and DCAD on the

dynamics of bone mobilization and reconstitution during

lactation

The objective of the treatments LCa and LCaLD was to induce an increased bone

mobilization during the first 10 wks of lactation. For this purpose, the dietary Ca supply

was limited to 70% of the recommended supply to cover the cows’ requirements according
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Figure V.6: Effect of dietary content of Ca and DCAD between d 5 and d 70 of lactation on morning milk A)
casein content, B) ratio of colloidal Ca to N casein content, C) ratio of soluble Ca to total Ca content and D)
ratio Ca to protein content. NCa: normal line, LCa: dashed line, and LCaLD: dotted line.

to the expected milk production and intake according to the INRA feeding system (INRA,

2010). With such restriction of Ca supply, some studies highlighted a decrease in the body

Ca retention at the beginning of lactation in dairy cows, with this decrease in body Ca

retention later reaching negative values (Wohlt et al., 1986, Taylor et al., 2009), whereas

some studies highlighted an increase in the serum concentration of pyridinoline, which is

a biomarker of bone resorption (Moreira et al., 2009). Both results suggested an increase

in mobilization of Ca from bones. To increase the chance to induce a bone mobilization in

our experiment, the DCAD was also decreased for treatment LCaLD. The positive effect of
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low DCAD on bone mobilization is used to prepare the bones of cows to be mobilized before

lactation for milk fever prevention (Goff et al., 2014). An expected effect of lowering the

DCAD is to decrease the pH of the blood and to avoid changes in the PTH receptor

conformation, which is caused by alkalinity, thereby decreasing the receptor affinity for

PTH (Goff et al., 2014). Another expected effect is that bone can release Ca from

bicarbonates when the local pH is low as a buffering system (Bushinsky, 2010). The DCAD

of the LCaLD treatment in our experiment approached 0, which is a maximal limit under

which a positive effect on the prevention of milk fever, and perhaps even on bone

mobilization, could be expected (Charbonneau et al., 2006). In our experiment, the diet

offered to the cows during the first 10 wks of lactation was also intentionally formulated

with a high dietary PDI to NEL ratio, with the objective being to maximize the milk

production capacity by the mammary gland and perhaps the necessity of bone

mobilization (Liesegang et al., 2000). Primiparous cows were excluded from the

experiment, and special care was applied to balance the average parity between

treatments because parity is, in dairy cows, a strong determinant of bone accretion and

resorption throughout lactation (Iwama et al., 2004, Taylor et al., 2009, Gaignon et al.,

2018a) and digestive absorption of Ca (Horst et al., 1990).

However, treatments LCa and LCaLD, compared with NCa, only tended to induce a

small decrease in Ca retention 3 wks after calving, with no effect on the dynamics of the

blood biomarkers of accretion and resorption throughout the lactation. Even at 3 wks of

lactation, the Ca retention remained close to 0 with the treatments LCa and LCaLD and

was not clearly negative as it might have been expected from other studies (Wohlt et al.,

1986, Taylor et al., 2009). A debate exists about the effect of a low supply of Ca and P on

the amplitude of bone mobilization at the beginning of lactation. The results of Braithwaite

(1983) illustrated that a strong restriction of the Ca and P supply did not affect the amount

of Ca mobilized from bone at the beginning of lactation of ewes but strongly reduced the

amount of Ca retained in bone for bone reconstitution at the end of lactation. Benzie et

al. (1955) also showed that a restriction of the Ca supply lowered the mineral contents

of the bones of ewes slaughtered at 100 d of lactation. These results suggest that bone

mobilization at the beginning of lactation was programmed in response to homeorhesis

regulation, which was linked to the stage of lactation, and the level of the Ca supply did
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not affect it. Because we observed only a limited effect of restriction of Ca dietary supply on

bone mobilization at the very beginning of lactation, i.e., at 3 wks of lactation, the possibility

exists of such regulation. However, the data of Taylor et al. (2009) illustrated, in Holstein

dairy cows, a clear effect of dietary Ca supply on the body Ca retention even at 2 to 5

wks of lactation. With Ca supplies approaching those of the low Ca treatments in our

experiment, these authors measured Ca retention of -14.5 g/d, whereas with Ca supplies

approaching those of the NCa treatment, the measured Ca retention was 7.4 g/d. With high

Ca supply, i.e., 1.03 g/kg MS, the Ca retention they measured was even as high as 31.7 g/d.

These observations contradicted the hypothesis that bone mobilization at the beginning of

lactation would be programmed in response to homeorhesis regulation linked to the stage of

lactation independently from the level of Ca supply. After 20 wks of lactation, as observed

by Taylor et al. (2009) and Braithwaite (1983), at the end of lactation in ewes, the Ca supply

also affected the bone reconstitution, with a proportionally higher Ca retention with diets

providing more Ca. In our experiment, we did not observe any effect of the treatment on

the Ca retention at 17 wks of lactation. This result may be explained by the fact that the

dietary supply was not differentiated among the treatments after 10 wks of lactation, that

is during a stage preceding the period of end of bone mobilization, i.e., 3 months in dairy

cows (Horst et al., 2005). This might suggest that the immediate Ca supply may be more

important than the bone status to drive the amplitude of the reconstitution. However, the

difference in the Ca mobilization among the treatments in our experiment may have been

too low to significantly affect the status of bone reserves at 17 wks of lactation.

The dynamics of the blood bone biomarkers throughout lactation observed in our

experiment agreed with those previously observed (Liesegang et al., 2000, Taylor et al.,

2009, Puggaard et al., 2014), with a sharp decrease in OC being observed at calving and

an increase in CTX being observed at the beginning of lactation. These results agreed

with the measurements showing lower Ca retention at the beginning of lactation

compared to that measure before calving or at 17 wks of lactation, illustrating a net bone

reconstitution at those times.
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2 Dairy cows have adapted to low dietary Ca supplies by

increasing digestive absorption of Ca in early lactation

In our experiment, as with that of Taylor et al. (2009) and Braithwaite (1983), the

evolution of calcemia during the lactation-gestation cycle was not affected by the dietary Ca

supply, which confirms that calcemia is very tightly regulated. This suggests that, if bone

mobilization was not the main effector mobilized for the regulation of calcemia when the Ca

supply was lowered in our experiment, other Ca flows must have allowed this regulation.

Our results clearly illustrate that the decrease in Ca intake with the treatments LCa and

LCaLD was almost entirely compensated, at the scale of the organism, by an equivalent

decrease in the daily amount of Ca excreted in feces, i.e., by an increased apparent digestive

absorption of Ca. The apparent digestibility of Ca was even quite high, with an average

higher than 40% for the LCaLD. These results contrasted with those of Taylor et al. (2009)

and Moreira et al. (2009), who observed lower apparent digestibility of Ca at a similar stage

of lactation, with highest values at approximately 35%. A reason for that may be that a

significant proportion of the dietary Ca was provided by alfalfa silage or hay in those studies,

whereas it was mainly provided by a mineral source of Ca in ours. Ca from alfalfa is known

to be less available for absorption in ruminants (Suttle, 2010). Possibly, in contrast to our

findings, these authors could observe an increase in bone mobilization under conditions of

low calcium supply at approximately 3 wks of lactation because the cows could not increase

their apparent absorption of Ca because of the low availability of dietary Ca in their feed. In

our experiment, the cows may have experienced an increase in digestive absorption rather

than a mobilization of Ca from bone to regulate calcemia because dietary Ca was more

available for absorption. This hypothesis would require confirmation. The effect of the

dietary Ca content on the apparent or real absorption of Ca had been clearly illustrated

by Ramberg et al. (1976) on nonpregnant, nonlactating cows on diets that did not contain

alfalfa. A clear increase in bone mobilization at the beginning of lactation with low dietary

supply of Ca has also been observed by Braithwaite (1983) in ewes. However, these authors

also observed a concomitant increase in the digestive absorption of Ca. The reason for the

adaptive mechanisms to co-exist in this study in contrast to our study may be explained by

the very important restriction of Ca supplied compared to that in the experiment of Taylor

et al. (2009), Moreira et al. (2009) or ours. A high restriction of Ca likely necessitates the
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implementation of more adaptive mechanisms.

We clearly observed a strong effect of the physiological stage of the cows on the apparent

digestibility of Ca, with higher digestibility at 3 or 17 wks of lactation compared with 3 wks

before calving. The increase in the absorption capacity of Ca by the digestive tract between

gestation and lactation agrees with the increase in PTH release and 1,25-(OH)2D3 synthesis

at the onset of lactation (Horst et al., 2005) but has not been so clearly illustrated. We also

observed a clear positive effect of the LCaLD treatment on the daily amount of Ca excreted

in urine, but the size of the flow, i.e., less than 4 g/d at 3 wks of lactation, is limited compared

with that of Ca secreted in milk, i.e., approximately 50 g/d or in feces, approximately 100 g/d.

The increase in this flow with the treatment providing a DCAD close to 0 agrees with the

idea that a low DCAD enhances renal affinity for PTH and thus promotes the reabsorption

of Ca from proximal renal tubular fluids (Goff et al., 2014). This possibility suggests that

the low DCAD of this treatment may also have enhanced the affinity of osteoblasts for PTH

and thus induced the osteoclast activity (Goff et al., 2014), but this was not observable with

either the blood biomarkers of bone accretion or resorption or the Ca retention.

3 The relation between the dynamics of milk Ca content and

bone accretion and resorption during lactation

Experiments with lactating mice have demonstrated that a decrease in Ca intake can

induce an increase in bone resorption and a concomitant decrease in the milk Ca to protein

ratio (VanHouten et al., 2004). Those effects have been shown to be mediated by the CaSR

of the epithelial cells of the mammary gland, with a lack of Ca on the CaSR decreasing Ca

transport into the milk and increasing PTHrP secretion by the mammary gland, and thus

bone resorption. Our hypothesis was that low Ca intake would induce both an increase in

bone resorption and a decrease in the secretion of Ca in milk. However, the effects of the low

Ca supply in our experiment had only a limited effect of bone mobilization at the beginning

of lactation; thus, this experiment did not fully allow testing our hypothesis.

The cows affected by the LCa and LCaLD treatments tended to have higher milk Ca

content after 10 wks, which did not agree with our hypothesis for 2 reasons. First, this

difference appeared when the diet no longer differed by treatment. Second, according to our

hypothesis, a lower milk Ca content was expected for those treatments. Because the genetics
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of the cow is known to be a major determinant of milk Ca content in cows (Van Hulzen et al.,

2009) and because the milk Ca content was not measured prior to the previous lactation

when attributing cows to the treatments, possibly the cows of the NCa treatments had lower

milk Ca contents because of their genetics. The milk casein content of these cows was also

lower, and most milk Ca is bound to casein (Malacarne et al., 2014), with a stable ratio

between colloidal Ca and casein, as observed in our experiment. However, we could also

observe a very transient change in the proportion of the milk soluble Ca and even of the total

milk Ca contents when the TMR changed at 10 wks of lactation milk. This result suggests

that milk Ca content may be related to the Ca homeostasis of cows in a very transient way

on the first day of perturbation. Detecting and fully explaining such quick change with a

sampling interval of 2 wks is impossible. This would indicate that the milk Ca content may

not be an indicator of the whole shape of bone resorption at the scale of the lactation.

4 A possible effect of restricted Ca intake on milk production

and cow longevity?

The difference of 2 kg/d in milk production between the NCa treatment on one side and

the LCa and LCaLD treatments on the other side was an unexpected result that could not

be attributed to the measured pre-experimental characteristics of the cows. The

discrepancy between the treatments appeared approximately 2 wks after the

differentiation of the diets according to the treatment, i.e., at 3 wks of lactation, and lasted

until the end of the experiment, i.e., largely after 10 wks of lactation, when all cows began

to receive the same diet. Thus, the low Ca intake possibly impaired the potential milk

secretion by the mammary gland at peak lactation by altering either the proliferation of

the mammary epithelial cells or their exfoliation. Ca has been shown to be involved in cell

proliferation as an important messenger, notably for the breakdown of the nuclear

envelope (Pinto et al., 2015). Possibly, the milk production potential of cows in the LCa

and LCaLD was not totally expressed because Ca may have limited the capacity for cell

proliferation during early lactation. Wohlt et al. (1986) also observed a decrease in the

milk production of cows with lower Ca supply, with dietary Ca contents between 0.9 and

0.6% DM, but the response depended on the Ca source. Taylor et al. (2009) did not observe

any effect of the dietary Ca contents on milk production but two-thirds of the cows were
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primiparous. Moreira et al. (2009) did not observe such an effect either, with multiparous

cows, but their experiment stopped after one month of lactation. Older studies (Becker

et al., 1934) highlighted an effect of Ca supplementation on milk production of dairy cows,

but bone meal was used as Ca supplementation, and bone meal also contained P, which is

known to affect the DM intake and milk production. Possibly, because we used a high level

of protein supplementation, with tanned soybean meal partially protected from protein

ruminal degradation, and multiparous cows, the milk production potential may have been

maximized and the Ca could have been a limiting factor, but this remains to be confirmed

on more animals.

Another unexpected observation in our experiment was that the culling rate of cows

before the next calving was numerically clearly higher in the LCa and LCaLD treatments

compared with the NCa treatments. With the LCa treatment, 3 of the 5 cows were culled

before the next lactation, 1 because of the absence of estrus detection, and 2 because of

claw disorders. With the LCaLD treatment, 1 of the 5 cows was culled because of failures

to be artificially inseminated. All cows from the NCa treatment were kept for subsequent

lactation without health or reproductive problems before the calving. Due to the low

number of cows involved in this experiment, affirmation of an effect of the dietary Ca

content on cow’s reproduction and health from our results was not possible. The

subclinical hypocalcemia during the first three days of lactation has a negative effect on

the reproductive performances of cows. Our results suggest that Ca supply under the

requirements during the first weeks of lactation could also have a detrimental effect

(Caixeta et al., 2017), but this remains to be demonstrated with more animals.

E) Conclusion

Lowering the dietary Ca content to between 0.8 and 0.6 g/kg DM, clearly increased the

apparent digestive absorption of Ca of the cows at 3 weeks of lactation but marginally

affected the body retention that remained nearly zero. This result suggests that bone

mobilization of cow at the beginning of lactation can be unaffected by the supply of Ca, as

long as the source of Ca is available or absorption. The low supply of Ca did not clearly

affect the Ca milk content but may have lowered the milk production and may have
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affected the reproductive performances of the cows and their probability to continue for a

subsequent lactation. These results need to be confirmed using a higher number of

animals, while also suggesting that Ca supplementation must be carefully checked at the

beginning of lactation.
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CHAPTER VI. GENERAL DISCUSSION

The issue of this PhD thesis is that dairy cows are submitted during lactation and

gestation to cycles of bone mobilization and reconstitution with a likely net bone

mobilization at the beginning of lactation and a likely net bone reconstitution between 3

months of lactation and next calving. The effects of the amplitude and the completeness of

these cycles on cow’s health and especially on the susceptibility to milk fever are not

known. Recent publications showed that even subclinical hypocalcemia at the beginning of

lactation can have consequences on reproduction or occurrence of infectious diseases

(Caixeta et al., 2017; Neves et al., 2017). A limit to quantify the effect of the amplitude and

the completeness of the cycles of bone mobilization and reconstitution on cow’s health and

reproductive performance is that these cycles are difficult to measure. The question of this

PhD thesis was to determine if the dynamics of milk Ca content could reflect that of

instantaneous bone resorption and/or accretion. The hypothesis was that, given that the

mammary gland is involved in the regulation of calcemia by modifying concomitantly Ca

secretion in milk and bone mobilization via PTHrP secretion, variations of milk Ca content

and that of bone biomarkers of bone accretion and resorption could be concomitant.

The first step of this PhD was to characterize the variability of milk Ca content in dairy

cows that was not related to genetic factors. It has been observed, thanks to the

PhénoFinLait database that milk Ca content varies according to the stage of lactation, the

diet of the cows or their parity. The second step was to quantify concomitantly dynamics of

milk Ca content and of blood biomarkers of bone accretion and resorption during

lactations in dairy cows. In a first experiment with an unique diet, it has been observed

that primiparous cows had higher amplitude of variation of plasma CTX (biomarker of

bone resorption) and milk Ca during lactation compared to multiparous cows. Even

though the dynamics of milk Ca variation during lactation did not allow predicting that of

blood biomarkers of bone accretion and resorption when considering individuals. The milk

Ca to P ratio appeared to be correlated to the plasma OC to CTX ratio within individuals.

In a second experiment, the link between both ratios was much weaker but this

experiment showed a clear effect of the breed and of the energy level of the diet on the

dynamics of blood biomarkers of bone resorption and accretion. The last step was to

quantify the consequences on milk Ca and P contents of an increased bone mobilization at

the beginning of lactation due to dietary treatments. Unfortunately, the treatments
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designed to increase bone mobilization mainly increased intestinal Ca absorption and

consequences of increased bone mobilization on milk Ca content could not be tested.

However, this experiment suggests consequences of low Ca supply at the beginning of

lactation on milk production and maybe on reproductive performances and health of cows.

In this last part of my PhD, three questions will be addressed. The first one will be to

determine what are the non-genetic factors of variation of milk P content and to understand

why the milk Ca to P ratio could be related to plasma OC to CTX ratio within individuals.

The second one will be to determine across the realized experiments, if it can be concluded or

not that variations of milk Ca content or Ca to P ratio allow a prediction of the shape of bone

accretion and/or resorption dynamics at the scale of the lactation. The last one will be to

determine what can be drawn from the measured dynamics of bone accretion and resorption

considering the role of bone in the regulation of calcemia in various breeding conditions in

dairy cows.
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A) Non-genetic factors of variation of milk P content

The non-genetic factors of variation of milk P content and milk Ca to P ratio were

quantified thanks to the PhénoFinLait database described in the Chapter II.

1 Complements of Material and Methods

Descriptions of the PhénoFinLait bank of milk samples and database are given in

Chapter II. A prediction equation of milk P content from MIR spectra was established. To

achieve this, the milk P content of 495 frozen milk samples taken from the bank of

samples of the PhénoFinLait program was analyzed by the Allen method using a KONE

PRO multi-parameter analyzer (Thermo Fisher Scientific, Illkirch, France, Pien, 1969).

Those samples were chosen to maximize the diversity of the potential factors affecting

variations in P content (i.e., parity, lactation stage, breed, localization, cow diet, milk

yield, and protein yield). The samples were split into 2 groups: the first group contained

348 samples for calibrating the prediction equation, whereas the second group contained

147 samples used as external data to validate the equation. The prediction equation was

then applied to the 200,000 MIR spectra stored in the PhénoFinLait database. Milk Ca to

P ratio estimations were obtained by the ratio of predictions for milk Ca and P contents,

and not by a specific prediction equation.

The database used for analysis of variations of milk P content and milk Ca to P ratio was

slightly different from that used for analysis of variations of milk Ca content in Chapter

II because milk P content was only predicted for milk samples kept in database used in

Chapter II, in which statistical individual with extreme values of predicted milk P content

were removed. From 223,309 milk spectra used for Ca analysis, 222,274 spectra were kept

before the restrictions due to date, stage of lactation, feeding strategy or number of points

per herd that are detailed in Chapter II and were repeated in the present analysis.

Statistical models and definition of feeding strategies used to analyze variations of milk

P content and milk Ca to P ratio were the same as those described in Chapter II . Moreover,

considerations that were given for the Ca, like independence between stage of lactation and

seasonality will be considered as still accurate for P, unless specified. As in Chapter II,

because of the large amount of data gathered in the data basis, P-values could easily be low

(< 0.001). Thus, the effect size (ES) of each simple fixed factor included in the ANOVA model
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for all explicated variables was given. Statistical analyses were performed within breed.

2 Results and Discussion

a Prediction equation of milk P content from MIR spectra

Results of milk P content prediction was good in our case, but a little less precise than

those obtained by Soyeurt et al. (2009) and Toffanin et al. (2015). However, slope of the

regression between predicted and measured values stayed close to 1. The mean milk P

content we observed was similar to Toffanin et al. (2015), with a mean of 933, but lower

than Soyeurt et al. (2009) that had a mean above 1070 mg/kg. The R2

cv we obtained, i.e.

0.76, was lower than those obtained by Soyeurt et al. (2009) and Toffanin et al. (2015),

respectively 0.88 and 0.85, even if we used more milk samples for the calibration of the

prediction equation and we had lower variation within selected samples (80 mg/kg in our

case vs above 100 mg/kg for the two others studies). Our quality of prediction seemed less

good than those obtained by Soyeurt et al. (2009) and Toffanin et al. (2015), but may be

more reliable as more factors of variations may have affected milk P content in our case.

b Description of the database and restrictions

The numbers of data points involved in the mixed models used for the analyses of milk

P content or milk Ca to P ratio were 74,547, 59,130, and 76,819 for the Holstein,

Montbéliarde, and Normande breeds, respectively. Repartition of calving dates and mean

stages of lactation according to breed were similar to those obtained for Ca in Chapter II

(Figures II.1 and II.2). Under-represented feeding strategies were removed (fewer than

2,000 milk samples, data not shown). It gave the same restrictions as those described for

Ca analyses in Chapter II, i.e., strategies "grazing and FC hay" and "grazing and BD hay"

were removed for Holstein and Normande cows, and the "grazed temporary pasture"

strategy was removed for Montbéliarde cow. A high variability in the estimations of

adjusted means was observed for data in August, September and November, as already

observed in Chapter II.

c Non-genetic factors of variation of milk P content

As for Ca, higher milk P contents were found for Normande than for Holstein and

Montbéliarde cows, with average milk P contents over lactation of 987 ± 1.5, 951 ± 1.6 and

958 ± 2.0 mg/kg respectively. The effect of genetics, including breed, on milk P content has
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been described several times in dairy cows (Cerbulis and Farrell, 1976, Hermansen et al.,

2005, Van Hulzen et al., 2009, Nantapo and Muchenje, 2013, Chassaing et al., 2016).

Jersey cows have been described to have a higher milk P content than Holstein or Friesian

cows (Hermansen et al., 2005, Nantapo and Muchenje, 2013). Van Hulzen et al. (2009)

found a high heritability for milk P content (0.60) but this was contradicted by Toffanin et

al. (2015) who found a heritability of 0.12.

Milk P content decreased with parity, whatever the breed (TableVI.1). Differences

between 1st and 5th or higher rank of lactation were 67.5 ± 1.14, 63.5 ± 0.84 and 91.2 ±

0.98 mg/kg respectively for Holstein, Montbéliarde and Normande cows. Parity was the

factor of the model explaining the higher proportion of milk P content variability for the 3

breeds (ES for parity = 0.36 for Holstein, 0.35 for Montbéliarde and 0.48 for Normande;

Tables VI.1 and VI.2) whereas the stage of lactation was the factor of the model explaining

the higher proportion of variability for milk Ca content (Chapter II). This decrease in milk

P content with the parity has been described in the literature over three lactations

without possible explanation (Forar et al., 1982, Kume et al., 1998, Toffanin et al., 2015b).

Parity Holstein Montbéliarde Normande
1 995.3 ± 1.34 a 1000.0 ± 1.76 a 1036.4 ± 1.24 a

2 956.0 ± 1.34 b 963.6 ± 1.78 b 1009.5 ± 1.25 b

3 940.9 ± 1.40 c 948.7 ± 1.80 c 983.9 ± 1.29 c

4 936.7 ± 1.50 d 943.6 ± 1.85 d 961.2 ± 1.38 d

5+ 927.7 ± 1.55 e 936.5 ± 1.80 e 945.2 ± 1.37 e

Table VI.1: Effect of parity (P < 0.001) on milk P content (mg/kg) for each breed. a-eLetters indicate the results
of comparison between parities within a breed. Different letters indicate signifiant differences in P content (P
< 0.05)

Milk P content sharply decreased between the first and second month of lactation by 53.8

± 1.32 mg/kg for Montbéliarde, 42.6 ± 1.43 mg/kg for Holstein and 29.7 ± 1.30 mg/kg for

Normande cows (Figure VI.1). Then it slightly increased between the 2nd and the 5th month

of lactation for Holstein and Montbéliarde cows but the variation after the 2nd month of

lactation remained low for the 3 breeds. The amplitude of the variations after the 2nd month

of lactation was lower than 20 mg/kg for Montbéliarde and Normande cows, and around 30

mg/kg for Holstein cows. The proportion of variability explained by the stage of lactation

was clearly lower than that explained by the parity for the 3 breeds (ES = 0.13 for Holstein,

0.19 for Montbéliarde and 0.09 for Normande; P < 0.001; Table VI.2). Similar effect of stage

167



A). NON-GENETIC FACTORS OF VARIATION OF MILK P CONTENT

Breed P1 Ca/P1 Ca2

Parity Holstein 0.36 0.28 0.10
Montbéliarde 0.48 0.32 0.10
Normande 0.35 0.26 0.16

Stage of lactation Holstein 0.13 0.26 0.33
Montbéliarde 0.09 0.23 0.35
Normande 0.19 0.28 0.21

Calendar Month Holstein 0.15 0.16 0.24
Montbéliarde 0.16 0.16 0.24
Normande 0.15 0.16 0.16

Feeding Strategy Holstein 0.05 0.08 0.05
Montbéliarde 0.09 0.12 0.16
Normande 0.05 0.07 0.06

Feeding Strategy x Calendar Month Holstein 0.08 0.08 0.05
Montbéliarde 0.07 0.05 0.16
Normande 0.10 0.08 0.06

Calendar Month, Holstein 0.16 0.17 0.25
Feeding strategy and Montbéliarde 0.19 0.15 0.31
Feeding Strategy x Calendar Month Normande 0.16 0.15 0.18

Table VI.2: Effect size of explanatory variables of milk P and Ca contents and milk Ca to P ratio. 1: ES
estimated from database used for P. 2: ES estimated from the database used for Ca analysis

Figure VI.1: Effet of stage, within each breed on lactation on : A) milk P content, B) milk ratio Ca to P content
for Holstein (blue), Montbéliarde (green) and Normande (red). a-eLetters indicate the results of comparison
between parities within a breed. Different letters indicate signifiant differences in P content (P < 0.05)

of lactation on milk P content has been described by Hidiroglou et al. (1982) and Kaufmann

and Hagemeister (1987), but not by Neville et al. (1995) who could not describe a constant

effect of the stage of lactation when comparing milk P content obtained from several studies.

Milk P content decreased between March and July for the three breeds, whatever the
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Figure VI.2: Effet of calendar month and feeding strategy on milk P content according to breeds. a-dLetters
represent feeding strategy over a side-by-side comparison within a month (P < 0.05): grazing and field-cured
hay (�), grazing and barn-dried hay (�), maximum grazing (�), grazing and corn silage (�), corn silage (•),
grazed temporary pasture (+)

feeding strategy. It reached its lowest values in July for most strategies (Figure VI.2),

except for the strategies "grazing and FC hay" and "grazing and BD hay". This period of

July corresponded to a decrease in the proportion of grazed pasture in the diet for most

feeding strategies, except "grazing and FC hay" and "grazing and BD hay" (Figure II.4).

The proportion of variability explained by the calendar month was in the same order of

magnitude than that explained by the stage of lactation (ES = 0.15 for Holstein and

Montbéliarde, 0.16 for Normande, Table VI.2). Such variations in milk P content due to

seasonality, with lower values during summer, have been already described (Lenstrup,

1926, Forar et al., 1982, Poulsen et al., 2015, Chassaing et al., 2016) but no explanation
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has been proposed. In the PhénoFinLait database, the decrease in milk P content in July

was concomitant to a decrease in milk protein and lactose contents (data not shown). This

is coherent with the idea that P secretion in milk is related with protein and lactose

secretion via exocytosis (Shennan and Peaker, 2000). This relationship has been shown in

milk with the possibility to predict milk P content using lactose and protein contents (Klop

et al., 2014). At the contrary of milk Ca content, milk P content does not seem to be

affected by the day length (Boudon et al., 2016).

Even though the effect of the feeding strategy or the interaction between the feeding

strategy and the calendar month on the milk P content were significant, the proportion of

variability explained by those variables remained low (ES for feeding strategy = 0.05 for

Holstein and Normande, 0.09 for Montbéliarde and ES for the interaction = 0.08 for

Holstein, 0.07 for Montbéliarde and 0.10 for Normande). Differences in milk P content

between feeding strategies were quite low, barely exceeding 20 mg/kg at a given calendar

month. The ES of the effect of both the feeding strategy and the interaction between the

feeding strategy and the calendar month were higher for Montbéliarde compared with

Holstein and Normande because in Montbéliarde, milk P content was more steady during

the year with the strategies "grazing and FC hay" and "grazing and BD hay" compared

with others. At the contrary of milk Ca content, milk P content did not seem to be affected

by the gradient of the proportion of grazed pasture in the diet in summer. Publications

describing an effect of the diet on milk P content in dairy cows are rare. Ferris et al. (2010)

did not found any effect of dietary P content on milk P content, but they compared levels of

dietary P content that were sufficient to cover P requirements of dairy cows.

Alvarez-Fuentes et al. (2016) showed a decrease in milk P content with lower dietary Ca

content. As it has been shown that Ca content of pasture is the lowest in June and July

(Metson and Saunders, 2012), this could be an explanation of the lower milk P content

observed in summer in the PhénoFinLait database.

d Non-genetic factors of variation of milk Ca to P ratio

The milk Ca to P ratio was higher in Normande compared to both Holstein and

Montbéliarde, with averages over the lactation of 1.32± 0.002, 1.28 ± 0.004 and 1.28

±0.003 g/g for Normande, Holstein and Montbéliarde respectively (Figure VI.1B). These

values were high compared to those published by Cerbulis and Farrel (1976) which were
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comprised between 1.01 and 1.20 g/g. These authors also reported a clear effect of the

breed with higher values for Holstein when compared to Jersey or Guernsey. The milk Ca

to P ratios measured in the PhénoFinLait database were also in the highest values

reported by Kaufmann and Hagemeister (1987) from studies realized in the 60s. The

higher ratios observed in the PhénoFinLait database than in the experiments realized in

the 60s and 70s could suggest an effect of the evolution of the genetics of the cows. Bijl et

al. (2013) observed that both milk Ca and P contents increased in the same range since

the 50s but these contents were expressed in mmol/kg in this study. When considering

that Ca has a higher molecular weight than P, this would confirm the idea that milk Ca to

P ratio expressed in g/g increased since the 50s.

Milk Ca to P ratio decreased with parity, whatever the breed (table VI.3) and parity

explained an important part of variability (ES = 0.28 for Holstein, 0.26 for Montbéliarde

and 0.32 for Normande, Table VI.2). This decrease was coherent with the fact that the

decrease in milk P content with parity was more pronounced with higher ES than that

of milk Ca content. Milk Ca to P ratio also slightly decreased after calving but increased

sharply and continuously between 5 and 11 months of lactation (Figure VI.1). Stage of

lactation explained as much variability as parity with similar range of ES (ES = 0.26 for

Holstein, 0.28 for Montbéliarde and 0.23 for Normande, Table VI.2). This effect of the stage

of lactation was mostly driven by its strong effect on milk Ca content (ES = 0.33 for Ca and

0.13 for P in Holstein).

Parity Holstein Montbéliarde Normande
1 1.24 ± 0.002 d 1.25 ± 0.002 e 1.27 ± 0.002 e

2 1.28 ± 0.002 c 1.28 ± 0.002 d 1.31 ± 0.002 d

3 1.30 ± 0.002 b 1.30 ± 0.002 c 1.32 ± 0.002 c

4 1.30 ± 0.002 b 1.30 ± 0.002 b 1.34 ± 0.002 b

5+ 1.30 ± 0.002 a 1.31 ± 0.002 a 1.36 ± 0.002 a

Table VI.3: Effect of parity (P < 0.001) on milk Ca to P ratio (g/g) for each breed. a-eLetters indicate the results
of comparison between parities within a breed. Different letters indicate signifiant differences in P content (P
< 0.05)

Whatever, the feeding strategies, lowest milk Ca to P ratios were obtained in April, if

not considering November, August and September, during which unexplained variability

of milk composition was high (Figure VI.3). Those lower values in April were concomitant

with the decrease in milk Ca content. The variability of milk Ca to P ratio explained by the
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Figure VI.3: Effet of calendar month and feeding strategy on milk Ca to P ratio (g/g) acconding to breeds.
a-dLetters represent feeding strategy over a side-by-side comparison within a month(P < 0.05): grazing and
field-cured hay (�), grazing and barn-dried hay (�), maximum grazing (�), grazing and corn silage (�), corn
silage (•), grazed temporary pasture (+)

calendar month was lower than that explained by the parity or the stage of lactation (ES

for calendar month = 0.16 for the three breeds, ES for feeding strategy = 0.08 for Holstein,

0.12 for Montbéliarde and 0.07 for Normande, TableVI.2). The higher ES for the feeding

strategy for Montbéliarde was due to the fact that, the strategies "grazing and FC hay" and

"grazing and BD hay", specific to Montbéliarde, drove to lower milk Ca to P ratio compared

with other strategies, especially in winter (Figure VI.3).
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3 Conclusion about non-genetic factors of variation of milk

contents of Ca and P

This supplementary analysis of the PhénoFinLait database showed that the factors of

variation of milk Ca and P contents are quite different. The milk content of both elements

similarly depends on breed with higher contents in Normande compared to Holstein and

Montbéliarde and slightly higher contents in Montbéliarde than in Holstein. The differences

in milk P content between breeds were clearly lower than those of milk Ca content. Within

breed, parity is the factor explaining the higher part of the variability of milk P content

whereas stage of lactation and calendar month explained higher parts of the variability

of milk Ca content. The proportion of grass in the diet, as hay or grazed herbage, that

decreases milk Ca content does not seem to affect milk P content. The effect of the stage of

lactation on milk P content is mainly explained by a drop at the beginning of lactation

whereas this drop was accompanied by an increase at the end of lactation for milk Ca

content.

A consequence of those differences in the variations of milk Ca and P contents is that

milk Ca to P ratio is affected by the stage of lactation with relatively steady value until 4

months of lactation and an increase after. On gross averages, these variations were quite

concomitant to those of the plasma OC to CTX ratio we could observe during my experiments

(see figure VI.6 later in this chapter) with steady values until 3-4 months of lactation, due

to high values of plasma both OC and CTX, and an increase after 4 months of lactation with

more bone accretion than resorption. The fact that milk Ca to P ratio could be correlated,

within cows, to plasma OC to CTX ratio can also make sense from a physiological point of

view. In a literature review, Anderson et al. (2017) highlighted a relationship between

plasma Ca and Pi concentrations, particularly in situation of dietary deficiency of P or

eventually Ca in breeder cows. A general underlying mechanism could be that when the

supply of one of those two elements is too low, a bone mobilization occurs and releases

concomitantly Ca and P. The proportional rate of uptake of Ca and Pi released from bones by

others organs would be higher for the element that is not sufficiently provided, which would

increase, at least transitory, the plasma concentrations of the other one, at the origin of this

negative relationship between plasma Ca and Pi concentrations. In parallel, in adequate

dietary situations compared to dietary deficiency, it could be considered that the plasma
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concentration of the element that could be deficient would comparatively slightly increase.

The inverse relationship between plasma Ca to Pi ratio and plasma CTX in situation of

low dietary supply of P in breeder cows obtained by Anderson et al. (2017) illustrated this

principle. Our assumption was that, during lactation, dairy cows adequately supplemented

are more susceptible to be submitted to situations with difficulties of regulation of plasma

Ca concentration rather than plasma Pi concentration. The principles outlined before would

draw to a negative relationship between plasma Ca to Pi ratio and CTX, as the increase in

bone resorption by Ca challenge would lead to a higher plasma Pi concentration. This would

lead to a positive relationship between plasma Ca to Pi ratio and OC to CTX ratio, when

Ca is driving the bone mobilization, when it would become negative when P drives the bone

mobilization, like it is the case for Anderson et al. (2017). However, plasma Ca is more

regulated by the organism than plasma Pi and it would be consistent that this relationship

would not be as accurate as that shown by Anderson et al. (2017). If we consider the role

of the mammary gland in the regulation of plasma Ca concentration demonstrated by Van

Houten et al. (2004), the fact that the relationship between milk Ca to P ratio and plasma

OC to CTX ratio we observed could be more accurate than that between plasma Ca to Pi ratio

and plasma OC to CTX ratio makes sense, as both milk Ca and P contents would be affected,

due to low plasma Ca concentration. Van Houten et al. (2004) showed that the amount of

Ca secreted in milk could decrease to allow the regulation of plasma Ca concomitantly with

higher bone resorption in case of very low Ca dietary supply. This would mean that variation

of milk Ca could be more pronounced than variation of plasma Ca in case of Ca deficiency.

At the contrary the link between plasma Pi and milk P is less known, but it cannot be

excluded that high plasma Pi can increase milk P. This is a only a suspicion given that the

main parameters known to affect milk content of P are milk protein and lactose contents,

and that Pi is suspected to be excreted via Golgi secretory membrane and Pi content in

Golgi vesicles is either generated by UDP uptake for lactose synthesis or provided by casein

phosphorylation (Shennan and Peaker, 2000). Finally, the results of Anderson et al. (2017)

and ours, suggest that the relationship between plasma Ca to P or milk Ca to P ratios and

plasma OC to CTX ratio exists but could be very dependent on the nutritional situations or

homeostatic challenges considered in the comparison and more specifically on the Ca and P

dietary supplies.
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B) Can the dynamics of milk Ca content during

lactation be used to predict that of bone

mobilization and reconstitution?

1 Methods for cross analysis of the 3 experiments carried out

in this thesis

To answer this question, a cross analysis of the results of plasma concentrations of

biomarkers of bone accretion and resorption and of milk Ca contents in the 3 experiments

described in this thesis was carried out. To facilitate the reading of this part of the text,

the 3 experiments were named as follow: ‘Parity-Unique TMR’ for the experiment described

in Chapter III, ‘Breed and E density’ for the experiment described in Chapter IV, ‘Mineral

supplementation’ for the experiment described in Chapter V.

An objective of this section was to analyze the variability of the measured parameters

between the three experiments. To achieve this, cows used in the 3 experiments were split

between 13 groups according to the experiment, their parity (primiparous or multiparous),

their breed (Holstein or Normande) and the dietary treatments that were specific to each

experiment. The definition of the 13 groups, the numbers of cows constituting each group

and the names of the dietary treatments are resumed in table VI.4. For each group, only

data from the day when milk and blood were both sampled on a same cow were kept. Thus,

plasma concentrations of OC and CTX obtained before calving were discarded, as well as

milk contents of Ca, P or protein that were obtained with no concomitant analyses of

plasma OC and CTX concentrations in the experiment ‘Mineral supplementation’. For the

statistical effect of the dynamics of plasma OC and CTX and milk Ca, protein and P during

lactation, times of sampling were approximated to the month of lactation during which

they occurred. As no sample was collected during the 4th month of lactation for the

‘Mineral supplementation’ experiment, data from this month of lactation were removed

from statistical analysis, but not from figures, to obtain a complete block design. If several

samples of blood or milk were collected on the same month of lactation, values were

averaged.

Several statistical models were used for the cross analysis of the 3 experiments. To
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Experiment (Chapter) Breed Treatment 1 Primiparous Multiparous

Parity-Unique TMR (III) Holstein UTMR 17 16

Breed and E density (IV) Holstein HFS 4 2
LFS 3 4

Normande HFS 2 4
LFS 4 7

Mineral supplementation (V) Holstein NCA 4
LCa 5
LCaLD 5

Table VI.4: Number of cows constituting the 13 groups used for cross analysis of the 3 experiments described
in this PhD thesis. 1: UTMR = Unique TMR fed in experiment ‘Parity-Unique TMR’ (Chapter III), HFS
and LFS = High and Low feeding strategies used in experiment ‘Breed and E density’ (Chapter IV), NCa,
LCa, and LCaLD for the ‘Normal Ca’, ‘Low Ca’, ‘Low Ca and Low DCAD’, respectively in experiment ‘Mineral
supplementation’ (Chapter V).

analyze the variability between groups of average values and of the dynamics over lactation

of plasma concentrations of bone biomarkers and milk contents of Ca and P, the following

model was used:

Yijk =µ+ Stage of lactationi +Groupj + Stage of lactation : Groupj+

Cow(Group)k|j + �ijk

(VI.1)

where Yijk is the explained variable, and stage of lactation and group were considered

as qualitative fixed effects; cow was a random effect within a group. Analyses were realized

using PROC GLIMMIX (SAS Institute, 2013). The matrix covariance selected was that

presenting the lower AIC.

For the analysis of the relationship between milk contents of Ca and protein or between

plasma OC to CTX ratio and milk Ca to P ratio, an intra-individual regression was realized,

using R (R Development Core Team, 2008), and the following model was used:

Yij = µ+ βX + Cowi + β : Cowi ×X + �ij (VI.2)

where Yij is the explained variable by the continuous variable (X). The effects of the cow

and the interaction between the cow effect and the X predictor were considered as fixed,
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according to the question.

2 An important variability of the dynamics of plasma CTX

across experiments

We observed, previously in this thesis, that plasma OC concentrations were higher in

primiparous than in multiparous cows in experiments ‘Parity-Unique TMR’ and ‘Breed

and E density’, as well as in experiment ‘Breed and E density’ with multiparous Normande

compared to multiparous Holstein cows. The cross-analysis of the plasma OC

concentrations shows a high variability of this parameter across experiments (Group, P <

0.001, Figure VI.4) but also a rather consistent pattern of variation with the stage of

lactation across groups. The parity explains a high proportion of the variability of the

average plasma OC concentrations between groups. The lowest concentrations were

observed for the multiparous cows of the experiment ‘Breed and E density’ whatever the

feeding strategy. The effect of the stage of lactation was quite consistent among

experiments (Stage P < 0.001) with lowest values during the 1st month of lactation, a

sharp increase after, mostly before the 2nd month of lactation, and a plateau more or less

steady according to the groups after. The increase at the beginning of lactation could be

smoother for some groups of multiparous cows from the experiments ‘Breed and E density’

and ‘Mineral supplementation’ and some irregularities could be observed after 2 months of

lactation according to the groups (Interaction group × stage of lactation, P = 0.01). The

clear effect of the parity on plasma OC concentrations is consistent with the idea that

primiparous cows are still growing with more bone accretion and remodeling as already

observed by Iwama et al. (2004) or Taylor et al. (2009) during the first months of lactation.

The shape of the dynamics over lactation we observed was also quite consistent with

consensual observations from the literature, with a sharp increase at the beginning of the

lactation and quite constant concentrations after two months of lactation (Liesegang et al.,

2000, Taylor et al., 2008, Taylor et al., 2009, Puggaard et al., 2014). The studies of

Holtenius et Ekelund (2005) and Ekelund et al. (2006) were the only studies, as far as we

know, to illustrate a regular increase until 25 weeks of lactation and, nothing, excepting

maybe strong particularity of the used breed, Swedish Red and White Breed, explained

this specific result. The clearly effect of the breed we observed, with higher OC
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concentrations for Normande compared with Holstein, was not as strong as that of the

parity.

Figure VI.4: Effect of the experimental group on the dynamics of the plasma osteocalcin (OC) concentration
over lactation

We also observed in the previous parts of this thesis that the average plasma CTX

concentration was higher in primiparous than in multiparous cows (experiments

‘Parity-Unique TMR’ and ‘Breed and E density’) and tended to be higher in Normande

than in Holstein cows (‘Breed and E density’). It also appeared that the amplitude of

variation of CTX during lactation was higher with the high feeding strategy compared

with the low feeding strategy (‘Breed and E density’), with multiparous Normande

compared to multiparous Holstein (‘Breed and E density’). It could be higher in

primiparous that in multiparous cows (‘Parity-Unique TMR’, ‘Breed and E density’-LFS)

but this latter result depended on the feeding strategy given that the amplitude of

variation of CTX during lactation was lower in primiparous cows compared with

multiparous cows for the high feeding strategy in the experiment ‘Breed and E density’.

The cross-analysis of the plasma CTX concentrations confirms a high variability of the

dynamics of plasma CTX concentrations across groups (Figure VI.5), higher than that of

plasma OC concentrations. Plasma CTX concentrations increased during the first month

of lactation in all groups and decreased after 4 months of lactation in most groups (Stage,

P < 0.001), but highest values were reached at different stages of lactation according to the
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group. The variability between 2 and 4 months of lactation could be high and the

amplitude of variation within groups between stage was also very variable (Interaction

group × stage of lactation, P < 0.001). Higher variability of the dynamics of plasma CTX

concentration was observed for the experiment ‘Breed and E density’ compared to both

others. Even though part of this higher variability in this experiment could be attributed

to erratic variation due to the low number of individuals in certain groups, the amplitude

of variation remained higher in this experiment. The fact that the dynamics of bone

resorption over lactation, and more specifically that of plasma CTX concentration, are

more variable than that of accretion (OC) is consistent with the literature. Most

specifically, several authors showed that dynamics of plasma concentration of bone

biomarker of bone resorption over lactation can be affected by the diets of the cows or the

balance between cows’ requirements and supply, which is less the case for bone accretion.

Liesegang et al. (2000) observed an increased bone resorption with increased milk

production. Moreira et al. (2009) observed an increase in serum PYD with lower dietary

Ca content. Puggaard et al (2014) observed an increase in serum CTX with lower dietary

P content. All those authors did not observe any effect of the compared dietary Ca or P

contents on the dynamics of bone accretion. Only Boudon et al. (2016) observed effect of

DCAD and day length on bone accretion and not on bone resorption. From these results, it

seems that bone resorption responds to insufficient mineral supply, due to higher milk

production (Chapter IV, Liesegang et al., 2000) or inadequate mineral supplementation

(Moreira et al., 2009, Puggaard et al., 2014, Anderson et al., 2017). This is in accordance

with the action of PTH and PTHrP in case of hypocalcemia, which effect is to increase bone

resorption. Effect of DCAD on bone accretion may be linked with the fact that a part of Ca

in bone is transferred into blood to maintain blood pH. It is possible that this Ca comes

from bone liquid, and thus less Ca is available for mineralization of organic matrix in bone.

When considering the analysis of the plasma OC to CTX ratio across experiments, it

appears that it was only affected by the stage of lactation (P < 0.001, figure VI.6) and the

interaction between stage of lactation and group (P < 0.001) and not by the group (P =

0.50). This suggests than even with high differences between groups on mean values of

OC and CTX concentrations due to parity, breed or treatments, the ratio smoothed those

differences. The plasma OC to CTX ratio increased continuously during the 4 first months
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Figure VI.5: Effect of the experimental group on the dynamics of the plasma carboxy- terminal cross-linking
telopeptides of collagen type I (CTX) concentration over lactation

of lactation but the increase could be sharper after, especially for the experiment ‘Breed and

E density’. The increase in the plasma OC to CTX ratio during the lactation, is coherent

with the literature suggesting that the bone mobilization is important in early lactation

and is replaced gradually by bone reconstitution (Ramberg et al., 1970, Braithwaite, 1983a,

Ekelund et al., 2006, Puggaard et al., 2014).

Figure VI.6: Effect of the experimental group on the dynamics of the plasma OC to CTX ratio over lactation
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Finally, the cross analysis of the experimental results of this thesis illustrates that we

obtained a clear variability of the dynamics of plasma CTX concentrations over lactation.

Part of this variability could be attributed to the breed and the parity of the cows, but also

to the feeding strategy. Thus it can be verified that we obtained enough variability to test

our hypothesis that milk Ca content could be related to bone resorption when considering

within cows variations during the lactation.

3 A weak link between the variability of milk Ca content and

that bone resorption at the scale of the whole lactation

a Cross-analysis of milk Ca content

When considering experiments independently we observed several links between

dynamics of bone accretion during lactation and of milk Ca contents. In the experiment

‘Parity-Unique TMR’, the younger cows showed higher amplitude of variation during the

lactation for both plasma CTX and milk Ca. In the experiment ‘Breed and E density’, the

Normande cows showed both higher plasma CTX concentration and amplitude of variation

during lactation that were also accompanied by higher milk Ca content and higher

variation of milk Ca content during lactation. However, these links were weak and not

always consistent. When looking at the variability of the dynamics of milk Ca content

between individuals, it appears, in experience ‘Parity-Unique TMR’, that it was not related

to that of plasma CTX. The high effect of the feeding strategy on the dynamics of CTX in

multiparous cows in the experiment ‘Breed and E density’ did only affect that of milk Ca

content at the very end of lactation. The amplitude of the dynamics of milk Ca content

during lactation was more pronounced in multiparous cows than in primiparous cow in the

experiment ‘Breed and E density’, at the contrary of what we observed in the experiment

‘Parity-Unique TMR’. Milk Ca content also differed at the end of lactation between 3 tested

groups in experiment ‘Mineral supplementation’ whereas plasma CTX was not affected.

The cross-analysis shows that the average of milk Ca contents is strongly affected by the

group (P < 0.001, Figure VI.7). The differences between the groups are partly explained

by higher values for Normande compared with Holstein which was consistent with the

observations issued from the analyses of the PhénoFinLait database. However, strong

variations within breed could also be observed in our set of data. Given the high effect
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of the genetic of the cow on the milk Ca content (Van Hulzen et al., 2009) and the low

number of cows involved in most groups, it is likely that most of this variability is explained

by genetic factors that remained to be elucidated. In most groups, the milk Ca content

decreased during the first 2 months of lactation and slowly increased until the end of the

lactation (stage of lactation, P < 0.001), which was consistent with the observations issued

from the analyses of the PhénoFinLait database. However the dynamics of milk Ca content

could be very different from one group to another (Interaction group × stage of lactation, P

< 0.001). Part of this variability could be due to the erratic variations of the milk Ca content

that could be observed in the ‘Breed and E density’ experiment due to the low numbers of

animals in some of those groups but also to instability of the diet between pasture during the

turnout in Spring due to difficult meteorological conditions on the year of the experiment.

It can be noticed that the overall range of variation of milk Ca content, over 0.5 g/kg in our

dataset, is important in comparison to the variability described in the literature (Van Hulzen

et al., 2009, Poulsen et al., 2015, Toffanin et al., 2015b, Chassaing et al., 2016). However,

dynamics in the ‘Breed and E density’ experiment were far from the one observed from the

PhénoFinLait program, with important variations in comparison with the groups from the

‘Parity-Unique TMR’ and ‘Mineral supplementation’ experiments.

Figure VI.7: Effect of the experimental group on the dynamics of the milk Ca content over lactation

All those results illustrate that the variability of average milk Ca contents over

lactation between animals is very determined by the genetics and thus cannot be an
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indicator of environment or feeding conditions. If some links could be observed between

the dynamics of milk Ca content and plasma CTX concentration during lactation, those

links lack of consistency and it is not possible to imagine that the dynamics of milk Ca

content over lactation within an individual could be an indicator of that of bone resorption.

This conclusion can be drawn even more if we consider that the variability of the plasma

CTX was relatively high in the dataset obtained from our experiments. The variability of

the dynamics of milk Ca is more difficult to explain than that of CTX and several

publications suggested that milk Ca content can be explained by milk protein content

(Alais, 1984, Gaucheron, 2005). A next question is to explain if a part of variations of milk

Ca content during the lactation could be explained by variation of milk protein content in

our dataset.

b Cross-analysis of milk Ca to protein ratio

It has been considered that milk Ca content was mostly determined by milk protein

content (Alais, 1984, Gaucheron, 2005), due to 1) the role of Ca in the stability of the

structure of micelles of caseins in milk (Malacarne et al., 2014), 2) the fact that secretion

of Ca by the mammary epithelial cells into milk was firstly described as mediated by the

incorporation of Ca in caseins (Neville and Peaker, 1979), 3) the high correlation between

milk contents of Ca and protein when comparing species (Jenness, 1979). The analysis of

the PhénoFinLait database (Chapter II) suggested that, even though a correlation exists

between milk Ca and protein contents, milk protein content only explains a low part of the

variability of milk Ca content. Indeed, the correlation between milk contents of Ca and

protein was relatively weak with a R2 that did not exceed 0.3 within a breed. A certain

variability of the dynamics of the milk Ca to protein ratio during lactation could be

observed (Figure II.7). When looking at the relationship between milk Ca and protein

contents that could be observed on the dataset gathered from the experimental part of this

thesis, it appears that both milk contents of Ca and protein were weakly correlated as

observed in the PhénoFinLait database (R2 = 0.24, Figure VI.8A). Part of the correlation

was explained by the breeds given that Normande cows had higher contents of both Ca

and protein than Holstein and that, regressions performed on data from either Normande

or Holstein explained less variability with lower slopes (Figure VI.8B). Our question is to

determine if a part of the variability of milk Ca content during lactation, i.e. within cow,
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could be explained by the milk protein content. Within-cow regressions with model VI.2

show that average Ca content for a given milk protein content was strongly explained by

the cow (Cow effect P < 0.001, Figure VI.8B). However, in most cows, a positive relationship

between milk Ca and protein contents could be explained with, nevertheless, a high

variability of the slope between individual (Effect of the interaction cow × milk protein, P

< 0.001). The model VI.2 explained 72% (R2) of the variability of milk Ca content but the

contributiosn of the effects of the cow and the interaction cow × milk protein were similar.

Finally, this means that only a small part of the variability of milk Ca content during

lactation, i.e. within cow, could be explained by the milk protein content.

Figure VI.8: Regression between milk Ca content and protein content. Black bold line is A) regression between
Ca and protein contents B) regression between Ca and proteins contents corrected from the effect of cow

When looking at the effect of the group of cows on both milk protein content and milk Ca

to protein ratio (Figure VI.9), dynamics of milk protein content during lactation had similar

shapes according to the groups, even if some dynamics could show some breaks, like that of

primiparous Normande with HFS between 10 and 14 weeks of lactation in the experiment

‘Breed and E density’ (Figure VI.9A, interaction stage of lactation × group, P < 0.001). The

milk protein content decreased during the second and third month of lactation, as expected,
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and increased after until the end of lactation (Stage of lactation P < 0.001). Normande

showed higher milk protein content and some groups showed very low milk protein contents

(Group, P < 0.001). Dynamics of milk Ca to protein ratio exists during lactation with a

clear effect of the stage of lactation (P < 0.001, Figure VI.9B). For the groups from the

experiments ‘Parity-Unique TMR’ and ‘Mineral supplementation’, milk Ca to protein ratio

sharply increased during the first month of lactation and then gradually decreased until

the end of the lactation. Important and erratic variations of milk Ca to protein ratio could

be observed for the groups from the experiment ‘Breed and E density’ and may explain the

significant effect of the interaction stage of lactation × group (P < 0.001). The group effect

significantly affected the milk Ca to protein ratio (P < 0.001).

The inconsistent links we could have observed between dynamics of milk Ca content

and that of plasma CTX concentration in our experiments was not observed when

considering milk Ca to protein ratio rather than milk Ca content. In the experiment

‘Parity-Unique TMR’, the youngest cows showed higher amplitude of variation of plasma

CTX during lactation for both plasma CTX and milk Ca but not for milk Ca to protein

ratio. In the experiment ‘Breed and E density’, the Normande cows showed both higher

plasma CTX and higher amplitude of variation during lactation that were also

accompanied by higher milk Ca content and higher variation of milk Ca content during

lactation but not by similar variation of milk Ca to protein ratio.

From a physiological point of view, the higher relevance of milk Ca to protein compared

with milk Ca content, as an indicator of bone resorption, is not clear. In the publication of

Van Houten et al. (2004) showing an implication of the mammary gland in the regulation

of Ca in mice, the low dietary Ca content induced a decrease in the milk Ca to protein

ratio and not in the milk Ca content because milk protein content increased. The authors

concluded that the mammary gland was able to secrete less Ca to avoid a decrease in plasma

Ca concentration. However, their conclusion was based on the hypothesis that Ca secretion

in milk would be firstly determined by the amount of casein secreted and that the mammary

gland would be able to marginally affect Ca secretion by modulating the amount of Ca linked

to casein. However, it can be argued, from results published after 2004, that this view has to

be modulated. VanHouten et al. (2007) illustrated that the equilibrium established between

casein and Ca in the Golgi apparatus of MEC is different from that established in the milk
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Figure VI.9: Effect of the experimental group on the dynamics of A) the milk protein content and B) Ca to
protein ratio over lactation

after secretion. Indeed, only 40% of Ca secreted in milk by the MEC is secreted with casein,

the reminder being secreted as free Ca via the transporter PMCa2. At the contrary, the

proportion of colloidal Ca in milk, i.e. associated to casein, is close to 66% as observed in

‘Mineral supplementation’ experiment and in the literature (Kaufmann and Hagemeister,

1987, Flynn and Cashman, 1997), the reminder being free Ca. It cannot be argued either

that secretions of Ca and casein in milk from the MEC are completely independent. It may

even be likely that, for a given casein secretion, the Ca secretion is limited to a maximum

value because a presence of high quantity of soluble Ca in milk, that could not be included

in casein micelle, has to be limited to avoid formation of solid precipitates (Neville et al.,

1995, Gaucheron, 2005). This limitation may occurs because at high concentrations of free

Ca secreted in milk by the MEC, concentration gradient between MEC and milk would be

high and secretion of Ca via PMCA2 would require an important amount of ATP, which could

become too important for the CEM maintenance. However, under this maximum limit, the

results synthetized by Farrel et al. (2006) and Malacarne et al. (2014) suggest that the

amount of Ca secreted by the MEC can be modulated without affecting the stability of the

micelle of casein because of a decrease in the size of the micelle when the quantity of Ca

secreted in proportion of casein decreases. This would mean that the mammary gland has
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latitude to modulate the amount of Ca secreted for a given amount of casein secreted. Our

results suggest that a maximum of Ca to protein ratio is barely reached for both Holstein

and Normande in our experiments, as it only happens during the second month of lactation

in 2 groups of cows (Figure VI.8). This could mean that in the range of variation of milk Ca

to protein ratio obtained in our experiment, the mammary gland would have had important

latitude to modulate independently Ca and casein secretion.

This point will be discussed in the last section of this general discussion. However, our

data illustrated a clear variation of milk Ca content that could be linked to bone resorption

with the underlying idea that lowering milk Ca content in some cases could be concomitant

with a decrease in milk Ca and increase in bone resorption. However, this general rules

could not be generalized.

c Cross-analysis of milk Ca to P ratio

In experiment ‘Parity-Unique TMR’ (Chapter III), the variations of milk Ca to P ratio

during lactation, i.e. within cows, seemed to be correlated to that of plasma OC to CTX

ratio. The correlation was still present but less good in the experiment ‘Breed and E density’

(Chapter IV), especially for LFS. The relationship between both ratios was not tested in the

experiment ‘Mineral supplementation’ because our objective to increase plasma CTX with

low Ca treatments was not achieved. The aim of the section is to illustrate the variability of

milk P content and milk Ca to P ratio, to compare the relationship between plasma OC to

CTX and milk Ca to P ratios across experiments and to try to conclude about the relevance

of this ratio.

Milk P content clearly decreased during the first month of lactation and could be quite

steady after for some groups (experiments ‘Parity-Unique TMR’, ‘Mineral

supplementation’) with erratic variation in the ‘Breed and E density’ (Figure VI.10A ,

stage, P < 0.001, interaction stage × group P=0.01). Milk P content was clearly affected by

the group with lower values for the experiment ‘Breed and E density’ (P<0.001). The

higher milk P contents with Normande compared with Holstein, expected from the

PhenoFinlait database (cf. Section A of this general discussion), was not observed in figure

VI.10A due to the very low value observed for both breeds of cows in the experiment ‘Breed

and E density’ compared to others. Similarly, effect of parity within a treatment tended to

be opposite to that expected from the PhénoFinLait database, with higher P content for
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multiparous in ‘Breed and E density’ experiment. As for Ca, the observed range of

variation of milk P content we observed, almost 0.5 g/kg, was far higher than those

reported in the literature, i.e. less than 0.2 g/kg for Toffanin et al. (2015). The coefficient

of variation was 37% in our case, when Chassaing et al. (2016) reported a coefficient of 5%.

In experiments ‘Parity-Unique TMR’ and ‘Mineral supplementation’, the milk Ca to P ratio

increased after the 1st month of lactation and remained relatively steady after whereas it

was much higher in the experiment ‘Breed and E density’ with huge variation between

months after the 1st month of lactation (P < 0.001 for stage of lactation, group and their

interaction, Figure VI.10B). The milk Ca to P ratios observed in the experiment ‘Breed

and E density’ are very high compared with those observed with the PhénoFinLait

database (Figures VI.1 and VI.3).

Figure VI.10: Effect of the experimental group on the dynamics of A) the milk P content and B) milk Ca to P
ratio over lactation

To compare the relationship between plasma OC to CTX and milk Ca to P ratios across

experiments, the groups were redefined by avoiding the differentiation of breeds and

parities. Six groups were compared resulting from the 6 feeding strategies that were

tested across the experiments (Figures VI.11 and VI.12 ). The reason of that choice is that

1) we observed in experiments ‘Parity-Unique TMR’ and ‘Breed and E density’ that breed

and parities were not factors of differentiation of the relationship between plasma OC to
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CTX and milk Ca to P ratios, 2) we wanted to dispose of groups with a significant number

of individuals. A positive and significant relationship between both ratios could be

observed from the cross-analysis, when all data of the dataset gathered in the

experimental part of this thesis were included in the analysis, with a significant effect of

the milk Ca to P ratio on plasma OC to CTX (P < 0.0009, Figure VI.11) and a R2 of 0.48.

Neither the effect of the cow or the interaction between the cow and milk Ca to P ratio

were significant, which would suggest that, theoretically, this ratio could even allow an

estimation of the plasma OC to CTX ratio even though measurements were not repeated

within individuals. This is possible because milk Ca and P on one sides and plasma OC

and CTX on the other side vary in the same direction when considering various parities or

breeds (experiments ‘Parity-Unique TMR’ and ‘Breed and E density’). However, given the

high variability of the results and the relatively low R2, an isolated interpretation of milk

Ca to P ratio remains difficult to consider.

Figure VI.11: Regression between milk Ca to P ratio and plasma OC to CTX ratio within each treatment.
Black bold line are mean regression A) between OC/CTX and Ca/P B) between OC/CTX and Ca/P corrected
grom individuals differences

When considering regressions within groups of feeding strategies (Figure VI.12), it

appears that within cow, correlation was relatively high in the experiment ‘Parity-Unique
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TMR’ (R2=0.69, with a significant effect of the milk Ca to P ratio, P < 0.001), and lower for

the treatments HFS of the experiment ‘Breed and E density’ (R2 = 0.34 with a significant

effect of the milk Ca to P ratio, P < 0.008). The effect of the milk Ca to P ratio on plasma

OC to CTX ratio was not significant for LFS of the experiment ‘Breed and E density’ with a

R2 of 0.42. It tended to be significant for the treatment LCa of the experiment ‘Mineral

supplementation’ with a R2 of 0.48 and was not significant for the treatments NCa and

LCaLD of the same experiment.

Figure VI.12: Regression between milk Ca to P ratio and plasma OC to CTX ratio within each treatment.
Blue = Holstein; Red = Normande; straigth line = Multiparous; dashed line = Primiparous

As explained in the first section of the general discussion, the relationship between milk

Ca to P ratio and plasma OC to CTX ratio could be explained by the ideas that plasma Ca and

Pi vary inversely due to the relative deficiency of P or Ca in the organism compared to the

requirements and that those variation in plasma would induce variation in milk Ca and P

contents. From these principles, it would be expected that the positive relationships that we
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could observe in our experiment were due to situations where the relative deficiency in Ca

was higher than that in P. Anderson et al. (2017) observed a negative relationship between

plasma Ca to Pi ratio and CTX in breeder cows which would lead to a negative relationship

between milk Ca to P ratio and plasma OC to CTX ratio in cows if the principles given

above were respected. With those assumptions, it could be considered that differences in

the regression we could observe between groups of feeding treatments could be due to the

relative deficiency of P or Ca in the organism compared to the requirements. Indeed, the

regression was better in the experiment ‘Parity-Unique TMR’ than in ‘Breed and E density’

which may be due to higher relative deficiency of P compared to Ca in the experiment ‘Breed

and E density’. In this latter experiment, the dietary P content was similar to that of

the ‘Parity-Unique TMR’ but the milk production was also clearly higher. The regression

was also better in the treatment HFS compared with LFS of the ‘Breed and E density’.

Dietary P content was similar for both treatments but milk production was higher on the

HFS treatment which could induce a higher deficiency of P. The number of cows in each

treatment in the experiment ‘Mineral supplementation’ may have been too low for possible

interpretation.

To validate the hypothesis that differences in the slopes of the regression between milk

Ca to P ratio and plasma OC to CTX ratio could be due to the relative deficiency of P

or Ca in the organism compared to the requirements, it would be necessary to measure

concomitantly both ratios during lactation in cows submitted to various situations of relative

deficiency of P compared with Ca. If this hypothesis was verified, it could be imagined

that the dynamic recording of milk Ca to P ratio, thanks to MIR, either during lactation of

individual cows or during the year in milk tank, could allow the detection of breaking point

meaning that the relative ratio between relative deficiencies of Ca and P have changed.

It cannot be excluded that the drop in milk Ca to P ratio observed in the PhénoFinLait

database during the turnout (Figure VI.3) could not be explained by such phenomenon.

Another question that arises is how milk P variations can reflect those of plasma Pi. The

measurement of milk Pi rather than plasma Pi may provide a better relationship between

milk Ca to Pi ratio with plasma OC to CTX ratio. From the actual knowledge, milk Pi

content is the result of equilibrium of a gradient of concentrations between the vesicles of

secretion and cytosol in MEC. Pi enters vesicles of secretion with ATP, that releases Pi after
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being hydrolyzed for the formation of lactose and proteins (Neville et al., 1995) and then a

part of Pi returns into cytosol. In case of higher bone resorption, plasma Pi concentration

should increase, and thus cytosol Pi concentrations also. In such case, the entry of Pi in

vesicle of secretion may be more difficult due to higher Pi concentration in cytosol, leading

to lower Pi exchange, higher Pi concentration in vesicle of secretion and thus in milk. The

distinction between soluble and micellar Ca and P seemed less relevant because of the

permanent equilibrium between colloidal Ca and P linked to micelles of casein and soluble

Ca and P.

However, as long as mechanisms of secretion of Ca and P into milk are not totally

described and understood, it remains difficult to fully determine if milk content of those

minerals can help to constitute indicators of bone mobilization in cows and in which

conditions. Even though important progress has been made during the last years to

understand the actual knowledge of Ca secretion, the lack of knowledge around its

entrance in MEC, that may be determinant for the Ca secretion in milk, compromises the

understanding of how milk Ca content is determined in case of Ca insufficient supply.

Mechanisms of P secretion in milk has been less studied. The fact that Pi is only excreted

in milk by vesicle of secretion is now established but the molecular mechanisms

determining the equilibrium of Pi between cytosol and vesicle of secretion remain to be

described. Another limit to the use of those fractions of milk Ca and P in milk is their

method of analysis that are still long and thus expensive as long as MIR equation of

prediction will not be tested and maybe established.
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C) The role of the mammary gland in the regulation of

calcemia

The part of the discussion aimed to show how the results described in this thesis bring

information about the link between regulation of plasma Ca concentration and milk Ca

content in lactating cows, and more generally about the role of the mammary gland in the

regulation of plasma Ca concentration. More specifically two questions arise in relation with

this general context: 1) Can milk Ca content may be a more efficient indicator of short term

variations of regulation of plasma Ca concentration than of the shape of bone mobilization

at the scale of the lactation? 2) Is the effect of the mammary gland on the regulation of

plasma Ca concentration mainly mediated by the modulation of the milk Ca content? To

answer those questions, an interpretation of the temporal integration of organ responses

for the regulation of the plasma Ca concentration is necessary.

1 Temporal integration of organ responses for the regulation

of plasma Ca concentration

In non-lactating animals, the responses allowing the regulation of calcemia in response

to a stimulus of hypocalcemia are multiple with different temporalities, the first one being

a very fast increase in PTH secretion into the blood. The detection of a decrease in

calcemia by CaSR in the parathyroid glands is the triggering event, resulting into an

almost instantly release of PTH into blood (Brown, 1991). This is possible because PTH is

permanently synthetized in the chief cells of the parathyroid glands, which constitute a

stock, only secreted when required. The increase in PTH in the blood is then rapid but

transient because notably of the short half-life of PTH (Bilzekian et al., 2014). The PTH

increase in blood lasts no more than one hour before blood PTH decreases. At the level of

the cells able to respond to PTH, PTH bounding to receptor has a decuple effect because

PTH receptors are coupled with G protein (Durand and Beaudeux, 2011). This blood PTH

increase results into more bone resorption by higher osteoclasts activity, higher kidney Ca

reabsorption and higher 25-OH-vitamin D activation into 1,25-(OH)2-vitamin D by the

second phosphorylation in the kidney. This activation of 25-OH-vitamin D and its effect on

the Ca absorption at the intestinal level arrives in a second time after the PTH secretion
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but the consequences of the action of 1,25-(OH)2-vitamin D last longer than that of PTH

(Zull et al., 1966), due to action of 1,25-(OH)2-vitamin D on gene expression and cell

proliferation. This leads to an increase in the capacity of Ca absorption in intestine and in

osteoclasts proliferation in bones, and thus in bone resorption (Bouillon et al., 1995, Horst

et al., 1997). In case of long hypocalcemic challenge, an increase proliferation of chief cells

allows increasing the capacity of PTH secretion (Brown et al., 1995).

In lactating animals, and more specially in lactating cows, the actions of the mammary

gland, and among them the secretion of PTHrP, are also responses allowing the regulation

of calcemia during hypocalcemic challenge. The kinetics of PHTrP secretion and the

duration of its action are far less known than those of PTH, particularly because the

effects of CaSR activation on MEC are not totally described yet. However, if considering

that milk PTHrP concentration may reflect the amount of synthetized PTHrP

(Ardeshirpour et al., 2006), several days would be necessary for a complete response of the

mammary gland to an hypocalcemic challenge, in term of PTHrP synthesis (Uemura et al.,

1997). The time during which PTHrP remains active in blood is not known either, given

that concentration of circulating PTHrP is very low and remains hard to detect, even

during lactation. In the specific case of the hypocalcemic challenge that occurs at the onset

of lactation in dairy cows, the first physiological response that allows the regulation of

calcemia is considered to be an increased bone mobilization (Braithwaite, 1983a, Horst,

1986, Kovacs and Kronenberg, 1997, Beighle, 1999, Horst et al., 2005, Holtenius and

Ekelund, 2005, Ekelund et al., 2006, Taylor et al., 2009), confirming that bone mobilization

is a faster response to regulate plasma Ca concentration than increased Ca absorption in

the intestine.

The results we obtained in Chapter V (experiment ‘Mineral supplementation’), i.e. an

increase in intestinal absorption with low dietary Ca content at 3 weeks of lactation and

a very weak increase of bone mobilization, suggested that, with long term hypocalcemic

challenge, an increased intestinal absorption is favored over an increase bone mobilization.

As discussed in Chapter V, this may have been because of the high absorbability of the Ca

provided to the cows in our experiment. This would mean that the relative involvement

responses allowing the regulation, among increased intestinal Ca absorption or increased

bone resorption, would depend both of the time after the start of the hypocalcemic challenge
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but also on the amplitude of the challenge. Increased bone mobilization may be the first

response involved after the start of an hypocalcemic challenge, but it seems that when the

cows can adapt to hypocalcemic challenge by increasing Ca intestinal absorption, this latter

adaptive response is favored over increasing bone resorption that would more affect the

animal, by decreasing body Ca reserved and bone strength.

2 Can milk Ca content be a more efficient indicator of short

term variation of regulation of plasma Ca concentration than

of the shape of bone mobilization at the scale of the lactation?

The hypothesis of this thesis was that an increased variation of milk Ca content during

lactation could be related to an increased amplitude of dynamics of bone mobilization.

However, our results suggest that this is not systematic. Indeed, we observed in the

experiment ‘Parity-Unique TMR’ that an increased amplitude of variation of milk Ca

content during lactation in primiparous cows was accompanied by an increase variation of

the plasma CTX concentration. However, in the experiment ‘Breed and E density’, a huge

increase in the amplitude of variation of the plasma CTX concentration during lactation

was not accompanied by any increase in the range of variation of milk Ca content.

Considering the milk Ca to P ratio, instead of milk Ca content, allows a prediction of the

plasma OC to CTX ratio, i.e. of the equilibrium between bone accretion and resorption

during the lactation. However, the prediction is not precise enough to allow a prediction of

the amplitude of bone mobilization at the scale of the lactation.

A reason of the fact that the amplitude of variation of milk Ca content during lactation

does not reflect that of bone mobilization may be that the decrease in milk Ca content, as

an adaptive mechanism for regulation of calcemia in case of hypocalcemia challenge, is

only transient, as could be bone mobilization when intestinal absorption has the ability to

increase. In this thesis, we observed several situations with transient variation of milk Ca

content that could have been explained by variation of Ca requirement or supply. For

instance, data of the PhénoFinLait database (Chapter II) illustrated that a transient

decrease in milk Ca content was concomitant with an increase in milk production at the

turnout to grazing, meaning more Ca requirement for lactation. In the experiment

‘Mineral supplementation’ (Chapter V), at the end of the period of differentiation of
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treatment at 10 weeks of lactation, milk Ca content of cows of the NCa treatment

decreased when their dietary Ca content decreased, whereas the milk Ca content of cows

of the LCa and LCaLD treatments increased when their dietary Ca content increased. In

the experiment ‘Breed and E density’ (Chapter IV), important variation of milk Ca content

could also be observed at the beginning or ending of grazing periods (Figure IV.4).

To conclude whether a decrease in milk Ca content could be a response of an

hypocalcemia challenge, it would be necessary to measure daily the succession of adaptive

mechanism regulating calcemia, with cows submitted to hypocalcemia challenges with

several levels of severity. The measurement of the succession of adaptive mechanism

among bone mobilization, increased intestinal absorption or decreased Ca secretion in

milk would allow determining the temporality of the response of the mammary gland.

Considering several hypocalcemia challenges with various levels of severity would allow

determining the priority between responses in case of moderate challenges. Hypocalcemia

challenge could be low dietary Ca content as tested in the experiment ‘Breed and E

density’ (Chapter IV).

If milk Ca content was only transiently affect by the regulation of calcemia, a daily

following of milk Ca content, via MIR measurement for instance, could allow detecting

rupture in the Ca homeostasis of cows due to diet change for instance, which could

constitutes a tool to check if the mineral supplementation is adapted. It would also be

worth to determine if following variation of milk Ca content between milkings at the onset

of the lactation could allow quantifying the difficulties of the cows to regulate their

calcemia and then their susceptibility to milk fever. This would be very useful to apply

targeted preventive action after the first or second milking or for epidemiological

monitoring of subclinical hypocalcemia that can only be detected with blood sampling

currently, allowing then a better understanding of milk fever and its consequences

(Caixeta et al., 2017, Neves et al., 2017, Rodríguez et al., 2017, Wilhelm et al., 2017).
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3 Is the effect of the mammary gland on the regulation of

plasma Ca concentration mainly mediated by the

modulation of the milk Ca content?

The implication of the mammary gland in the regulation of calcemia is well demonstrated

(VanHouten et al., 2004, Mamillapalli et al., 2013, Kovacs, 2016), as non-expression of

CaSR in mice induced dysfunctions in Ca regulation during lactation (Mamillapalli et al.,

2013). A question arising when reading the literature is to determine whether this effect is

mediated by a specific decrease in the Ca secretion by the MEC or by a less specific decrease

in milk production. VanHouten et al. (2004, 2007) suggested that it would be mediated

by a decrease in milk Ca content, but in their study, only the milk Ca to protein ratio

decreased in situation of decreased dietary Ca content, which was only due to an increase

in the milk protein content given that the milk Ca content, expressed by kg of milk did

not vary. Kovacs et al. (2016) suggested, from these data, that the decrease in dietary

Ca content could also have reduced water transport into milk and thus milk production,

which could have explained the increase in milk protein content. This conclusion could

have been contradicted by studies showing no effect of CaSR depletion on milk production

(Ardeshirpour et al., 2006, Mamillapalli et al., 2013). However, a major limit in those latter

studies is that they were realized with mice, with indirect measurement of milk production

thanks to pups’ growth. In such conditions, it is likely that the measured milk production

is more representative of milk solids production than actual milk volume including water.

The short-term adaption of milk Ca content we could observed in the analysis of the

PhénoFinLait database at turnout and in the experiment ‘Mineral supplementation’ at the

end of the differentiation of the diets between treatments suggests that the decrease in milk

Ca content could be an adaptive mechanism to hypocalcemia challenge but it may be limited.

Indeed, the results issued from the PhénoFinLait database illustrated that Ca milk content

decreased during the turnout to pasture, in relation with an increased milk production,

without avoiding the increase in the daily amount of Ca secreted in milk. The results

obtained from the experiment ‘Mineral supplementation’ (Chapter V) suggested that a lower

milk production could occur with diet with low dietary content. The fact that the effect of

the treatments in this experiment on milk production remained after the differentiation of
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the treatments suggests that potential of milk production was altered maybe because low

Ca in cells that limit cell proliferation or maybe because CasR can be involved in apoptosis.

198



����������

This thesis showed that the variations of milk Ca content during lactation cannot be a

good indirect indicator of the amplitude of bone mobilization throughout lactation. Thus,

following dynamics of milk Ca to better understand effect of bone mobilization on cow’s

health and performances seems difficult. It is possible that pressure of measurement, with

one sampling time in a month in most cases, was too low to allow detecting variations in milk

Ca content related to calcemia regulation in dairy cows. A higher sampling pressure, with

stronger challenge of calcemia regulation may have been necessary to study how animals

regulate Ca secretion in milk to maintain calcemia. However, our results suggested that,

with a monthly sampling frequency, and in certain conditions, the dynamics of milk Ca to

P ratio could give a general idea of the evolution of the equilibrium between bone accretion

and resorption throughout lactation.

This thesis resulted in the identification of factors that could affect bone remodeling or

the amplitude of bone mobilization during lactation in dairy cows. The diet fed to the cows

and notably the diet energy density strongly affected the amplitude of bone mobilization

during lactation, in relationship with the induced effects induced milk production. On the

contrary, no effect of dietary Ca content was observed. Dairy breeds also showed

differences in the amplitude of bone mobilization during lactation, with higher bone

mobilization in Normande than in Holstein cows. Bone remodeling was also higher in

primiparous than in multiparous cows and primiparous cows may also have a higher

amplitude of bone mobilization during lactation than multiparous cows. This latter result
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remain, nevertheless, to be confirmed and seems to be highly dependent on environmental

conditions.

This thesis also showed that bone mobilization is not the only response to hypocalcemic

challenge during lactation, with the observation that an increase in Ca absorption at 3

weeks of lactation may be sufficient to maintain calcemia if the digestive availability of the

dietary sources of Ca is high. This would mean that bone mobilization is not a preferential

response to a long term Ca challenge for the organism, at least if digestive absorption can

be enhanced. The results obtained during this thesis also raised the question of a possible

effect of a low dietary Ca supply in early lactation on milk production all over lactation. This

surprising result needs to be confirmed on a larger scale. If verified, this result would be

a demonstration of the necessity to supplement dairy cows to cover their Ca requirements

at the beginning of their lactation. Consequences of low Ca at the beginning of lactation on

cows’ health and reproductive performance would also have to be investigated.

Finally, it would also be interesting to determine if daily milk Ca content variation can

reflect important hypocalcemic challenge in dairy cows. This possibility would be very useful

for the study of subclinical hypocalcemia in early lactation, to better understand how it can

be avoided and its consequences on cows’ health and performances.
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This work provided some gene-associated insights to facilitate further 

investigation of the mechanisms underlying lactation in dairy cows.

Key Words: lactation, bovine mammary gland, transcriptomics

494    Understanding the regulatory mechanisms of milk pro-

duction using integrative transcriptomic and proteomic analyses: 

Reducing ineficient utilization of crop by-products as forage in 

dairy industry.  W. Dai*1, Q. Wang1, F. Zhao2, J. Liu1, and H. Liu1,  
1Institute of Dairy Science, College of Animal Sciences, Zhejiang 

University, Hangzhou, Zhejiang, China, 2Laboratory of Lactation and 

Metabolic Physiology, Department of Animal Science, University of 

Vermont, Burlington, VT.

Milk from dairy cows is an essential nutrient for the young and human 

as well. Forage plays a vital role in dairy husbandry via affecting milk 

quality and quantity. However, the differences in mammary metabolism 

of dairy cows fed different forages remains elucidated. In this study, 

we utilized transcriptomic RNA-seq and iTRAQ proteomic techniques 

to investigate and integrate the differences of molecular pathways and 

biological processes in the mammary gland of dairy cows fed differing 

forages. Bovine mammary tissues were obtained from 6 healthy mul-

tiparous lactating dairy cows fed with corn stover (CS, low-quality; n 

= 6) and alfalfa hay (AH, high-quality; n = 6), respectively. A total of 

1631 differentially expressed transcripts (DETs; 1046 upregulated and 

585 downregulated) and 346 differentially expressed proteins (DEPs; 

138 increased and 208 decreased) were detected in the mammary glands 

between the CS- and AH-fed animals. Expression patterns of 33 DEPs 

(18 increased and 15 decreased) were consistent with the expression 

of their mRNAs. The gene ontology (GO) and kyoto encyclopedia of 

genes and genomes (KEGG) analyses of the DETs and DEPs indicated 

that the decreased energy metabolism, increased fatty-acid oxidation, 

attenuated protein synthesis, enhanced protein degradation, and the 

lower mammary cell growth may be the prime factors contributing to 

the lower milk production in the CS-fed cows compared with the AH-fed 

cows. Moreover, 19 milk-synthesis-related genes were quantitated by 

real-time RT-PCR to examine the transcriptional proile and validate the 

proteins identiied by LC-MS/MS between CS-fed and AH-fed bovine 

mammary gland. Four DEPs were further veriied by Western blot 

analysis. These results provide the biological understanding of insights 

into mammary metabolism alterations affected by differing foraged and 

will be beneicial in developing highly eficient strategies for utilization 

of low-quality forages.

Key Words: dairy cow, mammary gland, forage

495    Characterization of the non-genetic causes of varia-

tion of bovine milk calcium concentrations on French farms.  P. 

Gaignon*1,2, M. Gele3, C. Hurtaud1, and A. Boudon1,  1PEGASE, 

INRA, Agrocampus Ouest, Saint-Gilles, France, 2CMI, 18 avenue F. 

Roosevelt, Saint-Malo, France, 3Institut de l’élevage, Angers, France.

Calcium concentration (CaC) in bovine milk has often been described as 

independent of feeding strategy and mainly dependent on cow genetics 

and lactation stage. However, isolated experiments showed that varia-

tions in milk CaC could be linked to the diet of cows. Our objective 

was to identify and quantify non-genetic factors of variation in CaC in 

milk samples collected from about a thousand French dairy farms with 

contrasting feeding strategies and cow breeds. This study was based on 

the PhénoFinlait program that consisted of a survey performed between 

2009 and 2010 in 924 dairy farms located in the major French milk pro-

duction areas. The breeds used in the investigated farms were Holstein, 

Normande and Montbeliarde. Each farm was visited on average 4 to 

6 times during the year. Each time, information about cow diets and 

production were gathered and individual milk samples were collected 

to extract their mid-infrared (MIR) spectra. More than 200,000 MIR 

spectra were measured. Nearly 10,000 milk samples were also frozen 

and stored in a bank for further analyses. We estimated CaC in milk 

samples from their MIR spectra using a predictive equation. This equa-

tion was established from 300 milk samples extracted from the bank and 

chosen to represent the diversity of investigated dairy systems. From the 

composition of the cow diets collected at each survey, we characterized 

7 feeding strategies using multiple factorial analyses across 3 periods: 

winter, early and late summer. For each breed, the variations in milk CaC 

were quantiied by ANOVA with a model including the effects of feeding 

strategies, stage of lactation, parity, and calendar month as ixed effects 

and the cow as random effect. The feeding strategy affected milk CaC 

with the constant fact that the diets based on fresh or conserved grass 

induced lower milk CaC whatever the month of the year (P < 0.05). 

The difference in CaC can be up to 100 mg/kg between 2 extreme diets 

at a given month, which is as important as the drop in CaC observed at 

the beginning of lactation. This study reinforces the idea that the diet 

of cows has an inluence on milk CaC.

Key Words: calcium, milk, feeding strategies

496    Milk fat globule size is regulated by phosphatidylethanol-

amine-dependent fusion: In vitro model.  N. Argov-Argaman*1, 

B.-C. Cohen1, and A. Shamay2,  1Hebrew University, Rehovot, Israel, 
2The Volcani Center, The Ministry of Agriculture, Rehovot, Israel.

Milk fat is secreted in a unique structure, termed milk fat globule 

(MFG) which consists of a triglyceride core covered with 3 layers of 

phospholipids (MFG membrane; MFGM). MFG are secreted in a wide 

range of sizes; from the nanometer length scale to over 15 µm, and 

their size is tightly associated with their lipid composition. Particularly, 

higher MFGM content is found in small compared with large globules. 

MFG size is determined by the size of its precursors — the intracellular 

lipid droplets (LD) which are produced and secreted by the mammary 

epithelial cells (MEC). Fusion is one of the suggested mechanisms 

controlling LD size. Nevertheless, what controls the extent of fusion 

and how dominant this mechanism is in controlling LD size is still 

illusive, especially in mammalian cells. We hypothesized that LD fusion 

is controlled by the stability of their membrane, which is modulated by 

the content and mass ratio between 2 main phospholipids - phosphati-

dylethanolamine (PE) and phosphatidylcholine (PC). We used primary 

MEC culture, treated with oleic or palmitic acid, to study the role of 

membrane stability in determining LD size. Results show that 22% of 

MEC treated with oleic acid had large LD (>2.5 µm) compared with 

only 4% of the cells treated with palmitic acid. The increased LD size 

in the oleic acid treatment was associated with 63% increase in PE, and 

7 fold increase in LD fusion. Adding NaN3+NaF to the oleic acid treat-

ment decreased PE content by 19%, concomitantly with 8 fold decrease 

in the number of large LD. Interestingly, the addition of NaN3+NaF to 

oleic acid treatment did not change the cellular triglyceride content. In 

contrast, adding 3-deazaadenosine to palmitic acid treatment tended to 

increase PE content by 29%, and consequently increased the number of 

large LD by 3 fold, relative to cells treated with palmitic acid alone. Our 

indings have uncovered a deining role for LD fusion in determining 

their size in MEC, which is independent of triglycerides content of the 

cells. Understanding the mechanisms controlling LD size in mammalian 

cells is of great importance, especially in MEC due to the effect of LD 

size on milk composition.

Key Words: milk fat globule, size, fusion
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ETUDE DE L’EFFET DE LA PARITÉ ET DE LA VARIABILITÉ 

INDIVIDUELLE SUR LES DYNAMIQUES DE MOBILISATION ET 

DE RECONSTITUTION OSSEUSE AU COURS DE LA LACTATION 

EN RELATION AVEC LA TENEUR EN  CALCIUM DU LAIT

PIERRE GAIGNON (1), PHILIPPE FAVERDIN (1), DAVID SIDANER (1), CATHERINE HURTAUD (1), ANNE BOUDON (1)

(1) INRA-Agrocampus Ouest, 

UMR PEGASE, 35590 Saint-Gilles, France 

Contexte
En début de lactation, la vache laitière subit une forte augmentation de ses besoins en Ca, nécessitant une adaptation

physiologique notamment par la mobilisation de ses réserves osseuses qui seront reconstituées plus tard dans la

lactation. Les méthodes actuelles de suivi de la mobilisation/reconstitution osseuse sont difficiles à mettre en �uvre sur

de gros effectifs d'animaux. Il a été démontré chez la souris que la glande mammaire peut répondre à une chute de la

calcémie, en permettant une baisse de la teneur en Ca dans du lait et une augmentation de la résorption osseuse.

Objectif
Analyser les effets de la parité et de la variabilité individuelle sur la dynamique de mobilisation osseuse au cours de la

lactation et les liens entre les dynamiques de mobilisation osseuse et de teneur en calcium du lait.

Résultats
- Teneurs plasmatiques en OC et 

CTX plus élevées chez les 

primipares que les multipares.

=> plus fort remodelage osseux

(Fig 1)

- Plus forte augmentation de la 

teneur plasmatique en CTX lors de 

la première moitié de lactation 

chez les primipares .

=> plus de mobilisation osseuse

(Fig 1)

- Ratio Ca/protéines du lait affecté 

par le stade, mais pas par la parité 

ni par l'interaction (Fig 1).

- Pas de lien en inter-individu 

entre la dynamique du ratio 

Ca/protéines du lait (matin ou 

soir) et celle des biomarqueurs de 

l�os au cours de la lactation (Fig 1).

- Une relation en intra-individu 

entre les ratios OC/CTX 

plasmatique et Ca/P du lait du 

matin (Fig 2). Néanmoins ce 

dernier ne permet pas de prédire 

la plus forte mobilisation osseuse 

des primipares (interaction stade * 

parité, NS).

Conclusion 
Cette étude confirme un plus fort remodelage osseux chez les animaux les plus jeunes. Elle démontre aussi pour la

première fois chez les vaches laitières une plus forte mobilisation osseuse en début de lactation chez les primipares par

rapport aux multipares. Ces effets de la parité ne sont pas traduits par des variations différentes entre parité de la teneur

en Ca/protéines ou en Ca/P du lait suggérant que ces ratios ne peuvent pas être de bons indicateurs de la dynamique de

mobilisation osseuse à l'échelle de la lactation. De ce fait, des études visant à caractériser l'influence des cycles de

mobilisation/reconstitution osseuse des vaches sur leur longévité restent encore difficiles à envisager à ce jour.

Figure 1 � Effets de la parité et du stade de 

lactation sur les teneurs plasmatiques en OC et 

CTX et sur le ratio Ca/TP du lait matin

Parité < 0,01 

Stage < 0,01

Interaction = 0,61

Parité < 0,01; Stage = 0,02

Interaction = 0,05

Parité = 0,14;  Stage < 0,01

Interaction = 0,29

Matériel et méthodes
- 33 vaches laitières Holstein, suivies

sur toute la lactation. Une ration

unique prévue pour couvrir les

besoins en UF, PDI, P et Ca de milieu

de lactation offerte ad libitum.

- Prélèvements de plasma à jeun le

matin et de lait lors de la traite du

matin et du soir, 15 jours avant

vêlage, 15 jours après vêlage puis

toutes les 4 semaines.

- Analyses des teneurs plasmatiques

en ostécalcine (accrétion osseuse),

CTX (résorption osseuse), Ca et P, et

des teneurs en Ca et P du lait

ANOVA : Y = µ + Parité + Stade de

lactation + Interaction + ε

R²=0,68

Y=40,57*X-15,93

Figure 2 � Relation intra-individu entre  

le ratio des biomarqueurs plasmatiques 

de l'os et le ratio Ca/P du lait
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EFFECT OF PARITY ON DYNAMICS OF MILK CALCIUM (Ca) CONTENT & 

BLOOD BIOMARKERS OF BONE ACCRETION AND RESORPTION 

THROUGHOUT LACTATION IN DAIRY COWS 
GAIGNON  P.1 , FAVERDIN P.1 , SIDANER  D.1 , LAZA-KNOERR  A.2 , LEGRAND  K.2 ,HURTAUD  C.1 , BOUDON  A.1 
1 PEGASE, INRA, AGROCAMPUS-OUEST, 35590, ST-GILLES, FRANCE 
2  CMI, 18 AVENUE F. ROOSEVELT BP 80139, 35401, SAINT-MALO CEDEX, FRANCE  

10th International Symposium  

on the Nutrition of Herbivores 

Clermont-Ferrand, France, September 2-6, 2018 

Context 
At the beginning of lactation, dairy cows face a huge increase in their Ca requirements due to the important increase in  

their milk production. Consequently, they mobilize Ca from their bone and Ca reserves in bone can be restored later 

during lactation. The amplitude of the cycles of bone mobilization/reconstitution are difficult to quantify on important 

number of cows. For that reason, its consequences on cows’ health remain to be determined.  

Objective  
= to determine if a link could exist between individual dynamics of milk Ca content and amplitude of cycles of bone 

mobilization/reconstitution. The existence of such a link could constitute a way to indirectly and quickly quantify the 

amplitude of the cycles of bone mobilization/reconstitution during lactation on important number of cows.  

Results 
- A tendency for higher plasma Ca 

in primiparous cows (P = 0.09, data 

not shown) 

 

- Both plasma OC and CTX higher 

in young cows  (Fig 1) => higher 

bone remodeling 

 

- Higher increase in plasma CTX 

during the 1st half of lactation in 

young cows, no effect of parity on 

OC dynamics (Fig 1) => more bone 

mobilization in young cows ? 

 

- Decrease in milk Ca for 

primiparous cows at the 

beginning of lactation (Fig 1)=> a 

possible role of the mammary 

gland parallel to that of the bone 

for plasma Ca regulation ? 

 

- Between cows, no link between 

the dynamics of milk Ca during 

lactation and that of CTX and OC 

(data not shown). 

 

- Within cows, a positive 

relationship between plasma 

OC/CTX and milk Ca/P (Fig 2). => 

maybe milk Ca/P could be an 

indicator of the equilibrium 

between bone accretion & 

resorption during lactation ? 

Conclusion  
This study confirms a higher bone remodeling in younger cows. It also suggests a higher bone mobilization at the 

beginning of lactation with primiparous compared with multiparous cows accompanied by a concomitant higher 

decrease of milk Ca.  

Dynamics of milk Ca/ P ratio may be a gross predictor of plasma OC to CTX ratio and thus of the dynamics of the 

equilibrium between bone accretion and resorption throughout lactation but this requires confirmation in experiments 

with higher variability of those dynamics. Milk Ca alone cannot be used as a predictor of bone resorption. 

Fig 1 – Effects of parity and month of lactation 

on plasma OC and CTX and milk Ca 

Parity < 0.01; Month < 0.01 

Interaction = 0.61 

Parity < 0.01; Month = 0.02 

Interaction = 0.05 

Parity = 0.14;  Month < 0.01 

Interaction = 0.29 

Material & methods 
 - 33 Holstein dairy cows / a unique 

total mixed ration (ad libitum,  

calculated to cover nutritional 

requirements at middle of lactation). 

 - Sampling: Blood, before morning 

feeding, in the  caudal vein. Milk at 

each milking. 15 d before calving, 15 

d after calving and every months 

after. 

- Analyses: plasma concentrations of 

osteocalcin  (OC, blood biomarker of 

bone accretion), CTX (blood 

biomarker of bone resorption), Ca 

and Pi, milk contents of Ca and P. 

ANOVA : Y = µ + Parity + Month of 

lactation + Interaction + ε, cows as 

random, repeated measurements.  

R²=0.68 

Fig 2 – Within cow relationship between 

plasma OC/CTX ratio and milk Ca/P ratio 
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Effet d’une restriction des apports en calcium en début de lactation sur la production 

laitière, la composition du lait et les dynamiques de mobilisation et de reconstitution 

osseuses au cours de la lactation chez la vache laitière 
GAIGNON P. (1), LEGRAND K. (2), LAZA-KNOERR A. (3), HURTAUD C. (1), BOUDON A. (1) 

(1) PEGASE, INRA, Agrocampus Ouest, 35590, Saint-Gilles, France 

(2) Phosphea, Dinard, France 

(3) CMI, 18 avenue F. Roosevelt BP 80139, 35401, Saint-Malo Cedex, France  

 

RESUME – Les objectifs de cet essai étaient d’évaluer les conséquences d’une augmentation de la mobilisation 

osseuse de vache laitière en début de lactation sur les teneurs en Ca et en P du lait et la dynamique de 

reconstitution osseuse en fin de lactation. Quinze vaches laitières Holstein multipares ont été réparties en trois lots 

différents 5 semaines avant la date planifiée de vêlage. Chaque lot recevait un traitement différent, consistant à 

différentier l’alimentation des vaches entre 5 jours et 10 semaines de lactation. Le traitement témoin (TEM) 

consistait en une ration couvrant 100 % des besoins en Ca, les traitements BCa et BCaBE consistaient en des 

rations couvrant 70% des besoins en Ca, le bilan alimentaire cation-anion étant de 200 mEq/Kg MS pour TEM et 

BCa, et 0 pour BCaBE. Les traitements BCa et BCaBE ont eu tendance à diminuer légèrement la rétention 

corporelle de Ca à 3 semaines de lactation (P< 0.09) par rapport au traitement TEM mais n’ont eu d’effet ni sur la 

dynamique des teneurs en biomarqueurs d’accrétion et de résorption osseuse au cours des 32 semaines de 

lactation, ni sur la rétention corporelle du Ca à 17 semaines de lactation. Les vaches ont presque entièrement 

compensé la baisse des apports en Ca par une élévation de l’absorption apparente du Ca à 3 semaines de 

lactation (P = 0.03). Les traitements n’ont pas eu d’effet sur la composition du lait. Par contre la production laitière 

a eu tendance (P = 0.09) à être plus faible sur l’ensemble de la lactation avec les régimes BCa et BCaBE par 

rapport à TEM, avec une différence moyenne de 2 kg/j. 

 

Effect of low Ca intake in early lactation on milk production, milk quality and dynamics of 

bone mobilization and resorption throughout lactation in dairy cows 
GAIGNON P (1)., LE GRAND K (2)., LAZA-KNOERR A. (3), HURTAUD C. (1), BOUDON A. (1) 

(1) PEGASE, INRA, Agrocampus Ouest, 35042, Rennes, France 

 

SUMMARY – The objective of this experiment was to evaluate the consequences of an increase of bone 

mobilization in early lactation, on the milk contents of Ca and P and the bone reconstitution dynamics in late 

lactation. Fifteen multiparous Holstein cows have been spread between three treatments 5 weeks before the 

expected calving date. Those treatments consisted in differentiating the cow’s diets between 5 days and 10 weeks 

of lactation. The control treatment (TEM) consisted in a diet covering 100% of the Ca requirements, the treatments 

BCa and BCaBE consisted in a diet covering 70% of the Ca requirements, the dietary anion-cation difference was 

200 mEq/Kg DM for TEM and BCa and 0 for BCaBE. The treatments BCa and BCaBE induced a small decrease of 

the body retention of Ca at 3 weeks of lactation compared with the treatment TEM (P< 0.09) but did not affect 

either the dynamics of blood biomarkers of bone accretion and resorption during the 32 weeks of lactation or the 

body retention of Ca at 17 weeks of lactation. Cows almost entirely compensated the decrease of Ca supply in BCa 

and BCaBE treatments by an increase of the apparent absorption of Ca at 3 weeks of lactation (P = 0.03). 

Treatments did not clearly affect either the milk composition. Nevertheless, milk yield tended (P = 0.09) to be lower 

throughout the lactation with treatments BCa and BCaBE compared with TEM with a mean difference of 2 kg/d 

between TEM treatment and BCa and BCaBE treatments. 

 

 

Introduction 

L'organisme des vaches laitières fait face à un important flux 

d'excrétion de Ca pendant la lactation en raison de la teneur 

élevée du lait en Ca (Horst et al., 1997). Ceci explique 

l'existence de cycles de mobilisation osseuse et de 

reconstitution pendant la lactation afin de maintenir les 

teneurs plasmatiques en Ca dans des limites physiologiques 

(Braithwaite, 1983; Taylor et al., 2009; Elizondo-Salazar et 

al., 2013). Des questions demeurent quant aux 

conséquences de l'amplitude et de la complétude de ces 

cycles sur la santé et la productivité des vaches. On peut 

suspecter à partir de la littérature qu'une reconstitution 

osseuse incomplète à la fin de la lactation puisse entraîner 

une sensibilité plus grande des vaches à un apport limité en 

P lors de la lactation suivante avec des performances de 

production sous-optimales (Dixon et al., 2017) ou une 

sensibilité accrue à la fièvre vitulaire au début de la lactation 

suivante (McNeill et al. 2002). La confirmation de ces 

soupçons aurait des conséquences sur la définition des 

besoins en Ca et en P de ces animaux. Les 

recommandations actuelles reposent sur le principe que les 

excrétions quotidiennes de Ca et de P permettent un certain 

niveau de production avec des pertes fécales et urinaires 

minimales qui doivent être remplacées par une ingestion 
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équivalente quotidienne de ces éléments. Ce principe ne 

considère pas que la mobilisation osseuse en début de 

lactation et la reconstitution en fin de lactation puissent 

constituer un apport ou un besoin supplémentaire.  

Le nombre d'expériences publiées reste trop limité pour 

permettre de définir une stratégie optimale de 

supplémentation en Ca et en P à l'échelle de la lactation 

(AFRC, 1991; NRC, 2001; INRA, 2010). Le manque de 

méthodes rapides et peu onéreuses pour évaluer l'amplitude 

et éventuellement la complétude des cycles de mobilisation 

et de reconstitution osseuses lors de la lactation et de la 

gestation des vaches constitue une limite majeure pour 

répondre à ces questions. VanHouten et al. (2004) ont 

montré qu'une diminution de l'apport en Ca induisait chez les 

mammifères une excrétion plus faible de Ca dans le lait et 

une résorption osseuse plus élevée, régulées par le 

récepteur CaSR dans la glande mammaire. Le suivi de la 

teneur en lait du calcium pendant la lactation pourrait donc 

être un moyen peu coûteux d’estimer indirectement la 

dynamique de la résorption osseuse. 

L'objectif de cette expérience était d'induire une mobilisation 

osseuse chez la vache laitière grâce à des traitements 

alimentaires et d'en déterminer les conséquences sur (1) la 

dynamique des teneurs en Ca et en P du lait, des 

concentrations sanguines en biomarqueurs de l'accrétion et 

de la résorption osseuse et des rétentions corporelles en Ca 

et P, (2) sur la dynamique de reconstitution osseuse en fin de 

lactation. La mobilisation osseuse devait être induite soit par 

une restriction des apports alimentaires en Ca par rapport 

aux recommandations françaises (INRA, 2010) soit par une 

restriction des apports alimentaires en Ca couplée à une 

diminution du bilan alimentaire cation anion  (BACA). 

 

1. MATERIEL ET METHODES 
1.1 ANIMAUX ET SCHEMA EXPERIMENTAL 

Les traitements ont consisté en trois supplémentations 

minérales distribuées en complément d’une même ration de 

base entre 5 jours et 10 semaines de lactation. La teneur en 

Ca de la ration était de 8,3 g/kg MS pour le traitement TEM 

pour un BACA de 219 mEq/kg de MS, de 6,0 g/kg MS pour 

un BACA de 279 mEq/kg de MS pour le traitement BCa et de 

5,8 g/kg MS pour un BACA de 0 mEq/kg de MS pour le 

traitement BCaBE. Quinze vaches Holstein multipares ont été 

réparties en trois groupes et suivies depuis 5 semaines avant 

leur date de vêlage prévue, jusqu’à 31 semaines de lactation 

selon un schéma expérimental totalement randomisé, les 

groupes assignés à chaque traitement étant homogènes en 

terme de parité moyenne, de production laitière sur la 

lactation précédente et de date attendue de vêlage. Les 

vaches étaient logées en stabulation libre pendant l’essai, à 

l’exception des périodes de mesure des rétentions en Ca et P 

pendant lesquelles elles étaient maintenues en stabulation 

entravée pendant 3 semaines. Elles étaient traites deux fois 

par jour. La production laitière était enregistrée tous les jours 

et les taux protéiques et butyreux du lait étaient mesurés 

deux fois par semaine.  

 

1.2 ALIMENTATION 

L’alimentation des vaches selon les traitements a été 

différenciée entre 5 jours et 10 semaines de lactation. 

Pendant les 3 semaines qui précédaient le vêlage, toutes les 

vaches ont reçu la même ration de préparation au vêlage et 

pendant les 5 premiers jours de lactation, elles ont reçu la 

ration du traitement TEM. Les rations ont été formulées pour 

couvrir les besoins des vaches laitières selon les 

recommandations, exceptés pour le Ca et la BACA (INRA, 

2010). La ration de base jusqu’à 10 semaines de lactation se 

composait de 72 % MS d’ensilage de maïs, 16 % MS de 

concentré énergétique, 11 % MS de tourteaux tannés et 1 % 

MS d’urée. Au bout de 10 semaines, toutes les vaches 

recevaient une même ration couvrant 100 % de leurs besoins 

en Ca avec un BACA positif, composée de 74% MS 

d’ensilage de maïs, 11% MS de concentré énergétique, 14 % 

MS de tourteau de soja 48 et moins d’un pourcent d’urée, 

hors aliments minéraux. L’apport d’aliment minéraux était 

de 3,5, 2.8 et 3,4% MS pour les traitements TEM, BCa et 

BCaBE, le Ca étant avant tout apporté par du carbonate de 

Ca. Pendant la lactation, les vaches étaient nourries ad 

libitum.  

 

Tableau 1 - Caractéristiques des rations 

 
5 – 70 jours de lactation Après 70 

jours TEM BCa BCaBE 

Ca
1
 8,3 5,9 5,8 7,8 

Caabs 
1
 3,4 2,4 2,4 3,1 

P 
1
 4,1 4,0 3,9 4,0 

 Pabs 
1
 2,8 2,7 2,7 2,8 

PDIE/UFL
2
 115 115 115 95 

PDIN/UFL
2
 116 116 116 86 

BACA
3
 219 279 0 220 

1 
: g/kg de MS 

2 
: g/UFL  

3 
:BACA = Na +K –Cl -S (où Na, K, Cl et S sont les teneurs de 

la ration en ces éléments exprimées en mEq/kg MS) 

 

1.3 PRELEVEMENTS ET ANALYSES 

Neuf prélèvements de sang ont été réalisés entre 3 semaines 

avant la date estimée de vêlage et 31 semaines de lactation 

afin de suivre les évolutions des teneurs plasmatiques en Ca, 

P inorganique (Pi), ostéocalcine (OC, biomarqueur de 

l’accrétion osseuse) et télopeptide C-terminal du collagène de 

type I (CTX, biomarqueur de la résorption osseuse). 

Quatorze prélèvements de lait ont été réalisés entre 1 et 31 

semaines après vêlage pour suivre les teneurs en Ca et P, à 

la traite du matin et du soir. 

Trois semaines avant vêlage et à 3 et 17 semaines de 

lactation, les vaches ont été placées en stalle entravée 

pendant 3 semaines afin de mesurer l’ingestion et l’excrétion 

journalières de Ca et de P sur 4 jours par collecte complète 

de l’urine et des fèces.  

 

1.5 ANALYSES STATISTIQUES 

Un modèle linéaire généralisé a été utilisé à l’aide de la 

PROC GLIMMIX de SAS. Il comportait les effets des régimes 

et du stade de lactation : ���� = �é����� + ����� �� ���������� + �é����: ������� + ���ℎ��(�) 
où Y représente la variable réponse d’intérêt. La vache était 

incluse en effet aléatoire et une matrice de covariance entre 

les stades de lactation a été choisie sur un critère d’AIC.  

 

2 RESULTATS 
2.1 DES APPORTS EN Ca EN DEBUT DE LACTATION 

CONFORMES A CE QUI ETAIT ATTENDU 

Les apports alimentaires de Ca ont été moins importants 

avec les traitements BCa et BCaBE par rapport à TEM entre 
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5 jours et 10 semaines de lactation et n’ont pas été affectés 

par les traitements conformément à ce qui était attendu 

(Figure 1). La matière sèche ingérée a été un peu plus élevée 

avec le traitement BCa par rapport aux deux autres à partir 

de 7 semaines de lactation (+ 1,0 kg en moyenne, P<0,01). 

Cette différence est attribuable en partie à des vaches un peu 

plus lourdes sur ce traitement (623 kg pour TEM, 704 kg pour 

BCa et 667 kg pour BCaBE). 

 

Figure 1 : Effets des traitements sur l’ingestion de Ca et de 

MS au cours de la lactation  

 
2.2 PEU D’EFFETS DES TRAITEMENTS SUR LA 

MOBILISATION OSSEUSE EN DEBUT DE LACTATION 

Les dynamiques des teneurs plasmatiques en OC et CTX 

n’ont été affectées ni par les traitements, ni par l’interaction 

entre les traitements et le stade de lactation (P > 0,30 ; Figure 

2). L’accrétion osseuse (OC) a chuté après le vêlage et a 

augmenté au cours de la lactation, fortement jusqu’à 8 

semaines de lactation et plus lentement ensuite (P < 0,01). 

La résorption osseuse (CTX) a augmenté pour ensuite 

diminuer continuellement (P < 0,01). La rétention corporelle 

du Ca, c’est-à-dire la différence entre l’ingestion de Ca et son 

excrétion, qui peut dans le cas du Ca être estimée comme 

l’opposé de la mobilisation osseuse, a eu tendance à être 

plus faible avec les traitements BCa et BCaBE par rapport à 

TEM à 3 semaines de lactation (-2, 0 et 8 g/j, pour les 

traitements BCa, BCaBE et TEM, P = 0,09, Figure 3) mais n’a 

pas été affectée par les traitements à 17 semaines (P > 0,70). 

Les traitements n’ont eu aucun effet sur les teneurs en Ca 

plasmatique (P = 0,60). Une seule vache a été en 

hypocalcémie après le vêlage (76 mg/L). 

 

2.3 UNE CAPACITE D’ABSORPTION DIGESTIVE DU Ca 

AUGMENTEE AVEC LES TRAITEMENTS BCa ET BCaBE 

Le coefficient d’absorption apparent (CAA) du Ca a été 

nettement plus élevé pour les traitements BCa et BCaBE que 

TEM à 3 semaines de lactation (P = 0,03, Figure 3) alors qu’il

n’était pas affecté par les traitements aux autres stades (P > 

0,54). Le CAA dépassait 37 % pour ces deux traitements 

alors qu’il était de 30 % pour TEM. Le CAA du Ca a été plus 

élevé en lactation, à 3 ou 17 semaines de lactation, qu’avant 

vêlage où il n’était que de 21 % en moyenne (P < 0,01). Le 

flux journalier d’absorption apparente de Ca a été de 56,9, 

48,1 et 51,5 g/j pour les traitements TEM, BCa et BCaBE 

respectivement (P = 0,31) à trois semaines après vêlage. 

 

Figure 2 : Effets des traitements sur les teneurs 

plasmatiques en OC (biomarqueur de l’accrétion osseuse) et 

en CTX (biomarqueur de la résorption) 
 

  

Figure 3 : Effets des traitements sur la digestibilité apparente 

du Ca et la rétention en Ca 3 semaines avant la date de 

vêlage à 3 et 17 semaines de lactation.  
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2.4 PAS D’EFFET DES TRAITEMENTS SUR LA TENEUR 

EN Ca DU LAIT MAIS UN POSSIBLE EFFET SUR LA 

PRODUCTION LAITIERE 

La teneur en Ca du lait n’a pas été plus faible pour les 

traitements BCa et BCaBE par rapport à TEM (P = 0,40, 

Figure 4). Elle était même plus élevée en fin de lactation 

(interaction traitement × stade de lactation, P < 0,01 le matin). 

La production laitière a eu tendance à être plus faible sur 

toute la lactation avec les traitements BCa et BCaBE par 

rapport au traitement TEM (P = 0,09, Figure 4), avec un écart 

moyen de 2 kg/j, qui a atteint plus de 5 kg au moment du pic 

de lactation.  

 

Figure 4 : Effet des traitements sur la teneur en Ca du lait et 

la production laitière 

 
3. DISCUSSION 
3.1 UNE RELATIVE ABSENCE D’EFFET D’UN APPORT 

RESTREINT EN Ca EN DEBUT DE LACTATION SUR LA 

MOBILISATION OSSEUSE INATTENDUE 

L'objectif des traitements BCa et BCaBE était d'induire une 

mobilisation osseuse accrue au cours des 10 premières 

semaines de lactation. Avec une restriction des apports en 

Ca comparable à celle que nous avons pratiquée dans 

l’essai, certaines études ont mis en évidence une diminution 

claire de la rétention corporelle de Ca au début de la lactation 

chez la vache laitière, cette dernière atteignant des valeurs 

clairement négatives (Taylor et al., 2009 ; Wholt, 1986) ou 

une augmentation de la concentration sérique de pyridinoline 

qui est un biomarqueur de la résorption osseuse (Moreira et 

al., 2009). Pour augmenter les chances d'induire une 

mobilisation osseuse dans notre expérience, le BACA a 

également été diminué pour le traitement BCaBE à une 

valeur proche de 0, qui est la limite maximale en dessous de 

laquelle on pouvait attendre à un effet positif sur la 

mobilisation osseuse (Charbonneau et al., 2006). Pourtant, 

nous n’avons obtenu que des effets ténus des traitements.  

La dynamique des biomarqueurs osseux sanguins au cours 

de la lactation que nous avons observée était cohérente avec 

celles précédemment observées (Liesegang et al., 2000; 

Ekelund et al., 2006; Puggaard et al., 2014) avec une forte 

diminution de l’OC au vêlage et une augmentation du CTX en 

début de lactation. Ces résultats ont été cohérents avec les 

mesures de rétention du Ca montrant une rétention de Ca 

plus faible en début de lactation comparée à celle mesurée 

avant le vêlage ou à 17 semaines de lactation, illustrant une 

reconstitution osseuse nette à ces moments. 

 

 

3.2 UNE AUGMENTATION PLUS IMPORTANTE QUE 

PREVUE DU CAA DU Ca AVEC UN APPORT RESTREINT 

EN Ca EN DEBUT DE LACTATION  

Dans notre expérience, l'évolution de la calcémie au cours du 

cycle lactation-gestation n'a pas été affectée par l'apport 

alimentaire en Ca. Ceci suggère que, si la mobilisation 

osseuse n’était pas le principal effecteur mobilisé pour la 

régulation de la calcémie lorsque l’apport de Ca a été réduit, 

d’autres flux de Ca doivent avoir permis cette régulation. Nos 

résultats ont clairement montré que la diminution de la 

consommation de Ca avec le traitement BCa et BCaBE a été 

presque entièrement compensée au niveau de l’organisme 

par une diminution équivalente de la quantité de Ca excrétée 

dans les fèces, avec un CAA du Ca particulièrement élevé 

(moyenne supérieure à 40 % pour BCaBE). Ces résultats 

contrastent avec ceux de Taylor et al. (2009) et Moreira et al. 

(2009) qui ont observé une digestibilité apparente plus faible 

du Ca à un stade similaire de lactation. Une explication est 

peut-être qu’une proportion significative de Ca alimentaire a 

été fournie par de l’ensilage de maïs ou du foin de luzerne 

dans ces études alors qu’il était principalement fourni par un 

aliment minéral dans notre essai. On sait que le Ca de la 

luzerne est moins disponible pour l'absorption digestive chez 

les ruminants (INRA, 2010). Il est probable que ces auteurs 

n’ont pas pu observer une augmentation du CAA autour de 3 

semaines de lactation avec un faible apport en Ca, 

contrairement à nous, car les vaches ne pouvaient pas 

augmenter leur absorption apparente de Ca en raison de la 

faible disponibilité en Ca alimentaire. Dans notre expérience, 

les vaches ont peut-être privilégié une augmentation de 

l'absorption digestive plutôt qu'une mobilisation du Ca de l'os 

pour réguler la calcémie, car le Ca alimentaire était plus 

disponible pour l'absorption. Cette hypothèse nécessiterait 

une confirmation. 

Nous avons clairement observé un effet important du stade 

physiologique des vaches sur le CAA du Ca. L'augmentation 

de la capacité d'absorption du Ca par le tube digestif entre la 

gestation et la lactation est cohérente avec l'augmentation de 

la libération de PTH et de la synthèse de 1,25-(OH)2D3 au 

début de la lactation (Horst et al., 2005). 

 

3.4 RELATION ENTRE LA TENEUR EN Ca DU LAIT ET LA 

DYNAMIQUE DE MOBILISATION OSSEUSE AU COURS 

DE LA LACTATION 

Notre hypothèse était que le faible apport en Ca induirait à la 

fois une augmentation de la résorption osseuse et une 

diminution de la sécrétion de Ca dans le lait. Cependant, le 

faible apport en Ca dans notre expérience n'a eu qu'un effet 

limité sur la mobilisation osseuse au début de la lactation. 

Cette expérience n’a donc pas permis de tester 

complètement notre hypothèse. Les vaches ayant reçu les 

traitements BCa et BCaBE ont eu tendance à avoir une 

teneur en Ca dans le lait plus élevée après 10 semaines de 

lactation, ce qui n'était pas conforme à notre hypothèse pour 

deux raisons. Tout d'abord, cette différence est apparue 

lorsque les rations ont cessé d'être différenciées en fonction 

du traitement. Deuxièmement, une teneur plus faible de Ca 
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dans le lait était attendue pour ces traitements. Comme on 

sait que la génétique de la vache est un déterminant majeur 

de la teneur en Ca du lait chez les vaches (Van Hulzen et al., 

2009) et que la teneur en  Ca du lait n’a pas été mesurée lors 

de la lactation précédente, il ne peut être exclu que les 

vaches des traitements BCa et BCaBE avaient des teneurs 

en Ca de lait plus élevées en raison de leur génétique, à 

l’origine des teneurs en Ca du lait plus élevées pour ces 

traitements. 

 

3.3 UN EFFET POSSIBLE DE L'APPORT LIMITE EN Ca 

SUR LA PRODUCTION DE LAIT ET LA LONGEVITE DES 

VACHES ? 

L’écart de 2 kg/j de production laitière avec les traitements 

BCa et BCaBE par rapport à TEM est un résultat inattendu 

qui ne peut pas être attribué aux caractéristiques pré-

expérimentales des vaches. Cet écart est apparu environ 

deux semaines après la différenciation des rations en 

fonction du traitement et a duré jusqu'à la fin de l'expérience, 

c'est-à-dire largement après 10 semaines de lactation 

correspondant au moment à partir duquel toutes les vaches 

ont reçu le même régime. On peut imaginer que les 

traitements BCa et BCaBE ont pu altérer le potentiel de 

sécrétion de la glande mammaire au pic de lactation, en 

modifiant soit la prolifération des cellules épithéliales 

mammaires, soit leur exfoliation. Wohlt et al. (1986) ont 

également observé une diminution de la production de lait 

chez les vaches ayant un apport plus faible en Ca dans des 

proportions comparables aux nôtres mais ni Taylor et al. 

(2009), ni Moreira et al. (2009) n'ont observé de telles 

diminutions. Il est possible que le fait d'avoir utilisé une ration 

riche en PDI, avec du tourteau de soja tanné, chez des 

vaches multipares, ait maximisé le potentiel laitier, le Ca étant 

devenu alors un facteur limitant. 

Une autre observation inattendue dans notre expérience a 

été que le taux de réforme avant le prochain vêlage a été 

numériquement nettement plus élevé avec les traitements 

BCa et BCaBE par rapport au traitement TEM. Avec le 

traitement BCa, 3 des 5 vaches ont été réformées avant la 

lactation suivante, une en raison de l'absence de détection 

d'œstrus, deux en raison de problèmes de pieds. Avec le 

traitement BCaBE, 1 des 5 vaches a été éliminée en raison 

d’échecs à l'insémination. Aucune vache n’a été réformée 

avec le traitement TEM. Nos résultats suggèrent qu’une 

restriction des apports de Ca pendant les premières 

semaines de lactation pourrait avoir eu un effet néfaste sur la 

reproduction et la santé des vaches, mais cela reste à 

démontrer avec plus d’animaux. 

 

CONCLUSION 

Un apport alimentaire de Ca réduit de 30 % par rapport aux 

recommandations en début de lactation n’a induit que de 

faibles différences de mobilisation osseuse au cours de la 

lactation car il a été compensé par une augmentation de la 

capacité d’absorption du Ca par le tube digestif. Ce résultat, 

un peu en contradiction avec la bibliographie est peut-être à 

mettre en relation avec des apports en Ca en grande partie 

assurés par un aliment minéral et donc relativement 

absorbables. Un effet inattendu de cet apport réduit en Ca a 

été une altération du potentiel laitier des vaches et une 

suspicion de moindre performance de reproduction. Ces 

résultats nécessitent néanmoins d’être confirmés. Cet essai 

ne permet de mettre en relation l’évolution de la teneur en Ca 

du lait au cours de la lactation avec celle de la résorption 

osseuse.  
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Titre : L’évolution de la teneur en calcium du lait au cours de la lactation peut-elle être un  

indicateur de l’effet de l’alimentation sur les réserves osseuses des vaches laitières ? 

Mots clés : Calcium, vache laitière, mobilisation osseuse, composition du lait ? 

Résumé : Au cours de leur lactation, les vaches 
laitières font face à d’importants besoins en 
calcium du fait de la production laitière. 
L’augmentation très rapide de ces besoins en 
début de lactation fait que l’organisme des 
vaches peut difficilement s’adapter par une 
hausse de l’ingestion et de l’absorption 
digestive de calcium. L’organisme doit puiser 
dans les réserves osseuses, qui seront 
reconstituées plus tard en fin de lactation. Ces 
cycles de mobilisation et reconstitution 
osseuses restent cependant impossibles à 
quantifier chez la vache laitière sur de larges 
effectifs et les conséquences d’une mauvaise 
reconstitution osseuse sur les lactations 
suivantes restent inconnues.  
Cette thèse avait pour objectif de développer 

un indicateur des phénomènes de mobilisation 

et reconstitution osseuse au cours de la 
lactation. Plusieurs facteurs de mobilisation 
osseuse ont pu être identifiés, comme la race, 
la parité ou l’alimentation. Cependant, les 
cycles de mobilisation et de reconstitution 
osseuse n’ont pas pu être reliés à des 
variations de la composition du lait en Ca et P.  
Il a cependant pu être montré, que 
contrairement à ce qui est décrit dans la 
littérature, un apport insuffisant en Ca en début 
de lactation n’est pas toujours accompagné 
d’une augmentation de la mobilisation 
osseuse, mais peut être compensé par une 
augmentation des capacités d’absorption 
digestive. Cette thèse montre aussi la 
nécessité de quantifier les conséquences d’un 
apport insuffisant de calcium alimentaire sur 
les performances de production et la santé des 
vaches laitières sur l’ensemble de la lactation. 

 

Title :  Can the dynamic of milk Ca content throughout lactation be an indicator of the effects of  

management system and diets on bone mobilization in dairy cows ? 

Keywords :  Calcium, dairy cow, bone mobilization, milk composition 

Abstract :  During lactations, dairy cows faces 
huge calcium requirements due to milk 
production. Because of the fast increase in 
those requirements at the beginning of the 
lactation, the organism of dairy cows can hardly 
adapt by increasing intake and digestive calcium 
absorption. The organism must mobilize calcium 
from its storage pool, bones, which will replenish 
later in lactation. Those cycles of bone 
mobilization and reconstitution remain 
impossible to quantify for important number of 
dairy cows and the consequences of an 
incomplete bone reconstitution on following 
lactation remain unknown.  
The aim of this PhD was to develop an 

indicator of the phenomenon of bone  

mobilization and reconstitution during lactation. 
Several factors increasing bone mobilization 
have been identified, such as breed, parity or 
diet. However, the cycles of bone mobilization  
and reconstitution could not be related to 
variation in milk Ca and P content.  
However, it has been showed that, an 
insufficient Ca supply in early lactation does 
not always induce a higher bone mobilization, 
as it has been described in the literature, but 
can be compensated by an increase in 
digestive absorption capacity. The thesis also 
showed the need to quantify the consequences 
on insufficient dietary calcium supply on dairy 
cows’ milk production and health throughout 
lactation. 

 


