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Introduction

1 Résumé de lathese

Le travail de cette thése a été dans un premier temps motivé par la résolution du prob-
leme de Peller concernant la formule de trace de Koplienko-Neidhardt. Celui-ci est
en lien avec les perturbations du second ordre pour le calcul fonctionnel. En effet, le
probléme était de déterminer, pour une fonction f 2 C?(R) dont la dérivée seconde est
bornée, et pour deux opérateurs autoadjoints A etK sur un espace de Hilbert séparable
H tels que K 2 S2(H) est un opérateur de Hilbert-Schmidt, si l'opérateur

f(A+K) f(A) Ef(A+tK) Q)
dt t=0
appartient a I'espace S*(H) des opérateurs a trace.
Cette question a été soulevée par V. Peller dans [Pel05], ou il a également conjecturé
gue la réponse a cette question était négative.
Pour résoudre ce probléme, il est important de comprendre tout d'abord dans quels
cas l'opérateur (1) est bien dé ni. Lorsque A est borné ou quand f a une dérivée
bornée, I'opérateur est bien dé ni et appartienta S?(H). Sinon, le sens de(1) n'est pas
clair, mis a part dans certains cas particuliers. Peller a par exemple dé ni dans [Pel05]
l'opérateur (1) par approximation lorsque f appartient a la classe de BesovB? ,(R) et
a alors montré que la question précédente était positive pour de telles fonctions. Deux-
iemement, il est commode d'exprimer diffefremment (1). Il s'avére que ceci peut étre
fait au moyen des 'Opérateurs intégraux triple'. La théorie des opérateurs intégraux
multiple a été initiée par Birman et Solomyak, dans une série de trois articles (voir
[BS66; BS67; BS73]). Dans les 20 dernieres années, de nhombreux développements ont
été obtenus par V. Peller, F. Sukochey, et leurs co-auteurs. Ces objets jouent un réle ma-
jeur dans la théorie de la perturbation. Un opérateur intégral double est un opérateur
de la forme
AB():S?*(H)!'S ?(H)

associé a deux opérateurs normauxA et B sur H et a une fonction borélienne bornée
sur le produit des spectres de A et B. Un des premiers résultats majeurs est la formule

F(A+K) f(A)= AT (FH) (K) (2)

ou K 2 S?(H),f estune fonction Lipschitzienne et f !l est la différence divisée d'ordre
1def . Parmiles applications importantes de cette formule, nous pouvons citer I'étude
des ‘fonctions Lipschitz-opérateurs', c'est-a-dire I'espace des fonctions lipschitziennes
sur R qui ont une propriété de Lipschitz pour le calcul fonctionnel des opérateurs au-
toadjoints. L'un des résultats importants de ce sujet a été obtenu par D. Potapov et F.
Sukochev qui ont établi que toute fonction Lipschitzienne était opérateur-Lipschitz sur
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les classes de Schatten ré exivesSP; 1 < p < 1 (voir [PS11]), ou l'utilisation de (2) a
ete fondamentale. Ce résultat est faux danslep =1 etp= 1 et un contre-exemple a
été construit e.g. dans [Far72].

Les opérateurs intégraux triple sont des applications bilinéaires dé nies sur S?(H)
S?(H) et avaleurs dans S?(H). Avec le méme type de formule, I'opérateur (1) peut étre
obtenu comme un certain opérateur intégral triple. 1l s'avere que les opérateurs inté-
graux double et triple peuvent étre vus comme des multiplicateurs de Schur linéaires
et bilinéaires continus. En effet, lorsque I'espace de Hilbert H est de dimension nie,
I'action des opérateurs intégraux double et triple est identique a celle des multiplica-
teurs de Schur classiques, qui ont été intensément étudiés.

D'aprés la discussion qui précede, une idée pour résoudre le probléme de Peller est de
comprendre dans quels cas un opérateur intégral triple est a valeurs dans S'(H). La
premiére étape est de comprendre ce phénomene dans le cas discret, c'est-a-dire dans
quels cas un multiplicateur de Schur bilinéaire est a valeurs dans S?. Il se trouve que la
norme S! de telles applications peut étre calculée a I'aide de normes de multiplicateurs
de Schur linéaires sur B(C"). Ces objets sont bien connus et il existe une description
des multiplicateurs de Schur linéaires sur B( ;) (voir par exemple [Pis96, Théoreme
5.1]). Ce lien inattendu entre le probléme de Peller et les multiplicateurs de Schur a
été le point de départ pour la résolution du probleme, et plus précisément, pour la
construction d'un contre-exemple.

Cette these s'organise de la fagon suivante.

Dans le Chapitre 1, nous dé nissons différentes notions qui joueront un role im-
portant dans cette thése, méme si beaucoup d'entre elles n‘apparaissent pas explicite-
ment dans I'énoncé des résultats principaux. Nous utiliserons souvent les produits
tensoriels comme des outils pour les démonstrations, et en particulier, l'identi cation
du dual de certains produits tensoriels de deux espaces de Banach est en général la clé
pour d'importants résultats. Comme nous l'avons déja mentionné dans la premiere
partie de l'introduction, de nombreuses questions de cette these seront formulées avec
des classes de Schatten. Nous rappellerons leur dé nition et quelques propriétés de
ces espaces importants. Les deux derniéres sections concerneront les espacds’ qui
apparaissent comme les espaces duaux des espaces de Bochner. En particulier, la sec-
tion 1:4 concerne d'importants résultats de factorisation pour les espaces L! a valeurs
dans I'espace des opérateurs factorisables par un espace de Hilbert. Ces résultats ont
été obtenus en collaboration avec C. Le Merdy et F. Sukochev et apparaissent dans
I'article [CMS17].

Dans le Chapitre 2, nous nous intéresserons aux multiplicateurs de Schur linéaires.
Le résultat principal les concernant est une caractérisation des multiplicateurs de Schur
sur B( ) par Grothendieck. Notre but a été de généraliser ce résultat et de caractériser
les multiplicateurs de Schur sur B( p; 4). Nous avons pu le faire dans le g p et
avons obtenu un résultat similaire a celui de Grothendieck. Comme nous l'avons ex-
pliqué précédemment, les objets apparaissant dans cette these sont des multiplicateurs
de Schur continus. Ainsi, nous dé nirons plus généralement les multiplicateurs de
Schur continus sur B(LP; LY. Nous verrons que pour les comprendre, il suft de com-
prendre les multiplicateurs de Schur classiques. Nous terminerons ce chapitre avec de
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nouveaux résultats concernant les relations d'inclusion entre les espaces de multipli-
cateurs de Schur. Les résultats de cette section apparaissent dans l'article [Coi17].

Nous étudierons dans le Chapitre 3 les multiplicateurs de Schur bilinéaires, dans le
cas classique ainsi que dans le cas continu. Aprés avoir rappelé leur dé nition, notre
but sera d'étudier la bornitude dans S! de tels opérateurs. Les résultats principaux de
cette partie sont des caractérisations des multiplicateurs de Schur bilinéaires a valeurs
dans S? a l'aide de multiplicateurs de Schur linéaires. Ces résultats seront la premiére
mais également l'une des principales étapes pour comprendre et résoudre le probléme
de Peller.

Le Chapitre 4 est dédié a divers résultats sur les opérateurs intégraux multiple.
Nous donnerons tout d'abord une dé nition de ces opérateurs par dualité, ce qui
permettra d'obtenir une dé nition plus générale que celles introduites auparavant.
Comme nous l'avons déja dit, ces objets peuvent étre vus comme des multiplicateurs
de Schur multilinéaires continus. Ainsi, en utilisant les résultats obtenus dans les
chapitres précédents, nous serons en mesure de caractériser les opérateurs intégraux
triple a valeurs dans I'espace des opérateurs a trace. En n, dans une derniére section,
nous donnerons une condition nécessaire et suf sante pour qu'un opérateur intégral
triple dé nisse une application complétement bornée de S' (H) S (H) muni du
produit de Haagerup a valeurs dans S*' (H). Ceci généralise au cas des opérateurs
intégraux un résultat obtenu dans [KJT09] dans le cadre des multiplicateurs de Schur
multilinéaires continus. Les résultats des sections 4:1 et 4:3 ont été obtenus en collabo-
ration avec C. Le Merdy et F. Sukochev et l'article [CMS17] a été écrit a ce sujet.

En n, nous résoudrons dans le Chapitre 5 le probleme de Peller. Nous avons men-
tionné le cas autoadjoint mais un probleme similaire peut étre formulé dans le cas
unitaire. Ces deux problémes seront résolus en utilisant les mémes idées. Le premier
outil sera la connexion entre les problémes de Peller et les opérateurs intégraux triple.
Pour ce faire, nous étudierons le lien entre opérateurs intégraux multiple et théorie de
la perturbation pour les opérateurs autoadjoints. En particulier, nous donnerons une
formule pour la dérivée n iéme des applications de la forme

t2R7 F(A+tK) f(A)

ou A et K sont des opérateurs autoadjoints avecK un opérateur de Hilbert-Schmidt.
Ce résultat est une généralisation de la formule (2) et nous obtiendrons alors une for-
mule de Taylor a I'ordre n pour les opérateurs autoadjoints. En particulier, I'opérateur
(1) apparaitra comme un certain opérateur intégral triple. Le second outil sera le cal-
cul de la norme S?* pour un multiplicateur de Schur bilinéaire a I'aide de multiplica-
teurs de Schur linéaires ce qui nous permettra d'exploiter un contre-exemple da a E.
B. Davies concernant le comportement de I'application valeur absolue sur les espaces
SY(C");n 2 N. En utilisant des estimations de normes dans le cas ni dimension-
nel, nous construirons deux opérateurs A et K comme sommes directes d'opérateurs
de rang ni tels que l'opérateur (1) n'appartient pas a S*, ot f sera une fonction bien
choisie. Les résultats de la section5:2 ont été obtenus en collaboration avec C. Le Merdy
et A. Skripka. Les résultats des sections5:3 et 5:4 ainsi que ceux de la sous-section3:3:2
ont quant a eux été obtenus en collaboration avec C. Le Merdy, F. Sukochev, D. Potapov
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et A. Tomskova et les deux articles [CMPST16a; CMPST16b] ont été publiés les concer-
nant.

2 Summary of the thesis

The work in this thesis was rst motivated by the resolution of Peller's problem con-
cerning Koplienko-Neidhardt trace formulae. It is related to perturbations of second
order for functional calculus. Indeed, the problem was to determine, for a function

f 2 C2(R) with bounded second derivative, and for two selfadjoint operators A;K act-
ing on a separable Hilbert space H such that K 2 S?(H) is a Hilbert-Schmidt operator,
whether the operator

f(A+ K) f(A) Ef(A+tK) 3)
dt t=0

is in the space S'(H) of trace class operators.
This question was stated by V. Peller in [Pel05], where he also suggested that this ques-
tion should have a negative answer.
To solve this problem, itis rstimportant to understand in which cases the operator in
(3) is well-de ned. When A is a bounded operator or when f has a bounded deriva-
tive, the operator is well-de ned and is an element of S?(H). Otherwise, the meaning
of (3) is not clear, except in certain particular cases. For instance, Peller proved in
[Pel05] that when f belongs to the Besov classB? ; the operator (3) can be de ned by
approximation and that in this case, the question stated above holds true. Secondly, it
is convenient to express (3) differently. It turns out that this can be done by means of
the so-called triple operator integrals. The theory of multiple operator integrals started
with Birman and Solomyak, in a series of three papers (see [BS66; BS67; BS73]). In the
last 20 years, outstanding developments have been made by V. Peller, F. Sukochev, and
their co-authors. They play a major role in perturbation theory. A double operator
integral is an operator of the form

AB():S?](H)!S %(H)

associated to normal operators A; B on H and a Borel function bounded on the prod-
uct of the two spectra (A) (B) of A and B. One of the early results is the formula

f(A+K) f(A)= AT () (K) (4)

where K 2 S2(H), f is a Lipschitz function and f [ is the divided difference of rst or-
der of f . Among the important applications of such formula, we can mention the study
of 'Operator-Lipschitz function’, that is, the space of Lipschitz functions on R which
have a Lipschitz property for functional calculus of selfadjoint operators. One the very
important results in this direction was obtained by D. Potapov and F. Sukochev who
established that any Lipschitz function is Lipschitz operator on the re exive Schatten
classesSP;1 < p < 1 (see [PS11]), and where the use of(4) was fundamental. This
result does not hold true inthe case p=1 and p= 1 and a counterexample was built
in [Far72].

Triple operator integrals are bilinear mappings de ned on S?(H) S ?(H) and valued
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in S?(H). With the same kind of formula, the operator (3) can be obtained as a certain
triple operator integral. It turns out that double and triple operator integrals can be
understood as continuous linear and bilinear Schur multipliers, respectively. Indeed,
for a nite dimensional Hilbert space H, double and triple operator integrals are noth-
ing but the classical linear and bilinear Schur multipliers which have been intensively
studied.

According to the discussion above, an idea to solve Peller's problem is to determine
in which case a triple operator integral is actually valued in  S(H). The rst step is to
understand that in the nite dimensional case, that is, in which case a bilinear Schur
multiplier is valued in  St. It turns out that the S-norm of such mappings can be com-
puted thanks the the norms of a family of linear Schur multipliers on B(C"). These
objects are well-known and there is description of linear Schur multipliers on  B( ")
(see e.g. [Pis96, Theorem 5.1]). This unexpected connection between Peller's problem
and linear Schur multiplier was the starting point for the resolution of the problem,
and more precisely, for the construction of a counter-example.

This thesis is organized as follow.

In Chapter 1, we de ne several notions that will play an important role in this the-
sis, even if many of them do not appear explicitly in the statements of the main results.
We will often use tensor products as a tool, and in particular, the identi cation of the
dual of certain tensor products of two Banach spaces is usually the key for many im-
portant results. As we already mentionned them in the rst part of this introduction,
many questions in this thesis will be stated with Schatten classes. We will recall their
de nition and several properties of those important spaces. The last two sections will
deal with the LP-spaces which appear as the dual of Bochner spaces. In particular,
we prove in Section 1:4 important factorization properties for L! -spaces valued in the
space of operators that can be factorized by a Hilbert space. Those results have been
obtained in collaboration with C. Le Merdy and F. Sukochev and appear in [CMS17].

In Chapter 2, we will be interested in linear Schur multipliers. The main result con-
cerning them is a characterization of Schur multipliers on B( ) by Grothendieck. Our
aim was to generalize this result in order to obtain a characterization of Schur multipli-
ersonB( p; ¢). Itturns out that we could manage the case g  pand obtain a statement
similar to the one of Grothendieck. As we explained before, the objects appearing in
this thesis are continuous Schur multipliers. Therefore, we will de ne more generally
continuous Schur multipliers on B(LP;L9). We will see that to understand them, it
is enough to understand classical Schur multipliers. We will nish this chapter with
several new results about the inclusions between the spaces of Schur multipliers. The
article [Coil7] has been written concerning the results of this chapter.

In Chapter 3, we study bilinear Schur multipliers, in the classical and in the con-
tinuous case. After recalling their de nitions, our concern will be the  S!-boundedness
of such operators. The main results are characterizations of bilinear Schur multipliers
valued in S? by the use of linear Schur multipliers. Those results will be the rst and
the key step to understand and solve Peller's problem.
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Chapter 4 is dedicated to various results about multilinear operator integrals. We
rst give a de nition of those operators by duality, which allows us to have a more
general de nition than the ones introduced before. As we already said, those objects
can be understood as a kind of continuous multilinear Schur multipliers. Thus, us-
ing our preceding results, we will be able to characterize triple operator integrals that
are valued in the trace class operators. In a last section we will give a necessary and
suf cient condition for a triple operator integral to de ne a completely bounded map
from St (H) S! (H) equipped with the Haagerup tensor product into  S* (H). This
generalizes a result obtained in [KJT09] in the setting of continuous multilinear Schur
multipliers. The results of Sections 4:1 and 4:3 have been obtained in collaboration with
C. Le Merdy and F. Sukochev and the paper [CMS17] has been written about them.

Finally, Chapter 5 is the resolution of Peller's problem. We mentionned the selfad-
joint case but a similar problem can be stated in the unitary case. We will solve both
problems using the same ideas. The rst tool will be the connection between Peller's
problems and triple operator integrals. To do so, we will study the connection between
multilinear operator integrals and perturbation theory. In particular, we give a formula
forthe n  th derivative of a map of the form

t2R7IF(A+K) f(A)

where A and K are selfadjoint operators with K a Hilbert-Schmidt operator. This result
will generalize Formula (4) and we will obtain a Taylor formula at the order n for self-
adjoint operators. In particular, the operator (3) will appear as a certain triple operator
integral. The second tool will be the computation of the S!-norm of a bilinear Schur
multiplier by means of linear Schur multipliers which will allow us to use a counter-
example of E. B. Davies concerning the behavior of the absolute value mapping on the
spacesSY(C");n 2 N. By using norm estimates in the nite-dimensional case, we will
construct two operators A and K as a direct sum of nite rank operators such that the
operator (3) does not belong to S, where f is a well chosen function. The results of
Section 5:2 have been obtained in collaboration with C. Le Merdy A. Skripka. The re-
sults of Sections5:3 and 5:4 as well as those of Subsection3:3:2 have been obtained in
collaboration with C. Le Merdy, D. Potapov, F. Sukochev and A. Tomskova and two
papers [CMPST16a; CMPST16b] have been published concerning them.

3 Notations

We give here a few notations that will be used throughout this thesis. The notations
that are used later but not mentioned here are either standard or they will be given
when needed.

T=1z2 C : jzj = 1gwill denote the unit circle of the complex plane.

Letl p<+1.Wedene
~ ( +1 >4 . . )
p= X=(Xn)pzp @ JXajP<1
n=1
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. . _ P 1 . . 1:p .
equipped with the norm  kxk, = ( XnjP) "

n=1

fp=+1,let

N — — 1 . . .
1 = X=(Xn)pz ' SUPjXnj < 1
n

equipped with the norm kxk; = sup, jXn].

If n 2 N, we denote by "J the n dimensional versions of the spaces introduced
before.

For a Hilbert space H, let H denote its conjugate space.

The Hilbertian direct sum of any sequence (H,), 1 of Hilbert space will be de-

noted by
M
H= Hn:
n=1
In this cgse, ifforall n 1, A, is abounded operator acting on H,, we will denote
by A=~ ’_ A, the operator de ned on the domain
n e 0
D(A)= fhaygi, 2H @ kA (h)k* <1 ;
n=1

by setting A(h) = fA,(h,)gi., forany h= fh,gl_, in D(A).

2
For two Hilbert spaces H and K, we will denote by H K their Hilbertian direct
sum.

Whenever is a set andV isasubsetwelet y : ! f 0;1g denote the
characteristic function of V.

Let X and Y be two Banach spaces.

Forl p 1 anda measure space( ; ) we denote by LP(; X) the Bochner
space ofp integrable (classes) of functionsf : ! X.
When X = C, we simply write LP() .

B (X;Y) is the Banach space of bounded linear operatorsT : X ! Y equipped
with the operator norm k:k de ned by

kTk= sup KTxk:

x2X; kxk 1
When Y = C, we write X for the dual space of X.

Let Z be a third Banach space. We letB,(X Y;Z) be the Banach space of all
bounded bilinear operators T: X Y ! Z, equipped with

kKTk=sup kT(x;y)k : x2 X;y 2 Y;kxk 1, kyk 1:
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We write X, X for the tensor product of n Banach spaces X y;:::; X,.
When X; L ( ;) for some measure spaces( i; i), we will often identify an
elementf = f, fn2 X4 X, with an elementof LY ( , ::: n)
as follows:

8t=(ty;::th)2 1 i na ()= Fo(ty)ifn(tn):

LetE B (H)and F B (K) be two operator spaces.

Forn;m 2 N, let M., (E) be the gpace ofn m-matrices with entries in E. For

r 2 N , denote by “}(H) the space ,_, H. We have an identi cation

Mnm (B(H)) "B (2'(H); "2(H)):
Hence, we may equip M., (E) with the norm induced by the inclusion

Mnm(E)  Mnm (B(H)):

Letu:E! F bealinearmap. Forn2 N , write My, (E) := M,(E). We consider
the mapping u, : M,(E) ! Mu(F)dened, for x=[gj]i ij n2 Mn(E) by

Un(X) =[u(ej)l1 ij n:
We say that u is completely bounded if

Kukep ;= supkupk < 1 ;
n

and we denote by CB(E; F) the Banach space of completely bounded maps from
E into F equipped with the c.b. norm.

If for any n, u, is contractive (respectively positive, resp. an isometry), we say
that u is completely contractive (resp. completely positive, resp. a complete isom-

etry).

If H is a Hilbert space, we denote by H; = B(C; H) its column structure and by
H, = B(H;C) its row structure. We refer e.g. to [EROO, Section 3.4] for further
informations.

In Chapter 4, the L' spaces will be equipped with their maximal operator space
structure (Max) for which we refer to [Pis03, Chapter 3].



Chapter 1

Preliminaries

In this rst chapter, we give some preliminary results that we will use all along the
thesis. First, we will give some background on the norms of tensor products. We will
de ne several tensor norms and identify, for two Banach spaces X and Y, the dual of
X Y equipped with those norms. Then, we will give a few properties of Schatten
classes. In particular, the spaces of Hilbert-Schmidt operators and trace class opera-
tors will play fundamental roles, as they appear in many important de nitions and
results presented here. In a third section, we will de ne the LP-spaces, which are a
dual version of Bochner spaces. Finally, the last section of this chapter is of indepen-
dent interest: it describes the elements of LP-spaces valued in certain tensor products.
This section will be fundamental to give a precise and concrete meaning for important
results in Chapters 3 and 4.

1.1 Tensor products

We give a brief summary of tensor product formulas to be used in the sequel.

1.1.1 Projective and injective tensor product

Let E and F be Banach spaces.

The projective norm:

If z2 E F, the projective tensor norm afis de ned by

nx 0
kzk~ := inf kxikkyik ;

where the in mum runs over all nite families  (x;); in E and (y;); in F such that

X
Z= Xi Vi
i

The completion E  F of (E F;kkx) is called the projective tensor product of E and
F.
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Let G be a Banach space. To anyl 2 B,(E F;G), one can associate a linear map
T.E F! Gbytheformula

B(x y)= T(xy); X2E; y2F:

Then ®is bounded on (E F;k kn), with kPk = kTk, and hence the mapping T 7! £
gives rise to an isometric identi cation

B,(E F:G)= B(E F:G): (1.1)

Inthe caseG = C, this implies that the mapping taking any functional ! :E F! C
tothe operatoru: E! F denedby hu(x);yi =!(x y)forany x 2 E;y 2 F, induces
an isometric identi cation .

(E F) =B(E;F ): (1.2)

We refer to [DU79, Chapter 8, Theorem 1 and Corollary 2] for these classical facts.

Let ( ; ) be a -nite measure space and let L(; F) denote the Bochner space
of integrable functions from  into F. By [DU79, Chapter 8, Example 10], the natural
embedding L1() F LY(; F)extends to anisometric isomorphism

N

LY(; F)=LY) F: (1.3)

By (1.2), this implies
LY(; F) =B(L'() :F ): (1.4)

Assume now that Y = LY 9 where ( ¢ 9 isa -nite measure space. Then, an
application of Fubini's theorem gives

LY 5L 9= LY 9:
Using equality (1:4), we obtain an isometric w -homeomorphic identi cation
B(L*() ;LY ( D=L ( 9; (1.5)
and the correspondance is given by

LY 9 !B (L' iL'( Y-
70 f2LY) T f() (t)d ()

For 2L ( 9, denote by u the corresponding element of B(LY() ;L ( 9).

The injective norm:

P
Ifz= ;xi yvi2X Y, x 2X andy 2Y ,wewrite
X
he;x yi= x(x)y (V)
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Then, the injective tensornorm af 2 X Y is given by

kzk = sup jhz;x  yij:
kx k L;ky k 1

The completion X ~ Y of (X Y;k:k ) is called the injective tensor product of X and Y.

In this thesis, we wiII:,often identify X Y with the nite rank operators from X
into Y asfollow. If u=" ;x; yi2X Y,wedene u:X ! Y by
X
tH(X) = X; (X)yi; 8x 2 X: (1.6)
i
Then, itis easy to check thatkuk = ktKg(x.y )-

Moreover, if Y has the approximation property (see e.g. [DFSO08] for the de nition),
[DFS08, Theorem 1.4.21] gives the isometric identi cation

X Y =K(XY)

where K(X;Y ) denotes the space of compact operators fromX into Y.
Let( 1;F1; 1) and ( 2;F2 ») betwo -nite measure spaces. Letl p<1 and
1 q 1 .ThenL9 ;) hasthe approximation property so that we have

LP( 1) 7 LY 2) = K(LP( 1);LY 2): (1.7)

Finally, if we assume that 1< p;q < +1 , then by [DFS03, Theorem 2.5] and(1:2),
(l—po( 1)~ L 2) =(LP°( 1) qu( 2)) = B(LP( 1); L 2)): (1.8)

1.1.2 Lapresté norms

Xn ! 1=s
Ws(X;; X) = sup jhx 5 xij®
x 2X ;kx k 1 i=1

Letp;g2 [1;1 Jwith — + landtaker 2 [1;1 ] such that

Ol
QI

S
O TOTlk

m Qlk

Denote by p°and ¢’the conjugate ofpand g. Forz2 X Y, we de ne

( o )

ma(Z) =inf K( i)ike Wgo(Xi; X )Wpo(yi; Y)jz = iXi Vi

i=1
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Then ,gisanormon X Y andwedenote by X Y its completion (see e.g. [DF93,
Proposition 12.5]).

1.1.3 Haagerup tensor product

LetE B (H)andF B (K) betwo operators spaces. Letn 2 N . Forr 2 N we de ne
the matrix inner product e f 2 M,(E F) of two elements e=[g;] 2 M, (E) and
f=[fj12 Mo (F) by " #
X
e f= (ST fkj

k 10 n
We de ne, for u2 M,(E F),

kukp = inf fk ekkf kg

where the inmum runsoverall r 2 N;e=[ej]2 My, (E);f =[f;]2 M,(F) such
thatu=e f.By[EROO, Lemma 9.1.1], such factorization ofu exists.
Note thatfor x 2 E F we have
8 9
< X =
kxkp = inf a8, hbh ;x= & b,
) i i i
Then k:k, satis es the axioms of Ruan's theorem (see e.g. [Pis03, Section 2.2]),
h
hence, after completion, we obtain an operator space denoted byE  F.

A rst property of the Haagerup tensor product is its associativity. Indeed, if G is
another operator space, we have, by [EROO, Proposition 9.2.7], a complete isometry

h h h h
(E F) G=E (F G):
h h
See also [Pis03, Chapter 5] for a de nition of E; En for N operator spaces

We give now a few properties of the Haagerup tensor product that we will use in
Chapter 4.

Theorem 1.1. [EROO, Theorem 9.4.3] L&; andE, be operator spaces andi andH, be
Hilbert spaces. A linear mapping

h
U:El EZIB (Hz,Ho)

is completely bounded if and only if there exist a Hilbert sgdgeand completely bounded
mappings ; : E; !B (H;;H; 1) (i =1;2)such that

u(xy Xz2) = 1(X1) 2(x2):
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In this case we can choosesuch that
Kukep = K 1KeK 2Kep:

Remark 1.2. WhenHy = H, = C we can reformulate as follows: a linear functionatl

h
E; E,! Cisbounded (and therefore completely bounded) if and only if there exist a Hilbert
spacdH, :E;! (H.) linearand :E,! H.antilinear, and completely bounded such
that

U(X1;X2) = h (X1); (X2)i:
Recall the de nition of a quotient map.

De nition 1.3. LetX andY be Banach spaces. Amap X ! Y is a quotient map is
is surjective and for aly 2 Y with kyk < 1, there existsx 2 X such thatkxk < 1 and
s(x) = y. This is equivalent to the fact that the injective m@apX=ker(s) ! Y induced bys
IS a surjective isometry.

If E; E, are operator spaces, we equip E,=E; with the quotient operator space
structure (see e.g. [Pis03, Section 2.4]). Wherlce and F are operator spaces, a quotient
map u : E ! F is said to be a complete metric surjectioif the associated mapping
0: E=ker(u)! F isacompletely isometric isomorphism.

Proposition 1.4. LetEq; E,; Fy; F, be operator spaces.

() If g :E;! F;iscompletely bounded, then

h
G :Er Ex! F1 R

denedby(x @)(e1 €)= au(er)) (&) extendstoacompletely bounded map

h h
th (072 E]_ E2 ! F1 Fz:

h h
(i) If E; Fj completely isometrically, thel; E, F; F, completely isometrically.

h h
(i) If g : E;! Fiisacomplete metric surjection,then o :E; E,! F; Fyisalso
one.

The second property is called the injectivity and the third one the projectivity of the Haagerup
tensor product.

Corollary 1.5. Let X andY be operator spaces and ket  X;F Y be subspaces. Let
p: X! X=E andq:Y ! Y=Fbe the canonical mappings. They induce a mapping

h h
p gq:X Y! X=E Y=F:

Then

ker(p gg=E Y+ X F:
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Proof. Write N = E Y + X  F. First note that we easily obtain the rst inclusion

N ker(p 0):

Therefore, to show the result, it is enough to show that

N? ker(p 0)°:

h
Let :X Y ! Chbesuchthat ;y =0. By Remark (1:2), there exist a Hilbert space
- X

H, ' (Hy) linearand :Y ! Hcantlinear, and completely bounded such
that

(xy)=h(x); (Ni;x2Xy2Y:
Let K = (X) and denote by Pk the orthogonal projection onto K. Then we have, for
any x and vy,

(x;y) = P (x); (V)i =P (X);Pc (V)i:
Thus, by changing into Pk and into Px , we can assume that has a dense
range. Similarly, setting L = (Y) and considering P_, we may assume that has a

dense range.
By assumption, forany f 2 F and any x 2 X, we have

0= (x;f)=h (x); (f)i:
This implies that ;= = 0. Similarly, we show that ;¢ = 0. Thus, we can consider
b:X=E ! (Hc) and P:Y=F! H,

suchthat = b pand = b g and where X=E and Y =F are equipped with their

h
quotient structure. Thisallowstodene b:X=E Y=F! Chby

D E
b(s;t) = b(s); P(t)

Then =b (p 0),sothat 2 ker(p 0)°. O

Proposition 1.6. [ER0O, Theorem 9.3.3] L& be an operator space andieandK be Hilbert
spaces. Forany 2 CB(E; B(H;K)) we de ne a mapping

1K E H! C

by setting
(ke h)=hr(eh;ki:

Then, the mappin@ 7! 1 induces a complete isometry

CB(E:B(H:K))= (K) E H
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1.1.4 Dual norm

P
LetM X andN ¥ be nite dimensional subspaces (in short, f.d.s). If u= " [, x;
yi2M Nandv=" 1, x, y,2M N weset
X
hv;ui = X
i

i Xi Y

Let be atensor norm on tensor products of nite dimensional spaces. We de ne, for
z2M N,
Az;M;N) =supfihv;uijj v2 M N ; (v 1g:

Now, for z2 X Y, we set
z;X;Y)=inf f YZ;M;N)jM X;N Y fds;z2M Ng:

Ode nes atensor normon X Y, called the dual norm of
In the sequel, we will write  {z) instead of qz;X;Y) for the norm of an element
z2 X Y when there is no possible confusion.

1.1.5 (p;g Factorable operators.
P
fT2B(X;Y )and = ;x; yi2 X Y,theninaccordance with (1:2) we set
X
hT; i = AT (X;); Vil :

" 1 1
De nition 1.7. Letl p;q 1 such thatB + a 1. LetT 2 B(X;Y ). We say that
T 2L ,q(X;Y ) ifthere exists a constai@ O such that

8 2X Y;jhT;ij C pq(): (1.9)

In this case, we writ ,.4(T) = inf fC j C satisfying(1:9)g:
Then(L,.4(X;Y );Lpg) is a Banach space, called the spa¢p;af Factorable operators.

For a general de nition of the spaces L,4(X;Y ) (including the case when the range is
not a dual space), see [DF93, Chapter 17].

SinceY is 1-complemented in its bidual, [DF93, Theorem 18.11] gives the following
result.

1 1 :
Theorem 1.8. Letl p;q 1 such thatB + q 1. LetT 2B(X;Y ). The following two

statements are equivalent :

() T2Lpa(X Y ).

(i) There are a measure spdce ) (a probability space Wheé + é > 1) and operators

R2B(X;L%( ))andS2B(LP( );Y )suchthatT =S | R
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X —I—1Yq

R S

Lo )'I_/Lp( )
wherel : LL( )1 LP( ) is the inclusion mapping (well de ned becaugfe p).

In this casel p4(T) = inf kSkkRk over all such factorizations.

. 1 1 .
Remark 1.9. Here we consider the case whes ~ = 1. Denote bypthe conjugate exponent

P 9
of p. We havel 2 L ,»(X;Y ) if and only if there are a measure sp#&ce ), operators
R2B(X;LP( ))andS 2B(LP( );Y )suchthatT = SR

X ;/Y:
LP()
We usually write ,(X;Y )instead oL ,.o(X;Y ) andthe norm of an elemefit2 ,(X;Y )

is denoted by ,(T). Such operators are callpd factorable. It follows from the very de nition
of (p;d Factorable operators thap(X;Y ) is a dual space whose preduaXis 2po Y-

If X and Y are nite dimensional, it follows from the very de nition of the dual
norm that
X g, Y =(X q Y )
The next theorem describes, for any Banach space€ and F, the elements of the space
(E .. F).
Theorem 1.10. [DF93, Theorem 19.2] L& andF be Banach spaces. Ipeg 2 [1;1 ] with
%+} landK Bg andL Bfg weak -compactnorming sets for E and F, respectively.

q
For :E F ! Cthefollowing two statements are equivalent:

@B 2(E ,F).
(i) There are aconsta®® 0 and probability measuresonK and onL such that for all
x2 Eandy 2 F,
Z 1:qD Z 1:p0
jhix yij A jhxijd (x) ihy ;yij"d (v) (1.10)
K L

(if the exponent id , we replace the integral by the norm).
In this casek ke . r) =inf fAjAasin(iig:

This theorem will allow us to describe the predual of Lpo('7; 1), n;m 2 N. Letus

apply the previous theoremwith E = "7 andF = "I'. TakeT 2 '] o "7'=("7
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") andlet
XX

T= T@j)e e
i=1 j=1
be a representation of T. In the previous theorem, we can take K = f1;2;:::;ngand
L = f1;2;:::;mg. In this case, a probability measure on Ko is nothing but a sequence
= ( 1;::5; n) where, for all i, ; = p (fig) Oand , ; = 1. Similarly, =
1,11, m) where, forall i, ;  Oand ; ; = 1. In this case, the inequality (1:10)
means that for all sequences of complex numbersx = (xi)iL;;y = (Yj)g;,

I -
X’] )(n P ><] . -q0 . l_qo >(n . .n0 l_po
TGExy A i id® «
i=1 j=1 k=1 k=1
Set ¢ = X &:qo, kK = Yk l}:po and dene, for 1 | nl1 m, c(i;j ) such

that T(i;j) = c(i;j) = j1:p0 (we can assume ; > Oand ; > 0). Then, the previous
inequality becomes

XX
ci;j) ; i Ak k\gok kxgo:
i=1 j=1
This means that the operator ¢ : "% ! "' whose matrix is [c(i;j)]1 j m1 i n has a

norm smaller than A. Moreover, if we see T as a mapping from ™} into "7 the relation
between T and c means that T admits the following factorization

\2 T I~m
d d
*n /‘m
® ¢ p
where d and d are the operators of multiplication by = ( izqo; - qo) and =
=0 —nO.
i'p i mE ). Those operators have norm 1.
Therefore, it is easy to check that
KTkey  ,p) =inffkekjT=d ¢ dg: (1.11)

The elementsof ("7 ., ") arecalled (¢ p%) dominated operators. For more infor-
mations about this space in the in nite dimensional case (it is the predual of L), see
for instance [DF93, Chapter 19].

By (1:11) and the fact that L p.q("1; 1 )

(7 g, T . we get the following result.
Proposition 1.11. Letv=[v;]: 7! "I'. Then

Lpg(V) = sup jTr(vu)j



18 Chapter 1. Preliminaries

where the supremum runs over all: *7' ! "] admitting the factorization

\T u '\nb
d d
*m /‘I’]
e g
with kd k  1;kd k 1andkck 1.
Equivalently,
{ o 30 )
Lpia(V) = sup ViGi i kel gk Lk kmo Lk ke 1
i=1 j=1

1.2 Schatten classes

1.2.1 De nition and duality

Let H;K be Hilbert spaces and let tr be the trace on B(K). We let, for 1 p <
+1 ;SP(K; H) denote the Schatten classes class of ordep equipped with the norm kik,
de ned for an operator T: K!H by

KTkp = tr( jTjP)*P;

where jTj=(T T)%. We will also denote by S* (K;H) the space of compact operators
from K into H.
We recall the duality theorem for Schatten classes.

Theorem 1.12. Letl<p < +1 and letgto be the conjugate exponentofThen

SYH:;K) ' S P(K;H) and B(H;K) !I' S YK:H)
T 7! tr(T:) T 7! tr(T:)

are isometric isomorphisms.

For a proof of this theorem and several properties of Schatten classes, see for in-
stance [Zhu90].

We will mainly work with  S'(K;H), S?(K;H) and S?* (K;H). Note that S*}(K;H),
the trace class operatqrss the smallest space among all Schatten classes. This comes
from the factthat, forall 1 p; p.<+1,

Kikp, K tkp,:

For any hy;h, in H, we may identify E h, with the operator h 7! hh;h;ih, from H
into H. This yields an identi cationof H H with the space of nite rank operators on
H, and this identi cation extends to an isometric isomorphism

HIH = SY(H); (1.12)
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see e.g. [Pal01, p. 837].

Using operator space theory and the Haagerup tensor product introduced in Sub-
section 1:1:3, we have, by [EROO, Proposition 9.3.4], a complete isometry

(K " He= SYK;H): (1.13)

Similarly, we have a complete isometry

He (Ke) = St (K;H): (1.14)
Note that S?(K; H) is a Hilbert space, for the inner product
hS; Ti :=tr( ST );
and elements of S?(K; H) are called Hilbert-Schmidt operators

Remark 1.13. Let( 1; 1) and( »; ») be two - nite measure spaces. Jf2 L2( 2),
the operator
Xg: L2 Uz LY ) (1.15)

roo7 J(E)r) d 1(t)

is a Hilbert-Schmidt operator andX ; k, = kJk,. Moreover, any element 8f(L2( 1);L2( »))
has this form (see e.g. [W0j91]). We summarize these facts by writing an isometric identi ca-
tion

L2 1 2)= SHLE( 1);L%( 2)): (1.16)

In this thesis, we will often work with the nite dimensional versions of the Hilbert-
Schmidt and the trace class operators. Forn 2, denote by S} the space ofn n
matrices equipped with the trace norm and by S? the space ofn  n matrices equipped
with the Hilbert-Schmidt norm.

1.2.2 Tensor products of Hilbert space operators and trace duality

Let H; K be Hilbert spaces.
We may consider

B(H:K) B (H K ) (1.17)

by identifyingany S 2 B (H; K) with the matrix g 8 . This is an isometric inclusion.

Then for any von Neumann algebra M , we let

M B (H;K) (1.18)

2
be thew -closure of M B (H;K) inthe von Neumann algebra M B (H K ). Likewise
for any two other Hilbert spaces H°and K°we let B(H2K9 B (H;K) denote the w -

2 2
closure of B(H% K9 B (H;K) inthe von Neumann algebra B(H® K 9B (H K ).
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2
Let HO H denote the Hilbertian tensor product of H%and H. As is well-known, the
2 2
natural embedding B(H2K9 B (H;K) B (H° H ;K° K ) extends to an isometric
identi cation
2 2
B(HKYB (H;K)= B(H° H ;K° K ): (1.19)
Forany T 2 S}K;H) and T° 2 S}K®%H9, the operator T® T belongs to the
2 2
spaceSY(K® K ;H® H ). This yields an embedding of the tensor product S*(K®%H?9

2 2
SY(K;H) into SY(K® K ;H® H ). Let denote the norm on S}K%H9Y S Y(K;H)
induced by this embedding. Namely for any nite families  (T;); in S*(K;H) and (Tj%

2 2
i SYKOSHY, ; T T, isthe trace norm of the operator K® K!H ° H taking
XP xitothesum  ; TAX))  T;(x;) for all nite families (xi); in K and (xf); in K°

Next we let SY(K¢HY S (K;H) denote the completion of the resulting normed space
SYK%HY S Y(K;H); . Since nite rank operators are dense in trace class operators,

2 2
the algebraic tensor product S}(K®H9 S (K;H)isdenseinSY(K°K ;H°H ). Hence
we actually have an isometric identi cation

2 2
SYK%HY s Y(K;H)= SY(K° K ;H° H ):

Then trace duality given in Theorem 1:12yields anidenti cation SY(K%H9 S (K;H)
B(H° *H KO ® ) and hence, by (1.19), we have

SYK®HY s Y(K;H) = BH®*KYB (H;K): (1.20)
Forany 2Kand 2H,welet™ :K!H denotethe operatortakingany z 2 K
tohz; i . ThenK H identi es with the space of nite rank operators from K into H.

Welet : S?(HCH) S 2(K;K9!S Y(K%HY S %(K;H) be the unique linear mapping
satisfying

(° )y ¢ 9 =720 0~ 2H; °2HS 2K; %2K°¢
Lemma 1.14. The mapping extends to an isometry (still denoted by)
S’(HCH) 'S 2(K:K9!S HKOHY S ¥(K:H):

We will prove this proposition by approximation. We rst need the nite dimen-
sional version of this result.
We let E; denote the standard matrix units on M, for 1 i;j n. We regard

we write Eix).) for its standard matrix units. Then we let M, i, M, denote the
minimal tensor product of two copies of M,. According to the de nition of min (S€€
e.g. [Tak79, p. IV.4.8]), the isomorphism Jo: M,y min My ! M2 given by

Jo(Eij Ev) = E(i;k);(j;l )i 1 ikl n; (1.21)
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IS an isometry.
Note that S} is isometrically isomorphic to M, through the duality pairing

st M,! C; (A;B)7!'Tr 'AB : (1.22)

n

With this convention (note the use of the transpose), the dual basis of (Ejj)1 ij n IS
(Ej)1 ij n itself. We have

St SY = Mp min My (1.23)
through the duality pairing (1.22) applied twice.
Lemma 1.15. The isomorphisnd : S2bS2 1 S!Sl given by
JEk E)=E; Ew; 1 ijkil
is an isometry.
Proof. According to the equality
X X

CkEwx = jckj? 7; ck 2 G,
ik 2 ik

N

we can naturally identify SZ? with either 2, or its conjugate space. Then applying the
identity (1.12) with H = “2,, we obtain that the mapping J;: S2bS2! S, given by

Ji(Ex  Ej) = Eqxyiy 1 Gkl m

IS an isometry.
Nowlet J,: St Si! S}, be the isomorphism given by

J2(Eij  Ew) = Egw)giy 1 ikl n:

Taking into account the identity (1.23), we see that J, ! is the adjoint of J,. Conse-
quently, J,* is an isometry. SinceJ = J,'J;, we deduce that J is an isometry as
well. ]

Proof of Propositiori:14. By approximation, we can assume that the four Hilbert spaces
H;H%K;K' are nite dimensional, say of dimension n 1. In this case, S?(H%H)
and S?(K;K9 identify with S2, the space ofn  n matrices equipped with the Hilbert-
Schmidt norm. Likewise S'(K;H) and S}(K%H?9 identify with S}, the space ofn n
matrices equipped with the trace norm. Then under these identi cations, : S2 S 2!
St s lisgiven by

( Ey Ej|) = Eij Ew; 1 |,J,k,| n:

Thefore, since the transposition is an isometry of S2, the result follows from Lemma
1:15. O
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1.3 LP-spaces and duality

Let( ; )bea -nite measurespace andlet E be aBanachspace. Forany p +1,
we let LP(; E) denote the classical Bochner space of measurable functions : ! E
(de ned up to almost everywhere zero functions) such that the norm function k' ( )k
belongsto LP() (seee.qg. [DU79, Chapter Il]).

We will consider a dual version. Assume that E is separable. Afunction : ! E
is said to bew -measurableifforall x 2 E, thefunction t 2 7! h (t);xi is measurable.
In this case, the function t 2 7! k (t)k is measurable. Indeed, if (Xx,), is a dense
sequence in the unit sphere of E, then k (:)k = sup,, jh (%); X,ij is the supremum of a
sequence of measurable functions, hence is measurable.

Letl g +1.Bydenition, L9 ; E )isthe space of allw -measurable : !
E suchthatk (:))k 2 L9() , after taking quotient by the functions which are equalto 0
almost everywhere. We equip this space with

K kq= Kk ()KKa() :

Then (L9(; E );kikg) is a Banach space and by construction,L9(; E) L9(; E)
isometrically.

Supposethatl p<+1 andletl<qg +1 be the conjugate exponent ofp. For
any 2 LY9; E)andany' 2 LP(; E), the function t 7! h (t);" ()i is integrable,
which yields a duality pairing

Z
h;" i:= h(t);" (t)id (t): (1.24)

Moreover by Hoélder's inequality, we have
jh;" i ko Kgk' kp: (1.25)
Theorem 1.16. The duality pairing (1.24) induces an isometric isomorphism
LP(; E) =LY; E): (1.26)

The above theorem is well-known and has extensions to the non separable case.
However we havent found a satisfactory reference for this simple (=separable) case
and provide a proof below for the sake of completeness. See [DU79, Chapter IV] and
the references therein for more information.

Recall that we have L(; E) = B(LY() ;E ) by (1.4). Hence in the casep = 1, the
above theorem yields an isometric identi cation

LY (; F)=B(L() ;F); (1.27)
a classical result going back to [DP40, Theorem 2.1.6].

Proof of Theorem 1.16[he inequality (1.25) yields a contractive map : L9 ; E ) !
LP(; E) . Ouraimisto showthat is anisometric isomorphism.

According to the separability assumption there exists a nondecreasing sequence
(En)n 1 Of nite dimensional subspaces of E suchthat[ ,E, is denseinE. SinceE, is
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nite dimensional, L9 ;E,) = L9 ;E,) and E, satis es the conclusion of the theo-
rem to be proved, that is,
LP(; En) =LY E.) (1.28)

isometrically (see [DU79, Chapter IV]). In the sequel we regard LP(; E,) asasubspace
of LP(; E) in a natural way.

We rstnotethat is1-1.Indeedif 2 L9(; E )issuchthat ( )=0,thenforany
n 1, (t)je, =0 a.-e. by (1.28). Hence (t)j ,e, = 0 a.-e., which implies that (t)=0
a.-e..

Now let 2 LP(; E), with k k 1. Applying (1.28) to the restriction of  to
LP(; E,) we obtain, for any n 1, a measurable function ,: ! E, such that
k nkg land

Z
8' 2LP() En; ()= ha();" @®id (1):

We may assume that forany n 1, we have
8t2 n+1 (t)jEn = n(t): (129)

Indeed by construction, n+lje, = n &€ and the family ( ,)n 1 is countable so we
can modify all the functions , on a common negligible set to get (1.29).

It follows that forany t 2 , (k ,(t)k), 1 IS a nondecreasing sequence, so we can
de neameasurable : ! [0;1 ]by

(t) =lim k oDk t2

If g <1 we may write
Z Z
(9 (t) =lim  k ,()k%d (t) 1L
n

by the monotone convergence Theorem. This implies that isa.-e. nite. If q= 1 , the
factthatk ,k; 1lforany n 1limpliesthat (t) 1fora.-e.t2 . Thusinany case,
there exists a negligible subset o suchthat (t)< 1 foranyt2 n .

Ift2 n o, then by (1.29) and the density of [ ,E,, there exists a unique element
of E , thatwe call (t), such that

8n 1, 8x2E,; h (t);xi = h (t);xi:

Nextwe set (t)=0 foranyt2 ,. Wethus haveafunction : ! E .

Let x 2 E and let (x;); be a sequence of] ,E,, converging to x. Thenh ( );x;i !
h ();xi pointwise. Moreover for any j, the function h ( );x;i is measurable by con-
struction, hence h ( );xi is measurable. Thus isw -measurable.

Now from the de nitionof  ,we seethat and ( ) coincideonLP() E, forany
n 1 Consequently, = ( ). Moreover k ky=Ilim,k nkq 1

This proves that is a metric surjection, and hence an isometric isomorphism. [

Let E and F be two separable Banach spaces. Then their projective tensor product

N

E F is separable. Recall that its dual space is equal toB(E;F ). Whenever : !
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B(E;F ) is aw -measurable function, then for any x 2 E, the function T (x): ! F
de ned by
T @M= O, t2 ] (1.30)

ISw -measurable.
Corollary 1.17. The mapping 7! T given by (1.30) induces an isometric isomorphism

B(E;L* ( ;F))=L*(; B(E;F )):

Proof. By Theorem 1.16 forp = 1, and by (1.2) and (1.3), we have isometric isomor-
phisms

B(E;L'(; F))= E LY(; F)

E LY) F

Li(; E F)
L' (; B(E;F )):

It is easy to check that the correspondence is given by (1:30). H

Remark 1.18. We already noticed that9(; E ) = L9 ; E ) whenE is nite dimensional.

It turns out that for a general Banach spd€ethe equalityL9(; E ) = L9 ; E ) is equiv-

alent toE having the Radon-Nikodym property, see e.g. [DU79, Chapter 1V]. All Hilbert
spaces (more generally all re exive Banach spaces) have the Radon-Nikodym property. Later on
we will use this property that for any separable Hilbert spdcand anyl g 1 ,we have

L9(¢; H) = L% H):

Let E be a Banach space with the Radon-Nikodym property. In this case, Remark
1:18ensures that
LY ;E) =LY( ;E):

Then equality (1:4) implies that
LY ( ;E )= B(L'() ;E); (1.31)
and the isometric isomorphism is given by

LY*(;E) ' B (L'();E): 5
g 7! f2LY) 7' f()gM)d ()

Let H be a separable Hilbert space. It is well-known that the natural embedding of
Lt () B (H)into L! (; B(H)) extends to an isometric and w -homeomorphic identi-
cation L* () B (H))= L (; B(H)) (see[Sak98, Theorem 1.22.13]). Using de nition
(1.18), we show that this remains true if B(H) is replaced by B(H ; K):

Lemma 1.19. LetH; K be any two separable Hilbert spaces. Then the embeddirtg(9f
B(H;K)into L' (; B(H;K)) extends to an isometric ad -homeomorphic identi cation

L* () B (H;K)= L' (; B(H;K)):
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Proof. LetH = H 2K .WeregardL! () B (H;K)andL! (; B(H;K)) as subspaces of
L1 () B (H)andL?! (; B(H)), respectively. Further we use the identity L! () B (H) =
L! (; B(H)) mentioned above. The spacelL! (; B(H;K)) is aw -closed subspace of
the dual spaceL?! (; B(H)) hence we havelL! () B (H;K) L (; B(H;K)).
Conversely, let 2 L' (; B(H;K)). Let T:LY) ! B (H;K) be associated to
by the identi cation (1.27). Consider anet (P) B (L()) of nite rank contrac-
tive projections, converging strongly to the identity map. Writet T = TP and let
2 L' (; B(H;K)) be associated toT for any . SinceT is nite rank, belongs
toL! () B (H;K).Hencetoshowthat 2 L' () B (H;K),itsufces to check that
! in the w -topology of L! (; B(H;K)). Recall that the latter space is the dual

space ofLY() S (K;H). Forany"' inthe algebraic tensor product L() S (K;H),
we have

by the de nition of . SincekP k 1, we have k k; k Kk; forany , hence the
above convergence result holds true as well forany ' 2 L() S }(K;H). O

Remark 1.20. LetE;; E, be two Banach spaces andUetE,; ! E, be aw -continuous map.
Forany 2 L' (; E,),thecompositonmap : ! E,belongstd! (; E,) and the
mapping 7! U is a bounded operator from' (; E,) into L (; E,), whose norm is
equalkUk. It is easy to check that this mappingvis-continuous. If furtherU is an isometry,
then 7! U Is an isometry as well.

1.4 Measurable factorizationin L1 (; (E;F ))

1.4.1 The main result

The main purpose of this section is to prove Theorem 1.21 below. This result will be
applied in Subsection 1.4.2 (and in Subsection 3:3:2) to the study of continuous Schur
multipliers (see Chapter 2 for the de nition).

We will say that a measure space( ; )isseparable whenL?( ; )isseparable. This
impliesthat ( ; )is - nite and moreover, LP( ; )isseparableforanyl p<1.

It follows from Remark 1:9 that for any separable Banach spacesE;F, the space

2(E;F ) is a dual space with a separable predual. If H is a separable Hilbert space,

then B(E;H) and B(F; H) are also dual spaces with separable predual.

Theorem 1.21. Let( ; ) be a separable measure space arifl; lEtbe two separable Banach
spaces. Let 2 LY ; (E;F ) . Then there exist a separable Hilbert specand two
functions

2 LY ; B(E;H) and 2L ; B(F;H)

suchthatk k; k k; k k; andforany(x;y)2 E F,
[ OI<);y = [ OI);[ OI(y) ;  fora-et2 : (1.32)

We will need two lemmas, in which ( ; ) denotes an arbitrary - nite measure
space.
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The rst one is a variant of the classical classi cation of abelian von Neumann al-
gebras. Forany 2 L?! () , and any Hilbert space H,we letM : L2(; H)! L2?(; H)
denote the multiplication operator takingany ' 2 L?(; H)to '

Lemma 1.22. Let H be a separable Hilbert space and letL! () ! B(H) be aw -
continuous -representation. There exist a separable Hilbert spa@nd an isometric em-
bedding : H! L?(; H) suchthatforany 2 L () ,

()=M:

Proof. Since is w -continuous, there exists a measurable subset ° such that the
range of isisomorphicto L! (9 in the von Neumann algebra sense and coincides
with the restriction map. It therefore follows from [Dav96, Theorem 11.3.5] that there
exist a measurable partitonf , : 1 n 1g of Cand a unitary operator

GHU L))

such that forany 2 L' (), 1 () ; coincides with the multiplication by . (Note
that in the above decomposition, the index n may be nite or in nite and the notation

*2 stands for *2.) Let
2 N
H= 11 ﬁ

and consider the canonical embedding
20 a1 LACaD) ! LEGOH):
Then = , ;satisesthe lemma. O
It is well-known that for any Hilbert space H, the commutant of
LY() " L*() 1w B (L*); H)

coincides with L* () ~B(H). The next statement is a generalization of this result to
the case whenH is replaced by Banach spaces.

We consider two separable Banach spacesW;; W,. Note that B(W;;W,) is a dual
space with separable predual. We say that a linear map

T:L2(; W) ! L2 W,)
Is @ module map provided that
8' 2L3(; Wy);8 2L*(); T(')=T():

Next we generalize the notion of multiplication by an L -function as follows. For any
2Lt ; B(Wi;W,) ,we de ne a multiplication operator

M :L3(; Wy) ! L2(; W,) (1.33)

by setting
M () ®=0CDIC®); t2 ]
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forany ' 2 L?(; W,). Indeed it is easy to check that the function in the right-hand
side of the above equality belongsto L2(; W,). Moreover

kM k=k ki :
Each multiplication operator M is a module map, as we have
M ()=M ()=M ()
forany 2 L! () . The following lemma is a converse.

Lemma 1.23. LetT: L?(; Wy)! L?(; W,)be amodule map. Then there exists a function
2L ; B(W;;W,) suchthatT =M .

Proof. In the scalar case(W; = W, = C) this is an elementary result; the proof consists
in reducing to this scalar case.

We de ne a bilinear map P:w, W,!B (L2()) by the following formula. For
any wi 2 Wi, w, 2 Woand x 2 L?() , we set

Pwiwy) ()= t70 T(x  wi) (t);we

Recall the identi cation L?(; W,) = L?(; W,) from Theorem 1.16. If we consider T
as amap from L?(; W,)into L2(; W,) ,then we have

Z
T(X W)y W, = Pwiswa) (x) (©)y(t)d (1) (1.34)

forany w; 2 Wy, wp 2 Wo, x 2 L?() andy 2 L%() .
Furtherforany 2 L' () andx 2 L?() ,we have

P(wi;wa) (x)

T((x wi)) ();ws
() T(x wg) ()iws
Plws; wo) (x);

becauseT is a module map. Hence 'b(wl; W) is a module map.
Let us identify L! () with the von Neumann subalgebra of B(L?()) consisting of

multiplication operators. The above property shows that 'b(wl; W) is such a multipli-

cation operator for any w; 2 Z; and w, 2 Z,. Hence we may actually regard Pasa
bilinear map

Pw, w,! L)

Now observe that applying (1.1), (1.2) and (1.27), we have isometric identi cations

Bo(Wy  Wo LY ()= B(W; ' Wa; LY ()
B(LY() ;(Wy W,))
B(L'() ;B(Wy;W,))
LY B(W;W,) :
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Let 2 LY ; B(W;;W,) be corresponding to P in this identi cation. Then we have
[COIw)iwe = Blwiwg) (1) Wi 2 Wi wp 2 Wyt 2

Thus applying (3.1) we obtain that

T(X wi)y w,

[ Ol(wy);we x()y(t)d (1)
= M (X w)y w

forany wy 2 Wy, w, 2 W5, x 2 L?() andy 2 L?() . Bythe densityof L2() W, and
L2() W,in L?(; Wy)andL?(; W,), respectively, this impliesthat T= M . O

Proof of Theorem 1.21This proof should be regarded as a "‘module version' of the proof
of [Pis96, Theorem 3.4]. As in this book we adopt the following notation. For any nite
families (y;); and (x;); in E, we write

(¥i)i < (X

provided that X X
8 2E; i )i? i (x)j*:
j i
In the sequel we simply write L2 (resp. L' ) instead of L?() (resp.L! () ) asthere
is no risk of confusion. Then we set

V=L% E L?; E):

We xsome 2 L' ; L(E;F) andwelet C = k k; . Then is an element
of L ; B(E;F ) . Hence according to (1.33) we may consider the multiplication
operator

T=M :L?%; E)! L2 F):

Weletl = LY E . A generic element of | will be denoted by = (; ), with
2Lt and 2§ .
Foranyv=  _Xs &2V (nitesum)and =(; )2I,weset
X
V= (&) xs 2 L%

S

Lemma 1.24. Let(w;); and(v;); be nite families inV such that

X X
8 21, k w;k k vika: (1.35)

j i
Then X X
KT(wj)ks C?  kvika: (1.36)
j i
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Proof. Let (w;); and (v;); be nite families in V and assume (1.35). Considere;s;fjs in
E, Xis; Vs in L? such that
X X
Vv = Xis  6is and W, = Vis fis:
S S

Let =(; )21.Foranyj,
Z X

2
K Wi k% = (fj;s) (t)yj;s (t) d (t):
S
Hence X ) Z | ; X X )
k wik; = ] () (fis)yps(t)  d (1):
j j s
Likewise, X 2 7 | } N ,
ko viky = ] (1) (Xis)es(t) d ():
i i S
Thus by (1.35), we have
j (M wi(t) © d () j ()] vi(t) = d (1): (1.37)

i i

Let E; E be the subspace spanned by thees and fjs. Since itis nite dimen-
sional, its dual space is obviously separable. Let( ), 1 be a dense sequence oE; and
forany n 1, extend , to an element of E (still denoted by ). Then for any nite
families (fj); and (&); in E4, we have

X . .2 X - .2
y)<(x)i08 n 1 I n(f))] [IC)
j i
It follows from (1.37) that for almost every t 2 , we have

Jonowi(t) ] jonovi(t)]
j i

forevery n 1. Since the functionsv;; w; are valued in Ej, this implies that
(W (1) < (vi(t));  forae.t2

By the implication “(i) ) (iii)' of [Pis96, Theorem 3.4], this property implies that for a.e.

t2 ’ X 2 2X 2
[OIw® 2 C w g
i i
Integrating this inequality on  yields (1:36). O
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We let be the set of all functions g: 1 ! R for which there exists a nite family
(vi)i in V such that X
8 21, jo( )j K vika: (1.38)

|
This is a real vector space. We let , denote its positive part, i.e. the set of all functions
I ' R: belongingto . Thisisaconvexcone. Foranyg2 we set
nx 0
p(g) = C?inf kviks ;

where the in mum runs over all nite families  (v;); in V satisfying (1.38). Next for any
g2 +,weset nx 0
a@) =sup  KT(w)k; ;
]
where the supremum runs over all nite families (w;); in V satisfying

X
8 21; g() k  w;k3: (1.39)

i

It is easy to check that p is sublinear on and that q is superlinear on .. Further
by Lemma 1:24,g pon .. Hence by the Hahn-Banach Theorem given in [Pis96,

Corollary 3.2], there exists a positive linear functional ": ! R such that
8g2 ; (9 p(9 (1.40)
and
892 +; a9 (9: (1.41)
Following [Pis96, Chapter 8], we introduce a Hilbert space
2(1;75L%)
de ned as follows. Firstwe let L(l;";L?) be the setofall functions G: |1 ! L?such that

the R-valued function 7! kG( )k3 belongsto andwesetN(G)= ( 7!'kG( )k3) :
for any such function. Then L(I;";L?) is a complex vector space andN is a Hilbertian
seminorm on L(I;";L?). Hence the quotient of L(I;" ;L?) by the kernel of N is a pre-
Hilbert space. By de nition,  ,(I; " ;L?) is the completion of this quotient space.

Foranyv 2 V, the function 7! vbelongstoL(l;";L?). Then we de ne a linear
map

Ti: V! 2(1;7 ;L)

as follows: forany v 2 V, T1(v) isthe class of 7! v modulo the kernel of N. Then
we have

kTi(V)k? = 71k vk?
p 7'k Vvk5
C%kvks
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by (1:40) and the de nition of p. Hence T, uniquely extends to a bounded operator
T.:L2(; E)! o(1;7;L?); with kT;k C:
Foranyv 2 V, we have
kT(Wks q 7'k vk* = 7'k vk® = KTy(v)k?

The resulting inequality kT (v)k, k Ti(v)kimplies the existence of a (necessarily unique)
bounded linear operator

T: To(V) ! L2%(; F); with kTok  1;

such that
8v2yv, T(V) = Ty Ti(v) : (1.42)

Foranyv2 V andany 2 L?!,wehave

KTi(v)k k ki KTi(V)k: (1.43)
P
Indeed write v=" _Xs &,with &2 Eandxs2 L? Forany 2L! and 2 E ,we
have X X
(&) xs Kk k (&) X5
S S

Hencek (v)k k ki k vkforany =(; )2 1. Since the functional " is positive
on ,thisimpliesthat = 7'k (v)k® k k?° 7'k vk? ,which yields (1.43).
This inequality implies the existence of a (necessarily unique) linear contraction

LY 1B Ty(V) ;

such that
Ti(v)= ()Tu(v); v2L%; E); 2L*: (1.44)
Itis clear that is a homomorphism, hence a -representation.

Let 2 L! and assume that ( ) is a bounded net of L! converging to in the
w -topology. Forany x 2 L2, x! x in L? (this uses the boundedness of the net). By
the continuity of T; this impliesthatforany e2 E, Ty( x € ! Ti(x €)in Ty(V).
By linearity, this implies that forany v 2 V,Ty( v)! Ti(Vv)in Ty(V). In other words,

( Yh) ! ()(h) forany h 2 T,(V). Since the net( ( )) is bounded, this implies
that ( )! () strongly. Hence isaw -continuous -representation.

Recall that E and L? are assumed separable, hence the Hilbert spaceT,(V) is sep-
arable. By Lemma 1:22, there exists a separable Hilbert spaceH and an isometric em-
bedding :Ty(V) ] L?(; H)suchthat ()= M forany 2 L!. Then forany
such andanyv?2 L?(; E), we have

Tuv)= ()T (V)= (To(V);

by (1.44). This shows that the composed map

Si= T.:L?%; E)! L?; H) isamodule map:
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De ne
S;=T, L% H)! L F):

Let 2L () .Foranyv?2V,wehave
T2 () (Tu(v)) = ToTa(v) = T(v)= T(v)= TaTw(v))
by (1.44), (1.42) and the fact thatT is a module map. This shows that
Tz ( ): M Tz:
Furtherwehave M = M- = () = () .HenceM S,= S,M , thatis,
S, isamodule map:
Since  is equal to the identity of T,(V), it follows from (1.42) that
T= 8281:

Thus we have constructed a "'module Hilbert space factorization' of T, and this is the
main point.

To conclude, letS, : L?(; F)! L2?(; H ) be the restriction of the adjoint of S, to
L2(; F). ThenS, is a module map. Now apply Lemma 1:23to S;and S, . Let 2
L' (; B(E;H))and 2L (; B(F;H )) suchthatS; is equal to the multiplication by

and S, is equal to the multiplicationby . Givenanye2 E andf 2 F, we have
z

(D1(e); f x(t)y(t)d (t) T(x ey f
Qsl(x e);S (y f)

[ (Ol(e)x(t);[ (OI(F)y(t) d (1)

Z

[ O1e);[ O1(F) x(®y()d (1)

for any x;y 2 L2. Applying identi cation between H and H, this proves (1:32). By
construction, k ki Candk k; 1. O

1.4.2 A special case

Let ( 1; 1),( 2; 2) and ( 3; 3) be three separable measure spaces. We are going to
apply Theorem 1.21 with ( ; )=( 2 2),E =LY} 1)andF = L( 3).

Toany 2L'( 1) > 3),onemayassociate€2 Lt ,;B(LY( ;LY ( 3) as
follows. Forany r 2 L( ,),

z
&tz) (r) = (tiitz; )r(ty)d 1(t); 22 2 (1.45)
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According to the obvious identi cation
LY(1 2 =LY ZL'( 1 9)
and (1.5), the mapping 7! €induces aw -homeomorphic isometric identi cation
LY (1 2 g)=LY aBLY 1LY ( 9)

By Remark 1.20, thew -continuous contractive embedding of ,(L%( 1);L* ( 3)) into
the spaceB(L( ,);L! ( 3)) induces aw -continuous contractive embedding

LY o oL Lt (8) LY B(LY( )sLt ()

Combining with the preceding identi cation we obtain a further ~ w -continuous con-
tractive embedding

LY o oL*C Lt (8) LY (1 2 ) (1.46)

According to this, we will write 2 LY 5 (LY 1);LY( 3) when €actually be-
longs to that space. In this case, for the sake of clarity, we letk k; . , denote its norm
as an element of the latter space. It is greater than or equal to its norm as an element of
Ll ( 1 2 3)-

Theorem 1.25. Let 2 L' ( , 2 3) andC 0.
Then 2 L' 5 (LY 1);L*( 3)) andk ky., Cifand only if there exist a Hilbert
spaceH and two functions

a2L* 1  xH and b2L! , gH
such thatkak; kbk; C and
(ty;to;t3) =  a(ty;ty); b(ty; ts) fora.-e(ty;to;t3) 2 ¢ 2 3 (1.47)

Proof. Assume that belongsto LY 5 »(LY( 1);L*( 3)) ,with k k;., C. Ac-
cording to Theorem 1.21, there exist a Hilbert space H and two functions

2L 5B(LY( 1);H) and 2L 5B(LY( 3);H)
suchthatforany ry 2 LY( ;) andrsz 2 LY( »),

[B(t2)I(ra);irs = [ (t2)I(ra);[ (t2)](rs) fora.-e.t; 2 (1.48)

By (1:3), (1:4) and (1.27) we have isometric identi cations

LY 5L ) H)
L*( 2) L' 1) H
LY( 1 2H )
Ll( 1 2 H):

L 5 B(LY( 1);H)
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Morover L ( snH)Y=LY( 4 »;H), see Remark 1.18. Hence we nally have
an isometric identi cation

LY 2B(LY( 1);H) =L'( 1 H):
Likewise we have an isometric identi cation
LY 2B(LY( a)iH) = L' (2 aH):

leta 2 L' ( ; nH)Yand b2 LY ( » 3;H) be corresponding to  and
respectively in the above identi cations. Then forany r; 2 L1( ),

Z

[ (t2)](ra) = aty;t) ra(ty) d 1(ts) fora.-e.t; 2
Likewise, forany rz 2 L( ),
Z

[ (t2)](rs) = b(t2; tz) ra(ts) d s(ts) fora.-e.t; 2

3

Combining (1:48) and (1:45) we deduce that forany r; 2 L( ;) andrs 2 LY( 3), we
have
Z

ha(ty; tz); b(to; ta)i ro(ty) ra(ts) d 1(ty)d s(ts)
7 C(t2) (ru);rs

(t1;t2;ta)ra(ts) ra(ts)d a(ta)d a(ts)

1 3

fora.-e.t, 2 5. Thisimplies (1.47) and shows the “only if' part.

Assume conversely that (1.47) holds true forsomeain L* ( ; ,;H) and somebin
L ( 1 2 H). Usingthe above identi cations, we consider 2 L 5, B(LY( 1);H)
and 2 LY 5 B(LY( 3);H) be corresponding to a and b, respectively. Then the
above computations lead to (1.48). This identity means that for a.-e. t, 2 ,, we
have a Hilbert space factorisation €(t,) = (t,) (t,). This shows that belongs to
LY 5 (LY 2);LY( 3) ,with k ky ., k aky kik; . O
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Chapter 2

Linear Schur multipliers

In this chapter, we are interested in generalizations of well-known results about
Schur multipliers. Namely, we extend the de nition of classical Schur multipliers
on B(p; ¢) and de ne the continuous Schur multipliers on B(LP;L9. In the case
p = q = 2, there is a famous characterization of Schur multipliers on B(",). A simi-
lar characterization also holds in the case B("p) (see e.g. [Pis96, Chapter 5]) and in the
case of continuous Schur multipliers on B(L?) (see e.g. [Spr04]). We recall these facts
in the rst two sections of this chapter. In the third section, we de ne Schur multipliers
on B(LP; L% and generalize the characterization of Schur multipliers to this continuous
case, using the theory of (p; g factorable operators introduced in Chapter 1. Note that
those results are new, even in the setting of classical Schur multipliers on B('p; ¢). In
a fourth section, we will apply the results of Section 2:3 to obtain new inclusion rela-
tionships between the spaces of Schur multipliers, extending the work of Bennett in
[Ben77].

2.1 Classical Schur multipliers

In this section, we regard elements of B("p; ) as in nite matrices in the usual way.

Letm = (m; )i; 1 be abounded family of complex numbersandlet 1 p;q +1.
We say that m is a Schur multiplier onB("; ") if for any matrix [g; ] 1in B("p; ), the
matrix [mj a;J;; 1 de nes anelement of B( p; ). An application of the Closed Graph
theorem shows that m is a Schur multiplier if and only if the mapping

Tm: B(pg) ! B (p 0 (2.1)
[@jl; « 70 [mjaly 1
is bounded. By de nition, the norm of the Schur multiplier ~ m is the norm of the map-
ping Tp.

Similary,if 1 p +1 ,we saythat misa Schur multiplier on SP if for any matrix
[ ] 1in SP,the matrix [m; &; Ji; 1 de nes an element of SP.

A simple duality argument shows thatif 1 p; 1 are conjugate numbers, then
m is a linear Schur multiplier on SP if and only if it is a linear Schur multiplier on SP.
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Moreover the resulting operators T,, have the same norm, that is,
KTm :SP!S Pk= kT, :S”1S Pk

When p = 2, any bounded family m = fmj g;; 1 is a linear Schur multiplier on S2.
Moreover
kM :S?! S?k = sup jm;j
i 1

in this case (see e.g. [Ara82, Proposition 2.1]).
Note thatfor 1<p 6 2 < +1 , there is no description of Schur multipliers on SP.

There is a well-known characterization of bounded Schur multiplierson  B(",). This
result was stated by Pisier in [Pis96, Theorem 5.1] who refers himself to some earlier
work of Grothendieck. This theorem can be extended to the case B( ) as follows.

Theorem 2.1. [Pis96, Theorem 5.10] Let = (¢ )ij2n C, C 0 be a constant and let
1 p<1.Thefollowing are equivalent :

(i) is a Schur multiplier orB("p; "p) with norm  C.

(if) There is ameasure space ) and elementgx;);on in LP( ) and(yi)izn in LPO( ) such
that
8i;j 2 N; ¢ = hx;;yii andsupky;kp supkx;k, C:
i j

(i) The operatoru : "1 ! 1 which admits[c; ] as its matrix belongs to,("1; 1 ) and
o(u ) C (see Remark9 for the notations).

As a conseguence of the results established in Subsectior:3:2, we will characterize
more generally Schur multipliers on B("p; ) in the caseq pin Corollary 2:9 which
includes Theorem 2:1. In [Ben77], Bennett gives a necessary and suf cient condition
for a family m to be a Schur multiplier on B("p; '), for all values of p and g, using the
theory of absolutely summing operators. Theorem 2:1 above and Corollary 2:9 provide
a different type of characterization, which is more explicit and useful.

2.2 Continuous Schur multipliers on  B(L?)

Let( 1; 1)and( ,; ,)betwo - nite measure spaces. By the equality (1:16), we have
an isometric identi cation L2( 1 )= S?(L%( 1);L?( »)) given by

J2 L3 1 ) 7' X3 2S%L3( 1);L%( L):
Let 2LY( , 2). Thanks to the above identity, we may associate the operator

R @ S*L?( 1);L%( 2)) ' S (L% 1);L%( 2)
X 7! X3

whose norm is equal to k k; . We say that is a continuous Schur multiplierif R
extends to a bounded operator (still denoted by)

R :K(L?( 1)iL%( 2)) !B (L?( 1)iL3( 2));
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where K(L?( 1);L?( »)) denotes the space of compact operators fromL?( ;) into L?( ,).
The density of Hilbert-Schmidt operators in compact operators ensures that this exten-
sion is necessarily unique.

The rst part of Theorem 2.2 below is a remarkable characterization of continuous
Schur multipliers for which we refer e.g. to Spronk [SprO4, Section 3.2]. Peller's charac-
terization of double operator integral mappings which restrict to a bounded operator
SY(H) 'S (H) is closely related to this factorization result (see Chapter 4 for a de ni-
tion of double operator integrals). Indeed, Theorem 2:2(i) below is implicit in [Pel85].

It is also contained in Theorem 2:7 proved in the next section.
For the second part of the next result, recall that by Remark 1:9 and (1.2),

2L 1)Lt () and B K(L?( 1);L2( 2));B(L*( 1);L%( 2))

are both dual spaces.
We recall that according to the equality (1:5), any element of B(LY( 1);L! ( 2)) is
an operator u for some (unique) 2 L' ( ; 2).

Theorem 2.2.

(i) [Pel85; Pis96; Spr04] A function 2 L ( , 2) Is a continuous Schur multiplier if
and only if the operaton belongs to »(LY( 1);L* ( »)), and we have

2(U ): kR k
in this case.

(i) Moreover the isometric embedding
2(LYC DL () 1B K(LZ( 1)L 2)):B(L*( 1);L3( 2)
taking anyu 2 ,(LY( 1);L! ( ,))toR isw -continuous.

Proof. Letus prove (2). Let 2 LY ( ; ) andlet( ) beanetofL!( 1 ,)such
that u andthe operatorsu belongto ,(LY( 1);L* ( ,)) forany ,(u ) isabounded
net in the latter space, andu ! u inthe w -topology of ,(L*( 1);L* ( ,)). This
impliesthat u ! u inthe w -topology of B(L*( 1);L* ( »)). According to (1.5), this
means that ! inthe w -topology of L ( 2).

Let ; °2 L?( 1)and ; °2 L?( ,). Forany ,R () is the Hilbert-Schmidt
operator associated to theL2-function (), hence

Z
R(C )(%°= (tritz) (t2) qta) (t2) At2)d a(ta)d o(t2):

1 2

The right-hand side of this equality is the action of 2LY( 1 ,)ontheL!-function

(tyt2) 70 (t) Ata) (t2) At2):
Since = w -lim , this implies that

R( )(9% °! R(C )(9 %
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By linearity, this implies that for any nite rank operator tL2( 1)! L% 2),R ()!
R ( )isthe weak operator topology of B(L?( 1);L?( »)). Since(u ) isabounded net,
(R ) is bounded as well. By the density of nite rank operatorsin  K(L?( 1);L?( »)),
we deduce that for any in the latter space, R () ! R () is the weak operator
topology of B(L?( 1);L?( »)). Using again the boundedness of (R ) , we deduce that
R ()! R ()inthe w -topology of B(L?( 1);L?( ) forany 2K (L?( 1);L?( 2))
and nallythat R ! R inthe w -topology of B K(L?( 1);L?( 2));B(L?( 1);L?%( ») .
O

By Remark 1.20, the embedding of ,(L*( 1);L* ( ,)) into the space

B K(L2( 1);L%( 2));B(L?( 1);L2( 2) ;
provided by Theorem 2.2, we obtain a w -continuous isometric inclusion

LY 5 o(L'C Lt (2) LY 5 BIK(LA( 1)iL%( 2))iB(LA( 1)iL2%( 2) & (22)

2.3 Schur multipliers on B(LP; L9)

2.3.1 De nition and connection with the classical Schur multipliers

Let( 1;F1; 1)and( ,;F, »)betwo -nite measurespacesandlet 2 LY ( ; 2).
Let1 p;g 1 anddenote by p°and ¢ their conjugate exponents.
Let

T L) L9 2) !B (LPC )il 2)
be de ned for any elementary tensor f g2 Lpo( 1) LA ) by
z
[T (f  9gI(h)= (s;)f(s)h(s)d 1(s) 9() 2 L 2);

1

forall h2 LP( ).

We have an inclusion
0 (0]
LP( 1) LY 20 LP(C L9 2)

givenby f g7![s2 1 7!'f(s)g]. Underthisidentication, T isthe multiplication by
. Note that LP°( 1;L9( ,)) isinvariant by multiplication by an elementof L ( ; 5)
and that we have a contractive inclusion

LP( ;L9 2))  LP( 1) 7 L9 o)
Therefore, T is valuedisin LP°( 1) ~ L9( ;). Using the identi cation
LP( 1) T LY 2) B (LP( 1);L9% 2)

given by (1:6), we deduce that the elements of LP( ;) ~ L9( ,) are compact operators
as limits of nite rank operators for the operator norm.
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De nition 2.3. We say that is a Schur multiplier onB(LP( 1);L9( 7)) if there exists a
constantC  Osuch thatforalu 2 LP°( ;) LI( »),

KT (U)Ks(Lp( y)La 2y K Uk ;

thatis, if T extends to a bounded operator

T L)) "L 2! LP( ) T LY )
In this case, the norm of is by de nition the norm ofT .

Remark 2.4. By E; (resp. E;) we denote the space of simple functions @r{resp. ,). By

density off; E ,in LP°( 1) " LY ,), T extends toabounded operator fraf( 1) ~L9( »)
into itself if and only if it is bounded o&; E , equipped with the injective tensor norm.

Assumethat 1<p;gq< +1 .By(1:7) we have

LP( 1) T LY 2) = K(LP( 1)L 2);

so that is a Schur multiplier on B(LP( 1);L9 »)) if and only if T extends to a
bounded operator

T CK(LP( 1);L9 2)) 'K (LP( 2);L9(C 2)):

In this case, considering the bi-adjoint of T , we obtain by (1:8) aw continuous map-
ping
T :B(Lp( 1)iLa( 2)) !B (Lp( 1)iLq( 2))

which extends T . This explains the terminology* is a Schur multiplieron B(Ly( 1);Lq( 2))".

Classical Schur multipliers : Assumethat ; = , = Nandthat ; and , are the
counting measures. An element 2 L! (N?) is given by a family ¢ = (¢;)ij2n Of
complex numbers, where ¢; = (j;i). In this situation, the mapping T is nothing but

the classical Schur multiplier
A=Tlajlij 12B(p o 7! [Gjaylij 1
When this mapping is bounded from B( ; "¢) into itself, we will denote itby Te.

Notations: If ( ;F; )isameasure space andh 2 N , we denote by A,. the collection

forall 1 i n;0< (A)<+1:

If A=(A;:iA) 2A, and1l  p  +1, denote by Sap the subspace of LP()
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projection from LP() into Sp; is given by the conditional expectation

Pap s LPO 1 LPO (2.3)
X
fo7 i A

Note that the mapping

" ap p Sap ! h (2.4)
f="1aa 70 @A),

is an isometric isomorphism between Sa;, and 7.

Proposition 2.5. Let( 1;F1; 1)and( ,;F»; ) betwomeasurespacesand|&L?! (
2). The following are equivalent :

() isaSchur multiplier olB(LP( 1);L9 »)).

R S
PTOUA) 2B) A s T

Then the Schur multipliers olB(";; §') associated with the familiesys = ( ) are
uniformly bounded with respect tg;, m; A andB.

In this casekT k = supymag KT ., K< +1 .

Proof. (i) ) (ii). Assume rstthat is a Schur multiplier on B(LP( 1);L9 »)) with
KT Iﬁ, 1 Letnim2 N;A=(A;: A 2A, ,andB =(By;:::;Bn) 2A L. ,. Let
c= ,cij)g e2'% "M'B(hM).
Let' ap @ Sap ! g and gq ! Sgyq ! g“ be the isometries de ned in (2:4). Then
€= B;ﬁ C '"ap: Sap! Ssq satises kek = kck and we have
X oiij)

(AN (B Y

S D 1

H]

e=

c(izj)
1(A))P (B;)*=
Theoperatoru:= gq Peq T (€)jsy, ' ap: p! & satises

where €(i;j ) =

kuk k T (ek

and by assumption
KT (e)k k ek

so that
kuk k ek = kck: (2.5)



2.3. Schur multipliers on B(LP;L9) 41

Let us prove that u= T ,, (c) where T ,, is the Schur multiplier associated with the

family ( ).
Write u(i;j) == 8q Peq T ( 4 B )isxy | ap- We have
X . - - .
u= ei;ju(ij):
i5j
Let1 k n.
~ 1
u@ile) =1 sq Pea T (A Bisa] AYER A

Z

: Paal  &()  (S) (S a(9)d 1(9)

sothat [u(i;j )](ex) =0 if k & j andif k = j then
!

Z
.. 1
[u(i;j )(e) = W[ B Psil Bil() N (s;)d 1(s)
1 z '
- (AP 2(Bi) A Iq( 5:)
1 z '
= Q:

(AP o(B)¥E 4

It follows that

X i) 1 z

1(Aj)1=p0 2(Bi)¥Fa (AP 2(Bj) = Aj B
I

g 6

X gy f .
1(A)) 2(Bi) 4 B .

= jcli;j)e e
thatis,u= T ,, (c). We conclude thanks to the inequality (2:5).

(i) ) (i). Assume now that the assertion (ii ) is satis ed and show that is a Schur
multiplier. By Remark 2:4, we just need to show that T is bounded on E; E ,. Let
v 2 E; E , and write = SUprmas KTck. We will show that KT (v)k kvk. By
density, it is enough to prove that forany h; 2 E;; h, 2 Ep,

Jh[T (V)](hl);hziLq;quj kaB(LP( 1);La( 2))kh1k|_p( 1)khzkl_qo( 2)Z (26)
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Anm. , and complex numbers v(i;] ); &; B such that
X X X
V= V(i) A B N1 = g a; and hy = b s:
b i i

Equation (2:6) can be rewritten as

Z
X
V(I,j )ajb kakhlkLp( l)khszqO( 2): (27)

i A Bi

Considerv:= gq Vv ',3: 0! ‘Mandz:= gq Peq T (Misy, ap: p! o

The computations made in the rst part of the proof show that z = T,,(¥) where m is

the family ( j ).

Now, let x := "' ap(h1) andy := g,qo(h2). SinceTy, is bounded with norm smaller than
we have

T (00;Yigm ] Kekayopkxkepkyke,; 2.8)

An easy computation shows that the left-hand side on this equality is nothing but the
left-hand side of the inequality (2:7). Finally, the right-hand side of the inequalities
(2:7) and (2:8) are equal, which concludes the proof.

O

2.3.2 Schur multipliers and factorization

Let p; gbe two positive numbers suchthat 1 q p 1 . Thiscondition is equivalent

11 :
top;g2 [1;1 Jwith a + EO 1, so that we can consider the spaceL q;.

The following results will allow us to give a description of the functions which
are Schur multipliers.

Lemma 2.6. LetX,Y be Banach spaces andiet X;F Y bel complemented subspaces
ofX andY. Foranyv2 E F, denote by~8;po(v) the 8;po-norm ofvasanelement® F
and by g;po(V) the g;po-norm ofvasanelementof Y. Then

(V) = gp(V):

Proof. Thq;inequality ~8;po(V) g;po(v) Is easy to prove. For the converse inequality,
takev = ,e& fx2 E F suchthat J,(v) < 1and show that ~Jx(v) < 1. By
assumption, there exists M X and N Y nite dimensional subspaces such that
v2M N and

Av;M:;N) < 1:

By assumption, there exist two norm one projections P and Q respectively from X onto
E and from Y onto F. SetM; = P(M) E andN;= Q(N) F.Mj;and N; are nite
dimensional. Moreover, since v2 E F,itiseasytocheckthat(P Q)(v) = v, where,
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P
foralc= & h2X Y,

X
P Q9= P(a) Q(b):

Thus,v 25M;  Nj. We will show that 9 (ViM1;Ng) < 1,

Lgt z= 11X . y; 2 M; N, be suchthat gp(z) < 1and show that jhv;zij
gp(V), sothat ¢ o(viM1;Ng) L

Letl r 1 suchthat

:1-+1 1:
q

pO
Ehe condition 4»(z) < 1in M; N; implies that z admits a representation z =
i im; n; wherem; 2 M;;n; 2 N; and

Sl

k( j)jk, wp(m;; M )wee(n; ;N;) < 1
Setz = P jmzl iP (m) Q(n)inM N . Itis easy to check that
Wp(P (m;);M ) wp(m;;M;) and wg(Q (n;);N ) wg(n;;Ny):
Therefore, ow(z; M ;N ) < 1. Then, the condition g;po(v;M;N) < 1limplies that
iviz] o S(v):

Finally, we have

X
v,z = i P (m)iec Q (n)):f«
>j('k
= i mjsP(e)  ny;Q(fk)
>j('k
= i mpec npsfe =hvzig
ik

and therefore
jhv:zij (V)
This proves that ~§. ,(v) < 1. O
We recall thatif 2 L' ( 2), we denote by u the mapping
u - LA ) ! kl( 2)!
f 7! (s;)f(s)d a(s)
Theorem 2.7. Let( 1; 1) and( »; ») betwo - nite measure spaces andlet2 L ( ;

2).Letl g p 1 .Then isaSchurmultiplieromB(LP( 1);L9 »)) ifand only if the
operatou belongs td-qp(L*( 1);L* (' 2)). Moreover,

KT k= Lgp(u ):
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Proof. Assume rstthat T extends to a bounded operator

T :LP( ) " LY 2! LP( ) T LY Q)

with norm 1. To proye that u 2 L gp(LY( 1);LE ( 2)) with Lgp(u ) 1, we have to
showthatforany v=",fx g2 LY 1) L' 2)with §,(v)< 1we have
X
juWi=j h(fu)aij L
k

By density, we can assume that f; g« are simple functions. Hence, with the nota-

By Lemma 2:6, the g;po-norm of vas an element ofSp.;  Sg.; is less than 1.

Let ' Ap Sar ! Tand g i Sgp ! P the isomorphisms de ned in  (2:4).
SetV? = oa(fe) g:1(k) 2 1 P'. Since' a1 and .1 are isometries, we
have § o(v) < 1. Using the identi cation (1:6), we obtain by (1:11) that v%admits a
factorization

where =( ;i 0), =( 1;:::; m),d and d are the operators of multiplication
and
kd k= k k,=1;kd k=K k\qozl andkck < 1:

This factorization means that

xXnxo N
Vo= ic(i;j) g ea:
i=1 j=1
Therefore, we have
)(n X1 « . 1 1
V= ic(i;j) i Ak(e)  gh(e)
i=1 j=1
i=1 j=1 " (A 2Bi) ! Aj Bi-
We compute
_ xnoxe oiij ) |
“WE A ey e
_ XX o(iij ) |
i imj T( Aj Bi)( Aj), B

i=1 j=1
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De ne
xnoxn

&= oij) o 8 2L7( 1) LI 2);
i=1 j=1
where (i;] ) = ¢ 1(A}) ¥ o(B;) .
Using the identi cation (1:6), it is easy to check that we have

e= B; C ' ap:Sap 7' LI 2):
Therefore,
kek = kek:
We have
XX i) a(A)=T o(B) =
u(v)= P — T . . Y.
( ) S I 1(Aj) Z(Bi) ] ( Aj B|)( A,) Bj
= (i) 1(A) TP B BT T (A e)a)i el
i=1 j=1
= o T (e(i;]) A Bi) W A W Bi
= AT (&)(F): gl ag pyan )
where X | X |
f= —1__ , andg= ———— &:
1(A))=p 2(Bj)e

j i

SincekT k 1, we deduce that

ju (V)] k T (OKkf kokgke Kk ekk ke k ko= kek 1

Conversely, assumethatu 2 L qp(LY( 1);L* ( 2)) with Lgw(u ) 1. To prove that

I S
] 1(AJ) 2(Bi) A B 1 2.

We want to show that the Schur multiplier on B('); ‘Fg‘) associated to the family m =
( ij)ij has anorm I_ess thanl. To prove that,let c=  ; c(i;j)g @& 2B(p; g)ix =
(Xi)j=1;Y = (Vi)iZ; in C be such thatkck L kxkn = 1;kyk , = 1. We have to show
that

JHTm (@1 Yl pom ] L
This inequality can be rewritten as

X XjYi z L .
’ C(I,J)m a B : (2.9)
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P P

Letlv: i Xjc(i;] )yig &. Accordingto (1:11), 8:p°(V) 1. Now, let v= xjc(i;j)yi'A;ll(eJ)

. .Weh

g.1(&). We have . o,

q;po(v)_ q;po(v) 1

and o
ooy
T I C

By assumption, Lq.o(u ) 1, which implies that

V=

jhu vij = wdr—lﬂb—-z
’ G A 2B s
g:po(v)
1;
and this is precisely the inequality (2:9). O

Theorem 1:8 and Remark 2:8 allow us to reformulate the previous theorem. The fol-
lowing two corollaries are generalizations of Theorem 2:1. For the rst one, we rst
need the following remark.

Remark 2.8. LetX = L( )andY = L( ) for some - nite measure spaces ;; ) and
( 2; ). Consideim 2B(LY( );L! ()). By(1:5), there exists 2 L* ( ) such that

T=u:
(Seg1:5) for the notation.)
() If1<qg< +1,LY%( ) has RNP so byi(31),
B(LY( )L )= L* (L % )):

It means that ifR 2 B(X;L 9( )), there existe 2 L (;L ( )) such that
Z
8f 2 LY( );R(f) = f (s)a(s)d (s):

(i) If L<p< +1 ,thenusing(1:2), (1:3) and(1:4) we obtain
B(LP( )L ()=(LP() LY ) =L GLP():
Thus, ifS 2 B(LP( ); L% ( )), there existd2 L (;L *°( )) such that
892 LP( );S(9)() = hg;l()i:

We deduce thatif < p;q < +1 , thereexisa 2 L (;L “( )) andb2 L (;L P°( )) such
that for almost everys;t) 2 ; 2,

(s:1) = ha(s); b(b)i :
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If T satis es Theoren:8, the latter implies that for al 2 L1( ),
Z

T(f)= ha(s); b( )i f (s) ds:

1
Using the same identi cations we have for the following cases :

1. fg=1andl<p< +1 ,thenthere exish 2 L ( yandb2 L (;LP°()) such
that for almost everys;t) 2 ; 2

(s;t) = ha(s; ), b(t)i :

2. 1f1<q< +1 andp=+1,thenthereexisa 2 L1 (;L “( )) andb2 L ( )
such that for almost everfs;t) 2 2,

(s;t) = ha(s); b(t; )i :

3. Ifg=1andp=+ 1 ,thenthere exish 2 L ( yandb2 L1 ( ) such that for
almost everys;t) 2 2,

(s;t) = ha(s; ); b(t; )i:

Corollary 2.9. Let( 1; 1) and( ,; ») betwo - nite measure spaces andlet2 L! ( ;
2).Letl g p 1 . Thefollowing statements are equivalent:

() isaSchur multiplier omB(LP( 1);L9 »)).

(i) There are a measure space (a probability space whénq) ( ; ), operatorsR 2
B(LY( 1);LP( ))andS2B(LY );L!( ) suchthatu =S | R

LY 1) —L (o)
R S

LP( ) 'I4/|_q( )

wherel is the inclusion mapping.

In the following casegj) and(ii) are equivalent to :
fl<g p<+1:
(iii) There are a measure space (a probability space wigem) ( ; ), a2 L1 ( 1;LP( )
andb2 L ( »;L9( ) such that, for almost everis;t) 2 2,

(s;t) = ha(s); b(t)i :

fl=g<p<+1:
(iii) There are a probability spa¢e; ),a2 L ( ; )andb2 L ( ,;L%( )) such that
for almost everys;t) 2 2,

(s;t) = ha(s; ); b(t)i :
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Ifl1<g< +1 andp=+1 :

(iii) There are a probability spa¢e; ),a2 L' ( 1;LP( )) andb2 L ( , ) such that
for almost everys;t) 2 2,

(s;t) = ha(s); b(t; )i :

Ifg=1andp=+1 :

(iii) There are a probability spa¢e; ),a2 L*( ; )andb2 L' ( , ) such thatfor
almost everys;t) 2 2,

(s;t) = ha(s; );b(t; )i:
In this casekT k = inf kRkkl kkSk = inf kakkbk.

Remark 2.10. In the previous corollary, the conditidii ) implies thatevery 2 L ( 1 )
is a Schur multiplier orB(LY( 1);LY( 2)) andonB(L! ( 1);LY ( ).

In the discrete case, the previous corollary can be reformulated as follow.

Corollary 2.11. Let =(gj)ij2n C,C Obeaconstantandldt q p +1.The
following are equivalent :

(i) isaSchur multiplier orB("p; "g) with norm< C..

(i) There exist a measure space (a probability space wiéerg) ( ; ) and two bounded
sequencel;); in LP( ) and(y;); in L9 ) such that

8i;] 2 N;¢; = hx;;yii and supky;kq supkx;k, < C:
! J

2.3.3 An application : the main triangle projection

Letmy =1ifi j and m; =0 otherwise. Let T,, be the Schur multiplier associated
with the family m = (m;). For any innite matrix A = [&;], Tm(A) is the matrix
[bj] with by = &; if i j and bj = O otherwise. For that reason, T, is called the
main triangle projection. Similary, we de ne the n-th main triangle projection as the
Schur multiplier on M (C) associated with the family m, =(mj); ij »wheremj =1
if i j and m{ = 0 otherwise. In [KP70], Kwapien and Pelczynski proved that if
1 qg p +1;p61;96+ 1 ,thereexistsaconstantk > 0such thatforall n,
KTm, :B(p: ') 'B (pi gk KiIn(n);

and this order of growth is obtained for the Hilbert matrices. Those estimates imply
that T, is not bounded on B("; '¢). Bennett proved in [Ben76] that when 1<p<q <
1, Ty, is bounded from B("p; ) into itself.

The results obtained in subsection 4:10 allow us to give a very short proof of the
unbounded case.
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Proposition 2.12. Letl g p +1;p61;96 +1. ThenT, is not bounded on
B(p; )

Proof. Assume that T, is bounded on B("p; 4). By Corollary 2:9, there exist a measure
space( ; ), (an)n 2 LP( ) and (b)), 2 LY( ) two bounded sequences such that, for all
;] 2N,

m; = hay;hi: (2.10)
By boundedness, (a, ), and (b,)» admit an accumluation point a2 LP( )and b2 L( )
respectively for the weak-* topology. Fix i 2 N. Forallj i, we have

he;; i =1
so that we get

hei;b =1:
This equality holds for any i hence

;b =1:
Now x j 2 N. Foralli>] we have

he;; i = 0:
From this, we deduce as above that

ha; b =0:
We obtained a contradiction so T,, cannot be bounded. O
As a consequence, we have, by Proposition2:5 :

Corollary 2.13. Letl q p +1;p61;96+1.Let ;= ,= Rwiththe Lebesgue
measure. Then 2 L! (R?) de ned by

1, ifs+t O

s t) ;= . ;
(s:) 0 ifs+t< O

s;t2 R

is not a Schur multiplier orB(LP(R); LYR)).

Remark 2.14. One could wonder whether the results of subsectiaf can be extended to the
casel p<q +1,thatis, if the boundedness ©f on B(LP;LY) implies thatu has a
certain factorization. The fact thatjf < g the main triangle projection is bounded tells us that

m is a Schur multiplier onB("p,; '¢). Nevertheless, the argument used in the previous proof
shows thaim cannot have a factorization like {8:10). Therefore, the cape< q is more tricky.

For the discrete case, one can nd in [Ben77, Theorem 4.3] a necessary and suf cient condition
for a family(m;;)  C to be a Schur multiplier, for all values pfand g, using the theory of

g absolutely summing operators.
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2.4 Inclusion theorems

In this section, we denote by M (p; g) the space of Schur multipliers on B("p; ).
First, we recall the inclusions relationships between the spaces M (p; ). Then we will
establish new results as applications of those obtained in Section 4:10.

Theorem 2.15. [Ben77, Theorem 6.1] Let p, andqy @ be given. TheM (py; )
M (p2; &p) with equality in the following cases:

() p=p2=1,
(i) m=q=1,
(i) @ 2 po,

(iV) <p1=pP<2
(V) 2<01= @ <po.

Let ( 1; 1) and ( 2; 2) be two measure spaces. IfM (p;;) M (p2; @), then
using Proposition 2:5 we have that any Schur multiplier on B(LP:( 1);L%( ,)) is a
Schur multiplier on B(LP2( 1);L%( ,)). Hence, the results in the previous theorem
hold true for all the Schur multipliers on B(LP; L9).

In the sequel, we will need the notion of type for a Banach space X, for which we
refer e.g. to [AKO6]. Let (E)i.n be a sequence of independent Rademacher random
variables. We have the following de nition.

De nition 2.16. A Banach space X is said to have Rademacher type p (in short, type p) for
somel p 2ifthere is a constant such that for every nite set of vecto(s;)L , in X,

Xn p! 1=p NG ! 1=p
E E X; C kx; kP : (2.11)

i=1 i=1
The smallest constai@ for which(2:11) holds is called the type-p constandof

We will use the factthatfor 1 p 2, LP-spaces have typepandif 2<p< +1,
LP-spaces have type 2 and that those are the best types for in nite dimensional LP-
spaces (see for instance [AKO6, Theorem 6.2.14]). We will also use the fact that the
type is stable by passing to quotients. Namely, if X hastypepand E X is a closed
subspace, thenX=E has type p.

Proposition 2.17. (i)If 1 g<p 2, then

M (a;1)* M (p;p):
Consequently, forany r g,

M (a;n)* M (p;p):

(i)If 2 p<q r,then
M (r;g) * M (p;p):
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(i)lfl<g< 2<p< +1 orl<p< 2<q< +1 ,then
M (a;9 * M (p;p):

To prove this proposition, we will need the following de niton and lemma.

De nition 2.18. LetX andY be Banach spaces?2 B(X;Y)andl p 1 . We say that
u 2 SQy(X;Y) if there exists a closed subspdcef a quotient of & P-space and two operators
A 2B(X;Z)andB 2 B(Z;Y) suchthatu = BA.

Thenkuksq, = inf kAKkBk de nes a norm or6Q,(X; Y ) and (SQp(X; Y );kiksq,) is a Ba-
nach space.

Lemma 2.19. Let W; X;Y;Z be Banach spaces and let2 B(X;Y );s 2 B(W;X);v 2
B(Y;Z) such thats is a quotient mapy is a linear isometry andius 2 (W;Z). Then
u2 SQu(X;Y).

Proof. By assumption, there exist a LP-spaceU and two operators a 2 B(W;U) and
b2 B (U; Z) such that the following diagram commutes

Sincev is anisometry, V := v(Y) Z isisometrically isomorphicto Y.Let :Y! V
be the isometric isomorphism induced by v.

SetF := fx 2 U such that b(x) 2 Vg: Sincevus = ba we have, forall w 2 W; v(us(w)) =
b(a(w)), so that a(w) 2 F. This implies that a(W) F. We still denote by a the

mapping a : W ! F and by b the restriction of bto F. Denote by f the mapping
B= 1 b:F ! Y.Thenwe have the following commutative diagram

W_SUxLIy
F

Now, set E := a(ker(s)) and let Q : F | F=E be the canonical mapping. Clearly,
Q a:W! F=E vanishes onker(s), so that we have a mapping

© a:w=ker(s)! F=E

induced by Q a.
Sinces is a quotient map, we denote by bthe isometric isomorphism

8:W=ker(s)! X:

De ne
A= a §:X! F=E:

Hvanishes on E so that we have a mapping

B:F=E! Y:
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Finally, it is easy to check that u = BA, that is, we have the following commutative

diagram
X #/Ef
F=E

which concludes the proof. O

Remark 2.20. To prove Lemma:19, one can use a result of Kwapieh characterizing elements
of SQ,, as follows : a Banach spaXes isomorphic to ars Qy-space if and only if there exists

aconstanK  1suchthatforanyn 1, foranyn n matrix [a;]and for anyxq;:::; X, in
X,
X X q! 1=a X ! 1=q
aij X; Kk[a”]\g ! ‘gk ka k9

i j j
However, the proof presented in here also works if we replace in the statement of the lemma

p (respectivel\5Q,) by the space of operators that can be factorized by some Banach space
(respectively by a subspace of a quotietht)of

Proof of Propositio:17. (i). Let :=[0 ;1]and be the Lebesgue measure on . Let
lq: L9 )! L*( ) be the inclusion mapping. By the classical Banach space theory (see
[AKO6, Theorem 2.3.1] and [AKO6, Theorem 2.5.7]) there exist a quotient map : "3

L9 )andanisometry J :L*( ) ! “;.Let 2 °; (N2 be such that

u =Jlg

(by (1:5) any continuous linear map ;! ; isacertainu for 2 L (N N)). We
have the following factorization

* °

L9 ) L)

J

According to Theorem 2.9, 2 M (q;1).

Assume that 2 M (p;p). Then, again by Theorem 2:9, we have u 2 ,("1; 1)
and therefore, by Lemma 2:19, there exist an SQ,-space X and two operators 2
B(LY( );X)and 2B(X;L?*( ))suchthatlg=
Let (E)ion be a sequence of independant Rademacher random variables. Letn 2 N

X X X
E  Bf =B B (f) k kB F (f})

j=1 Li() i=1 L1() i=1 X
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But X has type p so there exists a constantC; > 0 such that

X0 X0 B X0 B
E Ef Cik k k (f;)K& Cik Kk k S
j=1 L1( ) j=1 =1

By Khintchine inequality, there exists C, > 0 such that

! 1=2

jfji? C.E Ef;

i=1 i=1 L1()

L)

Thus, setting K := C;C,k kk Kk, we obtained the inequality

X C1=2 X0 * 1=p
jfj? K Kf; qu( )
j=1 L1() j=1
LetEq;:::; E, be disjoint measurable subsets of[0; 1]such thatforall 1 j n; (Ej) =
1 . —
o Setfj .= g,. Then
X

jfjjz =1 and kf qu( ) =n 1=q:
j
Hence, applying the previous inequality to the f;'s, we obtain
1 Kn'P &

Sinceq < p, this inequality can't hold for all n, so we obtained a contradiction.

Finally, notice that if 1  r g, then by Theorem 2:15 M (g;1) M (q;r). Thus,
M (q;n)* M (p;p):

(i1). By Proposition 2:5and using duality, itis easy to prove thatforall s;t2 [1;1 |;
is a Schur multiplieron B('s; '¢) ifand only if ~is a Schur multiplier on B( to; o), Where
~isdenedforall i;j 2 Nby (i;j)=(ji).

Let2 p<qg r.Thenl r% P<p® 2 IfweassumethatM (r;q) M (p;p) then
the latter implies M (¢¢r% M (p%p9, which is, by (i), a contradiction. This proves

(ii).

(iii ). By duality, it is enough to consider the case 1<q < 2<p< +1 . Assume that

M (0;9 M (p;p. Using the notations introduced in the proof of (i),let :";! “4be
aquotientmapand J : *q! *; beanisometry. Let 2 L' (N N) be such that

u =Jl;

where |-, : "¢ ! 74 is the identity map. Then 2 M (q;9. By assumption, 2

M (p;p). By Lemma 2:19, this implies that 1., 2 SQu( 4, ¢). Clearly, this implies that
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"4 Is isomorphic to an SQ,-space. But'y does not have type 2 and any SQ, has type 2.
This is a contradiction,so M (q;9 * M (p;p. O

Theorem 2.21. We haveM (g;9 M (p;p ifandonlyifl p q 2o0r2 q p
+1 .

Proof. By Proposition 2:17and duality, we only have to show thatwhen 1 p q 2
M(a;9 M (p;p.

We saw in the proof Proposition of 2:17 (jii ) thatif M (q;9 M (p;p) then " is isomor-
phic to an SQ,-space. The converse holds true. Indeed, assume that 4 is isomorphic

to an SQ,-space. Then by approximation, any L9-space is isomorphic to an SQ,-space.
Hence any element of 4("1; 1 ) factors through an SQ,-space. By the lifting property

of "1 and the extension property of *; , this implies that any element of 4("1; 1 ) fac-
tors through an LP-space, thatis 4("1; 1) p("1; 1 ). By Corollary 2:11, this implies

thatM (q;,9 M (p;p).

Assumethatl p q 2 ByJ[AKO6, Theorem 6.4.19], there exists an isometry
from "4 into an LP-space, obtained by using q stable processes. Hence, 4 is an SQp-
space. This concludes the proof.

O

2.5 Perspectives

In Section 2:1, we saw that any bounded family (m; )i 2n Of complex numbers is a
Schur multiplier on S2(",). Moreover, Theorem 2:1 together with a dual argument give

a characterization of Schur multipliers on S(*,) and B(",): However, there is no de-
scription of Schur multipliers on SP(";) when 1 < p 6 2 < 1. An interesting and
dif cult problem would be to nd an explicit characterization of such multipliers.

The main result of this chapter is a characterization of Schur multiplier on  B("p; ")
in the case whenq p. As said in Remark 2:14, such characterization cannot hold
when p < g, because in this case the main triangular projection is bounded on B("p; ¢)-
In [Ben77], a necessary and suf cient condition is given for all values of pand g, but it
does not allow us to give a handy condition. Itis a challenge to nd a characterization
in the casep < g which is similar to the one given in the case q p, that is, a character-
ization that would imply that the elements of the family  (m; ) have a certain form.

Finally, we proved in Section 2:4 some inclusion relationships between the spaces
M (p; 9 of Schur multipliers on B( p; ¢). The previous results of inclusions were ob-
tained by Bennett, where he used, as said above, a characterization of Schur multipliers
on B("p; ¢) (see [Ben77, Theorem 6.1]). This characterization uses the theory of abso-
lutely summing operators (see the de nition e.g. in [Ben77]). The study of such oper-
ators reveals that in some particular cases, the space of absolutely summing operators
are nothing but the space of bounded operators (see [Ben77, Proposition 5.1]). This is
how Bennett could prove his results concerning the inclusions. However, when the
two spaces are different, it becomes more complicated to compare the spacesM (p; 0),
even in the caseq p with the new characterization given in Subsection 2:3:2. There-
fore, an open problem is to nish the classi cation of such spaces. For example, if



2.5. Perspectives

55

1<p 2,dowehave

M (p;1) = M (p;p?
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Chapter 3

Bilinear Schur multipliers

In this chapter, we rst de ne bilinear Schur multipliers as bilinear mappings de-
ned on the product of two copies of S?(*,). When such mappings are valued in S'("»),

we call them bilinear Schur multipliers into  S'". Like in the linear case, any bounded
family M = fm gix; 1 de nes a bilinear Schur multiplier into S2. Similarly, we de-
ne continuous bilinear multipliers. In this case, the operators are de ned on a product
of S2(L?()) -spaces.

The main question of this chapter is to characterize bilinear Schur multipliers into
S!. Theorem 3:4 gives a formula for the norm of those operators in the nite dimen-
sional case. As a consequence, we obtain a characterization of bilinear Schur mulipli-
ers into S(,) in terms of uniform boundedness of a family of linear Schur multipliers.
Following the same ideas, we obtain the main result of this chapter, Theorem 3:8, which
describes continuous bilinear Schur multipliers into  S*. A use of Theorem 1:25 allows
us to give an explicit characterization of such operators.

3.1 De nition and notations

In this rst section, we de ne bilinear Schur multipliers in the classical case, that is, as
mappings de ned on S2(*,) S ?(",). The terminology below is adopted from [ER90],
where multilinear Schur products are de ned and studied in the context of completely
bounded maps. Recall that (Ej )ij 2n denotes the unit matrices of B("»).

Denition 3.1. Letl r 1 . Athree-dimensional matrif = fmy; gi; 1 with entries
in C is said to be a bilinear Schur multiplier int®" if the following action
X
M(A;B) = mij axbg Ej; A=fajg;y 1;B="fbg; 12S%
ik 1
de nes a bounded bilinear operator fr@h S 2 into S':
Of course we can de ne as well a notion of bilinear Schur multiplier from SP S d
into S", whenever 1 p;q;r 1 . The case whenp = g=r = 1 was initiated in

[ER90] and we will study this case in Chapter 4 in the case of complete boundedness.
Let us mention another (easier) case which will be used in Chapter 5.
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Lemma 3.2. Amatrix M = fmy gi; 1 is a bilinear Schur multiplier intaS? if and only if
SUpjx 1JMij < 1 :Moreover,

kM :S? S 21S 2k= sup jmy;j:
ik 1
Proof. The inequality kM : S S 21S 2k  sup,, 1jmi jis achieved by the following

computation. Consider A = faxgix 1 and B = fhjgc 1in S?. Then applying the
Cauchy-Schwarz inequality, we have

X 2 X X 2
kM (A; B)k3 = Miy aik b Ejj , Miyj Ak by
ik 1 1 k1
. -2 X X . . 2
i_skUlemikj J ja b |
i
. .2 lk 1x k .1 .2 x . .2
Sup Jmig | ja] i j
ko1 o1k 1 Kk 1
_ _Skupljmikj JzkAkng kg
i

The converse inequality is obtained from
kM :S? S 21S 2k k M(Ei;Ey)ka = jmy j;

taking the supremum over all i;j;k 1 O

3.2 Bilinear Schur multipliers valued in ~ S*

The aim of this section is to give a criteria when a matrix M is a bilinear Schur multi-
plier from S? S 2into S!. The main result is Theorem 3:4 which gives, for n 2 N, a
formula for the norm of a bilinear Schur multipliers from S2 S 2into S in terms of
norms of Schur multipliers from M, into M,,.

We will work with the subspace of M, min M, spanned by the E;x  Eys, for 1
r,k;s n. The next lemma provides a description of this subspace. We let (e;;:::;€,)
denote the standard basis of °! .

Lemma 3.3. The linear mapping: ' (M) ! M, min M, such that
(& Ers)=Ex Ewss 1 ks
IS an isometry.
P, ° P, _
Proof. Takey =\, & Yk 2 5 (Mp);whereyx = ., Yk(r;S)Ers: From the de ni-

tion of we have
xXo

(y) = Ye(r;S)En  Exs:

rs;k=1
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Recall the isometric isomorphism J, given by (1.21). Then
X
Jo (y) = V(1 S)E (k) (kss) -
rs;k =1
Leta= faxgi=1:b= fhsgls-; 2 ‘ﬁz: Then we have
xXo xXo
Jo (Y)bja = Yk(r;8) Eqyksy(0);a = Yic(r; S)an bis:
rs;k=1 rs;k=1

Therefore, using the Cauchy-Schwarz inequality, we obtain

XX
Jo (y)b;a Yi(r; 8)an bk
k=1 rns=1
X X 32X 3
kyk  jan? jbsj?
k=1 r=1 s=1
X X r X
max kyik Jau] s
k=1 r=1 s=1
x o8 X
max kyik jan] ibs]
k;r=1 k;s=1
max kyykkak,kbks:
1 kn
It follows that k (y)k maxy x n kykk:
Now x 1 ko n:Takearbitrary =f g, and =f g, in 2. Thende ne
— iy if kK=ko . — s; If 1=Kko
= 0 otherwise ¢ 05T

0 otherwise :
Then
Jo (Y)bja = hy,( ); i

and moreover, kak, = k kj, kbk, = k k,. Therefore, we have ky,,k k (y)k: Hence,
k (y)k max; « nkykk: O]

The following theorem is the main result of this section.

Theorem 3.4. Letn 2 N: LetM = fmy Ok =1 be a three-dimensional matrix. For any
1 k n,letM (k) be the (classical) matrix given iy (k) = fmy g -, . We also denote by
M (k) : M, ! M, the Schur multiplier associated to the familiy(k). Then

M:S? S2Is = sup M(K): M, ! M, :
n

Proof. According to the isometric identity (1.1), the bilinear map M :S2 S 21S 1
induces a linear map M : S2I5 21'S I with kMk = k1 k. Consider

Tw = (M3 ) :Mn! My min My
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where J is given by Lemma 1.15 and where we apply (1.23). This lemma implies that
kTwk= M:S? S21 st (3.1)
Foranyl r;s n,wehave
Tw(Es)iEj  Ew = Ew;MI YEj Ew)
Es;MEx Ej)

Miq NEs; Eqyi; if k=
0 otherwise

Mig; if k=j;r =i s=1
0 otherwise

forall 1 i;j;k;I  n.Hence

X
TM (Ers) = Myys Erk Eks:
k=1

This shows that Ty, maps into the range of the operator introduced in Lemma 3.3 and

that
xXn

Tu (Ers) = Myks (& Ers):
k=1

By linearity this implies that forany C 2 M,
X
Tm(C) = & [M(KIC) :
k=1

Appyling Lemma 3.3, we deduce that

KTw (C)k =max M(K)I(C) ;  C2My:

From this identity we obtain that kT, k = maxy kM (k)k. Combining with (3.1) we
obtain the desired identity kM k = maxy kM (K)k. O

For the sake of completeness we give an in nite dimensional version of the previ-
ous theorem.

Theorem 3.5. A three-dimensional matriM = fmy; gi; 1 is a bilinear Schur multiplier
into S* if and only if the matrixM (k) = fmy gi; 1 is a linear Schur multiplier orS8* for
everyk landsup, ;kM(k):S* ! S! k< 1 :Moreover,

M:S2S21S 1 =sup M(k): st Is?
k 1

in this case.
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Proof. Consider a three-dimensional matrix M = fmy; gi; 1andsetM (k) = fmy; g 1.
Foranyn 1, let

M@y =Tmii g1 i n and My(K) = fMig 01 ik n

be the standard truncations of these matrices.

We may identify S?2 (respectively S} ) with the subspace of S? (respectively S?)
spanned by fE; : 1 ;] ng. Then the union [ , 1S? is dense in S2. Hence by
a standard density argument, M is a bilinear Schur multiplier into S? if and only if
sup, 1 kM) :S2 S 2!S ! <1 ,andinthiscase

M:S? S?1st = sup Mmp:S? S 21s 1

Likewise [ , 1S? is dense inthe spaceS! of all compact operators, forany k 1M (k)
is a linear Schur multiplieron S* ifand onlyif sup, ;kMn(k): St 'S !} <1 ,and

M(k):st1s? = sup Mm(K):Sh1s }
n

in this case.
Combining the above two approximation results with Theorem 3.4, we obtain the
result. O

Theorem 3.5 together with Theorem 2.1 yield the following result.

Corollary 3.6. A three-dimensional matrid = fm gix; 1 IS a bilinear Schur multiplier
into St if and only if there exist a Hilbert spadeé and two bounded familie i )ix 1 and
( jk)j;k 1 in E such that
Mig = hie; ki bkj L
Moreover
M:S? S21S ' =inf supk yxksupk Kk ;
ik ik

where the in mum runs over all possible such factorizations.

3.3 Continuous bilinear Schur multipliers

In this section, we rst de ne and give few properties of continuous bilinear Schur
multipliers. Those mappings are de ned on a product of S?(L?()) spaces. When

= N with the counting measure, the de nition is nothing but the one given in Section
3:1. The main resultis Theorem 3:8 which gives a necessary and suf cient condition for
a continuous bilinear Schur multiplier to be valued in  S*. This result is the continuous
analogue of Theorem 3:5 and it will play an important role in Chapter 4.
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3.3.1 De nition

Let( 1; 1);( 2, 2)and( 3; 3)bethree - nite measure spaces, andlet 2 L ( ;
» g3).ForanyJ2L? ; )andK 2 L% , 3),thefunction

Z
( NIK):(ty;t3) 7 (t1; 125 t3) I (t1; ) K (t2;tz) d o(t2)

isawell-de ned elementof L?( ; 3)with L?-normlessthank k; kJk.kK k. Indeed,
by the Cauchy-Schwarz inequality we have
Z Z )
J (trtat3)d (T ) K (2 t3)jd 2(t2)  d a(ta)d s(ts)
1 3 2
Z Z 2
k ki 3t K (L2 ta)jd o(t2)  d a(t)d (ts)
Z' P Z° Z
k ki j(t;t2)j%d o(t2) JK (t2;t3)j%d o(tz) d 1(t1)d 5(ta)
Z 3 2 ZZ
k K j9(tst2)i%d 1(t)d o(t) JK (t2;t3)j%d a(t2)d 3(ts)

1 2 2 3

Thus ( )isabounded bilinear map from L?( 1 ) L2?( , g)into L?( 1 3).
By the isometric identi cation between L?( ; ») and S?(L?( 1);L%( »)) given by
(1:16), and their analogues for ( 2; 3)and ( i1; 3), we may consider that we actually
have a bounded bilinear map

() SAL( 1);L%( 2)) S A(L2( 2L%( 3) 'S A(LA( 2);L2( 3)):

We call () acontinuous bilinear Schur multiplier

Let E( 1 2 ) = SAL2( 1)iL%( 2)) S %(L%( 2):L%( 2) S 2(L%( )L 1))
By (1.1), (1.2) and (1.12), we have isometric identi cations,

E( 1 20 3) = Ba(S*L?( 1);L%( 2)) S *(LZ( 2);L2( 3));SALA( 1);L2( 3))
for the duality pairing given by
X Y Z =tr T(X;Y)Z

for any bounded bilinear T: S2(L2( 1)L 2)) S 2(L%( ,):L%( a)) 'S 2(L2( 1):L2( 3)
andforany X 2 S?(L%( 1);L?( 2)),Y 2S?(L%( 2);L%( 3))andZ 2 S*(L*( 3);L?( 1)).

Proposition 3.7. The mapping
C LY (1 2 8! E( 1 o2 a)

de ned above is w -continuous isometry.
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Proof. Write E = E( 1; »; 3)forsimplicity. Consider three functions J 2 L?( ; ),
K2L% , 3)andL2L? 3 ). ltiseasytocheck thatthe function

V(Mo ts) 7V J(tg; to) K (to; ta) L (s ty)

belongstoLY( 1 5 3). Furtherif X3 2 S?(L%( 1);L?( 2)), Yk 2 S?(L2( ,);L?( 3))
and Z, 2 S2(L?( 3);L?( 1)) denote the Hilbert-Schmidt operators associated with J,
K and L, respectively, then it follows from above that
Z
( XXy Yo Zop = o= hyt i
1 2 3
forany 2L ( , 2 3). This readily implies that  is w -continuous.

We already showed that is a contraction, let us now prove that it is an isometry.
let 2LY( 1+ > 3), with k k; > 1. We aim at showing that k ( )kg > 1. There
exist a function ' 2 LY( , ) 3) suchthatk' k; =1 and h;' i :1,: > 1 Bythe
density of simple functions in L?*, we may assume that

X
= Mijk Fi F? ,:k3;
isj;k

where (F'); (respectively (F?); and (F?)i) is a nite family of pairwise disjoint mea-
surable subsets of ; (respectively of ,and 3)and mj 2 Cforany i;j;k.Let 2 E
be de ned by

X

= Mik  F1 F2 F2 F3 F2 FL o
ik

For any i;j; k , we have
() Fl F? Zsz F2 F2 F! E €
= (taita;ta) pr(ts) p2(tz2) ga(ts)d a(ti)d o(tz)d s(ts):

This implies that
h( ) e = hy' g

and hence thath( ); ig . > 1. Now observe that by the de nition of the projective
tensor product we have

x . .

k ke M jk g1 prkok g2 pskok gp R2ke

isj;k

Moreover, . .
k Fil Fj2k2: k Filkzk Fj2k2: 1(Fi1)§ 2(|:12)2

Likewise, k ¢z rsko = o(FA)Z s(FAzand k 5 oo = 3(FHZ 1(FHZ. We
deduce that X
k ke imicj 1(FP) 2FP) a(F):
ik
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The right-hand side of this inequality is nothing but the L*-norm of ' . Thus we have
proved that k ke k ' k; =1. Thisimpliesthat k( )kg > 1as expected. O

3.3.2 Sl-boundedness

In this section, we will determine which functions 2LY( 4 2 3) are such that
( )maps SA(L2( 1);L2( 2)) S %(L?( 2);L2( 3))into SYL?( 1);L2( 3)).

Theorem 3.8. Let( 1; 1);( 2; ») and( 3; 3) be measure spaces andHet= L?( ;);i =
1,2;3. Let 2LY( ; 2 3). The following are equivalent:

() ( )2B2(S*(H1;H2) S ?(Hz;Hg); SY(Hy; Hg)).
(i) There exist a Hilbert spadé and two functions
a2Ll'( . H) and  b2L'( , 3H)
such that
(t;to;t3) = ha(ty; ta); bty ta)i
fora.-e.(ty;tt3) 2 1 2 3!

In this case
kK( ):S? S 21S Ik=inf kak, kik :

Proof. Proof of (i) ) (ii)

Assume that ( ) 2 Bo(S?(Hi;H,) S 2(Hy Hs); SY(H1;H3)).

By the equalities S2(Hq; H,) = S?(H,; H1) and S?(Hy; H3) = S2(H3; Hy) which are
consequences of(1:16), we may asssume that () is a bounded bilinear mapping from
S?(Hz;H1) S 2(Hs;Hy) into SY(Hg; Hy).

According to the identi cation

B,(S? S %S9 = B(S? S %S?)
provided by (1.1), we may regard ( ) as a bounded linear operator

() S%HaH1) S X(HgHo) IS H(HgHy):
Let R
S2(H,:Hy) S 2(HsHo) IS Y(H,) S Y(Hs Hy)

be the isomorphism given by Lemma 1.14 (where we naturally identify H, with its
conjugate spaceH,). Letw = ( ) ! be the composition map. By the identi ca-
tions (1.12) and (1.20) given by trace duality, its adjoint map w from S*(Hs;H,) into

SY(H,) S %(H3;H;) canbe regarded as a map
v:B(H1;H3) !B (H2) B (HiHa):

We consider the inclusion
L' ( 2) B (Hy)
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obtained by identifying any element of L* ( ) with its associated multiplication oper-
ator L?( ) ! L2( ,). We shall now analyse v to get to property (3.2) below.

Takeanyc; 2 Hy,>d°2 Hoandd; 2 Hs. Regard(d® ¢ (d c)asanelement
of SY(H,) S (Hs;H4). Then

P ) d o =(c o (d d

regarded as an element of S?(H,; H,) S ?(Hs3;H,). Consider as an element of
B(Hq;H3z). Then

v )s(d® &) (d o
w (d® & (d o
7 »( )(CO c (d d() B(H1;H3);S(H3:H1)

(tr;t2ita) (ta) (ta)cAt)dYt2)c(ta)d(ta) d a(ta)d 2(t2)d a(ta):

1 2 3

For ; :c;d as above, consider
S= v ), (d o 2B(H2):

Then the above calculation shows that S: L?( ,) ! L2( »,) is the multiplication opera-
tor associated to the function
Z

t, 7! (t1;t2;t3) (t1) (tz)o(ty)d(ts)d 1(t)d s(ts):

1 3

Thus S belongstoL! ( ,).
Thisimpliesthatforany (; )2 H; Hs,v( ) belongstothespaceL! ( ») B (Hy; Has).
Sincev is w -continuous and H; Hjisw -dense in B(H1; H3), this implies that

v B(H;;Hz) LY ( 2)B (HyHa): (3.2)

Consider now the restriction Vo = Vik (H,:14) Of v to the subspaceK(H1; H3) of com-
pact operators from H; into Hz. By Lemma 1.19 and (3.2), we may write

Vo: K(Hi;Hs) ! LY ( 2;B(Hy; Ha)):
Corollary 1.17 provides an identi cation
B K(HliHs);Ll( 2;B(H1;H3)) = Lt 2;B(K(H1;H3); B(H1; Hg)) -

Let €2 LY ,;B(K(H1;H3);B(H1;H3)) be corresponding to vy in this identi cation.
Then by the preceding computation we have thatforany c¢; 2 H;andd; 2 Hj,
Z

&(t2) ( );d ¢ = (t1;t2;t3) (t1) (ta)c(t)d(ts)d 1(t1)d 3(ts)

fora.e.t,in 5.
Following Subsection 2.2, for any J 2 L?( , 3), we let X; 2 S2(Hq;Hs) be
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the Hilbert-Schmidt operator with kernel J. Then the above formula shows that for
J= , we have
€(t2) (X3) = X (tp:) for a.e.t,: (3.3)

By density of H;  Hjzin L?( , 3), we deduce that (3.3) holds true for any J 2
L?( 1 3). Thismeansthatfora.e.t,, ( ;ty; ),regardedasanelementofL® ( ; 3),
is a continuous Schur multiplier, whose corresponding operator is

t2) = R (o)t K(LZ( 2)iL2( ) 1B (L3( 2);L%( 9)):

This shows two things. First, €belongstoL! ,; »(LY( 1);L*( 3)) regardedasa
subspace ofL!  ,;B(K(H1;H3);B(H1;H3)) by (2.2). Second, the element ofL! (

2 3) corresponding to € through the inclusion (1.46) is the function itself. Thus
we have proved that 2 LY 5 »(LY( 1);L* ( 3)) . Hence, applying Theorem 1:25,
we obtain the factorization given in (ii ). Moreover, by the same theorem

k ky ., =inf kaky kbk; :
Hence, by the above reasoning, we obtain
inf kak; kik; = k kg ., ( ):s2s?1st:

Proof of (i) ) (i)

Assume that has the factorization given in (ii). LetJ 2 S?(H{;H,) and K 2
S2(Hj; Hs) identi ed with elements of L?( ; ) and L?( ,  3) (see(1:16)). We
have, for almost every (t;;t3) 2 1 3

Z
( )EK) (1 ts) = ha(ty; to); b(to; ta)i I (t; to)K (to; ta)d o(to)
Z%p E
= J(ty; 1), K (tz;t3) d 2(t2)

2

where \T(tl,tz) = J(tl,tz)a(tl,tz) and K(tz,tg) = K(tz,t3)ut2,t3) Then J 2 LZ( 1
snH)andK 2 L?( , 3; H) and we have the estimates

kJ.kz k ak]_ kJ k2 and kKkz k U(l kK k2:

LetT:L?( 1+ oH) L% 2 3 H)!S 2(Hy;Hs) be the bilinear map de ned for
alF2L% , o H)andG2L2%( , 3 H) andfor almost every (tq;t3) by
Z
[T(F; G)I(ts;ts) = hF (t1;t2); G(to; ta)i d o(t2):

2

We will show that T is actually valued in S*(H1;H3) and that for all F and G as above
we have
KT(F;G)k; k FkykGk,:
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By density, it is enough to prove this inequality when F and G have the form

X X
F= hi Ai B and G = kj Bj C
i=1 j=1
where for all i;j, hi;k 2 H and Aq;:::; A, (respectively Bq;:::; By and Cq;:: 1 C,) are
pairwise disjoint measurable subsets of ; (respectively ,and 3)with nite measure.
For such F and G we have

)@ 1=2 )@ I 1=2
kazZ khik2 1(Ai) 2(Bi) andek2= kkj k2 2(Bj) 3(Cj)
i=1 j=1
We have, for almost every (t;t3),
0 Z
T(F;G)(ty;t3) = hhi; k;i A (ty) Bi(t2) B (t2) ¢ (ta)d 2(t2)
iij =1 2
X z
= hh;; kil A (t) B (t2) B (t2) ¢ (ta)d 2(t2):
i=1 2
Therefore, forall h 2 L?( ,),
X0 Z Z
[T(F; G)I(h) = hh;; kii A (t) g (t2)h(t)d 1(t1) & (t2) . ()d 2(t2)
i=1 2 1

= H‘]“k|| (X A; Bj X Bj C,)(h)

i=1

where forall i, X , . 2S%*Hy;Hy)and X , . 2S?*(Hz Hs) aredenedin (1:15).
Thus, by Cauchy- Schwarz inequality and the |sometry (1:16),

X
KT (F; G)kq jhhi;kiijk X, kokX

Bj Cj k2
1

khikkkikk a, 8 koK 8, c ko
i=1

I 1= o !

khik? 1(A) 2(Bi) kki k* 2(Bj) 3(Cj)

i=1

1=2

i=1

= kF kszkz:

We deduce that forall F 2 L2( , snH)and G2 L?( , 3 H),

KT(F:G)ki k FkokGky:
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Finally, forall J 2 S2(H3;H,) and K 2 S?(Hy; Hz) we have

k()3 K)ke = kF (T Kk
k TkokK ko
k aky Kbky kJKokK ko

This proves (ii) ) (i) with the estimate

K( ):S? S 21S %k k aky kiki :

3.4 Perspectives

In Section 3:1, we de ned bilinear Schur multipliers as mappingsde nedon S?S 2. As
mentioned, we can also de ne bilinear Schur multiplierfrom SP S 9into S", whenever
1 p;qg;r 1 . Inthis setting, it would be interesting to nd a formula for the norm

of a bilinear Schur multiplier from SP S 9into S', similar to the one given in Theorem

. . 1 1 1 L -
3:4. Note that it is possible to see that when — + — = o a description of bilinear Schur

multipliers would imply a description of linear Schur multipliers on SY9 As said in
Chapter 2, the only cases for which we have such description are q = 1;q9 = 2 and
g = 1 . However, it is probably possible to nd suf cient conditions for a bilinear
Schur multiplier de ned on SP S 9to be valued in S, when p and g are conjugate
exponents.

Of course, all the questions we can state concerning bilinear Schur multipliers can
be stated as well in the continuous setting. We saw in Section 3:3 that the passage
from the classical to the continuous case is not straightforward and required some ad-
ditional studies such as the measurable factorizationin L* (; (L*;L?)) (see Section
1:4). However, one can try to prove that a result in the classical (or nite-dimensional)
case implies, by approximation, a similar result in the continuous case.
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Chapter 4

Multiple Operator Integrals

Let H be a separable Hilbert space and letA;B be two normal operators on H.
Any bounded Borel function on (A) (B) gives rise to a double operator integral
mapping AB( ): S?(H)!'S 2(H) formally de ned as

z
MEOX) = (s;) dE"(s) X dEP(1); X 2 S*(H);
(A) (B)

where E” and EB denote the spectral measures ofA and B, respectively. The theory of
double operator integrals was settled and developed in a series of papers of Birman-
Solomiak [BS66; BS67; BS73] and plays a major role in various aspects of operator
theory, especially in the perturbation theory. We refer the reader to the survey papers
[BS03; Pell6] for a comprehensive presentation of this topic and its applications. See
also Chapter 5 for some results about perturbation theory for selfadjoint and unitary
operators.

In this chapter, we rst de ne more generally multiple operator integrals as mul-
tilinear mappings de ned on a product of copies of S?(H) and valued in S?(H). We
will see in Section 4.2 that in the nite dimensional case, double and triple operator
integrals behave like linear and bilinear Schur multipliers.

In [Pel85], V.V. Peller gave a characterization of double operator integral mappings
which restrict to a bounded operator on S'(H). He showed that #B ( ) is a bounded
operator from S*(H) into itself if and only there exist a Hilbert space H and two func-
tionsa2 L! (EA;H)and b2 L' (EB;H) such that

(s;t) = ha(s); b(t)i aex(s;t):

This property means that the operator LY(EA) ! L (EB)withkernel factors through
a Hilbert space. We refer to [Pel85] and [HKO3] for other equivalent formulations. In
Section 4.3, we study an analogue of Peller's Theorem for triple operator integrals (see
Theorem 4.10). This result is an operator version of Theorem 3:8. We will actually ap-
ply this result to prove Theorem 4.10. In order to do this we will show in Subsection
4:1:3 a connection between continuous bilinear Schur multipliers and triple operator
integrals.
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Finally, in Section 4:4, we will prove a characterization, similar to the one in [KJT09],

h
concerning the complete boundedness of triple operator integrals from S! (H) S * (H)
into S (H). This section will use all the results that we recalled in Subsection 1:1:3 con-
cerning the Haagerup tensor product.

4.1 De nition

Multiple operator integrals appeared in many recent papers with various de nitions,
see in particular [ANP15; ANP16; AP17; NASO09; Pel06; DPS13]. In this section we pro-
vide a de nition of triple operator integrals associated to a triple  (A;B; C) of normal
operators on H, based on the construction of a natural w -continuous mapping from
LY(a 8 c) into By(S?%(H) S ?(H);S?(H)), see Theorem 4.3. This mapping is
actually an isometry. Further the construction extends to multiple operator integrals,
see Proposition 4.4. It turns out that this construction is equivalent to an old de nition

of multiple operator integrals due to Pavlov [Pav69], this will be explained in Remark
4.5.

4.1.1 Normal operators and scalar-valued spectral measures

We assume that the reader is familiar with the general spectral theory of normal op-
erators on Hilbert space, for which we refer e.g. to [Rud73, Chapters 12 and 13] and
[Con00, Sections 14 and 15]. LeH be a separable Hilbert space and letA be a (possibly
unbounded) normal operator on H. We let (A) denote the spectrum of A and we let
E” denote the spectral measure ofA, de ned on the Borel subsets of (A).

By de nition a scalar-valued spectral measure for A is a positive nite measure 5
on the Borel subsets of (A), such that A and E” have the same sets of measure zero.
Such measures exist, thanks to the separability assumption onH. Indeed let

W (A) B (H)

be the von Neumann algebra generated by the range of EA, then W (A) has a separat-
ing vector eand

A = KEA(D)ek? (4.1)
is a scalar-valued spectral measure for A. See [Con00, Sections 14 and 15] for details
; the argument there is given for a bounded A but readily extends to the unbounded
case.

The Borel functional calculus for A takes any bounded Borel function f : (A)! C
to the bounded operator 7

f(A):= f(t) dEA(L) :
(A)

According to [Con00, Theorem 15.10], itinduces aw -continuous -representation

ALY (A)!IB (H): (4.2)
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As a matter of fact, the spaceL! ( a) does not depend on the choice of the scalar-valued
spectral measure 5.

4.1.2 Multiple operator integrals associated with operators

Let H be a separable Hilbert space and letA; B; C be (possibly unbounded) normal
operators on H. Denote by E”; EB and E€ their spectral measures and let »; g and
c be scalar-valued spectral measures forA, B and C (see Subsection 4.1.1).
LetEy L'( A),EE L'(g)andE L!( ¢) bethe spaces of simple functions
on( (A); a),( (B); g)and( (C); c), respectively. We let

1 B E2 E5!B  2(S*(H) S *(H);S*(H))
be the unique linear map such that
(fa fo f3)(X;Y) = f1(A)XF2(B)Y f3(C) (4.3)
forany f, 2 E;,f, 2 E;and f3 2 Ez, and forany X;Y 2 S?(H).
Lemma4.1. Forall 2E; E, E s andforallX;Y 2 S?(H), we have
K( )X Y)ky k kg kX kaKYks:

Proof.Let 2 E; E , E 3. There exists a nite family (F!); (respectively (sz)j and
(F2)x) of pairwise disjoint measurable subsets of (A) (respectively of (B) and (C))
of positive measures, as well as a family (mjj )i« of complex numbers such that

X
= Mik  F2 F2 F3- (4.4)
R

Then we have
kK ki = Sulf)jmijk J: (4.5)
)5
Let X;Y 2 S?(H). According to the de nition of , we have
X
( )X Y)= mix EA(FHXE B(FjZ)Y EC(F2):
ik

By the pairwise disjointnesses of (F); and (F2)x, the elements

X
mi EA(FHXE B (FA)Y EC(F2) N
; ;

are pairwise orthogonal in S?(H). Hence

X X 2
K( )X Y)ks= mix EA(FHXE B(FjZ)Y EC(FY)
2

ik j
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Applying the Cauchy-Schwarz inequality and (4.5), we deduce that

k( )XYk kK 7 EA(RHYXEB(F?) , EP(FYEC(FY) , i
2 )I<k % Al B2y 2 X B/ 2 Cie3y 2
k k2 EAFHXE®(F?) EB(FYEC(FY) ;

2 I'>k( J 2 X J 2
k Kk EA(FHXER(FP) ; EB(FAYEC(F)) ; :

] ik

Since the elementsE” (F')XE ® (F?) are pairwise orthogonal in S*(H) we have

X Al B2y 2 — X Al B2y 2
E*(FXE®(F) ,= ER(FOXER(FY)
i i
= E* [\F! XE® [|F? ]
k XK3:
Similarly, X
EB(FAYEC(FY) & k YK
ik
This yields the result. O

We let .
G=EFE E, E5  L'(a B c)

andwelet :LY( A B c) ! G be the canonical map de ned by
z
() = d(a B o) 2LY 2G
(A) (B) (C)

This is obviously a contraction.
We claim that is actually an isometry. To check this fact, consider' 2 E; E , E 3,
that we write as a nite sum
X
= Gik r? F? F2s
ik

with ¢ 2 C and (Fl); (respectively (sz),- and (F2)x) being pairwise disjoint measur-
able subsets of (A) (respectively of (B) and (C)), with positive measures. Then
X H ; 1 2 3
Kki= okl a(F) s(F) c(F):
ik
Let be de ned by (4.4), with my = jo jo,'. Thenk k; =1 by (4.5) and
X
(), = Mig Gk A(F) 8(F?) c(F) = K ki
ik
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Hence we havek (' )k = k' k; as expected. Sinceg; E , E zisdenseinL( o & ¢),
this implies that  is anisometry. Thus we now consider L'( o g ¢) asasubspace
of G .

Arguing as in Subsection 3:3:1, we have isometric identi cations

BA(S?(H) S 2(H);S2(H)) = B(S*(H) S *(H);S*(H))
= SH) S %(H) S *(H) ;
and it is easy to check that the duality pairing providing this identi cation reads
X Y Z =tr TX;Y)Z

forany T 2B»(S?(H) S ?(H);S?(H)) and any X;Y;Z 2 S?(H).
We set . .
E = S’ (H) S ?(H) S ?(H):

According to Lemma 4.1, uniquely extends to a contraction
@ GI!B ,(S*H) S ?(H);S*H))= E:

We can therefore considerS = € :E ! G, therestrictionof € toE E

Lemma 4.2. The operatoB takes its values in the subspdcl a B c) ofG .

Proof.LetP=H H H H H H .Recallthatwe identify H H with the space
of nite rank operatorson H. ThenH H is a dense subspace ofS?(H). Consequently
P is a dense subspace ofE. SinceS is continuous, it therefore suf ces to show that
S(P) LY a 8 c) Consider i; 5; 3 1; 25 sinHand! = ; ;1 », 2 3 3
Such elements spanP hence it suf ces to check that S(! ) belongsto L( A B c).
Letf, 2 E;,f> 2 E; and f3 2 E3. We have

hS(!);f1 fo fai=h; (fy fo fy)i

=tr (f1 fo f3)(1 12 2)(s 3)
tr f2(A) (1 Df2B) 2 2f(C)( s 3)
tr (1 f1(A) )(2 fa(B) 2)( 3 f3(C) 3)

tr (3 f1(A) 1)H3(C) 3; 2ihfo(B) 2 4i
= Hg(C) 3, 2i hfz(B) 2, 1i hfl(A) 1 3i:

The w -continuity of the functional calculus  -representation A: L' ( A)! B(H)to
which we refer in (4.2) tells us that
Z
H1(A) 1 si = fihid A
(A)

for some h; 2 L1( A) not depending on f;. A thorough look at the construction of
shows that h; is actually the Radon-Nikodym derivative of the measure dEAl; . with
respectto a.
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Similarly, there exist h, 2 L*( g) and hs 2 L*( ¢) pot depending on f, and f 3 such
that F,(B) ,; 10 = fohod g and H3(C) 3; 2l = fshzd . Consequently,
Z

hS(t);f. fo fai = (fr fo f3)(hy hy h3)d( a & c):
(A) (B) (C)

(B) (C)

Sincek; E , E szisdensein G, this implies that

S(')=hy hy hz2L( a B c):

Theorem 4.3. There exists a unigu@ -continuous isometry
ABCLLY (A B ) !B o(S*H) S *(H);S*H));
such that for anyf, 2 E;, f, 2 E; andf3 2 Eg, and for anyX; Y 2 S?(H), we have
MBS (F1 fo fa)(X;Y) = fa(A)XF 5(B)Y f3(C):

Proof. The unigueness follows from the w -densityof E; E , E sin L ( A B c).
Lemma4.2yieldsS:E! LY( A B c)- Thenits adjoint S is aw -continuous
contractionfrom LY (o g c¢)into E = By(S?(H) S ?(H);S?(H)). We set

ABC — S :

By construction, ABC isw -continuous and extends the map de ned by (4.3). The
factthat ABC is an isometry will be proved later on in Corollary  4:8. O

Bilinear maps of the form  AB:€ () will be called triple operator integral mappings
this thesis. Operators of the form ABC ( )(X;Y): H! H are called triple operator
integrals.

By similar computations (left to the reader), the above construction can be extended
to (n 1)-tuple operator integrals, forany n 2. One obtains the following statement,
inwhich B, 1(S?(H) S ?(H) S 2(H);S?(H)) denotes the space of(n  1)-linear
bounded maps from the product of (n 1) copies of S?(H) taking values in S?(H).

Proposition 4.4. Letn 2 and letA;; Ay;:::; A, be normal operators dd. For anyi =
1;:::;n, let A, be a scalar-valued spectral measure®foand letE  L! ( 4,) be the space
of simple functions o} (Ai); a,). There exists a unique -continuous linear isometry

!

N
AvAzizAn | 1 A !B o 1(S*(H) S 2(H) S 2(H)!S ?(H));

f1(AD)X1f2(A2)  frn 1(An 1)Xh 1fn(An):
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Remark 4.5. As indicated in the introduction of this section, the above construction turns
out to be equivalent to Pavlov's de nition of multiple operator integrals given in [Pav69]. Let
us brie y review Pavlov's construction from [Pav69], and explain this "equivalence'. In this
remark, we use terminology and references from [DU79, Chapter 1].

Letn 2and consider normal operatoks; A,;:::; A, asin Proposition4.4. FiXq;:::; Xp 1
in S?(H). Let = (A) (A2) (An) and consider the sé&t consisting of nite
unions of subsets of of the form

= k1 F Fn;

where, foranyl i n;F; is a Borel subset of(A)).
There exists a (necessarily unique) nitely additive vector measuré ! S 2(H) such
that
m()= EM(F)X.E"2(F;) E* (Fy 1)Xn 1E*(F) (4.6)

forany as above.

Pavlov rst shows thatm is a measure of bounded semivariation and then provesithat
is actually countably additive (see [Pav69, Theorem 1]). TL&te the - eld generated byF .
SinceS?(H) is re exive, it follows from [DU79, Chapter 1, Section 5, Theorem 2] tindtas a
(necessarily unique) countably additive extens®nT ! S ?(H). Moreovena is a measure
of bounded semivariation. Then using the fact that foriall o, is a scalar-valued spectral
measure foA;, one can show that

2] A1 Ao An
on F. This implies thatL® ( A, A, A,) L (m) and hence, for any 2
LY ( a As A, ), One may de ne an integral
Z

(t) dm(t) 2 S?(H):

See [DU79, Chapter 1, Section 1, Theorem 13] for details. This element is de ned in [Pav69]

Z

(t) dma(t) =  AvAzsAn () (Xyq; i X, 1)

Fo check this identity, let; wo: L' (1o, A, A.) 'S 2(H) be de ned by ( )=

(t) dm(t) andwy( ) = AvAziEAn( )()bli?: 11X 1). For@nyZ 2 S?(H), the functional
of L1 ( a, A, A, ) taking to (t)dm(t) ;Z induces a countably additive
measure ol , which is absolutely continuous with respect tg, A, A, - By the
Radon-Nikodym Theorem, this functional is therefarecontinuous. This implies thatv, is
w -continuous. We know thatv, is w -continuous as well, by Proposition 4.4. Further it is
easy to derive from (4.6) that; andw;, coincide org; E .. These properties imply the
equalityw; = w, as claimed.

Remark 4.6. We keep the notations from Proposition 4.4 and explain the connection of this
result with Peller's construction from [Pel06]. In the latter paper, the author de nes multiple
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operator integrals associated to functions belonging to the so-called integral projective tensor
product of the spaces ( ;). We will check that this de nition is consistent with ours.

Let( ;d ) bea - nite measure space and, foranyg 1;:::;n, leta;: (Aj)! Cbe
a measurable function such tha(t; ) 2 L! ( A, ) fora.-et 2 . Assume that
Z
kag(t; ki ( ,pkaa(t ki (,,)  Kan(t )ke(,)d (1) < 1 4.7)
Thenone maydene 2 Lt ( 4, A, ) by setting
Z
(ty;to;:nstn) = a(tty)ax(tty) an(tty)d (t) (4.8)
fora.-e.(ty;:::;t))in (A (A,). We claim that for anyX1;:::; X, 1 2 S?(H),
Z

Arsmfn (XX 1) = a(bADXa@(bA)X2  Xn (b A)d (1);  (4.9)

whereg; (t; Aj) 2 B(H) is obtained by applying the Borel functional calculus\¢tto & (t; ),

Consequently, A1#54n (1) extends to a bounded 1-linear mapB (H) B(H)! B(H)
under the assumptions (4.7) and (4.8).

To prove (4.9), we introducg: ! L ( ) by writing &(t) = a(t; ), for anyi =
1;:::;n. Then the functiorf: ! L1 ( 4, A, ) de ned by

M) = a() a&(@1) &();, t2
is w -measurable and the associated negm funckiBp )k, is integrable, by the assumption
(4.7). We can therefore consider its integral®(t) d (t) asanelement &f* ( A, An)s
de ned in thew -sense. Using Fubini's Theorem, one obtains that
Z
= &nd (1);
where the function is de ned by (4.8). Since”t**A» jsw -continuous, we derive that
Z
AR () = AR g () @) (1) d (1):

on elementary tensor products.
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4.1.3 Passing from operators to functions

Let H be a separable Hilbert space and letA; B and C be normal operators on H. We
keep the notations from Subsection 4.1.2. We associate the three measure spaces

( v =0 (©C) c) (20 22=( (B); B) and (3 3=( (A); a)

and consider the mapping de ned in Subsection 3:3:1for these three measure spaces.
ltmapsL* (o & c)into Ba(S*(L?( c);L2( 8)) S *(L%( 8);L2( 4));S*(L2( c);L2( A)))-
The main purpose of this subsection is to establish a precise connection between this
mapping and the triple operator integral mapping  A®C from Theorem 4.3.

We may suppose that
A() = KEAG)ek?  s()=KEB(Dek?® and c(}) = KEC(:)esk?

for some vectors e;; ;e 2 H (see Subsection 4.1.1).
There exists a (necessarily unique) linearmap A: E 'H  satisfying

Al £)= EA(F)e
for any Borel set F (A). For any nite family (F;); of pairwise disjoint measurable

subsets of (A) and for any family ( ;); of complex numbers, we have

X 2 X A 2
A iR = E7(Fi)e
i N

j iJPKEA(Fi)ek?
X

i % a(Fi)
X 2
i Fj
i 2

Hence A extends to an isometry (still denoted by)
A L% a)'H
Denote by H, the range of 5. We obtain
L?( a) H A
Similarly, wedene g; candHg;Hc H suchthat
L%(g) H e and L% ¢) H ¢

We may regard S?(Hg;Ha), S?(Hc;Hg) and S?(H¢;Ha) as subspaces ofS2(H) in

a natural way, see (1.17). The next statement means thatforany 2L ( » & ¢),

ABC ((Ymaps S%(Hg;Ha) S 2(Hc;Hg)into S%(Hc; Ha) and that under the previous
identi cations, this restriction 'coincides' with ().
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Proposition 4.7. LetX 2 S?(L?( g);L2( a)) andY 2 S?(L?( ¢);L?( g)), and set
= o X 3'2S?*Hg;Ha) and €= 5 Y 12S?Hc;Hs):
Forany 2L (Ao & ¢), ABC ()% ¥) belongst®2(Hc;Ha) and
(Y X)= )8 AECO)RR) e (4.10)

Proof. We rst consider the special case when = ¢, Fs r, for some measurable
subsetsF; (A); F; (B) and F3 (C).
LetU (A);V;V°  (B)and W (C) and consider the elementary tensors

X = Vv U ZSZ(LZ( B),LZ( A)) and Y = w VOZSZ(LZ( C),LZ( B)):

We associateX and ¥ as in the statement. Since g : L?( g) ! H g is unitary, we have
1= 4 hence
B B

®X= g(v) Al v)= E®(V)e, E*(U)er

Likewise,
¢ =E“(W)es EP(V9en
We have
Z
( )Y X)= (5t )X (12 )Y (5 t2) d s(t2)
7 (B)
= F(t2) v(t2) vo(t2) Fs w F ud ()
ya
= d g(t2) Eraw Fi\ U
Fo\ VA VO

s(F2\ V\ V(b Fa\ W Fi\U-
Further using the above expressions of X and ¥, we have

ABC ()R, ®) = EA(F1)XE B (F) R EC(Fs)
= E*(V)ee EA(F1\ U)e E°(Fs\ W)es EP(F,\ Ve
= EB(F,\ V9erEB(V)e, EC(F3\ W)es EA(F1\ U)e
= EB(F,\ VO V)ey e, EC(F3\ W)e; EA(F1\ U)e
= g(F,\ VN VOEC(F;\ W)e; EA(F\ Uer:

This shows that AB€ (1 )(%; €) belongs to S?(H¢; Ha) and that (4.10) holds true.

By linearity and continuity, this result holds as well for all X 2 S?(L%( g);L?( a))
andall Y 2 S2(L2( ¢);L2( g)).

Finally since and #“BC are w -continuous, we deduce from the above special
case that the result actually holds true forall 2 L ( A B c)- O

Corollary 4.8. The mapping ~B:¢ from Theorem 4.3 is an isometry.
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Proof. Consider 2 L'( o 8 ¢).ForanyX in S2(L%( g);L%( A)) andanyY in
S?(L?( ¢);L%( g)), we have

K( )Y;X)kza=k ,* AFC ()R ®)  cke
k  ABC ()08 Bk
ABC (1) kRkokRks

by Proposition 4.7. SincekXk, = kX ko, and k¥k, = kY ks, this implies that
() ABC () (4.11)

By Proposition 3.7, the left-hand side of this inequality is equalto k ki . Further A8
is a contraction. Hence we obtain that k AB€ ( )k =k ki . O

4.2 Finite dimensional case

In the previous section, we de ned multiple operator integrals and we saw that we
have a simple expression in the case when is in the tensor product of L?! -spéces. Ex-
cept for this case, we cannot give such a simple formula for any elementof L (T, a,).
However, when the Hilbert space H is nite dimensional, it is possible to give a sat-
isfying expression of multiple operator integrals : this is due to the fact that in this
situation, we have a formula for functional calulus for selfadjoint operators, involving
the eigenvalues and projections onto the eigenspaces. As a consequence, we will see
that double and triple operator integrals behave like linear and bilinear Schur multi-
pliers. Itis straightforward to extend the formula we obtain here for multiple operator
integrals. We use the results of this section in Chapter 5 to obtain norm estimates for
multiple operator integrals in the nite dimensional case.

Throughout this section we work with nite-dimensional operators. We x an in-
tegern 1andregard C" as equipped with its standard Hermitian structure.

Consider two orthonormal bases e = fegl.; and €’ = felgl, in C". Then every
linear operator A 2 B(C") is associated with a matrix A = fa; gfj_;; where g; =
hA(eg); € : Sometimes we use the notation aﬁo;e instead of a; to emphasize correspond-
ing bases.

For any unit vector x 2 C" we let P, denote the projection on the linear span of X;
thatis, Px(y) = hy;xix forany y 2 C":

4.2.1 Double operator integrals

Let A;B 2 B(C") be normal operators. Let ; = f i(l)gi"z1 and , = f i(z)gi"z1 be or-

thonormal bases of eigenvectors for A and B respectively, and let f g, ;j = 1;2be
the associatedn-tuples of eigenvalues, that is, A( i(l)) = i(l) i(l) and B( i(2)) = i(z) i(z).
Without loss of generality, we assume that f i(”gi”:jl ;] = 1;2; are the sets of pairwise
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distinct eigenvalues of A and B, where n; 2 N; n;  n. Denote

X0
EY = Poi 1 0 ny (4.12)

k=1
W_
k i

that is, Ei(l) is a spectral projection of the operator A associated with the eigenvalue
M Similary, we denote by E® a spectral projection of the operator B associated with

the eigenvalue i(z).

With those notations, we have

X Xz
A= WE® and B = @D (4.13)
i=1 k=1

Let :C?! C be afunction. Then, the double operator integral B ( ): B(C")!
B(C") associated with , A and B de ned in Proposition 4:4is given by

AB X ®. @ n
C() X)= (75 KPP wXPae; X 2B(C): (4.14)
k=1

Alternatively, and it is sometimes more convenient, we can use the representation
of AB() (X)inthe form

X Xe 1 2 1 2
AB () (X)= (9 PEPXEP; x 2B(C"): (4.15)

i=1 k=1

Let us prove Formula (4:15). Note that according to Proposition 4:4, we only need

toknow on (A) (B).LetF = (s (8):Then
X1 X2
F = ( i(l); (k2)) " "
i=1 j=1 ' :
According to (4:13)we have,for1 i nq,
X 1 1 1
n i(1)0(A): n i(1)0( j())Ej(): Ei():

j=1
Similarly, forany 1 k ny,
" <k2>°(B)= E:
Thus, forany X 2 B(C"),
X1 X

A;B( ) (X): ( i(l); (kZ)) AB n 0 n LZ)O (X)
i=1 j=1
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X1 X2
= ( i(l); (kZ)) n fl)o(A)X n (kz)o(B)
i=1 j=1
_ X1 X2 ( . (k2))E'(1)XEI£2).
i i .
i=1 j=1

It is not dif cult to see that if we identify  B(C") with M,, by associating X with the
matrix fx,’ >gfy-,, then the operator *® () acts as a linear Schur multiplier associ-

atedwith  ({V; ) 7, . Indeed,
2)y. @) _ L.y — i
@y @ WX (s7); i=x22 if s=kr=i
(P wXP & ST 0 otherwise.
Therefore,
: 2 1 1 2 :
ABC)Y (X)) o= (8 P
which impliesthat  AB () (9 @ ir']kzl M, ! M,. Since these identi cations
are isometric ones, we deduce that
ABC)y:stist = 1 (W Oy, iStrs o (4.16)

4.2.2 Triple operator integrals

We now give the formula for triple operator integrals in the nite dimensional case.

Let A;B;C 2 B(C") be normal operators. We keep the same notations for the
spectral decompositions of A and B introduced in the previous subsection. Let 3 =
f i(?’) gL, be an orthornomal basis of eigenvectors of C and let f i(3) gL, be the corre-
sponding n-tuple of eigenvalues.

Let :C3! C be afunction. Then, the triple operator integral ~BC () : B(C")

B(C") !B (C") associated with , A, B and C de ned in Theorem 4:3is given by

X
AB;C ( ) (X; Y) = ( i(l); (kZ); -(3))P i(1) XP 1(<2) Y Pj(3) (4'17)
ik =1

forany X;Y 2B(C"):

Assume that f i(3) g, is the set of pairwise distinct eigenvalues of the operator C.

Then alternatively, using the spectral projections (4.12), we can write
3
ABC () = (D 2 DEPXEPYED (4.18)
i=1 k=1 j=1
forany X;Y 2 B(C"): The proof of this formula is similar to the one of Formula (4:15).

Let us consider two different identi cations of B(C") with M,,. On one hand, we
identify X with the matrix fx;" >gfy -, , where x;¢" > = hX( 2y, i On the other hand
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we identify Y with Ty, °gl; -, ; where y2'° = hY( ?); @i. Under these identi ca-

tions, the operator “B€ () acts as a bilinear Schur multiplier associated with the
; _ M. @. @y n
matrix M = ({75 75 7)) k- - INdeed,
3)y. — . (@ 2)y. — ; ;
(PoXPoYPe)( &) @ = Y(O) @ X =yixi

if s=j;r =i,and
(P (1)XP (2)YP(3))( §3))1 r(1) =0
i Kk j

otherwise.
Therefore,

AB;C 3 1 X ). . 3 ; ;
BCC)Y (XY @)y @ = (W5 D *xa
k=1

which implies

ABC () (XiY)= (7500 Pxdong By
ik =1

Since these identi cations are isometric ones with respect to all Schatten norms, we
deduce the formula

MEC()stisits o= (7 daisi sits i (419

4.3 Characterizationof S2 S 21S 1poundedness

Let H be a separable Hilbert space and letA; B and C be normal operators on H. Let
a; B and ¢ be scalar-valued spectral measures associated withA, B and C. Recall
the de nition of the triple operator mapping ~ ~B€ from Theorem 4.3. The purpose of
this section is to characterize the functions 2 L ( A B c) such that ABC ()
maps S?(H) S 2(H) into S'(H).
We shall start with a factorization formula of independent interest. Let  AB and
B:IC be the double operator integral mappings associated respectively with (A;B)
and with (B;C), see Proposition 4.4. It is important to note that ~® and B¢ are
-representations. Recall that they arew -continuous.

Lemma4.9.Letu2 L1 (o )andv2 L (g ). Then,forallX;Y 2 S?(H), we
have
ABC ()G Y) = A8 (U)(X) B )(Y):

Proof. Fix X;Y 2 S?(H). Letu; 2 LY ( a);uyvi2 LY ( g)andv, 2 LY ( ). Consider
u=u; UW2LY(,a) L(g)andv=vy v, 2LY( ) LY( ¢). Thenwe have



4.3. Characterization of S2 S 21S ! poundedness 83

Uv=u; UVv; Vo2LY(,a) LY(g) LY( ). Therefore

ABC (UV)(X;Y') = ui(A)X (uzv1)(B)Y v(C)
U1 (A)Xuz(B)vi(B)Y w(C)
A8 (U)(X) B ()(Y):

Now, take u 2 L ( A g)andv 2 L1 ( g c). Let (u);i and (vj); be two nets
inLY(A) LY(g)andL!( g) L?*( ¢)respectively, convergingto uand v inthe
w -topology. By linearity, the previous calculation implies that for all  i;j

AEC ()XY ) = AB (U (X) B (v)(Y):
TakeZ 2 S?(H) and x j. Since € (v;)(Y)Z belongs to S?(H) we have
lim tr (42 (u)(X) PEW)(Y)Z) = r( AE(u)(X) O (v)(Y)Z)
= tr( " (v)(Y)Z A% (u)(X))

by the w -continuity of AB . Similarly, since Z A8 (u)(X) 2 S?(H), the w -continuity
of B implies that

lim tr( PEWNY)IZ AP (u)(X)) = tr( BEW(Y)Z 4B (u)(X))
= tr( A (u)(X) P (v)(Y)2):

On the other hand, (u;v;); w -converges touy; for any xed j and (uv;); w -converges
touvinL! (o & c). Hence thew -continuity of  AB:C implies that

im im tr (%€ (uivy)(X; ¥ )Z) = lim tr( 45 (uy)(6;Y)2)
= tr( ABC (uv)(X;Y)Z):
Thus, forall Z 2 S?(H),
tr( AP (u)(X) BE)(Y)Z) = tr( A€ (uv)(X;Y)Z);
which implies that A8 (uv) = AB (u)(X) BC(v)(Y): O

Our main result is the following theorem. In this statement, as in Subsection 4.1.3,
we consider the continuous bilinear Schur multipliers () inthe case when( 1; 1) =
((C); c)( 25 22=( (B); g)and( 3; 3)=( (A); a).Note that these measurable
spaces are separable.

Theorem 4.10. LetH be a separable Hilbert space,AeB andC be normal operators dd
andlet 2 L' ( a B c). The following are equivalent :

() APC()2By(S*(H) S 2(H);SY(H)):

(i) ( )2B2ASHL2( c)iL?( &) S 2(L%( 8);L2( a))iSHLA( c)iL2( A)).
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(i) There exist a Hilbert spadd and two functions
a2Ll'(a sH) and Db2L'(s ¢;H)
such thatkak; kbk; k k;.,and
(t1;t2;t3) = ha(ty; t2); b(to; t3)i

fora.-e.(ty;t;t3) 2 (A) (B) (C):
In this case,

ABIC():82 8218 1 = ():S?2 S21S 1 =infkak kbky :  (4.20)

Proof. The equivalence (i), (iii) follows from Theorem 3:8.
Proof of (iii)) ) (i)
Assume (iii) and let ( )k2n be a Hilbertian basis of H. For any k 2 N, de ne

a=ha «i2 L' (A B) and b= Ho; i2 L' ( g c):

We set X %
jaj = jag?
n

this function belongsto L ( s) and we have kak; = kjajk; .
Let X 2 S2(H). Since ~B isaw -continuous -representation, we have

X
k A8 (a)(X)KE = AB (@)(X); AP (ak)(X)
k

X e
=" AR (@) AR (a)(X);X

n
= AP (E?)(X); X
Ki aj2k; kX K2 = kak? kX k2:

We prove similarly thatif Y 2 S?(H), then

k BC@)(Y)KE k k2 KYK::

n

Consequently, for all X;Y 2 S2?(H), we have the inequalities

X
k A% (@)(X) % (B)(Y)k k A% (@a)(X)kk =€ (B)(Y)ka
k k

_ 1=2 X o 1
K A8 (a)(X K3 kB (B)(Y)IE
k K
k aky kbk; kX koKY ko:

Therefore, we can de ne a bounded bilinear map

S%(H) S 2(H)!S I(H)



4.3. Characterization of S2 S 21S ! poundedness 85

by

P _

(XY)= AB (@) (X) BC(b)(Y); XY 2S?(H);

k=1

and we have
k k k ak; kbk; : (4.21)
We claim that
AB:.C —_
()=

To check this, consider

xXn xn

&= a « and K®B= b«
k=0 k=0

forany n 2 N. Then we set

xXo -
n(titats) = & (tto); §(tats) = ay (tq; o) (to; ta):
k=0

P _
Fix X;Y 2S?(H). We have ABC( )= [, ABC(ah) hence by Lemma 4.9,

X
AEC X Y) = B (a)(X) B (B)(Y):
k=0

Consequently,
MECCOGY) L (XY) in SYH):
n' +
Moreover ! a.-e. and( ,), isboundedin Lt ( A B c). Indeed,

X L, X L4
n(t1; 12 ta) jak(ty; t2)] jo(t2; t3)] k aky kik; :
k=0 k=0
Hence by Lebesgue's dominated convergence Theorem,w - Iim , = . Thew -

n! +1

continuity of  ABC implies that

ABC )X Y) ! ABC (1 )(X:Y) weakly in S?(H):

n' +1

We conclude that ABC ( )(X;Y)= ( X;Y).
This shows (i). Furthermore (4.21) yields

ABC (). 82 5215 1 Kk aky kik; (4.22)

Proof of (i) ) (ii)

Assume (i) and apply Proposition 4.7, which connects ~BC ( )to ( ). LetX 2
S2(L2( g);L2( A)) and Y 2 S2(L2( ¢);L%( )). By (4.10), we have

k()Y X)ke=k ,* AFCO)RE)  cka
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k  ABC ()R @)k
ABC (1):S2 S 21S 1 kXkokYky;

since kX ks, = kX k, and k%k, = kY k. This shows (ii), with
():8?s?is? ABC():8* s?Is 1 (4.23)
U]

Remark 4.11. With the terminology adopted here, Peller's Theorem from [Pel85] states as
follows.

LetA; B be normal operators on a separable Hilbert sphesd let o, and g be scalar-
valued spectral measures fdrandB. Let 2 LY (o g)andletu : LY( A)! LI ( )
be the bounded map associated (see (1.5)). The following are equivalent.

(i) The double operator integral mapping'® ( ) extends to a bounded map frd®A(H)
into itself.

(i) There exist a Hilbert spadd and two functionsa 2 L* ( a;H) andb2 L ( g;H)
such that
" (s;t) = ha(s); b(t)i a:ex(s;t): (4.24)

In this case,
AB(): SYH)!S YH) =inf kak, kbk;

where the in mum runs over all pairga; b of functions such that (4.24) holds true.

Let us show that this result directly follows from Theorem 4.10. Congi¢Br as above and
take an auxiliary normal operat@ onH (this may be the identity map), with a scalar-valued
spectral measurec. Forany 2 L1 ( a B), Set

€= 12L'(a ) L'(c) L'(a ¢ )
We claim that for any<;Y 2 S2(H),
B (&)XY )= AB()XY): (4.25)
Indeed forany; 2 L* ( o) andf, 2 L* ( g), and for anyX;Y 2 S?(H), we have
ACB(f1 1 )X Y) = f1(A)XY fo(B):

Hence by linearity, (4.25) holds true forany2 L ( ») L?* ( g). By thew -continuity of
ACEB and of AB this identity holds aswellforany 2 L* ( o ).
We havekXY k; k X kokYk, foranyX;Y 2 S?(H) and conversely, forang 2 S(H),
there existX;Y in S?(H) such thatXY = Z and kX k.kYk, = kZk;. Thus given any

2 LY( A g ), it follows from (4.25) that A¢B (€) mapsS?(H) S 2(H) into S*(H) if
and only if AB () mapsS*(H) into S*(H) and moreover,

ACB(€):S%(H) S *H)!S *Y(H) = "P():SYH)!S *(H):

The result therefore follows from Theorem 4.10 and the equality (4.20).
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4.4 Complete boundedness of triple operator integrals

Let A;B;C be normal operators on a separable Hilbert space H. Let A; g and ¢
be scalar-valued spectral measures associated withA; B and C. The purpose of this
sectionis to characterize the functions 2 L' ( o g ¢)suchthat ABC () extends

h
to a completely bounded map from S* (H) S ! (H) into S* (H).
We will also consider the continuous bilinear Schur multipliers (). Note that by
the obvious equalities

SHL2( 8);L2( ¢)) = SAL?( c)iL%( 8))
and

SHL2( a);L?( 8)) = SALA( 8);L%( )
we can see () as a mapping

():SHLP()iL%(c)) S AL*( a)iL?(8) 'S 2(L%( a)iL?( c)):

In [KJTO9], the authors studied and characterized the boundedness of continuous bi-
linear Schur multipliers

S'(L?( &)L ¢) 'S T (L% ANLP( &) IS (L% A)iL%( o)):

They proved that we have such extensionifand only if  has a certain factorization that
will be given in the theorem of this section. They also proved that the boundedness for
the Haagerup norm in this setting implies the complete boundedness.

The proof of Theorem 4:12 below includes another proof of [KJT09, Theorem 3.4]
and we show that the same characterization holds for triple operator integrals. Note
that the result presented here can be easily extended to the case of multilinear operator
integrals.

Theorem 4.12. LetH be a separable Hilbert spageB; C be normal operators dd and let
2LY( Ao B8 ¢). Thefollowing are equivalent:

() ABC () extends to a completely bounded mapping
ABC():Sh(H) 'S L(H)!S *(H):
(i) ( ) extends to a completely bounded mapping
():ST (LA ekl o) 'S P ALH ) !IS L (LA ANLA o))

(iii) There exist a separable Hilbert spadea 2 L' ( o;H);b2 L ( g;B(H)) andc 2
L' ( ¢;H) such that

(t1;t2;ta) = Hb(tz)l(a(ty)); c(ts)i
fora.-e.(ty;tz;t3) 2 (A) (B) (C):

In this case,
A;B;C( ) - k( )k: inf kakl kl:kl ka1 . (4-26)
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Proof. In this proof we will identify, for 2L (A B c) theelement ABC ()2
B2(S?(H) S ?(H);S?(H)) with the element still denoted by

ABC():S2(H) S 2(H)!S 2(H):
(See the isometry given by (1:1).)
Proof of (i) ) (ii)
We use the same notations as in Subsection4:1:3 where we introduced the sub-
spacesH;Hg and He of H. S! (Hg;H¢) and S (Ha;Hg) are closed subspaces of

St (H) and by injectivity of the Haagerup tensor product (see Proposition 1:4), we
have a closed subspace

S! (Hg;He) "s 1 (Ha;Hg) S ' (H) "s 1 (H):

h
By Proposition 4:7, the restriction of ABC ( )to S (Hg;Hc) S ! (Ha;Hg) is valued
in S* (Ha;Hc). Moreover, this restriction is completely bounded and by the same
proposition, we obtain the inequality

k( dky M)

Proof of (ii) ) (iii)
If ( ; )isameasure space, the mapping

(Fg)2L%() 271 fg 2 LY()

induces a quotient map

fog2L%) L) 7'fg2LY) :
We can identify L2() with its conjugate space so that by (1:12) we get a quotient map
q:SHLA()) ! LY

which turns out to be a complete metric surjection (here, the L!-spaces are equipped
with their Max structure).

Letqg : SYL?( i) ! L i);i =1;2;3bedened as above. For convenience, write
H; = L2( ;). Using Proposition 1:4 together with the associativity of the Haagerup
tensor product, we get a complete metric surjection

Q= @ q:SHs) S I¥(Hy) 'S YHy)! LY o) LY 2 LY 2):

Let N = ker Q and let, for i = 1;2;3;N; = ker g. Using Corollary 1:5twice, we obtain
that

N =Nz S 1(Hz) S I(Hi)+ S'(Hs) N S }(Hi)+ S'(Hz) S }(Hz) N
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Assume that ( ) extends to a completely bounded mapping
h
( ):S'(HzHs) S *(HyHR) IS ' (HyHg) B (HyHa):
Let E = S (Hy H3) hS 1 (Hq; H,). By Proposition 1:6, we have a complete isometry
h h
CB(E;B(Hi;Hg) = ((Hs)) E  (Hi)e

By (1:14) we have

h h h
E= (H3)C ((HZ)C) (H2)c ((Hl)c) :
Thus, using (1:13) and the associativity of the Haagerup tensor product, we get that

CB(E;B(Hi;H3)= SYHs) 'S YHp) 'S Y(Hy)

Letu:Si(Hs) 'S 1(H,) 'S Y(Hy)! Cinducedby ( ). Foranyx 2 Si(Hy):y 2 Si(H,)
and z 2 S(H3), we have
z

uz y x)= (t1; t2; ) [ (X)](t)[RWMI(t2)[B(2)](ta) d 1(t1)d 2(t2)d 3(t3):

1 2 3

To see this, it is enough to check it when x;y and z are rank one operators and in
that case, one can use the identi cations above. In particular, the latter implies that u
vanishes onN = ker Q. SinceQ is a complete metric surjection, we get a mapping

ViLY( a) LY 2 LY 9! C

suchthatu= v Q. An application of Theorem 1:1 with suitable restrictions using the
separability of the spacesL?( ;) gives the existence of a separable Hilbert spaceH and
completely bounded maps

LY )! He LY 2)!'B (H) and LY 3)! H,
suchthatforany f 2 LY( 1);g2 L( ,);h2 LY 3),
vth g £)=H (@I (f)); (h)i:
SinceL!( ,) is equipped with the Max operator space structure, we have
CB(LY( 2);B(H)) = B(L*( 2);B(H)):
Moreover, by (1:4) and (1:16), we have

B(L*( 2);B(H))= L* ( 2:B(H)):
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Thus, we associate to an elementb2 L! ( ,;B(H)). Similarly, we associate to an
elementa2 L' ( ;;H)andto anelementc2 L! ( 3;H): We obtain that

(t1;t2;t3) = Hb(t2)](a(ty)); o(ts)i

for a.-e. (ty;to;t3) 2 (A) (B) (C), and one can choosea; band c such that we
have the equality
k( )k= kak; kbk; kck; :
Proof of (iii) ) (i)
Assume that there exist a separable Hilbert spaceH,a2 L ( 5;H);b2 L ( 5;B(H))
andc?2 L' ( ¢;H) such that

(t1;t2;t3) = Hb(tz2)](a(ty)); c(ts)i

fora.-e. (t1;to;t3) 2 (A) (B) (C): Let ( n)n 1 be aHilbertian basis of H. De ne,
fori;j 1,

a = ha; ji;bj =Mo;; i and ¢ = hj;d:
Thena2 LY ( 4);c2 LY ( 3)andb2 Lt ( ,). To see this last point, simply note that

by = tr(b() (i ):

ForN 1, let Py be the orthogonal projection onto Span( 1;:::; n). Then, de ne
N (t1s 25 ts) = Hb(t2)](Pn (a(te))) ; P (c(ta))i :
It is clear that ( n)n 1 is bounded in Lt ( ; B c) and that ! pointwise

when N !'1 . Therefore, by Dominated convergence theorem, we have that \ !
for the w topology. This implies, by w  continuity of ABC | that for any X and Y
in S2(H),

ABC(N) (X YY) A () (X Y)

weakly in S2(H).

h
Assume that ( AB€ ( ))n is uniformly bounded in CB(S! (H) S ! (H);S?! (H)):
Then, the above approximation property together with the density of S? into S im-
ply that ABC () is completely bounded as well.

We will show now that forany N 1, ABC( )2 CB(S! (H) hS 1 (H); St (H))
with a cb-norm less than kak; kbk; kck; :
Forany N landa.-e.(t3;t;;t3) 2 (A) (B) (C), we have
|
X X '
N (t1stasts) = am (t1)bhm (t2)  Ca(ta);

1 n N 1 m N

so that for any X;Y 2 S2(H),
|
A;B;C X X |
P (N) (X Y) = am(A)Xbmm (B) Y & (C):

1 n N 1 m N
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Note that the latter can be written as
ABC(N) (X Y)=Ax(X In)Bn(Y  In)Ch;

where
An = (a(A) ax(A)::zan(A) : N (H)ITH ;

B = (i (B))1 NI‘S'(H)! 2 (H)

j
and
Cn = (a(C) (C) iy (C) :H! N (H):

The notation X |y stands for the element of B(*) (H)) whose matrix is the N N
diagonal matrix diag (X;:::;X ). Similarly for Y 1y.
Dene,for N 1,
nD B(H) ! B (Y(H):
X 71 X Iy

Then \ isa representation.
Let

g: L'(g) ! B (H)
£ 71 £(B)

be the -representation introduced in Subsection 4:1:1. By [Pis03, Proposition 1.5], g
is completely bounded and k gks 1. Note that the element

(Bi)1 i~ 2Mpy(LY ()
1] N
has a norm less thanklbk; . Thus, the latter implies that

Bn = ( B(hi))i i N

i

j N
has an operator norm less than kbk; . Similarly (using column and row matrices), we
show that Ay and Cy have a norm less thankak; and kck; , respectively. Finally, write

AEECN) (X Y)= Y(X) 2 (Y)

where Y (X)= Ay (X)By and Y(Y)= (Y)Cy. By the easy part of Wittstock theo-
rem (see e.g. [Pis03, Theorem 1.6]), ) and Y are completely bounded with cb-norm
less thankak, kbk, and kck; , respectively. By Theorem 1:1, we obtain that A8 ( )

h
belongs to CB(S! (H) S ! (H);S! (H)) with cb-norm less than inf kak; kik; kck; :
This completes the proof of the theorem.
O

Remark 4.13. In the theorem above, note that the implicatiop ) (ii) holds true when
we replace ‘complete boundedness' by 'boundedness'. In [KJT09], it is proved tha{ when
extends to a bounded mapping

():SP(L2( a)iL2( o)) 'S T (L2 a)iL2( &) 'S (L2 A)iL%( o))
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then the factorization ir(iii ) holds true. As we saw, this factorization implies the complete

h
boundedness of*B:€ | Hence, the boundedness of triple operator integralofH) S * (H)
implies its complete boundedness.

4.5 Perspectives

Similarly to Section 3:4, one can state several questions concerning multiple operator
integrals by changing the spaces S? or S* by other Schatten classes. First, it would be

interesting to have a general de nition of multiple operator integrals from S

. 1 1 1 "
SPinto S" where —+ ..+ — =1 L Peller gave such de nition when the element

1 P
2 L' belongs to the integr?il projective tensor product of L! spaces (see [Pel06]

or [Pell6]). Then, one can try to obtain necessary or suf cient conditions on  for an
element ABC () to map for instance SP S 9into S! (where p and g are conjugate

exponents), or for an element AtAziEAN( Ytomap S ::: S 2into St
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Chapter 5

Resolution of Peller's problems

5.1 Statement of the problems

Let H be a separable complex Hilbert space. In 1953, M. G. Krein [Kre53b] showed
that for a self-adjoint (not necessarily bounded) operator A and a self-adjoint operator
K 2 S'(H) there exists a unique function 2 L(R) such that

z
T(f(A+K) f(A)= Y (D)dt (5.1)
R

whenever f is from the Wiener class Wy, that is f is a function on R with Fourier
transform of f %in LY(R):

The function above is called Lifshits-Krein spectral shift function and was rstly
introduced in a special case by I. M. Lifshits [Lif52]. It plays an important role in
Mathematical Physics and in Scattering Theory, where it appears in the formula of
the determinant of a scattering matrix (for detailed discussion we refer to [BY92] and
references therein).

Observe that the right-hand side of (5.1) makes sense for every Lipschitz function
f.In 1964, M. G. Krein conjectured that the left-hand side of (5.1) also makes sense for
every Lipschitz function f. More precisely, Krein's conjecture was the following.

Krein's Conjecture. For any self-adjoint (not necessarily bounded) operAtdior any self-
adjoint operatoK 2 S*(H) and for any Lipschitz functiorf ,

f(A+K) f(A)2St (5.2)

The best result concerning the description of the class of functions for which (5.2)
holds is due to V. Peller in [Pel85], who established that (5.2) holds for f belonging to
the Besov classB1 , (for a de nition of this class, see [Pel85] and references therein).
However (5.2) does not hold even for the absolute value function, which is obviously
the simplest example of a Lipschitz function (see e.g. [Dav88], [DDPS97]). Moreover,
there is an example of a continuously differentiable Lipschitz function f and (bounded)
self-adjoint operators A;K with K 2 S! such that (5.2) does not hold. The rst such
example is due to Yu. B. Farforovskaya [Far72].
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Assume now that K is a self-adjoint operator from the Hilbert-Schmidt class S?2. In
1984, L. S. Koplienko, [Kop84], considered the operator

f(A+K) f(A) %f(A+tK) t:0; (5.3)

where by % f(A+tK) we denote the derivative ofthemap t 7! f (A+tK) f(A)

in the Hilbert-Schmidt notrm. He proved that for every xed self-adjoint operator A
there exists a unique function 2 L*(R) such that
q Z
Tr f(A+K) f(A) " f(A+tK) T o) (t)dt; (5.4)
- R
if f is an arbitrary rational function, with poles off R and fz bounded.

The function is called Koplienko's spectral shift function (for more information
about Koplienko's spectral shift function we refer to [GPS08] and references therein).

It is clear that the right-hand side of (5.4) makes sense when f is a twice differ-
entiable function with a bounded second derivative. The natural question is then to
describe the class of all these functionsf such that the left-hand side of (5.4) is well-
de ned. Namely, for which function f does the operator (5.3) belong to S? The best
result to date is again due to V. Peller [Pel05], who established an af rmative answer
under the assumption that f belongs to the Besov classB? ;. In the same paper [Pel05],
V. Peller stated the following problem.

Peller's problem. [Pel05, Problem 2] Suppose that is a twice continuously differentiable
function with a bounded second derivative. ebe a self-adjoint (possibly unbounded) oper-
ator and letk be a self-adjoint operator fro8%: Is it true that

f(A+K) f(A) %f(A+tK) t:Ozsl? (5.5)

N(?_yvlet f be afunction on T, admitting a decomposition f (z) = P i: 1 Gz"z2T
with ,fz , jncyj < 1. LetU 2 B(H) be a unitary operator and let Z 2 S*(H) be
a self-adjoint operator. Like in the selfadjoint case, M. G. Krein proved a result (see
[Kre53a, Theorem 2]) implying that there exists a Lifshits-Krein spectral shift function
2 LY(T) (not depending on f) such that
Z

Tr f(€2U) f(U) = f92) (2)dz: (5.6)
T

Observe that the right-hand side of (5.6) makes sense for every Lipschitz function
f . Like in the selfadjoint case, the left-hand side do not always make sense (see [Pel85]
or [Far72]), but it does when f 2 B, (see [Pel85]).

Letf 2 C?(T), let U 2 B(H) be a unitary operator and let Z 2 S?(H) be a self-
adjoint operator. Then the difference operator f (¢?U) f (U) belongs to S?(H) and
the function t 7! f (€% U) f(U) from R into S?(H) is differentiable, see e.g. [Pel05,
(2.7)]. Let % f (€% U) jt=0 denote its derivative at t = 0. In [Pel05, Problem 1], in

connection with the validity of the so-called Koplienko-Neidhardt trace formula, V. V.
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Peller asked whether the operator

d

V) f(U) o

f (¥ U) (5.7)

jt=0
necessarily belongs toS'(H) under these assumptions. He proved that this holds true
whenever f belongs to the Besov classB? ; and derived a Koplienko-Neidhardt trace
formula in this case.

The aim of this chapter is to give a counterexample for both questions (5:5) and
(5:7).

Note thatin (5:7), the preceding discussion implies that f (€2 U) f(U) & f (€% U)
is a well-de ned element of S?(H). In [Pel05, Theorem 4.6], the author de ned the op-
erator in (5.3) for all f 2 B2, via an approximation process. The precise meaning of
(5.3) in the case of an arbitrary self-adjoint operator A and an arbitrary twice contin-
uously differentiable function f is not clear. To give a precise statement to Peller's
problem in that case, we rst need to study the differentiability of mappings of the

form

jt=0

' Ct2R7TVF(A+ 1K)  f(A)2S2(H)

where A and K are selfadjoint, K 2 S?(H) and f is an-times differentiable function on
R. We will see in Theorem 5:1 that under suitable assumptionson A or f ,themap' will
be differentiable and the operator (5.3) will appear as a Taylor formula of second order
for using triple operator integrals. In this case, the operator will be a well-de ned
element of S2(H). In our construction of a counterexample for Peller's problem in the
selfadjoint case, the operator A that we obtained is not bounded and the function f
does not have a bounded derivative, so that we cannot apply directly Theorem 5:1.
However, we will construct A as a direct sum of bounded operators and in that case,
the meaning of (5.3) will be unambiguous. We explain this fact in Subsection 5:2:3.

Section 5:2 is dedicated to the connection between perturbation theory for selfad-
joint operators and multiple operator integrals and Sections 5:3 and 5:4 concern the
construction of counterexamples for Peller's problems in the selfadjoint and the uni-
tary case, respectively.

5.2 Perturbation theory for selfadjoint operators

We recall the de nitions of divided differences. For any integer m 1, we let C(R™)
be the vector space of all continuous functions from R™ into C, we let C,(R™) be the
subspace of all bounded continuous functions, and we let Co(R™) be the subspace of all
continuous functions vanishing at in nity. Further for any integer p 1we let C°P(R™)
be the space of allp-times differentiable functions from R™ into C. Letf 2 C(R). The

divided difference of the rstorder f[: R21 Cisde ned by
( f(xo) f(x1).

f M(xg; xq) := Xo x1 '
(XoiXa) f Ax0) if X0 = X;

if Xo 6 X1 . Xo: X1 2 R
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The function f M belongs to C(R?) and if f %is bounded, then f 1! 2 Cy(R?).
Letn 2andf 2 C"(R). The divided difference of n-th order fIl: R 1 Cis
de ned recursively by

(
fI0 Uxoxapmxn) FIM U(xaxoiixn).
; If Xg 6 X
f[n](XO;Xl; 11l Xp) = Xo X1 _ 0 1 :
@f ™ (xq; %2500 Xn) if Xo = X3

Here @ stands for the partial derivation with respect to the rst variable. It is well-

known that f [l is symmetric. Therefore, forall 1 i nandforall Xo;:::;%, 2 R,
(
fI0 UxorXi aXien smXn) TN (XoinXi 20XiiXisy 20Xn) o
o IfF X 16 X
f I (Xo: X151 17:%n) = Xi 1 Xi SRR A
@M H(xq; %) if Xi 1= X
where @ stands for the partial derivation with respect to the i-th variable.
Note for further use thatforall 1 i nandforall (Xo;:::;X,) 2 R"1,
Z 1
fI(xp;::11%n) = @M Yxo;iiixi ootxi 1+ (@ DX Xisr::: 1 Xa)dt:  (5.8)
0

The function f [ belongs to C(R"**) and if f (™ is bounded, then f "l 2 Cy(R"*1).

Let A; K be selfadjoint operators on a separable Hilbert space H, and assume that
K 2 S2(H). Letf 2 CY(R). If either f °is bounded or A is bounded, then the restriction
of flto (A + K) (A) is bounded, and hence it makes sense to de ne the double
operator integral mapping  A*XA (f): S2(H) 1'S 2(H). One of the early results from
double operator integrals theory is that in this case,

f(A+K) f(A)= AKAFRY (K): (5.9)

See e.g. [PSWO02, Theorem 7.4] for a proof of this result. Moreovert ! f (A+tK) f (A)
admits alimitin S?(H) when t! 0and denoting this limit by %f (A+ tK )jt=0, We have

%f (A+ K)o = A (FH) (K): (5.10)

A proof of that result will be given in Theorem 5:1.

The main result of this section is the existence of higher order derivatives in the
S?-norm and an analog of (5:9) for the higher order perturbation operator

X1 g

f(A+ K) f(A) lEW

F(A+ tK )jico:
k=

For any integer p 1, we denote by DP(R) the space ofp-times differentiable functions

‘RIS 2(H)
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and we denote by ® :R!S ?2(H)the p th derivative of

We have the following result:

Theorem 5.1. LetA andK be selfadjoint operators on a separable Hilbert sgasth K 2
S?(H). Letn 1andf 2 C"(R). Assume either thaf is bounded or that forafl. i n,
f () is bounded. Then, one may de ne

"t2RT7UF(A+tK)  f(A) 2 S3(H):
(1) The function' belongs t®d"(R) and for any integed. k nandanyt 2 R,

%. (k)(t) — A+KA +tK;inA +tK (f [k]) (K; K ): (5_]_1)

(i) We have

f(A+K) f(A) Xl%' W)= ARAEA () (K K): (5.12)

k=1

This theorem will be proved in Subsection 5:2:2.

5.2.1 Approximation in multiple operator integrals

In this section, we will extend to the setting of multiple operator integrals a result of
[PS04] concerning an approximation property for double operator integrals. Following
the latter reference we will use resolvent strong convergence. Let A be a selfadjoint op-
erator on H. We say that a sequence(A;); of selfadjoint operators is resolvent strongly
convergentto Aifforany z2 CnR,(z A;) *! (z A) !inthe strong operator
topology (SOT). According to [RS80, Theorem 8.20], this is equivalent to

8f 2 Cy(R);  f(A)T°Tf(A) whenj!1l : (5.13)

The following lemma states that any selfadjoint operator is the limit (in the above
sense) of bounded selfadjoint operators.

Lemma 5.2. Let A be a self-adjoint operator in a separable Hilbert sphcd et E be the
spectral measure &f and de neA, := E(( n;n))A for everyn 2 N. Then, the sequence of
bounded self-adjoint operatdrd,gl_, converges té in the strong resolvent sense.

Proof. SinceE(( n;n)) converges tol in the strong operator topology;,

Illlm Ang= Ag (5.14)

for every g 2 D, where D is the domain of A. Letz2 CnRandf 2 H. The mapping
A z:D ! H isabijectionsothat (A 2z) f 2 D. By standard properties of the
resolvent,

A, 20 (A 2% =(A, 2) A A)NA 2) (5.15)
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The result follows from combining (5.14) and (5.15) and applying uniform bounded-
ness of(A, z) L. O

If A;! AandB;! B resolventstrongly, then [PS04, Prop. 3.2] shows that for any
2 Cp(R?),
AiBi( )POT AB( ) whenj!1

The following is a multiple operator integral version of this result.

.Illml Ajl;:::;Ajn( )(KlasKn l) Al;:::;An( )(KlaaKn 1) 2_0 (516)
|
Proof. For simplicity we write = A###1 and ;= ALiziAh along this proof. Since
H H isdenseinS?H) and k jk = 1 for any j 1, it suf ces to prove (5.16) in the
case whenK;:::;K, ;are elementary tensors. Thus from now on we assume that for
all i n 1, -
K| = hi h|0
with h;;hP2 H .
Assume rstthat = u; Un, with u; 2 Cy(R) for all i. In this case,
JONKa Ky )= u(A)(hy h) i(ha 1 Y un(AL)
Y1 _ [ .
= uc(Ahg he 1 TR(AR)(hy 1) ug(AY)(hY):
k=2

By the assumption and (5.13), this converges to

|
v 1 '

huc (AR he i Ta(An)(hn 1) U(Ag)(hY);
k=2

linearity and standard approximation, this implies that (5.16) holds true whenever
belongs to the uniform closure of Cy(R) Cp(R). In particular, (5.16) holds true
when 2 Cy(R").

The rest of the proof consists in reducing to this case by a more subtle (i.e. non uni-
form) approximation process. Let (g)k 1 be asequence of functions inCy(R) satisfying
the following two properties:

8k 1, 0 o 1 and 8r 2 R; gk(r)k!!1 1

These properties imply thatforall 1 i n,g(Aj)! Iy strongly. Indeedlet h2 H,
then by the Spectral theorem,
Z
2 _ 2 A .
ka(Ah  hk? = 1 gdr) “dERL(r):
(Ai)
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Then by Lebesgue's dominated convergence theorem,kgc(Aij)h hk?! Owhenk!1
We consider an arbitrary 2 Cy(R") and set

k=(k o 9% O k L

Clearly each  belongs to Co(R"), hence satis es (5.16). A crucial observation is that
forall j;k 1,

PCOKG 5Ky 0= 50) G(ADKG(AL); i oAl DKy 1G(AL) @ (5.17)

The argument for this identity is essentially the same as the one for the proof of 4:9.
One rst checks the validity of (5.17) in the case when  belongs to Cy(R) Cu(R),
then one uses thew -continuity of ; to obtain the general case. Details are left to the
reader. Likewise we have, forall k 1,

( WDKKy 1) = () ((A)KG(A2); 5 G(An 1)K 1Gk(An)): (5.18)

Foranyk landanyl i n 1,

k(ADKiG(Ar1) = g(A)( h)G(A) = g(Ai) (i) a(AN(hD);

hencegc(Ai)Kigk(Ai+1) ! K;iin S?(H)whenk!1
Let " > 0. According to the above observation, we x kp 1 such that for any
1 i n 1,
Kok, (Ai)KiGk (Aiv1)  Kiky ™

Hence, there exists a constant > 0 such that
K( k)(Kgiin K1) (XK Ky 9k, ™

Now, using that for any 1 i n 1, go(A)KiGo(AL:) = do(AL)(h)
Gk, (A1)(h?) and the fact that g, (Al) ! g, (Ai) and g, (Al.1) ! G, (Ais1) strongly when
j 'l we see that g, (A)KiG (A1) ! G (A)K Gk (Ai+1) in S*(H) when j !'1
Hence, for a large enoughj, 1, wehave,foranyl i n 1,

Ko (ADK G (AL;)  Kiky 2"
forany j  jo. We deduce that there exists a constant > 0 such that
8] Jor K (kKK 1) O )KgiKe )k, ™

Now recall that | satis es (5.16). Hence changingj into a bigger integer if necessary
we also have

8i oo Kk j(k)KyiiniKe 1) ( k)(KaiiiiKn 0k, ™

8] Joo Kk jOXNKgiinKe ) ()Kyiin Ky gk, (O + +1)™

This shows that satis es (5.16).



100 Chapter 5. Resolution of Peller's problems

]

We nish this section with a lemma that will be used in Section 5:2:2.

Lemma 5.4. Letf A, gi_, be a sequence of self-adjoint operators converging to a self-adjoint
operatorA in the strong resolvent sense. L€t be a bounded self-adjoint operator. Then,
fA, + Kgl_, converges in the strong resolvent sensAte K .

Proof. Let z 2 C be such thatim (z) 6 0. Note that
(A 2)(A+K 2'=1 KA+K 2! (5.19)
and, on the domain of A,,
(An+K 2 YA, 2=1 (An+K 2) 'K (5.20)

These operators are bounded in the operator norm by 1 + jjKjj5Im(z)j. By simple
algebraic manipulations,

Ab+K 20! (A+K 21
=(Ah+K 201 KA+K 2! | (An+K 2K A+K 2%

Combining the latter with (5.19) and (5.20) gives

Ah+K 20! (A+K 21 (5.21)
=(Ah+K 2)'A 2(A+K 20! (A+K 2 YA, 2)(A+K 21
=(Ah+K 22%A, (A, 2 A 2'(A 2(A+K 2%

Letf 2 H. It follows from (5.21) that

(AL+K 20t (A+K 2)*tf
1+jiKjigmj A, 20* (A 20 (A Z(A+K 20

completing the proof of the lemma. H

5.2.2 Proof of the main result

In this section, we will prove Theorem 5:1. First, we will need the following lemmas
and corollary.

Lemma5.5. Letn 3andl k n 2 Letu2 Cy(R*1)andv 2 Cy(R" ¥). We set, for
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S*(H),

Proof. We rst prove the formula when u and v are elementary tensors of elements of
Cu(R). Then, one uses thew -continuity of multiple operator integrals like in Lemma
4:9 to obtain the general case. O]

= AuEALGBAAGEA (g ) (KoK B ALK K )

Proof. It will be convenient to extend the de nition of the divided difference as follows.
Letm2N and1 i m.Forany 2 CYR™), we de ne a function i[”: R™1 1 C
by z,

1]

refers to the i-th variable
derivation @. It follows from (5:8) that forany f 2 C"(R),

(F0 i = fnl: (5.22)
For 2 C(R"), write
A( ): ArAT AAGTAR 1( ) (Kl;:::;Kn 1)

and
s( )= ALiiAL 1BA AR 1) (K Kn 1)
For 2 C(R"™?1), write

ga( )= AvEALBBAAEEA 1 (Ksn K B ATK i Ky 1)

We will show that forany 2 CY(R"),

B( ) Al )= Ba i[ll : (5.23)

Then the result follows by applying this formula to f " 1 together with (5:22).
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Assume rst that = ug u, for functions u; 2 CYR), i.e (ty;::::ty) =
ug(ty) :::un(ty) forany (tg;:::;ty) 2 R". Then
@ =u U 1 U U Up:
Hence,
= Ua U Ui Un:

By Lemma 5:5 we have

We have, by (5:9),

h i h !
BAA i (Ui[ll 1) (B AK;)= BA (ui[l]) (B A,

=(u(B) ui(A)K;:

Hence,

B;A( i[l])

= Uur(ADK:u 1(A DKy 1(ui(B)  ui(A))Kiuisr (A)DKisr iU (An 1)

= Ur(ADK i 1(Ai DKy 1Ui(B)KiUier (AD)Kier 111U (An 1)

Ur(ADK i 1(A) 1)K 1Ui(A)KiUis (ADKi+ SiUn(An 1)

= () A():
This shows (5:23) in the case when = u; U,. By linearity this immediately
implies that (5:23) holds true whenever 2 C(R) C(R): Note that this space

contains the n variable polynomial functions.
Now consider an arbitrary 2 CYR"). Let M > 0 be a constant such that the

exists a sequence(Qm)m 1 Of n variable polynomial functions such that Q. ! @
uniformlyon [ M;M]". Foranym 1, we set

for all (ti;:::;t,) 2 R". This is also an n-variable polynomial function. Next we in-
troduce Wty : 0t 1otivasiiit) = (tyiint 150t ;10 t,). wbelongs to CY(R" 1)
and for any real numbers t;;:::;t,, we have

Z,

0
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Hence,

0
Consequently, P, + w ! uniformly on [ M;M]". Let (Wn)m2n be a sequence of
(n 1) variable polynomial functions converging uniformlyto  won[ M;M]" . The
latter implies that P, + wy, ! uniformly on [ M; M ]". By construction, @Py, = Qn
and @, = 0 hence we also obtain that (P, + W)™ 1 Muniformlyon [ M;M "2,
SincePy, + Wy, belongs to C(R) C(R), it satis es (5:23). The above approxima-
tion property implies that  satis es (5:23) as well. O

AL AL BAHKAA A L(f [n]) (Kyiin Ky KKKy 1):

Proof. Foralll k n 1,let (AL)ij be a sequence of bounded selfadjoint operators
on H converging resolvent strongly to Ax. Such sequence exists by Lemmab:2. Simi-
larly, let (A});,n be a sequence of bounded selfadjoint operators converging resolvent
strongly to A. According to Lemma 5:6, we have, for all j,

h

By Lemma 5:4, Al + K | A + K resolvent strongly when j ! 1 . Moreover, the
boundedness of f ™ V) and f ™ imply that of fI" Y and f"l. Hence, we obtain the
desired equality by passing to the limit in the above equality thanks to Proposition

5:3. O

Proof of Theorerh:1. 1: Assume rstthat A is bounded.
(i) We prove the rst point by inductionon k,1 k n.Letk=1andt2 R. We want
to show that the limit

i (1) (M)

sl 0 S
exists in S2(H) and is equal to ~ A*A K (f Il (K),
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By (5:9) we have

"(t+s) () f(A+(t+9)K) f(A+1tK)

S S
- A+(t+s)KA +tK (f [1]) (K)

By Lemma 5:4, we getthat A + (t + s)K ! A + tK resolvent strongly as s! 0. By

assumption A and K are bounded so there exists a bounded interval | R such that
for s small enough, (A + (t+ s)K) 1. Sincef 2 CYR), f ¥ is continuous hence
boundedon | |.LetF 2 Cy(R?) be suchthatF; |, = f . By Proposition 5:3 applied
to F we get

||rno A+(t+s)KA +tK (f [1]) (K) - A+tKA +tK (f [1]) (K) in SZ(H),
s!

which concludes the proof when k =1.

Nowlet 1 k n Zlandassumethat' 2DX(R)andforall 1 j kandt2R,

P ()= 1 ATKASIGEA S (E Ty (KK (5.24)

We want to prove that ' 2 D k*1(R) with a derivative of (k+1)-th order given by (5:11).
Lets;t 2 R. We have

()

S
KD pa s a1KoA o e K re s At
. (t+s)K;iA +(t+s)K f[k] A+K;nA +tK f[k] Ko K
5 () (FM) (K;::0K)
k' XHL h i1 k i+2 i koi+1 :
- (A+tK )" L(A+(t+s)K)* T* (f [k]) (A+tK ) (A+(t+g)K )k T+ (f [k]) (K; K )
S o
where for instance (A + tK)' = A+ tK;:::;A + tK (i terms). By Lemma 5:6, we have
forall 1 1 k+1,
1h _ | _ | i
T (A+K)T L(AH(tHs)K)K T2 (f [k]) (A+1K ) (A+( t+s)K )k T+ (f [k]) (K::::K)
S h i 1 b
- 1— (A+tK ) LA+(t+s)KA +tK; (A+(t+s)K)k i+ (f [k+1]) (K ..... K:SK:K:::: K )
ﬁ i H ) H 1 b H
- (A+tK ) LA+(t+S)KA +tK; (A+(t+s)K)k 1+1 (f [k+1]) G K):

Moreover, using resolvent convergence like in the rst part of the proof, we can see
that this term converges in S?(H), ass goes to0, to

Hence,

' (k) v (k) K1
im (t+ 9) (1) s A

sl 0 S

i=1
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:(k+l)! A+tKinA +1K (f [k+1]) (K;ZZZ;K )
which concludes the proof of (i).

(ii). We will prove the second point by induction on n. The casen = 1 follows from
(5:9). Nowlet n2 Nand f 2 C"(R). Assume that we have

X 1
f(A+K) f(A) % @)= ArKAEA (I (K K):
k=1
We have
X g X1 1
fA+K) f(A) S 9O=fA+K) (&) 590 =00
k=1 k=1 )
A+ KA A (f [n]) (K; S K ) %- (n)(o):

By the rst point of the theorem, we have

Lem)= AR () (KK )

Using Lemma 5:6, we obtain

1

k!
k=1

f(A+K) f(A) r) = ArKAEA (f I (K K)

which is the desired equality.

2. Assume now that A is unbounded and that forall 1 i n, f® is bounded.
Then, forall 1 i  n;f0lis bounded. Hence, applying Corollary 5:7 instead of
Lemma 5:6 and following the same lines as in the proof of the bounded case, we obtain
the unbounded case. O

Theorem 5:1, Proposition 5:3 and Lemma 5:4 have the following consequence.

Corollary 5.8. LetA be a selfadjoint operator on a separable Hilbert sdaaed let(A;);2n
be a sequence of bounded selfadjoint operatadrs converging resolvent strongly t&. Let
n 1be aninteger and ldt 2 C"(R) be such thaf (" is bounded. LeK = K 2 S?(H)
and de ne, forany 1,

LIt2RT7UE(A; +tK)  f(A)) 2 SA(H):

Then, for anyt 2 R,

[ (n)
I|m j (t) — A+tK;:;
jin n!
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and
|

%. j(k)(o) — A+ KA;GA (f [n]) (K; S K );
1 €

1
_Ililm f(A +K) f(A)

J K=

where the limits are ir82(H).

5.2.3 Connection with Peller's problem

The results obtained in this section will allow us to give a meaning and a concrete
approximation process for the operator

f(A+K) f(A) d f(A+1tK)
dt t=0
when A and K are selfadjoint operators on a separable Hilbert space H, K 2 S?(H)

and f 2 C?(R) with a bounded second derivative, in the case when H is a direct sum
4
and A and K are a direct sum of operators. Thus, we willassume that H =, Hj is

the direct sum of nite dimensional Hilbert spaces H; and that A and K are of the form

|7/ {7/
A= A and K = K
i=1 i=1

where forall i 2 N, A;j and K; are bounded selfadjoint operators acting on H; such that

s
kKki=  KkKiki< 1 : (5.25)
i=1
Set, forn 1,
| | | |
M {78 M (7
A, = A Oy, and K, = K Oy,
i=1 i=n+1 i=1 i=n+1
If h 2 Cy(R) then
{78
h(A) = h(Ai)
i=1
and forany n 1,
I I
M ' N '
h(An) = h(A3) h(0)I y,
i=1 i=n+1

Therefore, it is easy to see thatA, ! A resolvent strongly as n! +1 . Similarly,
Kn! KinS?H)and A, + K,! A+ K resolvent strongly.
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Assume that f 2 C2%(R) and that f °4s bounded. Then, Theorem 5:1 gives a meaning

tof (A+K) f(A) % f(A+tK) as A*NAA(FIE) (K;K'). Moreover, the latter
implies, by Corollary 5:8, that

d KA
f(An+ Ky)  f(An) dat f(An + tKp) o n!! ‘1 ATIGAA (f [2]) (K;K)

in S2(H). By the same corollary, we also know that this limit does not depend on the

approximation of A by bounded operators (A,)n.
Moreover, we have

d
f (An + Kn) f (An) a f (An + tK n) =0 | !
M d (7
= f(A+K) f(A) a f (A + tK3) OH;

t=0
i=1 i=n+1

and this sequence converges inS?(H) to

A8
A+ K) TR) S fm+t6) (5.26)
i=1 =
For both counterexamples to Peller's problems, the operators A and K will have
this form. Note that according to (5:26), we have

F(A+K) f(A) % F(A+ 1K) (5.27)
=0 ,
X1 d
= f(A+Ki) f(A) P f (A + tKY) ; (5.28)
i=1 =0 g

Therefore, the construction of a counterexample reduces to the construction of selfad-
joint operators A; and K acting on a nite dimensional Hilbert space such that

FAK) FR) S (A + k)

dt t=0
can be estimated from below in order to have a divergent series. To do so, we will
use the connection between those operators and triple operator integrals (see Theorem
5:1). Using together (4:19) and Theorem 3:4, we can see that we have to estimate from
below the St-norm of Schur multipliers, for which some results (counterexamples) are
known.

5.3 The self-adjoint case

5.3.1 Afew properties of triple operator integrals

In this subsection, : R?2! C and :R®! C denote arbitrary functions, and n 2 N
is a xed integer. The following lemmas give some nice properties of triple operator
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integrals that we will use for our construction of a counter-example to Peller's problem.

Lemma5.9. LetA 2 B(C") be a self-adjoint operator aixdY 2 B(C"): Let

_ A O _ 0 X
A= 0 A and X = Y 0
Then waA () )
AAA Y — i X;Y 0
( )(X: X~) - 0 AAA ( )(Y; X)

Proof. Letf g™, be the set of distinct eigenvalues of the operator A;m  n; and let EA
be the spectral projection of A associated with ;1 i  m: Clearly, the operator A has
the same setf g2, of distinct eigenvalues and the spectral projection of the operator

A associated with ; is given by

EA O
EA = i 1 0 om:
! 0 EA
Therefore, we have
ay EA 0 0 X
AAK . — L i
( )(X” X) o ( ir ki J) 0 ElA Y 0
ik;j =1
Ef O 0 X EjA 0
0 Ep Y O 0 EjA
X Coe ) EAXE QY EP 0
- iv ki j A A A
- 0 EMY EXE ]
_ ARACIXY) 0
- 0 ARA Y X)

]

Lemma5.10. LetA; B 2 B(C") be self-adjoint operators with the same set of eigenvalues and
X;Y 2B(C"): Let
_ A0 | _ 0 X _ 00
A‘—OB,X'—OO and Y = 0 v

Then
0 BB ()(X;Y)

RERCIG Y= g 5

Proof. Letf ;g™ be the set of distinct eigenvalues of the operator A;m  n; and let EA
(resp. EB) be the spectral projection of A (resp. B) associated with ;1 i m: Since
A and B have the same set of eigenvalues, the operatorA has the same setf g2, of
distinct eigenvalues and the spectral projection of the operator A associated with ; is
given by

EA O :
EA = ' N N N 1 B
i 0 EiB
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Therefore, we have

x EA 0 0 X
AAK . —_ . .
SR Y) = (s w o) ' B
1 0 E 0 0
EA O 00 EA O
0 EB oY 0 EP
_x o 0 EAXEPYEP
- (il ks ]) O O
ik;j =1
_ 0 ABBXY)
) 0

]

Lemma 5.11. LetAg; A1; A, 2 B(C") be self-adjoint operators. For aays 0 2 R we have

that
aAo:aAl:aAz( ): Ao;Al;Az( a);

where
a(Xo; X1;X2) = (8Xp; @Xy; @Xz); Xo;X1;X2 2 R:

Proof. Let f i(”gi”:jl be the set of distinct eigenvalues of Aj,j = 0;1,2. Fixa 6 0 in R.

Itis clear that for any j,fa i(”gin:"1 is the set of distinct eigenvalues of aA;, and that the

corresponding spectral projections coincide, that is, EiaAj = EiAj forany i =1;:::;n;.
Therefore, for X;Y 2 B(C"), we have

Xo X1 X2
aAo;aAl;aAz( )XY )= a i(0);a (kl);a j(2) EiAOXEkAlY EJ'A2
i=1 k=1 j=1
— AolAl;Az( a)(X;Y):

]

Lemma 5.12. LetA;B 2 B(C") be self-adjoint operators and fat,g, 1 be a sequence of
unitary operators fronB(C") such thatU,, ! I,asm!1 . LetalsoX;Y 2 B(C") and
sequenceBX ,gm 1 andfYy,gnm 1 in B(C") such thatX, ! X andY, ! Yasm!l1l

Let ; o, :R®! C be functions such that, ! pointwiseasn!1 . Then

UnAUR BB (VX 1 Yin) ! ABB (C)(X:Y); m!1l (5.29)

Proof. Letf ;gl} and f g, be the set of distinct eigenvalues of the operators A and
B, respectively, mg;m;  n; and let E2 (resp. E2) be the spectral projection of A (resp.
B) associated with ; (resp. ), 1 i mo (resp. 1k m,). It is clear that
the sequencef ;g3 is the sequence of eigenvalues ofU,AU,, and that the spectral
projection of Uy, AU,, associated with ; is given by

E’mAYn = UnEAU,; 1 0 mg:
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Observe that
Xo X Um AU
UmAUm'B'B( m)(Xm: Ym) = m( i ko E™ mXEkBYEjB
i=1 jik=1
Xo X1
= Un m( 7 j)EiA(UmX)EkBYEjB
i=1 jik =1

= Un A%% (n)(Up X Y):
We claimthat BB (- )(U, X;Y)! ABB()(X;Y). Indeed, we have
k AB2 ) (UnXiY)  ABB ()XY )k
k A58 Cm)UnXY)  ABE ()XY )k

+k ABECGY)  ABBO)(XY ke
k ABB (U X  X;Y)ky + k ABB( )(X; Y )ka

Xo X: _
i mCis o« )ikUnX  Xkg kYky +
i=1 jjk=1
Xo X1
j m J( i Ky J)kal kYkl:
i=1 jk =1

This upper bound tendsto Oasm!1 , which proves the claim.
Now since U, ! |, we have

Un “BB (U, X Y)  ABBC )UXY) ! 0
asm!1 . The result follows at once. O
Lemma5.13. LetA 2 B(C") be a self-adjoint operator and ¥t2 B (C") commute withA.

(i) We have
AAR ()X X )= Ba) X2 X 2B(CY);

whereP: R1 Ris de ned by

b(x): (x;x;x); x2R:

(i) We have
ARA Y X) = AR (Y) X Y 2B(CY);
where
1(X0;X1) = (Xo; X1;X1); X0y X1 2 R:
(i ) We have
AAA (X Y) = X AAC(Y); Y 2B(CY);
where

2(Xo0;X1) = (Xo; Xo; X1); Xo:X12 R:
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Proof. Let f g, be an orthonormal basis of eigenvectors of A and let f g, be the
associatedn-tuple of eigenvalues. Since A commutes with X, it follows that the pro-
jection P, commutes with X forall 1 i n: Thus, we have that

X
ARA )X X)) = (i & )P, XP XP
ik =1

X

(i 6 DP, X2

i=1

b )P, x?= ba) x2

i=1

which proves (i):
Similarly, for (ii ); we have

X
AARA Y X) = (s )P YPXP,

ik =1
X

= (ii  WPYP, X
k=1

— X E — AA .

= (s WPYP X = ( )(Y) X
k=1

The proof of (iii ) repeats that of (ii ): O

5.3.2 Finite-dimensional constructions

In this section we establish various estimates concerning nite dimensional operators.
The symbol constwill stand for uniform positive constants, not depending on the di-
mension.

It will be convenient to extend the de nition of the divided difference of rst order
as follow: let f : R! R be a continuous function and assume that f admits right and
left derivatives fY(x) and f {x) at eachx 2 R. Assume further that f?;f°are bounded.
The divided difference of the rst order is de ned by

( f(xo) f(x1).

f M (xe:x1) = 050 X0,
( ) fr(XO)';f|(XO) if Xo = X1

if Xo & X
0 1;xo;x12R:

Then f ! is a bounded Borel function.

If f is C2-function, the de nition of the second divided difference  f 2 is given in
Section5:2. f P is a bounded continuous function, with

fl2 = :—2ka %%, : (5.30)
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Consider the function fo: R! R de ned by
fo(X) = jXj; X 2 R:

The de nition of f([,ll given above applies to this function.
The following result is proved in [Dav88, Theorem 13].

Theorem 5.14. For alln 2 N there exist self-adjoint operatofs,; B, 2 B(C?"*!) such that
the spectra oA, + B, andA, coincideQis an eigenvalue &, and

kfo(An + Bn) fo(An)ky const lognkB,kj: (5.31)

Remark 5.15. The operatoA,, constructed in [Dav88] is a diagonal operator de ned ©ff
andOis not an eigenvalue &,. By changing the dimension fro@n to 2n + 1 and adding a
zero on the diagonal, one obtains the operatpin Theorem 5.14, witl® in the spectrum.

Corollary 5.16. Foralln 1, there exist self-adjoint operatohs,; B, 2 B(C?"*!) such that
the spectra oA, + B,, andA,, coincide, and

An+Bn§An(f([)l]) Sk 1S 1. const logn:
Proof. Take A,; B, 2 B(C?"*') as in Theorem 5.14. By(5:9), we have that
An+Bn;An(f(g1])(Bn) = fo(A, + By)  fo(An):
By Theorem 5:14, we have that
k AntBoAn(f B YKy = kfo(An + Bn)  fo(An)ky  const lognkB k:

Therefore,
AntBoAn(ghy. gl 15 1. const logn:

Since the operator An*BniAn (f 1) s 3 Schur multiplier, we obtain that

AntBoAn(fhy . g1 15 1. const logn:

Consider the function go: R! R given by
Oo(X) = Xjxj = xfo(X); X 2 R:

This is a C!-function. Hence although g, is not a C2-function, one may de ne
gézl(xo;xl;xz) by the formula given in (5:2) and in the beginning of this subsection
whenever Xg; X1; X, are not equal. Let us de ne

8
3 0 (xoixuix2): if Xo8 X1 OF X1 8 X
. . — 1; if X0:X1:X2>O
(X0 X1;X2) : 3 1; if Xo=X;=X,<0

0; if Xo=X1=%X2=0
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The following lemma relates the linear Schur multiplier for fél] and the bilinear
Schur multiplier for ~ ¢:

Lemma 5.17. For self-adjoint operator&,,; B, 2 B(C") such thatO belongs to the spectrum
of Ap; the inequality

AvtBurAuAn( ):S2 5 21s b AvBiAglly sl (5.32)
holds.

Proof. Letf gg-, be the sequence of eigenvalues of the operatorA,: For simplicity, we
assumethat ;=0.
By formulas (4.16) and (4.19) and by Theorem 3.4, we have that

AntBnAniAn( ):52 s 215 1 = max k AntBoifnm yiSt s i
n

where
"k(Xo;X1) = oXor kiX1); Xe;X12R; 1k on:

This implies
ArtBofnBn( )82 S E1S o k AFErAR(C ) iSE IS Tk

It therefore suf ces to check that
Co= f 0 (5.33)

By de nition, ' 1= o( ;0; ). In particular,
'1(0;0) = (0;0;0) =0 = f§(0;0):
Consider now (Xo; X1) 2 R? such that xo 6 0 or x; 6 0. In that case, we have

" 1(Xo; X1) = g([)z](xo;o;xl):

If Xo; X1; 0 are mutually distinct, then

f 0 0 xif
o2 (x0: 0: x,) = B'(x0:0)  gbl(0ixa) _ R o
0, U5 Xq Xo X1 Xo X1
fo(Xo) folX1 1]
= =f : :
Xo X1 0 (XO’Xl)
If Xo =0 and x; 6 0; then
0 le X1
a2(0;0:x) = 8(0;0)  g51(0;x1) _ 9(0) 0 25 :
o Xo X1 0 x4
f
= 1ob4) = ¢,
X1

The argument is similar, when x, 6 0 and x; =0:
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Assume now that xog = x; 6 0. Then we have

d d xfo(x) O
2y -0 = = oMy = — 07 -
go (XO, 0, XO) - ngO (X| O) X= Xo dX X 0 X=Xg

= 18(x0) = 5" (X0 Xo):
This completes the proof of (5.33) and we obtain (5.32). O

The following is a straightforward consequence of Corollary 5.16 and Lemma 5.17.

Corollary 5.18. For everyn 1 there exist self-adjoint operatafs,; B, 2 B(C2"*1) such
that the spectra &, + B, andA,, coincide, and

An+BnAn A Q2 2 1 .
nTEnAn n( 0) : S2n+1 S 2n+1 'S 2n+1 const Iogn.

We assume below thatn  1is xed and that A,;B, are given by Corollary 5.18.
The purpose of the series of Lemmas 5.19-5.24 below is to prove Lemma 5.25, which
Is the nal step in the nite-dimensional resolution of Peller's problem. The following
result follows immediately from Corollary 5.18.

Lemma 5.19. There are operatod$,; Y, 2 B(C?"*1) with kX k, = kY,k, = 1, such that

AntBaifnifin () (Xn;Ya) ,  const logn:
Let us denote
H, = A”BB” Aon (5.34)
and consider the operator
Tp:= Mooy S2 0 S2Z.,1S 1

Lemma 5.20. There are operatods,; Y, 2 B(C*"*?) with kX k, = k¥yk, = 1, such that

Ti(X%w; Ya) , const logn:
Proof. Take
— O Xn . — 02n+1 0 .
T e 0 T 0y,

where X,; Y, are operators from Lemma 5.19 and 0,,+1 is the null element of B(C?"*1):
Clearly, kX1k, = kXpk, =1 and kY,k, = kY,k, = 1: It follows from Lemma 5.10 and
the fact that A, + B, and A, have the same spectra that

0 An+Bn;An;An( 0)(Xn’Yn)

Y=, 0

Therefore, by Lemma 5.19,

Ti(Xn; Yn) (= AntBofnfn(C0)(Xn:Ya) | const logn:
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Lemma 5.21. There is an operat@®, 2 B(C*"*?) with kS,k, 1 such that

Ti(Sn:S,) , const logn:

Proof. Take the operators X,,;Y, 2 B(C**?) as in Lemma 5.20. By the polarization

identity

x3
XY= 5 TR+ K7,)1 (% + K7,) );

k=0
we have that

KTy(Xn; Ya)ke  max KTy((X, + iV ); (X0 + 1Y) )ka:

Taking ko such that

KT((Xn + 107, ); (X + 1%0,) Jky = max KTy((Xn + i4,); (X + iV,) ks;

we set 1
Sn := E(Xn + ikOY‘n):

Thus, by Lemma 5.20, we have
1
T1(Sh; S,) 1 Zle(X“n;Yn)kl const logn
and

KSiky  S(KXokp + KYko) = 1
2

Let us denote

0 1
An+B, O O 0
g o= Ho 0 % 0 A, 0 §
n 0 H, 0 0 A+ Bn 0
0 0 0 An
and consider the operator
T2 = Hn;Hn;Hn( 0) S8n+4 S 8n+4 's %:3Ln+4:

Lemma 5.22. There is a self-adjoint operatéy, 2 B (C&**) with kZ, ks
T2(Zn;Zn) , const logn:
Proof. Consider the operator S, from Lemma 5.21. Setting

0 Sy

Zn = s 0

NI

n

(5.35)

1 such that
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we have kZ,k, = 1(kSpko + kS k;) 1and by Lemma5.9,

. —_ 1 Tl(Sn,Sn) 0
T2(Zna Zn) - Z 0 Tl(Sm Sn)

Therefore, by Lemma 5.21, we arrive at

TZ(ZH ’ Zn) 1 = Tl(sm Sn) 1 + Tl(sna Sn)

1

Ti(Sn;S,) , const logn:

N R

O

The following decomposition principle is of independent interest. In this statement
we use the notation [H;F] = HF  FH for the commutator of H and F.

Lemma 5.23. For any self-adjoint operatos;H 2 B(C"), there are self-adjoint operators
F; G 2 B(C") such that
Z =G+ i[H;F];

the matrixG commutes wittH , and we have
k[H;Flk, 2kZk, and kGk, k ZKk,:

Proof. Let

xn
H = hj EJ
j=1
We set
xn X
G= EjZE; and F=i (h h) 'EZEc
i=1 j=1
i6k
Since
HEJ‘ = hj EJ,
we have
[H,EJZEK]: H EjZEk EjZEk H :(hj hk) EjZEk:
Consequently,
X
i[H;F]: EjZEk

=1
j6k
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and hence
G+i[H;F]=Z:

Further F; G are self-adjoint and it is clear that [G;H] = 0. Hence the rst two claims
of the lemma are proved.

Now take

X

U = e E; t2[ ; I
i=1

Then
Z Z
dt _ X (o dt
UtZUt 2— = EjZEk el — = EjZEj = G:
k=1 j=1

Sincel; is unitary, we deduce that
Z

kGk, kU, ZU, k, (23I_t k Zk,:
Moreover writing
iH;F]=2Z G

we deduce that
kIH; Flk, 2kZKk,:

0
Lemma 5.24. There is a self-adjoint operatBy, 2 B (C8**) such thatk[H,;F,]k, 2and

To i[Hn; Folsi[Hn; Fal const logn 5

1

Proof. Take the operator Z,, in B(C8"**) given by Lemma 5.22. By Lemma 5.23, we may
choose self-adjoint operators F, and G, from B(C8®"**) such that

Z, = G+ i[Hy; Frl, [Gh;HR] =0;

and
K[Fn; Fnlke 2 kZpk,; kGnk, k Znk,: (5.36)

We compute
To(Zn;Zn) = To Gu + i[Hn; Fnl; Gn + i[Hn; Frl
=T, Gy; Gy
+ Tp Gn; i[Hn; Fa]
+ Tp i[Hn; Fn]; G
+ To i[Hn; Fnl; i[Hn; Fnl (5.37)

We shall estimate the rst three summands above. We apply Lemma 5.13 to the
function o and use the notation from the latter statement. The operator G, commutes
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with H,, hence by the rst part of Lemma 5.13,
T2(Gn;Gn) = Co(Hn)  GZ:
Furthermore Co(x) =1 if x> 0,Co(x) = 1if x< 0and €4(0) = 0. Hence
kKCo(Hn)ky 1L
This implies that
T2(Gn;Gn) ;, K Co(Fn)ky KGnk3 k Z.k3 1

Next applying the second and third part of Lemma 5.13, we obtain

T, i[Hn;Fn]; Gy, =1 Hn;Hn( 1) [Hn;Fn] G,
and
T, Gn;i[Hn Fa] =1G, Hn;Hn( 2) [Fn:Fnl
where
1(Xo; X1) = o(Xo; X1;X1) and 2(Xo;X1) = o(Xo; X0; X1);  Xo;X1 2 R:

We have ¢ = 2j j hence if xo 6 x;, we have

Go(X0)  Go(Xa)

X X
7 l0 1

=2 tXo+ (1 t)xy dt | Xqf :
0

gg(xl)

(Xo  X1) 1(Xo;X1) =

Using the elementary inequality jzj j z§ j z 29, we deduce thatj 1(Xo;X1)j 1.
This implies that k ;k; 1. Consequently

Hn;Hn( 1) [Hn;Fn] Gn 1 Hn;Hn( 1) [Hn;Fn] sznkZ

k 1k1 k[Hn;Fn]kZKGnkZ
2k 1ky kZ,k3 2

by (5.36) and Lemma 5.22. Similarly,k ,k; 1and
Gy () [HaiF] 2
Combining the preceding estimates with (5.37), we arrive at
KTo(Zn; Zn)ky 5+ T, i[Hq; Fal; i[HG; Fal

Applying Lemma 5.22, we deduce the result. O]
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Lemma 5.25. There exists &£2-function g with a bounded second derivative and there exists
N 2 N such that for any sequenée ,g, n of positive real numbers there is a sequence of
operatorss, 2 B(C®**) such thatkB,k, 4 ,;foralln N;and

I foBnfinifn () (Bo; Bo)ky  const §logn; - N:

Proof. Changing the constant "const' in Lemma 5.24 by half of its value, we can change
the estimate from that statement into

T, i[Hn; Frl;i[Fn; Fnl const logn; n N; (5.38)

1

for suf ciently large N 2 N.
Take an arbitrary sequencef g, n of positive real numbers, take the operator F,
from Lemma 5.24 and denote
Fn = nFn:

Forany t> O, consider

t(Hn)  Hn,

t(Fy) = gtFn H,e itFn; and Vit = "

On one hand, it follows from the identity % etfn jio = iF;, that

Vit ! i[FnsHRL t! +0:
It therefore follows from Lemma 5.24 that there is t; > 0such that
kVhiko  2K[Fn;Hnlko =2 K[Fn;Holke 4 (5.39)
forall t t1: Onthe other hand,
Hh+ tVoe = (Hp) ! Hpy; t1 +0: (5.40)

Take a C?-function g such that g(x) = go(X) = xjxj for jxj > 1 and g¥)(0) = 0;
j =0;1;2: Denote

Xo X1 X
0 (Xo; X1; X2) == g¥ TOTlTZ ;1> 0] Xo;X1;X2 2 R:
We claim that
tlIin+10 0 (Xo; X1; X2) = o(Xo; X1;X2); Xo; X1;X2 2 R: (5.41)

To prove this claim, we rst observe, using the de nition of g, that

0 —-—-T = o(Xo;X1;X2); XoiX1;X2 2 R; t> O (5.42)

&
.—t-|><

and ¢

o
'—|-|><
1
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for t > 0 small enough. For x = 0, this follows from the fact that by assumption,
g(0) = g¥0) = 0. From these properties, we deduce that for any Xo; X1 2 R,

for t > 0 small enough.
In turn, this implies that if xo 6 X, or X; 6 X5, then

2] Xo.X1. X2 _ 2] Xo. X1 X2

t t’t t't’t
for t > 0 small enough. According to (5.42), this implies that

(2] Xo. X1, X2

;=== = olXo;X1; X
T o(Xo; X1; X2)

for t > 0small enough.
Consider now the case when xo = X; = X,. Forany t> 0, we have

2] Xo0.Xo. Xo _ } 00 Xo .

ttt 2g t

If Xo > O, then g% =2 for t > 0small enough, and if xo < 0, then g®* = 2for
t > 0small enough. Furthermore, g°¢0) = 0 by assumption. Hence

Xo . Xo . Xo
2 T p = o(XeXoXo)

for t > 0small enough. This completes the proof of (5.41).

Applying subsequently Lemma 5.11 with a = % property (5.40) and Lemma 5.12,
we obtain that

eV e () (Vs Vi) = PV 00 (G ) (Ve Vi)
L Ty i[Fa; Hn [Py Hd

when t! +0. Furthermore,
T2 i[Fo; HnLii[Fas Hnl = 2Tz i[Fn; Hnl:i[Fn; Fn]
By (5.38), there ist, > 0 such that
£Hn s Vi H (1) (Vo Vi), const 2 logn

forall t t,: Taking t, = minfty;t,g; and setting

1
A, = —Hy; Bh = Vi,
th
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we obtain that kByhk, 4 , (see (5.39)) and
k An+Bnifnifn (g2 (B, B, )ks const 2 logn;

forall n N. ]

5.3.3 A solution to Peller's problem for selfadjoint operators

The following theorem answers Peller's problem (5.5) in negative.

Theorem 5.26. There exists a functioh 2 C?(R) with a bounded second derivative, a self-
adjoint operatoA onH and a self-adjoinB 2 S2(H) as above such that

f(A+B) f(A) d f(A+1tB) 2St(H):
dt t=0
Proof. Take the integer N 2 N, the operators A,,, B}, and the function g from Lemma
5.25, applied with the sequencef ,g, n de ned by

n— q:
n log®?n

2
LetH, = "3,,, andletH = , yH,. ThenletA= !_ A andB = l_, B, bethe
corresponding direct sums. Then the self-adjoint operator B belongs to S?(H). Indeed,
it follows from (5.25) and Lemma 5.25 that

2 )4 2 )4 2 )4 16 .
kBkK2=  kB,kZ 16 2= @ ——___<1:

3=2
n=N n=N n=N n Iog n

On the other hand, by (5.27) and Lemma 5.25, we have

oA+ B) gA) o oA+B)

x d
= g(A-n + B-n) g(Kn) a g(A-"' tB-n)
t=0 1
n=N
= Rt B () B B
n=N
const 2 logn
n=N
1
= const ——=1
a=y N log™n

]

Note that this theorem has been generalized in [DPT16]. The authors proved that
for any n 2 N, there exist a function f,, 2 C"(R), a separable Hilbert spaceH and
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selfadjoint operators A 2 B(H) and B 2 S"(H) such that

X1 k
Ld f(A+ tB) ; 2SiH):

fn(A‘l' B) L1 Ak
0 k! dtk t=

k=

In this result, the operator A is bounded. For the casen = 2, the function f, is different
from the one considered in this section. Their starting point was a C!-function with
a bad behavior on B(",). Therefore, they did not have to deal with the dif culty of
the non-differentiability of the absolute value in 0. This is how they could obtain a
bounded operator A.

5.4 The unitary case

5.4.1 Preliminary results

In this subsection we will consider, for a xed integer n, Uy;Uy;Us 2 B(')) unitary
operators with the following spectral decompositions

X
Ui = Opyi=1;23
k=1 “

(See Sectiornd:2.)

We start with the following approximation lemma.

Lemma 5.27. Let Up; U;; U, 2 B('3) be unitary operators and l€F,), be a sequence of
unitaries such thaf,, ! U in the uniform operator topology aa ! 1 . Let 2 C(T?3).
Then

Fm;Ul:Uz( ) I Uo:U1:U2( ) asm!1

Broof. Let F 2 B('%) be any unitary operator. Consider a spectral decomposition F =

", iP..LetX;Y 2B('}). According to (4:17), we have

FULL()(X; V)

( i S); -(2))PiXP (1)YP_(2)
ik =1 !
XX

(i |(<1); hp, xp wYPop
k=1 i=1 “ :

(F; |((1); -(2))XP oYP @ ;
ik =1 “ :
where (F; S); -(2)) is the operator obtained by applying the continuous functional

calculusof Fto (5 5 @).

Forany' 2 C(T), the mapping F 7! ' (F) is continuous from the set of unitaries of

Foi s ()0 (Uo7 [P) asmil
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From the above computation we deduce that for any X;Y 2 B('}),
FniUilz2( y(X:Y) | Uollul2y(X;Y) asm!1

Since FmV1V2( ) and YeiVsUz( ) act on a nite dimensional space, this proves the
result. O

Remark 5.28. Similarly for any unitary operatordJy; U; 2 B('5), for any sequendép,)m of
unitaries onj such thatF,, ! Upasm!1 ,andforany 2 C(T?), we have

Fmbicyr Wby asm1i1

We now turn to perturbation theory. In Section 5:2 we de ned the divided dif-
ferences for functions de ned on R. A similar de nition can be given for complex
function de nedona T as follow. Let f 2 CY(T). The divided difference of rst order

is the function f: T2! C de ned by
a ( f(z0) f(z1).
(20, 21) = ooz T
Lt (Djr=ze f20=2

if 26 z
0 l; 20,21 2 T:

This is a continuous function, symmetric in the two variables (zp; z1).
Assume further that f 2 C?(T). Then the divided difference of the second order is

the function f@: T31 C de ned by
(
fl(z0;21) T8 (z1;22) . .
cifzg 6 zy;
(20,215 25) = Gt gy L0
tWM(zZ;21) 0220 f20= 2,

v 20021,22 2 T

Note that f [?l is a continuous function, which is symmetric in the three variables (zo; z1; 2,).

Let Up; U; 2 B('3) be unitary operators and f 2 CY(T). Then
f(W) f(U)= UM (U U (5.43)

See [Pel05] and the references therein for a proof of this result. See also [CMPST16a,
Subsection 3.4] for an elementary argument.

Let Z 2 B('}) be a self-adjoint operator and let U 2 B("3) be a unitary operator.
Then the function t 7! f (€% U) is differentiable and

d

Tt f (% U) = T (iZU): (5.44)

jt=0

Indeed by (5.43), we have

f(eZu) fU) _ 767 U e“u U
t B
forany t 6 0. Sinced €% jtzo = 1Z, the result follows from Remark 5.28.
The following proposition is the unitary version of Corollary  5:6. In the nite di-
mensional case, we can give an elementary proof.
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Proposition 5.29. Letf 2 C?(T) and letUp; Us; U, 2 B('5) be unitary operators. Then for
all X 2B('5) we have

Uo;Uz (£ [1] Up;Uz 5 [1] —  UosUpUz £ [2] . .
(F=)(X) (F=)(X) (F ) (Uo Uy X):
We rst prove the following lemma.

Lemma 5.30. LetUg; U;; U, 2 B(C") be unitary operators. Ldt, be the identity operator in
B(C"): Then forj = 0;1we have

(i)
U0§U1;U2( )(UJ,X) = Uo;Ul;Uz( j)(ln;x); X 2 B(Cn);
where
i (Xoy X13X2) = Xj (X0 X1;X2); Xo; X1, X2 2 R:
(i)
BEOX) = PEER)(hiX); X 2B(C);
where

T (Xor X1;X2) = (Xj5X2); Xo;X1;X2 2 R:

Proof. Let us prove the assertion for j = 0 only. The proof for j =1 is similar.
(i): For X 2 B(C") we have

X
Uo,Ul,Uz( )(UO’ X) = ( i(O); (kl); -(2))P i(0) UoP |(<1) XP J_(2)

ik =1
X X
= ( i(O); kl); .(2))P_(0) SO)PSO) PS)XP &)
ijik =1 B :
X
0 0. @. (
= @ (o, W -())P_m)InPS)XP @
i J
ik =1

O (o)1 X ):

(it): For X 2 B(C") we have

X

Uiz ()11 X) o @ P PPelPuXP e
! ]

ik =1

X
0 2
( i(); -())P_(O) Pi((l) XP @
i =1 ' k=1 :

0 2
( i(); -())PKO)XP @
. i j
ij =1

B )(X):
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Proof of Propositios:29. LetX 2B(C") andlet = fPand = fl Setting o, 1; o, 1
as in Lemma 5.30(i); (ii ), we have

(o (X0 X1;X2) = Xof Pl(xo; X15%2)  Xaf B(Xo; X1; X2)
= fB(xp;x2)  fB(xq;x%2) (5.45)
=( 70 T1)(Xo;X1;X2):
Therefore, by Lemma 5.30, we obtain
Uo;U1;U2 (f [2])(U0 Uy X) = Uo;U1;U2 (f [2])(U0; X) UO;Ul;UZ(f [2])(U1; X)

IO bt g 1yix) U )(1:X)

= WU )(1iX)

T W% ) (1 X)

— UO;Ul;UZ(“‘O)(ln;X) Uo;Ul;U2(~1)(|n;X)

Lem 5£3O(ii) Uo;U2 (f [1])()() Ug;U2 (f [1])()( ):

]

We conclude this section with a formula relating the second order perturbation
operator (5.7) with a combination of operator integrals.

Theorem 5.31. For any self-adjoint operata 2 B("5), for any unitary operatotd 2 B('5)
and for anyf 2 C2?(T); we have

f(e2U) f(U) %f(e“ZU)

FUU(ERN U UizU)+ FUU(EM)ETU U iZU): (5.46)

jt=0

Proof. By (5.43) we have

f(e2U) f(U)= €UVl gZy U):

Combining with (5.44), we obtain

(EU) 1) TERY) = “UENEU ) WEEzu)

By linearity, the right-hand side can be written as
UVl eZU U izu)+  CU(EHE)zZU)  U(FYizU)
Applying Proposition 5.29, we obtain that
SUVtlyiZU) V(M) iZU) = FUUN(EEYEPU  UsizU);

and this yields the desired identity (5.46). ]
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5.4.2 Finite-dimensional constructions

In this section we establish various estimates concerning nite dimensional operators.
The symbol “const will stand for uniform positive constants, not depending on the
dimension.
The estimates we are going to establish in this section start from a result going back

to [ASO5]. Leth: [ e ;e ]! R be the function de ned by

2 oy

h(x) = | jxj log logZ! * X860
: 0 x=0

Then h is a C!-function. We may extend it to a 2 -periodic C*-function, that we still
denote by h for convenience.

According to [AS05, Section 3], there exist a constantc > 0 and, forany n 3,
self-adjoint operators R,; D, 2 B('3,) such that

kRnDn Dan k_’]_ (5.47)
and .
Rnh(Dn) h(Dn)Rn ,  clog(n)z: (5.48)

By changing the dimension from 2n to 2n + 1 and adding a zero on the diagonal, one
may obtain the above results for some self-adjoint operators R,; D, 2 B('3,,,) satisfy-
ing the additional property
02 (Dy): (5.49)
We shall derive the following result.

Theorem 5.32. Foranyn 3, there exist self-adjoint operatoks; B, 2 B(*5,.,) such that
B,60,02 (An),

h(An+ Bn) h(A,) ,  constlogn)zkBk; ;

and the operatoré, and A, + B, are conjugate. That is, there exists a unitary operator
Sh 2B('3,,;) suchthatA, + B, = S, *A,S;.
Proof. Let us rst observe thatforany N  1and any operators X;Y 2B('3),
eitX Y Y étX
t

I i(XY YX) ast! O (5.50)

Indeed, this follows from the fact that S (€™ )ji-o = iX .
Consider D, and R, satisfying (5.47), (5.48) and (5.49). For anyt > 0, de ne

Bn;t .: eItRnDne ItRn Dn.
On the one hand, applying (5.50) with X = R, and Y = D, we obtain that

1 1

-l

n

€®rD, D,e"" |
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! k RnDn Dankl

ast! O.
On the other hand, using the identity

h(eitRnDne itRn) — eitRnh(Dn)e itR

and applying (5.50) with X = R, and Y = h(D,), we have

1 1 . -
{ h(Dn+ Bn;t) h(Dn) 1" f eItRnh(Dn)e R h(Dn) 1
=1 @%'h(Dy)  h(Dp)er
'k Rnh(Dn) h(Dn)Rnk:
ast! O.
Therefore, there existst > 0 such that
%kRnDn DnRnk: Kk Bpikg 2t (5.51)
and )
log(n):z
h(Dn+ Bn) h(Dn) , ¢ 9(2) t

The above two estimates lead to
h(Dn+ Bni) h(Dy) , 4£ log(n)? KBk :

Furthermore property (5.48) implies that D, and R, do not commute. Hence the rst
inequality in (5.51) ensures that B, 6 0.

To get the result, we setA, = D, and B, = B,.. According to the de nition of B,
the operators A, and A, + B, are conjugate. All other properties of the statement of
the theorem follow from the above estimates and (5.49). O

Let g 2 C*(T) be the unique function satisfying
g€ )= h(); 2 R: (5.52)

The following theorem translates the preceding result into the setting of unitary oper-
ators.

Theorem 5.33. For anyn 3, there exist unitary operatotd ,; K, 2 B(*3,,,) such that
H, 6 Kp; (H)= (Kp); 12 (Hp);

and
kg(Kn) g(Hnky constlog(n)%kKn Hoky : (5.53)

Proof. Givenany n 3, let A,; B, be the operators from Theorem 5.32, and set

H,=¢é* and K,= ®n*Bn:
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These are unitary operators. SinceA, and A, + B, are conjugate, they have the same
spectrum henceinturn, (H,)= (Kp). Moreover 12 (H,)since02 (A,). SinceA,
and A, + B, are conjugate but different, their sets of spectral projections are different.
This implies that H, 6 K,,.

By construction we have

g(Hn) = h(An) and g(Kn) = h(A, + Bp):
Therefore, by Theorem 5.32, we have
ka(Kn) o(Hn)ki  constlogn)zkBk; :

Moreover _ _
kKn anl = eI(An+Bn) e'A" 1 k Bnkl

by [PS11, Lemma 8]. This yields the result. O]
Letf: T! C bede nedby

f(2)=(z 1o(2); z2T: (5.54)

It turns out that f 2 C2(T). This follows from the de nition of h, which is C2 on
( e ;e Y)nf0Og, and the fact that lim,, oxh%x) = 0. Details are left to the reader.
We also de ne an auxiliary function &:T3! C given by

&8(20; 21, 22) = 2af P20, 21 22): (5.55)
Lemma 5.34. For anyzy; z, 2 T, we have
&20;1;22) = gM(20; 22):
Proof. By the de nition of &;and sincez; = 1, it is enough to prove that
f12(z0;1;20) = g™ (20; 22); 20;2,2 T:

We have to consider several different cases. Letus rstassumethatzy 6 z,:1f zo 6 1
and z, 6 1; then we have

f f(1 fQa) f
fll(zg1) fl(1;z) 10 1@ fz)

[2] . 1. —
f (ZO’ 11 ZZ) Z() 22 Z() 22
— g(ZO) g(ZZ) — g[l](Zo;Zz)I
Zy Z»

If zo =1 and z, 6 1; then using %f (2)jz=1 = 9(1) = h(0) =0, we have

FU11) UL z)  2f (@ 12
1 Zp B 1 Z>

= gM(1;2):

f@(1;1;,2,) =

9(z2)
1 2
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The argument is similar, when z; 6 1 and z, = 1:
Assume now that zy = z,: Using the fact that f [Yl(z;1) = g(z) for any z, we obtain
in this case that

d d
f[z](Zo; 1 20) = Ef [1](Zi1)jz= 20— Eg(z)jzz z0 = 9[1](20; 2p):
0
Corollary 5.35. Foranyn 3, there exist unitary operatond ,; K, 2 B("3,.;) such that

(Hn) = (Kn);

and
L 1
Kn'Hn'Hn(& : S22n+1 S §n+1 'S 21n+1 const Iog(n)2: (556)

Proof. Take H,; K, as in Theorem 5.33; these unitary operators have the same spec-

trum. Let f g2:' be the sequence of eigenvalues of the operatorH,, counted with

multiplicity. Since 12 (Hp), we may assume that ; = 1. According to (4:19) and
Theorem 3.4, we have

Kn:HnH . o2 2 1 _ KnH .ol 1 )
TN ISy S g 'S e = 1Ta2)r(]+1 " (&) S 'S e

&(20;21) := &Z0; k;21); 20,212 T:
In particular, the inequality
k(& S5, S 5 'S 2un il (&)1 S3a1 'S um
holds. From Lemma 5.34, we have that
&(20;21) = &20;1;21) = 9207 21):
Therefore, we obtain
Knifn (1S3 S a1 'S 2im it (gY): S5041 1S Jnan (5.57)
SinceH,, 6 K,,, we derive

Koifin (@) (Kn  Hn)

Kn;H”;H"(&: 822n+1 S §n+l 'S éln*’l kKn anl

From the identity (5.43), we have XnHn(glt)(K,, H,) = g(K,) g(H,). Hence the
above inequality means that

kg(Kn)  9(Hn)ks :

Kn;Hn;Hn(& . ng_l S 22n+1 I'S 21n+l kKn anl

Applying (5.53) we obtain the desired estimate. O
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We are now ready to prove the nal estimate of this section.

Corollary 5.36. For anyn 3, there exist a self-adjoint operat#v, 2 B('3,.,) with
kWhk, 1and a unitary operatot), 2 B("3,,,) such that

Un ;Un;Up (f [2])(Wn Un ’ Wn Un) . Const |Og(n)% (558)

Proof. We take H,, and K, given by Corollary 5.35. Then we consider

Kn O and then U, = Vo 0 (5.59)
0 H,

V, = 0 V.,

Then V, is a unitary operator acting on .., and U, is a unitary operator acting on
N2
8n+4 -

We claim that there exists a self-adjoint operator W,, 2 B(*3,.,) such thatkWpk, 1
and
UnUnitn (&(Wn; W,) | const log)z:

Indeed, using (5.56) and the fact that H, and K, have the same sprectrum, this follows
from the proofs of [CMPST16a, Lemmas 22-25]. Indeed the arguments there can be
used word for word in the present case. It therefore suf ces to show

UniUn Un (&)(W,,: Wi) .= UniUniUn (£ 21)(W, Uy, ; Wi Un) (5.60)

1

For that purpose we set N = 8n + 4 and consider a spectral decomposition U, =
N zP; of U,. Then by (4:17) we have

UniUniUn (£ 1) (W, Uy, ; Wi Up) f1¥(zi; ;2 ) Pi (Wa Uy )P (W, Uy ) Py

ik =1

b\
f12(z;2;2)PiW, zP PW,P; U,
ik =1 =1

zf B(zi; z; ) Py W, P W, Py Uy
ik =1

X

=9 &z z; ) PiWL P W, Py Uy,

ik =1
=  Un;Un;Un (&(Wp; Wo)Un:

SinceU, is a unitary, this equality implies (5.60), which completes the proof. O

5.4.3 A solution to Peller's problem for unitary operators

In this section, we answer Peller's question raised in [Pel05, Problem 1] in the negative.
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Theorem 5.37. There exist a functioi 2 C?(T), a separable Hilbert spaék, a unitary
operatol 2 B(H) and a self-adjoint operat@ 2 S?(H) such that
f €U (V) % f (¥ U) oo Z S(H): (5.61)

In the above statement, % f (€% U) t=0 denotes the derivative of this function at
t = 0. We refer to [Pel05, (2.7)] and the references therein for the facts that for any
f 2 CX(T), for any unitary operator U 2 B(H) and any self-adjoint operator Z 2 S?(H),
the difference operator f €U  f (U) belongs to S?(H) and the function t 7! f (€% U)
is differentiable from R into S?(H). Therefore, the operator in (5.61) belongs to S?(H).

Theorem 5.37 will be proved with the function f given by (5.54). We will combine
a direct sum argument and the following lemma, whose proof relies on Corollary 5.36.

Lemma 5.38. For anyn 1, there exist a non zero self-adjoint operatqr2 B('3,,,) and a
unitary operatory, 2 B(*3,.4), such that

hs
kZ,k2 < 1 ; (5.62)
n=1
and _ _
e U f(U) § FEPU) g
lim 1 =1 (5.63)

n'l kZ k3

Proof. We x n 3 and we take W, and U, given by Corollary 5.36. Note that chang-
ing W, into kWk, W, we may (and do) assume that kW,k, = 1. We consider the
sequence

and we set

Rm;n = f(elwm;n Un) f(Un) a f(eItW m:n Un)

jt=0"

By Theorem 5.31 we have
M2Rpp = & " UniUniln (£ By m(eWmn U, Uy); W, Uy
+ U () m2(eWen Uy Uy W Un) ¢ (5.64)

Note that .
me¥mn |1 W, asm!l

Hence by Lemma 5.27, we have
e UnilniUn (£ By m(eWmn Uy Up)iiW,U, 1 Ui (£ By Giw, Uy W, Uy)
asm!1 :Thisresultand Corollary 5.36 imply that for m large enough, we have

& ™ UnUn Un (£ 2y m(eWmn U, U,):iW, U, , const log)?: (5.65)
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We now turn to the analysis of the second term in the right hand side of (5.64). Since
f 2 C2(T), there exists a constantK > 0 (only depending on f and not on either n or
the operators U, and Wy,.,) such that

eW mn U, :Un (f [1]): S§n+4 IS én+4 K:

This follows from [BS73] (see also [Pel85]).
Now observe that

: . W2
m? Wm0 W, ! 7” asm!1

Hence we have
e mn Unin (£ 1) m2(@Wmn Uy Uy iW e Upn) . KkWiky = KkWnk3  (5.66)

for m large enough.
Combining (5.65) and (5.66), we deduce from the identity (5.64) the existence of an
integer m 1 for which we have an estimate

m2kRmnky  const log)z: (5.67)

We may assume thatm  n, which ensures that

ka;n kz E:

P
Then we setZ, = Wn,,. The preceding inequality implies that =~ kZ,k3 < 1 . Since
kKW,k, = 1, we have kZ,k, = % hence the estimate (5.67) yields (5.63). l
Proof of Theorem 5.3MVe apply Lemma 5.38 above. We set

d

h= f(E%nU,) £ (U) 3

f (eitZ n Un) t=0 1

forany n 1. Since ,kZ.k,? izl is an unbounded sequence, by (5.63), there exists a
positive sequence( ), 1 such that

n<1 and n nkZpk,2=1: (5.68)

Set
Nn = nank22 +l;

where [ ] denotes the integer part of a real number. We have both

NokZ.k3  ,+kZ,k5 and N, . kZk,%
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Hence it follows from (5.68), (5.62) and (5.63) that

b3 X
N,kZ, k3 < 1 and Ny n=1:

n=1 n=1

We let H, = "} ("§.:4) and we let Z;, (resp. U,) be the element of B(H ) obtained
as the direct sum of N,, copies of Z, (resp. U,). Then Z, is a self-adjoint operator and
kZ,k3 = Nn,kZ,k3. Consequently,

X
KZ,k2 < 1 : (5.69)

n=1
Likewise U, is a unitary operator and we have

f(€70,) f(O) (€70

jt=0 1

= N, f(€%"U,) f(Un) % f(“rU,) . _

Hence
S

. d i
) f(€%"0,) f(0,) at f (%" 0,) o 1= 1

We nally consider the direct sum

2
H: n 1Hn

We let Z be the direct sum of the Z,,, de ned by Z( )= fZ,( »)gi., forany =f g,
i_r,l H. Property (5.69) ensures thatZ is well-de ned and belongsto S?(H), with kZk3 =
! kZ,k3. Likewise we let U be the direct sum of the U,. This is a unitary operator

and & f (€% V) jt=o IS the direct sum of the 4 f(e'Zn0,) t=o - Therefore

. d .
f(e“U) f(U) at f (€% U) ft=0 1
X i Z d it Z,
= f(eg,) f(0,) af(e "On) fts0 1
n=1
Since this sum is in nite, we obtain the assertion (5.61). O

Just like for the selfadjoint case, the theorem above has been generalized in [DPT16]
where the authors consructed a counterexample for a n th order version of Peller's
problem.
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5.5 Perspectives

in Section 5:2, we studied the differentiability in  S?(H). Taking into account the dis-
cussion in Section4:5, it is interesting to study the SP differentiability of the mapping

t2R7If(A+1B) f(A)

when A and B are selfadjoint operators with B 2 SPand f 2 C"(R) with possibly fur-
ther assumptions such as the boundedness of its derivatives. If the results are positive,
one can hope to obtain a formula for the Taylor remainder like in Theorem 5:1. We
refer to [EKS12] for some existing results about the SP  differentiability.

In Section 5:4 we gave some formulas for the differentiability in the case of unitary
operators in the nite-dimensional case. The results obtained in Section 5:2 for selfad-
joint operators can be also studied in the case of unitary operators. Namely, if U is a
unitary operator on some Hilbert space H and if Z 2 S?(H) is selfadjoint, then one can
study the differentiability of

t2 R7! f(e?U) f(U)2S?%H)

for f 2 C"(T). We refer e.g. to [DPT16] for some results in this direction.



135

Bibliography

[AKO6] F. Albiac and N.J. Kalton. Topics in Banach space theoGraduate Text in
Mathematics, Springer, 2006.

[ANP15] A. Aleksandrov, F. Nazarov, and V. Peller. “Triple operator integrals in
Schatten-von Neumann norms and functions of perturbed noncommut-
ing operators”. In: C. R. Math. Acad. Sci. Pari853 (2015), pp. 723-728.

[ANP16] A. Aleksandrov, F. Nazarov, and V. Peller. “Functions of noncommuting
self-adjoint operators under perturbation and estimates of triple opera-
tor integrals”. In: Adv. Math. 295 (2016), pp. 1-52.

[AP17] A. Aleksandrov and V. Peller. “Multiple operator integrals, Haagerup
and Haagerup-like tensor products, and operator ideals”. In: Bulletin of
the London Mathematical Socie4@ (2017), pp. 463—-479.

[Ara82] J. Arazy. “Certain Schur-Hadamard multipliers in the space C,". In:
Proc. Amer. Math. So@6 (1982), pp. 59-64.

[ASO5] B. de Pagter W. van Ackooij and F. A. Sukochev. “Domains of in nites-
imal generators of automorphism ows”. In:  J. Funct. Anal.218 (2005),
pp. 409-424.

[Ben76] G. Bennett. “Unconditional convergence and almost everywhere con-
vergence”. In: Z. Wahrscheinlichkeitstheorie und Verw. Gebi8te (1976),
135-155.

[Ben77] G. Bennett. “Schur multipliers”. In: Duke Math. J44 (1977), pp. 603—639.

[BSO3] M. S. Birman and M. Z. Solomyak. “Double operator integrals in a Hilbert
space”. In: Integr. Equ. Oper. Theorg¢7 (2003), pp. 131-168.

[BS66] M. S. Birman and M. Z. Solomyak. “Double Stieltjes operator integrals”.
In: Probl. Math. Phys., Izdat. Leningrad. Univ., Leningrg#l966), pp. 33-67.

[BS67] M. S. Birman and M. Z. Solomyak. “Double Stieltjes operator integrals

II”. In: Problems of Mathematical Physics, Izdat. Leningrad. Univ., Leningrad
2 (1967), pp. 26-60.

[BS73] M. S. Birman and M. Z. Solomyak. “Double Stieltjes operator integrals
[II”. In: Probl. Math. Phys., Leningrad Univ6 (1973), pp. 27-53.
[BY92] M. Sh. Birman and D. R. Yafaev. “The spectral shift function. The papers

of M. G. Kre n and their further development”. In:  Algebra i Analiz 45
(1992), pp. 1-44.

[CMPST16a] C. Coine, C. Le Merdy, Denis Potapov, F. Sukochev, and A. Tomskova.
“Resolution of Peller's problem concerning Koplienko-Neidhardt trace
formulae”. In: Proc. London Math. S0d.13 (2016), pp. 113-139.



136

BIBLIOGRAPHY

[CMPST16b]

[CMS17]
[Coil7]
[ConO00]
[Davss]
[Davo6]

[DDPS97]

[DF93]
[DFS03]
[DFS08]
[DP40)]
[DPS13]

[DPT16]

[DU79]

[EKS12]

[EROO]

[ER90]

C. Coine, C. Le Merdy, Denis Potapov, F. Sukochev, and A. Tomskova.
“Resolution of Peller's problem concerning Koplienko-Neidhardt trace
formulae: The unitary case”. In: Journal of Functional Analysi&71 (2016),
pp. 1747-1763.

C. Coine, C. Le Merdy, and F. Sukochev. “When do triple operator inte-
grals belong to trace class operators?” In: Preparation(2017).

C. Coine. “Schur multiplierson B(LP;L%)".In: Preprint, arXiv:1703.08128.
(2017).

J. Conway. A Course in Operator TheoryGraduate Studies in Mathemat-
ics, Vol. 21. American Mathematical Society, 2000.

E. B. Davies. “Lipschitz continuity of functions of operators in the Schat-
ten classes”. In:J. Lond. Math. So@7 (1988), pp. 148-157.

K. Davidson. C -algebras by examplEields Institute Monograph 6, Amer-
ican Mathematical Society, 1996.

P. G. Dodds, T. K. Dodds, B. de Pagter, and F. A. Sukochev. “Lipschitz
continuity of the absolute value and Riesz projections in symmetric op-
erator spaces”. In: J. Funct. Anal.148 (1997), pp. 27—-69.

A. Defant and K. Floret. Tensor Norms and Operator Idealdathematical
Studies, 1993.

J. Diestel, J. H. Fourie, and J. Swart. “The projective tensor product 1”.
In: Contemporary Mathematicd21 (2003).

J. Diestel, J. H. Fourie, and J. SwartThe metric theory of tensor product
American Mathematical Society, 2008.

N. Dunford and B. Pettis. “Linear operator on summable functions”. In:
Trans. Amer. Math. Soc47 (1940), pp. 323-392.

A. Skripka D. Potapov and F. Sukochev. “Spectral shift function of higher
order”. In: Invent. Math. 193 (2013), pp. 501-538.

F. Sukochev D. Potapov A. Skripka and A. Tomskova. “Multilinear Schur
multipliers and applications to operator Taylor remainders”. In:  Preprint
(2016).

J. Diestel and J.J. Uhl.Vector MeasuredMathematical Surveys, 15. Amer-
ican Mathematical Society, 1979.

V. Shulman E. Kissin D. Potapov and F. Sukochev. “Operator smooth-
ness in Schatten norms for functions of several variables: Lipschitz con-
ditions, differentiability and unbounded derivations”. In:  Proc. London
Math. Soc. (3)105 (2012), pp. 661-702.

E. G. Effros and Z. Ruan.Operator spacesondon Mathematical Society
Monographs New Series 23, 2000.

E. G. Effros and Zh.-J. Ruan. “Multivariable multipliers for groups and
their operator algebras”. In: Proc. Sympos. Pure Math1 (1990), pp. 197—-
218.



BIBLIOGRAPHY 137

[Far72]

[GPSO08]

[HKO3]

[KJTO9]

[Kop84]
[KP70]

[Kre53a]

[Kre53b]
[Lif52]

[NAS09]

[Palo1]

[Pav69]
[Pel05]
[Pel06]
[Pel16]

[Pel8s]

[Pis03]

Yu. B. Farforovskaya. “An example of a Lipschitzian function of selfad-
joint operators that yields a nonnuclear increase under a nuclear pertur-
bation”. In: Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI)
30 (1972), pp. 146-153.

F. Gesztesy, A. Pushnitski, and B. Simon. “On the Koplienko spectral
shift function”. In: 1. Basics. Zh. Mat. Fiz. Anal. Geond (2008), pp. 67—
107.

F. Hiai and H. Kosaki. Means of Hilbert Space Operatotsecture Notes in
Mathematics, Springer, 2003.

I. G. Todorov K. Juschenko and L. Turowska. “Multidimensional Oper-
ator Multipliers”. In:  Transactions of the Amer. Math. Sag61 (9) (2009),
pp. 4683—-4720.

L. S. Koplienko. “The trace formula for perturbations of nonnuclear
type”. In: Sibirsk. Mat. Zh.25 (1984), pp. 62—71.

S. Kwapien and A. Pelczynski. “The main triangle projection in matrix
spaces and its applications”. In: Studia Math.34 (1970), pp. 43-68.

M. G. Krein. “On the perturbation determinant and the trace formula
for unitary and self-adjoint operators”. In: Dokl. Akad. Nauk SSSR 44
(1953), pp. 268-271.

M. G. Krein. “On the trace formula in perturbation theory”. In:  Mat.
Sbornik N.S.33 (1953), pp. 597-626.

I. M. Lifshits. “On a problem of the theory of perturbations connected
with quantum statistics”. In: Uspekhi Mat. Nauk7 (1952), pp. 171-180.

P.G. Dodds N.A. Azamov A.L. Carey and F. A. Sukochev. “Operator
integrals, spectral shift, and spectral ow”. In: Canad. J. Math61 (2009),
pp. 241-263.

T. W. Palmer. Banach Algebras and the General Theory of *-Algebras, Volume
2. Cambridge: Encyclopedia of Mathematics and its Applications, 79.
Cambridge University Press, 2001.

B. S. Pavlov. “Multidimensional operator integrals”. In:  Problems of Math.
Anal., No. 2: Linear Operators and Operator Equatiq869), pp. 99-122.

V. V. Peller. “An extension of the Koplienko-Neidhardt trace formulae”.
In: J. Funct. Anal.221 (2005), pp. 456-481.

V. V. Peller. “Multiple operator integrals and higher operator deriva-
tives”. In: J. Funct. Anal.233 (2006), pp. 515-544.

V. V. Peller. “Multiple operator integrals in perturbation theory”. In:
Bull. Math. Sci.6 (2016), pp. 15-88.

V.V. Peller. “Hankel operators in the theory of perturbations of unitary
and selfadjoint operators”. In: Funktsional. Anal. i Prilozhen (Russiar)9
(1985), pp. 37-51.

G. Pisier. Introduction to operator space theotyondon Mathematical So-
ciety, Lecture note Series 294, 2003.



138 BIBLIOGRAPHY

[Pis96] G. Pisier. Similarity problems and completely bounded mdgerlin: Lecture
Notes in Mathematics, Springer-Verlag, 1996.

[PS04] B. De Pagter and F. Sukochev. “Differentiation of operator functions
in non-commutative L,-spaces”. In: Journal of Functional Analysi212
(2004), pp. 28-75.

[PS11] D. Potapov and F. Sukochev. “Operator-Lipschitz functions in Schatten-
von Neumann classes”. In: Acta Math. 207 (2011), pp. 375-389.

[PSWO02] B. de Pagter, F. A. Sukochev, and H. Witvliet. “Double operator inte-
grals”. In: J. Funct. Anal.192 (2002), pp. 52-111.

[RS80] M. Reed and B. Simon.Methods of Modern Mathematical Physics. | : Func-
tional Analysis Academic Press, INC., 1980.

[Rud73] W. Rudin. Functional analysisNew York-Dusseldorf-Johannesburg: McGraw-
Hill Series in Higher Mathematics. McGraw-Hill Book Co., 1973.

[Sak98] S. Sakai.C -Algebras andW -Algebras Springer-Verlag Berlin Heidel-
berg, 1998.

[SprO4] N. Spronk. “Measurable Schur multipliers and completely bounded mul-
tipliers of the Fourier algebras”. In: Proc. London Math. So@9 (2004),
pp. 161-192.

[Tak79] M. Takesaki. Theory of operator algebrasNew York-Heidelberg: Springer-
Verlag, 1979.

[Woj91] P. Wojtaszczyk. Banach spaces for analys@ambridge University Press,
1991.

[Zhu90] K. Zhu. Operator theory in functions spacesmerican Mathematical Soci-

ety, 1990.



	Introduction
	Résumé de la thèse

	Preliminaries

