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Introduction

1 Résumé de la thèse

Le travail de cette thèse a été dans un premier temps motivé par la résolution du prob-
lème de Peller concernant la formule de trace de Koplienko-Neidhardt. Celui-ci est
en lien avec les perturbations du second ordre pour le calcul fonctionnel. En effet, le
problème était de déterminer, pour une fonction f 2 C2(R) dont la dérivée seconde est
bornée, et pour deux opérateurs autoadjoints A et K sur un espace de Hilbert séparable
H tels que K 2 S 2(H ) est un opérateur de Hilbert-Schmidt, si l'opérateur

f (A + K ) � f (A) �
d
dt

�
f (A + tK )

� �
�
�
t=0

(1)

appartient à l'espace S1(H ) des opérateurs à trace.
Cette question a été soulevée par V. Peller dans [Pel05], où il a également conjecturé
que la réponse à cette question était négative.
Pour résoudre ce problème, il est important de comprendre tout d'abord dans quels
cas l'opérateur (1) est bien dé�ni. Lorsque A est borné ou quand f a une dérivée
bornée, l'opérateur est bien dé�ni et appartient à S2(H ). Sinon, le sens de(1) n'est pas
clair, mis à part dans certains cas particuliers. Peller a par exemple dé�ni dans [Pel05]
l'opérateur (1) par approximation lorsque f appartient à la classe de BesovB 2

1 1(R) et
a alors montré que la question précédente était positive pour de telles fonctions. Deux-
ièmement, il est commode d'exprimer différemment (1). Il s'avère que ceci peut être
fait au moyen des 'Opérateurs intégraux triple'. La théorie des opérateurs intégraux
multiple a été initiée par Birman et Solomyak, dans une série de trois articles (voir
[BS66; BS67; BS73]). Dans les 20 dernières années, de nombreux développements ont
été obtenus par V. Peller, F. Sukochev, et leurs co-auteurs. Ces objets jouent un rôle ma-
jeur dans la théorie de la perturbation. Un opérateur intégral double est un opérateur
de la forme

� A;B (� ) : S2(H ) ! S 2(H )

associé à deux opérateurs normauxA et B sur H et à une fonction borélienne � bornée
sur le produit des spectres de A et B . Un des premiers résultats majeurs est la formule

f (A + K ) � f (A) =
�
� A+ K;A (f [1])

�
(K ) (2)

où K 2 S 2(H ), f est une fonction Lipschitzienne et f [1] est la différence divisée d'ordre
1 de f . Parmi les applications importantes de cette formule, nous pouvons citer l'étude
des 'fonctions Lipschitz-opérateurs', c'est-à-dire l'espace des fonctions lipschitziennes
sur R qui ont une propriété de Lipschitz pour le calcul fonctionnel des opérateurs au-
toadjoints. L'un des résultats importants de ce sujet a été obtenu par D. Potapov et F.
Sukochev qui ont établi que toute fonction Lipschitzienne était opérateur-Lipschitz sur
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les classes de Schatten ré�exivesSp; 1 < p < 1 (voir [PS11]), où l'utilisation de (2) a
été fondamentale. Ce résultat est faux dans lep = 1 et p = 1 et un contre-exemple a
été construit e.g. dans [Far72].
Les opérateurs intégraux triple sont des applications bilinéaires dé�nies sur S2(H ) �
S2(H ) et à valeurs dansS2(H ). Avec le même type de formule, l'opérateur (1) peut être
obtenu comme un certain opérateur intégral triple. Il s'avère que les opérateurs inté-
graux double et triple peuvent être vus comme des multiplicateurs de Schur linéaires
et bilinéaires continus. En effet, lorsque l'espace de Hilbert H est de dimension �nie,
l'action des opérateurs intégraux double et triple est identique à celle des multiplica-
teurs de Schur classiques, qui ont été intensément étudiés.
D'après la discussion qui précède, une idée pour résoudre le problème de Peller est de
comprendre dans quels cas un opérateur intégral triple est à valeurs dans S1(H ). La
première étape est de comprendre ce phénomène dans le cas discret, c'est-à-dire dans
quels cas un multiplicateur de Schur bilinéaire est à valeurs dans S1. Il se trouve que la
norme S1 de telles applications peut être calculée à l'aide de normes de multiplicateurs
de Schur linéaires sur B(Cn ). Ces objets sont bien connus et il existe une description
des multiplicateurs de Schur linéaires sur B(`2) (voir par exemple [Pis96, Théorème
5.1]). Ce lien inattendu entre le problème de Peller et les multiplicateurs de Schur a
été le point de départ pour la résolution du problème, et plus précisément, pour la
construction d'un contre-exemple.

Cette thèse s'organise de la façon suivante.
Dans le Chapitre 1, nous dé�nissons différentes notions qui joueront un rôle im-

portant dans cette thèse, même si beaucoup d'entre elles n'apparaissent pas explicite-
ment dans l'énoncé des résultats principaux. Nous utiliserons souvent les produits
tensoriels comme des outils pour les démonstrations, et en particulier, l'identi�cation
du dual de certains produits tensoriels de deux espaces de Banach est en général la clé
pour d'importants résultats. Comme nous l'avons déjà mentionné dans la première
partie de l'introduction, de nombreuses questions de cette thèse seront formulées avec
des classes de Schatten. Nous rappellerons leur dé�nition et quelques propriétés de
ces espaces importants. Les deux dernières sections concerneront les espacesLp

� qui
apparaissent comme les espaces duaux des espaces de Bochner. En particulier, la sec-
tion 1:4 concerne d'importants résultats de factorisation pour les espaces L1

� à valeurs
dans l'espace des opérateurs factorisables par un espace de Hilbert. Ces résultats ont
été obtenus en collaboration avec C. Le Merdy et F. Sukochev et apparaissent dans
l'article [CMS17].

Dans le Chapitre 2, nous nous intéresserons aux multiplicateurs de Schur linéaires.
Le résultat principal les concernant est une caractérisation des multiplicateurs de Schur
sur B(`2) par Grothendieck. Notre but a été de généraliser ce résultat et de caractériser
les multiplicateurs de Schur sur B(`p; `q). Nous avons pu le faire dans le q � p et
avons obtenu un résultat similaire à celui de Grothendieck. Comme nous l'avons ex-
pliqué précédemment, les objets apparaissant dans cette thèse sont des multiplicateurs
de Schur continus. Ainsi, nous dé�nirons plus généralement les multiplicateurs de
Schur continus sur B(Lp; Lq). Nous verrons que pour les comprendre, il suf�t de com-
prendre les multiplicateurs de Schur classiques. Nous terminerons ce chapitre avec de
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nouveaux résultats concernant les relations d'inclusion entre les espaces de multipli-
cateurs de Schur. Les résultats de cette section apparaissent dans l'article [Coi17].

Nous étudierons dans le Chapitre 3 les multiplicateurs de Schur bilinéaires, dans le
cas classique ainsi que dans le cas continu. Après avoir rappelé leur dé�nition, notre
but sera d'étudier la bornitude dans S1 de tels opérateurs. Les résultats principaux de
cette partie sont des caractérisations des multiplicateurs de Schur bilinéaires à valeurs
dans S1 à l'aide de multiplicateurs de Schur linéaires. Ces résultats seront la première
mais également l'une des principales étapes pour comprendre et résoudre le problème
de Peller.

Le Chapitre 4 est dédié à divers résultats sur les opérateurs intégraux multiple.
Nous donnerons tout d'abord une dé�nition de ces opérateurs par dualité, ce qui
permettra d'obtenir une dé�nition plus générale que celles introduites auparavant.
Comme nous l'avons déjà dit, ces objets peuvent être vus comme des multiplicateurs
de Schur multilinéaires continus. Ainsi, en utilisant les résultats obtenus dans les
chapitres précédents, nous serons en mesure de caractériser les opérateurs intégraux
triple à valeurs dans l'espace des opérateurs à trace. En�n, dans une dernière section,
nous donnerons une condition nécessaire et suf�sante pour qu'un opérateur intégral
triple dé�nisse une application complètement bornée de S1 (H ) 
 S1 (H ) muni du
produit de Haagerup à valeurs dans S1 (H ). Ceci généralise au cas des opérateurs
intégraux un résultat obtenu dans [KJT09] dans le cadre des multiplicateurs de Schur
multilinéaires continus. Les résultats des sections 4:1 et 4:3 ont été obtenus en collabo-
ration avec C. Le Merdy et F. Sukochev et l'article [CMS17] a été écrit à ce sujet.

En�n, nous résoudrons dans le Chapitre 5 le problème de Peller. Nous avons men-
tionné le cas autoadjoint mais un problème similaire peut être formulé dans le cas
unitaire. Ces deux problèmes seront résolus en utilisant les mêmes idées. Le premier
outil sera la connexion entre les problèmes de Peller et les opérateurs intégraux triple.
Pour ce faire, nous étudierons le lien entre opérateurs intégraux multiple et théorie de
la perturbation pour les opérateurs autoadjoints. En particulier, nous donnerons une
formule pour la dérivée n� ième des applications de la forme

t 2 R 7! f (A + tK ) � f (A)

où A et K sont des opérateurs autoadjoints avecK un opérateur de Hilbert-Schmidt.
Ce résultat est une généralisation de la formule (2) et nous obtiendrons alors une for-
mule de Taylor à l'ordre n pour les opérateurs autoadjoints. En particulier, l'opérateur
(1) apparaîtra comme un certain opérateur intégral triple. Le second outil sera le cal-
cul de la norme S1 pour un multiplicateur de Schur bilinéaire à l'aide de multiplica-
teurs de Schur linéaires ce qui nous permettra d'exploiter un contre-exemple dû à E.
B. Davies concernant le comportement de l'application valeur absolue sur les espaces
S1(Cn ); n 2 N. En utilisant des estimations de normes dans le cas �ni dimension-
nel, nous construirons deux opérateurs A et K comme sommes directes d'opérateurs
de rang �ni tels que l'opérateur (1) n'appartient pas à S1, où f sera une fonction bien
choisie. Les résultats de la section5:2ont été obtenus en collaboration avec C. Le Merdy
et A. Skripka. Les résultats des sections5:3 et 5:4 ainsi que ceux de la sous-section3:3:2
ont quant à eux été obtenus en collaboration avec C. Le Merdy, F. Sukochev, D. Potapov
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et A. Tomskova et les deux articles [CMPST16a; CMPST16b] ont été publiés les concer-
nant.

2 Summary of the thesis

The work in this thesis was �rst motivated by the resolution of Peller's problem con-
cerning Koplienko-Neidhardt trace formulae. It is related to perturbations of second
order for functional calculus. Indeed, the problem was to determine, for a function
f 2 C2(R) with bounded second derivative, and for two selfadjoint operators A; K act-
ing on a separable Hilbert space H such that K 2 S 2(H ) is a Hilbert-Schmidt operator,
whether the operator

f (A + K ) � f (A) �
d
dt

�
f (A + tK )

� �
�
�
t=0

(3)

is in the spaceS1(H ) of trace class operators.
This question was stated by V. Peller in [Pel05], where he also suggested that this ques-
tion should have a negative answer.
To solve this problem, it is �rst important to understand in which cases the operator in
(3) is well-de�ned. When A is a bounded operator or when f has a bounded deriva-
tive, the operator is well-de�ned and is an element of S2(H ). Otherwise, the meaning
of (3) is not clear, except in certain particular cases. For instance, Peller proved in
[Pel05] that when f belongs to the Besov classB 2

1 1 the operator (3) can be de�ned by
approximation and that in this case, the question stated above holds true. Secondly, it
is convenient to express (3) differently. It turns out that this can be done by means of
the so-called triple operator integrals. The theory of multiple operator integrals started
with Birman and Solomyak, in a series of three papers (see [BS66; BS67; BS73]). In the
last 20 years, outstanding developments have been made by V. Peller, F. Sukochev, and
their co-authors. They play a major role in perturbation theory. A double operator
integral is an operator of the form

� A;B (� ) : S2(H ) ! S 2(H )

associated to normal operators A; B on H and a Borel function � bounded on the prod-
uct of the two spectra � (A) � � (B ) of A and B. One of the early results is the formula

f (A + K ) � f (A) =
�
� A+ K;A (f [1])

�
(K ) (4)

where K 2 S 2(H ), f is a Lipschitz function and f [1] is the divided difference of �rst or-
der of f . Among the important applications of such formula, we can mention the study
of 'Operator-Lipschitz function', that is, the space of Lipschitz functions on R which
have a Lipschitz property for functional calculus of selfadjoint operators. One the very
important results in this direction was obtained by D. Potapov and F. Sukochev who
established that any Lipschitz function is Lipschitz operator on the re�exive Schatten
classesSp; 1 < p < 1 (see [PS11]), and where the use of(4) was fundamental. This
result does not hold true in the case p = 1 and p = 1 and a counterexample was built
in [Far72].
Triple operator integrals are bilinear mappings de�ned on S2(H ) � S 2(H ) and valued
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in S2(H ). With the same kind of formula, the operator (3) can be obtained as a certain
triple operator integral. It turns out that double and triple operator integrals can be
understood as continuous linear and bilinear Schur multipliers, respectively. Indeed,
for a �nite dimensional Hilbert space H, double and triple operator integrals are noth-
ing but the classical linear and bilinear Schur multipliers which have been intensively
studied.
According to the discussion above, an idea to solve Peller's problem is to determine
in which case a triple operator integral is actually valued in S1(H ). The �rst step is to
understand that in the �nite dimensional case, that is, in which case a bilinear Schur
multiplier is valued in S1. It turns out that the S1-norm of such mappings can be com-
puted thanks the the norms of a family of linear Schur multipliers on B(Cn ). These
objects are well-known and there is description of linear Schur multipliers on B(`2)
(see e.g. [Pis96, Theorem 5.1]). This unexpected connection between Peller's problem
and linear Schur multiplier was the starting point for the resolution of the problem,
and more precisely, for the construction of a counter-example.

This thesis is organized as follow.
In Chapter 1, we de�ne several notions that will play an important role in this the-

sis, even if many of them do not appear explicitly in the statements of the main results.
We will often use tensor products as a tool, and in particular, the identi�cation of the
dual of certain tensor products of two Banach spaces is usually the key for many im-
portant results. As we already mentionned them in the �rst part of this introduction,
many questions in this thesis will be stated with Schatten classes. We will recall their
de�nition and several properties of those important spaces. The last two sections will
deal with the Lp

� -spaces which appear as the dual of Bochner spaces. In particular,
we prove in Section 1:4 important factorization properties for L1

� -spaces valued in the
space of operators that can be factorized by a Hilbert space. Those results have been
obtained in collaboration with C. Le Merdy and F. Sukochev and appear in [CMS17].

In Chapter 2, we will be interested in linear Schur multipliers. The main result con-
cerning them is a characterization of Schur multipliers on B(`2) by Grothendieck. Our
aim was to generalize this result in order to obtain a characterization of Schur multipli-
ers onB(`p; `q). It turns out that we could manage the case q � p and obtain a statement
similar to the one of Grothendieck. As we explained before, the objects appearing in
this thesis are continuous Schur multipliers. Therefore, we will de�ne more generally
continuous Schur multipliers on B(Lp; Lq). We will see that to understand them, it
is enough to understand classical Schur multipliers. We will �nish this chapter with
several new results about the inclusions between the spaces of Schur multipliers. The
article [Coi17] has been written concerning the results of this chapter.

In Chapter 3, we study bilinear Schur multipliers, in the classical and in the con-
tinuous case. After recalling their de�nitions, our concern will be the S1-boundedness
of such operators. The main results are characterizations of bilinear Schur multipliers
valued in S1 by the use of linear Schur multipliers. Those results will be the �rst and
the key step to understand and solve Peller's problem.
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Chapter 4 is dedicated to various results about multilinear operator integrals. We
�rst give a de�nition of those operators by duality, which allows us to have a more
general de�nition than the ones introduced before. As we already said, those objects
can be understood as a kind of continuous multilinear Schur multipliers. Thus, us-
ing our preceding results, we will be able to characterize triple operator integrals that
are valued in the trace class operators. In a last section we will give a necessary and
suf�cient condition for a triple operator integral to de�ne a completely bounded map
from S1 (H ) 
 S1 (H ) equipped with the Haagerup tensor product into S1 (H ). This
generalizes a result obtained in [KJT09] in the setting of continuous multilinear Schur
multipliers. The results of Sections 4:1and 4:3have been obtained in collaboration with
C. Le Merdy and F. Sukochev and the paper [CMS17] has been written about them.

Finally, Chapter 5 is the resolution of Peller's problem. We mentionned the selfad-
joint case but a similar problem can be stated in the unitary case. We will solve both
problems using the same ideas. The �rst tool will be the connection between Peller's
problems and triple operator integrals. To do so, we will study the connection between
multilinear operator integrals and perturbation theory. In particular, we give a formula
for the n � th derivative of a map of the form

t 2 R 7! f (A + tK ) � f (A)

where A and K are selfadjoint operators with K a Hilbert-Schmidt operator. This result
will generalize Formula (4) and we will obtain a Taylor formula at the order n for self-
adjoint operators. In particular, the operator (3) will appear as a certain triple operator
integral. The second tool will be the computation of the S1-norm of a bilinear Schur
multiplier by means of linear Schur multipliers which will allow us to use a counter-
example of E. B. Davies concerning the behavior of the absolute value mapping on the
spacesS1(Cn ); n 2 N. By using norm estimates in the �nite-dimensional case, we will
construct two operators A and K as a direct sum of �nite rank operators such that the
operator (3) does not belong to S1, where f is a well chosen function. The results of
Section 5:2 have been obtained in collaboration with C. Le Merdy A. Skripka. The re-
sults of Sections5:3 and 5:4 as well as those of Subsection3:3:2 have been obtained in
collaboration with C. Le Merdy, D. Potapov, F. Sukochev and A. Tomskova and two
papers [CMPST16a; CMPST16b] have been published concerning them.

3 Notations

We give here a few notations that will be used throughout this thesis. The notations
that are used later but not mentioned here are either standard or they will be given
when needed.

� T = f z 2 C : jzj = 1g will denote the unit circle of the complex plane.

� Let 1 � p < + 1 . We de�ne

`p =

(

x = ( xn )+ 1
n=1 :

1X

n=1

jxn jp < 1

)
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equipped with the norm kxkp = (
P 1

n=1 jxn jp)1=p :

� If p = + 1 , let

`1 =
�

x = ( xn )+ 1
n=1 : sup

n
jxn j < 1

�

equipped with the norm kxk1 = supn jxn j.

� If n 2 N, we denote by `n
p the n� dimensional versions of the spaces introduced

before.

� For a Hilbert space H, let H denote its conjugate space.

� The Hilbertian direct sum of any sequence (H n )n� 1 of Hilbert space will be de-
noted by

H =
1M

n=1

H n :

In this case, if for all n � 1, An is a bounded operator acting on H n , we will denote
by A =

L 1
n=1 An the operator de�ned on the domain

D(A) =
n

f hng1
n=1 2 H :

1X

n=1

kAn (hn )k2 < 1
o

;

by setting A(h) = f An (hn )g1
n=1 for any h = f hng1

n=1 in D(A).

For two Hilbert spaces H and K, we will denote by H
2
� K their Hilbertian direct

sum.

� Whenever � is a set and V � � is a subset we let � V : � ! f 0; 1g denote the
characteristic function of V.

Let X and Y be two Banach spaces.

� For 1 � p � 1 and a measure space(
 ; � ) we denote by Lp(
; X ) the Bochner
space ofp� integrable (classes) of functions f : 
 ! X .
When X = C, we simply write Lp(
) .

� B (X; Y ) is the Banach space of bounded linear operatorsT : X ! Y equipped
with the operator norm k:k de�ned by

kTk = sup
x2 X; kxk� 1

kTxk:

When Y = C, we write X � for the dual space of X .

� Let Z be a third Banach space. We letB2(X � Y; Z) be the Banach space of all
bounded bilinear operators T : X � Y ! Z , equipped with

kTk = sup
�

kT(x; y)k : x 2 X; y 2 Y; kxk � 1; kyk � 1
	

:
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� We write X 1 
 � � � 
 X n for the tensor product of n Banach spacesX 1; : : : ; X n .
When X i � L1 (
 i ) for some measure spaces(
 i ; � i ), we will often identify an
element f = f 1 
 � � � 
 f n 2 X 1 
 � � � 
 X n with an element of L1 (
 1 � : : : � 
 n )
as follows:

8t = ( t1; : : : ; tn ) 2 
 1 � : : : � 
 n ; f (t) = f 1(t1) : : : f n (tn ):

Let E � B (H ) and F � B (K ) be two operator spaces.

� For n; m 2 N� , let M n;m (E) be the space ofn � m-matrices with entries in E. For
r 2 N� , denote by ` r

2(H ) the space
L r

k=1 H. We have an identi�cation

M n;m (B(H)) ' B (`m
2 (H ); `n

2 (H )):

Hence, we may equip M n;m (E) with the norm induced by the inclusion

M n;m (E) � M n;m (B(H)):

� Let u : E ! F be a linear map. For n 2 N� , write M n;n (E) := M n (E). We consider
the mapping un : M n (E) ! M n (F ) de�ned, for x = [ eij ]1� i;j � n 2 M n (E) by

un (x) = [ u(eij )]1� i;j � n :

We say that u is completely bounded if

kukcb := sup
n

kunk < 1 ;

and we denote by CB(E; F ) the Banach space of completely bounded maps from
E into F equipped with the c.b. norm.
If for any n, un is contractive (respectively positive, resp. an isometry), we say
that u is completely contractive (resp. completely positive, resp. a complete isom-
etry).

� If H is a Hilbert space, we denote by H c = B(C; H) its column structure and by
H r = B(H ; C) its row structure. We refer e.g. to [ER00, Section 3.4] for further
informations.

� In Chapter 4, the L1� spaces will be equipped with their maximal operator space
structure (Max) for which we refer to [Pis03, Chapter 3].
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Chapter 1

Preliminaries

——————————————————————–

In this �rst chapter, we give some preliminary results that we will use all along the
thesis. First, we will give some background on the norms of tensor products. We will
de�ne several tensor norms and identify, for two Banach spaces X and Y, the dual of
X 
 Y equipped with those norms. Then, we will give a few properties of Schatten
classes. In particular, the spaces of Hilbert-Schmidt operators and trace class opera-
tors will play fundamental roles, as they appear in many important de�nitions and
results presented here. In a third section, we will de�ne the Lp

� -spaces, which are a
dual version of Bochner spaces. Finally, the last section of this chapter is of indepen-
dent interest: it describes the elements of Lp

� -spaces valued in certain tensor products.
This section will be fundamental to give a precise and concrete meaning for important
results in Chapters 3 and 4.

1.1 Tensor products

We give a brief summary of tensor product formulas to be used in the sequel.

1.1.1 Projective and injective tensor product

Let E and F be Banach spaces.

� The projective norm:

If z 2 E 
 F , the projective tensor norm ofz is de�ned by

kzk^ := inf
nX

kx i kkyi k
o

;

where the in�mum runs over all �nite families (x i ) i in E and (yi ) i in F such that

z =
X

i

x i 
 yi :

The completion E
^

 F of (E 
 F; k k^ ) is called the projective tensor product of E and

F .
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Let G be a Banach space. To anyT 2 B2(E � F; G), one can associate a linear map
eT : E 
 F ! G by the formula

eT(x 
 y) = T(x; y); x 2 E; y 2 F:

Then eT is bounded on (E 
 F; k k^ ), with k eTk = kTk, and hence the mapping T 7! eT
gives rise to an isometric identi�cation

B2(E � F; G) = B(E
^

 F; G): (1.1)

In the caseG = C, this implies that the mapping taking any functional ! : E 
 F ! C
to the operator u: E ! F � de�ned by hu(x); yi = ! (x 
 y) for any x 2 E; y 2 F , induces
an isometric identi�cation

(E
^

 F )� = B(E; F � ): (1.2)

We refer to [DU79, Chapter 8, Theorem 1 and Corollary 2] for these classical facts.
Let (
 ; � ) be a � -�nite measure space and let L1(
; F ) denote the Bochner space

of integrable functions from 
 into F . By [DU79, Chapter 8, Example 10], the natural
embedding L1(
) 
 F � L1(
; F ) extends to an isometric isomorphism

L1(
; F ) = L1(
)
^

 F: (1.3)

By (1.2), this implies
L1(
; F )� = B(L1(
) ; F � ): (1.4)

Assume now that Y = L1(
 0) where (
 0; � 0) is a � -�nite measure space. Then, an
application of Fubini's theorem gives

L1(
 ; L1(
 0)) = L1(
 � 
 0):

Using equality (1:4), we obtain an isometric w� -homeomorphic identi�cation

B(L1(
) ; L1 (
 0)) = L1 (
 � 
 0); (1.5)

and the correspondance is given by

L1 (
 � 
 0) �! B (L1(
) ; L1 (
 0)) :

 7�!
�
f 2 L1(
) 7!

Z



f (t) (t; �)d� (t)

�

For  2 L1 (
 � 
 0), denote by u the corresponding element of B(L1(
) ; L1 (
 0)) .

� The injective norm:

If z =
P

i x i 
 yi 2 X 
 Y, x � 2 X � and y� 2 Y � , we write

hz; x� 
 y� i =
X

i

x � (x i )y� (yi ):
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Then, the injective tensor norm ofz 2 X 
 Y is given by

kzk_ = sup
kx � k� 1;ky � k� 1

j hz; x� 
 y� i j :

The completion X
_

 Y of (X 
 Y;k:k_ ) is called the injective tensor product of X and Y.

In this thesis, we will often identify X � 
 Y with the �nite rank operators from X
into Y as follow. If u =

P
i x �

i 
 yi 2 X � 
 Y , we de�ne ~u : X ! Y by

~u(x) =
X

i

x �
i (x)yi ; 8x 2 X: (1.6)

Then, it is easy to check that kuk_ = k~ukB(X;Y ) .
Moreover, if Y has the approximation property (see e.g. [DFS08] for the de�nition),

[DFS08, Theorem 1.4.21] gives the isometric identi�cation

X � _

 Y = K(X; Y )

where K(X; Y ) denotes the space of compact operators fromX into Y.
Let (
 1; F1; � 1) and (
 2; F2; � 2) be two � -�nite measure spaces. Let 1 � p < 1 and

1 � q � 1 . Then Lq(
 2) has the approximation property so that we have

Lp0
(
 1)

_

 Lq(
 2) = K(Lp(
 1); Lq(
 2)) : (1.7)

Finally, if we assume that 1 < p; q < + 1 , then by [DFS03, Theorem 2.5] and(1:2),

(Lp0
(
 1)

_

 Lq(
 2)) �� = ( Lp(
 1)

^

 Lq0

(
 2)) � = B(Lp(
 1); Lq(
 2)) : (1.8)

1.1.2 Lapresté norms

Let s 2 [1; 1 ]. If x1; x2; : : : ; xn 2 X , we de�ne

ws(x i ; X ) := sup
x � 2 X � ;kx � k� 1

 
nX

i =1

j hx � ; x i i j s

! 1=s

:

Let p; q2 [1; 1 ] with
1
p

+
1
q

� 1 and take r 2 [1; 1 ] such that

1
r

=
1
p

+
1
q

� 1:

Denote by p0and q0 the conjugate of p and q. For z 2 X 
 Y, we de�ne

� p;q(z) = inf

(

k(� i ) i kr wq0(x i ; X )wp0(yi ; Y) j z =
nX

i =1

� i x i 
 yi

)

:
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Then � p;q is a norm on X 
 Y and we denote by X 
 � p;q Y its completion (see e.g. [DF93,
Proposition 12.5]).

1.1.3 Haagerup tensor product

Let E � B (H) and F � B (K) be two operators spaces. Letn 2 N� . For r 2 N� we de�ne
the matrix inner product e � f 2 M n (E 
 F ) of two elements e = [ eij ] 2 M n;r (E) and
f = [ f ij ] 2 M r;n (F ) by

e � f =

"
X

k

eik 
 f kj

#

1� i;j � n

:

We de�ne, for u 2 M n (E 
 F ),

kukh = inf fk ekkf kg

where the in�mum runs over all r 2 N� ; e = [ eij ] 2 M n;r (E); f = [ f ij ] 2 M r;n (F ) such
that u = e � f . By [ER00, Lemma 9.1.1], such factorization ofu exists.

Note that for x 2 E 
 F we have

kxkh = inf

8
<

:












X

i

ai a�
i












1=2 










X

i

b�
i bi












1=2

; x =
X

i

ai 
 bi

9
=

;
:

Then k:kh satis�es the axioms of Ruan's theorem (see e.g. [Pis03, Section 2.2]),

hence, after completion, we obtain an operator space denoted by E
h

 F .

A �rst property of the Haagerup tensor product is its associativity. Indeed, if G is
another operator space, we have, by [ER00, Proposition 9.2.7], a complete isometry

(E
h

 F )

h

 G = E

h

 (F

h

 G):

See also [Pis03, Chapter 5] for a de�nition of E1
h

 � � �

h

 EN for N operator spaces

E1; : : : ; EN .

We give now a few properties of the Haagerup tensor product that we will use in
Chapter 4.

Theorem 1.1. [ER00, Theorem 9.4.3] LetE1 andE2 be operator spaces and letH0 andH2 be
Hilbert spaces. A linear mapping

u : E1
h

 E2 ! B (H2; H0)

is completely bounded if and only if there exist a Hilbert spaceH1 and completely bounded
mappings� i : E i ! B (H i ; H i � 1) ( i = 1; 2) such that

u(x1 
 x2) = � 1(x1)� 2(x2):
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In this case we can choose� i such that

kukcb = k� 1kcbk� 2kcb:

Remark 1.2. WhenH0 = H2 = C we can reformulate as follows: a linear functionalu :

E1
h

 E2 ! C is bounded (and therefore completely bounded) if and only if there exist a Hilbert

spaceH , � : E1 ! (Hc)� linear and� : E2 ! Hc antilinear,� and� completely bounded such
that

u(x1; x2) = h� (x1); � (x2)i :

Recall the de�nition of a quotient map.

De�nition 1.3. Let X and Y be Banach spaces. A maps : X ! Y is a quotient map ifs
is surjective and for ally 2 Y with kyk < 1, there existsx 2 X such thatkxk < 1 and
s(x) = y. This is equivalent to the fact that the injective mapŝ : X= ker(s) ! Y induced bys
is a surjective isometry.

If E1 � E2 are operator spaces, we equipE2=E1 with the quotient operator space
structure (see e.g. [Pis03, Section 2.4]). WhenE and F are operator spaces, a quotient
map u : E ! F is said to be a complete metric surjectionif the associated mapping
û : E=ker(u) ! F is a completely isometric isomorphism.

Proposition 1.4. LetE1; E2; F1; F2 be operator spaces.

(i) If qi : E i ! Fi is completely bounded, then

q1 
 q2 : E1 
 E2 ! F1
h

 F2

de�ned by(q1 
 q2)(e1 
 e2) = q1(e1) 
 q2(e2) extends to a completely bounded map

q1 
 q2 : E1
h

 E2 ! F1

h

 F2:

(ii) If E i � Fi completely isometrically, thenE1
h

 E2 � F1

h

 F2 completely isometrically.

(iii) If qi : E i ! Fi is a complete metric surjection, thenq1 
 q2 : E1
h

 E2 ! F1

h

 F2 is also

one.

The second property is called the injectivity and the third one the projectivity of the Haagerup
tensor product.

Corollary 1.5. Let X and Y be operator spaces and letE � X; F � Y be subspaces. Let
p : X ! X=E andq : Y ! Y=F be the canonical mappings. They induce a mapping

p 
 q : X
h

 Y ! X=E

h

 Y=F:

Then
ker(p 
 q) = E 
 Y + X 
 F :
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Proof. Write N = E 
 Y + X 
 F . First note that we easily obtain the �rst inclusion

N � ker(p 
 q):

Therefore, to show the result, it is enough to show that

N ? � ker(p 
 q)? :

Let � : X
h

 Y ! C be such that � jN = 0. By Remark (1:2), there exist a Hilbert space

H , � : X ! (Hc)� linear and � : Y ! Hc antilinear, � and � completely bounded such
that

� (x; y) = h� (x); � (y)i ; x 2 X; y 2 Y:

Let K = � (X ) and denote by PK the orthogonal projection onto K . Then we have, for
any x and y,

� (x; y) = hPK � (x); � (y)i = hPK � (x); PK � (y)i :

Thus, by changing � into PK � and � into PK � , we can assume that � has a dense
range. Similarly, setting L = � (Y) and considering PL , we may assume that � has a
dense range.

By assumption, for any f 2 F and any x 2 X , we have

0 = � (x; f ) = h� (x); � (f )i :

This implies that � jF = 0. Similarly, we show that � jE = 0. Thus, we can consider

b� : X=E ! (Hc)� and b� : Y=F ! Hc

such that � = b� � p and � = b� � q and where X=E and Y=F are equipped with their

quotient structure. This allows to de�ne b� : X=E
h

 Y=F ! C by

b� (s; t) =
D

b� (s); b� (t)
E

:

Then � = b� � (p 
 q), so that � 2 ker(p 
 q)? .

Proposition 1.6. [ER00, Theorem 9.3.3] LetE be an operator space and letH andK be Hilbert
spaces. For anyT 2 CB(E; B(H ; K)) we de�ne a mapping

� T : K � 
 E 
 H ! C

by setting
� T (k� 
 e 
 h) = hT(e)h; ki :

Then, the mappingT 7! � T induces a complete isometry

CB(E; B(H ; K)) =
�

(Kc)� h

 E

h

 H c

� �

:
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1.1.4 Dual norm

Let M � X and N � Y be �nite dimensional subspaces (in short, f.d.s). If u =
P n

i =1 x i 

yi 2 M 
 N and v =

P m
j =1 x �

j 
 y�
j 2 M � 
 N � we set

hv; ui =
X

i;j



x �

j ; x i
� 


y�
j ; yi

�
:

Let � be a tensor norm on tensor products of �nite dimensional spaces. We de�ne, for
z 2 M 
 N ,

� 0(z; M; N ) = sup fj hv; ui j j v 2 M � 
 N � ; � (v) � 1g:

Now, for z 2 X 
 Y, we set

� 0(z; X; Y ) = inf f � 0(z; M; N ) j M � X; N � Y f.d.s.; z 2 M 
 N g:

� 0de�nes a tensor norm on X 
 Y, called the dual norm of � .
In the sequel, we will write � 0(z) instead of � 0(z; X; Y ) for the norm of an element

z 2 X 
 Y when there is no possible confusion.

1.1.5 (p; q)� Factorable operators.

If T 2 B(X; Y � ) and � =
P

i x i 
 yi 2 X 
 Y, then in accordance with (1:2) we set

hT; � i =
X

i

hT(x i ); yi i :

De�nition 1.7. Let 1 � p; q � 1 such that
1
p

+
1
q

� 1. Let T 2 B(X; Y � ). We say that

T 2 L p;q(X; Y � ) if there exists a constantC � 0 such that

8� 2 X 
 Y; j hT; � i j � C� 0
p;q(� ): (1.9)

In this case, we writeLp;q(T) = inf f C j C satisfying(1:9)g:
Then(L p;q(X; Y � ); Lp;q) is a Banach space, called the space of(p; q)� Factorable operators.

For a general de�nition of the spaces L p;q(X; Y ) (including the case when the range is
not a dual space), see [DF93, Chapter 17].

SinceY � is 1-complemented in its bidual, [DF93, Theorem 18.11] gives the following
result.

Theorem 1.8. Let 1 � p; q � 1 such that
1
p

+
1
q

� 1. LetT 2 B(X; Y � ). The following two

statements are equivalent :

(i) T 2 L p;q(X; Y � ).

(ii) There are a measure space(
 ; � ) (a probability space when
1
p

+
1
q

> 1) and operators

R 2 B(X; L q0
(� )) andS 2 B(Lp(� ); Y � ) such thatT = S � I � R
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X T //

R
��

Y �
OO

S

Lq0
(� ) �•

I
//Lp(� )

whereI : Lq0
(� ) ! Lp(� ) is the inclusion mapping (well de�ned becauseq0 � p).

In this case,Lp;q(T) = inf kSkkRk over all such factorizations.

Remark 1.9. Here we consider the case when
1
p

+
1
q

= 1. Denote byp0 the conjugate exponent

of p. We haveT 2 L p;p0(X; Y � ) if and only if there are a measure space(
 ; � ), operators
R 2 B(X; L p(� )) andS 2 B(Lp(� ); Y � ) such thatT = SR

X T //

R
��

Y �

Lp(� )

S

CC

We usually write� p(X; Y � ) instead ofL p;p0(X; Y � ) and the norm of an elementT 2 � p(X; Y � )
is denoted by
 p(T). Such operators are calledp� factorable. It follows from the very de�nition
of (p; q)� Factorable operators that� p(X; Y � ) is a dual space whose predual isX 
 � p;p 0 Y.

If X and Y are �nite dimensional, it follows from the very de�nition of the dual
norm that

X 
 � 0
p;q

Y = ( X � 
 � p;q Y � )� :

The next theorem describes, for any Banach spacesE and F , the elements of the space
(E 
 � p;q F )� .

Theorem 1.10. [DF93, Theorem 19.2] LetE andF be Banach spaces. Letp; q 2 [1; 1 ] with
1
p

+
1
q

� 1andK � BE � andL � BF � weak�� -compact norming sets for E and F, respectively.

For � : E 
 F ! C the following two statements are equivalent:

(i) � 2 (E 
 � p;q F )� .

(ii) There are a constantA � 0 and probability measures� onK and� onL such that for all
x 2 E andy 2 F ,

j h�; x 
 yi j � A
� Z

K
j hx � ; xi j q0

d� (x � )
� 1=q0 � Z

L
j hy� ; yi j p0

d� (y� )
� 1=p0

(1.10)

(if the exponent is1 , we replace the integral by the norm).

In this case,k� k(E 
 � p;q F ) � = inf f A j A as in (ii)g :

This theorem will allow us to describe the predual of L p;q(`n
1 ; `m

1 ), n; m 2 N. Let us
apply the previous theorem with E = `n

1 and F = `m
1 . Take T 2 `n

1 
 � 0
p;q

`m
1 = ( `n

1 
 � p;q
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`m
1 )� and let

T =
nX

i =1

mX

j =1

T(i; j )ei 
 ej

be a representation of T. In the previous theorem, we can take K = f 1; 2; : : : ; ng and
L = f 1; 2; : : : ; mg. In this case, a probability measure � on K is nothing but a sequence
� = ( � 1; : : : ; � n ) where, for all i , � i := � (f ig) � 0 and

P
i � i = 1. Similarly, � =

(� 1; : : : ; � m ) where, for all i , � i � 0 and
P

i � i = 1. In this case, the inequality (1:10)
means that for all sequences of complex numbersx = ( x i )n

i =1 ; y = ( yj )m
i = j ,

�
�
�
�
�

nX

i =1

mX

j =1

T(i; j )x i yj

�
�
�
�
�

� A

 
nX

k=1

jxk jq
0
� k

! 1=q0  
mX

k=1

jyk jp
0
� k

! 1=p0

:

Set � k = xk � 1=q0

k , � k = yk � 1=p0

k and de�ne, for 1 � i � n; 1 � j � m, c(i; j ) such
that T(i; j ) = c(i; j )� 1=q0

i � 1=p0

j (we can assume� i > 0 and � j > 0). Then, the previous
inequality becomes �

�
�
�
�

nX

i =1

mX

j =1

c(i; j )� j � i

�
�
�
�
�

� Ak� k`n
q0

k� k`m
p0

:

This means that the operator c : `n
q0 ! `m

p whose matrix is [c(i; j )]1� j � m;1� i � n has a
norm smaller than A. Moreover, if we see T as a mapping from `n

1 into `m
1 the relation

between T and c means that T admits the following factorization

`n
1

T //

d�

��

`m
1OO

d�

`n
q0 c

//`m
p

where d� and d� are the operators of multiplication by � = ( � 1=q0

1 ; : : : ; � 1=q0

n ) and � =
(� 1=p0

1 ; : : : ; � 1=p0

m ). Those operators have norm 1.

Therefore, it is easy to check that

kTk(`n
1 
 � p;q `m

1 ) � = inf fk ck j T = d� � c � d� g: (1.11)

The elements of (`n
1 
 � p;q `m

1 )� are called (q0; p0)� dominated operators. For more infor-
mations about this space in the in�nite dimensional case (it is the predual of L p;q), see
for instance [DF93, Chapter 19].

By (1:11) and the fact that L p;q(`n
1 ; `n

1 ) = ( `n
1 
 � 0

p;q
`m

1 )� , we get the following result.

Proposition 1.11. Let v = [ vij ] : `n
1 ! `m

1 . Then

Lp;q(v) = sup jTr(vu)j
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where the supremum runs over allu : `m
1 ! `n

1 admitting the factorization

`m
1

u //

d�

��

`n
1OO
d�

`m
p0 c

//`n
q

with kd� k � 1; kd� k � 1 andkck � 1.
Equivalently,

Lp;q(v) = sup

( �
�
�
�
�

mX

i =1

nX

j =1

vij cji � i � j

�
�
�
�
�

j kc : `m
p0 ! `n

qk � 1; k� k`m
p0

� 1; k� k`n
q0

� 1

)

:

1.2 Schatten classes

1.2.1 De�nition and duality

Let H ; K be Hilbert spaces and let tr be the trace on B(K). We let, for 1 � p <
+ 1 ; Sp(K; H) denote the Schatten classes class of orderp equipped with the norm k:kp

de�ned for an operator T : K ! H by

kTkp = tr( jTjp)1=p;

where jTj = ( T � T)
1
2 . We will also denote by S1 (K; H) the space of compact operators

from K into H .
We recall the duality theorem for Schatten classes.

Theorem 1.12. Let1 < p < + 1 and letq to be the conjugate exponent ofp. Then

Sq(H ; K) �! S p(K; H)�

T 7�! tr( T:)
and B(H ; K) �! S 1(K; H)�

T 7�! tr( T:)

are isometric isomorphisms.

For a proof of this theorem and several properties of Schatten classes, see for in-
stance [Zhu90].

We will mainly work with S1(K; H), S2(K; H) and S1 (K; H). Note that S1(K; H),
the trace class operators, is the smallest space among all Schatten classes. This comes
from the fact that, for all 1 � p1 � p2 < + 1 ,

k:kp2 � k :kp1 :

For any h1; h2 in H , we may identify h1 
 h2 with the operator h 7! hh; h1i h2 from H
into H . This yields an identi�cation of H 
 H with the space of �nite rank operators on
H, and this identi�cation extends to an isometric isomorphism

H b
H = S1(H ); (1.12)
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see e.g. [Pal01, p. 837].

Using operator space theory and the Haagerup tensor product introduced in Sub-
section 1:1:3, we have, by [ER00, Proposition 9.3.4], a complete isometry

(Kc)� h

 Hc = S1(K; H): (1.13)

Similarly, we have a complete isometry

H c
h

 (Kc)� = S1 (K; H): (1.14)

Note that S2(K; H) is a Hilbert space, for the inner product

hS; Ti := tr( ST� );

and elements of S2(K; H) are called Hilbert-Schmidt operators.

Remark 1.13. Let (
 1; � 1) and(
 2; � 2) be two� -�nite measure spaces. IfJ 2 L2(
 1 � 
 2),
the operator

X J : L2(
 1) �! L2(
 2)

r 7�!
Z


 1

J (t; :)r (t) d� 1(t)

(1.15)

is a Hilbert-Schmidt operator andkX J k2 = kJk2. Moreover, any element ofS2(L2(
 1); L2(
 2))
has this form (see e.g. [Woj91]). We summarize these facts by writing an isometric identi�ca-
tion

L2(
 1 � 
 2) = S2(L2(
 1); L2(
 2)) : (1.16)

In this thesis, we will often work with the �nite dimensional versions of the Hilbert-
Schmidt and the trace class operators. Forn � 2, denote by S1

n the space of n � n
matrices equipped with the trace norm and by S2

n the space ofn � n matrices equipped
with the Hilbert-Schmidt norm.

1.2.2 Tensor products of Hilbert space operators and trace duality

Let H ; K be Hilbert spaces.
We may consider

B(H ; K) � B (H
2
� K ) (1.17)

by identifying any S 2 B(H ; K) with the matrix
�

0 0
S 0

�
. This is an isometric inclusion.

Then for any von Neumann algebra M , we let

M 
B (H ; K) (1.18)

be thew� -closure of M
B (H ; K) in the von Neumann algebra M 
B (H
2
�K ). Likewise

for any two other Hilbert spaces H 0 and K0 we let B(H 0; K0)
B (H ; K) denote the w� -

closure of B(H 0; K0) 
 B (H ; K) in the von Neumann algebra B(H 0
2
� K 0)
B (H

2
� K ).



20 Chapter 1. Preliminaries

Let H 0
2

H denote the Hilbertian tensor product of H 0and H. As is well-known, the

natural embedding B(H 0; K0) 
 B (H ; K) � B (H 0
2

 H ; K0

2

 K ) extends to an isometric

identi�cation
B(H 0; K0)
B (H ; K) = B(H 0 2


 H ; K0 2

 K ): (1.19)

For any T 2 S 1(K; H) and T0 2 S 1(K0; H 0), the operator T0 
 T belongs to the

spaceS1(K0
2

 K ; H 0

2

 H ). This yields an embedding of the tensor product S1(K0; H 0) 


S1(K; H) into S1(K0
2

 K ; H 0

2

 H ). Let 
 denote the norm on S1(K0; H 0) 
 S 1(K; H)

induced by this embedding. Namely for any �nite families (Tj ) j in S1(K; H) and (T0
j ) j

in S1(K0; H 0), 

� P

j T0
j 
 Tj

�
is the trace norm of the operator K0

2

 K ! H 0

2

 H takingP

i x0
i 
 x i to the sum

P
i;j T0

j (x
0
i ) 
 Tj (x i ) for all �nite families (x i ) i in K and (x0

i ) i in K0.

Next we let S1(K0; H 0)



 S 1(K; H) denote the completion of the resulting normed space�

S1(K0; H 0) 
S 1(K; H); 

�
. Since �nite rank operators are dense in trace class operators,

the algebraic tensor product S1(K0; H 0) 
S 1(K; H) is dense in S1(K0
2

K ; H 0

2

H ). Hence

we actually have an isometric identi�cation

S1(K0; H 0)



 S 1(K; H) = S1(K0 2


 K ; H 0 2

 H ):

Then trace duality given in Theorem 1:12yields an identi�cation
�
S1(K0; H 0)




S 1(K; H)

� �
=

B(H 0
2

 H ; K0

2

 K ) and hence, by (1.19), we have

�
S1(K0; H 0)




 S 1(K; H)

� �
= B(H 0; K0)
B (H ; K): (1.20)

For any � 2 K and � 2 H , we let � 
 � : K ! H denote the operator taking any z 2 K
to hz; � i � . Then K 
 H identi�es with the space of �nite rank operators from K into H .

We let � : S2(H 0; H ) 
 S 2(K; K0) ! S 1(K0; H 0)



 S 1(K; H) be the unique linear mapping

satisfying

�
�
(� 0 
 � ) 
 (� 
 � 0)

�
= � 0 
 � 0 
 � 
 �; � 2 H ; � 0 2 H 0; � 2 K ; � 0 2 K 0:

Lemma 1.14. The mapping� extends to an isometry (still denoted by)

� : S2(H 0; H )
^

 S 2(K; K0) �! S 1(K0; H 0)




 S 1(K; H):

We will prove this proposition by approximation. We �rst need the �nite dimen-
sional version of this result.

We let E ij denote the standard matrix units on M n for 1 � i; j � n. We regard
M n2 as the space of matrices with columns and rows indexed by f 1; : : : ; ng2. Thus
we write E(i;k );(j;l ) for its standard matrix units. Then we let M n 
 min M n denote the
minimal tensor product of two copies of M n . According to the de�nition of 
 min (see
e.g. [Tak79, p. IV.4.8]), the isomorphism J0 : M n 
 min M n ! M n2 given by

J0(E ij 
 Ekl ) = E(i;k );(j;l ) ; 1 � i; j; k; l � n; (1.21)
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is an isometry.
Note that S1

n
� is isometrically isomorphic to M n through the duality pairing

S1
n � M n ! C; (A; B ) 7! Tr

�
tAB

�
: (1.22)

With this convention (note the use of the transpose), the dual basis of (E ij )1� i;j � n is
(E ij )1� i;j � n itself. We have

�
S1

n 
 
 S1
n

� �
= M n 
 min M n ; (1.23)

through the duality pairing (1.22) applied twice.

Lemma 1.15. The isomorphismJ : S2
n

b
 S2
n ! S1

n 
 
 S1
n given by

J (E ik 
 E jl ) = E ij 
 Ekl ; 1 � i; j; k; l � n;

is an isometry.

Proof. According to the equality







X

i;k

cik E ik








2
=

� X

i;k

jcik j2
� 1

2
; cik 2 C;

we can naturally identify S2
n with either `2

n2 or its conjugate space. Then applying the
identity (1.12) with H = `2

n2 , we obtain that the mapping J1 : S2
n

b
 S2
n ! S1

n2 given by

J1(E ik 
 E jl ) = E(i;k );(j;l ) ; 1 � i; j; k; l � n;

is an isometry.
Now let J2 : S1

n 
 
 S1
n ! S1

n2 be the isomorphism given by

J2(E ij 
 Ekl ) = E(i;k );(j;l ) ; 1 � i; j; k; l � n:

Taking into account the identity (1.23), we see that J � 1
2 is the adjoint of J0. Conse-

quently, J � 1
2 is an isometry. Since J = J � 1

2 J1, we deduce that J is an isometry as
well.

Proof of Proposition1:14. By approximation, we can assume that the four Hilbert spaces
H; H 0; K; K ' are �nite dimensional, say of dimension n � 1. In this case, S2(H 0; H )
and S2(K; K0) identify with S2

n , the space ofn � n matrices equipped with the Hilbert-
Schmidt norm. Likewise S1(K; H) and S1(K0; H 0) identify with S1

n , the space ofn � n
matrices equipped with the trace norm. Then under these identi�cations, � : S2

n 
S 2
n !

S1
n 
 S 1

n is given by

�( Eki 
 E jl ) = E ij 
 Ekl ; 1 � i; j; k; l � n:

Thefore, since the transposition is an isometry of S2
n , the result follows from Lemma

1:15.
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1.3 Lp
� -spaces and duality

Let (
 ; � ) be a� -�nite measure space and let E be a Banach space. For any1 � p � + 1 ,
we let Lp(
; E) denote the classical Bochner space of measurable functions' : 
 ! E
(de�ned up to almost everywhere zero functions) such that the norm function k' (� )k
belongs to Lp(
) (see e.g. [DU79, Chapter II]).

We will consider a dual version. Assume that E is separable. A function � : 
 ! E �

is said to be w� -measurable if for all x 2 E, the function t 2 
 7! h� (t); xi is measurable.
In this case, the function t 2 
 7! k � (t)k is measurable. Indeed, if (xn )n is a dense
sequence in the unit sphere of E, then k� (:)k = supn jh� (:); xn ij is the supremum of a
sequence of measurable functions, hence is measurable.

Let 1 � q � + 1 . By de�nition, Lq
� (
; E � ) is the space of all w� -measurable � : 
 !

E � such that k� (:)k 2 Lq(
) , after taking quotient by the functions which are equal to 0
almost everywhere. We equip this space with

k� kq = kk� (:)kkL q (
) :

Then (Lq
� (
; E � ); k:kq) is a Banach space and by construction,Lq(
; E � ) � Lq

� (
; E � )
isometrically.

Suppose that 1 � p < + 1 and let 1 < q � + 1 be the conjugate exponent of p. For
any � 2 Lq

� (
; E � ) and any ' 2 Lp(
; E), the function t 7! h� (t); ' (t)i is integrable,
which yields a duality pairing

h�; ' i :=
Z



h� (t); ' (t)i d� (t) : (1.24)

Moreover by Hölder's inequality, we have

jh�; ' ij � k � kqk' kp: (1.25)

Theorem 1.16. The duality pairing (1.24) induces an isometric isomorphism

Lp(
; E)� = Lq
� (
; E � ): (1.26)

The above theorem is well-known and has extensions to the non separable case.
However we havent found a satisfactory reference for this simple (=separable) case
and provide a proof below for the sake of completeness. See [DU79, Chapter IV] and
the references therein for more information.

Recall that we have L1(
; E)� = B(L1(
) ; E � ) by (1.4). Hence in the casep = 1, the
above theorem yields an isometric identi�cation

L1
� (
; F � ) = B(L1(
) ; F � ); (1.27)

a classical result going back to [DP40, Theorem 2.1.6].

Proof of Theorem 1.16.The inequality (1.25) yields a contractive map � : Lq
� (
; E � ) !

Lp(
; E)� . Our aim is to show that � is an isometric isomorphism.
According to the separability assumption there exists a nondecreasing sequence

(En )n� 1 of �nite dimensional subspaces of E such that [ nEn is dense in E. SinceEn is
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�nite dimensional, Lq
� (
 ; E �

n ) = Lq(
 ; E �
n ) and En satis�es the conclusion of the theo-

rem to be proved, that is,
Lp(
; En )� = Lq(
; E �

n ) (1.28)

isometrically (see [DU79, Chapter IV]). In the sequel we regard Lp(
; En ) as a subspace
of Lp(
; E) in a natural way.

We �rst note that � is 1-1. Indeed if � 2 Lq
� (
; E � ) is such that � (� ) = 0 , then for any

n � 1, � (t) jEn = 0 a.-e. by (1.28). Hence� (t) j[ n En = 0 a.-e., which implies that � (t) = 0
a.-e..

Now let � 2 Lp(
; E)� , with k� k � 1. Applying (1.28) to the restriction of � to
Lp(
; En ) we obtain, for any n � 1, a measurable function � n : 
 ! E �

n such that
k� nkq � 1 and

8 ' 2 Lp(
) 
 En ; � (' ) =
Z



h� n (t); ' (t)i d� (t) :

We may assume that for any n � 1, we have

8 t 2 
 ; � n+1 (t) jEn
= � n (t): (1.29)

Indeed by construction, � n+1 jEn
= � n a.-e. and the family (� n )n� 1 is countable so we

can modify all the functions � n on a common negligible set to get (1.29).
It follows that for any t 2 
 , (k� n (t)k)n� 1 is a nondecreasing sequence, so we can

de�ne a measurable � : 
 ! [0; 1 ] by

� (t) = lim
n

k� n (t)k; t 2 
 :

If q < 1 we may write
Z



� (t)q d� (t) = lim

n

Z



k� n (t)kq d� (t) � 1;

by the monotone convergence Theorem. This implies that � is a.-e. �nite. If q = 1 , the
fact that k� nk1 � 1 for any n � 1 implies that � (t) � 1 for a.-e. t 2 
 . Thus in any case,
there exists a negligible subset
 0 � 
 such that � (t) < 1 for any t 2 
 n 
 0.

If t 2 
 n 
 0, then by (1.29) and the density of [ nEn , there exists a unique element
of E � , that we call � (t), such that

8 n � 1; 8 x 2 En ; h� (t); xi = h� n (t); xi :

Next we set � (t) = 0 for any t 2 
 0. We thus have a function � : 
 ! E � .
Let x 2 E and let (x j ) j be a sequence of[ nEn converging to x. Then h� (� ); x j i !

h� (� ); xi pointwise. Moreover for any j , the function h� (� ); x j i is measurable by con-
struction, hence h� (� ); xi is measurable. Thus� is w� -measurable.

Now from the de�nition of � , we see that� and � (� ) coincide on Lp(
) 
 En for any
n � 1. Consequently, � = � (� ). Moreover k� kq = lim n k� nkq � 1.

This proves that � is a metric surjection, and hence an isometric isomorphism.

Let E and F be two separable Banach spaces. Then their projective tensor product

E
^

 F is separable. Recall that its dual space is equal toB(E; F � ). Whenever � : 
 !
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B(E; F � ) is a w� -measurable function, then for any x 2 E, the function T� (x) : 
 ! F �

de�ned by �
T� (x)

�
(t) =

�
� (t)

�
(x); t 2 
 ; (1.30)

is w� -measurable.

Corollary 1.17. The mapping� 7! T� given by (1.30) induces an isometric isomorphism

B(E; L 1
� (
 ; F � )) = L1

� (
; B(E; F � )) :

Proof. By Theorem 1.16 for p = 1, and by (1.2) and (1.3), we have isometric isomor-
phisms

B(E; L 1
� (
; F � )) =

�
E

^

 L1(
; F )

� �

=
�
E

^

 L1(
)

^

 F

� �

= L1(
; E
^

 F )�

= L1
� (
; B(E; F � )) :

It is easy to check that the correspondence is given by (1:30).

Remark 1.18. We already noticed thatLq
� (
; E � ) = Lq(
; E � ) whenE is �nite dimensional.

It turns out that for a general Banach spaceE, the equalityLq
� (
; E � ) = Lq(
; E � ) is equiv-

alent toE � having the Radon-Nikodym property, see e.g. [DU79, Chapter IV]. All Hilbert
spaces (more generally all re�exive Banach spaces) have the Radon-Nikodym property. Later on
we will use this property that for any separable Hilbert spaceH and any1 � q � 1 , we have

Lq
� (
; H ) = Lq(
; H ):

Let E be a Banach space with the Radon-Nikodym property. In this case, Remark
1:18ensures that

L1(
 ; E)� = L1 (
 ; E � ):

Then equality (1:4) implies that

L1 (
 ; E � ) = B(L1(
) ; E � ); (1.31)

and the isometric isomorphism is given by

L1 (
 ; E � ) �! B (L1(
) ; E � ):

g 7�!
�
f 2 L1(
) 7!

Z



f (t)g(t)d� (t)

�

Let H be a separable Hilbert space. It is well-known that the natural embedding of
L1 (
) 
B (H) into L1

� (
; B(H)) extends to an isometric and w� -homeomorphic identi-
�cation L1 (
) 
B (H)) = L1

� (
; B(H)) (see [Sak98, Theorem 1.22.13]). Using de�nition
(1.18), we show that this remains true if B(H) is replaced by B(H ; K):

Lemma 1.19. Let H ; K be any two separable Hilbert spaces. Then the embedding ofL1 (
) 

B(H ; K) into L1

� (
; B(H ; K)) extends to an isometric andw� -homeomorphic identi�cation

L1 (
) 
B (H ; K) = L1
� (
; B(H ; K)):
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Proof. Let H = H
2
� K . We regard L1 (
) 
B (H ; K) and L1

� (
; B(H ; K)) as subspaces of
L1 (
) 
B (H) and L1

� (
; B(H)), respectively. Further we use the identity L1 (
) 
B (H) =
L1

� (
; B(H)) mentioned above. The spaceL1
� (
; B(H ; K)) is a w� -closed subspace of

the dual space L1
� (
; B(H)) hence we haveL1 (
) 
B (H ; K) � L1

� (
; B(H ; K)).
Conversely, let � 2 L1

� (
; B(H ; K)). Let T : L1(
) ! B (H ; K) be associated to�
by the identi�cation (1.27). Consider a net (P� )� � B (L1(
)) of �nite rank contrac-
tive projections, converging strongly to the identity map. Write T� = TP� and let
� � 2 L1

� (
; B(H ; K)) be associated toT� for any �. SinceT� is �nite rank, � � belongs
to L1 (
) 
 B (H ; K). Hence to show that � 2 L1 (
) 
B (H ; K), it suf�ces to check that
� � ! � in the w� -topology of L1

� (
; B(H ; K)). Recall that the latter space is the dual

space ofL1(
)
^

 S 1(K; H). For any ' in the algebraic tensor product L1(
) 
 S 1(K; H),

we have
h� � ; ' i �!

� !1
h�; ' i

by the de�nition of � � . SincekP� k � 1, we have k� � k1 � k � k1 for any �, hence the

above convergence result holds true as well for any ' 2 L1(
)
^

 S 1(K; H).

Remark 1.20. LetE1; E2 be two Banach spaces and letU : E �
1 ! E �

2 be aw� -continuous map.
For any� 2 L1

� (
; E �
1), the composition mapU � � : 
 ! E �

2 belongs toL1
� (
; E �

2) and the
mapping� 7! U � � is a bounded operator fromL1

� (
; E �
1) into L1

� (
; E �
2), whose norm is

equalkUk. It is easy to check that this mapping isw� -continuous. If furtherU is an isometry,
then� 7! U � � is an isometry as well.

1.4 Measurable factorization in L1
� (
; � 2(E; F � ))

1.4.1 The main result

The main purpose of this section is to prove Theorem 1.21 below. This result will be
applied in Subsection 1.4.2 (and in Subsection3:3:2) to the study of continuous Schur
multipliers (see Chapter 2 for the de�nition).

We will say that a measure space(
 ; � ) is separable whenL2(
 ; � ) is separable. This
implies that (
 ; � ) is � -�nite and moreover, Lp(
 ; � ) is separable for any 1 � p < 1 .

It follows from Remark 1:9 that for any separable Banach spacesE; F , the space
� 2(E; F � ) is a dual space with a separable predual. If H is a separable Hilbert space,
then B(E; H ) and B(F; H ) are also dual spaces with separable predual.

Theorem 1.21. Let (
 ; � ) be a separable measure space and letE; F be two separable Banach
spaces. Let� 2 L1

�

�

; � 2(E; F � )

�
. Then there exist a separable Hilbert spaceH and two

functions
� 2 L1

�

�

; B(E; H )

�
and � 2 L1

�

�

; B(F; H )

�

such thatk� k1 k� k1 � k � k1 and for any(x; y) 2 E � F ,


[� (t)](x); y

�
=



[� (t)](x); [� (t)](y)

�
; for a.-e.t 2 
 : (1.32)

We will need two lemmas, in which (
 ; � ) denotes an arbitrary � -�nite measure
space.
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The �rst one is a variant of the classical classi�cation of abelian von Neumann al-
gebras. For any� 2 L1 (
) , and any Hilbert space H , we let M � : L2(
; H ) ! L2(
; H )
denote the multiplication operator taking any ' 2 L2(
; H ) to �' .

Lemma 1.22. Let H be a separable Hilbert space and let� : L1 (
) ! B (H) be aw� -
continuous� -representation. There exist a separable Hilbert spaceH and an isometric em-
bedding� : H ,! L2(
; H ) such that for any� 2 L1 (
) ,

�� (� ) = M � �:

Proof. Since� is w� -continuous, there exists a measurable subset
 0 � 
 such that the
range of � is isomorphic to L1 (
 0) in the von Neumann algebra sense and � coincides
with the restriction map. It therefore follows from [Dav96, Theorem II.3.5] that there
exist a measurable partition f 
 n : 1 � n � 1g of 
 0and a unitary operator

� 1 : H �! � 2
1� n�1 L2(
 n ; `2

n )

such that for any � 2 L1 (
) , � 1� (� )� �
1 coincides with the multiplication by � . (Note

that in the above decomposition, the index n may be �nite or in�nite and the notation
`2

1 stands for `2.) Let

H =
2
� 1� n�1 `2

n

and consider the canonical embedding

� 2 : � 2
1� n�1 L2(
 n ; `2

n ) �! L2(
; H ):

Then � = � 2� 1 satis�es the lemma.

It is well-known that for any Hilbert space H , the commutant of

L1 (
) ' L1 (
) 
 I H � B (L2(
); H )

coincides with L1 (
) 
 B (H ). The next statement is a generalization of this result to
the case whenH is replaced by Banach spaces.

We consider two separable Banach spacesW1; W2. Note that B(W1; W �
2 ) is a dual

space with separable predual. We say that a linear map

T : L2(
; W1) �! L2
� (
; W �

2 )

is a module map provided that

8 ' 2 L2(
; W1); 8 � 2 L1 (
) ; T(�' ) = �T (' ):

Next we generalize the notion of multiplication by an L1 -function as follows. For any
� 2 L1

�

�

; B(W1; W �

2 )
�
, we de�ne a multiplication operator

M � : L2(
; W1) �! L2
� (
; W �

2 ) (1.33)

by setting �
M � (' )

�
(t) = [�( t)]( ' (t)) ; t 2 
 ;
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for any ' 2 L2(
; W1). Indeed it is easy to check that the function in the right-hand
side of the above equality belongs to L2

� (
; W �
2 ). Moreover

kM � k = k� k1 :

Each multiplication operator M � is a module map, as we have

M � (�' ) = M � � (' ) = �M � (' )

for any � 2 L1 (
) . The following lemma is a converse.

Lemma 1.23. LetT : L2(
; W1) ! L2
� (
; W �

2 ) be a module map. Then there exists a function
� 2 L1

�

�

; B(W1; W �

2 )
�

such thatT = M � .

Proof. In the scalar case(W1 = W2 = C) this is an elementary result; the proof consists
in reducing to this scalar case.

We de�ne a bilinear map bT : W1 � W2 ! B (L2(
)) by the following formula. For
any w1 2 W1, w2 2 W2 and x 2 L2(
) , we set

� bT(w1; w2)
�
(x) =

�
t 7!


�
T(x 
 w1)

�
(t); w2

�	
:

Recall the identi�cation L2
� (
; W �

2 ) = L2(
; W2)� from Theorem 1.16. If we consider T
as a map from L2(
; W1) into L2(
; W2)� , then we have



T(x 
 w1); y 
 w2

�
=

Z




� � bT(w1; w2)
�
(x)

�
(t) y(t) d� (t) (1.34)

for any w1 2 W1, w2 2 W2, x 2 L2(
) and y 2 L2(
) .
Further for any � 2 L1 (
) and x 2 L2(
) , we have

� bT(w1; w2)
�
(�x ) =


�
T(� (x 
 w1))

�
(� ); w2

�

=


� (� )

�
T(x 
 w1)

�
(� ); w2

�

= �
� bT(w1; w2)

�
(x);

becauseT is a module map. Hence bT(w1; w2) is a module map.
Let us identify L1 (
) with the von Neumann subalgebra of B(L2(
)) consisting of

multiplication operators. The above property shows that bT(w1; w2) is such a multipli-
cation operator for any w1 2 Z1 and w2 2 Z2. Hence we may actually regard bT as a
bilinear map

bT : W1 � W2 �! L1 (
) :

Now observe that applying (1.1), (1.2) and (1.27), we have isometric identi�cations

B2(W1 � W2; L1 (
)) = B(W1
^

 W2; L1 (
))

= B(L1(
) ; (W1
^

 W2)� )

= B(L1(
) ; B(W1; W �
2 ))

= L1
�

�

; B(W1; W �

2 )
�
:
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Let � 2 L1
�

�

; B(W1; W �

2 )
�

be corresponding to bT in this identi�cation. Then we have



[�( t)](w1); w2

�
=

� bT(w1; w2)
�
(t); w1 2 W1; w2 2 W2; t 2 
 :

Thus applying (3.1) we obtain that



T(x 
 w1); y 
 w2

�
=

Z






[�( t)](w1); w2

�
x(t)y(t) d� (t)

=


M � (x 
 w1); y 
 w2

�

for any w1 2 W1, w2 2 W2, x 2 L2(
) and y 2 L2(
) . By the density of L2(
) 
 W1 and
L2(
) 
 W2 in L2(
; W1) and L2(
; W2), respectively, this implies that T = M � .

Proof of Theorem 1.21.This proof should be regarded as a `module version' of the proof
of [Pis96, Theorem 3.4]. As in this book we adopt the following notation. For any �nite
families (yj ) j and (x i ) i in E, we write

(yj ) j < (x i ) i

provided that
8 � 2 E � ;

X

j

j� (yj )j2 �
X

i

j� (x i )j2:

In the sequel we simply write L2 (resp. L1 ) instead of L2(
) (resp. L1 (
) ) as there
is no risk of confusion. Then we set

V = L2 
 E � L2(
; E):

We �x some � 2 L1
�

�

; � 2(E; F � )

�
and we let C = k� k1 . Then � is an element

of L1
�

�

; B(E; F � )

�
. Hence according to (1.33) we may consider the multiplication

operator
T = M � : L2(
; E) �! L2

� (
; F � ):

We let I = L1 � E � . A generic element of I will be denoted by � = ( �; � ), with
� 2 L1 and � 2 E � .

For any v =
P

s xs 
 es 2 V (�nite sum) and � = ( �; � ) 2 I , we set

� � v =
X

s

� (es)�x s 2 L2:

Lemma 1.24. Let (wj ) j and(vi ) i be �nite families inV such that

8 � 2 I;
X

j

k� � wj k2
2 �

X

i

k� � vi k2
2: (1.35)

Then X

j

kT(wj )k2
2 � C2

X

i

kvi k2
2: (1.36)
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Proof. Let (wj ) j and (vi ) i be �nite families in V and assume (1.35). Considerei;s ; f j;s in
E, x i;s ; yj;s in L2 such that

vi =
X

s

x i;s 
 ei;s and wj =
X

s

yj;s 
 f j;s :

Let � = ( �; � ) 2 I . For any j ,

k� � wj k2
2 =

Z




�
�
�
X

s

� (f j;s )� (t)yj;s (t)
�
�
�
2

d� (t) :

Hence X

j

k� � wj k2
2 =

Z



j� (t)j2

� X

j

�
�
�
X

s

� (f j;s )yj;s (t)
�
�
�
2�

d� (t) :

Likewise,
X

i

k� � vi k2
2 =

Z



j� (t)j2

� X

i

�
�
�
X

s

� (x i;s )ei;s (t)
�
�
�
2�

d� (t) :

Thus by (1.35), we have
Z



j� (t)j2

� X

j

�
� �

�
wj (t)

� �
�2

�
d� (t) �

Z



j� (t)j2

� X

i

�
� �

�
vi (t)

� �
�2

�
d� (t) : (1.37)

Let E1 � E be the subspace spanned by theei;s and f j;s . Since it is �nite dimen-
sional, its dual space is obviously separable. Let (� n )n� 1 be a dense sequence ofE �

1 and
for any n � 1, extend � n to an element of E � (still denoted by � n ). Then for any �nite
families (f j ) j and (ei ) i in E1, we have

(yj ) j < (x i ) i () 8 n � 1;
X

j

j� n (f j )j2 �
X

i

j� n (ei )j2:

It follows from (1.37) that for almost every t 2 
 , we have

X

j

j� n
�
wj (t)

�
j2 �

X

i

j� n
�
vi (t)

�
j2

for every n � 1. Since the functions vi ; wj are valued in E1, this implies that

(wj (t)) j < (vi (t)) i for a.e. t 2 
 :

By the implication `(i) ) (iii)' of [Pis96, Theorem 3.4], this property implies that for a.e.
t 2 
 , X

j




 [� (t)]

�
wj (t)

� 


 2

F � � C2
X

i




 vi (t)




 2

E
:

Integrating this inequality on 
 yields (1:36).
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We let � be the set of all functions g: I ! R for which there exists a �nite family
(vi ) i in V such that

8 � 2 I; jg(� )j �
X

i

k� � vi k2
2: (1.38)

This is a real vector space. We let� + denote its positive part, i.e. the set of all functions
I ! R+ belonging to � . This is a convex cone. For anyg 2 � we set

p(g) = C2 inf
nX

i

kvi k2
2

o
;

where the in�mum runs over all �nite families (vi ) i in V satisfying (1.38). Next for any
g 2 � + , we set

q(g) = sup
nX

j

kT(wj )k2
2

o
;

where the supremum runs over all �nite families (wj ) j in V satisfying

8� 2 I; g(� ) �
X

j

k� � wj k2
2: (1.39)

It is easy to check that p is sublinear on � and that q is superlinear on � + . Further
by Lemma 1:24, q � p on � + . Hence by the Hahn-Banach Theorem given in [Pis96,
Corollary 3.2], there exists a positive linear functional ` : � ! R such that

8 g 2 � ; `(g) � p(g) (1.40)

and
8 g 2 � + ; q(g) � `(g): (1.41)

Following [Pis96, Chapter 8], we introduce a Hilbert space

� 2(I; ` ; L2)

de�ned as follows. First we let L (I; ` ; L2) be the set of all functions G: I ! L2 such that

the R-valued function � 7! k G(� )k2
2 belongs to � and we set N (G) =

�
`(� 7! k G(� )k2

2)
� 1

2

for any such function. Then L (I; ` ; L2) is a complex vector space andN is a Hilbertian
seminorm on L(I; ` ; L2). Hence the quotient of L (I; ` ; L2) by the kernel of N is a pre-
Hilbert space. By de�nition, � 2(I; ` ; L2) is the completion of this quotient space.

For any v 2 V, the function � 7! � � v belongs to L (I; ` ; L2). Then we de�ne a linear
map

T1 : V �! � 2(I; ` ; L2)

as follows: for any v 2 V, T1(v) is the class of � 7! � � v modulo the kernel of N . Then
we have

kT1(v)k2
L = `

�
� 7! k � � vk2

�

� p
�
� 7! k � � vk2

2

�

� C2kvk2
2
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by (1:40) and the de�nition of p. Hence T1 uniquely extends to a bounded operator

T1 : L2(
; E) �! � 2(I; ` ; L2); with kT1k � C:

For any v 2 V, we have

kT(v)k2
2 � q

�
� 7! k � � vk2

�
� `

�
� 7! k � � vk2

�
= kT1(v)k2:

The resulting inequality kT(v)k2 � k T1(v)k implies the existence of a (necessarily unique)
bounded linear operator

T2 : T1(V) �! L2
� (
; F � ); with kT2k � 1;

such that
8 v 2 V; T(v) = T2

�
T1(v)

�
: (1.42)

For any v 2 V and any � 2 L1 , we have

kT1(�v )k � k � k1 kT1(v)k: (1.43)

Indeed write v =
P

s xs 
 es , with es 2 E and xs 2 L2. For any 
 2 L1 and � 2 E � , we
have 






X

s

� (es)
�x s








2
� k � k1







X

s

� (es)
x s








2
:

Hence k� � (�v )k � k � k1 k� � vk for any � = ( 
; � ) 2 I . Since the functional ` is positive
on � , this implies that `

�
� 7! k � � (�v )k2

�
� k � k2

1 `
�
� 7! k � � vk2

�
, which yields (1.43).

This inequality implies the existence of a (necessarily unique) linear contraction

� : L1 �! B
�
T1(V)

�
;

such that
T1(�v ) = � (� )T1(v); v 2 L2(
; E); � 2 L1 : (1.44)

It is clear that � is a homomorphism, hence a � -representation.
Let � 2 L1 and assume that (� � )� is a bounded net of L1 converging to � in the

w� -topology. For any x 2 L2, � � x ! �x in L2 (this uses the boundedness of the net). By
the continuity of T1 this implies that for any e 2 E, T1(� � x 
 e) ! T1(�x 
 e) in T1(V).
By linearity, this implies that for any v 2 V, T1(� � v) ! T1(�v ) in T1(V). In other words,
� (� � )(h) ! � (� )(h) for any h 2 T1(V). Since the net(� (� � )) � is bounded, this implies
that � (� � ) ! � (� ) strongly. Hence � is a w� -continuous � -representation.

Recall that E and L2 are assumed separable, hence the Hilbert spaceT1(V) is sep-
arable. By Lemma 1:22, there exists a separable Hilbert spaceH and an isometric em-
bedding � : T1(V) ,! L2(
; H ) such that �� (� ) = M � � for any � 2 L1 . Then for any
such � and any v 2 L2(
; E), we have

�T 1(�v ) =
�
�� (� )T1

�
(v) = �� (T1(v)) ;

by (1.44). This shows that the composed map

S1 = �T 1 : L2(
; E) �! L2(
; H ) is a module map:
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De�ne
S2 = T2� � : L2(
; H ) �! L2

� (
; F � ):

Let � 2 L1 (
) . For any v 2 V, we have
�
T2� (� )

�
(T1(v)) = T2T1(�v ) = T(�v ) = �T (v) = �T 2(T1(v))

by (1.44), (1.42) and the fact thatT is a module map. This shows that

T2� (� ) = M � T2:

Further we have � � M � =
�
M � �

� �
=

�
�� (� )

� �
= � (� )� � . Hence M � S2 = S2M � , that is,

S2 is a module map:

Since� � � is equal to the identity of T1(V), it follows from (1.42) that

T = S2S1:

Thus we have constructed a `module Hilbert space factorization' of T, and this is the
main point.

To conclude, let S2� : L2(
; F ) ! L2(
; H � ) be the restriction of the adjoint of S2 to
L2(
; F ). Then S2� is a module map. Now apply Lemma 1:23 to S1 and S2� . Let � 2
L1

� (
; B (E; H )) and � 2 L1
� (
; B (F; H � )) such that S1 is equal to the multiplication by

� and S2� is equal to the multiplication by � . Given any e 2 E and f 2 F , we have
Z





�
� (t)](e); f

�
x(t)y(t) d� (t) =



T(x 
 e); y 
 f

�

= hS1(x 
 e); S2� (y 
 f )
�

=
Z






[� (t)](e) x(t); [� (t)]( f ) y(t)

�
d� (t)

=
Z






[� (t)](e); [� (t)]( f )

�
x(t)y(t) d� (t)

for any x; y 2 L2. Applying identi�cation between H � and H , this proves (1:32). By
construction, k� k1 � C and k� k1 � 1.

1.4.2 A special case

Let (
 1; � 1),(
 2; � 2) and (
 3; � 3) be three separable measure spaces. We are going to
apply Theorem 1.21 with (
 ; � ) = (
 2; � 2), E = L1(
 1) and F = L1(
 3).

To any � 2 L1 (
 1) � 
 2 � 
 3), one may associatee� 2 L1
�

�

 2; B(L1(
 1; L1 (
 3))

�
as

follows. For any r 2 L1(
 1),

� e� (t2)
�
(r ) =

Z


 1

� (t1; t2; � ) r (t1) d� 1(t1); t2 2 
 2: (1.45)
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According to the obvious identi�cation

L1 (
 1 � 
 2 � 
 3) = L1
�

�

 2; L1 (
 1 � 
 3)

�

and (1.5), the mapping � 7! e� induces a w� -homeomorphic isometric identi�cation

L1 (
 1 � 
 2 � 
 3) = L1
�

�

 2; B(L1(
 1); L1 (
 3))

�
;

By Remark 1.20, thew� -continuous contractive embedding of � 2(L1(
 1); L1 (
 3)) into
the spaceB(L1(
 1); L1 (
 3)) induces a w� -continuous contractive embedding

L1
�

�

 2; � 2(L1(
 1); L1 (
 3))

�
� L1

�

�

 2; B(L1(
 1); L1 (
 3))

�
:

Combining with the preceding identi�cation we obtain a further w� -continuous con-
tractive embedding

L1
�

�

 2; � 2(L1(
 1); L1 (
 3))

�
� L1 (
 1 � 
 2 � 
 3): (1.46)

According to this, we will write � 2 L1
�

�

 2; � 2(L1(
 1); L1 (
 3))

�
when e� actually be-

longs to that space. In this case, for the sake of clarity, we let k� k1 ;� 2 denote its norm
as an element of the latter space. It is greater than or equal to its norm as an element of
L1 (
 1 � 
 2 � 
 3).

Theorem 1.25. Let � 2 L1 (
 1 � 
 2 � 
 3) andC � 0.
Then� 2 L1

�

�

 2; � 2(L1(
 1); L1 (
 3))

�
andk� k1 ;� 2 � C if and only if there exist a Hilbert

spaceH and two functions

a 2 L1
�

 1 � 
 2; H

�
and b2 L1

�

 2 � 
 3; H

�

such thatkak1 kbk1 � C and

� (t1; t2; t3) =


a(t1; t2); b(t2; t3)

�
for a.-e.(t1; t2; t3) 2 
 1 � 
 2 � 
 3: (1.47)

Proof. Assume that � belongs to L1
�

�

 2; � 2(L1(
 1); L1 (
 3))

�
, with k� k1 ;� 2 � C. Ac-

cording to Theorem 1.21, there exist a Hilbert space H and two functions

� 2 L1
�

�

 2; B (L1(
 1); H )

�
and � 2 L1

�

�

 2; B (L1(
 3); H )

�

such that for any r1 2 L1(
 1) and r3 2 L1(
 3),



[e� (t2)](r1); r3

�
=



[� (t2)](r1); [� (t2)](r3)

�
for a.-e. t2 2 
 2: (1.48)

By (1:3), (1:4) and (1.27) we have isometric identi�cations

L1
�

�

 2; B(L1(
 1); H )

�
= L1

�

�

 2; (L1(
 1)

^

 H � )�

�

=
�
L1(
 2)

^

 L1(
 1)

^

 H �

� �

= L1(
 1 � 
 2; H � )�

= L1
� (
 1 � 
 2; H ):
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Morover L1
� (
 1 � 
 2; H ) = L1 (
 1 � 
 2; H ), see Remark 1.18. Hence we �nally have

an isometric identi�cation

L1
�

�

 2; B(L1(
 1); H )

�
= L1 (
 1 � 
 2; H ):

Likewise we have an isometric identi�cation

L1
�

�

 2; B(L1(
 3); H )

�
= L1 (
 2 � 
 3; H ):

Let a 2 L1 (
 1 � 
 2; H ) and b 2 L1 (
 2 � 
 3; H ) be corresponding to � and �
respectively in the above identi�cations. Then for any r1 2 L1(
 1),

[� (t2)](r1) =
Z


 1

a(t1; t2) r1(t1) d� 1(t1) for a.-e. t2 2 
 2:

Likewise, for any r3 2 L1(
 3),

[� (t2)](r3) =
Z


 3

b(t2; t3) r3(t3) d� 3(t3) for a.-e. t2 2 
 2:

Combining (1:48) and (1:45) we deduce that for any r1 2 L1(
 1) and r3 2 L1(
 3), we
have

Z


 1 � 
 3

ha(t1; t2); b(t2; t3)i r1(t1) r3(t3) d� 1(t1)d� 3(t3)

=

� e� (t2)

�
(r1); r3

�

=
Z


 1 � 
 3

� (t1; t2; t3)r1(t1) r3(t3) d� 1(t1)d� 3(t3)

for a.-e. t2 2 
 2. This implies (1.47) and shows the `only if' part.

Assume conversely that (1.47) holds true for some a in L1 (
 1� 
 2; H ) and somebin
L1 (
 1� 
 2; H ). Using the above identi�cations, we consider � 2 L1

�

�

 2; B(L1(
 1); H )

�

and � 2 L1
�

�

 2; B(L1(
 3); H )

�
be corresponding to a and b, respectively. Then the

above computations lead to (1.48). This identity means that for a.-e. t2 2 
 2, we
have a Hilbert space factorisation e� (t2) = � (t2)� � (t2). This shows that � belongs to
L1

�

�

 2; � 2(L1(
 1); L1 (
 3))

�
, with k� k1 ;� 2 � k ak1 kbk1 .
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Chapter 2

Linear Schur multipliers

——————————————————————–

In this chapter, we are interested in generalizations of well-known results about
Schur multipliers. Namely, we extend the de�nition of classical Schur multipliers
on B(`p; `q) and de�ne the continuous Schur multipliers on B(Lp; Lq). In the case
p = q = 2, there is a famous characterization of Schur multipliers on B(`2). A simi-
lar characterization also holds in the case B(`p) (see e.g. [Pis96, Chapter 5]) and in the
case of continuous Schur multipliers on B(L2) (see e.g. [Spr04]). We recall these facts
in the �rst two sections of this chapter. In the third section, we de�ne Schur multipliers
on B(Lp; Lq) and generalize the characterization of Schur multipliers to this continuous
case, using the theory of (p; q)� factorable operators introduced in Chapter 1. Note that
those results are new, even in the setting of classical Schur multipliers on B(`p; `q). In
a fourth section, we will apply the results of Section 2:3 to obtain new inclusion rela-
tionships between the spaces of Schur multipliers, extending the work of Bennett in
[Ben77].

2.1 Classical Schur multipliers

In this section, we regard elements of B(`p; `q) as in�nite matrices in the usual way.

Let m = ( mij ) i;j � 1 be a bounded family of complex numbers and let 1 � p; q � + 1 .
We say that m is a Schur multiplier onB(`p; `q) if for any matrix [aij ]i;j � 1 in B(`p; `q), the
matrix [mij aij ]i;j � 1 de�nes an element of B(`p; `q). An application of the Closed Graph
theorem shows that m is a Schur multiplier if and only if the mapping

Tm : B(`p; `q) �! B (`p; `q)
[aij ]i;j � 1 7�! [mij aij ]i;j � 1

(2.1)

is bounded. By de�nition, the norm of the Schur multiplier m is the norm of the map-
ping Tm .

Similary, if 1 � p � + 1 , we say that m is a Schur multiplier on Sp if for any matrix
[aij ]i;j � 1 in Sp, the matrix [mij aij ]i;j � 1 de�nes an element of Sp.

A simple duality argument shows that if 1 � p; p0 � 1 are conjugate numbers, then
m is a linear Schur multiplier on Sp if and only if it is a linear Schur multiplier on Sp0

.
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Moreover the resulting operators Tm have the same norm, that is,

kTm : Sp ! S pk = kTm : Sp0
! S p0

k:

When p = 2, any bounded family m = f mij gi;j � 1 is a linear Schur multiplier on S2.
Moreover

kM : S2 ! S2k = sup
i;j � 1

jmij j

in this case (see e.g. [Ara82, Proposition 2.1]).
Note that for 1 < p 6= 2 < + 1 , there is no description of Schur multipliers on Sp.

There is a well-known characterization of bounded Schur multipliers on B(`2). This
result was stated by Pisier in [Pis96, Theorem 5.1] who refers himself to some earlier
work of Grothendieck. This theorem can be extended to the case B(`p) as follows.

Theorem 2.1. [Pis96, Theorem 5.10] Let� = ( cij ) i;j 2 N � C, C � 0 be a constant and let
1 � p < 1 . The following are equivalent :

(i) � is a Schur multiplier onB(`p; `p) with norm � C.

(ii) There is a measure space(
 ; � ) and elements(x j ) j 2 N in Lp(� ) and(yi ) i 2 N in Lp0
(� ) such

that
8i; j 2 N; cij = hx j ; yi i andsup

i
kyi kp0 sup

j
kx j kp � C:

(iii) The operatoru� : `1 ! `1 which admits[cij ] as its matrix belongs to� p(`1; `1 ) and

 p(u� ) � C (see Remark1:9 for the notations).

As a consequence of the results established in Subsection2:3:2, we will characterize
more generally Schur multipliers on B(`p; `q) in the caseq � p in Corollary 2:9 which
includes Theorem 2:1. In [Ben77], Bennett gives a necessary and suf�cient condition
for a family m to be a Schur multiplier on B(`p; `q), for all values of p and q, using the
theory of absolutely summing operators. Theorem 2:1 above and Corollary 2:9 provide
a different type of characterization, which is more explicit and useful.

2.2 Continuous Schur multipliers on B(L2)

Let (
 1; � 1) and (
 2; � 2) be two � -�nite measure spaces. By the equality (1:16), we have
an isometric identi�cation L2(
 1 � 
 2) = S2(L2(
 1); L2(
 2)) given by

J 2 L2(
 1 � 
 2) 7! X J 2 S 2(L2(
 1); L2(
 2)) :

Let  2 L1 (
 1 � 
 2). Thanks to the above identity, we may associate the operator

R : S2(L2(
 1); L2(
 2)) �! S 2(L2(
 1); L2(
 2))
X J 7�! X  J

whose norm is equal to k k1 . We say that  is a continuous Schur multiplierif R 

extends to a bounded operator (still denoted by)

R : K(L2(
 1); L2(
 2)) �! B (L2(
 1); L2(
 2)) ;
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where K(L2(
 1); L2(
 2)) denotes the space of compact operators fromL2(
 1) into L2(
 2).
The density of Hilbert-Schmidt operators in compact operators ensures that this exten-
sion is necessarily unique.

The �rst part of Theorem 2.2 below is a remarkable characterization of continuous
Schur multipliers for which we refer e.g. to Spronk [Spr04, Section 3.2]. Peller's charac-
terization of double operator integral mappings which restrict to a bounded operator
S1(H ) ! S 1(H ) is closely related to this factorization result (see Chapter 4 for a de�ni-
tion of double operator integrals). Indeed, Theorem 2:2(i ) below is implicit in [Pel85].
It is also contained in Theorem 2:7 proved in the next section.

For the second part of the next result, recall that by Remark 1:9 and (1.2),

� 2(L1(
 1); L1 (
 2)) and B
�
K(L2(
 1); L2(
 2)) ; B(L2(
 1); L2(
 2))

�

are both dual spaces.
We recall that according to the equality (1:5), any element of B(L1(
 1); L1 (
 2)) is

an operator u for some (unique)  2 L1 (
 1 
 
 2).

Theorem 2.2.

(i) [Pel85; Pis96; Spr04] A function 2 L1 (
 1 � 
 2) is a continuous Schur multiplier if
and only if the operatoru belongs to� 2(L1(
 1); L1 (
 2)) , and we have


 2(u ) = kR k

in this case.

(ii) Moreover the isometric embedding

� 2(L1(
 1); L1 (
 2)) ,! B
�
K(L2(
 1); L2(
 2)) ; B(L2(
 1); L2(
 2))

�

taking anyu 2 � 2(L1(
 1); L1 (
 2)) to R is w� -continuous.

Proof. Let us prove (2). Let  2 L1 (
 1 � 
 2) and let ( � )� be a net of L1 (
 1 � 
 2) such
that u and the operators u � belong to � 2(L1(
 1); L1 (
 2)) for any �, (u � )� is a bounded
net in the latter space, and u � ! u in the w� -topology of � 2(L1(
 1); L1 (
 2)) . This
implies that u � ! u in the w� -topology of B(L1(
 1); L1 (
 2)) . According to (1.5), this
means that  � !  in the w� -topology of L1 (
 1 � 
 2).

Let �; � 0 2 L2(
 1) and �; � 0 2 L2(
 2). For any �, R � (� 
 � ) is the Hilbert-Schmidt
operator associated to theL2-function  � (� 
 � ), hence


�
R � (� 
 � )

�
(� 0); � 0

�
=

Z


 1 � 
 2

 � (t1; t2)� (t1)� 0(t1)� (t2)� 0(t2) d� 1(t1)d� 2(t2) :

The right-hand side of this equality is the action of  � 2 L1 (
 1 � 
 2) on the L1-function

(t1; t2) 7! � (t1)� 0(t1)� (t2)� 0(t2):

Since = w� -lim �  � , this implies that

�

R � (� 
 � )
�
(� 0); � 0

�
�!


�
R (� 
 � )

�
(� 0); � 0

�
:
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By linearity, this implies that for any �nite rank operator � : L2(
 1) ! L2(
 2), R � (� ) !
R (� ) is the weak operator topology of B(L2(
 1); L2(
 2)) . Since(u � )� is a bounded net,
(R � )� is bounded as well. By the density of �nite rank operators in K(L2(
 1); L2(
 2)) ,
we deduce that for any � in the latter space, R � (� ) ! R (� ) is the weak operator
topology of B(L2(
 1); L2(
 2)) . Using again the boundedness of (R � )� , we deduce that
R � (� ) ! R (� ) in the w� -topology of B(L2(
 1); L2(
 2)

�
for any � 2 K (L2(
 1); L2(
 2))

and �nally that R � ! R in the w� -topology of B
�
K(L2(
 1); L2(
 2)) ; B(L2(
 1); L2(
 2)

�
.

By Remark 1.20, the embedding of � 2(L1(
 1); L1 (
 2)) into the space

B
�
K(L2(
 1); L2(
 2)) ; B(L2(
 1); L2(
 2))

�
;

provided by Theorem 2.2, we obtain a w� -continuous isometric inclusion

L1
�

�

; � 2(L1(
 1); L1 (
 2))

�
� L1

�

�

; B(K(L2(
 1); L2(
 2)) ; B(L2(
 1); L2(
 2)))

�
: (2.2)

2.3 Schur multipliers on B(Lp; Lq)

2.3.1 De�nition and connection with the classical Schur multipliers

Let (
 1; F1; � 1) and (
 2; F2; � 2) be two � -�nite measure spaces and let � 2 L1 (
 1 � 
 2).
Let 1 � p; q � 1 and denote by p0and q0 their conjugate exponents.
Let

T� : Lp0
(
 1) 
 Lq(
 2) ! B (Lp(
 1); Lq(
 2))

be de�ned for any elementary tensor f 
 g 2 Lp0
(
 1) 
 Lq(
 2) by

[T� (f 
 g)](h) =
� Z


 1

� (s; �)f (s)h(s)d� 1(s)
�

g(�) 2 Lq(
 2);

for all h 2 Lp(
 1).

We have an inclusion
Lp0

(
 1) 
 Lq(
 2) � Lp0
(
 1; Lq(
 2))

given by f 
 g 7! [s 2 
 1 7! f (s)g]. Under this identi�cation, T� is the multiplication by
� . Note that Lp0

(
 1; Lq(
 2)) is invariant by multiplication by an element of L1 (
 1 � 
 2)
and that we have a contractive inclusion

Lp0
(
 1; Lq(
 2)) � Lp0

(
 1)
_

 Lq(
 2):

Therefore, T� is valued is in Lp0
(
 1)

_

 Lq(
 2). Using the identi�cation

Lp0
(
 1)

_

 Lq(
 2) � B (Lp(
 1); Lq(
 2))

given by (1:6), we deduce that the elements of Lp0
(
 1)

_

 Lq(
 2) are compact operators

as limits of �nite rank operators for the operator norm.
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De�nition 2.3. We say that� is a Schur multiplier onB(Lp(
 1); Lq(
 2)) if there exists a
constantC � 0 such that for allu 2 Lp0

(
 1) 
 Lq(
 2),

kT� (u)kB(L p (
 1 );L q (
 2 )) � k uk_ ;

that is, if T� extends to a bounded operator

T� : Lp0
(
 1)

_

 Lq(
 2) ! Lp0

(
 1)
_

 Lq(
 2):

In this case, the norm of� is by de�nition the norm ofT� .

Remark 2.4. By E1 (resp. E2) we denote the space of simple functions on
 1 (resp. 
 2). By

density ofE1 
E 2 in Lp0
(
 1)

_

 Lq(
 2), T� extends to a bounded operator fromLp0

(
 1)
_

 Lq(
 2)

into itself if and only if it is bounded onE1 
 E 2 equipped with the injective tensor norm.

Assume that 1 < p; q < + 1 . By (1:7) we have

Lp0
(
 1)

_

 Lq(
 2) = K(Lp(
 1); Lq(
 2)) ;

so that � is a Schur multiplier on B(Lp(
 1); Lq(
 2)) if and only if T� extends to a
bounded operator

T� : K(Lp(
 1); Lq(
 2)) ! K (Lp(
 1); Lq(
 2)) :

In this case, considering the bi-adjoint of T� , we obtain by (1:8) a w� � continuous map-
ping

~T� : B(Lp(
 1); Lq(
 2)) ! B (Lp(
 1); Lq(
 2))

which extends T� . This explains the terminology ' � is a Schur multiplier on B(Lp(
 1); Lq(
 2)) '.

Classical Schur multipliers : Assume that 
 1 = 
 2 = N and that � 1 and � 2 are the
counting measures. An element � 2 L1 (N2) is given by a family c = ( cij ) i;j 2 N of
complex numbers, where cij = � (j; i ). In this situation, the mapping T� is nothing but
the classical Schur multiplier

A = [ aij ]i;j � 1 2 B(`p; `q) 7�! [cij aij ]i;j � 1:

When this mapping is bounded from B(`p; `q) into itself, we will denote it by Tc.

Notations : If (
 ; F ; � ) is a measure space andn 2 N� , we denote by A n; 
 the collection
of n� tuples (A1; : : : ; An ) of pairwise disjoint elements of F such that

for all 1 � i � n; 0 < � (A i ) < + 1 :

If A = ( A1; : : : ; An ) 2 A n; 
 and 1 � p � + 1 , denote by SA;p the subspace ofLp(
)
generated by � A 1 ; : : : ; � A n . Then SA;p is 1� complemented in Lp(
) , and a norm one
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projection from Lp(
) into SA;p is given by the conditional expectation

PA;p : Lp(
) �! Lp(
) :

f 7�!
nX

i =1

1
� (A i )

� Z

A i

f
�

� A i

(2.3)

Note that the mapping

' A;p : SA;p �! `n
p :

f =
P

i ai � A i 7�! (ai (� 1(A i ))1=p)n
i =1

(2.4)

is an isometric isomorphism between SA;p and `n
p .

Proposition 2.5. Let(
 1; F1; � 1) and(
 2; F2; � 2) be two measure spaces and let� 2 L1 (
 1�

 2). The following are equivalent :

(i) � is a Schur multiplier onB(Lp(
 1); Lq(
 2)) .

(ii) For all n; m 2 N� , for all A = ( A1; : : : ; An ) 2 A n; 
 1 ; B = ( B1; : : : ; Bm ) 2 A m; 
 2 , write

� ij =
1

� 1(A j )� 2(B i )

Z

A j � B i

� d� 1d� 2:

Then the Schur multipliers onB(`n
p ; `m

q ) associated with the families� A;B = ( � ij ) are
uniformly bounded with respect ton; m; A andB.

In this case,kT� k = supn;m;A;B kT� A;B k < + 1 .

Proof. (i ) ) (ii ). Assume �rst that � is a Schur multiplier on B(Lp(
 1); Lq(
 2)) with
kT� k � 1. Let n; m 2 N� ; A = ( A1; : : : ; An ) 2 A n; 
 1 and B = ( B1; : : : ; Bm ) 2 A m; 
 2 . Let
c =

P
i;j c(i; j )ej 
 ei 2 `n

p0 
 `m
q ' B (`n

p ; `m
q ).

Let ' A;p : SA;p ! `n
p and  B;q : SB;q ! `m

q be the isometries de�ned in (2:4). Then
~c :=  � 1

B;q � c � ' A;p : SA;p ! SB;q satis�es k~ck = kck and we have

~c =
X

i;j

c(i; j )
� 1(A j )1=p0� 2(B i )1=q

� A j 
 � B i

:=
X

i;j

~c(i; j )� A j 
 � B i :

where ~c(i; j ) =
c(i; j )

� 1(A j )1=p0� 2(B i )1=q
.

The operator u :=  B;q � PB;q � T� (~c) jSA;p � ' � 1
A;p : `n

p ! `m
q satis�es

kuk � k T� (~c)k

and by assumption
kT� (~c)k � k ~ck

so that
kuk � k ~ck = kck: (2.5)



2.3. Schur multipliers on B(Lp; Lq) 41

Let us prove that u = T� A;B (c) where T� A;B is the Schur multiplier associated with the
family (� ij ).
Write u(i; j ) :=  B;q � PB;q � T� (� A j 
 � B i ) jSA;p � ' � 1

A;p . We have

u =
X

i;j

~c(i; j )u(i; j ):

Let 1 � k � n.

[u(i; j )](ek) = [  B;q � PB;q � T� (� A j 
 � B i ) jSA;p ]
�

1
� 1(Ak)1=p

� A k

�

=
1

� 1(Ak)1=p
[ B;q � PB;q ]

�
� B i (�)

Z


 1

� (s; �)� A j (s)� A k (s)d� 1(s)
�

so that [u(i; j )](ek) = 0 if k 6= j and if k = j then

[u(i; j )](ek) =
1

� 1(Ak)1=p
[ B;q � PB;q ]

 

� B i (�)
Z

A j

� (s; �)d� 1(s)

!

=
1

� 1(Ak)1=p� 2(B i )

 Z

A j � B i

�

!

 q(� B i )

=
1

� 1(Ak)1=p� 2(B i )1=q0

 Z

A j � B i

�

!

ei :

It follows that

u =
X

i;j

c(i; j )
� 1(A j )1=p0� 2(B i )1=q

1
� 1(A j )1=p� 2(B i )1=q0

 Z

A j � B i

�

!

ej 
 ei

=
X

i;j

c(i; j )
� 1(A j )� 2(B i )

 Z

A j � B i

�

!

ej 
 ei

=
X

i;j

� ij c(i; j )ej 
 ei

that is, u = T� A;B (c). We conclude thanks to the inequality (2:5).

(ii ) ) (i ). Assume now that the assertion (ii ) is satis�ed and show that � is a Schur
multiplier. By Remark 2:4, we just need to show that T� is bounded on E1 
 E 2. Let
v 2 E1 
 E 2 and write � = supn;m;A;B kTck. We will show that kT� (v)k � � kvk. By
density, it is enough to prove that for any h1 2 E1; h2 2 E2,

j h[T� (v)](h1); h2i L q ;L q0 j � � kvkB(L p (
 1 );L q (
 2 )) kh1kL p (
 1 )kh2kL q0(
 2 ) : (2.6)



42 Chapter 2. Linear Schur multipliers

By assumption, there exist n; m 2 N� ; A = ( A1; : : : ; An ) 2 A n; 
 1 ; B = ( B1; : : : ; Bm ) 2
A m; 
 2 and complex numbers v(i; j ); ai ; bj such that

v =
X

i;j

v(i; j )� A j 
 � B i ; h1 =
X

j

aj � A j and h2 =
X

i

bi � B i :

Equation (2:6) can be rewritten as
�
�
�
�
�

X

i;j

v(i; j )aj bi

 Z

A j � B i

�

! �
�
�
�
�

� � kvkkh1kL p (
 1 )kh2kL q0(
 2 ) : (2.7)

Consider ~v :=  B;q � v � ' � 1
A;p : `n

p ! `m
q and z :=  B;q � PB;q � T� (v) jSA;p � � � 1

A;p : `n
p ! `m

q .
The computations made in the �rst part of the proof show that z = Tm (~v) where m is
the family (� ij ).
Now, let x := ' A;p (h1) and y :=  B;q0(h2). SinceTm is bounded with norm smaller than
� we have

j h[Tm (~c)](x); yi `m
q ;`m

q0
j � � k~ckB(`n

p ;`m
q )kxk`n

p
kyk`m

q0
: (2.8)

An easy computation shows that the left-hand side on this equality is nothing but the
left-hand side of the inequality (2:7). Finally, the right-hand side of the inequalities
(2:7) and (2:8) are equal, which concludes the proof.

2.3.2 Schur multipliers and factorization

Let p; qbe two positive numbers such that 1 � q � p � 1 . This condition is equivalent

to p; q2 [1; 1 ] with
1
q

+
1
p0

� 1, so that we can consider the spaceL q;p0.

The following results will allow us to give a description of the functions � which
are Schur multipliers.

Lemma 2.6. LetX , Y be Banach spaces and letE � X; F � Y be1� complemented subspaces
ofX andY. For anyv 2 E 
 F , denote by~� 0

q;p0(v) the� 0
q;p0-norm ofv as an element ofE 
 F

and by� 0
q;p0(v) the� 0

q;p0-norm ofv as an element ofX 
 Y. Then

~� 0
q;p0(v) = � 0

q;p0(v):

Proof. The inequality ~� 0
q;p0(v) � � 0

q;p0(v) is easy to prove. For the converse inequality,
take v =

P
k ek 
 f k 2 E 
 F such that � 0

q;p0(v) < 1 and show that ~� 0
q;p0(v) < 1. By

assumption, there exists M � X and N � Y �nite dimensional subspaces such that
v 2 M 
 N and

� 0(v; M; N ) < 1:

By assumption, there exist two norm one projections P and Q respectively from X onto
E and from Y onto F . SetM 1 = P(M ) � E and N1 = Q(N ) � F . M 1 and N1 are �nite
dimensional. Moreover, since v 2 E 
 F , it is easy to check that (P 
 Q)(v) = v, where,
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for all c =
P

l al 
 bl 2 X 
 Y,

(P 
 Q)(c) =
X

l

P(al ) 
 Q(bl ):

Thus, v 2 M 1 
 N1. We will show that � 0
q;p0(v; M1; N1) < 1.

Let z =
P m

j =1 x �
j 
 y�

j 2 M �
1 
 N �

1 be such that � q;p0(z) < 1 and show that j hv; zi j �
� 0

q;p0(v), so that � 0
q;p0(v; M1; N1) � 1.

Let 1 � r � 1 such that
1
r

=
1
q

+
1
p0

� 1:

The condition � q;p0(z) < 1 in M �
1 
 N �

1 implies that z admits a representation z =P m
j =1 � j m�

j 
 n�
j where m�

j 2 M �
1 ; n�

j 2 N �
1 and

k(� j ) j k` r wp(m�
j ; M �

1 )wq0(n�
j ; N �

1 ) < 1:

Set~z :=
P m

j =1 � j P � (m�
j ) 
 Q� (n�

j ) in M � 
 N � . It is easy to check that

wp(P � (m�
j ); M � ) � wp(m�

j ; M �
1 ) and wq0(Q� (n�

j ); N � ) � wq0(n�
j ; N �

1 ):

Therefore, � q;p0(~z; M � ; N � ) < 1. Then, the condition � 0
q;p0(v; M; N ) < 1 implies that

j hv; ~zi j � � 0
q;p0(v):

Finally, we have

hv; ~zi =
X

j;k

� j


P � (m�

j ); ek
� 


Q� (n�
j ); f k

�

=
X

j;k

� j


m�

j ; P(ek)
� 


n�
j ; Q(f k)

�

=
X

j;k

� j


m�

j ; ek
� 


n�
j ; f k

�
= hv; zi ;

and therefore
j hv; zi j � � 0

q;p0(v):

This proves that ~� 0
q;p0(v) < 1.

We recall that if � 2 L1 (
 1 � 
 2), we denote by u� the mapping

u� : L1(
 1) �! L1 (
 2):

f 7�!
Z


 1

� (s; �)f (s) d� 1(s)

Theorem 2.7. Let (
 1; � 1) and(
 2; � 2) be two� -�nite measure spaces and let� 2 L1 (
 1 �

 2). Let1 � q � p � 1 . Then� is a Schur multiplier onB(Lp(
 1); Lq(
 2)) if and only if the
operatoru� belongs toL q;p0(L1(
 1); L1 (
 2)) . Moreover,

kT� k = Lq;p0(u� ):
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Proof. Assume �rst that T� extends to a bounded operator

T� : Lp0
(
 1)

_

 Lq(
 2) ! Lp0

(
 1)
_

 Lq(
 2)

with norm � 1. To prove that u� 2 L q;p0(L1(
 1); L1 (
 2)) with Lq;p0(u� ) � 1, we have to
show that for any v =

P
k f k 
 gk 2 L1(
 1) 
 L1(
 2) with � 0

q;p0(v) < 1 we have

ju� (v)j = j
X

k

hu� (f k); gk i j � 1:

By density, we can assume that f k ; gk are simple functions. Hence, with the nota-
tions introduced in Section 2:3:1 there exist n; m 2 N� ; A = ( A1; : : : ; An ) 2 A n; 
 1 and
B = ( B1; : : : ; Bm ) 2 A m; 
 2 such that, for all k, f k 2 SA; 1 and gk 2 SB; 1.
By Lemma 2:6, the � 0

q;p0-norm of v as an element ofSA; 1 
 SB; 1 is less than 1.

Let ' A; 1 : SA; 1 ! `n
1 and  B; 1 : SB; 1 ! `m

1 the isomorphisms de�ned in (2:4).
Set v0 =

P
k ' A; 1(f k) 
  B; 1(gk) 2 `n

1 
 `m
1 . Since ' A; 1 and  B; 1 are isometries, we

have � 0
q;p0(v0) < 1. Using the identi�cation (1:6), we obtain by (1:11) that v0 admits a

factorization

`n
1

v0
//

d�

��

`m
1OO

d


`n
p c

//`m
q

where � = ( � 1; : : : ; � n ), 
 = ( 
 1; : : : ; 
 m ), d� and d
 are the operators of multiplication
and

kd� k = k� k`p = 1; kd
 k = k
 k`q0 = 1 andkck < 1:

This factorization means that

v0 =
mX

i =1

nX

j =1


 i c(i; j )� j ej 
 ei :

Therefore, we have

v =
mX

i =1

nX

j =1


 i c(i; j )� j ' � 1
A; 1(ej ) 
  � 1

B; 1(ei )

=
mX

i =1

nX

j =1


 i
c(i; j )

� 1(A j )� 2(B i )
� j � A j 
 � B i :

We compute

u� (v) =
mX

i =1

nX

j =1


 i
c(i; j )

� 1(A j )� 2(B i )
� j



u� (� A j ); � B i

�

=
mX

i =1

nX

j =1


 i
c(i; j )

� 1(A j )� 2(B i )
� j



T� (� A j 
 � B i )( � A j ); � B i

�
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De�ne

~c =
mX

i =1

nX

j =1

~c(i; j )� A j 
 � B i 2 Lp0
(
 1) 
 Lq(
 2);

where ~c(i; j ) = ci;j � 1(A j )� 1=p0
� 2(B i )� 1=q.

Using the identi�cation (1:6), it is easy to check that we have

~c =  � 1
B;q � c � ' A;p : SA;p 7! Lq(
 2):

Therefore,
k~ck_ = kck:

We have

u� (v) =
mX

i =1

nX

j =1


 i
~c(i; j )� 1(A j )1=p0

� 2(B i )1=q

� 1(A j )� 2(B i )
� j



T� (� A j 
 � B i )( � A j ); � B i

�

=
mX

i =1

nX

j =1


 i ~c(i; j )� 1(A i )� j 1=p� 2(B i )� 1=q0
� j



T� (� A j 
 � B i )( � A j ); � B i

�

=
mX

i =1

nX

j =1

�
T� (~c(i; j )� A j 
 � B i )

�
� j

� 1(A j )1=p
� A j

�
;


 i

� 2(B i )1=q0 � B i

�

= hT� (~c)(f ); gi L q (
 2 );L q0(
 2 ) ;

where

f =
X

j

� j

� 1(A j )1=p
� A j and g =

X

i


 i

� 2(B i )1=q0 � B i :

SincekT� k � 1, we deduce that

ju� (v)j � k T� (~c)kkf kpkgkq0 � k ~ckk� k`p k
 k`q0 = kck � 1:

Conversely, assume thatu� 2 L q;p0(L1(
 1); L1 (
 2)) with Lq;p0(u� ) � 1. To prove that
� is a Schur multiplier, we will use Proposition 2:5. Let n; m 2 N� , A = ( A1; : : : ; An ) 2
A n; 
 1 and B = ( B1; : : : ; Bm ) 2 A m; 
 2 . Set

� ij =
1

� 1(A j )� 2(B i )

Z

A j � B i

� d� 1d� 2:

We want to show that the Schur multiplier on B(`n
p ; `m

q ) associated to the family m =
(� ij ) i;j has a norm less than1. To prove that, let c =

P
i;j c(i; j )ej 
 ei 2 B(`n

p ; `m
q ); x =

(x j )n
j =1 ; y = ( yi )m

i =1 in C be such that kck � 1; kxk`n
p

= 1; kyk`q0 = 1. We have to show
that

j h[Tm (c)](x); yi `m
q ;`m

q0
j � 1:

This inequality can be rewritten as
�
�
�
�
�

X

i;j

c(i; j )
x j yi

� 1(A j )� 2(B i )

 Z

A j � B i

�

! �
�
�
�
�

� 1: (2.9)
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Let v =
P

i;j x j c(i; j )yi ej 
 ei . According to (1:11), � 0
q;p0(v) � 1. Now, let ~v =

P
i;j x j c(i; j )yi ' � 1

A; 1(ej )

 � 1

B; 1(ei ). We have
� 0

q;p0(~v) = � 0
q;p0(v) � 1

and

~v =
X

i;j

x j c(i; j )yi

� 1(A j )� 2(B i )
� A j 
 � B i :

By assumption, Lq;p0(u� ) � 1, which implies that

j hu� ; ~vi j =

�
�
�
�
�

X

i;j

c(i; j )
x j yi

� 1(A j )� 2(B i )

 Z

A j � B i

�

! �
�
�
�
�

� � 0
q;p0(~v)

� 1;

and this is precisely the inequality (2:9).

Theorem 1:8 and Remark 2:8 allow us to reformulate the previous theorem. The fol-
lowing two corollaries are generalizations of Theorem 2:1. For the �rst one, we �rst
need the following remark.

Remark 2.8. Let X = L1(� ) and Y = L1(� ) for some� -�nite measure spaces(
 1; � ) and
(
 2; � ). ConsiderT 2 B(L1(� ); L1 (� )) . By (1:5), there exists 2 L1 (� � � ) such that

T = u :

(See(1:5) for the notation.)

(i) If 1 < q < + 1 , Lq0
(� ) has RNP so by (1:31),

B(L1(� ); Lq0
(� )) = L1 (�; L q0

(� )) :

It means that ifR 2 B(X; L q0
(� )) , there existsa 2 L1 (�; L q0

(� )) such that

8f 2 L1(� ); R(f ) =
Z


 1

f (s)a(s)d� (s):

(ii) If 1 < p < + 1 , then using(1:2), (1:3) and(1:4) we obtain

B(Lp(� ); L1 (� )) = ( Lp(� )
^

 L1(� )) � = L1 (�; L p0

(� )) :

Thus, ifS 2 B(Lp(� ); L1 (� )) , there existsb2 L1 (�; L p0
(� )) such that

8g 2 Lp(� ); S(g)( �) = hg; b(�)i :

We deduce that if1 < p; q < + 1 , there exista 2 L1 (�; L q0
(� )) andb 2 L1 (�; L p0

(� )) such
that for almost every(s; t) 2 
 1 � 
 2,

 (s; t) = ha(s); b(t)i :



2.3. Schur multipliers on B(Lp; Lq) 47

If T satis�es Theorem1:8, the latter implies that for allf 2 L1(� ),

T(f ) =
Z


 1

ha(s); b(�)i f (s) ds:

Using the same identi�cations we have for the following cases :

1. If q = 1 and1 < p < + 1 , then there exista 2 L1 (� � � ) andb 2 L1 (�; L p0
(� )) such

that for almost every(s; t) 2 
 1 � 
 2,

 (s; t) = ha(s; �); b(t)i :

2. If 1 < q < + 1 andp = + 1 , then there exista 2 L1 (�; L q0
(� )) andb 2 L1 (� � � )

such that for almost every(s; t) 2 
 1 � 
 2,

 (s; t) = ha(s); b(t; �)i :

3. If q = 1 andp = + 1 , then there exista 2 L1 (� � � ) andb 2 L1 (� � � ) such that for
almost every(s; t) 2 
 1 � 
 2,

 (s; t) = ha(s; �); b(t; �)i :

Corollary 2.9. Let (
 1; � 1) and(
 2; � 2) be two� -�nite measure spaces and let� 2 L1 (
 1 �

 2). Let1 � q � p � 1 . The following statements are equivalent :

(i) � is a Schur multiplier onB(Lp(
 1); Lq(
 2)) .

(ii) There are a measure space (a probability space whenp 6= q) (
 ; � ), operatorsR 2
B(L1(
 1); Lp(� )) andS 2 B(Lq(� ); L1 (
 2))) such thatu� = S � I � R

L1(
 1)
u � //

R
��

L1 (
 2)
OO

S

Lp(� ) �•
I

//Lq(� )

whereI is the inclusion mapping.

In the following cases,(i ) and(ii ) are equivalent to :
If 1 < q � p < + 1 :

(iii) There are a measure space (a probability space whenp 6= q) (
 ; � ), a 2 L1 (� 1; Lp(� ))
andb2 L1 (� 2; Lq0

(� )) such that, for almost every(s; t) 2 
 1 � 
 2,

� (s; t) = ha(s); b(t)i :

If 1 = q < p < + 1 :

(iii) There are a probability space(
 ; � ), a 2 L1 (� 1 � � ) andb 2 L1 (� 2; Lq0
(� )) such that

for almost every(s; t) 2 
 1 � 
 2,

� (s; t) = ha(s; �); b(t)i :



48 Chapter 2. Linear Schur multipliers

If 1 < q < + 1 andp = + 1 :

(iii) There are a probability space(
 ; � ), a 2 L1 (� 1; Lp(� )) andb 2 L1 (� 2 � � ) such that
for almost every(s; t) 2 
 1 � 
 2,

� (s; t) = ha(s); b(t; �)i :

If q = 1 andp = + 1 :

(iii) There are a probability space(
 ; � ), a 2 L1 (� 1 � � ) andb 2 L1 (� 2 � � ) such that for
almost every(s; t) 2 
 1 � 
 2,

� (s; t) = ha(s; �); b(t; �)i :

In this case,kT� k = inf kRkkI kkSk = inf kakkbk.

Remark 2.10. In the previous corollary, the condition(ii ) implies that every� 2 L1 (
 1 � 
 2)
is a Schur multiplier onB(L1(
 1); L1(
 2)) and onB(L1 (
 1); L1 (
 2)) .

In the discrete case, the previous corollary can be reformulated as follow.

Corollary 2.11. Let � = ( cij ) i;j 2 N � C, C � 0 be a constant and let1 � q � p � + 1 . The
following are equivalent :

(i) � is a Schur multiplier onB(`p; `q) with norm < C .

(ii) There exist a measure space (a probability space whenp 6= q) (
 ; � ) and two bounded
sequences(x j ) j in Lp(� ) and(yi ) i in Lq0

(� ) such that

8i; j 2 N; cij = hx j ; yi i and sup
i

kyi kq0 sup
j

kx j kp < C:

2.3.3 An application : the main triangle projection

Let mij = 1 if i � j and mij = 0 otherwise. Let Tm be the Schur multiplier associated
with the family m = ( mij ). For any in�nite matrix A = [ aij ], Tm (A) is the matrix
[bij ] with bij = aij if i � j and bij = 0 otherwise. For that reason, Tm is called the
main triangle projection. Similary, we de�ne the n-th main triangle projection as the
Schur multiplier on M n (C) associated with the family mn = ( mn

ij )1� i;j � n where mn
ij = 1

if i � j and mn
ij = 0 otherwise. In [KP70], Kwapień and Pelczyński proved that if

1 � q � p � + 1 ; p 6= 1; q 6= + 1 , there exists a constantK > 0 such that for all n,

kTmn : B(`n
p ; `n

q ) ! B (`n
p ; `n

q )k � K ln(n);

and this order of growth is obtained for the Hilbert matrices. Those estimates imply
that Tm is not bounded on B(`p; `q). Bennett proved in [Ben76] that when 1 < p < q <
1 , Tm is bounded from B(`p; `q) into itself.

The results obtained in subsection 4:10 allow us to give a very short proof of the
unbounded case.
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Proposition 2.12. Let 1 � q � p � + 1 ; p 6= 1; q 6= + 1 . ThenTm is not bounded on
B(`p; `q).

Proof. Assume that Tm is bounded on B(`p; `q). By Corollary 2:9, there exist a measure
space(
 ; � ), (an )n 2 Lp(� ) and (bn )n 2 Lq0

(� ) two bounded sequences such that, for all
i; j 2 N,

mij = haj ; bi i : (2.10)

By boundedness,(an )n and (bn )n admit an accumluation point a 2 Lp(� ) and b2 Lq0
(� )

respectively for the weak-* topology. Fix i 2 N. For all j � i , we have

hai ; bj i = 1

so that we get
hai ; bi = 1:

This equality holds for any i hence

ha; bi = 1:

Now �x j 2 N. For all i > j we have

hai ; bj i = 0:

From this, we deduce as above that

ha; bi = 0:

We obtained a contradiction so Tm cannot be bounded.

As a consequence, we have, by Proposition2:5 :

Corollary 2.13. Let 1 � q � p � + 1 ; p 6= 1; q 6= + 1 . Let 
 1 = 
 2 = R with the Lebesgue
measure. Then� 2 L1 (R2) de�ned by

� (s; t) :=

(
1; if s + t � 0

0 if s + t < 0
; s; t 2 R

is not a Schur multiplier onB(Lp(R); Lq(R)).

Remark 2.14. One could wonder whether the results of subsection4:10can be extended to the
case1 � p < q � + 1 , that is, if the boundedness ofT� on B(Lp; Lq) implies thatu� has a
certain factorization. The fact that ifp < q the main triangle projection is bounded tells us that
m is a Schur multiplier onB(`p; `q). Nevertheless, the argument used in the previous proof
shows thatm cannot have a factorization like in(2:10). Therefore, the casep < q is more tricky.
For the discrete case, one can �nd in [Ben77, Theorem 4.3] a necessary and suf�cient condition
for a family(mi;j ) � C to be a Schur multiplier, for all values ofp andq, using the theory of
q� absolutely summing operators.
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2.4 Inclusion theorems

In this section, we denote by M (p; q) the space of Schur multipliers on B(`p; `q).

First, we recall the inclusions relationships between the spaces M (p; q). Then we will
establish new results as applications of those obtained in Section 4:10.

Theorem 2.15. [Ben77, Theorem 6.1] Letp1 � p2 andq1 � q2 be given. ThenM (p1; q1) �
M (p2; q2) with equality in the following cases:

(i) p1 = p2 = 1,

(ii) q1 = q2 = 1 ,

(iii) q2 � 2 � p2,

(iv) q2 < p 1 = p2 < 2,

(v) 2 < q1 = q2 < p 2.

Let (
 1; � 1) and (
 2; � 2) be two measure spaces. IfM (p1; q1) � M (p2; q2), then
using Proposition 2:5 we have that any Schur multiplier on B(Lp1 (
 1); Lq1 (
 2)) is a
Schur multiplier on B(Lp2 (
 1); Lq2 (
 2)) . Hence, the results in the previous theorem
hold true for all the Schur multipliers on B(Lp; Lq).

In the sequel, we will need the notion of type for a Banach space X , for which we
refer e.g. to [AK06]. Let (Ei ) i 2 N be a sequence of independent Rademacher random
variables. We have the following de�nition.

De�nition 2.16. A Banach space X is said to have Rademacher type p (in short, type p) for
some1 � p � 2 if there is a constantC such that for every �nite set of vectors(x i )n

i = n in X ,

 

E












nX

i =1

Ei x i












p! 1=p

� C

 
nX

i =1

kx i kp

! 1=p

: (2.11)

The smallest constantC for which(2:11) holds is called the type-p constant ofX .

We will use the fact that for 1 � p � 2, Lp-spaces have typep and if 2 < p < + 1 ,
Lp-spaces have type 2 and that those are the best types for in�nite dimensional Lp-
spaces (see for instance [AK06, Theorem 6.2.14]). We will also use the fact that the
type is stable by passing to quotients. Namely, if X has type p and E � X is a closed
subspace, thenX=E has type p.

Proposition 2.17. (i ) If 1 � q < p � 2, then

M (q;1) * M (p; p):

Consequently, for any1 � r � q,

M (q; r) * M (p; p):

(ii ) If 2 � p < q � r , then
M (r; q) * M (p; p):
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(iii ) If 1 < q < 2 < p < + 1 or 1 < p < 2 < q < + 1 , then

M (q; q) * M (p; p):

To prove this proposition, we will need the following de�niton and lemma.

De�nition 2.18. Let X andY be Banach spaces,u 2 B(X; Y ) and1 � p � 1 . We say that
u 2 SQp(X; Y ) if there exists a closed subspaceZ of a quotient of aLp-space and two operators
A 2 B(X; Z ) andB 2 B(Z; Y ) such thatu = BA .
ThenkukSQp = inf kAkkBk de�nes a norm onSQp(X; Y ) and(SQp(X; Y ); k:kSQp ) is a Ba-
nach space.

Lemma 2.19. Let W; X; Y; Z be Banach spaces and letu 2 B(X; Y ); s 2 B(W; X ); v 2
B(Y; Z) such thats is a quotient map,v is a linear isometry andvus 2 � p(W; Z). Then
u 2 SQp(X; Y ).

Proof. By assumption, there exist a Lp-space U and two operators a 2 B(W; U) and
b2 B(U; Z) such that the following diagram commutes

W s ////

a

$$

X u //Y �• v //Z

U

b

::

Sincev is an isometry, V := v(Y) � Z is isometrically isomorphic to Y. Let  : Y ! V
be the isometric isomorphism induced by v.
SetF := f x 2 U such that b(x) 2 Vg: Sincevus = ba, we have, for all w 2 W; v(us(w)) =
b(a(w)), so that a(w) 2 F . This implies that a(W) � F . We still denote by a the
mapping a : W ! F and by b the restriction of b to F . Denote by b̂ the mapping
b̂=  � 1 � b : F ! Y. Then we have the following commutative diagram

W s ////

a   

X u //Y

F
b̂

>>

Now, set E := a(ker(s)) and let Q : F ! F=E be the canonical mapping. Clearly,
Q � a : W ! F=E vanishes on ker(s), so that we have a mapping

[Q � a : W=ker(s) ! F=E

induced by Q � a.
Sinces is a quotient map, we denote by bs the isometric isomorphism

ŝ : W=ker(s) ! X:

De�ne
A = [Q � a � ŝ� 1 : X ! F=E:

b̂vanishes on E so that we have a mapping

B : F=E ! Y:



52 Chapter 2. Linear Schur multipliers

Finally, it is easy to check that u = BA , that is, we have the following commutative
diagram

X u //

A
��

Y

F=E

B

CC

which concludes the proof.

Remark 2.20. To prove Lemma2:19, one can use a result of Kwapień characterizing elements
of SQp, as follows : a Banach spaceX is isomorphic to anSQq-space if and only if there exists
a constantK � 1 such that for anyn � 1, for anyn � n matrix [aij ] and for anyx1; : : : ; xn in
X ,  

X

i












X

j

aij x j












q! 1=q

� K k[aij ] : `n
q ! `n

qk

 
X

j

kx j kq

! 1=q

:

However, the proof presented in here also works if we replace in the statement of the lemma
� p (respectivelySQp) by the space of operators that can be factorized by some Banach spaceL
(respectively by a subspace of a quotient ofL).

Proof of Proposition2:17. (i ). Let 
 := [0 ; 1] and � be the Lebesgue measure on
 . Let
I q : Lq(� ) ! L1(� ) be the inclusion mapping. By the classical Banach space theory (see
[AK06, Theorem 2.3.1] and [AK06, Theorem 2.5.7]) there exist a quotient map � : `1 �
Lq(� ) and an isometry J : L1(� ) ,! `1 . Let � 2 `1 (N2) be such that

u� = JI q�

(by (1:5) any continuous linear map `1 ! `1 is a certain u� for � 2 L1 (N � N)). We
have the following factorization

`1
u � //

�
��

`1OO

J

Lq(� ) �•
I q

//L1(� )

According to Theorem 2:9, � 2 M (q;1).

Assume that � 2 M (p; p). Then, again by Theorem 2:9, we have u� 2 � p(`1; `1 )
and therefore, by Lemma 2:19, there exist an SQp-space X and two operators � 2
B(Lq(� ); X ) and � 2 B(X; L 1(� )) such that I q = �� .
Let (Ei ) i 2 N be a sequence of independant Rademacher random variables. Letn 2 N�

and f 1; : : : ; f n 2 Lq(� ).

E












nX

j =1

Ej f j












L 1 (� )

= E












nX

j =1

Ej �� (f j )












L 1 (� )

� k � kE












nX

j =1

Ej � (f j )












X

:
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But X has type p so there exists a constantC1 > 0 such that

E












nX

j =1

Ej f j












L 1 (� )

� C1k� k

 
nX

j =1

k� (f j )k
p
X

! 1=p

� C1k� kk� k

 
nX

j =1

kf j k
p
L q (� )

! 1=p

:

By Khintchine inequality, there exists C2 > 0 such that













 
X

j =1

jf j j2
! 1=2














L 1 (� )

� C2E












nX

j =1

Ej f j












L 1 (� )

:

Thus, setting K := C1C2k� kk� k, we obtained the inequality













 
X

j =1

jf j j2
! 1=2














L 1 (� )

� K

 
nX

j =1

kf j k
p
L q (� )

! 1=p

:

Let E1; : : : ; En be disjoint measurable subsets of[0; 1]such that for all 1 � j � n; � (E j ) =
1
n

. Setf j := � E j . Then

X

j

jf j j2 = 1 and kf kL q (� ) = n� 1=q:

Hence, applying the previous inequality to the f j 's, we obtain

1 � Kn 1=p� 1=q:

Sinceq < p, this inequality can't hold for all n, so we obtained a contradiction.

Finally, notice that if 1 � r � q, then by Theorem 2:15, M (q;1) � M (q; r). Thus,
M (q; r) * M (p; p):

(ii ). By Proposition 2:5and using duality, it is easy to prove that for all s; t 2 [1; 1 ]; �
is a Schur multiplier on B(`s; ` t ) if and only if ~� is a Schur multiplier on B(` t0; `s0), where
~� is de�ned for all i; j 2 N by ~� (i; j ) = � (j; i ).
Let 2 � p < q � r . Then 1 � r 0 � q0 < p 0 � 2. If we assume that M (r; q) � M (p; p) then
the latter implies M (q0; r 0) � M (p0; p0), which is, by (i ), a contradiction. This proves
(ii ).

(iii ). By duality, it is enough to consider the case 1 < q < 2 < p < + 1 . Assume that
M (q; q) � M (p; p). Using the notations introduced in the proof of (i ), let � : `1 ! `q be
a quotient map and J : `q ! `1 be an isometry. Let � 2 L1 (N � N) be such that

u� = JI `q �;

where I `q : `q ! `q is the identity map. Then � 2 M (q; q). By assumption, � 2
M (p; p). By Lemma 2:19, this implies that I `q 2 SQp(`q; `q). Clearly, this implies that
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`q is isomorphic to an SQp-space. But`q does not have type 2 and any SQp has type 2.
This is a contradiction, so M (q; q) * M (p; p).

Theorem 2.21. We haveM (q; q) � M (p; p) if and only if 1 � p � q � 2 or 2 � q � p �
+ 1 .

Proof. By Proposition 2:17and duality, we only have to show that when 1 � p � q � 2,
M (q; q) � M (p; p).
We saw in the proof Proposition of 2:17 (iii ) that if M (q; q) � M (p; p) then `q is isomor-
phic to an SQp-space. The converse holds true. Indeed, assume that̀ q is isomorphic
to an SQp-space. Then by approximation, any Lq-space is isomorphic to an SQp-space.
Hence any element of � q(`1; `1 ) factors through an SQp-space. By the lifting property
of `1 and the extension property of `1 , this implies that any element of � q(`1; `1 ) fac-
tors through an Lp-space, that is� q(`1; `1 ) � � p(`1; `1 ). By Corollary 2:11, this implies
that M (q; q) � M (p; p).

Assume that 1 � p � q � 2. By [AK06, Theorem 6.4.19], there exists an isometry
from `q into an Lp-space, obtained by using q� stable processes. Hence,̀ q is an SQp-
space. This concludes the proof.

2.5 Perspectives

In Section 2:1, we saw that any bounded family (mij ) i;j 2 N of complex numbers is a
Schur multiplier on S2(`2). Moreover, Theorem 2:1 together with a dual argument give
a characterization of Schur multipliers on S1(`2) and B(`2): However, there is no de-
scription of Schur multipliers on Sp(`2) when 1 < p 6= 2 < 1 . An interesting and
dif�cult problem would be to �nd an explicit characterization of such multipliers.

The main result of this chapter is a characterization of Schur multiplier on B(`p; `q)
in the case when q � p. As said in Remark 2:14, such characterization cannot hold
when p < q, because in this case the main triangular projection is bounded on B(`p; `q).
In [Ben77], a necessary and suf�cient condition is given for all values of p and q, but it
does not allow us to give a handy condition. It is a challenge to �nd a characterization
in the casep < q which is similar to the one given in the case q � p, that is, a character-
ization that would imply that the elements of the family (mij ) have a certain form.

Finally, we proved in Section 2:4 some inclusion relationships between the spaces
M (p; q) of Schur multipliers on B(`p; `q). The previous results of inclusions were ob-
tained by Bennett, where he used, as said above, a characterization of Schur multipliers
on B(`p; `q) (see [Ben77, Theorem 6.1]). This characterization uses the theory of abso-
lutely summing operators (see the de�nition e.g. in [Ben77]). The study of such oper-
ators reveals that in some particular cases, the space of absolutely summing operators
are nothing but the space of bounded operators (see [Ben77, Proposition 5.1]). This is
how Bennett could prove his results concerning the inclusions. However, when the
two spaces are different, it becomes more complicated to compare the spacesM (p; q),
even in the caseq � p with the new characterization given in Subsection 2:3:2. There-
fore, an open problem is to �nish the classi�cation of such spaces. For example, if
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1 < p � 2, do we have
M (p;1) = M (p; p)?
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Chapter 3

Bilinear Schur multipliers

——————————————————————–

In this chapter, we �rst de�ne bilinear Schur multipliers as bilinear mappings de-
�ned on the product of two copies of S2(`2). When such mappings are valued in Sr (`2),
we call them bilinear Schur multipliers into Sr . Like in the linear case, any bounded
family M = f mikj gi;k;j � 1 de�nes a bilinear Schur multiplier into S2. Similarly, we de-
�ne continuous bilinear multipliers. In this case, the operators are de�ned on a product
of S2(L2(
)) -spaces.

The main question of this chapter is to characterize bilinear Schur multipliers into
S1. Theorem 3:4 gives a formula for the norm of those operators in the �nite dimen-
sional case. As a consequence, we obtain a characterization of bilinear Schur mulipli-
ers into S1(`2) in terms of uniform boundedness of a family of linear Schur multipliers.
Following the same ideas, we obtain the main result of this chapter, Theorem 3:8, which
describes continuous bilinear Schur multipliers into S1. A use of Theorem 1:25allows
us to give an explicit characterization of such operators.

3.1 De�nition and notations

In this �rst section, we de�ne bilinear Schur multipliers in the classical case, that is, as
mappings de�ned on S2(`2) � S 2(`2). The terminology below is adopted from [ER90],
where multilinear Schur products are de�ned and studied in the context of completely
bounded maps. Recall that (E ij ) i;j 2 N denotes the unit matrices of B(`2).

De�nition 3.1. Let 1 � r � 1 . A three-dimensional matrixM = f mikj gi;k;j � 1 with entries
in C is said to be a bilinear Schur multiplier intoSr if the following action

M (A; B ) :=
X

i;j;k � 1

mikj aik bkj E ij ; A = f aij gi;j � 1; B = f bij gi;j � 1 2 S 2;

de�nes a bounded bilinear operator fromS2 � S 2 into Sr :

Of course we can de�ne as well a notion of bilinear Schur multiplier from Sp � S q

into Sr , whenever 1 � p; q; r � 1 . The case whenp = q = r = 1 was initiated in
[ER90] and we will study this case in Chapter 4 in the case of complete boundedness.
Let us mention another (easier) case which will be used in Chapter 5.
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Lemma 3.2. A matrix M = f mikj gi;k;j � 1 is a bilinear Schur multiplier intoS2 if and only if
supi;j;k � 1 jmikj j < 1 : Moreover,

kM : S2 � S 2 ! S 2k = sup
i;j;k � 1

jmikj j:

Proof. The inequality kM : S2�S 2 ! S 2k � supi;j;k � 1 jmikj j is achieved by the following
computation. Consider A = f aik gi;k � 1 and B = f bkj gk;j � 1 in S2. Then applying the
Cauchy-Schwarz inequality, we have

kM (A; B )k2
2 =








X

i;j;k � 1

mikj aik bkj E ij








2

2
=

X

i;j � 1

�
�
�
X

k� 1

mikj aik bkj

�
�
�
2

� sup
i;j;k � 1

jmikj j2
X

i;j � 1

� X

k� 1

jaik bkj j
� 2

� sup
i;j;k � 1

jmikj j2
X

i;j � 1

X

k� 1

jaik j2
X

k� 1

jbkj j2

� sup
i;j;k � 1

jmikj j2kAk2
2kBk2

2:

The converse inequality is obtained from

kM : S2 � S 2 ! S 2k � k M (E ik ; Ekj )k2 = jmikj j;

taking the supremum over all i; j; k � 1:

3.2 Bilinear Schur multipliers valued in S1

The aim of this section is to give a criteria when a matrix M is a bilinear Schur multi-
plier from S2 � S 2 into S1. The main result is Theorem 3:4 which gives, for n 2 N, a
formula for the norm of a bilinear Schur multipliers from S2

n � S 2
n into S1

n in terms of
norms of Schur multipliers from M n into M n .

We will work with the subspace of M n 
 min M n spanned by the Erk 
 Eks, for 1 �
r; k; s � n. The next lemma provides a description of this subspace. We let (e1; : : : ; en )
denote the standard basis of `1

n .

Lemma 3.3. The linear mapping� : `1
n (M n ) ! M n 
 min M n such that

� (ek 
 Ers ) = Erk 
 Eks; 1 � k; r; s � n;

is an isometry.

Proof. Take y =
P n

k=1 ek 
 yk 2 `1
n (M n ); where yk =

P n
r;s =1 yk(r; s)Ers : From the de�ni-

tion of � we have

� (y) =
nX

r;s;k =1

yk(r; s)Erk 
 Eks:
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Recall the isometric isomorphism J0 given by (1.21). Then

J0� (y) =
nX

r;s;k =1

yk(r; s)E(r;k );(k;s) :

Let a = f ark gn
r;k =1 ; b= f blsgn

l;s=1 2 `2
n2 : Then we have



J0� (y)b; a

�
=

nX

r;s;k =1

yk(r; s)


E(r;k );(k;s)(b); a

�
=

nX

r;s;k =1

yk(r; s)ark bks:

Therefore, using the Cauchy-Schwarz inequality, we obtain

�
� 
 J0� (y)b; a

� �
� �

nX

k=1

�
�
�

nX

r;s =1

yk(r; s)ark bks

�
�
�

�
nX

k=1

kykk
� nX

r =1

jark j2
� 1

2
� nX

s=1

jbks j2
� 1

2

� max
1� k� n

kykk
nX

k=1

� nX

r =1

jark j2
� 1

2
� nX

s=1

jbks j2
� 1

2

� max
1� k� n

kykk
� nX

k;r =1

jark j2
� 1

2
� nX

k;s=1

jbks j2
� 1

2

� max
1� k� n

kykkkak2kbk2:

It follows that k� (y)k � max1� k� n kykk:
Now �x 1 � k0 � n: Take arbitrary � = f � r gn

r =1 and � = f � sgn
s=1 in `2

n . Then de�ne

ark :=
�

� r ; if k = k0

0 otherwise
; bls :=

�
� s; if l = k0

0 otherwise
:

Then 

J0� (y)b; a

�
= hyk0 (� ); � i

and moreover, kak2 = k� k2, kbk2 = k� k2. Therefore, we have kyk0 k � k � (y)k: Hence,
k� (y)k � max1� k� n kykk:

The following theorem is the main result of this section.

Theorem 3.4. Let n 2 N: Let M = f mikj gn
i;k;j =1 be a three-dimensional matrix. For any

1 � k � n, let M (k) be the (classical) matrix given byM (k) = f mikj gn
i;j =1 . We also denote by

M (k) : M n ! M n the Schur multiplier associated to the familyM (k). Then



 M : S2

n � S 2
n ! S 1

n




 = sup

1� k� n




 M (k) : M n ! M n




 :

Proof. According to the isometric identity (1.1), the bilinear map M : S2
n � S 2

n ! S 1
n

induces a linear map fM : S2
n

b
S 2
n ! S 1

n with kM k = kfM k. Consider

TM = ( fMJ � 1)� : M n ! M n 
 min M n ;
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where J is given by Lemma 1.15 and where we apply (1.23). This lemma implies that

kTM k =



 M : S2

n � S2
n ! S1

n




 : (3.1)

For any 1 � r; s � n, we have



TM (Ers ); E ij 
 Ekl

�
=



Ers ; fMJ � 1(E ij 
 Ekl )

�

=


Ers ; fM (E ik 
 E jl )

�

=
�

mikl hErs ; E il i ; if k = j
0 otherwise

=
�

mikl ; if k = j; r = i; s = l
0 otherwise

;

for all 1 � i; j; k; l � n. Hence

TM (Ers ) =
nX

k=1

mrks Erk 
 Eks:

This shows that TM maps into the range of the operator � introduced in Lemma 3.3 and
that

TM (Ers ) =
nX

k=1

mrks � (ek 
 Ers ):

By linearity this implies that for any C 2 M n ,

TM (C) = �
� nX

k=1

ek 
 [M (k)](C)
�

:

Appyling Lemma 3.3, we deduce that

kTM (C)k = max
k




 [M (k)](C)




 ; C 2 M n :

From this identity we obtain that kTM k = max k kM (k)k. Combining with (3.1) we
obtain the desired identity kM k = max k kM (k)k.

For the sake of completeness we give an in�nite dimensional version of the previ-
ous theorem.

Theorem 3.5. A three-dimensional matrixM = f mikj gi;k;j � 1 is a bilinear Schur multiplier
into S1 if and only if the matrixM (k) = f mikj gi;j � 1 is a linear Schur multiplier onS1 for
everyk � 1 andsupk� 1 kM (k) : S1 ! S1 k < 1 : Moreover,




 M : S2 � S 2 ! S 1




 = sup

k� 1




 M (k) : S1 ! S 1






in this case.
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Proof. Consider a three-dimensional matrix M = f mikj gi;k;j � 1 and setM (k) = f mikj gi;j � 1.
For any n � 1, let

M (n) = f mikj g1� i;j � n and M (n)(k) = f mikj g1� i;k;j � n

be the standard truncations of these matrices.
We may identify S2

n (respectively S1
n ) with the subspace of S2 (respectively S1 )

spanned by f E ij : 1 � i; j � ng. Then the union [ n� 1S2
n is dense in S2. Hence by

a standard density argument, M is a bilinear Schur multiplier into S1 if and only if
supn� 1 kM (n) : S2

n � S 2
n ! S 1

n




 < 1 , and in this case




 M : S2 � S 2 ! S 1




 = sup

n� 1




 M (n) : S2

n � S 2
n ! S 1

n




 :

Likewise [ n� 1S1
n is dense in the spaceS1 of all compact operators, for any k � 1 M (k)

is a linear Schur multiplier on S1 if and only if supn� 1 kM (n)(k) : S1
n ! S 1

n




 < 1 , and




 M (k) : S1 ! S 1




 = sup

n� 1




 M (n)(k) : S1

n ! S 1
n




 :

in this case.
Combining the above two approximation results with Theorem 3.4, we obtain the

result.

Theorem 3.5 together with Theorem 2.1 yield the following result.

Corollary 3.6. A three-dimensional matrixM = f mikj gi;k;j � 1 is a bilinear Schur multiplier
into S1 if and only if there exist a Hilbert spaceE and two bounded families(� ik ) i;k � 1 and
(� jk ) j;k � 1 in E such that

mikj = h� ik ; � jk i ; i; k; j � 1:

Moreover 


 M : S2 � S 2 ! S 1




 = inf

�
sup
i;k

k� ik k sup
j;k

k� jk k
	

;

where the in�mum runs over all possible such factorizations.

3.3 Continuous bilinear Schur multipliers

In this section, we �rst de�ne and give few properties of continuous bilinear Schur
multipliers. Those mappings are de�ned on a product of S2(L2(
)) � spaces. When

 = N with the counting measure, the de�nition is nothing but the one given in Section
3:1. The main result is Theorem 3:8 which gives a necessary and suf�cient condition for
a continuous bilinear Schur multiplier to be valued in S1. This result is the continuous
analogue of Theorem 3:5 and it will play an important role in Chapter 4.
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3.3.1 De�nition

Let (
 1; � 1); (
 2; � 2) and (
 3; � 3) be three � -�nite measure spaces, and let � 2 L1 (
 1 �

 2 � 
 3). For any J 2 L2(
 1 � 
 2) and K 2 L2(
 2 � 
 3), the function

�( � )(J; K ) : (t1; t3) 7!
Z


 2

� (t1; t2; t3)J (t1; t2)K (t2; t3) d� 2(t2)

is a well-de�ned element of L2(
 1� 
 3) with L2-norm less than k� k1 kJk2kK k2. Indeed,
by the Cauchy-Schwarz inequality we have

Z


 1 � 
 3

� Z


 2

j� (t1; t2; t3)J (t1; t2)K (t2; t3)jd� 2(t2)
� 2

d� 1(t1)d� 3(t3)

� k � k2
1

Z


 1 � 
 3

� Z


 2

jJ (t1; t2)K (t2; t3)jd� 2(t2)
� 2

d� 1(t1)d� 3(t3)

� k � k2
1

Z


 1 � 
 3

� Z


 2

jJ (t1; t2)j2d� 2(t2)
� � Z


 2

jK (t2; t3)j2d� 2(t2)
�

d� 1(t1)d� 3(t3)

� k � k2
1

� Z


 1 � 
 2

jJ (t1; t2)j2d� 1(t1)d� 2(t2)
� � Z


 2 � 
 3

jK (t2; t3)j2d� 2(t2)d� 3(t3)
�

:

Thus �( � ) is a bounded bilinear map from L2(
 1 � 
 2) � L2(
 2 � 
 3) into L2(
 1 � 
 3).
By the isometric identi�cation between L2(
 1 � 
 2) and S2(L2(
 1); L2(
 2)) given by
(1:16), and their analogues for (
 2; 
 3) and (
 1; 
 3), we may consider that we actually
have a bounded bilinear map

�( � ) : S2(L2(
 1); L2(
 2)) � S 2(L2(
 2); L2(
 3)) �! S 2(L2(
 1); L2(
 3)) :

We call �( � ) a continuous bilinear Schur multiplier.

Let E(
 1; 
 2; 
 3) = S2(L2(
 1); L2(
 2))
^

 S 2(L2(
 2); L2(
 3))

^

 S 2(L2(
 3); L2(
 1)) .

By (1.1), (1.2) and (1.12), we have isometric identi�cations,

E(
 1; 
 2; 
 3)� = B2(S2(L2(
 1); L2(
 2)) � S 2(L2(
 2); L2(
 3)) ; S2(L2(
 1); L2(
 3)))

for the duality pairing given by


T; X 
 Y 
 Z

�
= tr

�
T(X; Y )Z

�

for any bounded bilinear T : S2(L2(
 1); L2(
 2)) �S 2(L2(
 2); L2(
 3)) ! S 2(L2(
 1); L2(
 3))
and for any X 2 S 2(L2(
 1); L2(
 2)) , Y 2 S 2(L2(
 2); L2(
 3)) and Z 2 S 2(L2(
 3); L2(
 1)) .

Proposition 3.7. The mapping

� : L1 (
 1 � 
 2 � 
 3) �! E(
 1; 
 2; 
 3)�

de�ned above is aw� -continuous isometry.
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Proof. Write E = E(
 1; 
 2; 
 3) for simplicity. Consider three functions J 2 L2(
 1 � 
 2),
K 2 L2(
 2 � 
 3) and L 2 L2(
 3 � 
 1). It is easy to check that the function

' : (t1; t2; t3) 7! J (t1; t2)K (t2; t3)L(t3; t1)

belongs to L1(
 1� 
 2� 
 3). Further if X J 2 S 2(L2(
 1); L2(
 2)) , YK 2 S 2(L2(
 2); L2(
 3))
and ZL 2 S 2(L2(
 3); L2(
 1)) denote the Hilbert-Schmidt operators associated with J ,
K and L, respectively, then it follows from above that



�( � ); X J 
 YK 
 ZL

�
E � ;E

=
Z


 1 � 
 2 � 
 3

�' = h�; ' i L 1 ;L 1

for any � 2 L1 (
 1 � 
 2 � 
 3). This readily implies that � is w� -continuous.
We already showed that � is a contraction, let us now prove that it is an isometry.

Let � 2 L1 (
 1 � 
 2 � 
 3), with k� k1 > 1. We aim at showing that k�( � )kE � > 1. There
exist a function ' 2 L1(
 1 � 
 2 � 
 3) such that k' k1 = 1 and h�; ' i L 1 ;L 1 > 1. By the
density of simple functions in L1, we may assume that

' =
X

i;j;k

mijk � F 1
i


 � F 2
j


 � F 3
k
;

where (F 1
i ) i (respectively (F 2

j ) j and (F 3
k )k) is a �nite family of pairwise disjoint mea-

surable subsets of
 1 (respectively of 
 2 and 
 3) and mijk 2 C for any i; j; k . Let  2 E
be de�ned by

 =
X

i;j;k

mijk
�
� F 1

i

 � F 2

j

�



�
� F 2

j

 � F 3

k

�



�
� F 3

k

 � F 1

i

�
:

For any i; j; k , we have


�( � );

�
� F 1

i

 � F 2

j

�



�
� F 2

j

 � F 3

k

�



�
� F 3

k

 � F 1

i

��
E � ;E

=
Z


 1 � 
 2 � 
 3

� (t1; t2; t3)� F 1
i
(t1)� F 2

j
(t2)� F 3

k
(t3) d� 1(t1)d� 2(t2)d� 3(t3) :

This implies that
h�( � );  i E � ;E = h�; ' i L 1 ;L 1 ;

and hence that h�( � );  i E � ;E > 1. Now observe that by the de�nition of the projective
tensor product we have

k kE �
X

i;j;k

jmijk jk� F 1
i


 � F 2
j
k2k� F 2

j

 � F 3

k
k2k� F 3

k

 � F 2

j
k2:

Moreover,
k� F 1

i

 � F 2

j
k2 = k� F 1

i
k2k� F 2

j
k2 = � 1(F 1

i )
1
2 � 2(F 2

j )
1
2 :

Likewise, k� F 2
j


 � F 3
k
k2 = � 2(F 2

j )
1
2 � 3(F 3

k )
1
2 and k� F 3

k

 � F 2

j
k2 = � 3(F 3

k )
1
2 � 1(F 1

i )
1
2 . We

deduce that
k kE �

X

i;j;k

jmijk j� 1(F 2
j )� 2(F 2

j )� 3(F 3
k ):
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The right-hand side of this inequality is nothing but the L1-norm of ' . Thus we have
proved that k kE � k ' k1 = 1. This implies that k�( � )kE � > 1 as expected.

3.3.2 S1-boundedness

In this section, we will determine which functions � 2 L1 (
 1 � 
 2 � 
 3) are such that
�( � ) maps S2(L2(
 1); L2(
 2)) � S 2(L2(
 2); L2(
 3)) into S1(L2(
 1); L2(
 3)) .

Theorem 3.8. Let (
 1; � 1); (
 2; � 2) and(
 3; � 3) be measure spaces and letH i = L2(
 i ); i =
1; 2; 3. Let � 2 L1 (
 1 � 
 2 � 
 3). The following are equivalent:

(i) �( � ) 2 B2(S2(H1; H2) � S 2(H2; H3); S1(H1; H3)) .

(ii) There exist a Hilbert spaceH and two functions

a 2 L1 (
 1 � 
 2; H ) and b2 L1 (
 2 � 
 3; H )

such that
� (t1; t2; t3) = ha(t1; t2); b(t2; t3)i

for a.-e.(t1; t2; t3) 2 
 1 � 
 2 � 
 3:

In this case
k�( � ) : S2 � S 2 ! S 1k = inf kak1 kbk1 :

Proof. Proof of (i) ) (ii)
Assume that �( � ) 2 B2(S2(H1; H2) � S 2(H2; H3); S1(H1; H3)) .
By the equalities S2(H1; H2) = S2(H2; H1) and S2(H2; H3) = S2(H3; H2) which are

consequences of(1:16), we may asssume that�( � ) is a bounded bilinear mapping from
S2(H2; H1) � S 2(H3; H2) into S1(H3; H1).

According to the identi�cation

B2(S2 � S 2; S2) = B(S2 ^

 S 2; S2)

provided by (1.1), we may regard �( � ) as a bounded linear operator

�( � ) : S2(H2; H1)
^

 S 2(H3; H2) �! S 1(H3; H1):

Let
� : S2(H2; H1)

^

 S 2(H3; H2) �! S 1(H2)




 S 1(H3; H1)

be the isomorphism given by Lemma 1.14 (where we naturally identify H2 with its
conjugate spaceH2). Let w = �( � ) � � � 1 be the composition map. By the identi�ca-
tions (1.12) and (1.20) given by trace duality, its adjoint map w� from S1(H3; H1)� into
�
S1(H2)




 S 1(H3; H1)

� �
can be regarded as a map

v: B(H1; H3) �! B (H2)
B (H1; H3):

We consider the inclusion
L1 (� 2) � B (H2)



3.3. Continuous bilinear Schur multipliers 65

obtained by identifying any element of L1 (� 2) with its associated multiplication oper-
ator L2(� 2) ! L2(� 2). We shall now analyse v to get to property (3.2) below.

Take any c; � 2 H1, c0; d0 2 H2 and d; � 2 H3. Regard (d0
 c0) 
 (d 
 c) as an element
of S1(H2) 
 S 1(H3; H1). Then

� � 1
�
(d0 
 c0) 
 (d 
 c)

�
= ( c0 
 c) 
 (d 
 d0);

regarded as an element of S2(H2; H1) 
 S 2(H3; H2). Consider � 
 � as an element of
B(H1; H3). Then



v(� 
 � ); (d0 
 c0) 
 (d 
 c)

�

=


� 
 �; w

�
(d0 
 c0) 
 (d 
 c)

��

=


� 
 �; �( � )

�
(c0 
 c) 
 (d 
 d0)

��
B(H 1 ;H 3 );S1 (H 3 ;H 1 )

=
Z


 1 � 
 2 � 
 3

� (t1; t2; t3)� (t1)� (t3)c0(t2)d0(t2)c(t1)d(t3) d� 1(t1)d� 2(t2)d� 3(t3) :

For �; �; c; d as above, consider

S =


v(� 
 � ); � 
 (d 
 c)

�
2 B(H2):

Then the above calculation shows that S: L2(� 2) ! L2(� 2) is the multiplication opera-
tor associated to the function

t2 7!
Z


 1 � 
 3

� (t1; t2; t3)� (t1)� (t3)c(t1)d(t3) d� 1(t1)d� 3(t3) :

Thus S belongs to L1 (� 2).
This implies that for any (�; � ) 2 H1� H3, v(� 
 � ) belongs to the spaceL1 (� 2)
B (H1; H3).

Sincev is w� -continuous and H1 
 H3 is w� -dense in B(H1; H3), this implies that

v
�
B(H1; H3)

�
� L1 (� 2)
B (H1; H3): (3.2)

Consider now the restriction v0 = vjK (H 1 ;H 3 ) of v to the subspaceK(H1; H3) of com-
pact operators from H1 into H3. By Lemma 1.19 and (3.2), we may write

v0 : K(H1; H3) �! L1
� (� 2; B(H1; H3)) :

Corollary 1.17 provides an identi�cation

B
�
K(H1; H3); L1

� (� 2; B(H1; H3))
�

= L1
�

�
� 2; B (K(H1; H3); B(H1; H3))

�
:

Let e� 2 L1
�

�
� 2; B (K(H1; H3); B(H1; H3))

�
be corresponding to v0 in this identi�cation.

Then by the preceding computation we have that for any c; � 2 H1 and d; � 2 H3,


� e� (t2)
�
(� 
 � ); d 
 c

�
=

Z


 1 � 
 3

� (t1; t2; t3)� (t1)� (t3)c(t1)d(t3) d� 1(t1)d� 3(t3)

for a.e. t2 in 
 2.
Following Subsection 2.2, for any J 2 L2(
 1 � 
 3), we let X J 2 S 2(H1; H3) be
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the Hilbert-Schmidt operator with kernel J . Then the above formula shows that for
J = � 
 � , we have � e� (t2)

�
(X J ) = X � (�;t 2 ;�)J for a.e.t2: (3.3)

By density of H1 
 H3 in L2(
 1 � 
 3), we deduce that (3.3) holds true for any J 2
L2(
 1� 
 3). This means that for a.e. t2, � (� ; t2; � ), regarded as an element ofL1 (
 1� 
 3),
is a continuous Schur multiplier, whose corresponding operator is

e� (t2) = R� (�;t 2 ;�) : K(L2(
 1); L2(
 3)) �! B (L2(
 1); L2(
 3)) :

This shows two things. First, e� belongs to L1
�

�
� 2; � 2(L1(
 1); L1 (
 3))

�
regarded as a

subspace ofL1
�

�
� 2; B(K(H1; H3); B(H1; H3))

�
by (2.2). Second, the element ofL1 (
 1 �


 2 � 
 3) corresponding to e� through the inclusion (1.46) is the function � itself. Thus
we have proved that � 2 L1

�

�
� 2; � 2(L1(
 1); L1 (
 3))

�
. Hence, applying Theorem 1:25,

we obtain the factorization given in (ii ). Moreover, by the same theorem

k� k1 ;� 2 = inf kak1 kbk1 :

Hence, by the above reasoning, we obtain

inf kak1 kbk1 = k� k1 ;� 2 �



 �( � ) : S2 � S 2 ! S 1




 :

Proof of (ii) ) (i)
Assume that � has the factorization given in (ii ). Let J 2 S 2(H1; H2) and K 2

S2(H2; H3) identi�ed with elements of L2(
 1 � 
 2) and L2(
 2 � 
 3) (see(1:16)). We
have, for almost every (t1; t3) 2 
 1 � 
 3,

�( � )(J; K )(t1; t3) =
Z


 2

ha(t1; t2); b(t2; t3)i J (t1; t2)K (t2; t3)d� 2(t2)

=
Z


 2

D
~J(t1; t2); ~K (t2; t3)

E
d� 2(t2)

where ~J (t1; t2) = J (t1; t2)a(t1; t2) and ~K (t2; t3) = K (t2; t3)b(t2; t3). Then ~J 2 L2(
 1 �

 2; H ) and ~K 2 L2(
 2 � 
 3; H ) and we have the estimates

k ~Jk2 � k ak1 kJk2 and k ~K k2 � k bk1 kK k2:

Let T : L2(
 1 � 
 2; H ) � L2(
 2 � 
 3; H ) ! S 2(H1; H3) be the bilinear map de�ned for
all F 2 L2(
 1 � 
 2; H ) and G 2 L2(
 2 � 
 3; H ) and for almost every (t1; t3) by

[T(F; G)](t1; t3) =
Z


 2

hF (t1; t2); G(t2; t3)i d� 2(t2):

We will show that T is actually valued in S1(H1; H3) and that for all F and G as above
we have

kT(F; G)k1 � k F k2kGk2:
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By density, it is enough to prove this inequality when F and G have the form

F =
nX

i =1

hi � A i � B i and G =
nX

j =1

kj � B j � Cj

where for all i; j , hi ; kj 2 H and A1; : : : ; An (respectively B1; : : : ; Bn and C1; : : : ; Cn ) are
pairwise disjoint measurable subsets of 
 1 (respectively 
 2 and 
 3) with �nite measure.
For such F and G we have

kF k2 =

 
nX

i =1

khi k2� 1(A i )� 2(B i )

! 1=2

andkGk2 =

 
nX

j =1

kkj k2� 2(B j )� 3(Cj )

! 1=2

:

We have, for almost every (t1; t3),

T(F; G)(t1; t3) =
nX

i;j =1

hhi ; kj i
Z


 2

� A i (t1)� B i (t2)� B j (t2)� Cj (t3)d� 2(t2)

=
nX

i =1

hhi ; ki i
Z


 2

� A i (t1)� B i (t2)� B i (t2)� Ci (t3)d� 2(t2):

Therefore, for all h 2 L2(
 1),

[T(F; G)](h) =
nX

i =1

hhi ; ki i
Z


 2

� Z


 1

� A i (t1)� B i (t2)h(t1)d� 1(t1)
�

� B i (t2)� Ci (�)d� 2(t2)

=
nX

i =1

hhi ; ki i (X � A i � B i
� X � B i � C i

)(h)

where for all i , X � A i � B i
2 S 2(H1; H2) and X � B i � C i

2 S 2(H2; H3) are de�ned in (1:15).
Thus, by Cauchy-Schwarz inequality and the isometry (1:16),

kT(F; G)k1 �
nX

i =1

j hhi ; ki i jk X � A i � B i
k2kX � B i � C i

k2

�
nX

i =1

khi kkki kk� A i � B i k2k� B i � Ci k2

�

 
nX

i =1

khi k2� 1(A i )� 2(B i )

! 1=2  
nX

j =1

kkj k2� 2(B j )� 3(Cj )

! 1=2

= kF k2kGk2:

We deduce that for all F 2 L2(
 1 � 
 2; H ) and G 2 L2(
 2 � 
 3; H ),

kT(F; G)k1 � k F k2kGk2:
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Finally, for all J 2 S 2(H1; H2) and K 2 S 2(H2; H3) we have

k�( � )(J; K )k1 = kF ( ~J; ~K k1

� k ~Jk2k ~K k2

� k ak1 kbk1 kJk2kK k2

This proves (ii ) ) (i ) with the estimate

k�( � ) : S2 � S 2 ! S 1k � k ak1 kbk1 :

3.4 Perspectives

In Section3:1, we de�ned bilinear Schur multipliers as mappings de�ned on S2�S 2. As
mentioned, we can also de�ne bilinear Schur multiplier from Sp �S q into Sr , whenever
1 � p; q; r � 1 . In this setting, it would be interesting to �nd a formula for the norm
of a bilinear Schur multiplier from Sp � S q into Sr , similar to the one given in Theorem

3:4. Note that it is possible to see that when
1
p

+
1
q

=
1
r

, a description of bilinear Schur

multipliers would imply a description of linear Schur multipliers on Sq. As said in
Chapter 2, the only cases for which we have such description are q = 1; q = 2 and
q = 1 . However, it is probably possible to �nd suf�cient conditions for a bilinear
Schur multiplier de�ned on Sp � S q to be valued in S1, when p and q are conjugate
exponents.

Of course, all the questions we can state concerning bilinear Schur multipliers can
be stated as well in the continuous setting. We saw in Section 3:3 that the passage
from the classical to the continuous case is not straightforward and required some ad-
ditional studies such as the measurable factorization in L1

� (
; � 2(L1; L1 )) (see Section
1:4). However, one can try to prove that a result in the classical (or �nite-dimensional)
case implies, by approximation, a similar result in the continuous case.
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Chapter 4

Multiple Operator Integrals

——————————————————————–

Let H be a separable Hilbert space and let A; B be two normal operators on H.
Any bounded Borel function � on � (A) � � (B ) gives rise to a double operator integral
mapping � A;B (� ) : S2(H ) ! S 2(H ) formally de�ned as

� A;B (� )(X ) =
Z

� (A )� � (B )
� (s; t) dE A (s) X dE B (t); X 2 S 2(H );

where E A and E B denote the spectral measures ofA and B, respectively. The theory of
double operator integrals was settled and developed in a series of papers of Birman-
Solomiak [BS66; BS67; BS73] and plays a major role in various aspects of operator
theory, especially in the perturbation theory. We refer the reader to the survey papers
[BS03; Pel16] for a comprehensive presentation of this topic and its applications. See
also Chapter 5 for some results about perturbation theory for selfadjoint and unitary
operators.

In this chapter, we �rst de�ne more generally multiple operator integrals as mul-
tilinear mappings de�ned on a product of copies of S2(H ) and valued in S2(H ). We
will see in Section 4.2 that in the �nite dimensional case, double and triple operator
integrals behave like linear and bilinear Schur multipliers.

In [Pel85], V.V. Peller gave a characterization of double operator integral mappings
which restrict to a bounded operator on S1(H ). He showed that � A;B (� ) is a bounded
operator from S1(H ) into itself if and only there exist a Hilbert space H and two func-
tions a 2 L1 (E A ; H ) and b2 L1 (E B ; H ) such that

� (s; t) = ha(s); b(t)i a:e:-(s; t):

This property means that the operator L1(E A ) ! L1 (E B ) with kernel � factors through
a Hilbert space. We refer to [Pel85] and [HK03] for other equivalent formulations. In
Section 4.3, we study an analogue of Peller's Theorem for triple operator integrals (see
Theorem 4.10). This result is an operator version of Theorem 3:8. We will actually ap-
ply this result to prove Theorem 4.10. In order to do this we will show in Subsection
4:1:3 a connection between continuous bilinear Schur multipliers and triple operator
integrals.
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Finally, in Section 4:4, we will prove a characterization, similar to the one in [KJT09],

concerning the complete boundedness of triple operator integrals from S1 (H )
h

S 1 (H )

into S1 (H ). This section will use all the results that we recalled in Subsection 1:1:3 con-
cerning the Haagerup tensor product.

4.1 De�nition

Multiple operator integrals appeared in many recent papers with various de�nitions,
see in particular [ANP15; ANP16; AP17; NAS09; Pel06; DPS13]. In this section we pro-
vide a de�nition of triple operator integrals associated to a triple (A; B; C ) of normal
operators on H, based on the construction of a natural w� -continuous mapping from
L1 (� A � � B � � C ) into B2(S2(H ) � S 2(H ); S2(H )), see Theorem 4.3. This mapping is
actually an isometry. Further the construction extends to multiple operator integrals,
see Proposition 4.4. It turns out that this construction is equivalent to an old de�nition
of multiple operator integrals due to Pavlov [Pav69], this will be explained in Remark
4.5.

4.1.1 Normal operators and scalar-valued spectral measures

We assume that the reader is familiar with the general spectral theory of normal op-
erators on Hilbert space, for which we refer e.g. to [Rud73, Chapters 12 and 13] and
[Con00, Sections 14 and 15]. LetH be a separable Hilbert space and letA be a (possibly
unbounded) normal operator on H. We let � (A) denote the spectrum of A and we let
E A denote the spectral measure ofA, de�ned on the Borel subsets of � (A).

By de�nition a scalar-valued spectral measure for A is a positive �nite measure � A

on the Borel subsets of� (A), such that � A and E A have the same sets of measure zero.
Such measures exist, thanks to the separability assumption on H. Indeed let

W � (A) � B (H)

be the von Neumann algebra generated by the range of E A , then W � (A) has a separat-
ing vector e and

� A := kE A (:)ek2 (4.1)

is a scalar-valued spectral measure for A. See [Con00, Sections 14 and 15] for details
; the argument there is given for a bounded A but readily extends to the unbounded
case.

The Borel functional calculus for A takes any bounded Borel function f : � (A) ! C
to the bounded operator

f (A) :=
Z

� (A )
f (t) dE A (t) :

According to [Con00, Theorem 15.10], it induces a w� -continuous � -representation

� A : L1 (� A ) �! B (H): (4.2)
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As a matter of fact, the spaceL1 (� A ) does not depend on the choice of the scalar-valued
spectral measure� A .

4.1.2 Multiple operator integrals associated with operators

Let H be a separable Hilbert space and let A; B; C be (possibly unbounded) normal
operators on H. Denote by E A ; EB and E C their spectral measures and let � A ; � B and
� C be scalar-valued spectral measures forA, B and C (see Subsection 4.1.1).

Let E1 � L1 (� A ), E2 � L1 (� B ) and E3 � L1 (� C ) be the spaces of simple functions
on (� (A); � A ), (� (B ); � B ) and (� (C); � C ), respectively. We let

� : E1 
 E 2 
 E 3 �! B 2(S2(H ) � S 2(H ); S2(H ))

be the unique linear map such that

�( f 1 
 f 2 
 f 3)(X; Y ) = f 1(A)Xf 2(B )Y f3(C) (4.3)

for any f 1 2 E1, f 2 2 E2 and f 3 2 E3, and for any X; Y 2 S 2(H ).

Lemma 4.1. For all � 2 E1 
 E 2 
 E 3, and for allX; Y 2 S 2(H ), we have

k�( � )(X; Y )k2 � k � k1 kX k2kYk2:

Proof. Let � 2 E1 
 E 2 
 E 3. There exists a �nite family (F 1
i ) i (respectively (F 2

j ) j and
(F 3

k )k) of pairwise disjoint measurable subsets of � (A) (respectively of � (B ) and � (C))
of positive measures, as well as a family (mijk ) i;j;k of complex numbers such that

� =
X

i;j;k

mijk � F 1
i


 � F 2
j


 � F 3
k
: (4.4)

Then we have
k� k1 = sup

i;j;k
jmijk j: (4.5)

Let X; Y 2 S 2(H ). According to the de�nition of � , we have

�( � )(X; Y ) =
X

i;j;k

mijk E A (F 1
i )XE B (F 2

j )Y EC (F 3
k ):

By the pairwise disjointnesses of (F 1
i ) i and (F 3

k )k , the elements
� X

j

mijk E A (F 1
i )XE B (F 2

j )Y EC (F 3
k )

�

i;k

are pairwise orthogonal in S2(H ). Hence

k�( � )(X; Y )k2
2 =

X

i;k







X

j

mijk E A (F 1
i )XE B (F 2

j )Y EC (F 3
k )








2

2
:
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Applying the Cauchy-Schwarz inequality and (4.5), we deduce that

k�( � )(X; Y )k2
2 � k � k2

1

X

i;k

� X

j




 E A (F 1

i )XE B (F 2
j )






2




 E B (F 2

j )Y EC (F 3
k )






2

� 2

� k � k2
1

X

i;k

� X

j




 E A (F 1

i )XE B (F 2
j )




 2

2

�� X

j




 E B (F 2

j )Y EC (F 3
k )




 2

2

�

� k � k2
1

� X

i;j




 E A (F 1

i )XE B (F 2
j )




 2

2

�� X

j;k




 E B (F 2

j )Y EC (F 3
k )




 2

2

�
:

Since the elementsE A (F 1
i )XE B (F 2

j ) are pairwise orthogonal in S2(H ) we have

X

i;j




 E A (F 1

i )XE B (F 2
j )




 2

2
=







X

i;j

E A (F 1
i )XE B (F 2

j )







2

2

=



 E A

�
[ i F 1

i

�
XE B

�
[ j F 2

j

� 


 2

2

� k X k2
2:

Similarly, X

j;k




 E B (F 2

j )Y EC (F 3
k )




 2

2
� k Yk2

2:

This yields the result.

We let
G := E1 
 E 2 
 E 3

k:k1 � L1 (� A � � B � � C )

and we let � : L1(� A � � B � � C ) ! G� be the canonical map de�ned by



� (' ); �

�
=

Z

� (A )� � (B )� � (C)
'� d(� A � � B � � C ) ; ' 2 L1; � 2 G:

This is obviously a contraction.
We claim that � is actually an isometry. To check this fact, consider ' 2 E1 
 E 2 
 E 3,

that we write as a �nite sum

' =
X

i;j;k

cijk � F 1
i


 � F 2
j


 � F 3
k
;

with cijk 2 C� and (F 1
i ) i (respectively (F 2

j ) j and (F 3
k )k) being pairwise disjoint measur-

able subsets of� (A) (respectively of � (B ) and � (C)), with positive measures. Then

k' k1 =
X

i;j;k

jcijk j � A (F 1
i )� B (F 2

j )� C (F 3
k ):

Let � be de�ned by (4.4), with mijk = jcijk jc� 1
ijk . Then k� k1 = 1 by (4.5) and



� (' ); �

�
=

X

i;j;k

mijk cijk � A (F 1
i )� B (F 2

j )� C (F 3
k ) = k' k1:
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Hence we havek� (' )k = k' k1 as expected. SinceE1
E 2
E 3 is dense inL1(� A � � B � � C ),
this implies that � is an isometry. Thus we now consider L1(� A � � B � � C ) as a subspace
of G� .

Arguing as in Subsection 3:3:1, we have isometric identi�cations

B2(S2(H ) � S 2(H ); S2(H )) = B(S2(H )
^

 S 2(H ); S2(H ))

=
�
S2(H )

^

 S 2(H )

^

 S 2(H )

� �
;

and it is easy to check that the duality pairing providing this identi�cation reads


T; X 
 Y 
 Z

�
= tr

�
T(X; Y )Z

�

for any T 2 B2(S2(H ) � S 2(H ); S2(H )) and any X; Y; Z 2 S 2(H ).
We set

E := S2(H )
^

 S 2(H )

^

 S 2(H ):

According to Lemma 4.1, � uniquely extends to a contraction

e� : G �! B 2(S2(H ) � S 2(H ); S2(H )) = E � :

We can therefore consider S = e� �
jE : E ! G� , the restriction of e� � to E � E �� .

Lemma 4.2. The operatorS takes its values in the subspaceL1(� A � � B � � C ) ofG� .

Proof. Let P = H 
 H 
 H 
 H 
 H 
 H . Recall that we identify H 
 H with the space
of �nite rank operators on H. Then H 
 H is a dense subspace ofS2(H ). Consequently
P is a dense subspace ofE. SinceS is continuous, it therefore suf�ces to show that
S(P) � L1(� A � � B � � C ). Consider � 1; � 2; � 3; � 1; � 2; � 3 in H and ! = � 1
 � 1
 � 2
 � 2
 � 3
 � 3.
Such elements spanP hence it suf�ces to check that S(! ) belongs to L1(� A � � B � � C ).
Let f 1 2 E1, f 2 2 E2 and f 3 2 E3. We have

hS(! ); f 1 
 f 2 
 f 3i = h!; �( f 1 
 f 2 
 f 3)i

= tr
� �

�( f 1 
 f 2 
 f 3)( � 1 
 � 1; � 2 
 � 2)
�
(� 3 
 � 3)

�

= tr
�
f 1(A)( � 1 
 � 1)f 2(B )( � 2 
 � 2)f 3(C)( � 3 
 � 3)

�

= tr
�
(� 1 
 f 1(A)� 1)( � 2 
 f 2(B )� 2)( � 3 
 f 3(C)� 3)

�

= tr
�
(� 3 
 f 1(A)� 1) hf 3(C)� 3; � 2i hf 2(B )� 2; � 1i

�

= hf 3(C)� 3; � 2i hf 2(B )� 2; � 1i hf 1(A)� 1; � 3i :

The w� -continuity of the functional calculus � -representation � A : L1 (� A ) ! B (H) to
which we refer in (4.2) tells us that

hf 1(A)� 1; � 3i =
Z

� (A )
f 1h1 d� A

for some h1 2 L1(� A ) not depending on f 1. A thorough look at the construction of � A

shows that h1 is actually the Radon-Nikodym derivative of the measure dEA
� 1 ;� 3

with
respect to � A .
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Similarly, there exist h2 2 L1(� B ) and h3 2 L1(� C ) not depending on f 2 and f 3 such
that hf 2(B )� 2; � 1i =

R
� (B ) f 2h2 d� B and hf 3(C)� 3; � 2i =

R
� (C) f 3h3 d� C . Consequently,

hS(! ); f 1 
 f 2 
 f 3i =
Z

� (A )� � (B )� � (C)
(f 1 
 f 2 
 f 3)(h1 
 h2 
 h3) d(� A � � B � � C ):

SinceE1 
 E 2 
 E 3 is dense in G, this implies that

S(! ) = h1 
 h2 
 h3 2 L1(� A � � B � � C ):

Theorem 4.3. There exists a uniquew� -continuous isometry

� A;B;C : L1 (� A � � B � � C ) �! B 2(S2(H ) � S 2(H ); S2(H ));

such that for anyf 1 2 E1, f 2 2 E2 andf 3 2 E3, and for anyX; Y 2 S 2(H ), we have

� A;B;C (f 1 
 f 2 
 f 3)(X; Y ) = f 1(A)Xf 2(B )Y f3(C):

Proof. The uniqueness follows from the w� -density of E1 
 E 2 
 E 3 in L1 (� A � � B � � C ).
Lemma 4.2 yields S: E ! L1(� A � � B � � C ). Then its adjoint S� is a w� -continuous

contraction from L1 (� A � � B � � C ) into E � = B2(S2(H ) � S 2(H ); S2(H )). We set

� A;B;C = S� :

By construction, � A;B;C is w� -continuous and extends the map � de�ned by (4.3). The
fact that � A;B;C is an isometry will be proved later on in Corollary 4:8.

Bilinear maps of the form � A;B;C (� ) will be called triple operator integral mappingsin
this thesis. Operators of the form � A;B;C (� )(X; Y ) : H ! H are called triple operator
integrals.

By similar computations (left to the reader), the above construction can be extended
to (n � 1)-tuple operator integrals, for any n � 2. One obtains the following statement,
in which Bn� 1(S2(H ) � S 2(H ) � � � � � S 2(H ); S2(H )) denotes the space of(n � 1)-linear
bounded maps from the product of (n � 1) copies of S2(H ) taking values in S2(H ).

Proposition 4.4. Let n � 2 and letA1; A2; : : : ; An be normal operators onH. For anyi =
1; : : : ; n, let � A i be a scalar-valued spectral measure forA i and letEi � L1 (� A i ) be the space
of simple functions on(� (A i ); � A i ). There exists a uniquew� -continuous linear isometry

� A 1 ;A 2 ;:::;A n : L1

 
nY

i =1

� A i

!

�! B n� 1(S2(H ) � S 2(H ) � � � � � S 2(H ) ! S 2(H ));

such that for anyf i 2 Ei and for anyX 1; : : : ; X n� 1 2 S 2(H ), we have

� A 1 ;A 2 ;:::;A n (f 1 
 � � � 
 f n )(X 1; : : : ; X n� 1) =

f 1(A1)X 1f 2(A2) � � � f n� 1(An� 1)X n� 1f n (An ):
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Remark 4.5. As indicated in the introduction of this section, the above construction turns
out to be equivalent to Pavlov's de�nition of multiple operator integrals given in [Pav69]. Let
us brie�y review Pavlov's construction from [Pav69], and explain this `equivalence'. In this
remark, we use terminology and references from [DU79, Chapter 1].

Letn � 2and consider normal operatorsA1; A2; : : : ; An as in Proposition 4.4. FixX 1; : : : ; X n� 1

in S2(H ). Let 
 := � (A) � � (A2) � � � � � � (An ) and consider the setF consisting of �nite
unions of subsets of
 of the form

� = F1 � F2 � � � � � Fn ;

where, for any1 � i � n; F i is a Borel subset of� (A i ).
There exists a (necessarily unique) �nitely additive vector measurem: F ! S 2(H ) such

that
m(�) = E A 1 (F1)X 1E A 2 (F2) � � � E A n � 1 (Fn� 1)X n� 1E A n (Fn ) (4.6)

for any� as above.
Pavlov �rst shows thatm is a measure of bounded semivariation and then proves thatm

is actually countably additive (see [Pav69, Theorem 1]). LetT be the� -�eld generated byF .
SinceS2(H ) is re�exive, it follows from [DU79, Chapter 1, Section 5, Theorem 2] thatm has a
(necessarily unique) countably additive extensionem: T ! S 2(H ). Moreoverem is a measure
of bounded semivariation. Then using the fact that for alli , � A i is a scalar-valued spectral
measure forA i , one can show that

em � � A 1 � � A 2 � � � � � � A n

on F . This implies thatL1 (� A 1 � � A 2 � � � � � � A n ) � L1 ( em) and hence, for any� 2
L1 (� A 1 � � A 2 � � � � � � A n ), one may de�ne an integral

Z



� (t) dem(t) 2 S 2(H ):

See [DU79, Chapter 1, Section 1, Theorem 13] for details. This element is de�ned in [Pav69]
as the multiple operator integral associated to� and(X 1; : : : ; X n� 1).

We claim that this construction is equivalent to the one given in the present thesis, namely
Z



� (t) dem(t) = � A 1 ;A 2 ;:::;A n (� )(X 1; : : : ; X n� 1):

To check this identity, letw1; w2 : L1 (� A 1 � � A 2 � � � � � � A n ) ! S 2(H ) be de�ned byw1(� ) =R

 � (t) dem(t) andw2(� ) = � A 1 ;A 2 ;:::;A n (� )(X 1; : : : ; X n� 1). For anyZ 2 S 2(H ), the functional

of L1 (� A 1 � � A 2 � � � � � � A n ) taking � to
DR


 � (t) dem(t) ; Z
E

induces a countably additive

measure onT , which is absolutely continuous with respect to� A 1 � � A 2 � � � � � � A n . By the
Radon-Nikodym Theorem, this functional is thereforew� -continuous. This implies thatw1 is
w� -continuous. We know thatw2 is w� -continuous as well, by Proposition 4.4. Further it is
easy to derive from (4.6) thatw1 andw2 coincide onE1 
 � � � 
 E n . These properties imply the
equalityw1 = w2 as claimed.

Remark 4.6. We keep the notations from Proposition 4.4 and explain the connection of this
result with Peller's construction from [Pel06]. In the latter paper, the author de�nes multiple
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operator integrals associated to functions belonging to the so-called integral projective tensor
product of the spacesL1 (� A i ). We will check that this de�nition is consistent with ours.

Let (� ; d� ) be a� -�nite measure space and, for anyi = 1; : : : ; n, let ai : � � � (A i ) ! C be
a measurable function such thatai (t; � ) 2 L1 (� A i ) for a.-e.t 2 � . Assume that

Z

�
ka1(t; � )kL 1 (� A 1 )ka2(t; � )kL 1 (� A 2 ) � � � kan (t; � )kL 1 (� A n ) d� (t) < 1 : (4.7)

Then one may de�ne� 2 L1 (� A 1 � � � � � � A n ) by setting

� (t1; t2; : : : ; tn ) =
Z

�
a1(t; t 1)a2(t; t 2) � � � an (t; t n ) d� (t) (4.8)

for a.-e.(t1; : : : ; tn ) in � (A1) � � � � � � (An ). We claim that for anyX 1; : : : ; X n� 1 2 S 2(H ),

� A 1 ;:::;A n (X 1; : : : ; X n� 1) =
Z

�
a1(t; A 1)X 1a2(t; A 2)X 2 � � � X n� 1an (t; A n ) d� (t) ; (4.9)

whereai (t; A i ) 2 B(H) is obtained by applying the Borel functional calculus ofA i to ai (t; � ),
for anyi = 1; : : : ; n. The right-hand side of (4.9) is Peller's de�nition of the multiple operator
integral associated with� and (X 1; : : : ; X n� 1). Hence the equality (4.9) shows that Peller's
de�nition is a special case of Proposition 4.4. The reason why [Pel06] focuses on functions� as
above is that the right-hand side of (4.9) converges inB(H) wheneverX 1; : : : ; X n� 1 2 B(H).
Consequently,� A 1 ;:::;A n (� ) extends to a boundedn� 1-linear mapB(H)�� � �� B (H) ! B (H)
under the assumptions (4.7) and (4.8).

To prove (4.9), we introduceeai : � ! L1 (� A i ) by writing eai (t) = ai (t; � ), for any i =
1; : : : ; n. Then the functione� : � ! L1 (� A 1 � � � � � � A n ) de�ned by

e� (t) = ea1(t) 
 ea2(t) 
 � � � 
 ean (t); t 2 � ;

is w� -measurable and the associated norm functionke� (� )k1 is integrable, by the assumption
(4.7). We can therefore consider its integral

R
�

e� (t) d� (t) as an element ofL1 (� A 1 �� � �� � A n ),
de�ned in thew� -sense. Using Fubini's Theorem, one obtains that

� =
Z

�

e� (t) d� (t) ;

where the function� is de�ned by (4.8). Since� A 1 ;:::;A n is w� -continuous, we derive that

� A 1 ;:::;A n (� ) =
Z

�
� A 1 ;:::;A n

�
ea1(t) 
 ea2(t) 
 � � � 
 ean (t)

�
d� (t):

LetX 1; : : : ; X n� 1 2 S 2(H ). We deduce that

� A 1 ;:::;A n (� )(X 1; : : : ; X n� 1) =
Z

�
� A 1 ;:::;A n

�
ea1(t) 
 ea2(t) 
 � � � 
 ean (t)

�
(X 1; : : : ; X n� 1) d� (t)

as a Bochner integral inS2(H ). The equality (4.9) now follows from the de�nition of� A 1 ;:::;A n

on elementary tensor products.
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4.1.3 Passing from operators to functions

Let H be a separable Hilbert space and letA; B and C be normal operators on H. We
keep the notations from Subsection 4.1.2. We associate the three measure spaces

(
 1; � 1) = ( � (C); � C ); (
 2; � 2) = ( � (B ); � B ) and (
 3; � 3) = ( � (A); � A )

and consider the mapping � de�ned in Subsection 3:3:1 for these three measure spaces.
It maps L1 (� A � � B � � C ) into B2(S2(L2(� C ); L2(� B )) �S 2(L2(� B ); L2(� A )) ; S2(L2(� C ); L2(� A ))) .
The main purpose of this subsection is to establish a precise connection between this
mapping � and the triple operator integral mapping � A;B;C from Theorem 4.3.

We may suppose that

� A (:) = kE A (:)e1k2; � B (:) = kE B (:)e2k2 and � C (:) = kE C (:)e3k2

for some vectors e1; e2; e3 2 H (see Subsection 4.1.1).
There exists a (necessarily unique) linear map � A : E1 �! H satisfying

� A (� F ) = E A (F )e1

for any Borel set F � � (A). For any �nite family (Fi ) i of pairwise disjoint measurable
subsets of� (A) and for any family (� i ) i of complex numbers, we have






 � A

� X

i

� i � F i

� 






2
=







X

i

� i E A (Fi )e1








2

=
X

i

j� i j2kE A (Fi )e1k2

=
X

i

j� i j2� A (Fi )

=






X

i

� i � F i








2

2
:

Hence � A extends to an isometry (still denoted by)

� A : L2(� A ) �! H :

Denote by H A the range of � A . We obtain

L2(� A )
� A
� H A :

Similarly, we de�ne � B ; � C and H B ; H C � H such that

L2(� B )
� B
� H B and L2(� C )

� C
� H C:

We may regard S2(H B ; H A ), S2(H C ; H B ) and S2(H C ; H A ) as subspaces ofS2(H ) in
a natural way, see (1.17). The next statement means that for any� 2 L1 (� A � � B � � C ),
� A;B;C (� ) maps S2(H B ; H A ) �S 2(H C ; H B ) into S2(H C ; H A ) and that under the previous
identi�cations, this restriction 'coincides' with �( � ).



78 Chapter 4. Multiple Operator Integrals

Proposition 4.7. LetX 2 S 2(L2(� B ); L2(� A )) andY 2 S 2(L2(� C ); L2(� B )) , and set

eX = � A � X � � � 1
B 2 S 2(H B ; H A ) and eY = � B � Y � � � 1

C 2 S 2(H C ; H B ):

For any� 2 L1 (� A � � B � � C ), � A;B;C (� )( eX; eY) belongs toS2(H C ; H A ) and

�( � )(Y; X) = � � 1
A � � A;B;C (� )( eX; eY) � � C : (4.10)

Proof. We �rst consider the special case when � = � F1 
 � F2 
 � F3 for some measurable
subsetsF1 � � (A); F2 � � (B ) and F3 � � (C).

Let U � � (A); V; V0 � � (B ) and W � � (C) and consider the elementary tensors

X = � V 
 � U 2 S 2(L2(� B ); L2(� A )) and Y = � W 
 � V 0 2 S 2(L2(� C ); L2(� B )) :

We associate eX and eY as in the statement. Since� B : L2(� B ) ! H B is unitary, we have
� � 1

B = � �
B hence

eX = � B (� V ) 
 � A (� U ) = E B (V)e2 
 E A (U)e1:

Likewise,
eY = E C (W)e3 
 E B (V 0)e2:

We have

�( � )(Y; X) =
Z

� (B )
� (:; t2; :)X (t2; :)Y(:; t2) d� B (t2)

=
Z

� (B )
� F2 (t2)� V (t2)� V 0(t2) � F3 � W 
 � F1 � U d� B (t2)

=
� Z

F2 \ V \ V 0
d� B (t2)

�
� F3 \ W 
 � F1 \ U

= � B (F2 \ V \ V 0) � F3 \ W 
 � F1 \ U :

Further using the above expressions of eX and eY, we have

� A;B;C (� )( eX; eY) = E A (F1) eXE B (F2) eY EC (F3)

=
�
E B (V)e2 
 E A (F1 \ U)e1

��
E C (F3 \ W)e3 
 E B (F2 \ V 0)e2

�

=


E B (F2 \ V 0)e2; EB (V)e2

�
E C (F3 \ W)e3 
 E A (F1 \ U)e1

=


E B (F2 \ V 0 \ V )e2; e2

�
E C (F3 \ W)e3 
 E A (F1 \ U)e1

= � B (F2 \ V \ V 0) E C (F3 \ W)e3 
 E A (F1 \ U)e1:

This shows that � A;B;C (� )( eX; eY) belongs to S2(H C ; H A ) and that (4.10) holds true.
By linearity and continuity, this result holds as well for all X 2 S 2(L2(� B ); L2(� A ))

and all Y 2 S 2(L2(� C ); L2(� B )) .
Finally since � and � A;B;C are w� -continuous, we deduce from the above special

case that the result actually holds true for all � 2 L1 (� A � � B � � C ).

Corollary 4.8. The mapping� A;B;C from Theorem 4.3 is an isometry.
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Proof. Consider � 2 L1 (� A � � B � � C ). For any X in S2(L2(� B ); L2(� A )) and any Y in
S2(L2(� C ); L2(� B )) , we have

k�( � )(Y; X)k2 = k� � 1
A � � A;B;C (� )( eX; eY) � � Ck2

� k � A;B;C (� )( eX; eY)k2

�



 � A;B;C (� )




 k eX k2k eX k2

by Proposition 4.7. Sincek eX k2 = kX k2 and keYk2 = kYk2, this implies that



 �( � )




 �




 � A;B;C (� )




 : (4.11)

By Proposition 3.7, the left-hand side of this inequality is equal to k� k1 . Further � A;B;C

is a contraction. Hence we obtain that k� A;B;C (� )k = k� k1 .

4.2 Finite dimensional case

In the previous section, we de�ned multiple operator integrals and we saw that we
have a simple expression in the case when� is in the tensor product of L1 -spaces. Ex-
cept for this case, we cannot give such a simple formula for any element of L1 (

Q n
i =1 � A i ).

However, when the Hilbert space H is �nite dimensional, it is possible to give a sat-
isfying expression of multiple operator integrals : this is due to the fact that in this
situation, we have a formula for functional calulus for selfadjoint operators, involving
the eigenvalues and projections onto the eigenspaces. As a consequence, we will see
that double and triple operator integrals behave like linear and bilinear Schur multi-
pliers. It is straightforward to extend the formula we obtain here for multiple operator
integrals. We use the results of this section in Chapter 5 to obtain norm estimates for
multiple operator integrals in the �nite dimensional case.

Throughout this section we work with �nite-dimensional operators. We �x an in-
teger n � 1 and regard Cn as equipped with its standard Hermitian structure.

Consider two orthonormal bases e = f ej gn
j =1 and e0 = f e0

i g
n
i =1 in Cn . Then every

linear operator A 2 B(Cn ) is associated with a matrix A = f aij gn
i;j =1 ; where aij =

hA(ej ); e0
i i : Sometimes we use the notation ae0;e

ij instead of aij to emphasize correspond-
ing bases.

For any unit vector x 2 Cn we let Px denote the projection on the linear span of x;
that is, Px (y) = hy; xi x for any y 2 Cn :

4.2.1 Double operator integrals

Let A; B 2 B(Cn ) be normal operators. Let � 1 = f � (1)
i gn

i =1 and � 2 = f � (2)
i gn

i =1 be or-
thonormal bases of eigenvectors for A and B respectively, and let f � (j )

i gn
i =1 ; j = 1; 2 be

the associatedn-tuples of eigenvalues, that is, A(� (1)
i ) = � (1)

i � (1)
i and B(� (2)

i ) = � (2)
i � (2)

i .
Without loss of generality, we assume that f � (j )

i gn j
i =1 ; j = 1; 2; are the sets of pairwise
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distinct eigenvalues of A and B, where nj 2 N; nj � n. Denote

E (1)
i =

nX

k=1
� (1)

k = � (1)
i

P� (1)
k

; 1 � i � n1; (4.12)

that is, E (1)
i is a spectral projection of the operator A associated with the eigenvalue

� (1)
i . Similary, we denote by E (2)

i a spectral projection of the operator B associated with
the eigenvalue � (2)

i .
With those notations, we have

A =
n1X

i =1

� (1)
i E (1)

i and B =
n2X

k=1

� (2)
k E (2)

k : (4.13)

Let � : C2 ! C be a function. Then, the double operator integral � A;B (� ) : B(Cn ) !
B(Cn ) associated with � , A and B de�ned in Proposition 4:4 is given by

�
� A;B (� )

�
(X ) =

nX

i;k =1

� (� (1)
i ; � (2)

k )P� (1)
i

XP � (2)
k

; X 2 B(Cn ): (4.14)

Alternatively, and it is sometimes more convenient, we can use the representation
of

�
� A;B (� )

�
(X ) in the form

�
� A;B (� )

�
(X ) =

n1X

i =1

n2X

k=1

� (� (1)
i ; � (2)

k )E (1)
i XE (2)

k ; X 2 B(Cn ): (4.15)

Let us prove Formula (4:15). Note that according to Proposition 4:4, we only need
to know � on � (A) � � (B ). Let F = � j � (A )� � (B ) : Then

F =
n1X

i =1

n2X

j =1

� (� (1)
i ; � (2)

k )� n
� (1)

i

o 
 � n
� (2)

k

o :

According to (4:13) we have, for 1 � i � n1,

� n
� (1)

i

o (A) =
n1X

j =1

� n
� (1)

i

o (� (1)
j )E (1)

j = E (1)
i :

Similarly, for any 1 � k � n2,
� n

� (2)
k

o (B ) = E (2)
k :

Thus, for any X 2 B(Cn ),

�
� A;B (� )

�
(X ) =

n1X

i =1

n2X

j =1

� (� (1)
i ; � (2)

k )
�
� A;B

�
� n

� (1)
i

o 
 � n
� (2)

k

o

��
(X )
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=
n1X

i =1

n2X

j =1

� (� (1)
i ; � (2)

k )� n
� (1)

i

o (A)X� n
� (2)

k

o (B )

=
n1X

i =1

n2X

j =1

� (� (1)
i ; � (2)

k )E (1)
i XE (2)

k :

It is not dif�cult to see that if we identify B(Cn ) with M n by associating X with the
matrix f x � 1 ;� 2

ik gn
i;k =1 , then the operator � A;B (� ) acts as a linear Schur multiplier associ-

ated with
�

� (� (1)
i ; � (2)

k )
	 n

i;k =1
. Indeed,



(P� (1)

i
XP � (2)

k
)( � (2)

s ); � (1)
r

�
=

�
hX (� (2)

s ); � (1)
r i = x � 1 ;� 2

rs ; if s = k; r = i;
0 otherwise.

Therefore, 
�
� A;B (� )

�
(X )( � (2)

k ); � (1)
i

�
= � (� (1)

i ; � (2)
k )x � 1 ;� 2

ik ;

which implies that � A;B (� ) �
�

� (� (1)
i ; � (2)

k )
	 n

i;k =1
: M n ! M n . Since these identi�cations

are isometric ones, we deduce that



 � A;B (� ) : S1

n ! S 1
n




 =




 f � (� (1)

i ; � (2)
k )gn

i;k =1 : S1
n ! S 1

n




 : (4.16)

4.2.2 Triple operator integrals

We now give the formula for triple operator integrals in the �nite dimensional case.

Let A; B; C 2 B(Cn ) be normal operators. We keep the same notations for the
spectral decompositions of A and B introduced in the previous subsection. Let � 3 =
f � (3)

i gn
i =1 be an orthornomal basis of eigenvectors of C and let f � (3)

i gn
i =1 be the corre-

sponding n-tuple of eigenvalues.
Let  : C3 ! C be a function. Then, the triple operator integral � A;B;C ( ) : B(Cn ) �

B(Cn ) ! B (Cn ) associated with  , A, B and C de�ned in Theorem 4:3 is given by

�
� A;B;C ( )

�
(X; Y ) =

nX

i;j;k =1

 (� (1)
i ; � (2)

k ; � (3)
j )P� (1)

i
XP � (2)

k
Y P� (3)

j
(4.17)

for any X; Y 2 B(Cn ):
Assume that f � (3)

i gn3
i =1 is the set of pairwise distinct eigenvalues of the operator C.

Then alternatively, using the spectral projections (4.12), we can write

�
� A;B;C ( )

�
=

n1X

i =1

n2X

k=1

n3X

j =1

 (� (1)
i ; � (2)

k ; � (3)
j )E (1)

i XE (2)
k Y E(3)

j (4.18)

for any X; Y 2 B(Cn ): The proof of this formula is similar to the one of Formula (4:15).

Let us consider two different identi�cations of B(Cn ) with M n . On one hand, we
identify X with the matrix f x � 1 ;� 2

ik gn
i;k =1 , where x � 1 ;� 2

ik = hX (� (2)
k ); � (1)

i i . On the other hand
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we identify Y with f y� 2 ;� 3
kj gn

k;j =1 ; where y� 2 ;� 3
kj = hY(� (3)

j ); � (2)
k i . Under these identi�ca-

tions, the operator � A;B;C ( ) acts as a bilinear Schur multiplier associated with the
matrix M =

�
 (� (1)

i ; � (2)
k ; � (3)

j )
	 n

i;j;k =1
. Indeed,



(P� (1)

i
XP � (2)

k
Y P� (3)

j
)( � (3)

S ); � (1)
r

�
=



Y(� (3)

s ); � (2)
k

�

X (� (2)

k ); � (1)
r

�
= y� 2 ;� 3

ks x � 1 ;� 2
rk

if s = j; r = i , and 

(P� (1)

i
XP � (2)

k
Y P� (3)

j
)( � (3)

s ); � (1)
r

�
= 0

otherwise.
Therefore,


�
� A;B;C ( )

�
(X; Y )( � (3)

s ); � (1)
r

�
=

nX

k=1

 (� (1)
r ; � (2)

k ; � (3)
s )y� 2 ;� 3

ks x � 1 ;� 2
rk ;

which implies

�
� A;B;C ( )

�
(X; Y ) =

nX

i;j;k =1

 (� (1)
i ; � (2)

k ; � (3)
j )x � 1 ;� 2

ik y� 2 ;� 3
kj E � 1 ;� 3

ij :

Since these identi�cations are isometric ones with respect to all Schatten norms, we
deduce the formula




 � A;B;C ( ) : S2

n � S 2
n ! S 1

n




 =




 f  (� (1)

i ; � (2)
k ; � (3)

j )gn
i;j;k =1 : S2

n � S 2
n ! S 1

n




 : (4.19)

4.3 Characterization of S2 � S 2 ! S 1 boundedness

Let H be a separable Hilbert space and letA; B and C be normal operators on H. Let
� A ; � B and � C be scalar-valued spectral measures associated withA, B and C. Recall
the de�nition of the triple operator mapping � A;B;C from Theorem 4.3. The purpose of
this section is to characterize the functions � 2 L1 (� A � � B � � C ) such that � A;B;C (� )
maps S2(H ) � S 2(H ) into S1(H ).

We shall start with a factorization formula of independent interest. Let � A;B and
� B;C be the double operator integral mappings associated respectively with (A; B )
and with (B; C), see Proposition 4.4. It is important to note that � A;B and � B;C are
� -representations. Recall that they arew� -continuous.

Lemma 4.9. Let u 2 L1 (� A � � B ) andv 2 L1 (� B � � C ). Then, for allX; Y 2 S 2(H ), we
have

� A;B;C (uv)(X; Y ) = � A;B (u)(X )� B;C (v)(Y):

Proof. Fix X; Y 2 S 2(H ). Let u1 2 L1 (� A ); u2; v1 2 L1 (� B ) and v2 2 L1 (� C ). Consider
u = u1 
 u2 2 L1 (� A ) 
 L1 (� B ) and v = v1 
 v2 2 L1 (� B ) 
 L1 (� C ). Then we have
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uv = u1 
 u2v1 
 v2 2 L1 (� A ) 
 L1 (� B ) 
 L1 (� C ). Therefore

� A;B;C (uv)(X; Y ) = u1(A)X (u2v1)(B )Y v2(C)

= u1(A)Xu 2(B )v1(B )Y v2(C)

= � A;B (u)(X )� B;C (v)(Y):

Now, take u 2 L1 (� A � � B ) and v 2 L1 (� B � � C ). Let (ui ) i and (vj ) j be two nets
in L1 (� A ) 
 L1 (� B ) and L1 (� B ) 
 L1 (� C ) respectively, converging to u and v in the
w� -topology. By linearity, the previous calculation implies that for all i; j ,

� A;B;C (ui vj )(X; Y ) = � A;B (ui )(X )� B;C (vj )(Y):

Take Z 2 S 2(H ) and �x j . Since� B;C (vj )(Y)Z belongs to S2(H ) we have

lim
i

tr (� A;B (ui )(X )� B;C (vj )(Y)Z ) = tr (� A;B (u)(X )� B;C (vj )(Y)Z )

= tr (� B;C (vj )(Y)Z � A;B (u)(X ))

by the w� -continuity of � A;B . Similarly, since Z � A;B (u)(X ) 2 S 2(H ), the w� -continuity
of � B;C implies that

lim
j

tr (� B;C (vj )(Y)Z � A;B (u)(X )) = tr (� B;C (v)(Y)Z � A;B (u)(X ))

= tr (� A;B (u)(X )� B;C (v)(Y)Z ):

On the other hand, (ui vj ) i w� -converges to uvj for any �xed j and (uvj ) j w� -converges
to uv in L1 (� A � � B � � C ). Hence the w� -continuity of � A;B;C implies that

lim
j

lim
i

tr (� A;B;C (ui vj )(X; Y )Z ) = lim
j

tr (� A;B;C (uvj )(X; Y )Z )

= tr (� A;B;C (uv)(X; Y )Z ):

Thus, for all Z 2 S 2(H ),

tr (� A;B (u)(X )� B;C (v)(Y)Z ) = tr (� A;B;C (uv)(X; Y )Z );

which implies that � A;B;C (uv) = � A;B (u)(X )� B;C (v)(Y):

Our main result is the following theorem. In this statement, as in Subsection 4.1.3,
we consider the continuous bilinear Schur multipliers �( � ) in the case when (
 1; � 1) =
(� (C); � C ), (
 2; � 2) = ( � (B ); � B ) and (
 3; � 3) = ( � (A); � A ). Note that these measurable
spaces are separable.

Theorem 4.10. Let H be a separable Hilbert space, letA; B andC be normal operators onH
and let� 2 L1 (� A � � B � � C ). The following are equivalent :

(i) � A;B;C (� ) 2 B2(S2(H ) � S 2(H ); S1(H )):

(ii) �( � ) 2 B2(S2(L2(� C ); L2(� B )) � S 2(L2(� B ); L2(� A )) ; S1(L2(� C ); L2(� A ))) .
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(iii) There exist a Hilbert spaceH and two functions

a 2 L1 (� A � � B ; H ) and b2 L1 (� B � � C ; H )

such thatkak1 kbk1 � k � k1 ;� 2 and

� (t1; t2; t3) = ha(t1; t2); b(t2; t3)i

for a.-e.(t1; t2; t3) 2 � (A) � � (B ) � � (C):

In this case,



 � A;B;C (� ) : S2 � S 2 ! S 1




 =




 �( � ) : S2 � S 2 ! S 1




 = inf kak1 kbk1 : (4.20)

Proof. The equivalence (ii) , (iii) follows from Theorem 3:8.
Proof of (iii) ) (i)

Assume (iii) and let (� k)k2 N be a Hilbertian basis of H . For any k 2 N, de�ne

ak = ha; �k i 2 L1 (� A � � B ) and bk = hb; �k i 2 L1 (� B � � C ):

We set

jaj =
� X

n

jak j2
� 1

2
;

this function belongs to L1 (� A � � B ) and we have kak1 = kjajk1 .
Let X 2 S 2(H ). Since� A;B is a w� -continuous � -representation, we have

X

k

k� A;B (ak)(X )k2
2 =

X

k



� A;B (ak)(X ); � A;B (ak)(X )

�

=
X

n



� A;B (ak)� A;B (ak)(X ); X

�

=


� A;B (jaj2)(X ); X

�

� kj aj2k1 kX k2
2 = kak2

1 kX k2
2:

We prove similarly that if Y 2 S 2(H ), then

X

n

k� B;C (bk)(Y)k2
2 � k bk2

1 kYk2
2:

Consequently, for all X; Y 2 S 2(H ), we have the inequalities

X

k

k� A;B (ak)(X )� B;C (bk)(Y)k1 �
X

k

k� A;B (ak)(X )k2k� B;C (bk)(Y)k2

�
� X

k

k� A;B (ak)(X )k2
2

� 1=2� X

k

k� B;C (bk)(Y)k2
2

� 1=2

� k ak1 kbk1 kX k2kYk2:

Therefore, we can de�ne a bounded bilinear map

� : S2(H ) � S 2(H ) �! S 1(H )
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by

�( X; Y ) =
1X

k=1

� A;B (ak)(X )� B;C (bk)(Y); X; Y 2 S 2(H );

and we have
k� k � k ak1 kbk1 : (4.21)

We claim that
� A;B;C (� ) = � :

To check this, consider

ean =
nX

k=0

ak 
 � k and ebn =
nX

k=0

bk 
 � k

for any n 2 N. Then we set

� n (t1; t2; t3) =



ean (t1; t2); ebn (t2; t3)
�

=
nX

k=0

ak(t1; t2)bk(t2; t3):

Fix X; Y 2 S 2(H ). We have � A;B;C (� n ) =
P n

k=0 � A;B;C (akbk) hence by Lemma 4.9,

� A;B;C (� n )(X; Y ) =
nX

k=0

� A;B (ak)(X )� B;C (bk)(Y):

Consequently,
� A;B;C (� n )(X; Y ) �!

n! + 1
�( X; Y ) in S1(H ):

Moreover � n ! � a.-e. and(� n )n is bounded in L1 (� A � � B � � C ). Indeed,

�
� � n (t1; t2; t3)

�
� �

� nX

k=0

jak(t1; t2)j2
� 1

2
� nX

k=0

jbk(t2; t3)j2
� 1

2
� k ak1 kbk1 :

Hence by Lebesgue's dominated convergence Theorem, w� - lim
n! + 1

� n = � . The w� -

continuity of � A;B;C implies that

� A;B;C (� n )(X; Y ) �!
n! + 1

� A;B;C (� )(X; Y ) weakly in S2(H ):

We conclude that � A;B;C (� )(X; Y ) = �( X; Y ).
This shows (i). Furthermore (4.21) yields




 � A;B;C (� ) : S2 � S 2 ! S 1




 � k ak1 kbk1 (4.22)

Proof of (i) ) (ii)

Assume (i) and apply Proposition 4.7, which connects � A;B;C (� ) to �( � ). Let X 2
S2(L2(� B ); L2(� A )) and Y 2 S 2(L2(� C ); L2(� B )) . By (4.10), we have

k�( � )(Y; X)k1 = k� � 1
A � � A;B;C (� )( eX; eY) � � Ck1
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� k � A;B;C (� )( eX; eY)k1

�



 � A;B;C (� ) : S2 � S 2 ! S 1




 kX k2kYk2;

sincek eX k2 = kX k2 and keYk2 = kYk2. This shows (ii), with



 �( � ) : S2 � S 2 ! S 1




 �




 � A;B;C (� ) : S2 � S 2 ! S 1




 : (4.23)

Remark 4.11. With the terminology adopted here, Peller's Theorem from [Pel85] states as
follows.

Let A; B be normal operators on a separable Hilbert spaceH and let� A and� B be scalar-
valued spectral measures forA andB. Let  2 L1 (� A � � B ) and letu : L1(� A ) ! L1 (� B )
be the bounded map associated to (see (1.5)). The following are equivalent.

(i) The double operator integral mapping� A;B ( ) extends to a bounded map fromS1(H )
into itself.

(ii) There exist a Hilbert spaceH and two functionsa 2 L1 (� A ; H ) and b 2 L1 (� B ; H )
such that

' (s; t) = ha(s); b(t)i a:e:-(s; t): (4.24)

In this case, 


 � A;B (' ) : S1(H ) �! S 1(H )




 = inf

�
kak1 kbk1

	
;

where the in�mum runs over all pairs(a; b) of functions such that (4.24) holds true.
Let us show that this result directly follows from Theorem 4.10. ConsiderA; B as above and

take an auxiliary normal operatorC on H (this may be the identity map), with a scalar-valued
spectral measure� C . For any 2 L1 (� A � � B ), set

e =  
 1 2 L1 (� A � � B ) 
 L1 (� C ) � L1 (� A � � C � � B ):

We claim that for anyX; Y 2 S 2(H ),

� A;C;B ( e )(X; Y ) = � A;B ( )(XY ): (4.25)

Indeed for anyf 1 2 L1 (� A ) andf 2 2 L1 (� B ), and for anyX; Y 2 S 2(H ), we have

� A;C;B (f 1 
 1 
 f 2)(X; Y ) = f 1(A)XY f 2(B ):

Hence by linearity, (4.25) holds true for any 2 L1 (� A ) 
 L1 (� B ). By thew� -continuity of
� A;C;B and of� A;B , this identity holds as well for any 2 L1 (� A � � B ).

We havekXY k1 � k X k2kYk2 for anyX; Y 2 S 2(H ) and conversely, for anyZ 2 S 1(H ),
there existX; Y in S2(H ) such thatXY = Z and kX k2kYk2 = kZk1. Thus given any
 2 L1 (� A � � B ), it follows from (4.25) that� A;C;B ( e ) mapsS2(H ) � S 2(H ) into S1(H ) if
and only if� A;B ( ) mapsS1(H ) into S1(H ) and moreover,




 � A;C;B ( e ) : S2(H ) � S 2(H ) �! S 1(H )




 =




 � A;B ( ) : S1(H ) �! S 1(H )




 :

The result therefore follows from Theorem 4.10 and the equality (4.20).
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4.4 Complete boundedness of triple operator integrals

Let A; B; C be normal operators on a separable Hilbert space H. Let � A ; � B and � C

be scalar-valued spectral measures associated withA; B and C. The purpose of this
section is to characterize the functions � 2 L1 (� A � � B � � C ) such that � A;B;C (� ) extends

to a completely bounded map from S1 (H )
h

 S 1 (H ) into S1 (H ).

We will also consider the continuous bilinear Schur multipliers �( � ). Note that by
the obvious equalities

S2(L2(� B ); L2(� C )) = S2(L2(� C ); L2(� B ))

and
S2(L2(� A ); L2(� B )) = S2(L2(� B ); L2(� A )) ;

we can see�( � ) as a mapping

�( � ) : S2(L2(� B ); L2(� C )) � S 2(L2(� A ); L2(� B )) ! S 2(L2(� A ); L2(� C )) :

In [KJT09], the authors studied and characterized the boundedness of continuous bi-
linear Schur multipliers

S1 (L2(� B ); L2(� C ))
h

 S 1 (L2(� A ); L2(� B )) ! S 1 (L2(� A ); L2(� C )) :

They proved that we have such extension if and only if � has a certain factorization that
will be given in the theorem of this section. They also proved that the boundedness for
the Haagerup norm in this setting implies the complete boundedness.

The proof of Theorem 4:12 below includes another proof of [KJT09, Theorem 3.4]
and we show that the same characterization holds for triple operator integrals. Note
that the result presented here can be easily extended to the case of multilinear operator
integrals.

Theorem 4.12. Let H be a separable Hilbert space,A; B; C be normal operators onH and let
� 2 L1 (� A � � B � � C ). The following are equivalent:

(i) � A;B;C (� ) extends to a completely bounded mapping

� A;B;C (� ) : S1 (H )
h

 S 1 (H ) ! S 1 (H ):

(ii) �( � ) extends to a completely bounded mapping

�( � ) : S1 (L2(� B ); L2(� C ))
h

 S 1 (L2(� A ); L2(� B )) ! S 1 (L2(� A ); L2(� C )) :

(iii) There exist a separable Hilbert spaceH , a 2 L1 (� A ; H ); b 2 L1
� (� B ; B(H )) and c 2

L1 (� C ; H ) such that
� (t1; t2; t3) = h[b(t2)](a(t1)) ; c(t3)i

for a.-e.(t1; t2; t3) 2 � (A) � � (B ) � � (C):

In this case, 


 � A;B;C (� )




 = k�( � )k = inf kak1 kbk1 kck1 : (4.26)
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Proof. In this proof we will identify, for  2 L1 (� A � � B � � C ), the element � A;B;C ( ) 2
B2(S2(H ) � S 2(H ); S2(H )) with the element still denoted by

� A;B;C ( ) : S2(H )
^

 S 2(H ) ! S 2(H ):

(See the isometry given by (1:1).)

Proof of (i) ) (ii)

We use the same notations as in Subsection4:1:3 where we introduced the sub-
spacesH A ; H B and H C of H . S1 (H B ; H C ) and S1 (H A ; H B ) are closed subspaces of
S1 (H ) and by injectivity of the Haagerup tensor product (see Proposition 1:4), we
have a closed subspace

S1 (H B ; H C )
h

 S 1 (H A ; H B ) � S 1 (H )

h

 S 1 (H ):

By Proposition 4:7, the restriction of � A;B;C (� ) to S1 (H B ; H C )
h

 S 1 (H A ; H B ) is valued

in S1 (H A ; H C ). Moreover, this restriction is completely bounded and by the same
proposition, we obtain the inequality

k�( � )kcb �



 � A;B;C (� )






cb
:

Proof of (ii) ) (iii)

If (
 ; � ) is a measure space, the mapping

(f; g ) 2 L2(
) 2 7! fg 2 L1(
)

induces a quotient map

f 
 g 2 L2(
)
^

 L2(
) 7! fg 2 L1(
) :

We can identify L2(
) with its conjugate space so that by (1:12) we get a quotient map

q : S1(L2(
)) ! L1(
)

which turns out to be a complete metric surjection (here, the L1-spaces are equipped
with their Max structure).

Let qi : S1(L2(
 i )) ! L1(
 i ); i = 1; 2; 3 be de�ned as above. For convenience, write
H i = L2(
 i ). Using Proposition 1:4 together with the associativity of the Haagerup
tensor product, we get a complete metric surjection

Q = q3 
 q2 
 q1 : S1(H3)
h

 S 1(H2)

h

 S 1(H1) ! L1(
 3)

h

 L1(
 2)

h

 L1(
 1):

Let N = ker Q and let, for i = 1; 2; 3; N i = ker qi . Using Corollary 1:5 twice, we obtain
that

N = N3 
 S 1(H2) 
 S 1(H1) + S1(H3) 
 N2 
 S 1(H1) + S1(H3) 
 S 1(H2) 
 N1:
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Assume that �( � ) extends to a completely bounded mapping

�( � ) : S1 (H2; H3)
h

 S 1 (H1; H2) ! S 1 (H1; H3) � B (H1; H3):

Let E = S1 (H2; H3)
h

 S 1 (H1; H2). By Proposition 1:6, we have a complete isometry

CB(E; B(H1; H3)) =
�

((H 3)c)� h

 E

h

 (H 1)c

� �

:

By (1:14) we have

E = ( H 3)c
h

 ((H 2)c)� h


 (H 2)c
h

 ((H 1)c)� :

Thus, using (1:13) and the associativity of the Haagerup tensor product, we get that

CB(E; B(H1; H3)) =
�

S1(H3)
h

 S 1(H2)

h

 S 1(H1)

� �

:

Let u : S1(H3)
h

S 1(H2)

h

S 1(H1) ! C induced by �( � ). For any x 2 S 1(H1); y 2 S 1(H2)

and z 2 S 1(H3), we have

u(z 
 y 
 x) =
Z


 1 � 
 2 � 
 3

� (t1; t2; t3)[q1(x)](t1)[q2(y)](t2)[q3(z)](t3) d� 1(t1)d� 2(t2)d� 3(t3):

To see this, it is enough to check it when x; y and z are rank one operators and in
that case, one can use the identi�cations above. In particular, the latter implies that u
vanishes on N = ker Q. SinceQ is a complete metric surjection, we get a mapping

v : L1(
 3)
h

 L1(
 2)

h

 L1(
 1) ! C

such that u = v � Q. An application of Theorem 1:1 with suitable restrictions using the
separability of the spacesL1(
 i ) gives the existence of a separable Hilbert spaceH and
completely bounded maps

� : L1(
 1) ! Hc; � : L1(
 2) ! B (H ) and 
 : L1(
 3) ! H r

such that for any f 2 L1(
 1); g 2 L1(
 2); h 2 L1(
 3),

v(h 
 g 
 f ) = h[� (g)]( � (f )) ; 
 (h)i :

SinceL1(
 2) is equipped with the Max operator space structure, we have

CB(L1(
 2); B(H )) = B(L1(
 2); B(H )):

Moreover, by (1:4) and (1:16), we have

B(L1(
 2); B(H )) = L1
� (
 2; B(H )):
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Thus, we associate to� an element b 2 L1
� (
 2; B(H )). Similarly, we associate to � an

element a 2 L1 (
 1; H ) and to 
 an element c 2 L1 (
 3; H ): We obtain that

� (t1; t2; t3) = h[b(t2)](a(t1)) ; c(t3)i

for a.-e. (t1; t2; t3) 2 � (A) � � (B ) � � (C), and one can choosea; band c such that we
have the equality

k�( � )k = kak1 kbk1 kck1 :

Proof of (iii) ) (i)

Assume that there exist a separable Hilbert spaceH , a 2 L1 (� A ; H ); b2 L1
� (� B ; B(H ))

and c 2 L1 (� C ; H ) such that

� (t1; t2; t3) = h[b(t2)](a(t1)) ; c(t3)i

for a.-e. (t1; t2; t3) 2 � (A) � � (B ) � � (C): Let (� n )n� 1 be a Hilbertian basis of H . De�ne,
for i; j � 1,

ai = ha; � i i ; bij = hb�j ; � i i and cj = h� j ; ci :

Then a 2 L1 (
 1); c 2 L1 (
 3) and b2 L1 (
 2). To see this last point, simply note that

bij = tr( b(:) � (� i 
 � j )) :

For N � 1, let PN be the orthogonal projection onto Span(� 1; : : : ; �N ). Then, de�ne

� N (t1; t2; t3) = h[b(t2)](PN (a(t1))) ; PN (c(t3)) i :

It is clear that (� N )N � 1 is bounded in L1 (� 1 � � B � � C ) and that � N ! � pointwise
when N ! 1 . Therefore, by Dominated convergence theorem, we have that � N ! �
for the w� � topology. This implies, by w� � continuity of � A;B;C , that for any X and Y
in S2(H ), �

� A;B;C (� N )
�

(X 
 Y) !
�
� A;B;C (� )

�
(X 
 Y)

weakly in S2(H ).

Assume that (� A;B;C (� N ))N is uniformly bounded in CB(S1 (H )
h

 S 1 (H ); S1 (H )):

Then, the above approximation property together with the density of S2 into S1 im-
ply that � A;B;C (� ) is completely bounded as well.

We will show now that for any N � 1, � A;B;C (� N ) 2 CB(S1 (H )
h

 S 1 (H ); S1 (H ))

with a cb-norm less than kak1 kbk1 kck1 :
For any N � 1 and a.-e. (t1; t2; t3) 2 � (A) � � (B ) � � (C), we have

� N (t1; t2; t3) =
X

1� n� N

 
X

1� m� N

am (t1)bnm (t2)

!

cn (t3);

so that for any X; Y 2 S 2(H ),

�
� A;B;C (� N )

�
(X 
 Y) =

X

1� n� N

 
X

1� m� N

am (A)Xbnm (B )

!

Y cn (C):
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Note that the latter can be written as
�
� A;B;C (� N )

�
(X 
 Y) = AN (X 
 I N )BN (Y 
 I N )CN ;

where
AN = ( a1(A) a2(A) : : : aN (A)) : `N

2 (H ) ! H ;

BN = ( bji (B ))1� i � N
1� j � N

: `N
2 (H ) ! `N

2 (H )

and
CN = ( c1(C) c2(C) : : : cN (C)) t : H ! `N

2 (H ):

The notation X 
 I N stands for the element of B(`N
2 (H )) whose matrix is the N � N

diagonal matrix diag (X; : : : ; X ). Similarly for Y 
 I N .
De�ne, for N � 1,

� N : B(H) �! B (`N
2 (H )):

X 7�! X 
 I N

Then � N is a �� representation.
Let

� B : L1 (� B ) �! B (H)
f 7�! f (B )

be the � -representation introduced in Subsection 4:1:1. By [Pis03, Proposition 1.5], � B

is completely bounded and k� B kcb � 1. Note that the element

(bji )1� i � N
1� j � N

2 MN (L1 (� B ))

has a norm less thankbk1 . Thus, the latter implies that

BN = ( � B (bji ))1� i � N
1� j � N

has an operator norm less than kbk1 . Similarly (using column and row matrices), we
show that AN and CN have a norm less thankak1 and kck1 , respectively. Finally, write

�
� A;B;C (� N )

�
(X 
 Y) = � N

1 (X )� N
2 (Y)

where � N
1 (X ) = AN � (X )BN and � N

2 (Y) = � (Y)CN . By the easy part of Wittstock theo-
rem (see e.g. [Pis03, Theorem 1.6]),� N

1 and � N
2 are completely bounded with cb-norm

less than kak1 kbk1 and kck1 , respectively. By Theorem 1:1, we obtain that � A;B;C (� N )

belongs to CB(S1 (H )
h

 S 1 (H ); S1 (H )) with cb-norm less than inf kak1 kbk1 kck1 :

This completes the proof of the theorem.

Remark 4.13. In the theorem above, note that the implication(i ) ) (ii ) holds true when
we replace 'complete boundedness' by 'boundedness'. In [KJT09], it is proved that when�( � )
extends to a bounded mapping

�( � ) : S1 (L2(� B ); L2(� C ))
h

 S 1 (L2(� A ); L2(� B )) ! S 1 (L2(� A ); L2(� C )) ;
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then the factorization in(iii ) holds true. As we saw, this factorization implies the complete

boundedness of� A;B;C . Hence, the boundedness of triple operator integrals onS1 (H )
h

S 1 (H )

implies its complete boundedness.

4.5 Perspectives

Similarly to Section 3:4, one can state several questions concerning multiple operator
integrals by changing the spacesS2 or S1 by other Schatten classes. First, it would be
interesting to have a general de�nition of multiple operator integrals from Sp1 � : : : �

Spn into Sr where
1
p1

+ : : : +
1
pn

= 1 �
1
r

. Peller gave such de�nition when the element

� 2 L1 belongs to the integral projective tensor product of L1 � spaces (see [Pel06]
or [Pel16]). Then, one can try to obtain necessary or suf�cient conditions on � for an
element � A;B;C (� ) to map for instance Sp � S q into S1 (where p and q are conjugate
exponents), or for an element � A 1 ;A 2 ;:::;A n (� ) to map S2 � : : : � S 2 into S1.
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Chapter 5

Resolution of Peller's problems

——————————————————————–

5.1 Statement of the problems

Let H be a separable complex Hilbert space. In 1953, M. G. Krein [Kre53b] showed
that for a self-adjoint (not necessarily bounded) operator A and a self-adjoint operator
K 2 S 1(H ) there exists a unique function � 2 L1(R) such that

Tr( f (A + K ) � f (A)) =
Z

R
f 0(t)� (t)dt; (5.1)

whenever f is from the Wiener class W1, that is f is a function on R with Fourier
transform of f 0 in L1(R):

The function � above is called Lifshits-Krein spectral shift function and was �rstly
introduced in a special case by I. M. Lifshits [Lif52]. It plays an important role in
Mathematical Physics and in Scattering Theory, where it appears in the formula of
the determinant of a scattering matrix (for detailed discussion we refer to [BY92] and
references therein).

Observe that the right-hand side of (5.1) makes sense for every Lipschitz function
f . In 1964, M. G. Krein conjectured that the left-hand side of (5.1) also makes sense for
every Lipschitz function f . More precisely, Krein's conjecture was the following.

Krein's Conjecture. For any self-adjoint (not necessarily bounded) operatorA, for any self-
adjoint operatorK 2 S 1(H ) and for any Lipschitz functionf ,

f (A + K ) � f (A) 2 S 1: (5.2)

The best result concerning the description of the class of functions for which (5.2)
holds is due to V. Peller in [Pel85], who established that (5.2) holds for f belonging to
the Besov classB 1

1 1 (for a de�nition of this class, see [Pel85] and references therein).
However (5.2) does not hold even for the absolute value function, which is obviously
the simplest example of a Lipschitz function (see e.g. [Dav88], [DDPS97]). Moreover,
there is an example of a continuously differentiable Lipschitz function f and (bounded)
self-adjoint operators A; K with K 2 S 1 such that (5.2) does not hold. The �rst such
example is due to Yu. B. Farforovskaya [Far72].
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Assume now that K is a self-adjoint operator from the Hilbert-Schmidt class S2. In
1984, L. S. Koplienko, [Kop84], considered the operator

f (A + K ) � f (A) �
d
dt

�
f (A + tK )

� �
�
�
t=0

; (5.3)

where by d
dt

�
f (A + tK )

� �
�
�
t=0

we denote the derivative of the map t 7! f (A + tK ) � f (A)

in the Hilbert-Schmidt norm. He proved that for every �xed self-adjoint operator A
there exists a unique function � 2 L1(R) such that

Tr
�

f (A + K ) � f (A) �
d
dt

�
f (A + tK )

� �
�
�
t=0

�
=

Z

R
f 00(t)� (t)dt; (5.4)

if f is an arbitrary rational function, with poles off R and f jR bounded.
The function � is called Koplienko's spectral shift function (for more information

about Koplienko's spectral shift function we refer to [GPS08] and references therein).
It is clear that the right-hand side of (5.4) makes sense when f is a twice differ-

entiable function with a bounded second derivative. The natural question is then to
describe the class of all these functionsf such that the left-hand side of (5.4) is well-
de�ned. Namely, for which function f does the operator (5.3) belong to S1? The best
result to date is again due to V. Peller [Pel05], who established an af�rmative answer
under the assumption that f belongs to the Besov classB 2

1 1. In the same paper [Pel05],
V. Peller stated the following problem.

Peller's problem. [Pel05, Problem 2] Suppose thatf is a twice continuously differentiable
function with a bounded second derivative. LetA be a self-adjoint (possibly unbounded) oper-
ator and letK be a self-adjoint operator fromS2: Is it true that

f (A + K ) � f (A) �
d
dt

�
f (A + tK )

� �
�
�
t=0

2 S 1? (5.5)

Now let f be a function on T, admitting a decomposition f (z) =
P 1

n= �1 cnzn , z 2 T
with

P 1
n= �1 jncn j < 1 . Let U 2 B(H) be a unitary operator and let Z 2 S 1(H ) be

a self-adjoint operator. Like in the selfadjoint case, M. G. Krein proved a result (see
[Kre53a, Theorem 2]) implying that there exists a Lifshits-Krein spectral shift function
� 2 L1(T) (not depending on f ) such that

Tr
�
f (eiZ U) � f (U)

�
=

Z

T
f 0(z)� (z)dz: (5.6)

Observe that the right-hand side of (5.6) makes sense for every Lipschitz function
f . Like in the selfadjoint case, the left-hand side do not always make sense (see [Pel85]
or [Far72]), but it does when f 2 B 1

1 1 (see [Pel85]).
Let f 2 C2(T), let U 2 B(H) be a unitary operator and let Z 2 S 2(H ) be a self-

adjoint operator. Then the difference operator f (eiZ U) � f (U) belongs to S2(H ) and
the function t 7! f (eitZ U) � f (U) from R into S2(H ) is differentiable, see e.g. [Pel05,
(2.7)]. Let d

dt

�
f (eitZ U)

�
jt=0

denote its derivative at t = 0. In [Pel05, Problem 1], in
connection with the validity of the so-called Koplienko-Neidhardt trace formula, V. V.
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Peller asked whether the operator

f (eiZ U) � f (U) �
d
dt

�
f (eitZ U)

�
jt=0

(5.7)

necessarily belongs toS1(H ) under these assumptions. He proved that this holds true
whenever f belongs to the Besov classB 2

1 1 and derived a Koplienko-Neidhardt trace
formula in this case.

The aim of this chapter is to give a counterexample for both questions (5:5) and
(5:7).

Note that in (5:7), the preceding discussion implies that f (eiZ U)� f (U)� d
dt

�
f (eitZ U)

�
jt=0

is a well-de�ned element of S2(H ). In [Pel05, Theorem 4.6], the author de�ned the op-
erator in (5.3) for all f 2 B 2

1 1 via an approximation process. The precise meaning of
(5.3) in the case of an arbitrary self-adjoint operator A and an arbitrary twice contin-
uously differentiable function f is not clear. To give a precise statement to Peller's
problem in that case, we �rst need to study the differentiability of mappings of the
form

' : t 2 R 7! f (A + tK ) � f (A) 2 S 2(H )

where A and K are selfadjoint, K 2 S 2(H ) and f is a n-times differentiable function on
R. We will see in Theorem 5:1 that under suitable assumptions on A or f , the map ' will
be differentiable and the operator (5.3) will appear as a Taylor formula of second order
for � using triple operator integrals. In this case, the operator will be a well-de�ned
element of S2(H ). In our construction of a counterexample for Peller's problem in the
selfadjoint case, the operator A that we obtained is not bounded and the function f
does not have a bounded derivative, so that we cannot apply directly Theorem 5:1.
However, we will construct A as a direct sum of bounded operators and in that case,
the meaning of (5.3) will be unambiguous. We explain this fact in Subsection 5:2:3.

Section 5:2 is dedicated to the connection between perturbation theory for selfad-
joint operators and multiple operator integrals and Sections 5:3 and 5:4 concern the
construction of counterexamples for Peller's problems in the selfadjoint and the uni-
tary case, respectively.

5.2 Perturbation theory for selfadjoint operators

We recall the de�nitions of divided differences. For any integer m � 1, we let C(Rm )
be the vector space of all continuous functions from Rm into C, we let Cb(Rm ) be the
subspace of all bounded continuous functions, and we let C0(Rm ) be the subspace of all
continuous functions vanishing at in�nity. Further for any integer p � 1 we let Cp(Rm )
be the space of allp-times differentiable functions from Rm into C. Let f 2 C1(R). The
divided difference of the �rst order f [1] : R2 ! C is de�ned by

f [1](x0; x1) :=

(
f (x0 )� f (x1 )

x0 � x1
; if x0 6= x1

f 0(x0) if x0 = x1
; x0; x1 2 R:
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The function f [1] belongs to C(R2) and if f 0 is bounded, then f [1] 2 Cb(R2).
Let n � 2 and f 2 Cn (R). The divided difference of n-th order f [n] : Rn+1 ! C is

de�ned recursively by

f [n](x0; x1; : : : ; xn ) :=

(
f [n � 1] (x0 ;x2 ;:::;x n )� f [n � 1] (x1 ;x2 :::;x n )

x0 � x1
; if x0 6= x1

@1f [n� 1](x1; x2; : : : ; xn ) if x0 = x1
;

for all x0; : : : ; xn 2 R.
Here @1 stands for the partial derivation with respect to the �rst variable. It is well-

known that f [n] is symmetric. Therefore, for all 1 � i � n and for all x0; : : : ; xn 2 R,

f [n](x0; x1; : : : ; xn ) =

(
f [n � 1] (x0 ;:::;x i � 1 ;x i +1 ;:::;x n )� f [n � 1] (x0 ;:::;x i � 2 ;x i ;x i +1 ;:::;x n )

x i � 1 � x i
; if x i � 1 6= x i

@i f [n� 1](x1; : : : ; xn ) if x i � 1 = x i

;

where @i stands for the partial derivation with respect to the i-th variable.
Note for further use that for all 1 � i � n and for all (x0; : : : ; xn ) 2 Rn+1 ,

f [n](x0; : : : ; xn ) =
Z 1

0
@i f [n� 1](x0; : : : ; xi � 2; tx i � 1 + (1 � t)x i ; x i +1 ; : : : ; xn ) dt : (5.8)

The function f [n] belongs to C(Rn+1 ) and if f (n) is bounded, then f [n] 2 Cb(Rn+1 ).

Let A; K be selfadjoint operators on a separable Hilbert space H, and assume that
K 2 S 2(H ). Let f 2 C1(R). If either f 0 is bounded or A is bounded, then the restriction
of f [1] to � (A + K ) � � (A) is bounded, and hence it makes sense to de�ne the double
operator integral mapping � A+ K;A (f [1]) : S2(H ) ! S 2(H ). One of the early results from
double operator integrals theory is that in this case,

f (A + K ) � f (A) =
�
� A+ K;A (f [1])

�
(K ): (5.9)

See e.g. [PSW02, Theorem 7.4] for a proof of this result. Moreovert � 1
�
f (A+ tK )� f (A)

�

admits a limit in S2(H ) when t ! 0 and denoting this limit by d
dt f (A + tK ) jt=0 , we have

d
dt

f (A + tK ) jt=0 =
�
� A;A (f [1])

�
(K ): (5.10)

A proof of that result will be given in Theorem 5:1.

The main result of this section is the existence of higher order derivatives in the
S2-norm and an analog of (5:9) for the higher order perturbation operator

f (A + K ) � f (A) �
n� 1X

k=1

1
k!

dk

dtk
f (A + tK ) jt=0 :

For any integer p � 1, we denote by Dp(R) the space ofp-times differentiable functions

� : R ! S 2(H )
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and we denote by � (p) : R ! S 2(H ) the p� th derivative of � .

We have the following result:

Theorem 5.1. Let A andK be selfadjoint operators on a separable Hilbert spaceH with K 2
S2(H ). Letn � 1 andf 2 Cn (R). Assume either thatA is bounded or that for all1 � i � n,
f (i ) is bounded. Then, one may de�ne

' : t 2 R 7! f (A + tK ) � f (A) 2 S 2(H ):

(i ) The function' belongs toDn (R) and for any integer1 � k � n and anyt 2 R,

1
k!

' (k)(t) =
�
� A+ tK;A + tK;:::;A + tK (f [k])

�
(K; : : : ; K ): (5.11)

(ii ) We have

f (A + K ) � f (A) �
n� 1X

k=1

1
k!

' (k)(0) =
�
� A+ K;A;:::;A (f [n])

�
(K; : : : ; K ): (5.12)

This theorem will be proved in Subsection 5:2:2.

5.2.1 Approximation in multiple operator integrals

In this section, we will extend to the setting of multiple operator integrals a result of
[PS04] concerning an approximation property for double operator integrals. Following
the latter reference we will use resolvent strong convergence. Let A be a selfadjoint op-
erator on H. We say that a sequence(A j ) j of selfadjoint operators is resolvent strongly
convergent to A if for any z 2 C n R, (z � A j )� 1 ! (z � A)� 1 in the strong operator
topology (SOT). According to [RS80, Theorem 8.20], this is equivalent to

8 f 2 Cb(R); f (A j )
SOT�! f (A) when j ! 1 : (5.13)

The following lemma states that any selfadjoint operator is the limit (in the above
sense) of bounded selfadjoint operators.

Lemma 5.2. Let A be a self-adjoint operator in a separable Hilbert spaceH. Let E be the
spectral measure ofA and de�neAn := E((� n; n))A for everyn 2 N. Then, the sequence of
bounded self-adjoint operatorsf Ang1

n=1 converges toA in the strong resolvent sense.

Proof. SinceE((� n; n)) converges to I in the strong operator topology,

lim
n!1

Ang = Ag (5.14)

for every g 2 D, where D is the domain of A. Let z 2 C n R and f 2 H . The mapping
A � z : D ! H is a bijection so that (A � z)� 1f 2 D. By standard properties of the
resolvent,

(An � z)� 1f � (A � z)� 1f = ( An � z)� 1(A � An )(A � z)� 1f: (5.15)
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The result follows from combining (5.14) and (5.15) and applying uniform bounded-
ness of(An � z)� 1.

If A j ! A and B j ! B resolvent strongly, then [PS04, Prop. 3.2] shows that for any
 2 Cb(R2),

� A j ;B j ( ) SOT�! � A;B ( ) when j ! 1 :

The following is a multiple operator integral version of this result.

Proposition 5.3. Let A1; : : : ; An be selfadjoint operators on a separable Hilbert spaceH and
let, for all 1 � i � n; (A j

i ) j 2 N be a sequence of selfadjoint operators onH resolvent strongly
convergent toA i . Then for any� 2 Cb(Rn ) and for anyK 1; : : : ; K n� 1 2 S 2(H ),

lim
j ! + 1






 � A j

1 ;:::;A j
n (� )(K 1; : : : ; K n� 1) � � A 1 ;:::;A n (� )(K 1; : : : ; K n� 1)








2
= 0: (5.16)

Proof. For simplicity we write � = � A 1 ;:::;A n and � j = � A j
1 ;:::;A j

n along this proof. Since
H 
 H is dense in S2(H ) and k� j k = 1 for any j � 1, it suf�ces to prove (5.16) in the
case whenK 1; : : : ; K n� 1 are elementary tensors. Thus from now on we assume that for
all 1 � i � n � 1,

K i = hi 
 h0
i

with hi ; h0
i 2 H .

Assume �rst that � = u1 
 � � � 
 un , with ui 2 Cb(R) for all i . In this case,

� j (� )(K 1; : : : ; K n� 1) = u1(A j
1)(h1 
 h0

1) : : : (hn� 1 
 h0
n� 1)un (A j

n )

=

 
n� 1Y

k=2



uk(A j

k)h0
k ; hk� 1

�
!

un (A j
n )(hn� 1) 
 u1(A j

1)(h0
1):

By the assumption and (5.13), this converges to
 

n� 1Y

k=2

huk(Ak)h0
k ; hk� 1i

!

un (An )(hn� 1) 
 u1(A1)(h0
1);

which in turn is equal to �( � )(K 1; : : : ; K n� 1). This shows (5.16) in this special case. By
linearity and standard approximation, this implies that (5.16) holds true whenever �
belongs to the uniform closure of Cb(R) 
 � � � 
 Cb(R). In particular, (5.16) holds true
when � 2 C0(Rn ).

The rest of the proof consists in reducing to this case by a more subtle (i.e. non uni-
form) approximation process. Let (gk)k� 1 be a sequence of functions inC0(R) satisfying
the following two properties:

8 k � 1; 0 � gk � 1; and 8 r 2 R; gk(r ) k!1�! 1:

These properties imply that for all 1 � i � n, gk(A i ) ! I H strongly. Indeed let h 2 H ,
then by the Spectral theorem,

kgk(A i )h � hk2 =
Z

� (A i )

�
1 � gk(r )

� 2
dE A i

h;h (r ):
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Then by Lebesgue's dominated convergence theorem,kgk(A i )h� hk2 ! 0when k ! 1 .
We consider an arbitrary � 2 Cb(Rn ) and set

� k = ( gk 
 g2
k 
 � � � 
 g2

k 
 gk)�; k � 1:

Clearly each � k belongs to C0(Rn ), hence satis�es (5.16). A crucial observation is that
for all j; k � 1,

� j (� k)(K 1; : : : ; K n� 1) = � j (� )
�
gk(A j

1)K 1gk(A j
2); : : : ; gk(A j

n� 1)K n� 1gk(A j
n )

�
: (5.17)

The argument for this identity is essentially the same as the one for the proof of 4:9.
One �rst checks the validity of (5.17) in the case when � belongs to Cb(R) 
 � � � 
 Cb(R),
then one uses thew� -continuity of � j to obtain the general case. Details are left to the
reader. Likewise we have, for all k � 1,

�( � k)(K 1; : : : ; K n� 1) = �( � ) (gk(A1)K 1gk(A2); : : : ; gk(An� 1)K n� 1gk(An )) : (5.18)

For any k � 1 and any 1 � i � n � 1,

gk(A i )K i gk(A i +1 ) = gk(A i )(hi 
 h0
i )gk(A i +1 ) = gk(A i +1 )(hi ) 
 gk(A i )(h0

i );

hencegk(A i )K i gk(A i +1 ) ! K i in S2(H ) when k ! 1 .
Let " > 0. According to the above observation, we �x k0 � 1 such that for any

1 � i � n � 1,
kgk0 (A i )K i gk0 (A i +1 ) � K i k2 � ":

Hence, there exists a constant� > 0 such that

k�( � k0 )(K 1; : : : ; K n� 1) � �( � )(K 1; : : : ; K n� 1)k2 � �":

Now, using that for any 1 � i � n � 1, gk0 (A j
i )K i gk0 (A j

i +1 ) = gk0 (A j
i +1 )(hi ) 


gk0 (A j
i )(h0

i ) and the fact that gk0 (A j
i ) ! gk0 (A i ) and gk0 (A j

i +1 ) ! gk0 (A i +1 ) strongly when
j ! 1 , we see that gk0 (A j

i )K i gk0 (A j
i +1 ) ! gk0 (A i )K i gk0 (A i +1 ) in S2(H ) when j ! 1 .

Hence, for a large enough j 0 � 1, we have, for any 1 � i � n � 1,

kgk0 (A j
i )K i gk0 (A j

i +1 ) � K i k2 � 2"

for any j � j 0. We deduce that there exists a constant� > 0 such that

8 j � j 0; k� j (� k0 )(K 1; : : : ; K n� 1) � � j (� )(K 1; : : : ; K n� 1)k2 � �":

Now recall that � k satis�es (5.16). Hence changingj 0 into a bigger integer if necessary
we also have

8 j � j 0; k� j (� k0 )(K 1; : : : ; K n� 1) � �( � k0 )(K 1; : : : ; K n� 1)k2 � ":

We deduce from the above three estimates that

8 j � j 0; k� j (� )(K 1; : : : ; K n� 1) � �( � )(K 1; : : : ; K n� 1)k2 � (� + � + 1) ":

This shows that � satis�es (5.16).
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We �nish this section with a lemma that will be used in Section 5:2:2.

Lemma 5.4. Let f Ang1
n=1 be a sequence of self-adjoint operators converging to a self-adjoint

operatorA in the strong resolvent sense. LetK be a bounded self-adjoint operator. Then,
f An + K g1

n=1 converges in the strong resolvent sense toA + K .

Proof. Let z 2 C be such that Im (z) 6= 0. Note that

(A � z)(A + K � z)� 1 = I � K (A + K � z)� 1 (5.19)

and, on the domain of An ,

(An + K � z)� 1(An � z) = I � (An + K � z)� 1K: (5.20)

These operators are bounded in the operator norm by 1 + jjK jj=jIm (z)j. By simple
algebraic manipulations,

(An + K � z)� 1 � (A + K � z)� 1

= ( An + K � z)� 1
�
I � K (A + K � z)� 1

�
�

�
I � (An + K � z)� 1K

�
(A + K � z)� 1:

Combining the latter with (5.19) and (5.20) gives

(An + K � z)� 1 � (A + K � z)� 1 (5.21)

= ( An + K � z)� 1(A � z)(A + K � z)� 1 � (An + K � z)� 1(An � z)(A + K � z)� 1

= ( An + K � z)� 1(An � z)
�
(An � z)� 1 � (A � z)� 1

�
(A � z)(A + K � z)� 1:

Let f 2 H . It follows from (5.21) that



 �

(An + K � z)� 1 � (A + K � z)� 1
�
f






�
�
1 + jjK jj=jIm (z)j

� 


 �

(An � z)� 1 � (A � z)� 1
��

(A � z)(A + K � z)� 1f
� 


 ;

completing the proof of the lemma.

5.2.2 Proof of the main result

In this section, we will prove Theorem 5:1. First, we will need the following lemmas
and corollary.

Lemma 5.5. Let n � 3 and1 � k � n � 2. Letu 2 Cb(Rk+1 ) andv 2 Cb(Rn� k). We set, for
any (t1; : : : ; tn ) 2 Rn ,

(uv)(t1; : : : ; tn ) = u(t1; : : : ; tk+1 )v(tk+1 ; : : : ; tn ):

Then,uv 2 Cb(Rn ).
LetA1; : : : ; An be selfadjoint operators on a separable Hilbert spaceH. Then, for anyK 1; : : : ; K n� 1 2
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S2(H ),

� A 1 ;:::;A n (uv)(K 1; : : : ; K n� 1)

= � A 1 ;:::;A k +1 (u)(K 1; : : : ; K k)� A k +1 ;:::;A n (v)(K k+1 ; : : : ; K n� 1):

Proof. We �rst prove the formula when u and v are elementary tensors of elements of
Cb(R). Then, one uses thew� -continuity of multiple operator integrals like in Lemma
4:9 to obtain the general case.

Lemma 5.6. Letn � 2 be an integer. LetA1; : : : ; An� 1; A; B be bounded selfadjoint operators
on a separable Hilbert spaceH and assume thatB � A 2 S 2(H ). Let f 2 Cn (R). Then, for all
K 1; : : : ; K n� 1 2 S 2(H ) and for any1 � i � n we have

�
� A 1 ;:::A i � 1 ;B;A i ;:::;A n � 1 (f [n� 1])

�
(K 1; : : : ; K n� 1)

�
�
� A 1 ;:::A i � 1 ;A;A i ;:::;A n � 1 (f [n� 1])

�
(K 1; : : : ; K n� 1)

=
�
� A 1 ;:::;A i � 1 ;B;A;A i ;:::;A n � 1 (f [n])

�
(K 1; : : : ; K i � 1; B � A; K i ; : : : K n� 1):

Proof. It will be convenient to extend the de�nition of the divided difference as follows.
Let m 2 N� and 1 � i � m. For any � 2 C1(Rm ), we de�ne a function � [1]

i : Rm+1 ! C
by

� [1]
i (x0; : : : ; xm ) =

Z 1

0
@i � (x0; : : : ; xi � 2; tx i � 1 + (1 � t)x i ; x i +1 ; : : : ; xm ) dt

for all (x0; : : : ; xm ) 2 Rm+1 . The index i in the notation � [1]
i refers to the i-th variable

derivation @i . It follows from (5:8) that for any f 2 Cn (R),

(f [n� 1])[1]
i = f [n]: (5.22)

For � 2 C(Rn ), write

� A (� ) =
�
� A 1 ;:::A i � 1 ;A;A i ;:::;A n � 1 (� )

�
(K 1; : : : ; K n� 1)

and
� B (� ) =

�
� A 1 ;:::A i � 1 ;B;A i ;:::;A n � 1 (� )

�
(K 1; : : : ; K n� 1):

For  2 C(Rn+1 ), write

� B;A ( ) =
�
� A 1 ;:::;A i � 1 ;B;A;A i ;:::;A n � 1 ( )

�
(K 1; : : : ; K i � 1; B � A; K i ; : : : ; K n� 1):

We will show that for any � 2 C1(Rn ),

� B (� ) � � A (� ) = � B;A

�
� [1]

i

�
: (5.23)

Then the result follows by applying this formula to � = f [n� 1], together with (5:22).
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Assume �rst that � = u1 
 � � � 
 un for functions uj 2 C1(R), i.e � (t1; : : : ; tn ) =
u1(t1) : : : un (tn ) for any (t1; : : : ; tn ) 2 Rn . Then

@i � = u1 
 � � � 
 ui � 1 
 u0
i 
 ui +1 
 � � � 
 un :

Hence,
� [1]

i = u1 
 � � � 
 ui � 1 
 u[1]
i 
 ui +1 
 � � � 
 un :

By Lemma 5:5 we have

� B;A (� [1]
i )

=
�
� A 1 ;:::;A i � 1 ;B (u1 
 � � � 
 ui � 1 
 1)

�
(K 1; : : : ; K i � 1)

h
� B;A;A i (u[1]

i 
 1)
i

(B � A; K i )
�
� A i ;:::;A n � 1 (ui +1 
 � � � 
 un )

�
(K i +1 ; : : : ; K n� 1):

We have, by (5:9),
h
� B;A;A i (u[1]

i 
 1)
i

(B � A; K i ) =
h
� B;A (u[1]

i )
i

(B � A)K i

= ( ui (B ) � ui (A))K i :

Hence,

� B;A (� [1]
i )

= u1(A1)K 1 : : : ui � 1(A i � 1)K i � 1(ui (B ) � ui (A))K i ui +1 (A i )K i +1 : : : un (An� 1)

= u1(A1)K 1 : : : ui � 1(A i � 1)K i � 1ui (B )K i ui +1 (A i )K i +1 : : : un (An� 1)

� u1(A1)K 1 : : : ui � 1(A i � 1)K i � 1ui (A)K i ui +1 (A i )K i +1 : : : un (An� 1)

= � B (� ) � � A (� ):

This shows (5:23) in the case when � = u1 
 � � � 
 un . By linearity this immediately
implies that (5:23) holds true whenever � 2 C1(R) 
 � � � 
 C1(R): Note that this space
contains the n� variable polynomial functions.

Now consider an arbitrary � 2 C1(Rn ). Let M > 0 be a constant such that the
spectra of A1; : : : ; An� 1; A and B are included in [� M; M ]. By continuity of @i � there
exists a sequence(Qm )m� 1 of n� variable polynomial functions such that Qm ! @i �
uniformly on [� M; M ]n . For any m � 1, we set

Pm (t1; : : : ; tn ) =
Z t i

0
Qm (t1; : : : ; t i � 1; �; t i +1 ; : : : ; tn ) d�

for all (t1; : : : ; tn ) 2 Rn . This is also an n-variable polynomial function. Next we in-
troduce w(t1; : : : ; t i � 1; t i +1 ; : : : ; tn ) = � (t1; : : : ; t i � 1; 0; t i +1 ; : : : ; tn ). w belongs to C1(Rn� 1)
and for any real numbers t1; : : : ; tn , we have

� (t1; : : : ; tn ) = w(t1; : : : ; t i � 1; t i +1 ; : : : ; tn ) +
Z t i

0
@i � (t1; : : : ; t i � 1; �; t i +1 ; : : : ; tn ) d�:
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Hence,

j� (t1; : : : ; tn ) � w(t1; : : : ; t i � 1; t i +1 ; : : : ; tn ) � Pn (t1; : : : ; tn )j

�
Z t i

0
j@i � (t1; : : : ; t i � 1; �; t i +1 ; : : : ; tn ) � Qm (t1; : : : ; t i � 1; �; t i +1 ; : : : ; tn )j d�:

Consequently, Pm + w ! � uniformly on [� M; M ]n . Let (wm )m2 N be a sequence of
(n � 1)� variable polynomial functions converging uniformly to w on [� M; M ]n� 1. The
latter implies that Pm + wm ! � uniformly on [� M; M ]n . By construction, @i Pm = Qm

and @i wm = 0 hence we also obtain that (Pm + wm )[1]
i ! � [1]

i uniformly on [� M; M ]n+1 .
SincePm + wm belongs to C1(R) 
 � � � 
 C1(R), it satis�es (5:23). The above approxima-
tion property implies that � satis�es (5:23) as well.

Corollary 5.7. Let n � 2 be an integer. LetA1; : : : ; An� 1; A; K be selfadjoint operators on a
separable Hilbert spaceH and assume thatK 2 S 2(H ). Let f 2 Cn (R) be such thatf (n� 1)

andf (n) are bounded. Then, for allK 1; : : : ; K n� 1 2 S 2(H ) and for any1 � i � n we have
�
� A 1 ;:::A i � 1 ;A + K;A i ;:::;A n � 1 (f [n� 1])

�
(K 1; : : : ; K n� 1)

�
�
� A 1 ;:::A i � 1 ;A;A i ;:::;A n � 1 (f [n� 1])

�
(K 1; : : : ; K n� 1)

=
�
� A 1 ;:::;A i � 1 ;A + K;A;A i ;:::;A n � 1 (f [n])

�
(K 1; : : : ; K i � 1; K; K i ; : : : K n� 1):

Proof. For all 1 � k � n � 1, let (A j
k) j 2 N be a sequence of bounded selfadjoint operators

on H converging resolvent strongly to Ak . Such sequence exists by Lemma5:2. Simi-
larly, let (A j ) j 2 N be a sequence of bounded selfadjoint operators converging resolvent
strongly to A. According to Lemma 5:6, we have, for all j ,

h
� A j

1 ;:::A j
i � 1 ;A j + K;A j

i ;:::;A j
n � 1 (f [n� 1])

i
(K 1; : : : ; K n� 1)

�
h
� A j

1 ;:::A j
i � 1 ;A j ;A j

i ;:::;A j
n � 1 (f [n� 1])

i
(K 1; : : : ; K n� 1)

=
h
� A j

1 ;:::;A j
i � 1 ;A j + K;A j ;A j

i ;:::;A j
n � 1 (f [n])

i
(K 1; : : : ; K i � 1; K; K i ; : : : K n� 1):

By Lemma 5:4, A j + K ! A + K resolvent strongly when j ! 1 . Moreover, the
boundedness of f (n� 1) and f (n) imply that of f [n� 1] and f [n]. Hence, we obtain the
desired equality by passing to the limit in the above equality thanks to Proposition
5:3.

Proof of Theorem5:1. 1: Assume �rst that A is bounded.
(i ) We prove the �rst point by induction on k, 1 � k � n. Let k = 1 and t 2 R. We want
to show that the limit

lim
s! 0

' (t + s) � ' (t)
s

exists in S2(H ) and is equal to
�
� A+ tK;A + tK (f [1])

�
(K ).
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By (5:9) we have

' (t + s) � ' (t)
s

=
f (A + ( t + s)K ) � f (A + tK )

s
=

�
� A+( t+ s)K;A + tK (f [1])

�
(K ):

By Lemma 5:4, we get that A + ( t + s)K ! A + tK resolvent strongly as s ! 0. By
assumption A and K are bounded so there exists a bounded interval I � R such that
for s small enough, � (A + ( t + s)K ) � I . Since f 2 C1(R), f [1] is continuous hence
bounded on I � I . Let F 2 Cb(R2) be such that FjI � I = f [1]. By Proposition 5:3 applied
to F we get

lim
s! 0

�
� A+( t+ s)K;A + tK (f [1])

�
(K ) =

�
� A+ tK;A + tK (f [1])

�
(K ) in S2(H );

which concludes the proof when k = 1.

Now let 1 � k � n � 1 and assume that ' 2 D k(R) and for all 1 � j � k and t 2 R,

' (j )(t) = j !
�
� A+ tK;A + tK;:::;A + tK (f [j ])

�
(K; : : : ; K ): (5.24)

We want to prove that ' 2 D k+1 (R) with a derivative of (k+1) -th order given by (5:11).
Let s; t 2 R. We have

' (k)(t + s) � ' (k)(t)
s

=
k!
s

�
� A+( t+ s)K;:::;A +( t+ s)K (f [k]) � � A+ tK;:::;A + tK (f [k])

�
(K; : : : ; K )

=
k!
s

k+1X

i =1

h
� (A+ tK ) i � 1 ;(A+( t+ s)K )k � i +2

(f [k]) � � (A+ tK ) i ;(A+( t+ s)K )k � i +1
(f [k])

i
(K; : : : ; K )

where for instance (A + tK ) i = A + tK; : : : ; A + tK (i terms). By Lemma 5:6, we have
for all 1 � i � k + 1,

1
s

h
� (A+ tK ) i � 1 ;(A+( t+ s)K )k � i +2

(f [k]) � � (A+ tK ) i ;(A+( t+ s)K )k � i +1
(f [k])

i
(K; : : : ; K )

=
1
s

h
� (A+ tK ) i � 1 ;A +( t+ s)K;A + tK; (A+( t+ s)K )k � i +1

(f [k+1] )
i

(K; : : : ; K; sK; K; : : : ; K )

=
h
� (A+ tK ) i � 1 ;A +( t+ s)K;A + tK; (A+( t+ s)K )k � i +1

(f [k+1] )
i

(K; : : : ; K ):

Moreover, using resolvent convergence like in the �rst part of the proof, we can see
that this term converges in S2(H ), ass goes to0, to

�
� A+ tK;:::;A + tK (f [k+1] )

�
(K; : : : ; K ):

Hence,

lim
s! 0

' (k)(t + s) � ' (k)(t)
s

= k!
k+1X

i =1

�
� A+ tK;:::;A + tK (f [k+1] )

�
(K; : : : ; K )
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= ( k + 1)!
�
� A+ tK;:::;A + tK (f [k+1] )

�
(K; : : : ; K )

which concludes the proof of (i ).

(ii ). We will prove the second point by induction on n. The casen = 1 follows from
(5:9). Now let n 2 N and f 2 Cn+1 (R). Assume that we have

f (A + K ) � f (A) �
n� 1X

k=1

1
k!

' (k)(0) =
�
� A+ K;A;:::;A (f [n])

�
(K; : : : ; K ):

We have

f (A + K ) � f (A) �
nX

k=1

1
k!

' (k)(0) = f (A + K ) � f (A) �
n� 1X

k=1

1
k!

' (k)(0) �
1
n!

' (n)(0)

=
�
� A+ K;A;:::;A (f [n])

�
(K; : : : ; K ) �

1
n!

' (n)(0):

By the �rst point of the theorem, we have

1
n!

' (n)(0) =
�
� A;A;:::;A (f [n])

�
(K; : : : ; K ):

Using Lemma 5:6, we obtain

f (A + K ) � f (A) �
nX

k=1

1
k!

' (k)(0) =
�
� A+ K;A;:::;A (f [n+1] )

�
(K; : : : ; K )

which is the desired equality.

2. Assume now that A is unbounded and that for all 1 � i � n, f (i ) is bounded.
Then, for all 1 � i � n; f [i ] is bounded. Hence, applying Corollary 5:7 instead of
Lemma 5:6 and following the same lines as in the proof of the bounded case, we obtain
the unbounded case.

Theorem 5:1, Proposition 5:3 and Lemma 5:4 have the following consequence.

Corollary 5.8. Let A be a selfadjoint operator on a separable Hilbert spaceH and let(A j ) j 2 N

be a sequence of bounded selfadjoint operators onH converging resolvent strongly toA. Let
n � 1 be an integer and letf 2 Cn (R) be such thatf (n) is bounded. LetK = K � 2 S 2(H )
and de�ne, for anyj � 1,

' j : t 2 R 7! f (A j + tK ) � f (A j ) 2 S 2(H ):

Then, for anyt 2 R,

lim
j !1

' (n)
j (t)

n!
=

�
� A+ tK;:::;A + tK (f [n])

�
(K; : : : ; K )
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and

lim
j !1

 

f (A j + K ) � f (A j ) �
n� 1X

k=1

1
k!

' (k)
j (0)

!

=
�
� A+ K;A;:::;A (f [n])

�
(K; : : : ; K );

where the limits are inS2(H ).

5.2.3 Connection with Peller's problem

The results obtained in this section will allow us to give a meaning and a concrete
approximation process for the operator

f (A + K ) � f (A) �
d
dt

�
f (A + tK )

� �
�
�
t=0

when A and K are selfadjoint operators on a separable Hilbert space H, K 2 S 2(H )
and f 2 C2(R) with a bounded second derivative, in the case when H is a direct sum

and A and K are a direct sum of operators. Thus, we will assume that H =
2L

i 2 NH i is
the direct sum of �nite dimensional Hilbert spaces H i and that A and K are of the form

A =
+ 1M

i =1

~A i and K =
+ 1M

i =1

~K i

where for all i 2 N, A i and K i are bounded selfadjoint operators acting on H i such that

kK k2
2 =

1X

i =1

k ~K i k2
2 < 1 : (5.25)

Set, for n � 1,

An =

 
nM

i =1

~A i

!

�

 
+ 1M

i = n+1

0H i

!

and K n =

 
nM

i =1

~K i

!

�

 
+ 1M

i = n+1

0H i

!

:

If h 2 Cb(R) then

h(A) =
+ 1M

i =1

h( ~A i )

and for any n � 1,

h(An ) =

 
nM

i =1

h( ~A i )

!

�

 
+ 1M

i = n+1

h(0)I H i

!

:

Therefore, it is easy to see that An ! A resolvent strongly as n ! + 1 . Similarly,
K n ! K in S2(H ) and An + K n ! A + K resolvent strongly.
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Assume that f 2 C2(R) and that f 00is bounded. Then, Theorem 5:1 gives a meaning

to f (A + K ) � f (A) �
d
dt

�
f (A + tK )

� �
�
�
t=0

as
�
� A+ K;A;A (f [2])

�
(K; K ). Moreover, the latter

implies, by Corollary 5:8, that

f (An + K n ) � f (An ) �
d
dt

�
f (An + tK n )

� �
�
�
t=0

�!
n! + 1

�
� A+ K;A;A (f [2])

�
(K; K )

in S2(H ). By the same corollary, we also know that this limit does not depend on the
approximation of A by bounded operators (An )n .
Moreover, we have

f (An + K n ) � f (An ) �
d
dt

�
f (An + tK n )

� �
�
�
t=0

=

 
nM

i =1

f ( ~A i + ~K i ) � f ( ~A i ) �
d
dt

�
f ( ~A i + t ~K i )

� �
�
�
t=0

!

�

 
+ 1M

i = n+1

0H i

!

and this sequence converges inS2(H ) to

+ 1M

i =1

�
f ( ~A i + ~K i ) � f ( ~A i ) �

d
dt

�
f ( ~A i + t ~K i )

� �
�
�
t=0

�
: (5.26)

For both counterexamples to Peller's problems, the operators A and K will have
this form. Note that according to (5:26), we have








 f (A + K ) � f (A) �

d
dt

�
f (A + tK )

� �
�
�
t=0










1

(5.27)

=
+ 1X

i =1










�
f ( ~A i + ~K i ) � f ( ~A i ) �

d
dt

�
f ( ~A i + t ~K i )

� �
�
�
t=0

� 








1

: (5.28)

Therefore, the construction of a counterexample reduces to the construction of selfad-
joint operators ~A i and ~K i acting on a �nite dimensional Hilbert space such that










�
f ( ~A i + ~K i ) � f ( ~A i ) �

d
dt

�
f ( ~A i + t ~K i )

� �
�
�
t=0

� 








1

can be estimated from below in order to have a divergent series. To do so, we will
use the connection between those operators and triple operator integrals (see Theorem
5:1). Using together (4:19) and Theorem 3:4, we can see that we have to estimate from
below the S1-norm of Schur multipliers, for which some results (counterexamples) are
known.

5.3 The self-adjoint case

5.3.1 A few properties of triple operator integrals

In this subsection, � : R2 ! C and  : R3 ! C denote arbitrary functions, and n 2 N
is a �xed integer. The following lemmas give some nice properties of triple operator
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integrals that we will use for our construction of a counter-example to Peller's problem.

Lemma 5.9. LetA 2 B(Cn ) be a self-adjoint operator andX; Y 2 B(Cn ): Let

~A =
�

A 0
0 A

�
and ~X =

�
0 X
Y 0

�
:

Then

�
~A; ~A; ~A ( )( ~X; ~X ) =

�
� A;A;A ( )(X; Y ) 0

0 � A;A;A ( )(Y; X)

�
:

Proof. Let f � i gm
i =1 be the set of distinct eigenvalues of the operator A; m � n; and let E A

i
be the spectral projection of A associated with � i ; 1 � i � m: Clearly, the operator ~A has
the same setf � i gm

i =1 of distinct eigenvalues and the spectral projection of the operator
~A associated with � i is given by

E
~A

i =
�

E A
i 0

0 E A
i

�
; 1 � i � m:

Therefore, we have

�
~A; ~A; ~A ( )( ~X; ~X ) =

mX

i;k;j =1

 (� i ; � k ; � j )
�

E A
i 0

0 E A
i

� �
0 X
Y 0

�
�

�
E A

k 0
0 E A

k

� �
0 X
Y 0

� �
E A

j 0
0 E A

j

�

=
mX

i;k;j =1

 (� i ; � k ; � j )
�

E A
i XE A

k Y EA
j 0

0 E A
i Y EA

k XE A
j

�

=
�

� A;A;A ( )(X; Y ) 0
0 � A;A;A ( )(Y; X)

�
:

Lemma 5.10. LetA; B 2 B(Cn ) be self-adjoint operators with the same set of eigenvalues and
X; Y 2 B(Cn ): Let

~A =
�

A 0
0 B

�
; ~X =

�
0 X
0 0

�
and ~Y =

�
0 0
0 Y

�
:

Then

�
~A; ~A; ~A ( )( ~X; ~Y) =

�
0 � A;B;B ( )(X; Y )
0 0

�
:

Proof. Let f � i gm
i =1 be the set of distinct eigenvalues of the operator A; m � n; and let E A

i
(resp. E B

i ) be the spectral projection of A (resp. B) associated with � i ; 1 � i � m: Since
A and B have the same set of eigenvalues, the operator ~A has the same setf � i gm

i =1 of
distinct eigenvalues and the spectral projection of the operator ~A associated with � i is
given by

E
~A

i =
�

E A
i 0

0 E B
i

�
; 1 � i � m:
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Therefore, we have

�
~A; ~A; ~A ( )( ~X; ~Y) =

mX

i;k;j =1

 (� i ; � k ; � j )
�

E A
i 0

0 E B
i

� �
0 X
0 0

�
�

�
E A

k 0
0 E B

k

� �
0 0
0 Y

� �
E A

j 0
0 E B

j

�

=
mX

i;k;j =1

 (� i ; � k ; � j )
�

0 E A
i XE B

k Y EB
j

0 0

�

=
�

0 � A;B;B ( )(X; Y )
0 0

�
:

Lemma 5.11. Let A0; A1; A2 2 B(Cn ) be self-adjoint operators. For anya 6= 0 2 R we have
that

� aA 0 ;aA 1 ;aA 2 ( ) = � A 0 ;A 1 ;A 2 ( a);

where
 a(x0; x1; x2) =  (ax0; ax1; ax2); x0; x1; x2 2 R:

Proof. Let f � (j )
i gn j

i =1 be the set of distinct eigenvalues of A j , j = 0; 1; 2. Fix a 6= 0 in R.
It is clear that for any j , f a� (j )

i gn j
i =1 is the set of distinct eigenvalues of aAj , and that the

corresponding spectral projections coincide, that is, E aA j
i = E A j

i for any i = 1; : : : ; nj .
Therefore, for X; Y 2 B(Cn ), we have

� aA 0 ;aA 1 ;aA 2 ( )(X; Y ) =
n0X

i =1

n1X

k=1

n2X

j =1

 
�
a� (0)

i ; a� (1)
k ; a� (2)

j

�
E A 0

i XE A 1
k Y EA 2

j

= � A 0 ;A 1 ;A 2 ( a)(X; Y ):

Lemma 5.12. Let A; B 2 B(Cn ) be self-adjoint operators and letf Umgm� 1 be a sequence of
unitary operators fromB(Cn ) such thatUm ! I n asm ! 1 . Let alsoX; Y 2 B(Cn ) and
sequencesf X mgm� 1 and f Ymgm� 1 in B(Cn ) such thatX m ! X andYm ! Y asm ! 1 .
Let  ;  m : R3 ! C be functions such that m !  pointwise asm ! 1 . Then

� Um AU �
m ;B;B ( m )(X m ; Ym ) �! � A;B;B ( )(X; Y ); m ! 1 : (5.29)

Proof. Let f � i g
m0
i =1 and f � kgm1

k=1 be the set of distinct eigenvalues of the operators A and
B, respectively, m0; m1 � n; and let E A

i (resp. E B
k ) be the spectral projection of A (resp.

B) associated with � i (resp. � k), 1 � i � m0 (resp. 1 � k � m1). It is clear that
the sequencef � i g

m0
i =1 is the sequence of eigenvalues ofUmAU �

m and that the spectral
projection of UmAU �

m associated with � i is given by

E Um AU �
m

i = UmE A
i U�

m ; 1 � i � m0:



110 Chapter 5. Resolution of Peller's problems

Observe that

� Um AU �
m ;B;B ( m )(X m ; Ym ) =

m0X

i =1

m1X

j;k =1

 m (� i ; � k ; � j )E
Um AU �

m
i XE B

k Y EB
j

= Um

� m0X

i =1

m1X

j;k =1

 m (� i ; � k ; � j )E A
i (U�

mX )E B
k Y EB

j

�

= Um � A;B;B ( m )(U�
mX; Y ):

We claim that � A;B;B ( m )(U�
mX; Y ) ! � A;B;B ( )(X; Y ). Indeed, we have

k� A;B;B ( m )(U�
mX; Y ) � � A;B;B ( )(X; Y )k1

� k � A;B;B ( m )(U�
mX; Y ) � � A;B;B ( m )(X; Y )k1

+ k� A;B;B ( m )(X; Y ) � � A;B;B ( )(X; Y )k1

� k � A;B;B ( m )(U�
mX � X; Y )k1 + k� A;B;B ( m �  )(X; Y )k1

�
m0X

i =1

m1X

j;k =1

j m (� i ; � k ; � j )jkUmX � X k1 kYk1 +

m0X

i =1

m1X

j;k =1

j m �  j(� i ; � k ; � j )kX k1 kYk1 :

This upper bound tends to 0 asm ! 1 , which proves the claim.
Now since Um ! I n , we have

Um � A;B;B ( m )(U�
mX; Y ) � � A;B;B ( m )(U�

mX; Y ) �! 0

asm ! 1 . The result follows at once.

Lemma 5.13. LetA 2 B(Cn ) be a self-adjoint operator and letX 2 B(Cn ) commute withA.

(i ) We have
� A;A;A ( )(X; X ) = b (A) � X 2; X 2 B(Cn );

whereb : R ! R is de�ned by

b (x) =  (x; x; x ); x 2 R:

(ii ) We have
� A;A;A ( )(Y; X) = � A;A (� 1)(Y) � X; Y 2 B(Cn );

where
� 1(x0; x1) =  (x0; x1; x1); x0; x1 2 R:

(iii ) We have
� A;A;A ( (X; Y )) = X � � A;A (� 2)(Y); Y 2 B(Cn );

where
� 2(x0; x1) =  (x0; x0; x1); x0; x1 2 R:
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Proof. Let f � i gn
i =1 be an orthonormal basis of eigenvectors of A and let f � i gn

i =1 be the
associatedn-tuple of eigenvalues. Since A commutes with X , it follows that the pro-
jection P� i commutes with X for all 1 � i � n: Thus, we have that

� A;A;A ( )(X; X ) =
nX

i;j;k =1

 (� i ; � k ; � j )P� i XP � k XP � j

=
nX

i =1

 (� i ; � i ; � i )P� i � X 2

=
nX

i =1

b (� i )P� i � X 2 = b (A) � X 2;

which proves (i ):
Similarly, for (ii ); we have

� A;A;A ( )(Y; X) =
nX

i;j;k =1

 (� i ; � k ; � j )P� i Y P� k XP � j

=
nX

i;k =1

 (� i ; � k ; � k)P� i Y P� k � X

=
nX

i;k =1

� 1(� i ; � k)P� i Y P� k � X = � A;A (� 1)(Y) � X:

The proof of (iii ) repeats that of (ii ):

5.3.2 Finite-dimensional constructions

In this section we establish various estimates concerning �nite dimensional operators.
The symbol constwill stand for uniform positive constants, not depending on the di-
mension.

It will be convenient to extend the de�nition of the divided difference of �rst order
as follow: let f : R ! R be a continuous function and assume that f admits right and
left derivatives f 0

r (x) and f 0
l (x) at eachx 2 R. Assume further that f 0

r ; f 0
l are bounded.

The divided difference of the �rst order is de�ned by

f [1] (x0; x1) :=

(
f (x0 )� f (x1 )

x0 � x1
; if x0 6= x1

f 0
r (x0 )+ f 0

l (x0 )
2 if x0 = x1

; x0; x1 2 R:

Then f [1] is a bounded Borel function.

If f is C2-function, the de�nition of the second divided difference f [2] is given in
Section5:2. f [2] is a bounded continuous function, with




 f [2]




 =

1
2

kf 00k1 : (5.30)
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Consider the function f 0 : R ! R de�ned by

f 0(x) = jxj; x 2 R:

The de�nition of f [1]
0 given above applies to this function.

The following result is proved in [Dav88, Theorem 13].

Theorem 5.14. For all n 2 N there exist self-adjoint operatorsAn ; Bn 2 B(C2n+1 ) such that
the spectra ofAn + Bn andAn coincide,0 is an eigenvalue ofAn , and

kf 0(An + Bn ) � f 0(An )k1 � const lognkBnk1: (5.31)

Remark 5.15. The operatorAn constructed in [Dav88] is a diagonal operator de�ned onC2n

and0 is not an eigenvalue ofAn . By changing the dimension from2n to 2n + 1 and adding a
zero on the diagonal, one obtains the operatorAn in Theorem 5.14, with0 in the spectrum.

Corollary 5.16. For all n � 1, there exist self-adjoint operatorsAn ; Bn 2 B(C2n+1 ) such that
the spectra ofAn + Bn andAn coincide, and




 � A n + B n ;A n (f [1]

0 ) : S1
2n+1 ! S 1

2n+1




 � const logn:

Proof. Take An ; Bn 2 B(C2n+1 ) as in Theorem 5.14. By(5:9), we have that

� A n + B n ;A n (f [1]
0 )(Bn ) = f 0(An + Bn ) � f 0(An ):

By Theorem 5:14, we have that

k� A n + B n ;A n (f [1]
0 )(Bn )k1 = kf 0(An + Bn ) � f 0(An )k1 � const lognkBnk1:

Therefore, 


 � A n + B n ;A n (f [1]

0 ) : S1
2n+1 ! S 1

2n+1




 � const logn:

Since the operator � A n + B n ;A n (f [1]
0 ) is a Schur multiplier, we obtain that




 � A n + B n ;A n (f [1]

0 ) : S1
2n+1 ! S 1

2n+1




 � const logn:

Consider the function g0 : R ! R given by

g0(x) = xjxj = xf 0(x); x 2 R:

This is a C1-function. Hence although g0 is not a C2-function, one may de�ne
g[2]

0 (x0; x1; x2) by the formula given in (5:2) and in the beginning of this subsection
whenever x0; x1; x2 are not equal. Let us de�ne

 0(x0; x1; x2) :=

8
>><

>>:

g[2]
0 (x0; x1; x2); if x0 6= x1 or x1 6= x2

1; if x0 = x1 = x2 > 0
� 1; if x0 = x1 = x2 < 0
0; if x0 = x1 = x2 = 0

:
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The following lemma relates the linear Schur multiplier for f [1]
0 and the bilinear

Schur multiplier for  0:

Lemma 5.17. For self-adjoint operatorsAn ; Bn 2 B(Cn ) such that0 belongs to the spectrum
ofAn ; the inequality




 � A n + B n ;A n ;A n ( 0) : S2

n � S 2
n ! S 1

n




 �




 � A n + B n ;A n (f [1]

0 ) : S1
n ! S 1

n




 (5.32)

holds.

Proof. Let f � kgn
k=1 be the sequence of eigenvalues of the operatorAn : For simplicity, we

assume that � 1 = 0.
By formulas (4.16) and (4.19) and by Theorem 3.4, we have that




 � A n + B n ;A n ;A n ( 0) : S2

n � S 2
n ! S 1

n




 = max

1� k� n
k� A n + B n ;A n (' k) : S1

n ! S 1
n k;

where
' k(x0; x1) :=  0(x0; � k ; x1); x0; x1 2 R; 1 � k � n:

This implies



 � A n + B n ;A n ;A n ( 0) : S2

n � S 2
n ! S 1

n




 � k � A n + B n ;A n (' 1) : S1

n ! S 1
n k:

It therefore suf�ces to check that
' 1 = f [1]

0 : (5.33)

By de�nition, ' 1 =  0(� ; 0; � ). In particular,

' 1(0; 0) =  0(0; 0; 0) = 0 = f [1]
0 (0; 0):

Consider now (x0; x1) 2 R2 such that x0 6= 0 or x1 6= 0. In that case, we have

' 1(x0; x1) = g[2]
0 (x0; 0; x1):

If x0; x1; 0 are mutually distinct, then

g[2]
0 (x0; 0; x1) =

g[1]
0 (x0; 0) � g[1]

0 (0; x1)
x0 � x1

=
x0 f 0 (x0 )� 0

x0 � 0 � 0� x1 f 0 (x1 )
0� x1

x0 � x1

=
f 0(x0) � f 0(x1)

x0 � x1
= f [1]

0 (x0; x1):

If x0 = 0 and x1 6= 0; then

g[2]
0 (0; 0; x1) =

g[1]
0 (0; 0) � g[1]

0 (0; x1)
x0 � x1

=
g0

0(0) � 0� x1 f 0 (x1 )
0� x1

0 � x1

=
f 0(x1)

x1
= f [1]

0 (0; x1):

The argument is similar, when x0 6= 0 and x1 = 0:
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Assume now that x0 = x1 6= 0. Then we have

g[2]
0 (x0; 0; x0) =

d
dx

g[1]
0 (x; 0)

�
�
�
x= x0

=
d

dx

� xf 0(x) � 0
x � 0

� �
�
�
x= x0

= f 0
0(x0) = f [1]

0 (x0; x0):

This completes the proof of (5.33) and we obtain (5.32).

The following is a straightforward consequence of Corollary 5.16 and Lemma 5.17.

Corollary 5.18. For everyn � 1 there exist self-adjoint operatorsAn ; Bn 2 B(C2n+1 ) such
that the spectra ofAn + Bn andAn coincide, and




 � A n + B n ;A n ;A n ( 0) : S2

2n+1 � S 2
2n+1 ! S 1

2n+1




 � const logn:

We assume below that n � 1 is �xed and that An ; Bn are given by Corollary 5.18.
The purpose of the series of Lemmas 5.19-5.24 below is to prove Lemma 5.25, which
is the �nal step in the �nite-dimensional resolution of Peller's problem. The following
result follows immediately from Corollary 5.18.

Lemma 5.19. There are operatorsX n ; Yn 2 B(C2n+1 ) with kX nk2 = kYnk2 = 1, such that



 � A n + B n ;A n ;A n ( 0)(X n ; Yn )






1
� const logn:

Let us denote

Hn :=
�

An + Bn 0
0 An

�
(5.34)

and consider the operator

T1 := � H n ;H n ;H n ( 0) : S2
4n+2 � S 2

4n+2 ! S 1
4n+2 :

Lemma 5.20. There are operators~X n ; ~Yn 2 B(C4n+2 ) with k ~X nk2 = k ~Ynk2 = 1, such that



 T1( ~X n ; ~Yn )






1
� const logn:

Proof. Take

~X n :=
�

0 X n

02n+1 0

�
; ~Yn :=

�
02n+1 0

0 Yn

�
;

where X n ; Yn are operators from Lemma 5.19 and 02n+1 is the null element of B(C2n+1 ):
Clearly, k ~X nk2 = kX nk2 = 1 and k ~Ynk2 = kYnk2 = 1: It follows from Lemma 5.10 and
the fact that An + Bn and An have the same spectra that

T1( ~X n ; ~Yn ) =
�

0 � A n + B n ;A n ;A n ( 0)(X n ; Yn )
02n+1 0

�
:

Therefore, by Lemma 5.19,



 T1( ~X n ; ~Yn )






1
=




 � A n + B n ;A n ;A n ( 0)(X n ; Yn )






1
� const logn:
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Lemma 5.21. There is an operatorSn 2 B(C4n+2 ) with kSnk2 � 1 such that



 T1(Sn ; S�

n )





1
� const logn:

Proof. Take the operators ~X n ; ~Yn 2 B(C4n+2 ) as in Lemma 5.20. By the polarization
identity

T1( ~X n ; ~Yn ) =
1
4

3X

k=0

i kT1(( ~X n + i k ~Y �
n ); ( ~X n + i k ~Y �

n )� );

we have that

kT1( ~X n ; ~Yn )k1 � max
0� k� 3

kT1(( ~X n + i k ~Y �
n ); ( ~X n + i k ~Y �

n )� )k1:

Taking k0 such that

kT1(( ~X n + i k0 ~Y �
n ); ( ~X n + i k0 ~Y �

n )� )k1 = max
0� k� 3

kT1(( ~X n + i k ~Y �
n ); ( ~X n + i k ~Y �

n )� )k1;

we set
Sn :=

1
2

( ~X n + i k0 ~Y �
n ):

Thus, by Lemma 5.20, we have




 T1(Sn ; S�

n )





1
�

1
4

kT1( ~X n ; ~Yn )k1 � const logn

and
kSnk2 �

1
2

(k ~X nk2 + k ~Ynk2) = 1 :

Let us denote

~Hn :=
�

Hn 0
0 Hn

�
=

0

B
B
@

An + Bn 0 0 0
0 An 0 0
0 0 An + Bn 0
0 0 0 An

1

C
C
A ; n � 1; (5.35)

and consider the operator

T2 := �
~H n ; ~H n ; ~H n ( 0) : S2

8n+4 � S 2
8n+4 ! S 1

8n+4 :

Lemma 5.22. There is a self-adjoint operatorZn 2 B(C8n+4 ) with kZnk2 � 1 such that



 T2(Zn ; Zn )






1
� const logn:

Proof. Consider the operator Sn from Lemma 5.21. Setting

Zn :=
1
2

�
0 Sn

S�
n 0

�
;
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we have kZnk2 = 1
2(kSnk2 + kS�

nk2) � 1 and by Lemma 5.9,

T2(Zn ; Zn ) =
1
4

�
T1(Sn ; S�

n ) 0
0 T1(S�

n ; Sn )

�
:

Therefore, by Lemma 5.21, we arrive at




 T2(Zn ; Zn )






1
=

1
4

� 


 T1(Sn ; S�

n )





1
+




 T1(S�

n ; Sn )





1

�

�
1
4




 T1(Sn ; S�

n )





1
� const logn:

The following decomposition principle is of independent interest. In this statement
we use the notation [H; F ] = HF � FH for the commutator of H and F .

Lemma 5.23. For any self-adjoint operatorsZ; H 2 B(Cn ), there are self-adjoint operators
F; G 2 B(Cn ) such that

Z = G + i [H; F ];

the matrixG commutes withH , and we have

k[H; F ]k2 � 2 kZk2 and kGk2 � k Zk2 :

Proof. Let
h1; h2; : : : ; hm

be the pairwise distinct eigenvalues of the operator H and let

E1; E2; : : : ; Em

be the associated spectral projections, so that

H =
mX

j =1

hj E j :

We set

G =
mX

j =1

E j ZE j and F = i
mX

j =1
j 6= k

(hk � hj )� 1 E j ZE k :

Since
HE j = hj E j ;

we have

[H; E j ZE k ] = H � E j ZE k � E j ZE k � H = ( hj � hk) � E j ZE k :

Consequently,

i [H; F ] =
mX

j =1
j 6= k

E j ZE k
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and hence
G + i [H; F ] = Z:

Further F; G are self-adjoint and it is clear that [G; H ] = 0. Hence the �rst two claims
of the lemma are proved.

Now take

Ut =
mX

j =1

eijt E j ; t 2 [� �; � ]:

Then Z �

� �
UtZU �

t
dt
2�

=
mX

j;k =1

E j ZE k

Z �

� �
ei ( j � k) t dt

2�
=

mX

j =1

E j ZE j = G:

SinceUt is unitary, we deduce that

kGk2 �
Z �

� �
kUtZU �

t k2

dt
2�

� k Zk2 :

Moreover writing
i [H; F ] = Z � G

we deduce that
k[H; F ]k2 � 2kZk2 :

Lemma 5.24. There is a self-adjoint operatorFn 2 B(C8n+4 ) such thatk[ ~Hn ; Fn ]k2 � 2 and



 T2

�
i [ ~Hn ; Fn ]; i [ ~Hn ; Fn ]

� 




1
� const logn � 5:

Proof. Take the operator Zn in B(C8n+4 ) given by Lemma 5.22. By Lemma 5.23, we may
choose self-adjoint operators Fn and Gn from B(C8n+4 ) such that

Zn = Gn + i [ ~Hn ; Fn ]; [Gn ; ~Hn ] = 0;

and
k[ ~Hn ; Fn ]k2 � 2 kZnk2 ; kGnk2 � k Znk2 : (5.36)

We compute

T2(Zn ; Zn ) = T2

�
Gn + i [ ~Hn ; Fn ]; Gn + i [ ~Hn ; Fn ]

�

= T2

�
Gn ; Gn

�

+ T2

�
Gn ; i [ ~Hn ; Fn ]

�

+ T2

�
i [ ~Hn ; Fn ]; Gn

�

+ T2

�
i [ ~Hn ; Fn ]; i [ ~Hn ; Fn ]

�
: (5.37)

We shall estimate the �rst three summands above. We apply Lemma 5.13 to the
function  0 and use the notation from the latter statement. The operator Gn commutes
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with ~Hn hence by the �rst part of Lemma 5.13,

T2(Gn ; Gn ) = c 0( ~Hn ) � G2
n :

Furthermore c 0(x) = 1 if x > 0, c 0(x) = � 1 if x < 0 and c 0(0) = 0 . Hence

kc 0( ~Hn )k1 � 1:

This implies that




 T2(Gn ; Gn )






1
� k c 0( ~Hn )k1 kGnk2

2 � k Znk2
2 � 1:

Next applying the second and third part of Lemma 5.13, we obtain

T2

�
i [ ~Hn ; Fn ]; Gn

�
= i �

~H n ; ~H n (� 1)
�

[ ~Hn ; Fn ]
�

� Gn

and
T2

�
Gn ; i [ ~Hn ; Fn ]

�
= i Gn � �

~H n ; ~H n (� 2)
�

[ ~Hn ; Fn ]
�

;

where

� 1(x0; x1) =  0(x0; x1; x1) and � 2(x0; x1) =  0(x0; x0; x1); x0; x1 2 R:

We have g0
0 = 2j � j hence if x0 6= x1, we have

(x0 � x1)� 1(x0; x1) =
g0(x0) � g0(x1)

x0 � x1
� g0

0(x1)

= 2
� Z 1

0

�
� tx 0 + (1 � t)x1

�
� dt � j x1j

�
:

Using the elementary inequality
�
� jzj � j z0j

�
� � j z � z0j, we deduce that j� 1(x0; x1)j � 1.

This implies that k� 1k1 � 1. Consequently






 �

~H n ; ~H n (� 1)
�

[ ~Hn ; Fn ]
�

� Gn








1
�






 �

~H n ; ~H n (� 1)
�

[ ~Hn ; Fn ]
� 







2
kGnk2

� k � 1k1 k[ ~Hn ; Fn ]k2kGnk2

� 2k� 1k1 kZnk2
2 � 2

by (5.36) and Lemma 5.22. Similarly, k� 2k1 � 1 and





 Gn � �

~H n ; ~H n (� 2)
�

[ ~Hn ; Fn ]
� 







1
� 2:

Combining the preceding estimates with (5.37), we arrive at

kT2(Zn ; Zn )k1 � 5 +





 T2

�
i [ ~Hn ; Fn ]; i [ ~Hn ; Fn ]

� 






1
:

Applying Lemma 5.22, we deduce the result.
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Lemma 5.25. There exists aC2-function g with a bounded second derivative and there exists
N 2 N such that for any sequencef � ngn� N of positive real numbers there is a sequence of
operators~Bn 2 B(C8n+4 ) such thatk ~Bnk2 � 4� n ; for all n � N; and

k�
~A n + ~B n ; ~A n ; ~A n (g[2])( ~Bn ; ~Bn )k1 � const� 2

n logn; n � N:

Proof. Changing the constant `const' in Lemma 5.24 by half of its value, we can change
the estimate from that statement into




 T2

�
i [ ~Hn ; Fn ]; i [ ~Hn ; Fn ]

� 




1
� const logn; n � N; (5.38)

for suf�ciently large N 2 N.
Take an arbitrary sequence f � ngn� N of positive real numbers, take the operator Fn

from Lemma 5.24 and denote
~Fn := � nFn :

For any t > 0, consider


 t ( ~Hn ) = eit ~Fn ~Hne� it ~Fn ; and Vn;t :=

 t ( ~Hn ) � ~Hn

t
:

On one hand, it follows from the identity d
dt

�
eit ~Fn

�
j t=0 = i ~Fn that

Vn;t �! i [ ~Fn ; ~Hn ]; t ! +0:

It therefore follows from Lemma 5.24 that there is t1 > 0 such that

kVn;t k2 � 2k[ ~Fn ; ~Hn ]k2 = 2� nk[Fn ; ~Hn ]k2 � 4� n (5.39)

for all t � t1: On the other hand,

~Hn + t Vn;t = 
 t ( ~Hn ) �! ~Hn ; t ! +0: (5.40)

Take a C2-function g such that g(x) = g0(x) = xjxj for jxj > 1 and g(j )(0) = 0 ;
j = 0; 1; 2: Denote

gt (x0; x1; x2) := g[2]
� x0

t
;
x1

t
;
x2

t

�
; t > 0; x0; x1; x2 2 R:

We claim that
lim

t ! +0
gt (x0; x1; x2) =  0(x0; x1; x2); x0; x1; x2 2 R: (5.41)

To prove this claim, we �rst observe, using the de�nition of g0, that

 0

� x0

t
;
x1

t
;
x2

t

�
=  0(x0; x1; x2); x0; x1; x2 2 R; t > 0: (5.42)

Next we note that for any x 2 R,

g
� x

t

�
= g0

� x
t

�
and g0

� x
t

�
= g0

0

� x
t

�
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for t > 0 small enough. For x = 0, this follows from the fact that by assumption,
g(0) = g0(0) = 0 . From these properties, we deduce that for any x0; x1 2 R,

g[1]
� x0

t
;
x1

t

�
= g[1]

0

� x0

t
;
x1

t

�

for t > 0 small enough.
In turn, this implies that if x0 6= x1 or x1 6= x2, then

g[2]
� x0

t
;
x1

t
;
x2

t

�
= g[2]

0

� x0

t
;
x1

t
;
x2

t

�

for t > 0 small enough. According to (5.42), this implies that

g[2]
� x0

t
;
x1

t
;
x2

t

�
=  0(x0; x1; x2)

for t > 0 small enough.
Consider now the case when x0 = x1 = x2. For any t > 0, we have

g[2]
� x0

t
;
x0

t
;
x0

t

�
=

1
2

g00
� x0

t

�
:

If x0 > 0, then g00
�

x0
t

�
= 2 for t > 0 small enough, and if x0 < 0, then g00

�
x0
t

�
= � 2 for

t > 0 small enough. Furthermore, g00(0) = 0 by assumption. Hence

g[2]
� x0

t
;
x0

t
;
x0

t

�
=  0(x0; x0; x0)

for t > 0 small enough. This completes the proof of (5.41).

Applying subsequently Lemma 5.11 with a = 1
t , property (5.40) and Lemma 5.12,

we obtain that

�
1
t

~H n + Vn;t ; 1
t

~H n ; 1
t

~H n (g[2])(Vn;t ; Vn;t ) = �
~H n + tVn;t ; ~H n ; ~H n (gt )(Vn;t ; Vn;t )

�! T2
�
i [ ~Fn ; ~Hn ]; i [ ~Fn ; ~Hn ]

�

when t ! +0. Furthermore,

T2
�
i [ ~Fn ; ~Hn ]; i [ ~Fn ; ~Hn ]

�
= � 2

nT2
�
i [Fn ; ~Hn ]; i [Fn ; ~Hn ]

�
:

By (5.38), there ist2 > 0 such that




 �

1
t

~H n + Vn;t ; 1
t

~H n ; 1
t

~H n (g[2])(Vn;t ; Vn;t )





1
� const� 2

n logn

for all t � t2: Taking tn = min f t1; t2g; and setting

~An :=
1
tn

~Hn ; ~Bn := Vn;t n ;
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we obtain that k ~Bnk2 � 4� n (see (5.39)) and

k�
~A n + ~B n ; ~A n ; ~A n (g[2])( ~Bn ; ~Bn )k1 � const� 2

n logn;

for all n � N .

5.3.3 A solution to Peller's problem for selfadjoint operators

The following theorem answers Peller's problem (5.5) in negative.

Theorem 5.26. There exists a functionf 2 C2(R) with a bounded second derivative, a self-
adjoint operatorA onH and a self-adjointB 2 S 2(H ) as above such that

f (A + B) � f (A) �
d
dt

�
f (A + tB )

� �
�
�
t=0

=2 S 1(H ):

Proof. Take the integer N 2 N, the operators ~An , ~Bn and the function g from Lemma
5.25, applied with the sequence f � ngn� N de�ned by

� n =
1

q
n log3=2 n

:

Let H n = `2
8n+4 and let H =

2
� n� N H n . Then let A = � 1

n= N An and B = � 1
n= N Bn be the

corresponding direct sums. Then the self-adjoint operator B belongs to S2(H ). Indeed,
it follows from (5.25) and Lemma 5.25 that

kBk2
2 =

1X

n= N

k ~Bnk2
2 � 16

1X

n= N

� 2
n =

1X

n= N

16

n log3=2 n
< 1 :

On the other hand, by (5.27) and Lemma 5.25, we have






 g(A + B)� g(A) �

d
dt

�
g(A + tB )

� �
�
�
t=0








1

=
1X

n= N






 g( ~An + ~Bn ) � g( ~An ) �

d
dt

�
g( ~A + t ~Bn )

� �
�
�
t=0








1

=
1X

n= N






 �

~A n + ~B n ; ~A n ; ~A n (g[2])
� ~Bn ; ~Bn

� 






1

� const
1X

n= N

� 2
n logn

= const
1X

n= N

1

n log1=2 n
= 1 :

Note that this theorem has been generalized in [DPT16]. The authors proved that
for any n 2 N, there exist a function f n 2 Cn (R), a separable Hilbert space H and
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selfadjoint operators A 2 B(H) and B 2 S n (H ) such that

f n (A + B) �
n� 1X

k=0

1
k!

dk

dtk

�
f (A + tB )

� �
�
�
t=0

=2 S 1(H ):

In this result, the operator A is bounded. For the casen = 2, the function f 2 is different
from the one considered in this section. Their starting point was a C1-function with
a bad behavior on B(`2). Therefore, they did not have to deal with the dif�culty of
the non-differentiability of the absolute value in 0. This is how they could obtain a
bounded operator A.

5.4 The unitary case

5.4.1 Preliminary results

In this subsection we will consider, for a �xed integer n, U1; U2; U3 2 B(`n
2 ) unitary

operators with the following spectral decompositions

Ui =
nX

k=1

� (i )
k P� ( i )

k
; i = 1; 2; 3:

(See Section4:2.)

We start with the following approximation lemma.

Lemma 5.27. Let U0; U1; U2 2 B(`n
2 ) be unitary operators and let(Fm )m be a sequence of

unitaries such thatFm ! U0 in the uniform operator topology asm ! 1 . Let  2 C(T3).
Then

� Fm ;U1 ;U2 ( ) �! � U0 ;U1 ;U2 ( ) asm ! 1 :

Proof. Let F 2 B(`n
2 ) be any unitary operator. Consider a spectral decomposition F =P n

i =1 � i P� i . Let X; Y 2 B(`n
2 ). According to (4:17), we have

� F;U1 ;U2 ( )(X; Y ) =
nX

i;j;k =1

 (� i ; � (1)
k ; � (2)

j )P� i XP � (1)
k

Y P� (2)
j

=
nX

j;k =1

� nX

i =1

 (� i ; � (1)
k ; � (2)

j )P� i

�
XP � (1)

k
Y P� (2)

j

=
nX

j;k =1

 (F; � (1)
k ; � (2)

j )XP � (1)
k

Y P� (2)
j

;

where  (F; � (1)
k ; � (2)

j ) is the operator obtained by applying the continuous functional

calculus of F to  (� ; � (1)
k ; � (2)

j ).
For any ' 2 C(T), the mapping F 7! ' (F ) is continuous from the set of unitaries of

B(`n
2 ) into B(`n

2 ). Hence for any j; k = 1; : : : ; n,

 (Fm ; � (1)
k ; � (2)

j ) �!  (U0; � (1)
k ; � (2)

j ) asm ! 1 :
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From the above computation we deduce that for any X; Y 2 B(`n
2 ),

� Fm ;U1 ;U2 ( )(X; Y ) �! � U0 ;U1 ;U2 ( )(X; Y ) asm ! 1 :

Since � Fm ;U1 ;U2 ( ) and � U0 ;U1 ;U2 ( ) act on a �nite dimensional space, this proves the
result.

Remark 5.28. Similarly for any unitary operatorsU0; U1 2 B(`n
2 ), for any sequence(Fm )m of

unitaries on`n
2 such thatFm ! U0 asm ! 1 , and for any� 2 C(T2), we have

� Fm ;U1 (� ) �! � U0 ;U1 (� ) asm ! 1 :

We now turn to perturbation theory. In Section 5:2 we de�ned the divided dif-
ferences for functions de�ned on R. A similar de�nition can be given for complex
function de�ned on a T as follow. Let f 2 C1(T). The divided difference of �rst order
is the function f [1] : T2 ! C de�ned by

f [1] (z0; z1) :=

(
f (z0 )� f (z1 )

z0 � z1
; if z0 6= z1

d
dz f (z) jz= z0 if z0 = z1

; z0; z1 2 T:

This is a continuous function, symmetric in the two variables (z0; z1).
Assume further that f 2 C2(T). Then the divided difference of the second order is

the function f [2] : T3 ! C de�ned by

f [2] (z0; z1; z2) :=

(
f [1] (z0 ;z1 )� f [1] (z1 ;z2 )

z0 � z2
; if z0 6= z2;

d
dz f [1](z; z1) jz= z0 ; if z0 = z2

; z0; z1; z2 2 T:

Note that f [2] is a continuous function, which is symmetric in the three variables (z0; z1; z2).

Let U0; U1 2 B(`n
2 ) be unitary operators and f 2 C1(T). Then

f (U0) � f (U1) = � U0 ;U1 (f [1])(U0 � U1): (5.43)

See [Pel05] and the references therein for a proof of this result. See also [CMPST16a,
Subsection 3.4] for an elementary argument.

Let Z 2 B(`n
2 ) be a self-adjoint operator and let U 2 B(`n

2 ) be a unitary operator.
Then the function t 7! f (eitZ U) is differentiable and

d
dt

�
f (eitZ U)

�
jt=0

= TU;U
f [1] (iZU ): (5.44)

Indeed by (5.43), we have

f (eitZ U) � f (U)
t

= TeitZ U;U
f [1]

� eitZ U � U
t

�

for any t 6= 0. Since d
dt

�
eitZ

�
jt=0

= iZ , the result follows from Remark 5.28.
The following proposition is the unitary version of Corollary 5:6. In the �nite di-

mensional case, we can give an elementary proof.
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Proposition 5.29. Let f 2 C2(T) and letU0; U1; U2 2 B(`n
2 ) be unitary operators. Then for

all X 2 B(`n
2 ) we have

� U0 ;U2 (f [1])(X ) � � U1 ;U2 (f [1])(X ) = � U0 ;U1 ;U2 (f [2])(U0 � U1; X ):

We �rst prove the following lemma.

Lemma 5.30. Let U0; U1; U2 2 B(Cn ) be unitary operators. LetI n be the identity operator in
B(Cn ): Then forj = 0; 1 we have

(i )
� U0 ;U1 ;U2 ( )(Uj ; X ) = � U0 ;U1 ;U2 ( j )( I n ; X ); X 2 B(Cn );

where
 j (x0; x1; x2) = x j  (x0; x1; x2); x0; x1; x2 2 R:

(ii )
� Uj ;U2 (� )(X ) = � U0 ;U1 ;U2 ( ~ j )( I n ; X ); X 2 B(Cn );

where
~ j (x0; x1; x2) = � (x j ; x2); x0; x1; x2 2 R:

Proof. Let us prove the assertion for j = 0 only. The proof for j = 1 is similar.
(i ): For X 2 B(Cn ) we have

� U0 ;U1 ;U2 ( )(U0; X ) =
nX

i;j;k =1

 (� (0)
i ; � (1)

k ; � (2)
j )P� (0)

i
U0P� (1)

k
XP � (2)

j

=
nX

i;j;k =1

 (� (0)
i ; � (1)

k ; � (2)
j )P� (0)

i

� nX

r =1

� (0)
r P� (0)

r

�
P� (1)

k
XP � (2)

j

=
nX

i;j;k =1

� (0)
i  (� (0)

i ; � (1)
k ; � (2)

j )P� (0)
i

I nP� (1)
k

XP � (2)
j

= � U0 ;U1 ;U2 ( 0)( I n ; X ):

(ii ): For X 2 B(Cn ) we have

� U0 ;U1 ;U2 ( ~ 0)( I n ; X ) =
nX

i;j;k =1

~ 0(� (0)
i ; � (1)

k ; � (2)
j )P� (0)

i
I nP� (1)

k
XP � (2)

j

=
nX

i;j =1

� (� (0)
i ; � (2)

j )P� (0)
i

� nX

k=1

P� (1)
k

�
XP � (2)

j

=
nX

i;j =1

� (� (0)
i ; � (2)

j )P� (0)
i

XP � (2)
j

= � U0 ;U2 (� )(X ):
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Proof of Proposition5:29. Let X 2 B(Cn ) and let  = f [2] and � = f [1]. Setting  0;  1; ~ 0; ~ 1

as in Lemma 5.30(i ); (ii ), we have

( 0 �  1)(x0; x1; x2) = x0f [2](x0; x1; x2) � x1f [2](x0; x1; x2)

= f [1](x0; x2) � f [1](x1; x2) (5.45)

= ( ~ 0 � ~ 1)(x0; x1; x2):

Therefore, by Lemma 5.30, we obtain

� U0 ;U1 ;U2 (f [2])(U0 � U1; X ) = � U0 ;U1 ;U2 (f [2])(U0; X ) � � U0 ;U1 ;U2 (f [2])(U1; X )
Lem 5:30(i )

= � U0 ;U1 ;U2 ( 0)( I n ; X ) � � U0 ;U1 ;U2 ( 1)( I n ; X )

= � U0 ;U1 ;U2 ( 0 �  1)( I n ; X )
(5.45)
= � U0 ;U1 ;U2 ( ~ 0 � ~ 1)( I n ; X )

= � U0 ;U1 ;U2 ( ~ 0)( I n ; X ) � � U0 ;U1 ;U2 ( ~ 1)( I n ; X )
Lem 5:30(ii )

= � U0 ;U2 (f [1])(X ) � � U1 ;U2 (f [1])(X ):

We conclude this section with a formula relating the second order perturbation
operator (5.7) with a combination of operator integrals.

Theorem 5.31. For any self-adjoint operatorZ 2 B(`n
2 ), for any unitary operatorU 2 B(`n

2 )
and for anyf 2 C2(T); we have

f (eiZ U) � f (U) �
d
dt

�
f (eitZ U)

�
jt=0

= � eiZ U;U;U (f [2])(eiZ U � U; iZU ) + � eiZ U;U (f [1])(eiZ U � U � iZU ): (5.46)

Proof. By (5.43) we have

f (eiZ U) � f (U) = � eiZ U;U (f [1])(eiZ U � U):

Combining with (5.44), we obtain

f (eiZ U) � f (U) �
d
dt

�
f (eitZ U)

�
jt=0

= � eiZ U;U (f [1])(eiZ U � U) � � U;U (f [1])( iZU ):

By linearity, the right-hand side can be written as

� eiZ U;U (f [1])(eiZ U � U � iZU ) +
�
� eiZ U;U (f [1])( iZU ) � � U;U (f [1])( iZU )

�
:

Applying Proposition 5.29, we obtain that

� eiZ U;U (f [1])( iZU ) � � U;U (f [1])( iZU ) = � eiZ U;U;U (f [2])(eiZ U � U; iZU );

and this yields the desired identity (5.46).
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5.4.2 Finite-dimensional constructions

In this section we establish various estimates concerning �nite dimensional operators.
The symbol `const' will stand for uniform positive constants, not depending on the
dimension.

The estimates we are going to establish in this section start from a result going back
to [AS05]. Let h : [� e� 1; e� 1] ! R be the function de�ned by

h(x) :=

8
<

:
jxj

�
log

�
�
� log jx j

e

�
�
�
� � 1

2
; x 6= 0

0; x = 0
:

Then h is a C1-function. We may extend it to a 2� -periodic C1-function, that we still
denote by h for convenience.

According to [AS05, Section 3], there exist a constant c > 0 and, for any n � 3,
self-adjoint operators Rn ; Dn 2 B(`2

2n ) such that

kRnDn � DnRnk1 � � (5.47)

and 


 Rnh(Dn ) � h(Dn )Rn






1
� c log(n)

1
2 : (5.48)

By changing the dimension from 2n to 2n + 1 and adding a zero on the diagonal, one
may obtain the above results for some self-adjoint operators Rn ; Dn 2 B(`2

2n+1 ) satisfy-
ing the additional property

0 2 � (Dn ): (5.49)

We shall derive the following result.

Theorem 5.32. For anyn � 3, there exist self-adjoint operatorsAn ; Bn 2 B(`2
2n+1 ) such that

Bn 6= 0, 0 2 � (An ),




 h(An + Bn ) � h(An )






1
� const log(n)

1
2 kBnk1 ;

and the operatorsAn and An + Bn are conjugate. That is, there exists a unitary operator
Sn 2 B(`2

2n+1 ) such thatAn + Bn = S� 1
n AnSn .

Proof. Let us �rst observe that for any N � 1 and any operators X; Y 2 B(`2
N ),

eitX Y � Y eitX

t
�! i (XY � Y X) as t ! 0: (5.50)

Indeed, this follows from the fact that d
dt (e

itX ) jt=0 = iX .
Consider Dn and Rn satisfying (5.47), (5.48) and (5.49). For anyt > 0, de�ne

Bn;t := eitR n Dne� itR n � Dn :

On the one hand, applying (5.50) with X = Rn and Y = Dn , we obtain that

1
t
kBn;t k1 =

1
t




 eitR n Dne� itR n � Dn






1

=
1
t




 eitR n Dn � DneitR n






1
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�! k RnDn � DnRnk1

ast ! 0.
On the other hand, using the identity

h(eitR n Dne� itR n ) = eitR n h(Dn )e� itR n

and applying (5.50) with X = Rn and Y = h(Dn ), we have

1
t




 h(Dn + Bn;t ) � h(Dn )






1
=

1
t




 eitR n h(Dn )e� itR n � h(Dn )






1

=
1
t




 eitR n h(Dn ) � h(Dn )eitR n






1

�! k Rnh(Dn ) � h(Dn )Rnk1

ast ! 0.
Therefore, there existst > 0 such that

t
2

kRnDn � DnRnk1 � k Bn;t k1 � 2�t (5.51)

and



 h(Dn + Bn;t ) � h(Dn )






1
� c

log(n)
1
2

2
t:

The above two estimates lead to



 h(Dn + Bn;t ) � h(Dn )






1
�

c
4�

log(n)
1
2 kBn;t k1 :

Furthermore property (5.48) implies that Dn and Rn do not commute. Hence the �rst
inequality in (5.51) ensures that Bn;t 6= 0.

To get the result, we set An = Dn and Bn = Bn;t . According to the de�nition of Bn;t ,
the operators An and An + Bn are conjugate. All other properties of the statement of
the theorem follow from the above estimates and (5.49).

Let g 2 C1(T) be the unique function satisfying

g(ei� ) = h(� ); � 2 R: (5.52)

The following theorem translates the preceding result into the setting of unitary oper-
ators.

Theorem 5.33. For anyn � 3, there exist unitary operatorsHn ; K n 2 B(`2
2n+1 ) such that

Hn 6= K n ; � (Hn ) = � (K n ); 1 2 � (Hn );

and
kg(K n ) � g(Hn )k1 � const log(n)

1
2 kK n � Hnk1 : (5.53)

Proof. Given any n � 3, let An ; Bn be the operators from Theorem 5.32, and set

Hn = eiA n and K n = ei (A n + B n ) :
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These are unitary operators. SinceAn and An + Bn are conjugate, they have the same
spectrum hence in turn, � (Hn ) = � (K n ). Moreover 1 2 � (Hn ) since0 2 � (An ). SinceAn

and An + Bn are conjugate but different, their sets of spectral projections are different.
This implies that Hn 6= K n .

By construction we have

g(Hn ) = h(An ) and g(K n ) = h(An + Bn ):

Therefore, by Theorem 5.32, we have

kg(K n ) � g(Hn )k1 � const log(n)
1
2 kBnk1 :

Moreover
kK n � Hnk1 =




 ei (A n + B n ) � eiA n






1
� k Bnk1

by [PS11, Lemma 8]. This yields the result.

Let f : T ! C be de�ned by

f (z) = ( z � 1)g(z); z 2 T: (5.54)

It turns out that f 2 C2(T). This follows from the de�nition of h, which is C2 on
(� e� 1; e� 1) n f 0g, and the fact that limx! 0 xh00(x) = 0 . Details are left to the reader.

We also de�ne an auxiliary function &: T3 ! C given by

&(z0; z1; z2) = z1f [2](z0; z1; z2): (5.55)

Lemma 5.34. For anyz0; z2 2 T, we have

&(z0; 1; z2) = g[1](z0; z2):

Proof. By the de�nition of &;and since z1 = 1, it is enough to prove that

f [2](z0; 1; z2) = g[1](z0; z2); z0; z2 2 T:

We have to consider several different cases. Let us �rst assume that z0 6= z2: If z0 6= 1
and z2 6= 1; then we have

f [2](z0; 1; z2) =
f [1](z0; 1) � f [1](1; z2)

z0 � z2
=

f (z0 )� f (1)
z0 � 1 � f (1) � f (z2 )

1� z2

z0 � z2

=
g(z0) � g(z2)

z0 � z2
= g[1](z0; z2):

If z0 = 1 and z2 6= 1; then using d
dz f (z) jz=1 = g(1) = h(0) = 0 , we have

f [2](1; 1; z2) =
f [1](1; 1) � f [1](1; z2)

1 � z2
=

d
dz f (z) jz=1 � f (1) � f (z2 )

1� z2

1 � z2

=
� g(z2)
1 � z2

= g[1](1; z2):
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The argument is similar, when z0 6= 1 and z2 = 1:
Assume now that z0 = z2: Using the fact that f [1](z;1) = g(z) for any z, we obtain

in this case that

f [2](z0; 1; z0) =
d
dz

f [1](z;1)jz= z0 =
d
dz

g(z) jz= z0 = g[1](z0; z0):

Corollary 5.35. For anyn � 3, there exist unitary operatorsHn ; K n 2 B(`2
2n+1 ) such that

� (Hn ) = � (K n );

and 


 � K n ;H n ;H n (&) : S2

2n+1 � S 2
2n+1 ! S 1

2n+1




 � const log(n)

1
2 : (5.56)

Proof. Take Hn ; K n as in Theorem 5.33; these unitary operators have the same spec-
trum. Let f � kg2n+1

k=1 be the sequence of eigenvalues of the operatorHn , counted with
multiplicity. Since 1 2 � (Hn ), we may assume that � 1 = 1. According to (4:19) and
Theorem 3.4, we have




 � K n ;H n ;H n (&) : S2

2n+1 � S 2
2n+1 ! S 1

2n+1




 = max

1� k� 2n+1




 � K n ;H n (&k) : S1

2n+1 ! S 1
2n+1




 ;

where, for any k = 1; : : : ; 2n + 1, we set

&k(z0; z1) := &(z0; � k ; z1); z0; z1 2 T:

In particular, the inequality



 � K n ;H n ;H n (&) : S2

2n+1 � S 2
2n+1 ! S 1

2n+1




 �




 � K n ;H n (&1) : S1

2n+1 ! S 1
2n+1






holds. From Lemma 5.34, we have that

&1(z0; z1) = &(z0; 1; z1) = g[1](z0; z1):

Therefore, we obtain



 � K n ;H n ;H n (&) : S2

2n+1 � S 2
2n+1 ! S 1

2n+1




 �




 � K n ;H n (g[1]) : S1

2n+1 ! S 1
2n+1




 : (5.57)

SinceHn 6= K n , we derive




 � K n ;H n ;H n (&) : S2

2n+1 � S 2
2n+1 ! S 1

2n+1




 �




 � K n ;H n (g[1])(K n � Hn )






1

kK n � Hnk1
:

From the identity (5.43), we have � K n ;H n (g[1])(K n � Hn ) = g(K n ) � g(Hn ). Hence the
above inequality means that




 � K n ;H n ;H n (&) : S2

2n+1 � S 2
2n+1 ! S 1

2n+1




 �

kg(K n ) � g(Hn )k1

kK n � Hnk1
:

Applying (5.53) we obtain the desired estimate.
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We are now ready to prove the �nal estimate of this section.

Corollary 5.36. For any n � 3, there exist a self-adjoint operatorWn 2 B(`2
8n+4 ) with

kWnk2 � 1 and a unitary operatorUn 2 B(`2
8n+4 ) such that






 � Un ;Un ;Un (f [2])(WnUn ; WnUn )








1
� const log(n)

1
2 : (5.58)

Proof. We take Hn and K n given by Corollary 5.35. Then we consider

Vn :=
�

K n 0
0 Hn

�
and then Un :=

�
Vn 0
0 Vn

�
: (5.59)

Then Vn is a unitary operator acting on `2
4n+2 and Un is a unitary operator acting on

`2
8n+4 .

We claim that there exists a self-adjoint operator Wn 2 B(`2
8n+4 ) such that kWnk2 � 1

and 


 � Un ;Un ;Un (&)(Wn ; Wn )






1
� const log(n)

1
2 :

Indeed, using (5.56) and the fact that Hn and K n have the same sprectrum, this follows
from the proofs of [CMPST16a, Lemmas 22-25]. Indeed the arguments there can be
used word for word in the present case. It therefore suf�ces to show




 � Un ;Un ;Un (&)(Wn ; Wn )






1
=




 � Un ;Un ;Un (f [2])(WnUn ; WnUn )






1
: (5.60)

For that purpose we set N = 8n + 4 and consider a spectral decomposition Un =P N
i =1 zi Pi of Un . Then by (4:17) we have

� Un ;Un ;Un (f [2])(WnUn ; WnUn ) =
NX

i;j;k =1

f [2](zi ; zk ; zj )Pi (WnUn )Pk(WnUn )Pj

=
NX

i;j;k =1

f [2](zi ; zk ; zj )Pi Wn

� NX

l=1

zlPl

�
PkWnPj Un

=
NX

i;j;k =1

zk f [2](zi ; zk ; zj )Pi WnPkWnPj Un

(5.55)
=

NX

i;j;k =1

&(zi ; zk ; zj )Pi WnPkWnPj Un

= � Un ;Un ;Un (&)(Wn ; Wn )Un :

SinceUn is a unitary, this equality implies (5.60), which completes the proof.

5.4.3 A solution to Peller's problem for unitary operators

In this section, we answer Peller's question raised in [Pel05, Problem 1] in the negative.
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Theorem 5.37. There exist a functionf 2 C2(T), a separable Hilbert spaceH, a unitary
operatorU 2 B(H) and a self-adjoint operatorZ 2 S 2(H ) such that

f
�
eiZ U

�
� f (U) �

d
dt

�
f (eitZ U)

�
jt=0

=2 S 1(H ): (5.61)

In the above statement, d
dt

�
f (eitZ U)

�
jt=0

denotes the derivative of this function at
t = 0. We refer to [Pel05, (2.7)] and the references therein for the facts that for any
f 2 C1(T), for any unitary operator U 2 B(H) and any self-adjoint operator Z 2 S 2(H ),
the difference operator f

�
eiZ U

�
� f (U) belongs to S2(H ) and the function t 7! f (eitZ U)

is differentiable from R into S2(H ). Therefore, the operator in (5.61) belongs toS2(H ).
Theorem 5.37 will be proved with the function f given by (5.54). We will combine

a direct sum argument and the following lemma, whose proof relies on Corollary 5.36.

Lemma 5.38. For anyn � 1, there exist a non zero self-adjoint operatorZn 2 B(`2
8n+4 ) and a

unitary operatorUn 2 B(`2
8n+4 ), such that

1X

n=1

kZnk2
2 < 1 ; (5.62)

and

lim
n!1






 f (eiZ n Un ) � f (Un ) � d

dt

�
f (eitZ n Un )

�
jt=0








1

kZnk2
2

= 1 : (5.63)

Proof. We �x n � 3 and we take Wn and Un given by Corollary 5.36. Note that chang-
ing Wn into kWnk� 1

2 Wn , we may (and do) assume that kWnk2 = 1. We consider the
sequence

Wm;n =
1
m

Wn ; m � 1;

and we set

Rm;n := f (eiW m;n Un ) � f (Un ) �
d
dt

�
f (eitW m;n Un )

�
jt=0

:

By Theorem 5.31 we have

m2Rm;n = � eiW m;n Un ;Un ;Un (f [2])
�
m(eiW m;n Un � Un ); iWnUn

�

+ � eiW m;n Un ;Un (f [1])
�
m2(eiW m;n Un � Un � iWm;n Un )

�
: (5.64)

Note that
m

�
eiW m;n � I n

�
�! iWn asm ! 1 :

Hence by Lemma 5.27, we have

� eiW m;n Un ;Un ;Un (f [2])
�
m(eiW m;n Un � Un ); iWnUn

�
�! � Un ;Un ;Un (f [2])( iWnUn ; iWnUn )

asm ! 1 : This result and Corollary 5.36 imply that for m large enough, we have





 � eiW m;n Un ;Un ;Un (f [2])

�
m(eiW m;n Un � Un ); iWnUn

� 






1
� const log(n)

1
2 : (5.65)
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We now turn to the analysis of the second term in the right hand side of (5.64). Since
f 2 C2(T), there exists a constantK > 0 (only depending on f and not on either n or
the operators Un and Wm;n ) such that




 � eiW m;n Un ;Un (f [1]) : S1

8n+4 ! S 1
8n+4




 � K:

This follows from [BS73] (see also [Pel85]).
Now observe that

m2
�
eiW m;n � I n � iWm;n

�
�!

W 2
n

2
asm ! 1 :

Hence we have





 � eiW m;n Un ;Un (f [1])

�
m2(eiW m;n Un � Un � iWm;n Un )

� 






1
� K kW 2

n k1 = K kWnk2
2 (5.66)

for m large enough.
Combining (5.65) and (5.66), we deduce from the identity (5.64) the existence of an

integer m � 1 for which we have an estimate

m2kRm;n k1 � const log(n)
1
2 : (5.67)

We may assume that m � n, which ensures that

kWm;n k2 �
1
n

:

Then we set Zn = Wm;n . The preceding inequality implies that
P

n kZnk2
2 < 1 . Since

kWnk2 = 1, we have kZnk2 = 1
m hence the estimate (5.67) yields (5.63).

Proof of Theorem 5.37.We apply Lemma 5.38 above. We set

� n :=



 f (eiZ n Un ) � f (Un ) �

d
dt

�
f (eitZ n Un )

�
jt=0






1

for any n � 1. Since
�

� nkZnk� 2
2

	 1

n=1
is an unbounded sequence, by (5.63), there exists a

positive sequence(� n )n� 1 such that

1X

n=1

� n < 1 and
1X

n=1

� n � nkZnk� 2
2 = 1 : (5.68)

Set
Nn =

�
� nkZnk� 2

2

�
+ 1;

where [ � ] denotes the integer part of a real number. We have both

NnkZnk2
2 � � n + kZnk2

2 and Nn � � nkZnk� 2
2 :
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Hence it follows from (5.68), (5.62) and (5.63) that

1X

n=1

NnkZnk2
2 < 1 and

1X

n=1

Nn � n = 1 :

We let H n = `2
Nn

(`2
8n+4 ) and we let ~Zn (resp. ~Un ) be the element of B(H n ) obtained

as the direct sum of Nn copies of Zn (resp. Un ). Then ~Zn is a self-adjoint operator and
k ~Znk2

2 = NnkZnk2
2. Consequently,

1X

n=1

k ~Znk2
2 < 1 : (5.69)

Likewise ~Un is a unitary operator and we have




 f (ei ~Zn ~Un ) � f ( ~Un ) �

d
dt

�
f (eit ~Zn ~Un )

�
jt=0






1

= Nn




 f (eiZ n Un ) � f (Un ) �

d
dt

�
f (eitZ n Un )

�
jt=0






1
= Nn � n :

Hence
1X

n=1




 f (ei ~Zn ~Un ) � f ( ~Un ) �

d
dt

�
f (eit ~Zn ~Un )

�
jt=0






1
= 1 :

We �nally consider the direct sum

H =
2
� n� 1H n :

We let Z be the direct sum of the ~Zn , de�ned by Z(� ) = f ~Zn (� n )g1
n=1 for any � = f � ng1

n=1
in H . Property (5.69) ensures thatZ is well-de�ned and belongs to S2(H ), with kZk2

2 =P 1
n=1 k ~Znk2

2. Likewise we let U be the direct sum of the ~Un . This is a unitary operator
and d

dt

�
f (eitZ U)

�
jt=0

is the direct sum of the d
dt

�
f (eit ~Zn ~Un )

�
jt=0

. Therefore




 f (eiZ U) � f (U) �

d
dt

�
f (eitZ U)

�
jt=0






1

=
1X

n=1




 f (ei ~Zn ~Un ) � f ( ~Un ) �

d
dt

�
f (eit ~Zn ~Un )

�
jt=0






1
:

Since this sum is in�nite, we obtain the assertion (5.61).

Just like for the selfadjoint case, the theorem above has been generalized in [DPT16]
where the authors consructed a counterexample for a n� th order version of Peller's
problem.
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5.5 Perspectives

in Section 5:2, we studied the differentiability in S2(H ). Taking into account the dis-
cussion in Section4:5, it is interesting to study the Sp� differentiability of the mapping

t 2 R 7! f (A + tB ) � f (A)

when A and B are selfadjoint operators with B 2 S p and f 2 Cn (R) with possibly fur-
ther assumptions such as the boundedness of its derivatives. If the results are positive,
one can hope to obtain a formula for the Taylor remainder like in Theorem 5:1. We
refer to [EKS12] for some existing results about the Sp� differentiability.

In Section 5:4 we gave some formulas for the differentiability in the case of unitary
operators in the �nite-dimensional case. The results obtained in Section 5:2 for selfad-
joint operators can be also studied in the case of unitary operators. Namely, if U is a
unitary operator on some Hilbert space H and if Z 2 S 2(H ) is selfadjoint, then one can
study the differentiability of

t 2 R 7! f (eitZ U) � f (U) 2 S 2(H )

for f 2 Cn (T). We refer e.g. to [DPT16] for some results in this direction.
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