.. .. Contexte-bathymétrique, , vol.87

, La production carbonatée sur les plates-formes

.. .. Dépôts,

B. La-pente-occidentale-du-grand-banc-des-bahamas and .. .. ,

. .. Données-de-puits,

.. .. Cadre-stratigraphique,

. .. Modèle-de-lithofaciès, Pliocène : séquences f et e (5,3 -2,6 Ma), vol.100

, Quaternaire : sequences c, b et a (1,7-0 Ma)

C. La-pente-d'exuma, . Sound, and .. .. Le-canyon-de-san-salvador,

. Ii, . Système, . Le-canyon, and .. .. De-san-salvador,

. .. Gravitaires, 126 1. Sequence d (2.6-1.7 Ma), D. Classification et contrôles des processus de transferts

. Ii and .. .. Hydro-mechanical-parameters,

, 216 I. Pore-fluid overpressure development: sea-level and platform piezometry

V. Passive and .. .. ,

F. .. Discussion,

. Ii and .. .. Uncertainties,

.. .. Margin-failure, , p.228

H. Annexe and A. .. ,

. Kenter, SSB F and E relate to the sea-level falls respectively at the end of the Messinian (5.3 Ma, 1997.

. Eberli, 3-2.6 Ma) correspond to the Pliocene deposition in a general transgressive context of pelagic ooze accumulation on the slope from well 1007 to Clino well (WF J and G), and in deep shelf environment in the Unda well, 1997.

, sont les systèmes isolés aisément comparables en terme de système de production et de structuration

. Wilber, Un tel régime se surimpose en réalité à la géométrie de la plate-forme pendant 95 % du Quaternaire. A savoir, celle d'une île émergée entourée d'une ceinture de production marginale plus ou moins étroite, à dominante squelettique et grossière, probablement cimentée, ou simplement d'un escarpement érosif pendant les maxima de chute eustatique, 1990.

, Concernant le régime quaternaire, il est d'ailleurs important de noter plusieurs points

, Ce dernier phénomène est associé des géomètries aggradantes. La progradation apparaît en réalité d'abord possible par la combinaison d'une production in-situ et d'un espace d'accommodation assez réduit pour être comblé. Un mécanisme de progradation strictement identique pourrait fonctionner sur la pente orientale, si celle-ci n'était pas, pour des raisons d'héritages structuraux, beaucoup plus inclinée

. Harris, Les données recueillies à l'actuel montrent en réalité une énergie hydraulique plus importante sur les marges sous-le-vent que sur les marges au-vent, 1990.

. Harris, , 2015.

, avec un profil descendant régulièrement depuis le bord oriental jusqu'au bord occidental, sous-le-vent (Figure VII 2). La zone orientale semble alors correspondre à la rampe interne, mais en réalité celle-ci s'interrompt brutalement, dans la direction interne? sur un escarpement de 2000 m de dénivelé (!), d'une stabilité temporelle remarquable. Cette rampe est ainsi adossée « au vide », surmonté seulement par une fabrique très étroite sur la marge orientale. Une telle configuration pose la question de l'influence d'un héritage

. Enfin, /. Du-système-profond-vallée-d'exuma, and . San, Si l'on imagine une fosse d'Exuma privée de cet exutoire, il est probable qu'elle aurait connu une accumulation plus importante de sédiments en pied de pente. Il est difficile d'établir que cette configuration aurait abouti à des pentes plus douces pour le bassin d'Exuma, voire à son comblement, mais à l'inverse il est certain que l'existence de l'exutoire de la vallée d'Exuma contribue à réduire l'accumulation de sédiment en pied de pente et à entretenir leur relief, remarquablement stable depuis 15 Million d'années environ. Eberli & Ginsburg (1987) ont établi la possibilité du comblement d'une dépression de dimensions similaires au sein du GBB à l'OligoMiocène. Ce comblement s'explique notamment par les apports boueux du paléo-banc d'Andros situé à l'Est, sous l'île du même nom. Cependant de tels apports existent aussi dans Exuma Sound et Tongue of the Ocean, à partir des plates-formes respectivement d, Salvador montre l'importance absolument capitale de l'héritage topographique dans la capacité de transfert gravitaire du système

. Wunsch, Pourtant la pente occidentale du GBB connaît une accrétion importante de sédiments. Cette accrétion est clairement contrôlée par le régime de courants, et est associée à des zones locales d'érosion et des zones complémentaires de construction. Le même résultat s'observe sur l, Il est difficile d'affirmer avec certitude que les pentes d'Exuma Sound (et de Tongue of the Ocean) sont associées à des héritages tectoniques, 2015.

. Tournadour, Les zones de bypass développées sur ces pentes dominées par les courants sont compensées par de zones d'accumulation. Ces morphologies d'accumulation sont parfois le lieu privilégié d'instabilités gravitaires, notamment pour les géométries convexes de plastered drift, 2015.

. Miramontes, 2018) mais elles sont entretenues et maintenues par comblement sous l'action des courants. L'activité des courants de contour est donc un facteur de contrôle géométrique du pré-conditionnement des accumulations de pente. Mais elle possède une influence secondaire

M. M. Alam, M. K. Borre, I. L. Fabricius, K. Hedegaard, B. Røgen et al., Biot's coefficient as an indicator of strength and porosity reduction : Calcareous sediments from Kerguelen Plateau, Journal of Petroleum Science and Engineering, vol.70, pp.282-297, 2010.

P. A. Allen and J. Allen, Principles and Application to Petroleum Play Assessment, 2005.

F. S. Anselmetti, G. P. Eberli, and Z. D. Ding, From the Great Bahama Bank into the Straits of Florida: A margin architecture controlled by sea-level fluctuations and ocean current, Bulletin of the Geological Society of America, vol.112, issue.6, pp.829-844, 2000.

M. M. Arienzo, P. K. Swart, K. Broad, A. C. Clement, A. Pourmand et al., Multiproxy evidence of millennial climate variability from multiple Bahamian speleothems, Earth and Planetary Science Letters, vol.161, pp.377-386, 2015.

H. Arnaud, Surfaces d'ablation sous-marines et sédiments barrémo-bédouliens remaniés par gravité du Barrémien au Cénomanien entre le Vercors et le Dévoluy, vol.55, pp.5-21, 1979.

H. Arnaud, De la plate-forme urgonienne au bassin vocontien : le Barrémo-Bédoulien des Alpes occidentales entre Isère et Büech (Vercors méridional, Diois oriental et Dévoluy), 1981.

M. Aurell, B. Badenas, D. W. Bosence, and D. A. Waltham, Carbonate production and offshore transport on a Late Jurassic carbonate ramp (Kimmeridgian, Iberian basin, NE Spain): evidence from outcrops and computer modelling, Special Publications, vol.149, issue.1, pp.137-161, 1998.

M. Aurell, D. F. Mcneill, T. Guyomard, and P. Kindler, Signature of High-Frequency Sea-Level Fluctuations in Shallow Carbonate Platforms, Journal of Sedimentary Research, vol.65, issue.1b, pp.170-182, 1995.

J. A. Austin, . Jr, and W. Schlager, Proceedings of the Oceanic Drilling Program, vol.101, 1986.

P. Basin, M. Escarpe, U. S. Mexico, . C-&-c-reservoirs, F. Berra et al., Large-scale progradation, demise and rebirth of a high-relief carbonate platform, Sedimentary Geology, 2005.

F. Berra, A. Lanfranchi, P. L. Smart, F. F. Whitaker, and P. Ronchi, Forward modelling of carbonate platforms: Sedimentological and diagenetic constraints from an application to a flat-topped greenhouse platform, vol.78, pp.636-655, 2016.

J. Berthelon, X. Yuan, A. Bouziat, P. Souloumiac, M. Pubellier et al., Mechanical restoration of gravity instabilities in the Brunei margin, Journal of Structural Geology, vol.111, pp.148-162, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01912067

C. Betzler, C. Hübscher, S. Lindhorst, T. Lüdmann, J. J. Reijmer et al., Lowstand wedges in carbonate platform slopes, The Depositional Record, vol.2, pp.196-207, 2016.

C. Betzler, S. Lindhorst, G. P. Eberli, T. Lüdmann, J. Möbius et al., Periplatform drift: The combined result of contour current and off-bank transport along carbonate platforms, Geology, vol.42, issue.10, pp.871-874, 2014.

C. Betzler, J. J. Reijmer, K. Bernet, G. P. Eberli, and F. S. Anselmetti, Sedimentary patterns and geometries of the Bahamian outer carbonate ramp (Miocene-Lower Pliocene, Great Bahama Bank), Sedimentology, vol.46, issue.6, pp.1127-1143, 1999.

J. R. Borgomano, The Upper Cretaceous carbonates of the Gargano-Murge region, southern Italy: A model of platform-to-basin transition, AAPG Bulletin, vol.84, issue.10, pp.1561-1588, 2000.

J. Bouchezy, Y. Caristan, and C. Mariotti, Stabilité des pentes sous-marines de l'atoll de Mururoa sous sollicitations dynamiques. Revue française de géotechnique w781 er trimestre, 1997.

A. Bouma, Turbidites. Developments in Sedimentology, vol.3, pp.247-256, 1964.

M. E. Brookfield, I. Blechschmidt, R. Hannigan, M. Coniglio, B. Simonson et al., Sedimentology and geochemistry of extensive very coarse deepwater submarine fan sediments in the Middle Jurassic of Oman, emplaced by giant tsunami triggered by submarine mass flows, Sedimentary Geology, vol.192, issue.1-2, pp.75-98, 2006.

A. F. Budd and C. M. Manfrino, Coral assemblages and reef environments in the Bahamas Drilling Project Cores, Subsurface Geology of a Prograding Carbonate Platform Margin, Great Bahama Bank: Results of the Bahamas Drilling Project, vol.70, pp.41-60, 2001.

J. Busson, P. Joseph, T. Mulder, V. Teles, J. Borgomano et al., High-resolution stratigraphic forward modeling of a Quaternary carbonate margin: controls and dynamic of the progradation, Sedimentary Geology Accepted

C. Caldarelli and M. Robinson, New Insights into the Mesozoic Tectono-Stratigraphic Evolution of the Platform to Basin Transition in the Southern Adriatic Sea Area : Searching for Stratigraphic Traps *, p.50797, 2013.

P. Callot, T. Sempere, F. Odonne, and E. Robert, Giant submarine collapse of a carbonate platform at the Turonian-Coniacian transition: the Ayabacas Formation, southern Peru, Basin Research, vol.20, pp.333-357, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00325405

A. L. Cameselle, R. ;. Urgeles, . Nw-mediterranean, . Barcelona, M. Canals et al., Slope failure dynamics and impacts from seafloor and shallow sub-seafloor geophysical data: Case studies from the COSTA project, Marine Geology, vol.213, issue.1-4, pp.9-72, 2004.

, Seismic Hazard Maps: The Bahamas and the Turks and Caicos Islands, Caribbean Disaster Mitigation Project, 2001.

S. D. Carriere, K. Chalikakis, C. Danquigny, H. Davi, N. Mazzilli et al., The role of porous matrix in water flow regulation within a karst unsaturated zone: an integrated hydrogeophysical approach, Kohout geothermal convection. Geofluids, vol.4, issue.1, pp.40-60, 1985.
URL : https://hal.archives-ouvertes.fr/hal-01403396

A. Cattaneo, V. Hassoun, C. Larroque, N. Corradi, and F. Fanucci, Morphology, distribution and origin of recent submarine landslides of the Ligurian Margin (North-western Mediterranean): some insights into geohazard assessmentSe´bastien Migeon, Mar Geophys Res, vol.32, pp.225-243, 2011.

O. Catuneanu, Sequence stratigraphy of clastic systems: Concepts, merits, and pitfalls, Journal of African Earth Sciences, vol.35, issue.1, pp.1-43, 2002.

O. Catuneanu, W. E. Galloway, C. G. Kendall, A. D. Miall, H. W. Posamentier et al., Sequence Stratigraphy: Methodology and Nomenclature. Newsletters on Stratigraphy, 2011.

O. ;. Catuneanu, V. Abreu, J. P. Bhattacharya, M. D. Blum, R. W. Dalrymple et al., Towards the Standardization of Sequence Stratigraphy, 2009.

L. Chabaud, E. Ducassou, E. Tournadour, T. Mulder, J. J. Reijmer et al., Sedimentary processes determining the modern carbonate periplatform drift of Little Bahama Bank, Marine Geology, vol.378, pp.213-229, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01765479

Z. Chen, X. Wang, C. Haberfield, J. H. Yin, and Y. Wang, A three-dimensionnal slope stability analysis method using the upper bound theorem Part I : theory and methods, International Journal of Rock Mechanics & Mining Science, vol.38, pp.369-378, 2001.

R. Colacicchi and A. Baldanza, Carbonate turbidites in a mesozoic pelagic basin: Scaglia formation, apennines-comparison with siliciclastic depositional models, Sedimentary Geology, vol.48, issue.1-2, pp.81-105, 1986.

D. J. Cooper, A longitudinal carbonate fan from the Jurassic of the Oman Mountains: the Guweyza limestone formation of the Hamrat ad Duru, Sedimentary Geology, pp.253-275, 1989.

J. W. Counts, S. J. Jorry, E. Leroux, E. Miramontes, and G. Jouet, Sedimentation adjacent to atolls and volcano-cored carbonate platforms in the Mozambique Channel, 2018.

, Marine Geology

T. Courjault, D. Grosheny, S. Ferry, and J. Sausse, Detailed anatomy of a deep-water carbonate breccia lobe (Upper Jurassic, French subalpine basin), Sedimentary Geology, vol.238, issue.1-2, pp.156-171, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00662743

P. D. Crevello and W. Schlager, Carbonate Debris Sheets and Turbidites, Journal of Sedimentary Research, vol.50, issue.4, pp.1121-1147, 1980.

I. Csato, O. Catuneanu, and D. Granjeon, Millennial-Scale Sequence Stratigraphy: Numerical Simulation With Dionisos, Journal of Sedimentary Research, vol.84, issue.5, pp.394-406, 2014.

A. J. Dale, Crustal type, tectonic origin, and petroleum potential of the Bahamas Carbonate Platform, 2013.

H. P. Darcy, 1856 Les Fontaines publiques de la Ville de Dijon

D. Kruijf, M. De-boer, R. A. Kranenburg, J. Reijmer, J. J. Slootman et al., Experiments on the hydrodynamic behaviour of settling carbonate grains: Implications for calciturbidites, Geophysical Research Abstracts, vol.20, pp.2018-1173, 2018.

B. Doligez, F. Bessis, F. Burrus, P. Ungerer, and P. Y. Chenet, Integrated numerical simulation of the sediment heat transfer, hydrocarbon formation and fluid migration in a sedimentary basin: the Themis Model, Thermal modelling in sedimentary basins, pp.173-195, 1986.

T. H. Donders, H. J. De-boer, and W. Finsinger, Impact of the Atlantic Warm Pool on precipitationand temperature in Florida during North Atlantic cold spells, Clim Dyn, vol.36, issue.1-2, pp.109-118, 2011.

A. W. Droxler, C. H. Bruce, W. W. Sager, D. H. Watkins, J. A. Austin et al., Pliocene-Pleistocene variations in aragonite content and planktonic oxygen-isotope record in Bahamian periplatform ooze, hole 633A, Proceedings of the Ocean Drilling Program, Scientific results, vol.16, pp.221-244, 1988.

D. C. Drucker and W. Prager, Soil mechanics and plastic analysis or limit design, Quarterly of applied mathematics, vol.10, issue.2, pp.157-165, 1952.

P. A. Drzewiecki and J. A. Simó, Depositional processes, triggering mechanisms and sediment composition of carbonate gravity flow deposits: Examples from the late cretaceous of the SouthCentral Pyrenees, Spain. Sedimentary Geology, vol.146, 2002.

B. Dugan and J. Stigall, Origin of Overpressure and Slope Failure in the Ursa Region, Submarine Mass Movements and Their Consequences, vol.28, pp.167-178, 2007.

G. P. Eberli, The record of Neogene sea-level changes in the prograding carbonates along the Bahamas transect -Leg 166 synthesis, Proceedings of the Ocean Drilling Program, vol.166, p.16, 2000.

G. P. Eberli and R. N. Ginsburg, Segmentation and coalescence of Cenozoic carbonate platforms, northwestern Great Bahama Bank, Geology, vol.15, pp.75-79, 1987.

G. P. Eberli, The record of Neogene sea-level changes in the prograding carbonates along the Bahamas transect -Leg 166 synthesis, Proceedings of the Ocean Drilling Program, vol.16, 2000.

G. P. Eberli, J. A. Austin, . Jr, and W. Schlager, 21. Physical properties of carbonate turbidite sequences surrounding the Bahamas -implication for slope stability and fluid movements, Proceedings of the Ocean Drilling Program, Scientific results, vol.101, pp.305-314, 1988.

G. P. Eberli, P. K. Swart, and M. J. Malone, Proceedings of the Ocean Drilling Program, vol.166, 1997.

G. P. Eberli, P. K. Swart, D. F. Mcneill, J. A. Kenter, F. S. Anselmetti et al., A synopsis of the Bahamas Drilling Project: Results from two deep core borings drilled on the Great Bahama Bank, Proceedings of the Ocean Drilling Program, vol.166, 1997.

G. P. Eberli, F. S. Anselmetti, D. Kroon, T. Sato, and J. D. Wright, The chronostratigraphic signicance of seismic reflections along the Bahamas Transect, Marine Geology, vol.185, pp.1-17, 2002.

G. P. Eberli, F. S. Anselmetti, J. A. Kenter, D. F. Mcneill, and L. A. Melim, Calibration of Seismic Sequence Stratigraphy with Cores and Logs in Subsurface Geology of a Prograding Carbonate Platform Margin, 2001.

G. P. Eberli, F. S. Anselmetti, C. Betzler, J. Van-konijnenburg, and D. Bernouilli, Carbonate Platform to Basin Transitions on Seismic Data and in Outcrops: Great Bahama Bank and the Maiella Platform Margin, Italy. Seismic Imaging of Carbonate Reservoirs and Systems, AAPG Memoir, vol.81, pp.207-250, 2004.

G. P. Eberli, The uncertainties involved in extracting amplitude and frequency of orbitally driven sea-level fluctuations from shallow-water carbonate cycles, Sedimentology, vol.60, issue.1, pp.64-84, 2013.

E. V. Esmerode, H. Lykke-andersen, and F. Surlyk, Interaction between bottom currents and slope failure in the Late Cretaceous of the southern Danish Central Graben, North Sea, Journal of the Geological Society, 2008.

I. Faille, M. Thibaut, M. Cacas, P. Havé, F. Willien et al., Oil Gas Sci. Technol. -Rev. IFP Energies nouvelles, vol.69, issue.4, pp.529-553, 2014.

N. Fabregas, T. Mulder, H. Gillet, A. Recouvreur, J. Busson et al., Glissements sous-marins sur la pente d'Exuma Sound (Bahamas), 2018.

K. Fauquembergue, E. Ducassou, T. Mulder, V. Hanquiez, M. C. Perello et al., Genesis and growth of a carbonate Holocene wedge on the northern Little Bahama Bank, Marine and Petroleum Geology, vol.96, pp.602-614, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02055386

S. Ferry and J. Flandrin, Mégabrèches de resédimentation, lacunes mécaniques et pseudo -« hard-grounds » sur la marge vocontienne au Barrémien et à Aptien inférieur, vol.55, pp.75-92, 1979.

S. Ferry and D. Grosheny, Excursion du Groupe Français du Crétacé. Turbidites et brèches carbonatées (Jurassique et Crétacé du bassin subalpin) Organisée par : Serge Ferry et Danièle Grosheny, 2013.

S. Ferry, D. Grosheny, N. Backert, F. Atrops, S. Tithonian et al., The base-of-slope carbonate breccia system of Ceüse, Occurrence of progradational stratification in the head plug of coarse granular flow deposits, vol.317, pp.71-86, 2015.

,

P. B. Flemings, C. John, and J. Behrmann, Expedition 308 synthesis: overpressure, consolidation, and slope stability on the continental slope of the Gulf of Mexico, Proc. IODP, vol.308, 2012.

R. Flory, F. Whitaker, P. L. Smart, and J. J. Reijmer, Submarine slope stability: Advances in modelling the anatomy of carbonate slope systems, 2014.

C. S. Fulthorpe, . A. Melillo, . Jr, and W. Schlager, Middle miocene carbonate gravity flows in the straits of Floridaat site 6261 in Austin, Proceedings of the Ocean Drilling Program, vol.101, p.12, 1988.

M. J. Gee, H. Uy, J. Warren, C. K. Morley, and J. J. Lambiase, The Brunei slide: A giant submarine landslide on the North West Borneo Margin revealed by 3D seismic data, Marine Geology, vol.246, pp.9-23, 2007.

R. N. Ginsburg, Subsurface geology of a prograding carbonate platform margin, Great Bahama Bank: Results of the Bahamas Drilling Project, p.70, 2001.

A. Godet, T. Adatte, A. Arnaud-vanneau, H. Arnaud, E. Carrio-schaffauser et al., Approche multidisciplinaire des séries hauteriviennes à aptiennes: étude d'un transect allant de la plateforme jurasienne et du Vercors au bassin Vocontien, 2016.

G. M. Grammer and R. N. Ginsburg, Highstand versus lowstand deposition on carbonate platform margins: insight from Quaternary foreslopes in the Bahamas, Marine Geology, vol.103, issue.1-3, pp.125-136, 1992.

D. Granjeon, 3D forward modelling of the impact of sediment transport and base level cycles on continental margins and incised valleys, From Depositional Systems to Sedimentary Successions on the Norwegian Continental Margin, 2014.

D. Granjeon and P. Joseph, Concepts and applications of a 3D multiple lithology, diffusive model in stratigraphic modeling, SEPM Special Publication, vol.62, pp.197-210, 1999.

D. Granjeon, A. W. Martinius, R. Ravnås, R. J. Howell, J. A. Steel et al., 3D forward modelling of the impact of sediment transport and base level cycles on continental margins and incised valleys, 2014.

E. C. Grimm, W. A. Watts, G. L. Jacobson, B. C. Hansen, H. R. Almquist et al., Evidence for warm wet Heinrich events in Florida, Quaternary Science Reviews, 2006.

D. Grosheny, S. Ferry, and T. Courjault, Progradational patterns at the head of single units of base-of-slope, submarine granular flow deposits, Conglomérats des Gas, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01276846

, Sedimentary Geology

N. Guy, D. Colombo, J. Frey, O. Vincke, and C. Gout, Method for exploitation of hydrocarbons from a sedimentary basin by means of a basin simulation taking account of geomechanical effects, vol.382, p.746, 2017.

N. Guy, G. Enchéry, and G. Renard, Numerical Modeling of Thermal EOR: Comprehensive Coupling of an AMR-Based Model of Thermal Fluid Flow and Geomechanics, Oil & Gas Science and Technology, vol.67, issue.6, pp.1019-1027, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00815739

A. Hairabian, J. Borgomano, J. P. Masse, and S. Nardon, 3-D stratigraphic architecture, sedimentary processes and controlling factors of Cretaceous deep-water resedimented carbonates, Sedimentary Geology, vol.317, pp.116-136, 2015.

E. L. Hamilton, Prediction of Deep-Sea Sediment Properties: State-of-the Art, Marine Science, vol.2, 1974.

V. Hanquiez, L. Principaud, T. Mulder, E. Ducassou, L. Chabaud et al., First Discovery of Channel -Levee Complexes in a Modern Deep-Water Carbonate Slope Environment, pp.1139-1146, 2014.

P. Harris, Depositional environments of carbonate platforms, Colorado School of Mines Quarterly, vol.80, issue.4, pp.31-60, 1986.

P. M. Harris, S. J. Purkis, J. Ellis, P. K. Swart, and J. J. Reijmer, Mapping bathymetry and depositional facies on Great Bahama Bank, Sedimentology, vol.62, issue.2, pp.566-589, 2015.

A. Heim, Bergsturz und Menschenleben, Naturforschenden Gesellschaft in Zürich, 1932.

S. Helwany, G. M. Henderson, R. H. Rendle, N. C. Slowey, and J. J. Reijmer, U-Th dating and diagenesis of Pleistocene highstand sediments from the Bahamas slope, Proceedings of the Ocean Drilling Program: Scientific Results, vol.166, pp.23-31, 2000.

J. Hennuy, Sédimentation carbonatée et silicoclastique sous contrôle tectonique, le Bassin SudProvençal et sa plate-forme carbonatée du Turonien moyen au Coniacien moyen : évolution séquentielle, diagénétique, paléogéographique, 1977.

, Shallow carbonate-bank-margin growth and structure, AAPG Bulletin, vol.61, issue.3, pp.376-406

A. C. Hine, G. R. Brooks, R. A. Davis, D. S. Duncan, S. D. Locker et al., The west-central Florida inner shelf and coastal system: a geologic conceptual overview and introduction to the special issue, Marine Geology, vol.200, pp.1-17, 2003.

J. P. Hobson, C. D. Caldwell, and D. F. Toomey, Sedimentary Facies and Biota of Early Permian Deep-Water Allochthonous, pp.93-139, 1985.

J. M. Hodson and J. Alexander, The Effects of Grain-Density Variation on Turbidity Currents and Some Implications for the Deposition of Carbonate Turbidites, Journal of Sedimentary Research, issue.6, pp.515-528, 2010.

D. Hunt and M. E. Tucker, Stranded parasequences and the forced regressive wedge systems tract: deposition during base-level fall, Sedimentary Geology, vol.81, issue.1-2, pp.1-9, 1992.

D. Hunt and M. E. Tucker, Sequence Stratigraphy of Carbonate Shelves with an Example from the Mid-Cretaceous (Urgonian) of Southeast France, Sequence stratigraphy and facies associations: International Association of Sedimentologists Special Publication, vol.18, pp.307-341, 1993.

J. E. Hunt, R. B. Wynn, P. J. Talling, and D. G. Masson, Frequency and timing of landslidetriggered turbidity currents within the Agadir Basin, offshore NW Africa: Are there associations with climate change, sea level change and slope sedimentation rates? Marine Geology, vol.346, pp.274-291, 2013.

J. R. Ineson and F. Surlyk, Greenlandcontext; evidence from the Cambrian of NorthCarbonate megabreccias in a sequence stratigraphicMarine and Petroleum Geology 06, 1999.

J. R. Ineson and F. Surlyk, Carbonate Megabreccias in a Sequence Stratigraphic Context, 2000.

, Evidence From the Cambrian of North Greenland. Geological Society, vol.172, issue.1, pp.47-68

T. Jacquin, A. Arnaud-vanneau, H. Arnaud, C. Ravenne, and P. R. Vail, Systems tracts and depositional sequences in a carbonate setting: a study of continuous outcrops from platform to basin at the scale of seismic lines, Marine and Petroleum Geology, vol.8, issue.2, pp.122-139, 1991.

X. Janson, C. Kerans, T. Playton, J. Clayton, P. Winefield et al., Stratigraphic Models and Exploration Plays of Slope and Basin-Floor Carbonates, Search and Discovery, vol.50637, pp.511-532, 2012.

A. Jo, Carbonate slope morphology and sedimentary processes along Southwestern Great Bahama Bank, 2013.

A. Jo, G. P. Eberli, and M. Grasmueck, Margin collapse and slope failure along southwestern Great Bahama Bank, Sedimentary Geology, vol.317, pp.43-52, 2015.

I. C. Jones and J. L. Banner, Hydrogeologic and climatic influences on spatial and interannual variation of recharge to a tropical karst island aquifer, water resources research, vol.39, issue.9, p.1253, 2003.

P. Joseph, B. Beaudoin, G. Friès, and O. Parize, -Les vallées sous-marines enregistrent au Crétacé inférieur le fonctionnement en blocs basculés du domaine vocontien, C.R. Acad. Sci. Paris, t, vol.309, pp.1031-1038, 1989.

P. Joseph, B. Beaudoin, T. Sempéré, and J. Maillart, Vallées sous-marines et systèmes d'épandages carbonatés du Berriasien vocontien (Alpes méridionales françaises), Bull. Soc. Géol. Fr, vol.4, pp.363-374, 1988.

H. Jourde, A. Lafare, . Mazzilli, G. Belaud, L. Neppel et al., Flash flood mitigation as a positive consequence of anthropogenic forcing on the groundwater resource in a karst catchment, Environ Earth Sci, vol.71, pp.573-583, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01174209

J. A. Kenter and W. Schlager, A comparison of shear strength in calcareous and siliciclastic marine sediments, Marine Geology, vol.88, issue.1-2, pp.145-152, 1989.

J. A. Kenter, Carbonate platform flanks: slope angle and sediment fabric, Sedimentology, vol.37, issue.5, pp.777-794, 1990.

J. A. Kenter, R. N. Ginsburg, and S. R. Troelstra, Sea-Level-Driven sedimentation patterns on the slope and margin, in Subsurface Geology of a prograding carbonate platform margin, Great Bahama Bank: Results of the Bahamas Drilling Project, SEPM Special Publication, issue.70, 2001.

C. M. Kievman, Match between late Pleistocene Great Bahama Bank and deep-sea oxygen isotope records of sea level, Geology, vol.26, issue.7, pp.635-638, 1998.

C. Kolodka, E. Vennin, R. Bourillot, D. Granjeon, and G. Desaubliaux, Stratigraphic modelling of platform architecture and carbonate production: a Messinian case study, Basin Research, vol.28, issue.5, pp.658-684, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01363480

K. Krabbenhoft, A. V. Lyamin, M. Hjiaj, and S. W. Sloan, A new discontinuous upper bound limit analysis formulation, Int. J. Numer. Meth. Engng, vol.53, pp.1069-1088, 2005.

P. A. Kramer, P. K. Swart, E. H. De-carlo, N. H. Schovsbo, . Jr et al., Overview of interstitial fluid and sediment geochemistry, sites 1003-1007 (bahamas transect) In Austin, Proceedings of the Ocean Drilling Program, vol.101, p.17, 1988.

P. Labaume, E. Mutti, and M. Seguret, Megaturbidites : A depositionnal Model from the Eocene of the SW-Pyrenean Foreland Basin, vol.7, pp.91-101, 1987.

S. Lafuerza, N. Sultan, M. Canals, J. Frigola, S. Bernet et al., Overpressure within upper continental slope sediments from CPTU data, International Journal of Earth Sciences, vol.98, issue.4, pp.751-768, 2009.

S. Lafuerza, N. Sultan, M. Canals, G. Lastras, A. Cattaneo et al., Failure mechanisms of Ana Slide from geotechnical evidence, Marine Geology, pp.307-310, 2012.

C. Lanteaume, F. Fournier, J. Borgomano, and M. Pellerin, Testing geological assumptions and experiments in carbonate exploration: insights from integrated stratigraphic, diagenetic and seismic forward modeling, Leading Edge, vol.37, issue.9, pp.672-680, 2018.

H. Lantzsch, S. Roth, J. J. Reijmer, and H. Kinkel, Sea-level related resedimentation processes on the northern slope of Little Bahama Bank (Middle Pleistocene to Holocene), 2007.

, Sedimentology, vol.54, issue.6, pp.1307-1322

E. B. Larson and J. E. Mylroie, Diffuse Versus Conduit Flow in Coastal Karst Aquifers: The Consequences of Island Area and Perimeter Relationships, Geosciences, vol.8, p.268, 2018.

D. Lavoie, J. A. Austin, . Jr, and W. Schlager, Geotechnical properties of sediments in a carbonate-slope environment : Ocean Drilling Program site 630, northern Little Bahamas Bank, Proceedings of the Ocean Drilling Program, Scientific results, vol.22, pp.305-314, 1988.

L. Goff, J. Cerepi, A. Swennen, R. Loisy, C. Caron et al., Contribution to the understanding of the Ionian Basin sedimentary evolution along the eastern edge of Apulia during the Late Cretaceous in Albania, Sedimentary Geology, vol.317, pp.87-101, 2015.

N. Lesparre, F. Boudin, C. Champollion, J. Chéry, C. Danquigny et al., New insights on fractures deformation from tiltmeter data measured inside the Fontaine de Vaucluse karst system, Geophys J Int, vol.208, issue.3, pp.1389-1402, 2016.
URL : https://hal.archives-ouvertes.fr/insu-01408482

D. Leynaud and N. Sultan, 3-D slope stability analysis: A probability approach applied to the nice slope (SE France), Marine Geology, vol.269, issue.3-4, pp.89-106, 2010.

D. Leynaud, J. Mienert, and F. Nadim, Slope stability assessment of the Helland Hansen area offshore the mid-Norwegian margin, Marine Geology, vol.213, issue.1-4, pp.457-480, 2004.

D. Leynaud, J. Mienert, and M. Vanneste, Submarine mass movements on glaciated and nonglaciated European continental margins: A review of triggering mechanisms and preconditions to failure. Marine and Petroleum Geology, vol.26, pp.618-632, 2009.

D. Leynaud, T. Mulder, V. Hanquiez, E. Gonthier, and A. Régert, Sediment failure types, preconditions and triggering factors in the Gulf of Cadiz. Landslides, pp.1-16, 2014.

L. E. Lisiecki and M. E. Raymo, A Pliocene-Pleistocene stack of 57 globally distributed benthic ?18O records, Paleoceanography, vol.20, issue.1, pp.1-17, 2005.
URL : https://hal.archives-ouvertes.fr/hal-01103826

J. Locat and H. J. Lee, Submarine landslides: advances and challenges, Canadian Geotechnical Journal, vol.39, issue.1, pp.193-212, 2002.

H. Long, P. B. Flemings, J. T. Germaine, and D. M. Saffer, Consolidation and overpressure near the seafloor in the Ursa Basin, Earth and Planetary Science Letters, vol.305, issue.1-2, pp.11-20, 2011.

T. Lüdmann, C. Betzler, G. P. Eberli, J. Reolid, J. J. Reijmer et al., Carbonate delta drift: A new sediment drift type, Marine Geology, 2018.

V. Lyamin and S. W. Sloan, Lower bound limit analysis using non-linear programming International journal for numerical and analytical methods in geomechanics, vol.55, pp.573-611, 2002.

V. Lyamin and S. W. Sloan, Upper bound limit analysis using linear finite elements and nonlinear programming International journal for numerical and analytical methods in geomechanics, vol.26, pp.181-216, 2002.

I. A. Macllreath and N. P. James, Facies Models 13. Carbonate slopes, Geoscience Canada, vol.5, pp.189-199, 1978.

M. J. Malone, N. C. Slowey, and G. M. Henderson, Early diagenesis of shallow-water periplatform carbonate sediments, leeward margin, Great Bahama Bank (Ocean Drilling Program Leg 166), Bulletin of the Geological Society of America, vol.113, issue.7, pp.881-894, 2001.

C. Manfrino and R. N. Ginsburg, Pliocene to Pleistocene depositional history of the upper platform margin, in Subsurface Geology of a prograding carbonate platform margin, Great Bahama Bank,: Results of the Bahamas Drilling Project, SEPM Special Publication, issue.70, 2001.

J. L. Masaferro, J. Poblet, M. Bulnes, G. P. Eberli, T. H. Dixon et al., , 1999.

P. Day, Growth Folding in the Bahamian Foreland of the Cuban Fold and Thrust Belt

D. G. Masson, C. B. Harbitz, R. B. Wynn, G. Pedersen, and F. Løvholt, Submarine landslides: processes, triggers and hazard prediction, Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences, vol.364, pp.2009-2039, 1845.

G. Mavko, T. Mukerji, J. ;. Dvorkin, and D. M. Saffer, Permeability and consolidation properties of subducting sediments off Costa Rica, ODP Leg 205, Proc. ODP, Sci. Results, vol.205, pp.1-24, 2006.

D. F. Mcneill, G. P. Eberli, B. H. Lidz, P. K. Swart, and J. A. Kenter, Chronostratigraphy of a prograded carbonate platform margin: a record of dynamic slope sedimentation, Western Great Bahama Bank, Subsurface Geology of a Prograding Carbonate Platform Margin, pp.101-136, 2001.

L. A. Melim, H. Westphal, P. K. Swart, G. P. Eberli, and A. Munnecke, Questioning carbonate diagenetic paradigms: Evidence from the Neogene of the Bahamas, Marine Geology, vol.185, issue.1-2, pp.27-53, 2002.

L. A. Melim, H. Westphal, P. K. Swart, G. P. Eberli, and A. Munnecke, Questioning carbonate diagenetic paradigms: Evidence from the Neogene of the Bahamas, Marine Geology, vol.185, issue.1-2, pp.27-53, 2002.

P. Mestat, Etat de contraintes initiales dans les sols et calcul par éléments finis, Bulletin des Laboratoires des Ponts et Chaussées, vol.215, pp.15-32, 1998.

G. V. Middleton and M. A. Hampton, Sediment gravity flows: mechanics of flow and deposition, Turbidity and Deep Water Sedimentation, pp.1-38, 1973.

K. G. Miller, G. S. Mountain, J. D. Wright, and J. V. Browning, A 180-million-year record of sea level and ice volume variations from continental margin and deep-sea isotopic records, Oceanography, vol.24, issue.2, pp.40-53, 2011.

E. ;. Miramontes, J. Borgomano, F. Fournier, and D. Granjeon, Quaternary atoll development: New insights from the two-dimensional stratigraphic forward modelling of Mururoa Island (Central Pacific Ocean), Morphological control of slope instability in contourites: a geotechnical approach Landslides · Montaggioni, vol.62, pp.466-500, 2015.

R. Mourgues, A. Lacoste, and C. Garibaldi, The Coulomb criticaltaper theory applied to gravitational instabilities, J. Geophys. Res. Solid Earth, vol.119, pp.754-765, 2014.

T. Mulder and J. Alexander, Abrupt change in slope causes variation in the deposit thickness of concentrated particle-driven density currents, Marine Geology, vol.175, pp.221-235, 2001.

T. Mulder and J. Alexander, The physical character of subaqueous sedimentary density flow and their deposits, Sedimentology, vol.48, issue.2, pp.269-299, 2001.

T. Mulder, E. Ducassou, G. P. Eberli, V. Hanquiez, E. Gonthier et al., New insights into the morphology and sedimentary processes along the western slope of Great Bahama Bank, Geology, vol.40, issue.7, pp.603-606, 2012.

T. Mulder, Mission Carambar 2 30/11, 2017.

T. Mulder, M. Joumes, V. Hanquiez, H. Gillet, J. J. Reijmer et al., Carbonate slope morphology revealing sediment transfer from bank-to-slope (Little Bahama Bank, Bahamas).Marine and Petroleum Geology Mulder T, Marine Geology Accepted Mullins H, vol.32, pp.473-494, 1985.
URL : https://hal.archives-ouvertes.fr/hal-01566026

H. T. Mullins and H. E. Cook, Carbonate apron models: alternative to the submarine fan model for paleoenvironmental analysis and hydrocarbon exploration, Sedimentary Geology, vol.48, pp.37-79, 1986.

H. T. Mullins, A. C. Neumann, R. J. Wilber, and M. A. Boardman, Nodular Carbonate sediment on Bahamian slopes: possible precursors to nodular limestones, Journal of Sedimentary Petrology, vol.50, pp.117-0131, 1980.

A. Munnecke, H. Westphal, J. G. Reijmer, and C. Samtleben, Microspar development during early marine burial diagenesis: a comparison of Pliocene carbonates from the Bahamas with, Silurian limestones from Gotland (Sweden) Sedimentology, vol.44, pp.977-99, 1997.

J. R. Mylroie and J. E. Mylroie, Development of the carbonate island karst model, Journal of Cave and Karst Studies, vol.69, issue.1, pp.59-75, 2007.

A. Pujalte and V. , Calciclastic submarine fans: An integrated overview, Earth-Science Reviews, vol.86, issue.1-4, pp.203-246, 2008.

A. Payros, V. Pujalte, and X. Orue-etxebarria, The South Pyrenean Eocene carbonate megabreccias revisited: New interpretation based on evidence from the Pamplona Basin, Sedimentary Geology, vol.125, issue.3-4, pp.165-194, 1999.

D. J. Piper and W. R. Normark, Processes That Initiate Turbidity Currents and Their Influence on Turbidites: A Marine Geology Perspective, Journal of Sedimentary Research, vol.79, issue.6, pp.347-362, 2009.

G. E. Pireno, C. Cook, D. Yuliong, and S. Lestari, Berai Carbonate Debris Flow As Reservoir in the Ruby Field, Straits: a New Exploration Play in Indonesia. 33rd Annual Convention Proceedings, 2009.

T. E. Playton, X. Janson, C. Kerans, N. P. James, R. W. Dalrymple et al., Facies 4. Geological Association of Canada, pp.449-476, 2010.

L. Pomar, Types of carbonate platforms: A genetic approach, Basin Research, vol.13, issue.3, pp.313-334, 2001.

L. Pomar and B. U. Haq, Decoding depositional sequences in carbonate systems: Concepts vs experience. Global and Planetary Change, vol.146, pp.190-225, 2016.

S. Prat, S. J. Jorry, G. Jouet, G. Camoin, C. Vella et al., Geomorphology and sedimentology of a modern isolated carbonate platform: The Glorieuses archipelago, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01765508

M. Principaud, Architecture et dynamique sédimentaire d'une pente carbonatée moderne : exemple de la pente nord de Great Bahama Bank (GBB) Bahamas, thèse de doctorat, 2015.

M. Principaud, T. Mulder, H. Gillet, and J. Borgomano, Large-scale carbonate submarine masswasting along the northwestern slope of the Great Bahama Bank (Bahamas) : Morphology, architecture, and mechanisms, Sedimentary Geology, vol.317, pp.27-42, 2015.

M. Principaud, J. P. Ponte, T. Mulder, H. Gillet, C. Robin et al., Slope-to-basin stratigraphic evolution of the northwestern Great Bahama Bank (Bahamas) during the Neogene to Quaternary: interactions between downslope and bottom currents deposits, Basin Research, vol.29, issue.6, pp.699-724, 2016.
URL : https://hal.archives-ouvertes.fr/insu-01294294

M. Principaud, T. Mulder, V. Hanquiez, E. Ducassou, G. Eberli et al., Recent morphology and sedimentary processes along the western slope of Great Bahama Bank (Bahamas), Sedimentology, vol.65, issue.6, pp.2088-2116, 2018.

A. Quiquerez, S. Sarih, P. Allemand, and J. P. Garcia, Fault rate controls on carbonate gravityflow deposits of the Liassic of Central High Atlas (Morocco). Marine and Petroleum Geology, vol.43, pp.349-369, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00819082

M. Rabineau, S. Berne, D. Aslanian, J. Olivet, P. Joseph et al., Sedimentary sequences in the Gulf of Lion: A record of 100,000 years climatic cycles. Marine and Petroleum Geology, vol.22, pp.775-804, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00085055

M. Rabineau, S. Berné, J. Olivet, D. Aslanian, F. Guillocheau et al., Paleo sea levels reconsidered from direct observation of paleoshoreline position during Glacial Maxima (for the last 500,000 yr), Earth and Planetary Science Letters, vol.252, pp.119-137, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00128413

E. C. Rankey and D. F. Doolittle, Geomorphology of carbonate platform-marginal uppermost slopes: Insights from a Holocene analogue, Little Bahama Bank, Bahamas. Sedimentology, vol.59, issue.7, pp.2146-2171, 2012.

E. C. Rankey and S. L. Reeder, Tidal Sands of the Bahamian Archipelago, Principles of Tidal Sedimentology, pp.537-565, 2012.

E. C. Rankey and D. F. Doolittle, Geomorphology of carbonate platform-marginal uppermost slopes: Insights from a Holocene analogue, Little Bahama Bank, Bahamas. Sedimentology, vol.59, issue.7, pp.2146-2171, 2012.

E. C. Rankey, S. A. Guidry, S. L. Reeder, and H. Guarin, Geomorphic and Sedimentologic Heterogeneity Along a Holocene Shelf Margin: Caicos Platform, Journal of Sedimentary Research, vol.79, issue.6, pp.440-456, 2009.

W. Rankine, On the stability of loose earth, Philosophical Transactions of the Royal Society of London, p.147, 1857.

C. Ravenne, P. Le-quellec, J. Rabate, F. Euriat, and B. A. Projet, Recherche de modèles de sédimentation pour les corps sédimentaires carbonatés profonds situés au débouché des canyons entaillant la plate-forme des Bahamas Rapport IFP 31837, 1983.

J. J. Reijmer, W. Schlager, A. W. Droxler, J. A. Austin, . Jr et al., Site 632 : Pliocene-Pleistocene sedimentation cycles in a Bahamian Basin, Proceedings of the Ocean Drilling Program, Scientific results, vol.15, pp.213-220, 1988.

J. J. Reijmer, C. Betzler, D. Kroon, R. Tiedemann, and G. Eberli, Bahamian carbonate platform development in response to sea-level changes and the closure of the Isthmus of Panama, International Journal of Earth Sciences, vol.91, issue.3, pp.482-489, 2002.

J. J. Reijmer, T. Mulder, and J. Borgomano, Carbonate slopes and gravity deposits, Sedimentary Geology, vol.317, pp.1-8, 2015.

J. J. Reijmer, P. Palmieri, R. Groen, and M. Floquet, Calciturbidites and calcidebrites: Sea-level variations or tectonic processes?, Sedimentary Geology, vol.317, pp.53-70, 2015.

R. H. Rendle and J. J. Reijmer, Quaternary slope development of the western, leeward margin of the Great Bahama Bank, Marine Geology, vol.185, issue.1-2, pp.143-164, 2002.

R. H. Rendle, J. J. Reijmer, D. Kroon, and G. M. Henderson, Mineralogy and Sedimentology of the Pleistocene to Holocene on the Leeward Margin of Great Bahama Bank 1, Climatic Changes, vol.166, issue.6, pp.61-76, 2000.

J. Reolid, C. Betzler, J. C. Braga, J. M. Martín, S. Lindhorst et al., Reef slope geometries and facies distribution: Controlling factors, vol.60, pp.737-753, 2014.

P. G. Resor and E. A. Flodin, Forward modeling syn-sedimentary deformation associated with a prograding steep-sloped carbonate margin, Journal of Structural Geology, vol.32, issue.9, pp.1187-1200, 2010.

K. R. Reuber, J. Pindell, W. Horn, and B. W. , Demerara Rise, offshore Suriname: Magma-rich segment of the Central Atlantic Ocean, and conjugate to the, Bahamas hot spot. Interpretation, vol.4, issue.2, pp.141-155, 2016.

R. Richet, High-Resolution 3D Stratigraphic Modelling of the Gresse-En-Vercors Lower Cretaceous Carbonate Platform, From Digital Outcrop Modeling To Carbonate Sedimentary System Characterization, 2011.

D. M. Roche, T. M. Dokken, H. Goosse, H. Renssen, and S. L. Weber, Climate of the last glacial maximum: Sensitivity studies and model-data comparison with the LOVECLIM coupled model, Climate of the Past, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00298075

K. Roscoe, H. Schofield, A. N. Et-wroth, and C. P. , On The Yielding of Soils, Géotechnique, vol.8, issue.1, pp.22-53, 1958.

G. Rusciadelli, N. Sciarra, and M. Mangifesta, 2D modelling of large-scale platform margin collapses along an ancient carbonate platform edge, Geological model and conceptual framework, vol.200, pp.245-262, 2003.

J. Salençon, de l'Elasto-platicité au Calcul à la rupture. Editions de l'Ecole Polytechnique, 2002.

A. H. Saller, J. W. Barton, and R. E. Barton, Slope sedimentation associated with a vertically building shelf, Bone Spring Formation, Mescalero Escarpe Field, southeastern New Mexico, Controls on carbonate platform and basin development, pp.275-288, 1989.

B. Savary and S. Ferry, Geometry and petrophysical parameters of a calcarenitic turbidite lobe, Sedimentary Geology, vol.168, issue.3-4, pp.281-304, 2004.

W. Schlager, Carbonate Sedimentology and Sequence Stratigraphy. Carbonate Sedimentology and Sequence Stratigraphy, 2005.

W. Schlager and R. N. Ginsburg, Carbonate Platforms of the Passive-Type Continental Margins, Present and Past, Mar. Geol, vol.44, pp.1-24, 1981.

W. Schlager and N. P. James, Low-magnesian calcite limestones forming at the deep-sea floor, Tongue of the Ocean, Bahamas. Sedimentology, vol.25, issue.5, pp.675-702, 1978.

W. Schlager, J. J. Reijmer, and A. Droxler, Highstand Shedding of Carbonate Platforms, Journal of Sedimentary Research, vol.64, issue.3, pp.270-281, 1994.

W. Schlager, Carbonate Sedimentology and Sequence Stratigraphy. SEPM Concepts in Sedimentology and Paleontology 8, 2005.

F. Schneider, J. L. Potdevein, S. Wolf, and I. Faille, Modèle de compaction élastoplastique et viscoplastique pour simulateur de bassins sédimentaires, vol.49, 1994.

J. S. Schnyder, G. P. Eberli, C. Betzler, M. Wunsch, S. Lindhorst et al., Morphometric analysis of plunge pools and sediment wave fields along western Great Bahama Bank, Marine Geology, vol.397, 2017.

J. S. Schnyder, G. P. Eberli, J. T. Kirby, S. Fengyan, T. Babak et al., Tsunamis caused by submarine slope failures along western Great Bahama Bank, Nature, Scientific Reports, vol.6, 2016.

J. S. Schnyder, G. P. Eberli, C. Betzler, M. Wunsch, S. Lindhorst et al., Morphometric analysis of plunge pools and sediment wave fields along western Great Bahama Bank, Marine Geology, vol.397, pp.15-28, 2018.

A. Schofield and C. P. Wroth, Critical State Soil Mechanics, Reviews of Geophysics, vol.41, issue.4, p.1016, 1968.

E. Screaton, T. Hays, K. Gamage, M. , and J. , Data report: permeabilities of Costa Rica subduction zone sediments, Proc. ODP, Sci. Results, 205: College Station, pp.1-13, 2006.

C. Seard, J. Borgomano, D. Granjeon, and G. Camoin, Impact of environmental parameters on coral reef development and drowning: Forward modelling of the last deglacial reefs from Tahiti (French Polynesia; IODP Expedition #310), Sedimentology, vol.60, issue.6, pp.1357-1388, 2013.

H. P. Sejrupa, A. Nyga°rda, J. Mienertb, P. Brync, R. Lienc et al., The Storegga Slide: architecture, geometry and slide development Haflidi Haflidasona, Marine Geology, vol.213, pp.201-234, 2004.

G. Shanmugam, The landslide problem, Journal of Palaeogeography, vol.4, issue.2, pp.109-166, 2015.

G. Shanmugam, 50 Years of the Turbidite Paradigm (1950S-1990S): Deep Water Processes and Facies Models -a Critical Perspective, Mar. Pet. Geol, vol.17, issue.2, pp.285-342, 2000.

G. Shanmugam and Y. Wang, The landslide problem, Journal of Palaeogeography, 2015.

R. E. Sheridan and F. M. Gradstein, Initial reports of the Deep Sea Drilling Project, v. 76, Washington DC; US government printing office, 1983.

S. W. Sloan, Geotechnical stability analysis, Géotechnique, vol.63, issue.7, pp.531-571, 2013.

P. Smart, D. Waltham, G. Felce, D. Wang, D. Oldham et al., CARB3D+ v3.4 A Forward Model for Predicting Carbonate Sedimentology and Diagenesis: Program Description and Function, pp.1-63, 2011.

G. H. Spence and M. E. Tucker, Genesis of limestone megabreccias and their significance in carbonate sequence stratigraphic models: a review, Sedimentary Geology, vol.112, issue.3, pp.163-193, 1997.

K. P. Stanek, W. V. Maresch, and J. L. Pindell, The géotectonic story of the northwestern branch of the Caribbean Arc : implications from structural and geochronological data of Cuba in, 2009.

M. Strömblad, Modeling of soil and structure interaction subsea, 2014.

N. Sultan, P. Cochonat, M. Canals, A. Cattaneo, B. Dennielou et al., Triggering mechanisms of slope instability processes and sediment failures on continental margins: A geotechnical approach, Marine Geology, vol.213, issue.1-4, pp.291-321, 2004.

K. Sun, T. Alves, and X. Xie, Free gas accumulations in basal shear zones of mass-transport deposits, An importantgeohazard on continental slope basins. Marine and Petroleum Geology, vol.81, pp.17-32, 2017.

F. Surlyk and J. R. Ineson, Carbonate Gravity Flow Deposition Along a Platform Margin Scarp (Silurian, North Greenland), Journal of Sedimentary Research, vol.62, issue.3, pp.400-410, 1992.

S. Symithe, E. Calais, J. B. De-chabalier, R. Robertson, and M. Higgins, Current block motions and strain accumulation on active faults in the Caribbean, J. Geophys. Res. Solid Earth, vol.120, pp.3748-3774, 2015.
URL : https://hal.archives-ouvertes.fr/insu-01470187

P. J. Talling, On the triggers, resulting flow types and frequencies of subaqueous sediment density flows in different settings, Marine Geology, vol.352, pp.155-182, 2014.

P. J. Talling, D. G. Masson, E. J. Sumner, and G. Malgesini, Subaqueous sediment density flows: Depositional processes and deposit types, Sedimentology, vol.59, issue.7, pp.1937-2003, 2012.

P. J. Talling, R. B. Wynn, D. G. Masson, M. Frenz, B. T. Cronin et al., Onset of submarine debris flow deposition far from original giant landslide, Nature, 2007.

P. J. Talling, Hybrid submarine flows comprising turbidity current and cohesive debris flow: Deposits, theoretical and experimental analyses, and generalized models: Geosphere, vol.9, pp.460-488, 2013.

V. Teles, B. Chauveau, P. Joseph, P. Weill, and F. Maktouf, CATS -A process-based model for turbulent turbidite systems at the reservoir scale, Comptes Rendus Géoscience, vol.348, issue.7, pp.489-498, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01396936

K. Terzaghi, Theoretical soil mechanics, 1944.

J. Tisot and T. Mulder, Méthodes d'études de la stabilité des talus sous-marins, Studia Geotechnica. Mecanica. X, pp.3-4, 1988.

E. Tournadour, Architecture et dynamique sédimentaire d'une pente carbonatée moderne : exemple de la pente nord de Little Bahama Bank (LBB) Bahamas, thèse de doctorat de l'université de Bordeaux, 2015.

E. Tournadour, T. Mulder, J. Borgomano, H. Gillet, L. Chabaud et al., Submarine canyon morphologies and evolution in modern carbonate settings: The northern slope of Little Bahama Bank, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01765624

R. Urgeles and A. Camerlenghi, Submarine landslides of theMediterranean Sea: Triggermechanisms,dynamics, and frequency-magnitude distribution, Journal of geophysical research: earth surface, vol.118, pp.2600-2618, 2013.

M. Urlaub, J. Geersen, S. Krastel, and T. Schwenk, Diatom ooze: Crucial for the generation of submarine mega-slides, Geology, vol.46, issue.4, pp.331-334, 2018.

M. Urlaub, P. J. Talling, and D. G. Masson, Timing and frequency of large submarine landslides: Implications for understanding triggers and future geohazard, Quaternary Science Reviews, vol.72, pp.63-82, 2013.

M. Urlaub, P. J. Talling, A. Zervos, and D. G. Masson, What causes large submarine landslides on low gradient sediment accumulation, Journal of Geophysical Research: Solid Earth, vol.120, pp.1-18, 2015.

P. R. Vail and R. M. Mitchum, Seismic stratigraphy and global changes of sea level, Overview: AAPG Memoir, vol.26, pp.51-52, 1977.

M. Vanneste, N. Sultan, S. Garziglia, C. F. Forsberg, and J. S. Heureux, Seafloor instabilities and sediment deformation processes: The need for integrated, multi-disciplinary investigations, Marine Geology, vol.352, pp.183-214, 2014.

R. C. Viesca and J. R. Rice, Nucleation of slipweakening rupture instability in landslides by localized increase of pore pressure, Journal of Geophysical Research: Solid Earth, vol.117, p.3104, 2012.

G. M. Warrlich, D. A. Waltham, and D. W. Bosence, Quantifying the sequence stratigraphy and drowning mechanisms of atolls using a new 3-D forward stratigraphic modelling program (CARBONATE 3D), Basin Research, vol.14, issue.3, pp.379-400, 2002.

G. Warrlich, D. Bosence, D. Waltham, C. Wood, A. Boylan et al., 3D stratigraphic forward modelling for analysis and prediction of carbonate platform stratigraphies in exploration and production. Marine and Petroleum Geology, vol.25, pp.35-58, 2008.

R. J. Wilber, J. D. Milliman, and R. B. Halley, Accumulation of bank-top sediment on the western slope of Great Bahama Bank: rapid progradation of a carbonate megabank, Geology, 1990.

P. A. Wilson and H. H. Roberts, Carbonate-periplatform sedimentation by density flows: a mechanism for rapid off-bank and vertical transport of shallow-water fines, Geology, vol.20, issue.8, pp.713-716, 1992.

P. Winefield, P. Burgess, M. Minzoni, B. Pierson, T. Playton et al., Deep-Water Resedimented Carbonate Exploration Play Types : Controls and Models *. AAPG Annual Convention and Exhibition: Search and Discovery Article, 50502, Sedimentology, pp.1365-309, 2011.

M. Wunsch, C. Betzler, G. P. Eberli, S. Lindhorst, T. Lüdmann et al., Sedimentary dynamics and high-frequency sequence stratigraphy of the southwestern slope of Great Bahama Bank, Sedimentary Geology, 2018.

R. B. Wynn, D. G. Masson, D. A. Stow, and P. P. Weaver, The Northwest African slope apron: a modern analogue for deep-water systems with complex seafloor topography. Marine and Petroleum Geology, vol.17, pp.253-265, 2000.

X. Yuan, Y. M. Leroy, and B. Maillot, Reappraisal of gravity instability conditions for offshore wedges: consequences for fluid overpressures in the Niger Delta, Geophysical Journal International, vol.208, pp.1655-1671, 2017.

C. Dans-le, une brève mission de terrain (3 jours) nous nous sommes attachés à l'observation de deux affleurements des systèmes gravitaires : 1) des brèches et faciès graveleux du Tithonien Supérieur et du Berriasien (Vallée sous-marine de Die) 2) des éventails gravitaires calciclastiques du Barrémo-Aptien

. Brèches-du-tithono-berriasien,

A. Tithonien and ;. Joseph, Ces brèches carbonatées sont dominées par des faciès de débrites granulaires (clast-supported) ou boueuses (mud-supported), mais présentent aussi des faciès calcarénitiques (Figure A. 4 & 7). Les phénomènes d'écoulement mis en jeu sont principalement des écoulements granulaires concentrés de types debris flows ou grains flows. Il est cependant possible d'observer des bancs composites avec un membre supérieur calcarénitique grano-classé indiquant la mise en place de turbidites de haute-densité, la fosse Vocontienne est entourée par un système de larges plateaux océaniques à sédimentation marno-calcaire, alimentés eux-même par des plates-formes carbonatées au N et au S (plates-formes jurassiennes et provençales, 1988.

, constater l'existence de systèmes gravitaires très contrastés à partir de la même source, mais sur des profils différents

A. Figure, A) Affleurement des Aures montrant un coupe du chenal d'approvisionnement. B) Coupe schématique du lobe associé du Pas de la Cluse, avec trois divisions génétiques, de bas en haut : (1) système en drapage, Système chenal-lobe calciclastique des Aures-Pas de la Cluse (d'après Ferry & Grosheny, vol.20, 2013.

, Ces déstabilisations semblent se produire principalement en contexte de transgression et d'inondation de la plate-forme alors que les accumulations sableuses de la rampe externe sont réduites. A l'inverse les périodes de bas-niveau marin correspondent au développement des transferts gravitaires sableux et des systèmes calciclastiques décrits ci-dessous. Le développement de corps sableux près de la pente constitue en effet une source très favorable, Les transferts calciclastiques sableux ne sont cependant pas les seuls transferts gravitaires observés à partir de la plate-forme urgonienne du Vercors. Plusieurs dépôts successifs de mégabrèches boueuses sont observés dans le bassin, 1981.

;. Ple and . Principaud, , 2016.

C. Eberli, , 1997.

. Eberli, , 2002.

&. Rendle and . Reijmer, , vol.1, 2002.

C. Eberli, , vol.2, p.162, 1997.

C. Eberli, , 2001.

;. Pl and . Principaud, , vol.2, 2016.

. D-(eberli, , 1997.

. Eberli, , 2002.

D. Eberli, , p.367, 1131.

D. Eberli, , 2001.

. E-(eberli, , 1997.

. Eberli, , 2002.

. Ravenne, Les codes de carottes CAR2KS renvoient à la mission CARAMBAR 2, Carottes sédimentaires du système Exuma /San Salvador Dans les planches qui suivent les codes de carottes BACAR renvoient aux carottes gravitaires des missions BACAR, vol.4, 1983.