J. Leventhal, M. Abecassis, J. Miller, L. Gallon, K. Ravindra et al., Chimerism and tolerance without GVHD or engraftment syndrome in HLAmismatched combined kidney and hematopoietic stem cell transplantation, Sci Transl Med, vol.4, pp.124-152, 2012.

C. L. Cetrulo, T. Drijkoningen, and D. H. Sachs, Tolerance induction via mixed chimerism in vascularized composite allotransplantation: is it time for clinical application?, Curr Opin Organ Transplant, vol.20, pp.602-609, 2015.

P. F. Halloran, Immunosuppressive drugs for kidney transplantation, N Engl J Med, vol.351, pp.2715-2744, 2004.

J. Sellarés, D. G. De-freitas, M. Mengel, J. Reeve, G. Einecke et al., Understanding the causes of kidney transplant failure: the dominant role of antibody-mediated rejection and nonadherence, Am J Transplant, vol.12, pp.388-99, 2012.

S. A. Lodhi, K. E. Lamb, and M. Hu, Solid organ allograft survival improvement in the United States: the long-term does not mirror the dramatic short-term success, Am J Transplant, vol.11, pp.1226-1261, 2011.

D. Kerjaschki, H. M. Regele, I. Moosberger, K. Nagy-bojarski, B. Watschinger et al., Lymphatic neoangiogenesis in human kidney transplants is associated with immunologically active lymphocytic infiltrates, J Am Soc Nephrol, vol.15, pp.603-615, 2004.

O. Thaunat, A. Field, J. Dai, L. Louedec, N. Patey et al., Lymphoid neogenesis in chronic rejection: evidence for a local humoral alloimmune response, Proc Natl Acad Sci U S A, vol.102, pp.14723-14731, 2005.

O. Thaunat, N. Patey, G. Caligiuri, C. Gautreau, M. Mamani-matsuda et al., Chronic rejection triggers the development of an aggressive intragraft immune response through recapitulation of lymphoid organogenesis, J Immunol, vol.185, pp.717-745, 2010.

O. Thaunat, N. Patey, E. Morelon, J. Michel, and A. Nicoletti, Lymphoid neogenesis in chronic rejection: the murderer is in the house, Curr Opin Immunol, vol.18, pp.576-585, 2006.

O. Thaunat and A. Nicoletti, Lymphoid neogenesis in chronic rejection, Curr Opin Organ Transplant, vol.13, pp.16-25, 2008.

J. R. Wehner, K. Fox-talbot, M. K. Halushka, C. Ellis, A. A. Zachary et al., B cells and plasma cells in coronaries of chronically rejected cardiac transplants, Transplantation, vol.89, pp.1141-1149, 2010.

M. Sato, S. Hirayama, D. M. Hwang, H. Lara-guerra, D. Wagnetz et al., The role of intrapulmonary de novo lymphoid tissue in obliterative bronchiolitis after lung transplantation, J Immunol, vol.182, pp.7307-7323, 2009.

J. Kanitakis, G. Karayannopoulou, M. Lanzetta, and P. Petruzzo, Graft vasculopathy in the skin of a human hand allograft: implications for diagnosis of rejection of vascularized composite allografts, Transpl Int, vol.27, pp.118-141, 2014.

T. Hautz, B. G. Zelger, I. W. Nasr, G. S. Mundinger, R. N. Barth et al., Lymphoid neogenesis in skin of human hand, nonhuman primate, and rat vascularized composite allografts, Transpl Int, vol.27, pp.966-76, 2014.

O. Thaunat, L. Badet, V. Dubois, J. Kanitakis, P. Petruzzo et al., Immunopathology of rejection: do the rules of solid organ apply to vascularized composite allotransplantation?, Curr Opin Organ Transplant, vol.20, pp.596-601, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01911438

M. Dieu-nosjean, N. A. Giraldo, H. Kaplon, C. Germain, W. H. Fridman et al., Tertiary lymphoid structures, drivers of the anti-tumor responses in human cancers, Immunol Rev, vol.271, pp.260-75, 2016.

C. Pitzalis, G. W. Jones, M. Bombardieri, and S. A. Jones, Ectopic lymphoid-like structures in infection, cancer and autoimmunity, Nat Rev Immunol, vol.14, pp.447-62, 2014.

P. F. Halloran, J. Chang, K. Famulski, L. G. Hidalgo, I. D. Salazar et al., Disappearance of T cell-mediated rejection despite continued antibody-mediated rejection in late kidney transplant recipients, J Am Soc Nephrol, vol.26, issue.7, pp.1711-1731, 2015.

S. A. Lodhi, K. E. Lamb, and M. Hu, Improving long-term outcomes for transplant patients: making the case for long-term disease-specific and multidisciplinary research, Am J Transplant, vol.11, issue.10, pp.2264-2269, 2011.

O. Thaunat, A. Koenig, C. Leibler, and P. Grimbert, Effect of immunosuppressive drugs on humoral allosensitization after kidney transplant, J Am Soc Nephrol, vol.27, issue.7, pp.1890-900, 2016.

M. J. Everly, L. M. Rebellato, C. E. Haisch, M. Ozawa, K. Parker et al., Chronic renal diseases as a public health problem: epidemiology, social, and economic implications, Kidney international. Supplement, pp.7-10, 2005.

P. A. Gorer, The antigenic basis of tumour transplantation, J Pathol, vol.47, pp.231-52, 1938.

R. E. Billingham and P. B. Medawar, The Technique of Free Skin Grafting in Mammals, Journal of Experimental Biology, vol.28, pp.385-402, 1951.

G. Benichou, Y. Yamada, S. Yun, C. Lin, M. Fray et al., Immune recognition and rejection of allogeneic skin grafts, Immunotherapy, vol.3, pp.757-70, 2011.

J. Sellarés, D. G. De-freitas, M. Mengel, J. Reeve, G. Einecke et al., Understanding the causes of kidney transplant failure: the dominant role of antibody-mediated rejection and nonadherence, American journal of transplantation: official journal of the American Society of Transplantation and the American Society of Transplant Surgeons, vol.12, pp.388-99, 2012.

R. Patel and P. I. Terasaki, Significance of the positive crossmatch test in kidney transplantation, The New England journal of medicine, vol.280, pp.735-744, 1969.

M. Jeannet, V. W. Pinn, M. H. Flax, H. J. Winn, and P. S. Russell, Humoral antibodies in renal allotransplantation in man. The New England journal of medicine, vol.282, pp.111-118, 1970.

J. G. Hall, M. E. Smith, P. A. Edwards, and K. V. Shooter, The low concentration of macroglobulin antibodies in peripheral lymph, Immunology, vol.16, pp.773-781, 1969.

P. S. Russell, C. M. Chase, H. J. Winn, and R. B. Colvin, Coronary atherosclerosis in transplanted mouse hearts. II. Importance of humoral immunity, Journal of immunology, vol.152, pp.5135-5176, 1950.

O. Thaunat, L. Louedec, J. Dai, F. Bellier, E. Groyer et al., Direct and indirect effects of alloantibodies link neointimal and medial remodeling in graft arteriosclerosis, Arteriosclerosis, vol.26, pp.2359-65, 2006.

G. S. Hill, D. Nochy, P. Bruneval, J. P. Duong-van-huyen, D. Glotz et al., Donor-specific antibodies accelerate arteriosclerosis after kidney transplantation, Journal of the American Society of Nephrology: JASN, vol.22, pp.975-83, 2011.

R. N. Smith, T. Kawai, S. Boskovic, O. Nadazdin, D. H. Sachs et al., Chronic antibody mediated rejection of renal allografts: pathological, serological and immunologic features in nonhuman primates, American journal of transplantation: official journal of the American Society of Transplantation and the American Society of Transplant Surgeons, vol.6, pp.1790-1798, 2006.

O. Thaunat, Humoral immunity in chronic allograft rejection: puzzle pieces come together, vol.26, pp.101-107, 2012.

J. C. Tan, P. P. Wadia, M. Coram, F. C. Grumet, N. Kambham et al., H-Y antibody development associates with acute rejection in female patients with male kidney transplants, Transplantation, vol.86, pp.75-81, 2008.

O. Thaunat, S. Graff-dubois, N. Fabien, A. Duthey, V. Attuil-audenis et al., A stepwise breakdown of B-cell tolerance occurs within renal allografts during chronic rejection, Kidney international, vol.81, pp.207-226, 2012.

L. Li, P. Wadia, R. Chen, N. Kambham, M. Naesens et al., Identifying compartment-specific non-HLA targets after renal transplantation by integrating transcriptome and "antibodyome" measures, Proceedings of the National Academy of Sciences of the United States of America, vol.106, pp.4148-53, 2009.

D. Dragun, R. Catar, and P. A. , Non-HLA antibodies in solid organ transplantation: recent concepts and clinical relevance. Current opinion in organ transplantation, vol.18, pp.430-435, 2013.

A. M. Jackson, T. K. Sigdel, M. Delville, S. Hsieh, H. Dai et al., Endothelial Cell Antibodies Associated with Novel Targets and Increased Rejection, Journal of the American Society of Nephrology, 2014.

D. Dragun, D. N. Müller, J. H. Bräsen, L. Fritsche, M. Nieminen-kelhä et al., Angiotensin II type 1-receptor activating antibodies in renal-allograft rejection, The New England journal of medicine, vol.352, pp.558-69, 2005.

M. Taniguchi, L. M. Rebellato, J. Cai, J. Hopfield, K. P. Briley et al., Higher risk of kidney graft failure in the presence of anti-angiotensin II type-1 receptor antibodies, American journal of transplantation: official journal of the American Society of Transplantation and the American Society of Transplant Surgeons, vol.13, pp.2577-89, 2013.

T. M. Conlon, K. Saeb-parsy, J. L. Cole, R. Motallebzadeh, M. S. Qureshi et al., Germinal center alloantibody responses are mediated exclusively by indirect-pathway CD4 T follicular helper cells, Journal of immunology, vol.188, pp.2643-52, 1950.

F. G. Lakkis, A. Arakelov, B. T. Konieczny, and Y. Inoue, Immunologic 'ignorance' of vascularized organ transplants in the absence of secondary lymphoid tissue, Nature medicine, vol.6, pp.686-694, 2000.

O. Thaunat, N. Patey, G. Caligiuri, C. Gautreau, M. Mamani-matsuda et al., Chronic rejection triggers the development of an aggressive intragraft immune response through recapitulation of lymphoid organogenesis, Journal of immunology, vol.185, pp.717-745, 1950.

O. Thaunat and A. Nicoletti, Lymphoid neogenesis in chronic rejection. Current opinion in organ transplantation, vol.13, pp.16-25, 2008.

O. Thaunat, S. Graff-dubois, S. Brouard, C. Gautreau, A. Varthaman et al., Immune responses elicited in tertiary lymphoid tissues display distinctive features, PloS one, vol.5, p.11398, 2010.

O. Thaunat, Pathophysiologic significance of B-cell clusters in chronically rejected grafts, Transplantation, vol.92, pp.121-127, 2011.

L. T. Roumenina, J. Zuber, and V. Frémeaux-bacchi, Physiological and therapeutic complement regulators in kidney transplantation. Current opinion in organ transplantation, vol.18, pp.421-430, 2013.

N. Kamar, O. Milioto, B. Puissant-lubrano, L. Esposito, M. C. Pierre et al., Incidence and predictive factors for infectious disease after rituximab therapy in kidney-transplant patients, American journal of transplantation: official journal of the American Society of Transplantation and the American Society of Transplant Surgeons, vol.10, pp.89-98, 2010.

G. Hychko, A. Mirhosseini, A. Parhizgar, and N. Ghahramani, A Systematic Review and Meta-Analysis of Rituximab in Antibodymediated Renal Allograft Rejection. International journal of organ transplantation medicine, vol.2, pp.51-57, 2011.

X. Tillou, N. Poirier, L. Bas-bernardet, S. Hervouet, J. Minault et al., Recombinant human C1-inhibitor prevents acute antibodymediated rejection in alloimmunized baboons, Kidney international, vol.78, pp.152-161, 2010.

B. L. Zuraw, P. J. Busse, M. White, J. Jacobs, W. Lumry et al., MM: Nanofiltered C1 inhibitor concentrate for treatment of hereditary angioedema, The New England journal of medicine, vol.363, pp.513-535, 2010.

P. Hillmen, N. S. Young, J. Schubert, R. A. Brodsky, G. Socié et al., The complement inhibitor eculizumab in paroxysmal nocturnal hemoglobinuria, The New England journal of medicine, vol.355, pp.1233-1276, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00599451

J. Zuber, L. Quintrec, M. Krid, S. Bertoye, C. Gueutin et al., Eculizumab for atypical hemolytic uremic syndrome recurrence in renal transplantation, American journal of transplantation: official journal of the American Society of Transplantation and the American Society of Transplant Surgeons, vol.12, pp.3337-54, 2012.

A. Barnett, R. Nicholas, E. Asgari, P. Chowdhury, S. H. Sacks et al., The use of eculizumab in renal transplantation, Clinical transplantation, vol.27, pp.216-245, 2013.

M. D. Stegall, T. Diwan, S. Raghavaiah, L. D. Cornell, J. Burns et al., Terminal complement inhibition decreases antibody-mediated rejection in sensitized renal transplant recipients, American journal of transplantation: official journal of the American Society of Transplantation and the American Society of Transplant Surgeons, vol.11, pp.2405-2418, 2011.

D. K. Perry, J. M. Burns, H. S. Pollinger, B. P. Amiot, J. M. Gloor et al., Proteasome inhibition causes apoptosis of normal human plasma cells preventing alloantibody production, American journal of transplantation: official journal of the American Society of Transplantation and the American Society of Transplant Surgeons, vol.9, pp.201-210, 2009.

M. J. Everly, J. J. Everly, B. Susskind, P. Brailey, L. J. Arend et al., Bortezomib provides effective therapy for antibody-and cell-mediated acute rejection, Transplantation, vol.86, pp.1754-61, 2008.

L. Liefeldt, S. Brakemeier, P. Glander, J. Waiser, N. Lachmann et al., Donor-specific HLA antibodies in a cohort comparing everolimus with cyclosporine after kidney transplantation, American journal of transplantation: official journal of the American Society of Transplantation and the American Society of Transplant Surgeons, vol.12, pp.1192-1200, 2012.

J. Serre, D. Michonneau, E. Bachy, L. Noël, V. Dubois et al., Maintaining calcineurin inhibition after the diagnosis of posttransplant lymphoproliferative disorder improves renal graft survival, Kidney international, vol.85, pp.182-90, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01911491

M. Chesneau, L. Michel, N. Degauque, and S. Brouard, Regulatory B cells and tolerance in transplantation: from animal models to human, Frontiers in immunology, vol.4, p.497, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-02165775

Q. Zeng, Y. Ng, T. Singh, K. Jiang, K. A. Sheriff et al., B cells mediate chronic allograft rejection independently of antibody production, The Journal of clinical investigation, vol.124, pp.1052-1058, 2014.

N. Anfossi, P. André, S. Guia, C. S. Falk, S. Roetynck et al., Human NK cell education by inhibitory receptors for MHC class I, Immunity, vol.25, p.16901727, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00165596

L. Araujo, P. Khim, H. Mkhikian, C. L. Mortales, and M. Demetriou, Glycolysis and glutaminolysis cooperatively control T cell function by limiting metabolite supply to N-glycosylation, vol.6, p.28059703, 2017.

P. Brodin, T. Lakshmikanth, S. Johansson, K. Kä-rre, H. et al., The strength of inhibitory input during education quantitatively tunes the functional responsiveness of individual natural killer cells, Blood, vol.113, p.18974374, 2009.

P. Brodin, K. Kä-rre, H. , and P. , NK cell education: not an on-off switch but a tunable rheostat, Trends in Immunology, vol.30, p.19282243, 2009.

P. Chappert and R. H. Schwartz, Induction of T cell anergy: integration of environmental cues and infectious tolerance, Current Opinion in Immunology, vol.22, p.20869863, 2010.

R. P. Donnelly, R. M. Loftus, S. E. Keating, K. T. Liou, C. A. Biron et al., mTORC1-dependent metabolic reprogramming is a prerequisite for NK cell effector function, The Journal of Immunology, vol.193, p.25261477, 2014.

P. M. Dubois, M. Pihlgren, M. Tomkowiak, M. Van-mechelen, and M. J. , Tolerant CD8 T cells induced by multiple injections of peptide antigen show impaired TCR signaling and altered proliferative responses in vitro and in vivo, Journal of Immunology, vol.161, p.9820498, 1998.

T. Ebihara, A. H. Jonsson, and W. M. Yokoyama, Natural killer cell licensing in mice with inducible expression of MHC class I, PNAS, vol.110, p.24145414, 2013.

A. Efeyan, W. C. Comb, and D. M. Sabatini, Nutrient-sensing mechanisms and pathways, Nature, vol.517, p.25592535, 2015.

J. M. Elliott, J. A. Wahle, and W. M. Yokoyama, MHC class I-deficient natural killer cells acquire a licensed phenotype after transfer into an MHC class I-sufficient environment, The Journal of Experimental Medicine, vol.207, p.20819924, 2010.

N. C. Fernandez, E. Treiner, R. E. Vance, A. M. Jamieson, S. Lemieux et al., A subset of natural killer cells achieves self-tolerance without expressing inhibitory receptors specific for self-MHC molecules, Blood, vol.105, p.15728129, 2005.

S. Fried, B. Reicher, M. H. Pauker, S. Eliyahu, O. Matalon et al., Triple-color FRET analysis reveals conformational changes in the WIP-WASp actin-regulating complex, Science Signaling, vol.7, p.24962707, 2014.

J. M. García-martínez, J. Moran, R. G. Clarke, A. Gray, S. C. Cosulich et al., Ku-0063794 is a specific inhibitor of the mammalian target of rapamycin (mTOR), Biochemical Journal, vol.421, p.19402821, 2009.

S. Guia, B. N. Jaeger, S. Piatek, S. Mailfert, T. Trombik et al., Confinement of activating receptors at the plasma membrane controls natural killer cell tolerance, Science Signaling, vol.4, p.21467299, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00609667

S. M. Guichard, J. Curwen, T. Bihani, D. Cruz, C. M. Yates et al., AZD2014, an inhibitor of mTORC1 and mTORC2, is highly effective in ER+ breast cancer when administered using intermittent or continuous schedules, Molecular Cancer Therapeutics, vol.14, p.26358751, 2015.

A. Hagiwara, M. Cornu, N. Cybulski, P. Polak, C. Betz et al., Hepatic mTORC2 activates glycolysis and lipogenesis through Akt, glucokinase, and SREBP1c, Cell Metabolism, vol.15, p.22521878, 2012.

T. Hanke, H. Takizawa, C. W. Mcmahon, D. H. Busch, E. G. Pamer et al., Direct assessment of MHC class I binding by seven Ly49 inhibitory NK cell receptors, Immunity, vol.11, p.10435580, 1999.

P. G. Hogan and A. Rao, Store-operated calcium entry: Mechanisms and modulation, Biochemical and Biophysical Research Communications, vol.460, p.998732, 2015.

W. Huang, P. J. Zhu, S. Zhang, H. Zhou, L. Stoica et al., mTORC2 controls actin polymerization required for consolidation of long-term memory, Nature Neuroscience, vol.16, p.23455608, 2013.

P. Hö-glund and P. Brodin, Current perspectives of natural killer cell education by MHC class I molecules, Nature Reviews Immunology, vol.10, p.20818413, 2010.

M. H. Johansson, C. Bieberich, G. Jay, K. Kä-rre, H. et al., Natural killer cell tolerance in mice with mosaic expression of major histocompatibility complex class I transgene, The Journal of Experimental Medicine, vol.186, p.9236187, 1997.

S. Johansson, M. Johansson, E. Rosmaraki, G. Vahlne, R. Mehr et al., Natural killer cell education in mice with single or multiple major histocompatibility complex class I molecules, The Journal of Experimental Medicine, vol.201, p.15809355, 2005.

N. T. Joncker, N. C. Fernandez, E. Treiner, E. Vivier, and D. H. Raulet, NK cell responsiveness is tuned commensurate with the number of inhibitory receptors for self-MHC class I: the rheostat model, The Journal of Immunology, vol.182, p.19342631, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00408430

N. T. Joncker, N. Shifrin, F. Delebecque, and D. H. Raulet, Mature natural killer cells reset their responsiveness when exposed to an altered MHC environment, The Journal of Experimental Medicine, vol.207, p.20819928, 2010.

M. P. Keppel, N. Saucier, A. Y. Mah, T. P. Vogel, and M. A. Cooper, Activation-specific metabolic requirements for NK Cell IFN-g production, The Journal of Immunology, vol.194, p.25595780, 2015.

S. Kim, J. Poursine-laurent, S. M. Truscott, L. Lybarger, Y. J. Song et al., Licensing of natural killer cells by host major histocompatibility complex class I molecules, Nature, vol.436, p.16079848, 2005.

B. H. Koller, P. Marrack, J. W. Kappler, and O. Smithies, Normal development of mice deficient in beta 2M, MHC class I proteins, and CD8+ T cells, Science, vol.248, p.2112266, 1990.

K. Krzewski, X. Chen, J. S. Orange, and J. L. Strominger, Formation of a WIP-, WASp-, actin-, and myosin IIAcontaining multiprotein complex in activated NK cells and its alteration by KIR inhibitory signaling, The Journal of Cell Biology, vol.173, p.16606694, 2006.

K. Lee, P. Gudapati, S. Dragovic, C. Spencer, S. Joyce et al., Mammalian target of rapamycin protein complex 2 regulates differentiation of Th1 and Th2 cell subsets via distinct signaling pathways, Immunity, vol.32, p.941, 2010.

R. J. Li, J. Xu, C. Fu, J. Zhang, Y. G. Zheng et al., Regulation of mTORC1 by lysosomal calcium and calmodulin, vol.5, p.27787197, 2016.

Q. Liu, J. Wang, S. A. Kang, C. C. Thoreen, W. Hur et al., Discovery of 9-(6-aminopyridin-3-yl)-1-(3-(trifluoromethyl)phenyl)benzo[h][1,6]naphthyridin-2(1H)-one (Torin2) as a potent, selective, and orally available mammalian target of rapamycin (mTOR) inhibitor for treatment of cancer, Journal of Medicinal Chemistry, vol.54, p.21322566, 2011.

A. Marcais, R. Blevins, J. Graumann, A. Feytout, G. Dharmalingam et al., microRNA-mediated regulation of mTOR complex components facilitates discrimination between activation and anergy in CD4 T cells, The Journal of Experimental Medicine, vol.211, p.25311506, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-01091088

A. Març-ais, J. Cherfils-vicini, C. Viant, S. Degouve, S. Viel et al., The metabolic checkpoint kinase mTOR is essential for IL-15 signaling during the development and activation of NK cells, Nature Immunology, vol.15, p.24973821, 2014.

P. K. Mattila, F. D. Batista, and B. Treanor, Dynamics of the actin cytoskeleton mediates receptor cross talk: An emerging concept in tuning receptor signaling, The Journal of Cell Biology, vol.212, p.26833785, 2016.

J. Michaë-lsson, A. Achour, M. Salcedo, A. Kâ-se-sjö-strö-m, J. Sundbä-ck et al., Visualization of inhibitory Ly49 receptor specificity with soluble major histocompatibility complex class I tetramers, European Journal of Immunology, vol.30, p.10602053, 2000.

A. E. Moran, K. L. Holzapfel, Y. Xing, N. R. Cunningham, J. S. Maltzman et al., T cell receptor signal strength in Treg and iNKT cell development demonstrated by a novel fluorescent reporter mouse, The Journal of Experimental Medicine, vol.208, pp.2160650-2160658, 2011.

A. J. Morgan, F. M. Platt, E. Lloyd-evans, and A. Galione, Molecular mechanisms of endolysosomal Ca2+ signalling in health and disease, Biochemical Journal, vol.439, pp.349-378, 2011.

D. E. Oppenheim, S. J. Roberts, S. L. Clarke, R. Filler, J. M. Lewis et al., Sustained localized expression of ligand for the activating NKG2D receptor impairs natural cytotoxicity in vivo and reduces tumor immunosurveillance, Nature Immunology, vol.6, p.16116470, 2005.

R. Parameswaran, P. Ramakrishnan, S. A. Moreton, Z. Xia, Y. Hou et al., Repression of GSK3 restores NK cell cytotoxicity in AML patients, Nature Communications, vol.7, p.27040177, 2016.

D. M. Sabatini, H. Erdjument-bromage, M. Lui, P. Tempst, and S. H. Snyder, RAFT1: a mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs, Cell, vol.78, p.7518356, 1994.

D. D. Sarbassov, S. M. Ali, D. H. Kim, D. A. Guertin, R. R. Latek et al., Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton, Current Biology, vol.14, p.15268862, 2004.

L. V. Sinclair, J. Rolf, E. Emslie, Y. B. Shi, P. M. Taylor et al., Control of amino-acid transport by antigen receptors coordinates the metabolic reprogramming essential for T cell differentiation, Nature Immunology, vol.14, p.23525088, 2013.

H. Spits, D. Artis, M. Colonna, A. Diefenbach, D. Santo et al., Innate lymphoid cells-a proposal for uniform nomenclature, Nature Reviews Immunology, vol.13, p.23348417, 2013.

J. C. Sun and L. L. Lanier, Cutting edge: viral infection breaks NK cell tolerance to "missing self, The Journal of Immunology, vol.181, p.19017932, 2008.

C. M. Sungur, Y. J. Tang-feldman, E. Ames, M. Alvarez, M. Chen et al., Murine natural killer cell licensing and regulation by T regulatory cells in viral responses, PNAS, vol.110, p.23589894, 2013.

L. M. Thomas, M. E. Peterson, and E. O. Long, Cutting edge: NK cell licensing modulates adhesion to target cells, The Journal of Immunology, vol.191, p.24038086, 2013.

S. K. Tripathy, P. A. Keyel, L. Yang, J. T. Pingel, T. P. Cheng et al., Continuous engagement of a self-specific activation receptor induces NK cell tolerance, The Journal of Experimental Medicine, vol.205, p.18606857, 2008.

S. H. Um, D. 'alessio, D. , and T. G. , Nutrient overload, insulin resistance, and ribosomal protein S6 kinase 1, S6K1, Cell Metabolism, vol.3, p.16753575, 2006.

R. E. Vance, J. R. Kraft, J. D. Altman, P. E. Jensen, and D. H. Raulet, Mouse CD94/NKG2A is a natural killer cell receptor for the nonclassical major histocompatibility complex (MHC) class I molecule Qa-1(b), The Journal of Experimental Medicine, vol.188, p.9815261, 1998.

C. Viant, A. Fenis, G. Chicanne, B. Payrastre, S. Ugolini et al., SHP-1-mediated inhibitory signals promote responsiveness and anti-tumour functions of natural killer cells, Nature Communications, vol.5, p.25355530, 2014.

S. Viel, A. Març-ais, F. S. Guimaraes, R. Loftus, J. Rabilloud et al., TGF-b inhibits the activation and functions of NK cells by repressing the mTOR pathway, Science Signaling, vol.9, p.26884601, 2016.

E. Vivier, E. Tomasello, M. Baratin, T. Walzer, and S. Ugolini, Functions of natural killer cells, Nature Immunology, vol.9, p.18425107, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00294184

M. F. Wu and D. H. Raulet, Class I-deficient hemopoietic cells and nonhemopoietic cells dominantly induce unresponsiveness of natural killer cells to class I-deficient bone marrow cell grafts, Journal of immunology, vol.158, p.9029098, 1997.

H. Yang, D. G. Rudge, J. D. Koos, B. Vaidialingam, H. J. Yang et al., mTOR kinase structure, mechanism and regulation, Nature, vol.497, p.23636326, 2013.

Y. Zheng, S. L. Collins, M. A. Lutz, A. N. Allen, T. P. Kole et al., A role for mammalian target of rapamycin in regulating T cell activation versus anergy, The Journal of Immunology, vol.178, p.17277121, 2007.

Y. Zheng, G. M. Delgoffe, C. F. Meyer, W. Chan, and J. D. Powell, Anergic T cells are metabolically anergic, The Journal of Immunology, vol.183, p.19841171, 2009.

J. Zimmer, L. Donato, D. Hanau, J. P. Cazenave, M. M. Tongio et al., Activity and phenotype of natural killer cells in peptide transporter (TAP)-deficient patients (type I bare lymphocyte syndrome), The Journal of Experimental Medicine, vol.187, p.9419217, 1998.

, the nephrologist (A.S.) who reviewed the biopsies specimens were blinded to clinical and immunological information

, Renal allograft lesions were graded according to the Banff classification, 2011.

, anti-CD68 (macrophages) and anti-66b (granulocytes) were performed by immunochemistry on paraffin embedded sections using an anti-human CD34 (clone QBEnd10, Double stainings with anti-CD34 (endothelial cells) and respectively one antibody among anti-CD56 (NK cells), anti-CD3 (T cells)

P. Institute, The algorithm allows for precise quantification of inflammatory cells in the renal allograft. The quantification of inflammatory cells in mvi+DSA-patients' biopsies was compared to the one of mvi+DSA+C3d-patients' biopsies

, Detection of anti-HLA antibodies

, Donor-recipient HLA typing were performed by PCR-SSO reverse (One Lambda

, Serum samples banked at the time of biopsy from patients with significant microvascular inflammation were tested for the presence of donor specific anti-HLA antibodies using Screening Flow Beads

D. , the Etablissement Français du Sang

. Canet, Two primary cell lines of coronary endothelial cells (#407 and 408) (Promocell, fact mvi+DSA-graft survival was similar to the one of patients diagnosed with conventional antibody-mediated rejection due to non-complement binding DSA, 2012.

, Mvi+DSA-patients and mvi-DSA-patients displayed similar characteristics (Table 2), especially regarding the number of HLA mismatches, except for microvascular inflammation, vol.0001, p.0

, Mvi+DSA-patients and mvi+DSA+C3d-had also similar baseline characteristics, including regarding the severity of histological lesions

, PBMCs were cultured overnight at 37°C in 5% CO2 in complete culture medium (RPMI 1640 containing glutamine and supplemented with 10 % FBS, hepes and penicillin-streptomycin) supplemented with 500

, UI/ml recombinant human IL-2 (R&Dsystems) or were maintained at 4°C in complete culture medium

, Simultaneously, endothelial cells were seeded (100 000 in each well) in wells of a flat bottom 96-well plate coated with gelatin 1% (Sigma)

, Then, purified NK cells were resuspended at 0.5 millions/ml in complete RPMI. One hundred thousand NK cells were added in each well containing endothelial cells after removing endothelial cell culture medium. Five microliter of anti-human CD 107a FITC (eBIOH4A3, ebioscience) was added in each well at the beginning of the co-culture. One hour after the beginning of the co-culture, golgi stop (DB biosciences) was added in each well. Then cells were co-cultured for 3 hours. After the co-culture, cells were detached with trypsin and recovered in V bottom-96-well plates, Then cells were stained 20 min at room temperature in 50 µl of the following antibodies diluted in PBS1x: CD3 APC-H7 (SK7) BD biosciences, vol.1, p.25

, CD56 PE CF594 (NCAM16.2) BD biosciences, vol.1, p.25

, KIR2DL3 APC (180701) R&Dsystems 1/10e

, KIR3DL1 BV 711 (DX9) BD bisociences 1/25e

, CD 107a FITC (eBIOH4A3) ebiosciences 1/50e

, Fixable viability dye eFluor 506 ebiosciences 1/1000e

, Without washing, the following antibodies were added in 50 µl in PBS1x for an incubation of 15 minutes at room temperature: KIR2DL1/S1 PE CY7 (EB6B) Beckman Coulter, vol.1, p.25

, KIR2DL2-3/S2 PE CY5.5 (GL183) Beckman Coulter, vol.1, p.25

, References Throughout this application, various references describe the state of the art to which

J. Van-bergen, A. Thompson, G. W. Haasnoot, J. I. Roodnat, J. W. De-fijter et al., KIR-ligand mismatches are associated with reduced long-term graft survival in HLA-compatible kidney transplantation, Am. J. Transplant, vol.11, pp.1959-1964, 2011.

M. E. Breimer, L. Rydberg, A. M. Jackson, D. P. Lucas, A. A. Zachary et al.,

J. Visger, R. Pelletier, S. L. Saidman, and W. W. Williams, , 2009.

K. S. Campbell and A. K. Purdy, Structure/function of human killer cell immunoglobulin-like receptors: lessons from polymorphisms, evolution, crystal structures and mutations, Immunology, vol.132, pp.315-325, 2011.

E. Canet, J. Devallière, N. Gérard, G. Karam, M. Giral et al.,

M. J. Everly, L. M. Rebellato, C. E. Haisch, M. Ozawa, K. Parker et al., Incidence and impact of de novo donor-specific alloantibody in primary renal allografts, Transplantation, vol.95, pp.410-417, 2013.

C. Fauriat, M. A. Ivarsson, H. Ljunggren, K. Malmberg, and J. Michaëlsson, , 2010.

, Education of human natural killer cells by activating killer cell immunoglobulin-like receptors, Blood, vol.115, pp.1166-1174

J. G. Hall, M. E. Smith, P. A. Edwards, and K. V. Shooter, The low concentration of macroglobulin antibodies in peripheral lymph, Immunology, vol.16, pp.773-778, 1969.

L. G. Hidalgo, B. Sis, J. Sellares, P. M. Campbell, M. Mengel et al., NK cell transcripts and NK cells in kidney biopsies from patients with donor-specific antibodies: evidence for NK cell, 2010.

, Am. J. Transplant, vol.10, pp.1812-1822

T. Hirohashi, S. Uehara, C. M. Chase, P. Dellapelle, J. C. Madsen et al.,

R. B. Colvin, Complement Independent Antibody-Mediated Endarteritis and Transplant Arteriopathy in Mice, Am. J. Transplant, vol.10, pp.510-517, 2010.

T. Hirohashi, C. M. Chase, P. Della-pelle, D. Sebastian, A. Alessandrini et al., A Novel Pathway of Chronic Allograft Rejection Mediated by NK Cells and Alloantibody, Am. J. Transplant, vol.12, pp.313-321, 2012.

A. M. Jackson, T. K. Sigdel, M. Delville, S. Hsieh, H. Dai et al., Endothelial cell antibodies associated with novel targets and increased rejection, J. Am. Soc. Nephrol, vol.26, pp.1161-1171, 2015.

A. Kikuchi-maki, S. Yusa, T. L. Catina, and K. S. Campbell, KIR2DL4 Is an IL-2-Regulated NK Cell Receptor That Exhibits Limited Expression in Humans but Triggers Strong IFN-? Production, J. Immunol, vol.171, pp.3415-3425, 2003.

E. Kreijveld, A. Van-der-meer, H. J. Tijssen, L. B. Hilbrands, J. et al., KIR gene and KIR ligand analysis to predict graft rejection after renal transplantation, Transplantation, vol.84, pp.1045-1051, 2007.

K. Kunert, M. Seiler, M. F. Mashreghi, K. Klippert, C. Schönemann et al., KIR/HLA ligand incompatibility in kidney transplantation, Transplantation, vol.84, pp.1527-1533, 2007.

M. H. Oberbarnscheidt, Q. Zeng, Q. Li, H. Dai, A. L. Williams et al., Non-self recognition by monocytes initiates allograft rejection, J. Clin. Invest, vol.124, pp.3579-3589, 2014.

E. Pouliquen, A. Koenig, C. C. Chen, A. Sicard, M. Rabeyrin et al., Recent advances in renal transplantation: antibody-mediated rejection takes center stage. F1000prime Rep. 7, p.51, 2015.

L. Ruggeri, M. Capanni, E. Urbani, K. Perruccio, W. D. Shlomchik et al., Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants, Science, vol.295, pp.2097-2100, 2002.

J. Sellarés, D. G. De-freitas, M. Mengel, J. Reeve, G. Einecke et al., Understanding the Causes of Kidney Transplant Failure: The Dominant Role of Antibody-Mediated Rejection and Nonadherence, 2012.

, Am. J. Transplant, vol.12, pp.388-399

Q. Sun, Z. Liu, J. Chen, H. Chen, J. Wen et al., Circulating Antiendothelial Cell Antibodies Are Associated with Poor Outcome in Renal Allograft Recipients with Acute Rejection, Clin. J. Am. Soc. Nephrol, vol.3, pp.1479-1486, 2008.

Q. Sun, Z. Cheng, D. Cheng, J. Chen, S. Ji et al., De novo development of circulating anti-endothelial cell antibodies rather than pre-existing antibodies is associated with post-transplant allograft rejection, Kidney Int, vol.79, pp.655-662, 2011.

O. Thaunat, Humoral immunity in chronic allograft rejection: puzzle pieces come together, Transpl. Immunol, vol.26, pp.101-106, 2012.

T. H. Tran, J. Mytilineos, S. Scherer, G. Laux, D. Middleton et al., , 2005.

, Analysis of KIR ligand incompatibility in human renal transplantation, Transplantation, vol.80, pp.1121-1123

T. H. Tran, C. Unterrainer, G. Fiedler, B. Döhler, S. Scherer et al., No impact of KIR-ligand mismatch on allograft outcome in HLA-compatible kidney transplantation, Am. J. Transplant, vol.13, pp.1063-1068, 2013.

S. Uehara, C. M. Chase, W. H. Kitchens, H. S. Rose, R. B. Colvin et al.,

J. C. Madsen, NK Cells Can Trigger Allograft Vasculopathy: The Role of Hybrid Resistance in Solid Organ Allografts, J. Immunol, vol.175, pp.3424-3430, 2005.

Z. Zhang, X. Huang, J. Jiang, A. Lau, Z. Yin et al., Natural Killer Cells Mediate Long-term Kidney Allograft Injury, vol.99, pp.916-924, 2015.

, Efficacité de l'évérolimuS pour le traitement des TrAnsplantés Rénaux