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Abstract

Modern systems are pressured to adapt in response to their constantly changing
environment to remain useful. Traditionally, this adaptation has been handled at
down times of the system. there is an increased demand to automate this process
and achieve it whilst the system is running. Self-adaptive systems were intro-
duced as a realization of continuously adapting systems. Self-adaptive systems
are able to modify at runtime their behavior and/or structure in response to their
perception of the environment, the system itself, and their requirements. The fo-
cus of this work is on realizing self-configuration, a key and essential property of
self-adaptive systems. Self-configuration is the capability of reconfiguring auto-
matically and dynamically in response to changes. This may include installing,
integrating, removing and composing/decomposing system elements.

This thesis introduces the Dr-BIP framework, an extension of the BIP frame-
work for modeling self-configuring systems that relies on a model-based and com-
ponent & connector approach to prescribe systems. The combination of both of
these approaches exploits the benefits of each.

A Dr-BIP system model is a runtime model which captures the running sys-
tem at three different levels of abstraction namely behavior, configuration, and
configuration variants. The system’s configuration is captured by component and
connectors. In a component and connector system, self-configuration can have
three different levels of granularity which includes the ability to add or remove
connectors, add or remove components, and add or remove subsystems. Dr-BIP
supports explicit addition and removal of both components and subsystems, but
implicit addition and removal of connectors. The main advantage of relying on
an implicit addition and removal of connectors is the ability to guarantee by con-
struction specific configuration topologies.

To capture the three levels of abstraction, we introduce motifs as primary
structures to prescribe a self-configuring Dr-BIP system. A motif defines a set
of components that evolve according to interaction and reconfiguration rules. A
system is composed of multiple motifs that possibly share components and evolve
together. Interaction rules dictate how components composing the system can
interact and reconfiguration rules dictate how the system configuration can evolve
over time. Finally, we show that the proposed framework is both minimal and
expressive by modeling four different self-configuring systems. Last but not least,
we propose a modeling language to codify the framework concepts and provision
an interpreter implementation.

Keywords: model driven engineering, reconfigurable, dynamic, self-configuring,
self-adaptive, component and connector architectures
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Résumé

Pour rester utile, les systemes modernes doivent s’adapter a leur environnement
qui ne cessent d’évoluer. Traditionnellement, ces adaptations sont traitées en
temps d’interruption du systeme. La demande pour automatiser ce processus et
pour le réaliser lors du fonctionnement du systeme est croissante. L’introduction
des systemes auto-adaptatifs était la réalisation d’un system en permanente adap-
tation. Les systemes auto-adaptatifs peuvent modifier, au moment de I’exécution,
leur comportement et / ou leur structure en fonction de leur perception de ’environ-
nement, du systeme méme et de leurs exigences. L’objectif de ce travail est de
réaliser I'auto-configuration, une propriété clé et essentielle des systemes auto-
adaptatifs. L’auto-configuration est la capacité de se reconfigurer automatique-
ment et dynamiquement suite aux changements, tel que I'installation, I'intégration,
le retrait et la composition / décomposition d’éléments du systeme.

Cette these présente le cadre du Dr-BIP, une extension du plan BIP pour la
modélisation des systemes a configuration automatique qui repose sur une ap-
proche basée sur un modele et sur des composants et des connecteurs pour pre-
scrire des systemes. La combinaison de ces deux approches exploite les avantages
de chacune d’elles, faisant de leur combinaison une méthodologie idéale pour la
réalisation des systemes auto-adaptifs complexes.

Un modele de systeme Dr-BIP est un modele d’exécution qui capture le systeme
en cours d’exécution a trois niveaux d’abstraction différents, a savoir du comporte-
ment, de configuration et des variantes configurations. La configuration du systeme
est saisie par des composants et des connecteurs. Dans un systeme de composants
et de connecteurs, la configuration automatique (’auto-configuration) peut avoir
trois niveaux de granularité différents, notamment la possibilité d’ajouter ou de
supprimer des connecteurs, d’ajouter ou de supprimer des composants et d’ajouter
ou de supprimer des sous-systemes. Dr-BIP prend en charge 'ajout et le re-
trait explicites de composants et de sous-systemes, mais ’ajout et le retrait im-
plicites de connecteurs. L’avantage principal de I'addition et de la suppression
implicite de connecteurs est la capacité de garantir par construction une configu-
ration spécifique de topologies.

Pour capturer les trois niveaux d’abstraction, nous introduisons des motifs en
tant que structures principales pour prescrire un systeme Dr-BIP a configuration
automatique. Un motif définit un ensemble de composants qui évoluent en fonction
de regles d’interaction et de reconfiguration. Un systeme est composé de plusieurs
motifs pouvant éventuellement partager des composants et évoluer ensemble. Les
regles d’interaction dictent la maniere dont les composants du systeme peuvent
interagir, tandis que les regles de reconfiguration dictent 1’évolution de la configu-
ration du systeme. Enfin, nous montrons que le cadre proposé est a la fois minime
et expressif en modélisant quatre systemes différents a configuration automatique.
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Finalement, nous proposons un langage de modélisation pour codifier les concepts

du cadre et fournir une implémentation d’interprete.

Keywords: reconfigurable, dynamic, self-configuring, self-adaptive, compo-
nent and connector architectures
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1.1 Motivation

Software systems have invaded our lives in the past thirty years [1] and no
downfall can be seen in this regard. In fact, we have become highly dependent on
software systems in our day-to-day tasks and the demand is ever so increasing. For
example, on a typical day one relies on multiple software systems: waking up on
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a digital alarm clock, answering emails through a mobile phone, prepping a meal
with home appliances, etc. The daily dependability on systems has impacted our
expectations from software systems; expecting them to be energy-efficient, flexible,
resilient, customizable, self-optimizing, etc.

The life cycle of a software system typically involves: analysis, design develop-
ment, testing, and deployment. Once the system is deployed, it enters the software
evolution phase by which it is maintained by a system administrator to handle
faults, improve performance, address changes to meet changing requirements, etc.
Such systems are known to have an open-loop structure and require external in-
tervention to evolve. Evolution could be triggered by either internal factors that
stem from the system itself such as failure, or external factors that stem from the
system’s environment such as change in requirements, or emergent of new technol-
ogy that must be integrated. Systems that don’t respond to change factors will
progressively become less useful and hence software evolution is inevitable.

The evolution of some systems has become time consuming and a hassle even
to the most skilled system administrator. This is caused by the exponential growth
in size of such systems leading to a “complexity crisis” [2]. In addition, the cost
of evolution has been steadily increasing and is estimated to be more than 90% of
the total cost of the entire system’s life cycle [3]. Therefore, the demand to achieve
the desired requirements within a reasonable cost and time becomes apparent.

In addition to the “complexity crisis” hindering system’s evolution, a special
type of systems that belong to IOT (Internet Of Things) introduces new dimensions
of complexity. IOT or Industry 4.0 enables heterogeneous embedded systems or
objects in general to sense their surrounding and interact with each other through
a communication network to achieve global goals. Some application examples of
IOT include home or industrial automation, automotive traffic management, smart
cities and many others. An enormous amount of sensor data is generated by such
systems, which must be continuously analyzed in order to adapt to changes in
either the context or environment whilst achieving system goals and requirements.
Such systems must be context-aware as they are subject to unpredictable changes
in context that cannot be anticipated before deployment. Moreover, such systems
are expected to handle the adaptation at runtime as the need arises.

In summary, maintenance that is decoupled from the runtime environment and
performed manually is difficult and expensive due to the size and complexity of
systems. Furthermore, context-aware systems require adaptation to be handled at
runtime. Therefore innovative ways are required to design, develop, and deploy
such software systems.

On the one hand, Autonomous systems came along as a solution to minimize
human intervention and reduce evolution cost in complex software systems. Au-
tonomous systems “manage themselves given high-level objectives from adminis-
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trators” [4]. In other words, such systems take a major load off system admin-
istrators as they are only required to dictate new objectives. kephart and Chess
argue that autonomous systems are the rightful approach to tackle problems aris-
ing from the “complexity crisis” [4]. On the other hand, self-adaptive systems were
introduced as a realization of continuously adapting context-aware systems. Self-
adaptive systems are “able to modify their behavior and/or structure in response
to their perception of the environment and the system itself, and their require-
ments” [5]. Furthermore, they handle adaptation and evolution at runtime. This
can be achieved by converting an open-loop system to a closed-loop system with
the aid of a feedback loop that adjusts the system at run-time.

Self-adaptive and autonomous systems are strongly related, and it is difficult to
draw distinction between the two terminologies as they are used interchangeably
in the literature. Self-adaptive systems are more specific and have less coverage
than autonomous systems [6]. Consider a software system decomposed into the
conventional layered model consisting of application, middleware, network, oper-
ating system, and hardware. In Self-adaptive systems adaptation covers only the
application and middleware layer, however, in autonomous systems adaptation
covers the application, middleware, network, and operating system layers.

1.2 Self-adaptive Systems

This section presents a general overview of the basic concepts in self-adaptive
systems. First, it briefly discusses different interpretation produced by the re-
search community for the term self-adaptive systems. Next, it elaborate upon the
basic foundations, requirements and challenges of self-adaptive system. Finally,
it introduces four properties that are oath to be characteristics of self-adaptive
systems.

1.2.1 Definition

Self-adaptive systems are still the focus of intense research and development.
There exists an enormous amount of literature contributing to the modeling, de-
sign and development of self-adaptive systems, however there is no consent on its
definition.

One school of thought defines self-adaptive systems as those that adapt in re-
sponse to change. There are slight variations within this school of thought. These
differences arise from three questions: what can be modified /altered, when is the
adaptation triggered (i.e. what are the monitored properties), how is the adapta-
tion performed? In response to what can be modified, three different approaches
exist either by modifying the system’s behavior [7-10], or the system’s structure
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5, 6,810, 12, 14, 15]
6 10 14]

System
How Run-time

Structure [5, 6, 11, 12]
What g favior | 5, 6, 810, 17
Environment | [5, 6, 8-15]
When | Requirements | [5, 10-13, 15]
[
6,

Table 1.1: Variations in the definition of self adaptive system in the first school of
thought

[11], or both [5, 6, 12]. The adaptation is triggered when a change is detected
in the environment [8], requirements [13], system-itself [14] or a combination of
these three [5, 12, 15]. When considering how adaptation takes place, some em-
phasize that it is handled at runt-time [6, 10, 14], while others don’t. A detailed
classification of variations within this school of thought is presented in Table 1.1.

Another school of thought defines self-adaptive systems as those whose main
aim is to meet system requirements despite uncertainties or changes that may
arise in operating conditions [7, 16-18]. In other words, such systems evaluate
performance and whenever they are not accomplishing what they are intended to
do, possibly due to failure or variability in resources, adaptation is triggered.

In comparison, the system requirements, in the first school of thought, can be
variable and are subject to change, but are fixed in the second school of thought.
Furthermore, any change in the system requirements triggers adaptation in first
school of though, while unsatisfied requirements triggers adaptation in the second
school of thought.

Henceforth in this dissertation we utilize the definition of self-adaptive systems
given by [6] as it adheres closely to our proposal. In other words, a self-adaptive
system is one that adapts at runtime to changes in itself and the environment.

1.2.2 Requirements

This section presents the requirements of a self-adaptive system with the aid
of a generic conceptual model adopted by such systems. Furthermore, it describes
the adaptation loop which highlights the fundamental modules required in a self-
adaptive system to attain adaptability. Moreover, this section introduces a set of
terminologies, that are used hereafter in the dissertation.

Conceptual Model

The conceptual model describes the abstract elements composing a self-adaptive
system and the relation between them. In other words, it presents the basic prin-
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Self-adaptive System

Adaptation Engine

sensor
actuator

JUoWuOITAUY

Managed System

Figure 1.1: Conceptual model for a self-adaptive system: dissecting the basic
principles of a self adaptive system

ciples of self-adaptive systems. The conceptual model is composed of three ele-
ments: the managed system, adaptation engine, and environment. Hence, a self
adaptive system can be seen as a tuple SAS = (M S, AE,| E). Figure 1.1 depicts
the anatomy of the conceptual model and a description of each entity is presented
next.

Managed system. comprises the application code which realizes the function-
ality of the system. In the case of collaborative adaptive systems the managed
system can be thought of as a series of resources such as robots, vehicles, etc. To
support adaptation, the managed system is equipped with actuators. Actuators
enable the execution of adaptation requests selected by the adaptation engine. For
instance, given multiple robots that collaborate to transport an element from point
A to B, the managed system is responsible for the navigation of robots and element
transfer. The actuators may restrict five robots to participate in the transfer of
the element depending on its weight. Different terms are used in the literature
referring the concept of managed system. For example, it is also referred to as
managed element [4], system layer [19], adaptable software [6], managed resources
[20], base-level subsystem [21], and component control layer [11].

Adaptation Engine. supervises and administrates the managed system. It
contains the adaptation logic needed to achieve system requirements or goals. The
adaptation engine is equipped with sensors that monitor both the managed system
and environment and adapts the preceding when necessary. The adaptation engine
analyzes the monitored data and constructs an adaptation plan. For instance,
consider a robot that adapts its navigation strategy depending on the presence of
obstacles (sensed from environment) and its energy level (sensed from the managed
system). Different terms are used in the literature referring to the concept of
adaptation engine. For example, It is also referred to as autonomic manager [4],
architecture layer [19], adaptation logic [20] and reflective subsystem [21].
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Adaptation Engine

C Knowledge

~ —

Figure 1.2: Adaptation loop describes the process adopted by the adaptation
engine to achieve adaptability

FEnvironment. refers to the external world with which the system interacts
and is effected by. It includes physical entities such as obstacles on a robot’s path.

In conclusion the conceptual model described above sheds light over self-adaptive
systems with external adaptation approach i.e. having a clear separation between
the adaptation engine and managed system. This separation increases maintain-
ability through modularization and localization [6, 19, 22]. It is worth noting
that other approaches exist where the adaptation engine and managed system are
intertwined into a single unit. Such self-adaptive systems are known to have In-
ternal adaptation approach. With the internal approach the sensors, actuators
and adaptation logic are mixed with the application code, often leading to poor
maintainability and scalability. Empirical evidence in favor of external adaptation
over internal adaptation can be found in [23].

Adaptation Loop

As discussed in section 1.1, self-adaptive systems deploy a closed-loop mech-
anism, also known as adaptation loop [6]. The adaptation loop comprises the
process used by the adaptation engine to achieve adaptability. It is inspired by
the MAPE-K control loop in autonomic computing and it envelopes four steps,
monitoring, analyzing, planing and executing [4]. The effectiveness of the MAPE-
K comes from its intuitive structure in handling the different functions required
for a feed-back loop [16]. Figure 1.2 illustrates the adaptation loop process.

The first step is to monitor and collect data from the environment and managed
system through sensors. The collected data is processed and knowledge is updated.
Next, up-to-date knowledge is analyzed to determine whether an adaptation is
needed to attain system requirements or goals. Next, if adaptation is mandatory,
a Plan is constructed consisting of one or more adaptation actions. Finally, the
plan is executed by the managed system with the aid of actuators.

To summarize, a self-adaptive system requires sensors to monitor the environ-
ment and managed system. It also requires the presence of an adaptation engine
which has the capability to monitor and collect data, analyze collected information,
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and construct a convenient adaptation plan. finally, self-adaptive systems demand
the presence of actuators which will aid the managed system in the execution of
the adaptation plan.

1.2.3 The Self-* Properties

A self-adaptive system adapts at runtime to changes in itself and environ-
ment. To achieve this, ideally speaking, systems should have certain adaptive
characteristics known as the self-* properties. These properties are introduced in
autonomic computing [2, 4] and have been here after referred to in the context of
self-adaptation in many works [6, 16] as basis for adaptation. These properties are
composed of four categories, which are discussed in detail next.

— Self-configuring: is the capability of reconfiguring automatically and dy-
namically in response to changes. This may include installing, integrating,
removing and composing/decomposing system elements.

— Self-optimizing: is the capability of managing performance and resource al-
location whilst satisfying user requirement. This includes concerns such as
throughput, response time etc.

— Self-healing: is the capability of discovering, diagnosing, and reacting to
disruptions. This include both reactive or proactive healing. In proactive
healing potential problems are anticipated and acted upon early on to prevent
failure. while self-repairing focuses on recovery from them.

— Self-protecting: is the capability of detecting security breaches and recovering
from their effects. This includes both reactive and proactive protection,
namely recovering from both existing attacks and anticipated ones.

While the majority of researchers in the field agree that self-adaptive systems are
expected to embody all of these properties, only few researchers have directed their
focus to more than a single property to aid with realizing self-adaptive systems,
such as [19]. This is because of the difficulty of orchestrating and designing systems
whilst keeping in mind all four properties. Henceforth in this dissertation the focus
will be targeted towards the self-configuring property. In other words the focus of
this dissertation is on self-configuring adaptive systems.

1.2.4 Challenges

Self-adaptive systems pose new challenges to the development and design of
software systems. This section aims to identify the various challenges faced by
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software engineers in realizing self-adaptive systems. It first tackles challenges
in the broader view of the domain. Next it discusses challenges with respect to
the requirements of a self-adaptive system presented in section 1.2.2, namely the
conceptual model, adaptation loop, and self-* properties.

Framework Challenges. While there is a handful of research dealing with ap-
proaches to reason about realizing self-adaptive systems, there is a lack of language,
tools and integrated frameworks that integrate and embody these concepts. Fur-
thermore, existing frameworks such as Stitch [24] (a language to model repair
strategies in an adaptive system) are usually domain specific and lack general-
ity. A main challenge it to develop frameworks that are generic enough to tackle
problems in various domain, yet expressive enough to model complex problems.
Having a general purpose framework to realize self-adaptive systems facilitate the
integration of these frameworks by the industry.

Trust Challenges. One of the main challenges faced after releasing a self-
adaptive system into industry is lack of trust that users/administrators have when
dealing with such systems. This mainly arises due to three problems. First, the
self-dependence of the system leaves it untraceable and hence the user is left aban-
doned with regards to the actions that the system is choosing/performing. One
way to solve this issue is to report the activities and decisions made by the self-
adaptive system to the administrators. Determining how much information to
expose and what are concise ways to represent such information remains a chal-
lenge to be addressed by system engineers. Second, the lack of user control over the
self-adaptive system encourages users to neglect it. Deciding on how much control
to delicate to users is a challenging question. For instance, when the system’s and
administrator’s decision are conflicting, which action is overridden? and in which
situation can an administrator override the system’s decision? Third, there is no
consent in the literature on a single metric to measure the quality of adaptation.
Such a metric will convey confidence and encourage the acceptance of self-adaptive
systems. To ease the adoption of self-adaptive systems into industry these trust
challenges needs to be addressed.

Conceptual Model Challenges

Adaptation Engine Challenges. While most existing work focuses on a cen-
tralized adaptation engine, few works started addressing decentralization such as
[17]. The authors in [17] investigate the different patterns in decentralizing the
adaptation loop which comprises the main functionalities in the adaptation engine.
Decentralization and distribution of the adaptation engine is inevitable when deal-
ing with complex and scalable systems. Decentralization and distribution bring




CHAPTER 1. INTRODUCTION 10

in new challenges to the table. First, they introduce the need for effective com-
munication protocols to share knowledge across the adaptation engines. Another
issue to consider is latency that might be introduced by communication protocols.
Latency results in temporal inconsistent views of the system. The main challenge
is to develop algorithms that supervise and administrate the managed systems
while tolerating inconsistency.

Managed System Challenges. The managed system is typically modeled into
a representation that reflects the actual systems behavior. The key issue when
modeling a system is picking the right level of abstraction. How much information
to abstract away? If the model is too abstract, it may be easier to control by the
adaptation engine, however it may no longer reflect the actual system. On the
other hand, complex detailed models are difficult to deal with from the adapta-
tion engine’s perspective. Therefore, the consistency between the model and the
managed system must be maintained and this challenging trade off must be taken
into consideration by engineers when designing the managed system model.

Sensor € Actuator Challenges. The sensors and actuators are mainly used by
the adaptation engine to peak into what is happening in the managed system and
to accordingly make changes to it. One key challenge is deciding on what can be
sensed i.e. the exact information needed to make precise and correct adaptation
decision. Other important questions to answer are what actuators are needed to
change the system? Which architecture styles support both sensing and acting?
The sensors and actuators are usually catered to the system’s goal. In other words
the system goal determines what information is needed and what can be modified
in the managed system to reach the goal. A major challenge is addressing goal
change and accounting for new sensors and actuators that might be needed to
achieve new goals.

Environment Challenges. 'To capture uncertainty in the environment it must
be modeled. Existing work captures modeling of parametric uncertainties where
the value of a certain element in the model is unknown. Some challenging questions
include: How to deal with more complex uncertainties? How to deal with real life
uncertainties whose behavior can’t be completely captured and translated to a
model? One possible solution is to rely on discrepancy modeling. Moreover, It
is also important to think ahead about how to deal with new uncertainties that
might have not been modeled.
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Adaptation Loop Challenges

Monitoring Challenges. The objective of the monitor is to capture and collect
sensed data. The information being monitored and gathered is usually determined
by the system goal. Gathering and collecting all the information from sensors is
very costly. Furthermore, monitoring for multiple goals may lead to redundant
information and consequently undesirable costs. Hence a challenge to consider
is the tailoring of the monitor depending on the situation being analyzed and
system goal. Finally, majority of existing approaches determine in advance (and
at design time) what to be monitored, however the main challenge is to have
adaptive monitoring, where the monitoring process is updated to account for new
emerging system goals.

Analysis Challenges. Given the monitored information, the main goal of the
analysis is to determine when the system is in a bad state. A bad state typically
refers to an undesired system behavior which requires adaptation. How well it can
detect a bad state and will it be detected soon enough to take proper actions?
These are some of many investigations that should be addressed. The analysis
task to this date is considered a major challenge. In-fact its complexity has lead
researchers to rely on ad-hoc and rule-based techniques for analysis. Promising
approaches are the use of artificial intelligence and data mining techniques to adopt
on-line analysis.

Planning Challenges. The planer takes a screen shot of the system current
state along with the system goals to decided on an adaptation plan that satisfies
the system constraints and goals. The adaptation plan is a sequence of actions
that must take the system from an undesired state to a normal state. Unfortu-
nately, This task is computationally hard and as such, most researchers rely on
off-line planning. In off-line planning a set of plans are created at design time that
can be shown either by construction or by a verification process to satisfy system
constraints. However, the real research challenge lies in on-line planing, where
new plans are synthesized on the fly as the system goals change. Other challenges
include dealing with planning for multiple goals and conflict resolution, account-
ing for incomplete system information in decentralized systems, and insuring the
planned transient behavior is safe.

FEzxecution Challenges. At this stage the managed system executes the adap-
tation plan with the aid of actuators. Matters to consider at this stage are: how
to handle the failure of completing the execution of the adaptation plan and the
interference between the execution of multiple adaptation plans. In addition, an
important step is to validate that the execution of the adaptation plan in-fact is
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correct and results in the desired behavior. Most of existing approaches rely on
limited examples to show the validity of their approach, however verification is
an essential step. The adaptive behavior of such systems dimensions the need for
static verification and strengths the need for runtime verification. Relying on runt-
time verification for adaptive system is complex due to the several alternatives and
execution paths that are inherent to the nature of self-adaptive systems. A com-
bination of both off-line and on-line verification seems a possible, but challenging,
resolution.

Self-* Property Challenges

Since the focus of this dissertation is on the self-configuring property, this sec-
tion tackles only the challenges that are encountered in realizing self-configuring
adaptive systems. A self-configuring adaptive system is one which allows the in-
stallation, integration, removal and composition/decomposition of system elements
at runtime in response to changes that arise in its environment or itself.

The research challenges are primarily concerned with transient behavior. It is
not only important to make sure that transient behavior is of desirable character-
istics but also that the system safety property is not violated during reconfigura-
tion. In addition, it is essential to advocate seamless integration of new elements
introduced to the system. An associated challenge is to verify that the new con-
figuration in-fact satisfies system constraints. Another crucial point to address
is making sure state information is not lost when configuration is modified. One
possibility to approach this is by making sure that involved system elements are
idle when performing a reconfiguration.

Finally, there are two interesting issues that arise as a result of large and
complex self-configuring systems. First, in complex system its highly likely to have
multiple elements exposing the same behavior. It also possible that you would like
to introduce an element having the exact same behavior. For example, introducing
new servers to address high user demands. This introduces the need for some way
to capture behavioral types which allows the creation of several elements of a
certain type (i.e. behavior). Another fundamental aspect to address in complex
systems are shared elements, more specifically how to handle reconfiguration of
shared elements (i.e. coexisting in multiple subsystems). All these are interesting
complications that emerge as a result of reconfiguring systems.

1.3 Problem Statement

Modern systems are pressured to adapt in response to their constantly chang-
ing environment to remain useful. While traditionally, this adaptation has been
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handled manually and at down times of the system by system administrators,
there is an increased demand to automate this process and achieve it whilst the
system is running. This is partly because manual adaptation of system has been
estimated to cost more than 90% of the total cost of the entire system’s life cycle
3].

For instance, consider the integration of an extra server replica to a web-based
system to handle the overload in user demands. Also consider the removal of
a faulty system element that is causing undesirable behavior and its integration
later on after it has been fixed. Consider the removal of an entire subsystem that
is reliant on an old technology and replacing it with one that integrates new a
technology. More concrete examples can be found in systems that belong to IOT
(Internet Of Things). For instance, consider an automated highway system where
a bunch of cars are constantly entering the highway, communicating with each
other in such a way to avoid traffic congesting and to optimize car flow. As each
car reaches the end of the highway it leaves the system. In this way a bunch of cars
are constantly entering and leaving the system. In IOT this behavior is intrinsic
as constantly new devices are being introduced and handling such an adaption
manually is not a practical solution.

All of the above examples involve a special type of adaptation, namely reconfig-
uration. In-fact self-configuration is one of four key attributes (the self-*attributes
in section 1.2.2) intrinsic to self-adaptive systems. Briefly, a system configuration
denotes the composed set of system elements and the connections among them and
a reconfiguration implies the integration, removal, composition or decomposition
of system elements. The focus of this dissertation is directed towards reconfig-
uration i.e. self-configuring adaptive system. A self-configuring adaptive system
is one which allows the installation, integration, removal and composition or de-
composition of system elements at runtime in response to changes that arise in its
environment or itself.

This dissertation introduces Dr-BIP a formal framework for modeling self-
configuring systems that relies on an architecture-based approach. An architecture
based approach provides an appropriate level of abstraction to describe dynamic
change in a system. Furthermore, architectures are scalable and hence they facil-
itate the description of large-scale complex systems. We introduce motifs as the
architecture basis to structure the system and to coordinate its reconfiguration at
runtime. An architectural motif defines a set of components that evolve according
to interaction and reconfiguration rules. A system is composed of multiple motifs
that possibly share elements and evolve together. Interaction rules dictate how
elements composing the system can interact. Reconfiguration rules dictate how
the system configuration can evolve over time. The dissertation lays down the
formal foundation of Dr-BIP, implementation and illustrates its expressiveness on
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several examples.

1.4 Contributions

This thesis presents Dynamic Reconfigurable BIP (Dr-BIP), a model-based
approach that covers the specification, and execution of self-configuring adaptive
systems. The main contributions are as follows:

— Generality. Proposal of a general framework that relies on common and ef-
fective architecture concepts making it applicable to a wide range of domains.
Therefore, system engineers will not require any specific domain knowledge
to specify self-configuring systems in Dr-BIP.

— Gurantee by construction. Definition of architectures as parametric operators
on components guaranteeing by construction specific structural/functional
properties.

— Semantics. Providing a sound foundation for analysis and implementation
through the definition of formal and rigorous operational semantics in the
form of state transition system. The semantics leverage on existing static
BIP semantics (for component-based systems). A Dr-BIP system can be
seen as a static BIP system as long as it is not executing a reconfiguration.

— Separation of concerns. Keeping separate the system’s functionality from its
self-configuring behavior. This avoids as much as possible blurring the be-
havior of components with information about their execution context and/or
reconfiguration needs and thus enable reasoning about the system’s adaptive
behavior in separation of its functional behavior.

— Coverage. Demonstration of the framework coverage with four example com-
ing from various domains including autonomous systems. We show that the
framework is minimal, reusable and expressive allowing concise modeling.

— Integrated. Definition of a modeling language to accompany the framework
concepts and provisioning of a packaged tool set which includes an interpreter
for the language.

1.5 Thesis Roadmap

The thesis is organized into three main parts. The first part, introduces what
makes up self-adaptive by presenting it’s requirements, properties and challenges.
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Next, it focuses on how self-adaptive systems are engineered by providing an
overview of approaches and techniques while detailing the advantage and disadvan-
tage of each. Furthermore, it expands on a single approach which is the backbone
and basis of this dissertation, namely the model-based component and connector
architectural approach, by presenting its details and advantageous.

The second part introduces the Dr-BIP framework by detailing, its design pil-
lars, conceptual model, and its architectural elements that are used to compose
a self-configuring Dr-BIP system. Next, it highlights the relation between Dr-
BIP and its predecessor BIP and discusses existing extensions of BIP supporting
self-configuration. After which it presents four examples of self-configuring sys-
tems modeled in Dr-BIP. Each example is first introduced with an explanation of
the intended target system’s behavior and then its modeling using Dr-BIP. Last
but not least, it presents the prototype implementation of the Dr-BIP framework
which includes a concrete syntax to describe motif-based systems, a parser and an
interpreter for the operational semantics.

The third part wraps up the dissertation with a summary of key points from
part 1 and 2 along with possible extensions and future perspectives.
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In the previous chapter, the focus was on what makes up self-adaptive sys-
tem, along with it’s requirements and challenges. This chapter focuses on how
self-adaptive systems are engineered by providing an overview of approaches and
techniques. It details the advantages and disadvantages of each approach along
with a few example references. Next, it expands on a single approach which is the
backbone and basis of our work, namely the model-based component and connector
architectural approach.

16
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2.1 Approaches and Techniques

Extensive efforts have been put by engineers and researchers from different dis-
ciplines to realize self-adaptive systems. This section discuses various approaches
that have been developed over time. Each approach is inspired by a specific disci-
pline and as such highlights complementary aspects of realizing self-adaptive sys-
tems. Figure 2.1 lists the different disciplines and the several approaches branching
from each discipline. For instance, developing a self-adaptive system from a con-
trol engineering perspective implies designing a control-based self-adaptive system
whose behavior can change according to a set of well-formed mathematical models
that can be formally analyzed.

Control Control-based [47, 56-62]
Engineering
Utility-based [52-55]
Artificial
Intelligence Z learning-based [45-51]
=
= Software Reflection-based [37, 39-44]
= P .
§ EGE— Architecture-based Component-based
il Software [19, 24, 37, 38]

Engineering Model-based [19, 25-36]

Figure 2.1: A broad classification of approaches used in designing and developing
self-adaptive systems

2.1.1 Control Engineering

Control engineering is a discipline whose focus is on designing systems that
behave as expected with the aid of system controllers. Traditionally, control engi-
neering has been concerned with systems that are governed by the laws of physics,
such as physical control plants. In recent years, the application of control theory to
computing context have been studied in various works [63-65]. Furthermore, the
similarities between physical control plants and self-adaptive systems are evident.
Physical plants are constantly reacting to their environment to reach a certain goal
and so are self-adaptive systems.

In this approach there are two fundamental concepts, namely the target system
and controller. The controller implements a control strategy that dictates the
correct control signal which adapts the target system in order to maintain the
output of the target system sufficiently close to the desired goal. The control
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signal is typically based on the difference between the previous target system’s
output and the system’s goal. The target system is an analytical model based
on mathematical relationships that relate the effect of the control signal on the
system’s behavior. For more details on the different techniques used to design
target systems and controllers in self-adaptive systems refer to [66, 67].

Advantages
- Provides a formal approach to design systems.
- Has mathematical grounding that enables formal guarantees on the behavior of
the controlled system including four main properties (convergence, robustness,
stability, absence of overshoot).
- Facilitates formal analysis and verification of nonfunctional properties of the
system.

Disadvantages
- Requires control experience as applying of-the-shelf control theories will lack
rigorous assessment of the adequacy of the chosen control strategy.
- Requires a profound mathematical background to understand how to model
the target system and to decide on the right level of abstraction in such a way
to expose the needed behavior of the system without complicating the synthesis
of the controller.
- Translation from system design which is typically based on mathematical for-
mulas into an implementation is non-trivial process and if not done properly,
properties that are guaranteed at design might be lost through the process.

Table 2.1: List of advantages and disadvantages of control-based approach

A control-based system relies on a control loop to incorporate target system’s
output and outside disturbances. One prominent technique for organizing a control
loop in self-adaptive systems is the MAPE-K loop which has been referred to as
adaption loop in Section 1.2.2. In-fact many works emphasize the importance and
application of MAPE-K loop in control-based self-adaptive systems [6, 16, 17, 20,
62]. A detailed description of different patterns to decentralize MAPE control
loop in self-adaptive systems can be found in [17]. Examples of control-based self-
adaptive systems include [47, 56-62]. The works [58, 62] tackle the application of
control theory to design self-adaptive systems. The works [56, 57] focus on control
strategies for self-adaptive systems with multiple goals. The works [47, 59] rely
on a model-based representation of the target system to design of self-adaptive
systems. Finally, the works [60, 61] utilize a supervisory control strategy over
self-adaptive systems. A list of the main advantages and disadvantages of the
control-based approach is highlighted in Table 2.1
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2.1.2 Artificial Intelligence

Al provides the ability for systems to learn, improve and make decisions in
order to perform complex tasks. The field of Al is broad and ranging from nat-
ural language processing, multi-agent systems, machine learning, utility theory
among others. Self-adaptive systems have common grounds with artificial intelli-
gence, namely dealing with unexpected scenarios. Referencing the adaption loop in
section 1.2.2, which is a basic requirement of self-adaptive systems, artificial intel-
ligence can be found useful in two main elements in the adaption loop, namely the
analyze and plan element. Al techniques can play a central role in self-adaptation
by processing large amounts of data and performing analysis and decision mak-
ing. Artificial intelligence learning techniques can be used to better analyze and
identify patterns in sensed data from the environment. Furthermore it can be
used to make better decisions on the adaptation plan to be executed by learning
from previous experiences. Artificial intelligence can’t be thought of as a unique
solution to realize self-adaptive system, but a supporting solution whom together
with other approaches such as control-based in [47, 48] and component-based in
[51] results in compelling self-adaptive systems.

Utility-based. Utility theory is another profound concept in artificial intelli-
gence. Utility refers to “the quality of being useful” [68]. Utility theory deals with
assigning a utility value for each possible outcome and choosing the best possible
outcome based on maximizing the utility value. For example, the works [52-55]
employ a utility function to optimize dynamic reconfiguration of resources in au-
tonomic systems. A list of advantages and disadvantages of artificial intelligence
to realize self-adaptive systems is highlighted in Table 2.2

Learning-based. Learning algorithms in artificial intelligence such as reinforce-
ment learning [69] and genetic algorithm [70] can be incorporated in the planning
phase by the adaptation engine of a self-adaptive system. In-fact the use of var-
ious learning algorithms to realize self-adaptive systems can be found in [45-51].
In the works [45, 46] reinforcement learning is used in autonomic computing. In
the works [47-49] on-line learning models are used to realize self-adaptive behav-
ior. Finally the works [50, 51] investigate collaborative learning in self-adaptive
systems.

2.1.3 Software Programming

In this approach, general purpose programming languages are utilized to realize
self-adaptive systems. One of the main techniques is known as reflection-based and
is explained in details next.
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Advantages
- Enhance the analysis of sensed data from the environemnt and planning from
past experiences
- Can be used in combination of other approaches to produce compelling adap-
tive systems

Disadvantages
- Evaluation of the system is necessary due to the heavy reliance on heuristics
and probability in this approach
- Use of Artificial intelligence may result in unpredicted behavior of the system
and lack of behavioral guarantees

Table 2.2: List of advantages and disadvantages of artificial intelligence approach

Reflection-based. Reflection has been introduced to programming language
community with the aim to increase programming flexibility and to allow the de-
velopment of closed software systems, which do not require external interference.
A reflective software system is one which has the ability to examine and modify
both its behavior and structure. A programming language supporting reflection
provides a number of features available at runtime that aid with reflection such as
the creation of new class types at runtime, and instantiation of objects of classes
that where not defined at compile-time. Many general purpose programming lan-
guages already posses reflective abilities such as JAVA, and C#. The ability of
software to adapt itself is an intrinsic characteristic of self-adaptive systems.

Some examples of realizing self-adaptive systems through the use of reflection
include [37, 39-44]. In [39] the authors rely on architectural reflection to realize
self-adaptation. Architectural reflection is the ability of software system to adapt
its structure including components, interconnections, and data types. On the
other hand, the authors in [41] rely on behavioral reflection. Behavioral reflection
is the ability of the software system to change its behavior including communi-
cation mechanism, algorithms etc. The extension of the concept of reflection to
requirements realize self-adaptive system was proposed by [40]. They claim that a
self-adaptive system should be requirements-aware. A requirements-aware system
should be able to observe and react to its requirements in the same way it does
for its structure and behavior.

One of the main disadvantages of the all of the above mentioned work is that
they are platform specific solutions and complex software may be deployed on
heterogeneous hardware, operating systems, etc. This has led to the emergence
of reflective middleware. Middleware sit between the application and the under-
lying operating system and hence provide a level of platform independence. This
provides considerable benefits in terms of interoperability and portability of dis-
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tributed system services and applications. Plastik [42] is an example of the use
of reflective middleware to capture self-adaptive systems. It integrates OpenCOM
component model and the ACME/ARMANI ADL [37, 44]. Moreover the authors
in [43] use reflective middleware technology to support self-healing systems using
Open ORB.

A summary of advantages and disadvantages of software programming ap-
proaches to realize self-adaptive system can be found in Table 2.3.

Advantages
- Reflection can be a quick and easy fix to add adaptive behavior for small
noncritical systems

Disadvantages
- Reflection inevitably induces additional performance overhead
- Reflection provides unlimited access to the software implementation and this
can lead to changes that affect the integrity of system if not dealt with care

Table 2.3: List of advantages and disadvantages of software programming approach

2.1.4 Software Engineering

Numerous research areas under software engineering have tackled the realiza-
tion of self-adaptive systems. This section sheds light over two such approaches,
one of which is the model-based approach. The model-based approach emerges
from the Model Driven Engineering (MDE) discipline. In MDE, models are treated
as primary entities to design, develop and implement software systems. The sec-
ond approach is the architecture-based approach, where architectures are primary
entities of description. System architectures represent systems using the high-level
elements from which they are made. This can be done in various ways, one of
which relies on components and connectors, also known as the component-based
approach. We discuss both approaches in detail next.

Component-based. In a component-based architecture the system description
is composed of components that encapsulate the system’s functionality and con-
nectors that dictates the interaction between components. Connectors relate one
component to another usually through relationships such as data flow or control
flow.

A component and connector architecture description can aid in the construc-
tion of self-adaptive by allowing the system to keep track of its structure. In
other words, it prompts structural self-awareness, which is specifically important
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to capture self-configuration behavior. Many component-based approaches repre-
sent the architecture in the form of model and propose a component and connector
description language to accompany the such as STITCH [24], ACME [37], and
COMMUNITY [38]. A comparison of these description languages among others
can be found in [71]. The Rainbow framework [19] is a well-known component-
based framework for self-adaptive systems. It relies on component architecture
models to both monitor and adapt the system. It enables system designers to self-
adaptation capabilities to systems in a cost-effective manner by providing reusable
framework elements also known as architecture styles. A list of advantages and
disadvantages of component-based approaches is highlighted in Table 2.4.

Advantages

- Abstraction that captures the system structure and facilitates the description of
reconfiguration - Encapsulation is a key advantage which supports the separation
of concerns
- Component and connector architectures generally facilitate the description
large-scale complex systems
- component and connectors are common abstract concepts that can be used to
describe self-configuring systems from various domains

Disadvantages
- Component-based architectures are favored for reusability, however the of level
reusability is finely grained since components are not likely to be reused across
systems from different domains
- The system functionality is typically divided across component, which intro-
duces dependability amongst component. Therefore, if any single component
fails, then the entire system is affected. This introduces the need for self-
configuration especifically in component-based systems.

Table 2.4: List of advantages and disadvantages of component-based approach

Model-based. A model is a representation of the system at some level of ab-
stractions. A model can represent the system’s requirement, architecture, imple-
mentation, or development, depending on the concern at hand the model captures
only relevant information with respect to the model concern. Other type of models
encapsulate nonfunctional properties of a system such as performance, tolerance,
and security etc. A model is described using a modeling language, which is typ-
ically composed of abstract syntax, concrete syntax, and semantics. The abstract
syntax describes the concepts of the language and their composition to create a
model. The concrete syntax is a textual or graphical notation used to describe
a model. The semantics employ the meaning of the language i.e. the interpre-



CHAPTER 2. EXISTING METHODOLOGIES 23

tation of a model written in the corresponding language. The semantics can be
either defined formally using mathematical notations or informally using natural
language.

Models can be used in two different ways, either as development models or
runtime models. Development models start from the abstract model describing
the system’s requirements which is then systematically transformed and refined
to architecture, design, implementation and deployment model until reaching the
final running system. In other words, development models bridge the gap between
the problem space and solution space where the problem space is the application
domain and the solution space is the domain of implementation. However due to
changing conditions in systems environment and insufficient information at design
time relying on development models is not sufficient to realize complex systems,
especially self-adaptive systems which are constantly adapting to the environment
or their-self. This has lead to the extension of MDE to runtime, such models are
known as models@runtime or runtime models.

A runtime model is a casually connected representation of system’s structure,
behavior or goals. A model is said to be causally connected to a running system if
it is linked in such a way that if either the model or running system changes, this
leads to a corresponding effect on the other. In other words, a casual connection is
established in a bidirectional manner with the running system. In the first direc-
tion, the runtime model is kept up to date with the running system i.e. the model
is an exact reflection of the running system at all times. In the opposing direction,
the connected model can be used to effect change in the running system i.e. a
change triggered at the model level is an equivalent change at the running system
level. The primary advantage of Runtime models enable automatic monitoring and
analysis of the system whilst its running. A complete list of advantages and dis-
advantages of model-based approach to realize self-adaptive systems is highlighted
in Table 2.5.

The model-based approach have been sufficiently studied in the context of re-
alizing self-adaptive systems [19, 25-36]. Some researchers rely on architecture
models to represent the system [19]. An architecture model captures the struc-
tural architecture of the system in various representations including components
or layers. Others rely on feature models to represent the system [25-27, 34]. A fea-
ture model captures potential variants of the system. Feature models offer a way
of reasoning about adaptation by representing all possible configurations of self-
adaptive system. Goal models can also be used to realize self-adaptive systems as
in 28, 29]. A goal model captures system’s requirements, once these requirements
are not fulfilled an adaptation is triggered. It is often the case that a single runtime
model is not enough to represent complex system and as such some researchers rely
on multiple models at runtime. For example, a combination of both feature and
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Advantages

- Models are modular and abstract representations of the system making them
easier to handle and maintain than a system’s actual implementation, this is
especially relevant in large complex systems
- Models can be used to automate the construction of a system implementation
and to automate verification a system at runtime
- Models are platform independent, and as such reduce both cost and time that
may be needed to target various specific platforms

Disadvantages
- When multiple models are used at runtime it is challenging to maintain explicit
relations across conflicting models making analysis and reasoning demanding
- A model-based approach must be accompanied by other approaches for com-
plete realizing of self-adaptive systems
- Models if not accompanied with formal semantics can not be used for analysis
or reasoning about the system

Table 2.5: List of advantages and disadvantages of model-based approach

architecture models to realize self-adaptation can be seen in [30]. Moreover, a com-
bination of both architecture and behavior models to realize self-adaptation can
be seen in [31, 32]. When utilizing multiple runtime models it becomes essential
to maintain the relation between these models especially in the case of conflicts
and overlap. For example, an adaptation triggered by one runtime model may
violate constraints in another model. It is important to make relations between
multiple runtime models explicit as to facilitate automatic analysis and reasoning.
In fact, [33] proposes Euroma, a megamodel language to manage multiple models
and their relation at runtime in self-adaptive system.

Similar to the AI approach, the model-based approach can’t be considered
alone as a solution for realizing self-adaptation in systems, but rather an assisting
approach that needs to be accompanied with additional approaches in-order to
support change in the running system. For example, a model-based approach
can be accompanied with aspect-oriented approach [34], service-oriented approach
[35], architecture-based approach [19], or component-based approach [36] to realize
self-adaptive systems.

This list of approaches is meant to shed light on the variability of methods
available in realizing self-adaptive systems and is not by any means exhaustive or
complete. In fact there are other approaches such as the agent-based approach
which emerges from the artificial intelligence discipline. In addition, several other
alternative approaches emerge from the network computing discipline. We refer
the interested reader to the following surveys [6, 16, 20, 72] for more information
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on other omitted approaches.

2.2 Model-based X Component and Connector

The previous section provided a broad view on the several tracks that can be
used to realize self-adaptive systems. Note that most of the techniques mentioned
are used in combination with each other to achieve self-adaptation. For instance,
[37] relies on both a component-based and a reflective-based approach to achieve
self-configuration. This section aims to introduce the backbone approach of the
Dr-BIP framework, which involves the interplay of two approaches previously dis-
cussed. More precisely, this section will present the reasoning and the advantages
behind the Dr-BIP approach.

e

Architecture
Based

Component
Based

Dr-BIP

\

Figure 2.2: The basis of Dr-BIP approach is the combination of two approaches
namely, the model-based and architecture-based approach

The basis of Dr-BIP is composed of the interplay of two approaches namely
the model-based and architecture-based approach which are presented in section
2.1. The combination of both of these approaches exploits the benefits of each,
making their combination an effective method to design and implement complex
self-configuring systems. Figure 2.2 graphically displays the decomposition of the
approach adopted by Dr-BIP.

An architecture-based approach to system design is one in which a system is
represented in terms of its high-level elements composing it. Architectures abstract
away from the complexity of the design, implementation, and deployment of sys-
tems. They provide an appropriate level of abstraction to describe reconfiguration
in a system, such as the use of bindings and composition. They aid in shifting th
the focus from the implementation details to the design of the entire system. Such
an approach not only captures the system’s functionality, but also the variability in
the system configuration. Architectures and their underlying concepts and princi-
ples are generic, consequently making them applicable to a wide range of domains.
Moreover, architectures generally support hierarchical composition which is use-
ful for varying the level of description and thereby facilitating their use to realize
large-scale complex systems. Systems based on architectures are easier to maintain
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and upgrade. To summarize an architecture-based approach endorse generality,
abstraction, scalability, maintainability, and adaptability of systems making it an
ideal choice for modeling complex self-configuring systems.

There are multiple types of architectural elements that maybe considered when
describing system architectures such as services, components, etc. The most com-
mon and fundamental architectural element to consider as base for architectural
description is a component. In a component-based architecture, the system de-
scription is composed of components and connectors. Components encapsulate
functionality of the systems and connectors dictates the interaction between com-
ponents i.e. it relates one component to another usually through relationships
such as data flow or control flow. One of the main benefits of component and
connector architectures is encapsulation. It supports separation of concerns by
keeping separate the system behavior (functionality) from the system architecture
(the interaction between components). This allows the separation of the adap-
tive behavior from the non-adaptive one making the system easier to specify and
more emendable to automated analysis. For example, components do not need
to know under which interaction patterns they will be used, as long as their local
interaction constraints are satisfied. Another benefit of component and connector
architectures is reusability, as they allow one to specify the general case of an inter-
action pattern (connector) or a component behavior and reuse it. To summarize
a component-based approach to architecture design endorses encapsulation, and
reusability. It is for these reasons that Dr-BIP relies on component and connector
architectural description.

In addition to the component and connector architecture approach, Dr-BIP also
utilizes a model-based approach. In a model-based approach, a runtime model,
which is a representation of the system, is casually connected to the actual running
system facilitating runtime reconfiguration. More details on this approach can be
found in section 2.1. An instance of a model-based approach aids in its adoption
by the industry. This is because models are generic and platform independent.
Moreover, these models can be automatically translated into general purpose pro-
gramming languages) to target different platforms or devices, which reduces both
cost and time required for system design and development. In addition, since mod-
els are representations of the running systems they enable system monitoring and
hence offer early predictions about system’s behaviors and properties. By formal-
izing models and clarifying the formalisms used, a model-based approach not only
facilitate monitoring of the system, but also automatic analysis and verification
of the system during operation. To summarize a runtime model-based approach
endorses industrialization, system monitoring, and automatic reasoning

Component and connector architecture description languages (C&C ADLs) is
one solution that combines both component-based and model-based approaches
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to enable composition of system’s architectural models from component. A C&C
ADL is a formalism which is used to describe system architectures based on com-
ponents and connectors. Tens of formal C&C ADLs have been proposed, each
characterized by different conceptual architectural elements, syntax and seman-
tics. Some C&C ADLs support only static configuration such as ArchFace [73],
C3 [74], COSA [75], MontiArc [76]. In a static configuration, the system configura-
tion is known at design time and is fixed through out its execution. Others support
dynamic configuration i.e. self-configuration, such as ACME [37], RAINBOW [19],
Dynamic Wright [77]. In a dynamic configuration the system is changing dynam-
ically at runtime. Several surveys present a detailed comparison of C&C ADLs
supporting dynamic reconfiguration [78-80].

Dr-BIP proposes a formal C&C ADL to aid in the modeling of self-configuring
adaptive systems. The Dr-BIP framework relies on key concept of architectural
motif as the elementary unit of description of self-configuring systems. A motif
encapsulates (i) behavior, as a set of components, (ii) interaction rules between
components (i.e. connectors) and (iii) reconfiguration rules about creating/delet-
ing or moving components. Systems are constructed as a superposition of several
motifs, possibly sharing their components, and evolving altogether.

In summary, Dr-BIP relies on an architecture-based approach. More precisely,
it relies on a component & connector architecture to mitigate away from the com-
plexity of system design. It also relies on a model-based approach, where by it
proposes a formal C&C ADL to ease the modeling of self-configuring systems. The
combination of these two approaches exploits the benefits of each.
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The previous chapter, surveyed existing methodologies in the literature for
realizing self-configuration. It further affirmed the need for a general integrated
framework that is applicable to different self-configuration problems from various
domains. The integrated framework aims to aid system engineers to not only
design self-configuring systems, but also to monitor and reason about them. It
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aims to help system engineers to add self-configuration abilities to systems in a
cost effective manner that saves engineers both time and effort.

To accomplish this, we introduce Dr-BIP, an integrated framework accompa-
nied with a language and an interpreter that codifies its concepts. The underlying
principle is to maintain the separation between the system’s functionality and its
adaptive behavior (i.e self-configuration). To achieve this, Dr-BIP respects a strict
separation between component behavior and its coordination. This separation is
crucial to facilitate maintainability, and more importantly to reason about and
analyze the system’s adaptive behavior in separation of its functional behavior.

This chapter introduces Dr-BIP framework by first detailing its design pillars
and conceptual model. Next, it introduce the Dr-BIP runtime system model by
first presenting the architectural elements that can be used to compose a Dr-BIP
model and then describes how they can be composed to model a self-configuring
system. Finally, it highlights the relation between Dr-BIP and its predecessor BIP
and discusses existing extensions of BIP supporting reconfiguration.

3.1 Overview

This section provides an overview of the Dr-BIP framework. It first introduces
the foundation principles behind the framework. Next, it presents the concep-
tual model of Dr-BIP and relates it to the general self-adaptive system conceptual
model introduced in section 1.2.2. Finally, it exposes the various processes em-
bodied in the Dr-BIP adaptation engine that form an adaptation loop and relates
it to the general adaption loop introduced in section 1.2.2.

3.1.1 Design Pillars

The Dr-BIP framework aims to cover, as much as possible, the current needs in
the design of self-configuring systems. The Dr-BIP framework is built on concrete
foundation pillars that are explained in details next.

General. A general framework allows to model problems of various complex-
ities and problems coming from different domains. In other words, it enhances
the coverage of problems that can be modeled and designed with such a frame-
work. Moreover, system engineers utilizing a general framework will not require
very specific domain knowledge to design systems. Dr-BIP endorses generality by
relying on common, but effective, architecture abstractions such as component and
connectors to model the system. Components capture the system’s functionality
and connectors capture multi-party interactions between components.
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Rigorous. A rigorous framework provides sound foundation for analyzing and
implementing the system. Dr-BIP relies on a well-defined operational semantics,
leveraging on existing models (from its predecessor BIP) for rigorous component-
based design.

Separation of concerns. A framework supports separation of concerns if it sep-
arates the system’s behavior (functionality) from the system’s adaptive behavior
(self-configuration). Such a separation helps to avoid blurring the behavior of com-
ponents with information about their execution context and/or reconfiguration
needs. Dr-BIP achieves this by using exogenous global coordination rules which
allows to reason separately about the system function and its adaptive behavior.

Support Runtime Models. A framework supports models at runtime by main-
taining an abstraction of the target system that is casually connected to the run-
ning system. Runtime models facilitates to monitor, adapt, and reason about the
system whilst its running. Dr-BIP support runtime system models which capture
the target system at three different levels of abstraction. They capture behavior,
configuration and possible configuration variants of the system. The Dr-BIP model
is like a living concept, that can be updated at runtime using dedicated primitives.

Guarantee by construction. A framework can guarantee by construction spe-
cific behavior if it enforce architectural constraints/styles. Dr-BIP allows the def-
inition of configurations as parametric operators on components guaranteeing by
construction specific properties. This is possible due to the runtime system model
which captures, not only the system configuration, but also the possible configu-
ration variants at design.

3.1.2 Conceptual Model

The conceptual model describes the abstract elements composing the Dr-BIP
framework and the relation between them. In other words, it presents the broad
picture of self-configuring systems modeled in Dr-BIP by introducing the frame-
work’s underlying concepts and new terminologies that will frame future discus-
sions. The conceptual model is composed of two elements: the system model, and
the adaptation engine. Figure 3.1 depicts the anatomy of the conceptual model.
A description of each entity is presented next.

System Model. 'The system model is a representation of the running system.
It is a form of runtime model, which provides a view on the running system and
enables its adaptation. More information can be found on runtime models and
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Figure 3.1: Conceptual model of Dr-BIP framework: dissecting the basic principles
of a self-configuring system

their advantages, respectively, in sections 2.1, 2.2. In order to have a consistent
view of the running system and to effectively modify the running system’s config-
uration, the system model must be an accurate abstraction of the running system.
To achieve this, Dr-BIP system model captures the running system at three differ-
ent levels of abstraction. It captures both the system behavior and configuration
during runtime. More over, it captures the system’s possible configuration vari-
ants. The configuration encapsulates the system’s current architecture describing
its components and the interconnection between them. Configuration variants are
expressed in terms of the configuration. A configuration variant is a constrained
modification rule (reconfiguration rules) that uses operations for adding and re-
moving components. Dr-BIP supports explicit addition and removal of compo-
nents, but implicit addition and removal of connectors. The connection between
components is defined by another set of rules (interaction rules) defined at design
time. The main advantage of relying on an implicit addition and removal of con-
nectors is the ability to guarantee by construction specific configuration topologies.
To summarize configuration variant rules change the system’s architecture.

Casual Link. The system model is casually connected to the running system
in a bidirectional manner. The first direction assures that any change directed in
the system model is also effective in the running system. The second direction
assures that the system model is up to date with any change that happens at
the running system. Therefore, it is important to maintain the conformance be-
tween the model and the running system in order to preserve consistency between
them. To achieve the first direction, i.e. model to running system, mechanisms for
comparing models, such a EMF [81], can be used to study the difference between
the old and the new model. Then the difference can be used to generate scripts
that modify the running system in the same way. To achieve the second direc-
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tion, i.e. running system to model, reflective techniques can be used to introspect
a running system and identify the exact changes made, which consequently can
be used to update the system model. Maintaining the consistency in this way is
inefficient and interferes with the performance of the system by introducing over-
head. Dr-BIP avoids the hassle by capturing the system’s architecture in its model
and if we suppose that a mapping between components in the model and imple-
mentation modules is recorded. Then the mapping will enable changes specified
in terms of the system model (addition/removal of component/connector) to be
effective changes in the implementation and vice versa. In this manner, an up to
date mapping maintains the correspondence between the system model and the
implementation.

Adaptation Engine. In a nut shell, the adaptation engine monitors and con-
trols the system model. It is responsible for continuously sensing the need for a
reconfiguration, or a coordinated interaction between components. It does so by
computing the set of enabled interactions and reconfigurations, deciding on an
valid step (i.e. interaction or reconfiguration) and effecting the decision in the
system model. The steps involved in the adaptation engine form an adaptation
loop that is elaborated upon in the coming section.

The Dr-BIP conceptual model is similar to the general conceptual model pro-
posed in 1.2.2 for self-adaptive systems. The managed system is represented in
Dr-BIP by two elements, the system model and the running system. More over,
the environment is implicitly captured in Dr-BIP ’s system model by constrained
configuration variants. For example, a server experiencing an enormous amount of
tasks from users (environment) must adapt by delegating tasks to another server.
In Dr-BIP this can be handled in the system model with a constrained reconfig-
uration rule, that migrates tasks to other servers when a server’s load reaches a
maximum value. Therefore, it is important to sufficiently study the environment
of a system and how it behaves in order to capture it in the system model to
account for and respond to any environmental change.

Adaptation Loop

The adaptation loop comprises the processes adopted by the adaptation engine
to achieve self-configuration in Dr-BIP. Figure 3.2 illustrates the three main ele-
ments involved in self-configuration. The model manager maintains an up to date
status of the system model. This up to date view is used to evaluate the current
enabled interactions and reconfigurations. To compute the enabled interactions
and reconfigurations, the constraint evaluator evaluates the constraints associated
with each interaction and reconfiguration rule, which dictate its applicability (i.e.
under which condition it applies). After evaluating the set of enabled steps, the
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step executor is responsible for deciding on a step and directing the effect of ac-
tions associated with this step to the model manager which consequently affects
the change in the system model through actuators.

Adaptation Engine

Step Constraint
Executer Evaluator

Interaction
or
Reconfigurations

Model Manager

Actuator Sensor

Figure 3.2: Adaptation loop describes the process adopted by the Dr-BIP adap-
tation engine to achieve reconfiguration

The Dr-BIP adaptation loop is similar to the MAPE-K loop described in sec-
tion 1.2.2. The monitoring is handled by the model manager which keeps a con-
sistent view of the current system model. Moreover, the analyzer is embedded
in the constraint evaluator, however in Dr-BIP the analyzer is looking for a pre-
defined patterns (enabled constraints) that trigger either a reconfiguration or an
interaction. Each interaction/reconfiguration rule comes in a constraint, action
pair. Therefore, the planning is inherently embedded in the interaction/reconfigu-
ration rules. Once a step is chosen its set of associated actions are made effective
in the system model. In summary, Dr-BIP relies on offline planning to achieve
self-configuration. Finally the execution of action by the system model is made
effective through the model manager and actuators.

3.2 Dr-BIP System Model

Dr-BIP framework utilizes runtime models to represent the running system.
The use of runtime models to achieve self-adaptation have been discussed in details
in section 2.1. In addition, an elaborate list of advantages for using runtime models
to achieve self-configuration can be found in section 2.2. This section tackles the
basic structure of a Dr-BIP system model and its composing elements. Henceforth,
the words Dr-BIP model and system model will be used interchangeably used to
signify the runtime abstraction model of the running system.

A Dr-BIP system model is an abstraction of the running system at three dif-
ferent levels of abstraction. Figure 3.3 summaries the three abstractions. The first



CHAPTER 3. DR-BIP FRAMEWORK 35

level captures the running system’s functionality. For example in a client server
system, the functionality of each server is captured by this layer. The Dr-BIP
model captures system’s behavior with the aid of automata extended with data
and ports.

The second level abstracts the system configuration by encapsulating system’s
behavior in components and dictating their connections. For example, in a client
server system, all clients and servers may be represented as components and an
interaction may be used to to signal a connection between a client and server.
The Dr-BIP model employs interaction rules to represent multiparty interaction
between components.

The third level captures the variability in the system configuration. A system’s
configuration is determined by its components and their connections. A change
in either the set of components or connections is said to be a reconfiguration that
results in a new configuration of the system. The first type of reconfiguration that
is responsible for changing the set of components in the system is handled explicitly
by this layer. For example, in a client server system, a faulty server component
may be removed and a new back up server may be introduced to cover up for
the loss. Dr-BIP handles this type of reconfiguration by explicitly allowing the
addition/removal of components through the definition of reconfiguration rules.

Variability o Running
F- .-~ System
Con figurati/ Y

Behavior

[PPOJN Wo3SAG

Figure 3.3: Dr-BIP system model abstracts the target system at three different
levels of abstraction

The second type of reconfiguration which is responsible for modifying the con-
nection/interaction between components is handled implicitly in Dr-BIP. Consider
for example a client server system where only premium clients may be given access
to servers with extra functionality. In other words, only premium client compo-
nents can have a connection /interaction with special server components. Moreover,
any new premium client must maintain such a connection. These constraints on
connections are handled in Dr-BIP through parametric interaction rules, which
belong to the second layer of abstraction, namely the configuration layer. An
interaction rule can dictate that any client component that is of type premium
must connect to server component of type x with special functionality. This rule
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is applicable on all current premium clients in the system and will be applicable
on any new premium clients introduced. In this way, the effect of reconfiguring
the connection can only be seen in action once the component set in the system
is changed by the introduction of a new premium client with the aid of reconfig-
uration rules. Therefore, as soon as a premium client component is introduced,
its corresponding connection with other component servers is implicitly initiated
according to interaction rules.

Therefore, reconfiguration is captured implicitly by the configuration layer
(varying connection) and explicitly by the variability layer (varying components).
Together these two layers capture the configuration space and possible configura-
tion alternatives of the system.

3.2.1 Architecture Overview

To capture all three levels of abstractions discussed in section 3.2, the Dr-BIP
framework introduces architectural motif as a key concept and an elementary unit
of description for self-configuring systems. A motif encapsulates (i) behavior, as
a set of components, (ii) interaction rules between components and (iii) reconfig-
uration rules about creating/deleting or moving components. A System is con-
structed as a superposition of several motifs, possibly sharing their components,
and evolving altogether. The ability of components to move between motifs is a
technique adopted by Dr-BIP to implicitly add/remove connectors. Connections
between components in a motif is dictated by the motif’s interaction rules. Dr-BIP
employs a restricted approach that allows the ability to add/remove connectors
implicitly, which in turn guarantees by construction certain configurations.

Figure 3.4 provides an overall view on the structure and evolution of a motif-
based system (i.e. Dr-BIP model). The initial configuration on the left consists
of six interacting components organized using three motifs. Motifs are indicated
with dotted lines. The central motif contains components b; and by connected in a
ring. The upper motif contains components by, ¢y, ¢o, c3, with b; being connected
to all others. The lower motif contains connected components by, ¢;.

The second system configuration in the middle shows a new configuration of
the system after performing a reconfiguration. Component c3 moved from the
upper motif to the lower motif and Therefore, c3 was implicitly disconnected from
by and connected to by according to c3’s new motif’s interaction rules. Note that
the central motif is not impacted by the move.

The third system configuration on the right shows the system configuration
after performing an additional reconfiguration. Two new components, b3 and cs,
have been created. The central motif now contains an additional component, bs,
that is connected to b; and by, forming a larger ring. In addition, a new motif is
housing the two newly created components b3 and cs.
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Figure 3.4: An example of reconfiguration in a motif-based system

The example above contains two types of motifs, a ring and star motifs. Motif
types are defined by the types of hosted components along with parametric inter-
actions and reconfiguration rules. Therefore, systems are described by superposing
a number of such motifs on a set of components. In this manner, the overall system
architecture captures specific configuration and functional properties by design.

Figure 3.6 depicts the definition of motifs in Dr-BIP. Motifs are structurally
organized as the deployment of component instances on a logical map. Maps
are arbitrary graph-like structures consisting o