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Résumé 

 

 

La complexe protéique Sir (Silent Information Regulator) de la levure bourgeonnante 

est l’acteur principal dans la formation de l’hétérochromatine, qui provoque 

l’atténuation de l’expression génique par un mécanisme épigénétique. Le complexe 

Sir lié à la chromatine maternelle est démonté lors de la réplication génomique et 

puis réformé sur les deux brins nouvellement répliqué. La dynamique de maintien de 

Sir sur la chromatine pendant le cycle cellulaire et dans de variables conditions de 

croissance n’est pas bien comprise.  Pour comprendre  comment la structure 

chromatinienne telle que l’hétérochromatine peut être héritée et par conséquent 

comment les structures épigénétiques sont transmises d’une génération cellulaire à 

l’autre, nous avons besoin de mesurer la vitesse d’échange des sous-unités du 

complexe Sir au cours du cycle cellulaire dans différentes conditions de croissance. 

Nous avons donc utilisé le système RITE qui permet d’échanger deux épitopes 

attachés à Sir3 (une des sous-unités de Sir) et par la suite mesurer la cinétique de 

remplacement de Sir3. Nous avons constaté que la Sir3 maternelle est 

complètement remplacée par la Sir3 nouvellement synthétisées dans les régions 

télomériques durant le premier cycle cellulaire après la sortie de la phase 

stationnaire. Nous proposons que cette  reprogrammation du complexe 

hétérochromatique est un mécanisme d’adaptation qui assure l’activation des gènes 

de réponse au stress par la déstabilisation transitoire de  la structure 

hétérochromatinienne. 
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Abstract 

 

 

The budding yeast SIR complex (Silent Information Regulator) is the principal actor in 

heterochromatin formation, which causes epigenetically regulated gene silencing 

phenotypes. The maternal chromatin bound SIR complex is disassembled during 

replication and then, if heterochromatin is to be restored on both daughter strands, 

the SIR complex has to be reformed on both strands to pre-replication levels. The 

dynamics of SIR complex maintenance and re-formation during the cell-cycle and in 

different growth conditions are however not clear. Understanding exchange rates of 

SIR subunits during the cell cycle and their distribution pattern to daughter 

chromatids after replication has important implications for how heterochromatic 

states may be inherited and therefore how epigenetic states are maintained from one 

cellular generation to the next. We therefore used the tag switch RITE system to 

measure genome wide turnover rates of the SIR subunit Sir3 before and after exit 

from stationary phase and show that maternal Sir3 subunits are completely replaced 

with newly synthesized Sir3 at subtelomeric regions during the first cell cycle after 

release from stationary phase. We propose that the observed “reset” of the 

heterochromatic complex is an adaptive mechanism that ensures the activation of 

subtelomeric stress response genes by transiently destabilizing heterochromatin 

structure. 
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Brief Thesis Overview 

 

 This manuscript begins with introductory chapters (1-4) which provide the 

necessary theoretical background and synthesize parts of the growing body of 

knowledge on heterochromatin in budding yeast.  

 

 Chapter 5 presents the thesis results, methodology and discussion in the 

form of a research article, which currently awaits submission.  The article is self-

contained and includes a list of references. The references cited in the introductory 

chapters are listed in Chapter 6.  
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1 HETEROCHROMATIN IN 

BUDDING YEAST 
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 In eukaryotes, nuclear DNA associates with histone proteins to form a 

complex called chromatin. In this form, the linear and relatively long DNA double 

helix is able to fit inside the tiny nucleus, thus restraining the organism’s genome to a 

specialized compartment. However, chromatin provides more than just a packaging 

arrangement. Both DNA and histones are sites of extensive post-translational 

modifications that alter the accessibility of the DNA template to a variety of 

processing enzymes. This system orchestrates gene expression programs in 

response to environmental and developmental cues and consequently maintains all 

processes necessary for cell function (Grewal & Moazed, 2003). The study of 

changes in gene function that are mitotically and/or meiotically heritable and are not 

caused by a change in DNA sequence is commonly defined as epigenetics (Wu & 

Morris, 2001). Researchers have been focusing on elucidating the variety of 

mechanisms by which a cell modifies the chromatin template in both physiological 

and pathological circumstances in order to define the role of chromatin in epigenetic 

processes (Grewal & Moazed, 2003). 

 

 In the late 1920s, Emil Heitz developed a staining technique to help visualize 

nuclear components of liverworts during the cell cycle. By comparing differentially 

stained regions, he discovered chromatin is comprised of two distinct regions he 

named euchromatin and heterochromatin. Euchromatin regions were stained solely 

during mitosis, while heterochromatin regions retained the stain throughout the cell 

cycle. He further noted certain heterochromatin regions were stained in a cell-specific 

manner and named them facultative heterochromatin. Other heterochromatin 

regions, however, remained a common feature of all examined cells and he 

appropriately named them constitutive heterochromatin. Almost a century later, our 

understanding of differences in chromatin composition and function goes beyond 

different levels of compaction and stain retention to include a more nuanced 

molecular understanding of euchromatin and heterochromatin respectively (for 

review see Allshire & Madhani, 2017). 
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 Genetically, euchromatin is defined as the transcriptionally active, gene rich 

form of chromatin bearing specific DNA and histone modifications. The most 

common molecular features of euchromatin include the presence of acetylated 

histones, specific histone variants and dynamic histone turnover during DNA-

transaction processes (i.e. transcription, replication, recombination and repair). On 

the other hand, heterochromatin is the transcriptionally inactive (silenced) and gene-

depleted form of chromatin, often associated with developmentally-regulated genes 

(facultative heterochromatin) and repetitive, structural regions (constitutive 

heterochromatin). The compaction level of facultative heterochromatin may vary 

depending on different environmental cues that drive specific expression patterns 

during differentiation and development of multicellular organisms. Molecularly, 

heterochromatin of most eukaryotes is defined by the presence of specific histone 

methylations (e.g. H3K9me and H3K27me for facultative and constitutive 

heterochromatin, respectively), heterochromatin-forming proteins (HP1 and 

Polycomb for constitutive and facultative heterochromatin, respectively) and 

noncoding RNAs (Martienssen & Moazed, 2015; Wang, Jia, & Jia, 2016). Some 

eukaryotes, such as Saccharomyces cerevisiae (hereafter referred to as yeast), lack 

certain heterochromatin hallmarks like specialized histone methylations present in 

other eukaryotes. Despite these differences, yeast chromatin still possesses the 

same functional and structural distinctions typical of heterochromatin and 

euchromatin in other eukaryotes  and thanks to its small compact genome it is a 

model organism of choice to study chromatin organization and dynamics on a 

genomic scale (Bühler & Gasser, 2009). 

 

 Yeast are unicellular eukaryotes widely used for a variety of fermentation 

processes, including baking and winemaking. In addition to their practical utility, 

yeast have been used for decades as a model organism in molecular biology. They 

share the complex intracellular organization and most fundamental chromatin 

features with other eukaryotes. However, as unicellular organisms with a simpler 

genome, they are more amenable to experimental manipulations and genome-wide 

studies. Furthermore, they provide a less artificial and more biologically relevant 

experimental system for probing the influence of environmental changes on 

chromatin structure and gene expression than cell culture systems from multicellular 



5 

 

organisms (Botstein & Fink, 2011). Yeast has also some singular genomic features, 

including a global enrichment in transcriptionally-active regions and a relatively low 

percentage of repetitive regions. Functionally, the yeast genome can still be divided 

into euchromatin and heterochromatin based on their specific chromatin landscapes 

(Figure 1). 

 

A) Euchromatin 

 

B) Heterochromatin 

Figure 1: Euchromatin and heterochromatin in yeast (modified from Croken, 

Nardelli, & Kim, 2012). (A) Euchromatin is the transcriptionally active and less 

structurally condensed form of chromatin enriched in nucleosomes which bear active 

marks (e.g. acetylated and methylated lysines) and associated factors (e.g. active 

remodelers and template-processing enzymes). (B) Heterochromatin is the 

transcriptionally inactive and more structurally condensed form of chromatin that 

lacks the majority of histone marks and other euchromatin hallmarks. A bare-bones 

structure critical for the overall stability and integrity of chromatin.  
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Similar to constitutive heterochromatin in other eukaryotes, yeast heterochromatin is 

formed in a domain-specific manner comprising kilobase-stretches of DNA 

(Gartenberg & Smith, 2016). There is, however, no RNA interference mechanisms 

guiding the formation of the repressive structure and most histone modifications are 

completely depleted, leaving a relatively bare-bones silent region compared to other 

eukaryotes (Briggs et al., 2001; Wood, Tellier & Murphy, 2018). Despite the 

abovementioned structural differences, the general locus-inactivating function of 

heterochromatin remains the same in yeast. Heterochromatin regions are dynamic 

structures that silence specific genes and thus ensure the stability and integrity of the 

genome. Gene silencing can however be reversed if heterochromatic complexes are 

disassembled in response to environmental signals or simply as a consequence of 

the stochasticity inherent to the cellular processes that maintain chromatin structure 

(Gartenberg & Smith, 2016). 

 

 Based on the prevalent steric hindrance model, heterochromatin domains 

achieve functionality by blocking access of transcription factors and other template-

processing enzymes to the underlying DNA. Heterochromatin domains are anchored 

at the nuclear periphery. The localization of heterochromatin away from the rest of 

the genome is thought to minimize promiscuous silencing of critical, transcriptionally-

active regions by physically separating silencing factors from euchromatin (for review 

see Gartenberg & Smith, 2016). 

 

 There are three well-defined heterochromatin domains in yeast: the silent 

mating type loci, subtelomeric regions and rDNA repeats described below (Fourel et 

al, 1999; Gottschling, 1992). 

1.1 Silent mating type loci 

 

 In favorable growth conditions with sufficient nutrient availability, yeast are 

able to propagate by simple cell division (vegetatively), either as haploid or diploid 

cells, although they are predominantly diploid in their natural environment outside of 

the laboratory. In fact, the ability of yeast to form diploids proves to be critical for 
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survival when nutrients become scarce. Endangered by limiting nutrient conditions, 

diploids enter sporulation (meiosis) and produce four dormant spores, thereby 

extending survivability until favorable metabolic conditions are restored. Successful 

conjugation depends largely on the configuration of the mating type (MAT) locus on 

chromosome III (Haber, 2012). 

 

 The MAT locus can contain either the a (MATa) or α (MATα) cassette. Only 

haploids of opposing mating types (MATa or MATα) can successfully conjugate and 

form a diploid cell. Unlike MATa gene products, the function of MATα genes is much 

better understood. MATα can produce two functional products: α1 and α2. α1, 

together with the transcriptional factor Mcm1 (MiniChromosome Maintenance), 

induces transcription of several genes, including the α-factor pheromone and a trans-

membrane receptor for the opposite mating pheromone (a-factor). On the other hand, 

α2 and Mcm1 repress a-specific genes, including those that encode for a-factor and 

the α-factor trans-membrane receptor. Consequently, Matα cells secrete α-factor 

pheromones which bind to receptors on MATa cells in the population and vice-versa. 

The binding of pheromones to their corresponding surface receptors triggers a 

signaling cascade, which prepares cells for mating and induces G1 arrest, thus 

ensuring that the newly-formed diploids contain homologous, but unreplicated 

chromosomes (Haber, 2012).  

 

 The mating type identity is not fixed. Yeast evolved a remarkable mechanism 

by which they can freely switch their mating type, a process called homothallism. 

Switching includes a gene conversion event by which additional donor loci containing 

a or α sequences replace α or a in the MAT locus, respectively. Since simultaneous 

transcription of  both a and α sequences destabilizes the mating identity of the cell, 

both donor sequences (a and α) are packaged into transcriptionally repressed 

heterochromatin domains called silent mating type loci. These two silent mating type 

loci are located on chromosome III, upstream (HMLα) and downstream (HMRa) of 

the MAT locus (Jensen, Sprague, & Herskowitz, 1983; Nasmyth & Tatchell, 1980).  
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Figure 2: A schematic representation of the mating type locus (MAT) and silent 

mating type loci (HMLα and HMRa) on chromosome III (modified from Hanson 

& Wolfe, 2017). The MAT locus designates the mating phenotype of the haploid cell 

by containing either the a or the α sequence. Only haploid cells with opposing mating 

types can form a diploid, but in natural conditions, haploid cell are able to freely 

switch their mating type by recombining the MAT locus with either HMLα or HMRa. 

Both HMLα and HMRa are transcriptionally repressed to avoid destabilizing the 

identity of the cell. 

 

 Mating type switching is restricted to the G1 phase of the cell cycle and is 

triggered by the site-specific endonuclease HO (HOmothallic switching 

endonuclease). After a haploid mother cell divides, the daughter cell asymmetrically 

inherits an HO repressor. The loss of the HO repressor stimulates the activity of HO, 

leading to the cleavage of the MAT locus and transfer of the opposite donor 

sequence (HMLα or HMRa) in a unidirectional way. The heterochromatin structure of 

the silent mating type loci protects the underlying sequences from HO dependent 

cleavage thus ensuring the directionality of the gene conversion event and 

preventing the replacement of silent mating type sequences. The reactivation of the 

HO repressor  in diploid cells suppresses mating type switching until spore 

germination (Haber, 2012; Jensen et al., 1983). 

 

 In conclusion, heterochromatin at silent mating type loci is critical for 

maintaining the cellular identity and genomic stability in yeast. Heterochromatin 

prevents DNA cleavage of silent mating type loci by HO and represses transcription 
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of potentially deleterious DNA sequences during critical physiological processes - a 

recurring theme in the biological function of heterochromatin.  

 

2.2 Subtelomeric regions 

 

 One of the defining characteristics of eukaryotic chromosomes is the 

association of linear DNA molecules with histone proteins. Yeast chromosomes are 

linear molecules terminating in well-defined ends called telomeres, which can form 

high-order structures facilitated by specific protein-protein interactions. Telomeric 

DNA is highly repetitive and heterogeneous, consisting of 300 ± 75 bp repeats, 

usually abbreviated C1-3A/TG1-3. Furthermore, telomeres are not blunt ends, but rather 

contain G-rich tails. The size of the tails depends on the cell cycle and ranges from 

around 15 to almost 100 G nucleotides in late S/early G2 phase. The process of 

generating G tails occurs after genomic replication by degrading the complementary 

C strand of the newly-synthesized CG repeats, leaving only a series of G 

nucleotides. G tails are substrates for telomerase, an enzyme with reverse 

transcription activity necessary for maintaining telomere length after each round of 

genomic replication, and preserving the structural integrity of yeast chromosomes. 

Telomeres are not mere chromosome caps, they are also highly dynamic regions 

where both euchromatin and heterochromatin intersect (Wellinger & Zakian, 2012).  

 

 Yeast chromosomes contain repetitive sequences located in close proximity 

to telomeric DNA.  These sequences are often referred to as subtelomeric regions or 

telomere associated sequences (TAS). TAS are highly-variable in number and size, 

but usually consist of two repetitive patterns called X and Y’ elements (Figure 3). Y’ 

elements are usually present immediately downstream of telomeric repeats in zero to 

four tandem copies ranging in size from 6.7 (Y’ long) to 5.2 kb (Y’ short). The location 

and presence of Y’ elements is both strain and chromosome-specific with some TAS 

completely lacking associated Y’ elements. X elements, on the other hand, are 

indispensable parts of all subtelomeric regions. They consist of a series of repeats 

whose composition varies from one chromosome end to another (Fourel et al., 1999).  
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Figure 3: DNA elements of a conventional yeast telomere and the adjacent 

subtelomeric region  (modified from Wellinger & Zakian, 2012). Telomeric DNA is 

heterogeneous but typically contains 300 ± 75 bp repeats (abbreviated C1-3A/TG1-3 ) 

and a G-rich tail readily processed by telomerase during telomere maintenance. 

Subtelomeric regions typically contain either XY or X-only elements. The Y elements 

are areas of active chromatin, whereas X elements and proximal regions have 

features of heterochromatin silencer regions (i.e. low nucleosome density and lack of 

histone modifications). 

 

 TAS can be characterized as XY’ or X-only regions, based on the presence 

of X and Y’ elements. X elements are similarly organized in both XY’ and X-only 

regions and share common features with known silencer regions which serve as 

heterochromatin nucleation sites. These features include low nucleosome density, 

the absence of histone modifications and the presence of binding sites for silencing 

factors. On the other hand, distal Y’ elements of XY’ regions contain high 

nucleosome density, histone modifications and factors associated with active 

chromatin (Wellinger & Zakian, 2012).  

 

 A number of studies have shown that telomeres and associated regions are 

anchored to the inner nuclear membrane where they form small clusters. This 

particular nuclear organization could potentially have a regulatory role by 
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sequestrating silencing factors to the nuclear periphery. According to this hypothesis 

the isolation of heterochromatic repressors from euchromatin would prevent the 

unwanted silencing of transcriptionally active regions. Subtelomeres contain a variety 

of conditionally-expressed genes involved in the stress response, rapamycin 

resistance and the metabolism of nonstandard carbon sources. These genes are 

repressed under standard growth conditions due to their proximity to 

heterochromatinized subtelomeric regions (position effect). Changes in the cellular 

environment, can however trigger the release of silencing factors from subtelomeric 

heterochromatin domains and activate these genes in order to preserve cell survival  

(Taddei et al., 2009; Wellinger & Zakian, 2012). 

 

 In summary, subtelomeric heterochromatin is thought to protect the structural 

integrity of chromosome ends and to serve as a regulatory mechanism that ensures 

the rapid activation of stress-related genes in response to environmental challenges. 

1.3 rDNA 

 

 Ribosomal RNA (rRNA) is a major component of ribosomes, RNA-protein 

complexes necessary for protein biosynthesis. In yeast, genes encoding rRNA 

molecules (rDNA) are contained in a 9.1-kb locus present in 150 to 200 tandem 

copies on chromosome XII. The rDNA locus forms a distinct nuclear structure called 

the nucleolus, which is localized at the nuclear periphery. Given the importance of 

proteins as effectors of biochemical processes, it is not surprising that rDNA 

transcription accounts for ~ 60% of cellular transcription in yeast. The rDNA array is 

normally accessible only to Pol I and Pol III transcription, while Pol II transcription is 

repressed by the RENT complex (REgulator of Nucleolar Silencing and Telophase). 

The RENT complex includes the Sir2 protein (Silent Information Regulator 2) a 

component of yeast heterochromatin complexes. However, unlike the silent mating 

type loci and subtelomeric regions, rDNA silencing only requires the the Sir2 subunit 

of the Sir complex discussed below (Gartenberg & Smith, 2016; Smith & Boeke, 

1997). 
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 The rDNA array is organized into repeats containing the Pol I-transcribed 

35S precursor rRNA that are separated by small intergenic regions, which contain  

5S rRNA transcribed with Pol III flanked by two non-transcribed spacers: NTS1 and 

NTS2 (Figure 4). The spacers contain binding sites for the RENT complex whose 

main function is to silence Pol II dependent transcription of NTS1/2 which 

destabilizes rDNA (Gartenberg & Smith, 2016). 

 

 

Figure 4: Organization of the rDNA array on chromosome 12 (modified from 

Gartenberg & Smith, 2016).  The array consists of 150-200 repeats of 9.1 kb. Each 

repeat contains the transcriptional unit of the 35S precursor rRNA transcribed by Pol 

I. Between repeats lies the intergenic region consisting of the spacer NTS1, the 5S 

rRNA gene (transcribed by Pol III) and the spacer NTS2. Both spacers contain 

binding sites for the RENT complex which serves as the mediator of rDNA silencing 

and stabilization. 
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 Despite the repetitive nature of the rDNA array, unequal chromatid exchange 

events rarely occur due to Sir2-mediated silencing. Indeed, aberrant Sir2 expression 

or function can render rDNA repeats highly unstable and promote recombination 

events which result in the formation of ERCs (Extrachromosomal rDNA Circles). 

ERCs contain their own ARS (Autonomously Replicating Sequence) allowing circle 

replication during S phase. It has therefore been proposed in one ERC-centric model 

of aging, that the asymmetrical accumulation of ERCs in mother cells eventually 

results in the sequestration of essential replication and transcription factors from the 

rest of the genome, which would then theoretically cause senescence and cell death 

(Gartenberg & Smith, 2016; Saka, Ide, Ganley, & Kobayashi, 2013). 

 

 In conclusion, rDNA silencing recapitulates previously established 

heterochromatin features. The accumulation of silencing factors, renders rDNA 

refractory to Pol II transcription and recombination, thus ensuring genomic stability 

and correct rDNA expression.  
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2 MOLECULAR FEATURES OF 

HETEROCHROMATIN  
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 Despite individual differences and domain-specific particularities, three 

distinctive molecular features of heterochromatin domains can be generalized: 

a) The presence of specific DNA sequences (silencers) and silencer-binding 

factors which recruit silencing proteins to designated domains. 

b) The presence of silencing proteins, which form a complex called Sir (Silent 

Information Regulator). 

c) The depletion of all known histone modifications (most importantly, the 

acetylation of H4K16 and methylation of H3K79 and H3K4) (Gartenberg & 

Smith, 2016). 

 

 The following subchapters will provide more details on one of these 

molecular features.  

2.1  Silencers and their binding factors 

 

 Silencers are cis-acting regulatory sequences which flank heterochromatin 

domains. They contain their own ARS (Autonomously Replicating Sequence) and 

binding sequences for factors that recruit Sir proteins, with the exception of NTS 

regions in rDNA repeats that seem to recruit the RENT complex without the 

mediation of silencer-binding factors (Figure 5) (Gartenberg & Smith, 2016). While 

silencer binding factors, namely, Rap1 (Repressor Activator Protein), Abf1 (ARS 

Binding Factor) and ORC (Origin Recognition Complex) (Bi, 2014; Cuperus, 

Shafaatian, & Shore, 2000)- individually perform different functions unrelated to 

heterochromatin,  it is the additive effect of their collective binding to silencers that 

appears to be critical for the recruitment of the Sir complex (Bi, 2014; Cuperus et al., 

2000). 

 

 Rap1 is an essential and multifunctional yeast protein implicated in the 

transcriptional regulation of different genomic loci. In addition to its role in 

heterochromatin establishment, Rap1 functions as a transcriptional activator of many 

genes, including glycolytic enzymes and ribosomal proteins. Rap1 is also recruited to 

the highly repetitive telomeric DNA where it maintains telomere-length homeostasis 



16 

 

by inhibiting telomere fusion and DNA damage response pathways (Feldmann & 

Galletto, 2014; Negrini, Ribaud, Bianchi, & Shore, 2007). Structural studies identified 

three functional Rap1 domains in yeast. Two central Myb domains responsible for 

DNA binding and a C-terminal RCT domain responsible for Sir3/4 interaction (in 

telomere silencing) and Rif1/2 (RAP1-Interacting Factor) interaction (in telomere 

length homeostasis). A conserved binding module of the RCT domain is evolutionary 

conserved, but seems to play different roles in mammals (telomere regulation and 

protection) and yeast (silencing) (Chen et al., 2011). Additionally, Rif1 and Rif2 seem 

to recruit and stabilize Rap1 binding at telomeric DNA (telosome) where they form a 

heterogeneous assembly (molecular Velcro). According to this binding model, Rif1 

and Rif2 provide weak multivalent binding modules for Rap1 thereby conferring 

plasticity to the telosome - rapid disassembly in S phase and stability in other phases 

of the cell cycle. Interestingly, Rif1 and Rif2 structural motifs, which form a part of the 

Velcro architecture, seem to directly and functionally compete with Sir3 binding to 

Rap1 (Shi et al., 2013).  

 Like Rap1, Abf1 is an essential protein. It is involved in DNA replication 

initiation, transcriptional regulation of many metabolic gene and  nucleotide excision 

repair (Yu et al., 2009).  

 Finally, ORC’s main function is to bind replication origins in a process called 

origin licensing that primes and prepares origins for replication (Hoggard, Shor, 

Müller, Nieduszynski, & Fox, 2013).  

 ORC also recruits Sir1 to silencers. Unlike the other Sir subunits, which are 

the structural building blocks of heterochromatin, Sir1 functions as a molecular 

adaptor, that facilitates heterochromatin establishment mostly at silent mating type 

loci. Experimental evidence suggests that Sir1 promotes the establishment of the 

silent state but does not appear to be necessary for its transmission to subsequent 

cell generations. The loss of Sir1 disrupts silencing at silent mating type loci, resulting 

in a phenotypically mixed population of cells. Some cells within the population are 

able to silence one or both mating type loci, while others fail to silence either. These 

findings illustrate perfectly why yeast heterochromatin has been considered ever 

since its discovery as a prime example of epigenetic regulation of gene expression  

(Gardner & Fox, 2001; Pillus & Rine, 1989a).  
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Some heterochromatin regions also contain specific sequences called proto-

silencers that can enhance silencer function. Proto-silencers include individual 

binding sites for Rap1, Abf1 and ORC, which in isolation and in the absence of a 

silencer do not contribute to Sir recruitment (Lebrun et al., 2001).  PAU (seripauperin) 

genes seem to act as proto-silencers aiding Sir recruitment at some subtelomeric 

regions. Interestingly, the expression of these genes is induced in stressful conditions 

which coincide with Sir3 hyperphosphorylation and subsequent delocalization from 

telomeres. These findings further demonstrate the plasticity of heterochromatin and 

its responsiveness to environmental changes (Radman-Livaja et al., 2011).  

 

 Despite the differences in structure and localization, silencers of silent mating 

type loci and (sub)telomeric regions share the same Sir-recruitment function (Figure 

5).  

 

Figure 5: Silencers and silencer-bound factors at silent mating type loci and 

telomeres  (modified from Gartenberg & Smith, 2016). At silent mating type loci, E 

and I silencers contain binding sites for Rap1, Abf1 and ORC. On the other hand, at 

telomeres, Rap1 binds telomeric repeats, while ORC and Abf1 bind X elements. Both 

telomeric repeats and X elements function as silencers. Peak repression is found at 

the autonomously replicating sequence of the X element. 
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 In early experiments, the two silencers from each silent mating type locus 

were named E (“essential”) and I (“important”) based on their “importance” in the 

establishment of the silent state. This is somewhat misleading because the E silencer 

is sufficient for Sir recruitment to HMR, but either one is sufficient for Sir recruitment 

to HML. Silencers from both loci contain binding sites for at least two silencer-binding 

factors (Rap1, Abf1 or ORC). Telomeres, on the other hand, contain two distinct Sir-

recruitment sites: TG1-3 repeats enriched for the telomere-maintaining Rap1 and 

subtelomeric X elements enriched for Abf1 and ORC. Sir-mediated silencing is at its 

peak at the autonomously replicating sequence of X elements (Pryde & Louis, 1999; 

Radman-Livaja et al., 2011; Weber & Ehrenhofer-Murray, 2010).  

 In conclusion, silencers and their binding factors represent the first critical 

step of heterochromatin assembly, which is the recruitment of the Sir complex.  

 

2.2 Sir complex 

 

  Each Sir subunit provides a unique activity necessary for the establishment 

and maintenance of heterochromatin domains as described below (Kueng, 

Oppikofer, & Gasser, 2013).  

2.2.1 Sir2 

 

 Sir2 is a NAD+ (nicotinamide adenine dinucleotide)-dependent histone 

deacetylase which belongs to a conserved family of proteins called sirtuins. Sirtuins 

are ubiquitous in all domains of life and implicated in a variety of processes, including 

genomic maintenance, aging, stress response and metabolic regulation (Dang, 

2014). In yeast, Sir2 associates with partner proteins to form either the Sir or the 

RENT complex. The inherently weak Sir2 deacetylase activity is enhanced through 

conformational changes induced by interactions with the other subunits of the Sir or 

the RENT complex.  This allosteric control of Sir2 activity ensures that its histone 

deacetylase activity is restricted to heterochromatin (reviewed in Gartenberg & Smith, 

2016).  
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  Sir2 consists of two distinct, independently folded domains. The N-terminal 

helical domain interacts with Sir4 and contains the regulatory module that targets 

Sir2 to heterochromatin loci. The C-terminal domain is the catalytic module 

responsible for substrate transformation by coupling NAD+ breakdown to the removal 

of the acetyl group from lysine 16 on histone 4 (H4K16). The NAD+-binding cleft is 

wedged in between the  N-terminal and the C-terminal domains (Figure 6) (Hsu et al., 

2013; Min, Landry, Sternglanz, & Xu, 2001).  

 

Figure 6: Sir2 structure  (Hsu et al., 2013). The N-terminal domain (cyan) interacts 

with Sir4 (magenta). The C-terminal catalytic domain (green) binds and transforms 

reaction substrates (NAD+ and acetylated H4K16), ADP ribose (ADPr) appears in the 

crystal in the NAD+ binding site due to nicotinamide hydrolysis during crystallization. 

Additionally, the C-terminal domain contains a zinc ion pocket important for substrate 

positioning and transition state stabilization.  



20 

 

 The Sir2-mediated deacetylation of H4K16ac is a group transfer reaction. 

The acceptor of the acetyl group is the ADP-ribose moiety of NAD+. The transfer of 

the acetyl group to ADP-ribose is coupled to the thermodynamically favorable NAD+ 

hydrolysis, which ultimately yields three products: NAM (nicotinamide), OAADPr (O-

acetyl-ADP-ribose) and the deacetylated H4K16 (Figure 7) (Sauve, 2010; Tanny, 

Dowd, Huang, Hilz, & Moazed, 1999). 

 

Figure 7: Sir2-mediated histone deacetylation  (modified from Imai & Wilson, 

2002).  Sir2 facilitates the transfer of the acetyl group from H4K16 to ADP-ribose by 

coupling it to the thermodynamically favorable NAD+ hydrolysis. In the end, three 

products are formed: NAM, OAADPr and the deacetylated histone. 

 

 NAM is a non-competitive inhibitor of Sir2 both in vitro and in vivo. The yeast 

nucleus is enriched for NAD+ salvage pathway enzymes which are able to convert 

NAM into NAD+, thereby restoring Sir2 activity. Pnc1 (pyrazinamidase / 

nicotinamidase) is responsible for converting NAM into NA (nicotinic acid). 

Afterwards, Npt1 (nicotinate phosphoribosyltransferase) converts NA into NaMN 

(nicotinic acid mononucleotide) before merging with the de novo NAD+ synthesis 
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pathway (Kato & Lin, 2014; Sauve, Moir, Schramm, & Willis, 2005). The cross-talk 

between the de novo and salvage pathways regulates intracellular NAD+ levels and, 

indirectly, Sir2-mediated silencing. Deleting any of the salvage pathway enzymes can 

completely abolish Sir2 function, further demonstrating the critical link between Sir2, 

NAD+ and associated derivatives (Kato & Lin, 2014; Sauve, Moir, Schramm, & Willis, 

2005). 

 

 The importance of NAM in feedback inhibition of Sir2 activity raised the 

question whether OAADPr might have a similar function. Initial, in vitro, binding 

experiments suggested that OAADPr contributes to the efficient binding of Sir 

complex to nucleosome arrays (Liou, Tanny, Kruger, Walz, & Moazed, 2005). In vivo 

studies observed defects in Sir3 binding and diminished Sir3-Sir3 and Sir3-Sir4 

interactions in a strain carrying mutations of the putative OAADPr Sir3 binding site. 

Furthermore, when the heterochromatin boundary deacetylase Rpd3 (Reduced 

Potassium Dependency 3) was targeted to heterochromatin regions, Sir complex 

spreading was halted. Due to the removal of the Sir2 substrate (H4K16ac) by Rpd3, 

no OAADPr could be produced, thus rendering Sir complex unable to effectively 

spread (Ehrentraut, Weber, Dybowski, Hoffmann, & Ehrenhofer-Murray, 2010). 

However, heterochromatin formation was not compromised when an NAD+-

independent deacetylase fusion with Sir3 was used instead of Sir2 in a strain that  

lacks all OAADPr-generating enzymes (including Sir2), thus casting doubt on the 

importance of OAADPr in modulating Sir complex activity (Chou, Li, & Gartenberg, 

2008). 

 

 The role of  the enzymatic activity of Sir2 is to generate high-affinity binding 

sites for Sir3 and consequently promote the spreading of  heterochromatin domains 

(Kueng et al., 2013). On the other hand, the deacetylase activity of Sir2 induces 

structural changes in the underlying chromatin template that are necessary for 

silencing, but it is not required for RENT binding (Hoppe et al., 2002). Sir2 is also 

implicated in the extension of the cellular lifespan caused by caloric restriction (CR).  

Empirically, CR is defined as the reduction of glucose concentration in yeast-growth 

media from 2% to 0,5%. In response to CR, Pnc1 levels increase, consequently 
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elevating NAD+ levels, decreasing NAM levels and ultimately stimulating Sir2 activity. 

However, the exact mechanism by which Sir2 activity causes the longevity effect is 

still unknown (Imai & Guarente, 2016; Kato & Lin, 2014).  

 

  In conclusion, Sir2 is an important NAD+-dependent histone deacetylase 

linking cellular metabolism, genomic maintenance and aging.  

 

2.2.2 Sir3 

 Unlike Sir2, Sir3 functions primarily at heterochromatin domains, where it 

serves as a nucleosome-binding protein (Kuenget al., 2013). Sir3 consists of three 

well-defined domains: the N-terminal BAH (bromo-adjacent) domain- the domain with 

the highest similarity to the corresponding Orc1 BAH domain (Ehrentraut et al., 

2011), the central AAA+ ATP-ase-like domain and the C-terminal winged-helix 

domain (Bell, Mitchell, Leber, Kobayashi, & Stillman, 1995) (Figure 8) .  

 

Figure 8: Structure and function of Sir3 domains (modified from Gartenberg & 

Smith, 2016). The BAH domain is the nucleosome binding domain of Sir3, while the 

AAA+ ATPase domain mediates the interaction between Sir3 and Sir4/Rap1 at 

heterochromatin loci. The winged-helix domain enables Sir3 homodimerization.  
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 Initial mutational studies revealed the BAH domain’s central role as the 

mediator of nucleosome binding (Onishi, Liou, Buchberger, Walz, & Moazed, 2007). 

It was discovered later on that the BAH domain has the highest binding affinity for 

nucleosomes lacking acetylated H4K16. As previously discussed, the acetylation of 

H4K16 is removed by the catalytic activity of Sir2, which enables Sir3 binding and 

spreading of heterochromatin domains (Sampath et al., 2009).  

 

  Sir3 binding to H4K16 is greatly enhanced in the absence of methylation 

marks on H3K4 and H3K79. These modifications, generated by Set1 and Dot1 

respectively, are associated with transcriptionally active regions. Paradoxically Set1 

and Dot1 deletions actually reduce heterochromatin silencing because the absence 

of H3K4 and H3K79 methylation creates high affinity binding sites for Sir3 in 

euchromatic regions and titers the low abundance Sir3 proteins away from 

heterochromatic loci (Bernstein et al., 2002; Wood, Tellier, & Murphy, 2018b). 

Overexpressing Sir3 extends heterochromatin domains beyond the boundaries found 

in naturally limiting Sir3 conditions (Radman-Livaja et al., 2011). These findings 

suggest that Sir3 dosage and genomic methylation are tightly regulated in order to 

restrict heterochromatin domains within well-defined regions with discrete 

boundaries. However, a recent study revealed that Sir3 spreading at subtelomeric 

regions can reach saturation when Sir3 is overexpressed between 9x and 16x, 

indicating the presence of fixed borders which limit H3K79me and 

H3K79me2heterochromatin spreading (Hocher et al., 2018). Furthermore, telomeric 

regions, which normally form clusters at the nuclear periphery in limiting Sir3 

conditions, aggregate into hyperclusters and move to the center of the nucleus when 

Sir3 is overexpressed. Interestingly, the silencing and clustering function of Sir3 are 

mediated by two different domains: the BAH and the winged helix domain, 

respectively. The formation of hyperclusters seems to further increases the local 

concentration of silencing factors and stabilize (sub)telomeric silencing (Ruault, De 

Meyer, Loïodice, & Taddei, 2011).   
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 In addition to the BAH domain, Sir3 contains an AAA+ ATPase-like domain. 

Unlike conventional AAA+ domains found in ATP-binding enzymes, the Sir3 AAA+ 

ATPase-like domain is catalytically inactive due to noncanonical amino acid residues 

that block the ATP-binding pocket. The domain is still critical for heterochromatin 

establishment because it provides a Sir4-interacting module. Although Sir3 can bind 

to naked DNA in vitro, it is found almost exclusively on deacetylated nucleosomes in 

vivo where it is stabilized through interactions with Sir4. Additionally, Sir3 is recruited 

to silencers through an interaction between a small region of the AAA+ ATPase-like 

domain with Rap1 (Ehrentraut et al., 2011).  

 

 Lastly, Sir3 contains a winged-helix domain implicated in Sir3 dimerization.  

Sir3 dimerization is essential for stable loading of the Sir complex and repression of 

target genomic loci. The winged-helix domain can be replaced with another self-

associating domain without compromising heterochromatin establishment. It is still 

unclear whether Sir3 dimers bind to one nucleosome or bridge two neighboring 

nucleosomes (Oppikofer et al., 2013). 

 

2.2.3 Sir4 

 

 Sir4 is the least evolutionarily conserved subunit of the Sir complexes from 

the Saccharomycetaceae yeast family. Sir4 is essential for Sir complex assembly 

and the perinuclear localization of heterochromatin domains (Faure et al., 2019). It is 

composed of three structural domains: the N-terminal domain, the central domain 

and the C-terminal domain (Figure 9).  
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Figure 9: Functional organization of Sir4 domains (modified from Gartenberg & 

Smith, 2016). All three functional domains contain binding sites for various partner 

proteins. Unlike Sir2 and Sir3, Sir4 has a DNA binding domain, which is located in 

the N-terminal domain. The C-terminal coiled-coil domain interacts with Sir3 and 

mediates Sir4 dimerization. 

 

 Each one of these domains contains interaction modules for association with 

different partners, including yKu70/80 at telomeres, Rap1 at silencers and telomeric 

repeats, Sir1 at silent mating type loci, and finally Sir2 and Sir3. The central domain 

is responsible for interaction with Sir2, while the C-terminal coiled-coil interacts with 

Sir3 and enables Sir4 dimerizations, which are both critical for proper 

heterochromatin establishment. Sir4 facilitates  Sir complex nucleation at silencers 

thanks to its DNA binding domain (Faure et al., 2019; Xu, 2003). 

 

  Sir4 functions as a scaffold for Sir2 and Sir3. It is also an allosteric regulator 

of Sir2’s enzymatic activity and Sir3’s binding to nucleosomes. Sir4 mutations that 

affect Sir4 dimerization and its interaction with Sir2 and Sir3 abolish silencing at silent 

mating type loci and subtelomeric regions but have no effect on rDNA silencing 

where only Sir2 is necessary for repression (Faure et al., 2019). 
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 Sir4 also recruits the Sir complex to silencers through interactions with Sir1 

and Rap1. Sir4 binding to silencers is independent of Sir2 and Sir3. Telomeric Rap1 

and Ku proteins enrich Sir4 at telomeres through direct interactions (Hass & 

Zappulla, 2015; Luo, Vega-Palas, & Grunstein, 2002).  

 

 Sir4 contributes to the specific subnuclear localization of heterochromatin 

domains by anchoring them to the nuclear envelope. As previously discussed, the 

sequestration of heterochromatin domains at the nuclear periphery is thought to 

regulate the pool of available silencing proteins by keeping them away from the rest 

of the genome. In order to achieve functional heterochromatin tethering, Sir4 

interacts with three docking proteins at the nuclear envelope: Esc1 (Establishes 

Silent Chromatin), Nup170 (NUclear Pore) and Mps3 (Mono Polar Spindle). In 

addition to Sir4, an alternative anchoring pathway is mediated by Ku. The two 

pathways are co-dependent due to direct Sir4-Ku interactions (Gartenberg & Smith, 

2016; Taddei, Hediger, Neumann, Bauer, & Gasser, 2004). 

 

 Considering Sir4’s central role in the heterochromatin interaction network, its 

cellular levels would be the logical target of cellular mechanisms that regulate 

heterochromatin formation in response to environmental signals. A relatively recent 

study showed that Sir4 levels temporarily drop after releasing cells from extended α-

factor arrest, and are restored after two cell doublings (Larin et al., 2015).  

 

 In conclusion, Sir4 recruits Sir2 and Sir3 to subtelomeric and silent mating 

type loci and provides a scaffolding interface for other heterochromatic proteins that 

help the localization of heterochromatin to the nuclear periphery.  
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3 THE FORMATION OF 

HETEROCHROMATIN 

DOMAINS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



28 

 

 All the aforementioned heterochromatin components (summarized in Table 

1) come together to form a dynamic and tightly regulated structure that has to keep 

its functional and structural integrity throughout the perturbations caused by cell cycle 

progression or environmental challenges as discussed below (Young & Kirchmaier, 

2012). 

 

Table 1: Summary of heterochromatin-associated DNA sequences and 

proteins. 

Name Role in Heterochromatin Assembly 

Silencers Sites of Sir complex recruitment and nucleation. 

Silencer-bound factors Adaptors between silencers and the Sir complex. 

Sir2 Catalyzes the deacetylation of H4K16. 

Sir3 Binds deacetylated H4K16. 

Sir4 

Scaffold of the Sir complex, which targets the complex to 

silencers and anchors heterochromatin domains at the 

nuclear periphery. 

 

 Two types of definitions are commonly and, sometimes, interchangeably 

used when discussing the assembly of heterochromatin domains and their cell cycle 

progression. Both types of definitions will be used in their appropriate context.  

 

Operational definitions include global processes: 

 

a) Establishment - de novo repression of a locus.  

b) Maintenance – retention of the silent state within the cell cycle. 

c) Inheritance – propagation of the silent state through genomic replication. 
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 On the other hand, molecular definitions include more discrete assembly 

steps: 

 

a) Nucleation – initial step when the Sir complex is recruited to silencers. 

b) Spreading – extension of the heterochromatin domain. 

c) Maturation – acquisition of complete heterochromatin functionality by the 

action of histone-modifying enzymes and conformational changes (Gartenberg 

& Smith, 2016; T. J. Young & Kirchmaier, 2012). 

 

3.1 The sequential model of heterochromatin 
establishment 

 

 The sequential model is akin to a linear polymerization reaction and 

describes the establishment of heterochromatin domains by examining each 

molecular step (nucleation, spreading and maturation) separately (Hoppe et al., 

2002). Even though the sequential model cannot be applied to the discontinuous 

loop-back structure of telomeric regions, it is still useful for understanding the general 

principles of heterochromatin formation in yeast  (Lynch & Rusche, 2009) (Figure 10).  

 

 

 

A) Nucleation 
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B) Spreading 

 

C) Maturation 

Figure 10: The three-step sequential model of heterochromatin assembly   

(modified from Gartenberg & Smith, 2016). (A) Nucleation involves the recruitment 

of the Sir complex by a network of interactions between silencers and silencer-

binding factors. (B) Spreading of heterochromatin is initialized after adjacent 

nucleosomes are deacetylated by Sir2, thereby creating high-affinity binding sites for 

the Sir3-Sir4 dimer. Heterochromatin then extends through repeated cycles of Sir2 

mediated H4K16ac deacetylation and Sir3/Sir4 binding until it reaches an active 

barrier. (C) Maturation includes the removal of specific methylation marks in order to 

stabilize heterochromatin.  
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 The establishment of heterochromatin domains begins with nucleation. This 

initial step includes the recruitment of the Sir complex to silencers by the network of 

interactions between silencers and silencer-binding factors. Sir4, initially recruited by 

Sir1 (bound to ORC) and Rap1, brings in Sir2 and Sir3 to silencers. The assembly of 

this “nuclear” Sir complex stimulates the catalytic activity of Sir2, which then 

deacetylates adjacent nucleosomes. The removal of the acetyl group from H4K16 

generates Sir3-binding sites for another round of Sir complex recruitment, 

nucleosome deacetylation and Sir complex binding. The successive steps of Sir 

complex binding and deacetylation spread heterochromatin domains across the 

nucleosomal array until a barrier is reached or Sir subunits are locally depleted 

(Moretti & Shore, 2001; T. J. Young & Kirchmaier, 2012). A reconstituted 

heterochromatin study reaffirmed the importance of H4K16 deacetylation for Sir 

complex spreading and, ultimately, formation of a uniform and condensed 

heterochromatin fiber (Swygert et al., 2018). However, as previously discussed, 

methyl groups on H3K79 (by Dot1) and H3K4 (by Set1) destabilize Sir3 binding and 

are consequently removed in a final maturation step. H3K4 methylation is actively 

demethylated by Jhd2 (JmjC domain-containing Histone Demethylase) and passively 

removed via dilution after DNA replication since newly synthesized histones do not 

carry the mark (T. J. Young & Kirchmaier, 2012). On the other hand, H3K79 

methylation is thought to be removed only passively, although an H3K79 

demethylase has recently been characterized in mammalian cells (Kang et al., 2018).  

 

 Mature heterochromatin domains display several unique properties, most of 

which were discussed in previous chapters. To summarize, heterochromatin domains  

repress transcription of underlying genes and recombination of repetitive sequences, 

protect DNA against unwanted cleavage (by HO at silent mating type loci) and 

concentrate silencing factors in a separate subnuclear compartment (Allshire & 

Madhani, 2017; Grewal & Moazed, 2003). Furthermore, the established silent state is 

maintained through the cell cycle and stably inherited through multiple cell 

generations. Heterochromatin gene silencing in yeast was first described as a 

phenomenon called telomere position effect (TPE) and is one of the first examples of  

epigenetic inheritance of a cellular phenotype (Gottschling, Aparicio, Billington, & 

Zakian, 1990; Sandell & Zakian, 1992).  
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 Normally, yeast colonies that have a wt ADE2 

(phosphoribosylaminoimidazole carboxylase) are white. However, when the reporter 

gene ADE2 is placed in close proximity to a heterochromatinized artificial telomere, 

the expression of ADE2 is repressed and yeast accumulate a red pigment in the 

absence of adenine in the media. The repressive state of the reporter gene is stably 

transmitted through a series of cell division, until occasional silencing failures restore 

the reporter’s expression and white pigmentation. Therefore, the localization of the 

reporter close to heterochromatin results in variegated expression in a cell 

population. Since ON and OFF states are  being passed on from one cell generation 

to the next for dozens of cell divisions yeast colonies end up sectored into red and 

white sections. This phenomenon is similar to position effect variegation in 

Drosophilla (Figure 11) (Gottschling, Aparicio, Billington, & Zakian, 1990; Sandell & 

Zakian, 1992). 

 

 

Figure 11: Variegated expression of the ADE2 reporter gene and the epigenetic 

propagation of ON and OFF states to subsequent generations (modified from 

Gartenberg & Smith, 2016). Placing the reporter at an artificial telomere results in 

epigenetic repression and yields red yeast cells. However, not all cells are able to 

successfully repress the reporter, thus remaining white. The pattern of red and white 

sectors reflects the expression state of the reporter gene (reminiscent of the 

Drosophilla position effect variegation) which is stably propagated through successful 

cell divisions. 
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 The same positional effect can be observed at the silent mating type loci. 

However, these domains derepress less often and seem to be more stable, thus 

requiring genetic manipulation (such as mutations in the silencer sequence or Sir1) in 

order to observe changes in expression patterns of reporter genes (Pillus & Rine, 

1989b).  

 

 In conclusion, the sequential model describes the three steps of 

heterochromatin establishment: nucleation (recruitment of the Sir complex to target 

loci), spreading (extension of heterochromatin across nucleosome arrays) and 

maturation (removal of methylation marks). Heterochromatin functions include 

repression of transcription and DNA recombination as well as protection from 

endonucleases. Finally, heterochromatic states are stably and epigenetically 

inherited from one cell generation to the next.  

 

3.2 Barriers and anti-silencing factors 

 

 The unchecked spread of heterochromatin is a threat to genome integrity, 

and needs to be constrained to specific genomic loci by limiting the pool of available 

silencing factors and the action of antisilencing mechanisms. Antisilencing can be 

defined as a set of interconnected, genome-wide mechanisms that prevent 

heterochromatin delocalization. These mechanisms are most critical at 

heterochromatin edges where discrete antisilencing zones (called barriers) locally 

antagonize heterochromatin spreading (Noma & Grewal, 2002; Oki & Kamakaka, 

2005).  

 

 The antisilencing properties of barriers are a product of complementary 

activities of DNA-binding factors, chromatin remodelers and histone modifying 

enzymes. Together, these effectors actively alter the chromatin template by rapidly 

exchanging histones, adding or removing histone modifications and creating regions 

completely devoid of nucleosomes (Oki & Kamakaka, 2005; Simms et al., 2008a).  
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 One common class of barriers is represented by tRNA genes. tRNA genes 

are dispersed throughout the genome either organized into small clusters or as single 

copies. The transcription of tRNA genes by Pol III is initialized by the binding of 

transcription factor III C (TFIIIC) to conserved promoter sequences (named box A 

and box B) inside the gene body. The stable TFIIIC-promoter interaction recruits the 

transcription factor III B (TFIIIB) to an AT-rich region upstream of the transcription 

start site. The binding of both transcription factors ultimately recruits Pol III.  

Extensive research data on the tRNAThr barrier adjacent to HMR suggests that Pol III 

transcription is not necessary for a functional barrier, but Pol III binding to tRNA 

genes may contribute to tDNA’s antisilencing capacity by creating a nucleosome-free 

region which interrupts the spread of heterochromatin. Mutations that impair TFIIIC 

and TFIIIB binding to tRNA weaken its barrier function, suggesting that the binding of 

these factors is critical for the antisilencing role of tRNA genes. Surprisingly, genome-

wide mapping of TFIIIC, TFIIIB and Pol III binding sites revealed nine additional loci 

called ETC (Extra TFIIIC) which bind either TFIIIC alone or TFIIIC and TFIIIB, but not 

Pol III and act as functional heterochromatin barriers (Oki & Kamakaka, 2005; Simms 

et al., 2008b).  

 

 Although Pol III transcription is not necessary for TFIIIC/B-mediated barriers, 

the action of chromatin-modifying enzymes and active remodelers is critical for 

barrier function. As previously discussed, Sir2-mediated deacetylation of H4K16 is 

necessary for heterochromatin establishment because it creates binding sites for 

Sir3. In contrast, tRNA barriers recruit a complex which contains the H4K16 

acetyltransferase Sas2 (Something About Silencing). Sas2 and cofactor acetyl-CoA 

(acetyl-coenzyme A) catalyze the genome-wide acetylation of H4K16 featured 

prominently in transcriptionally-active regions and tRNA barriers. The barrier function 

of Sas2 is evident in deletion strains where heterochromatin domains extend beyond 

their usual limits into euchromatin (Oki & Kamakaka, 2005). The previously 

discussed histone deacetylase Rpd3 could also contribute to barrier activity by 

removing H4K16ac, thus halting the production of OAADPr, a possible 

heterochromatin spreading effector (Ehrentraut et al., 2010). Additionally, Sas2-

mediated acetylation facilitates the incorporation of another antisilencing factor -the 

histone variant H2A.Z- into nucleosomes (Shia, Li, & Workman, 2006).  
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 The methyltransferase Dot1 catalyzes the mono-, di- and trimethylation of 

H3K79 and interacts with H4K16ac regulated by Sir2 and Sas2 activities. The 

observed hypermethylation of euchromatin compared to heterochromatin could imply 

a potential antisilencing function of Dot1 in countering heterochromatin spreading 

(Altaf et al., 2007; van Leeuwen, Gafken, & Gottschling, 2002). However, studies with 

dot1Δ strains revealed that the loss of Dot1 does not globally alter Sir2 and Sir3 

occupancy at subtelomeric regions and silent mating type loci. Slightly reduced Sir2/3 

occupancy was reported only on specific subtelomeric regions, suggesting H3K79 

methylation could have a context-dependent effect on Sir binding (Takahashi et al., 

2011b). Similarly, ChIP (Chromatin Immunoprecipitation) revealed uncompromised 

Sir2 and Sir4 binding at two telomeres in a dot1Δ strain (Rossmann, Luo, Tsaponina, 

Chabes, & Stillman, 2011). Taken together, these results suggest H3K79 methylation 

is not required to counter heterochromatin spreading at least when Sir subunits are 

expressed at endogenous levels. However, when Sir3 is overexpressed in dot1Δ, 

mutants acquire growth defects proportional to the dose of Sir3. These defects could 

be remedied when silencing was abolished by Sir2 inhibition. Furthermore, the 

methylation of H3K4 and H3K36 and the deacetylation by Rpd3 were dispensable for 

maintaining growth when Sir3 was present at high levels in dot1Δ. By comparing 

overexpressed Sir3 binding patterns in dot1Δ with methylation levels deposited by 

Dot1 in wt cells, Sir3 enrichment was observed at loci enriched for H3K79me3 and 

depleted for H3K79me and H3K79me2. These results suggest H3K79me3 is 

necessary to counter the extension of heterochromatin domains and serve as an 

antisilencing factor when Sir3 is overexpressed (Hocher et al., 2018). 

 

 In addition to transcription factor binding and H4K16 acetylation, barriers are 

characterized by fast histone turnover rates and nucleosome free regions (NFRs), 

which are created by chromatin remodelers, such as RSC (Remodel the Structure of 

Chromatin) (Angus-Hill et al., 2001). RSC mutations also compromise the recruitment 

of the cohesin complex to chromatin. Interestingly, yeast with defective cohesion-

recruitment mechanisms demonstrate a significant loss of the tRNAThr barrier activity 

(Simms et al., 2008b). 
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 In conclusion, the additive effects of histone turnover, nucleosome eviction 

and targeted histone modifications create powerful barriers that restrict 

heterochromatin spreading and represent a demarcation zone between 

heterochromatin and euchromatin.  

 

3.3  Heterochromatin and the cell cycle 

 

 Heterochromatin domains are stably maintained through the various phases 

of the cell cycle and are faithfully transmitted to daughter cells. Although the 

sequential model provides a molecular description of de novo heterochromatin 

establishment, it does not explain how the structure survives perturbations caused by 

DNA replication and cell division. For decades, researchers have been struggling to 

elucidate the cell cycle timing and specific cellular circumstances that promote de 

novo establishment and inheritance of silent states. Early experiments utilized a 

variety of techniques in order to induce the expression of Sir subunits at specific 

stages of the cell cycle and observe heterochromatin reconstitution. Interestingly, 

heterochromatin domains were re-established only in cells went through S phase, 

leading scientists to conclude that S phase-related events were necessary to 

effectively restore silencing (Miller & Nasmyth, 1984; T. J. Young & Kirchmaier, 

2012). 

 

 The central molecular event of S phase is DNA replication, which perturbs 

the chromatin template while producing a faithful copy of the genome. The disruption 

and reconstitution of chromatin following replication could, therefore, provide a logical 

time window for heterochromatin establishment. Although, only some steps in the 

replication process seem to contribute to heterochromatin formation (Gartenberg & 

Smith, 2016; T. J. Young & Kirchmaier, 2012).   

 

 As previously discussed, ORC is a critical protein complex implicated in both 

the initiation of replication and silencing. The decoupling of ORC’s silencing and 

replication functions using different mutants for each function in the same strain did 



37 

 

not affect ORC’s silencing function, suggesting that ORC does not need to initiate 

replication at silencers to recruit the Sir complex. (Dillin & Rine, 1997). Interestingly, 

the replication origins in silencers were also not necessary for silencing when Sir1 

was tethered directly to DNA (Fox, Ehrenhofer-Murray, Loo, & Rine, 1997). Finally, 

silencing could be successfully established on an unreplicative, extrachromosomal 

DNA containing only a partial silencer (Li, Cheng, & Gartenberg, 2001). Together, 

these findings argue against a role of replication origins and fortk progression in 

heterochromatin establishment. However, they do not eliminate the possibility that 

another S-phase process is required for heterochromatin establishment (T. J. Young 

& Kirchmaier, 2012).  

 

 Some fork-associated factors that could be involved in silencing include the 

sliding clamp PCNA (Proliferating Cell Nuclear Antigen), DNA helicases and the 

histone chaperones CAF-1 (Chromatin Assembly Factor) and Asf-1 (Anti-Silencing 

Function). Many of these factors are directly or indirectly involved in the replication-

coupled deposition of histones. Mutations in these factors could therefore 

compromise the establishment of heterochromatin by for example incorporating 

acetylated or methylated maternal histones into heterochromatic loci and 

consequently inhibiting Sir complex binding. They might also fail to recruit 

appropriate histone-modifying enzymes, which could result in an enrichment of 

hypoacetylated histones and create Sir3 binding regions away from heterochromatic 

loci (T. J. Young & Kirchmaier, 2012). 

 

  Strains lacking the fork-associated helicase Rrm3 (rDNA Recombination 

Mutation) promote Sir3 and Sir4 recruitment to the sites of replication fork pausing. 

These sites are usually generated by stable DNA-protein interactions that are 

normally removed by Rrm3 to facilitate the progression of the replication fork 

(Dubarry, Loïodice, Chen, Thermes, & Taddei, 2011). Such transient fork pausing 

was observed at the silent mating type loci, telomeres and tRNA genes (Ivessa et al., 

2003).  
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 In addition to fork-associated factors, cohesin seems to play an important 

role in heterochromatin establishment as a cell cycle-dependent antisilencing 

regulator. As previously discussed, cohesin is a critical contributor to the tRNAThr 

barrier function. Interestingly, tethering cohesin directly to DNA creates an artificial 

barrier to heterochromatin spreading (Dubey & Gartenberg, 2007).  Cohesin does not 

bind to HMR locus in strains with the tRNAThr deletion and silencing at HMR is 

established in any phase of the cell cycle in this strain. When the tRNAThr gene and 

cohesin were transferred to HML, the establishment of silencing was again 

dependent on cell cycle progression (Lazarus & Holmes, 2011). These findings seem 

to suggest that cohesin at the tRNAThr barrier not only prevents heterochromatin 

spreading, but also conditions heterochromatin establishment on cell cycle 

progression.  

 

 One of the most striking features of heterochromatin is its ability to propagate 

the established silent state to subsequent cell generations. This form of epigenetic 

inheritance is conceptually different from de novo establishment. De novo 

establishment is usually not required for epigenetic inheritance once heterochromatin 

is assembled. Nevertheless, following replication-induced perturbations, 

heterochromatin needs to be quickly and efficiently restored on both daughter 

chromatids. This faithful re-establishment and replication-coupled transmission of the 

silent state is usually defined as inheritance and differs from de novo establishment 

in speed and efficiency (Gartenberg & Smith, 2016).  

 

 Although various inheritance models exist, the most prevalent one is based 

on the cis-maintenance of histone modifications after DNA replication. According to 

this model, parental nucleosomes distribute randomly between daughter chromatids 

in the wake of the replication fork and recruit modifying enzymes to generate the 

same modification patterns on newly deposited histones. In the case of 

heterochromatin, the association of the Sir complex with parental nucleosomes could 

facilitate the deacetylation of newly synthesized histones that were mixed in with the 

old histones during assembly on replicated daughter strands. This would ensure that 

newly-deposited histones quickly become optimal binding targets for the Sir complex 
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and would thus enable the quick re-establishment of heterochromatin domains. 

Experimental data do suggest that re-establishment is more efficient if silencer-

proximal regions inherit the deacetylated parental nucleosomes but silencers still 

appear to be continuously needed for silencing, as evidenced by silencer deletion 

strains where heterochromatin is disrupted after only one cell division. These findings 

seem to indicate that cooperative Sir complex recruitment to silencer regions works 

in tandem with Sir-mediated deacetylation to ensure the efficient restoration of silent 

states after replication (Moazed, 2011). 

 

 In conclusion, the search for elusive cell cycle events driving heterochromatin 

establishment and inheritance still continues, with the most likely contributors 

chromatin assembly events during DNA replication.  Although origin firing and 

replication fork progression do not seem to be required for de novo establishment, 

fork-associated factors and replication-induced perturbations profoundly affect the 

composition of chromatin which, ultimately, influences both de novo establishment 

and inheritance (T. J. Young & Kirchmaier, 2012).  
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 In order for the intricate web of metabolic pathways to sustain life it requires a 

constant influx of matter and energy. Yeast share the same carbon and energy 

requirements as other eukaryotic organisms for all their cellular processes, including 

the maintenance and inheritance of heterochromatin domains. The central carbon 

and energy source for yeast is glucose. In nutrient-rich conditions, glucose is 

preferentially metabolized by anaerobic glycolysis, which produces ATP and releases 

ethanol to the surrounding environment. However, when glucose availability 

becomes limited, cells are able to switch metabolism from anaerobic glycolysis to the 

aerobic oxidation of ethanol in a process called diauxic shift. Once ethanol is 

exhausted and no other carbon source is available, haploid cells arrest growth and 

enter the stationary phase (Figure 12). Yeast can thus preserve viability for extended 

periods of time when nutrients are scarce and resume growth once favorable 

conditions are restored. Unlike haploid cells, nutrient-deprived diploid cells usually 

enter meiosis and sporulate into four haploid spores. Afterwards, spores are able to 

reform diploids via conjugation (mating) once nutrients are available again. 

 

Figure 12: The cell cycle and stationary phase in yeast. Under nutrient-rich 

conditions, yeast can seamlessly proceed through the various phases of the cell 

cycle. However, when nutrients are depleted, haploid cells arrest growth and enter 

the stationary phase until nutrients are restored. In addition to carbon source 

deprivation, yeast can enter the stationary phase when deprived of nitrogen or 

phosphate, although they do not display the same molecular and physiological 

characteristics (Galdieri, Mehrotra, Yu, & Vancura, 2010).  
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4.1  Features of stationary-phase cells 

 

 Initially, stationary phase cells were thought to produce a phenotypically 

homogenous population. However, density centrifugation experiments revealed that 

stationary phase cells differentiate into two distinct subsets termed Q (Quiescent) 

and NQ (Non-Quiescent). Q cells were found to be denser, accumulating in the 

bottom fraction of the centrifugation tube. NQ cells were less dense and remained in 

the upper fraction of the tube (Figure 13) (Allen et al., 2006).  

 

 

Figure 13: Density-gradient separation of Q and NQ cells.  As time progresses 

following glucose depletion, two distinct fractions of cells are formed: the lower 

(denser) fraction of Q cells and upper (less dense) fraction of NQ cells.   

 

 In addition to density, Q and NQ cells differ in other features, most notably in 

their propensity to reenter the cell cycle after re-adding glucose to their growth 

medium. Q cells are unbudded and replicatively younger cells which retain their 

ability to reenter the cell cycle. NQ cells are enriched in reactive oxygen species and 

less likely to reenter the cell cycle. Both Q and NQ cells seem to have significantly 

reduced transcription and translation rates and decreased proteosomal activity and a 

more active lysosomal degradation pathway. A study using purified Q cells identified 

a ~ 30-fold decrease in mRNA levels compared to a ~ 2-fold decrease at diauxic 
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shift. This global transcriptional shutdown could be attributed to the global 

deacetylation activity of Rpd3 which was shown to be recruited to thousands of gene 

promoter in Q cells. Deletion of Rpd3 limits the transcriptional shutdown to the one 

observed in cells undergoing diauxic shift, suggesting prolonged nutrient depletion 

leads to an adaptive and global transcriptional reprogramming mediated by Rpd3 

(McKnight, Breeden, & Tsukiyama, 2015). Although global transcriptional rates might 

vary, both Q and NQ cells seem to accumulate storage polysaccharides, including 

glycogen and trehalose. Trehalose serves an additional protective function at cell 

walls where it increases the resistance to heat and osmotic stressors (Allen et al., 

2006; Galdieri et al., 2010).  

 

 Stationary phase entry and exit are both regulated by interconnected 

pathways serving as cellular nutrient sensors. These pathways include PKA (Protein 

Kinase A), TOR (Target Of Rapamycin), SNF1 (Sucrose NonFermenting) and related 

downstream effectors. Once nutrients are depleted, the transition from exponential 

growth to stationary phase is triggered by activating signal transduction cascades 

which result in the transcription of stress-related genes, stationary phase genes and 

genes involved in the catabolism of nonfermentable sugars. Following the restoration 

of nutrients, these signaling pathways can also mediate the reversal of the stationary 

phenotype and the return to exponential growth, although the referenced 

experiments generalized the stationary phase population without differentiating Q 

and NQ cells. Both PKA and TOR pathways seem to primarily be negative regulators 

of stationary phase entry. Mutants with diminished PKA activity can enter the 

stationary phase even in the presence of glucose in the growth medium. A similar 

stationary phase entry is also observed when the TOR pathway is inhibited by 

rapamycin. Interestingly, cells treated with rapamycin display similar features as cells 

deprived of a nitrogen source, implicating TOR in the regulation of nitrogen 

starvation. Unlike the negative regulation imposed by TOR and PKA, the SNF1-

mediated pathway acts as a positive regulator of stationary phase entry. Snf1 usually 

forms a complex which recruits transcription factors and chromatin remodelers to 

induce the expression of target genes, including genes necessary for processing 

nonfermentable carbon sources. The complex is only active in the absence of 

glucose (Galdieri et al., 2010).  
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 In addition to physiologically-induced changes in gene expression patterns, 

heterochromatin domains also seem to acquire specific stationary phase features. 

DNA FISH and chromosome conformation capture experiments revealed that 

telomeres in Q cell reorganize into a distinct hypercluster positioned in the center of 

the nucleus. The formation of the hypercluster seems to be induced by reactive 

oxygen species originating from mitochondrial respiration and mediated by Sir3. This 

particular telomere organization could serve as a more efficient way to sequestrate 

silencing factors and hinder DNA transactions in Q cells (Guidi et al., 2015). Chip on 

chip assays revealed that Sir3 localization changes in early-stationary phase cells 

compared to exponentially growing cells, although Q and NQ cells were not analyzed 

separately. In early-stationary phase cells, Sir3 seems to redistribute to 

unconventional genomic regions, including stress-related genes and genes 

implicated in aging, while also remaining bound to conventional heterochromatin 

domains, but at decreased levels (Tung et al., 2013).  

 

 Similar to the global cellular and genomic changes upon nutrient depletion, 

cells respond globally once nutrients are restored. A microarray and RT-qPCR study 

analyzed expression patterns of a variety of genes up to 55 minutes after re-feeding 

a stationary phase population. The results of this study indicate that dramatic 

changes in mRNA levels occur within the first 35 minutes after re-feeding. The mRNA 

of growth-related genes (including ribosomal genes and permeases) displays a 64-

fold increase in the first 10 minutes, while the mRNA of stationary phase genes 

displays a 4-fold decrease within 15-25 minutes. Similarly, mRNA of amino acid 

transporters and genes related to cell wall biosynthesis increases 16-fold in the first 5 

minutes, but decreases to levels of exponentially growing cells by 35 minutes. On the 

other hand, mRNA of DNA repair and secretion genes seems to increase in a slow, 

linear manner during the course of the experiment. These findings suggest cells 

initiate a quick global response once glucose is reintroduced by increasing the 

expression of genes necessary for growth and protein biosynthesis, while decreasing 

the expression of stationary phase genes (Martinez et al., 2004). An additional study 

revealed Pol II seems to be pre-loaded on promoters of multiple stationary-exit 

genes, possibly in preparation for a fast transcriptional response after re-feeding 

(Radonjic et al., 2005).  
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 In conclusion, the stationary phase induces cells to differentiate into two 

stress-resistant phenotypes with varying propensities to re-enter the cell cycle once 

nutrients become available. The acquisition of the stationary phenotype is 

accompanied by global cellular and genomic changes mediated by three 

interconnected pathways. Heterochromatin domains do not remain immune to these 

global changes, but rather reorganize telomeres into a distinct hypercluster and 

seemingly redistribute a portion of Sir3 proteins to other genomic locations.  

 

4.2  Fate of histone modifications in the stationary phase 

 During stationary phase, cells seem to rewire their transcriptome in order to 

increase survivability until favorable conditions are restored. These molecular 

adaptations need to be reversed for cells to resume growth. The transitions between 

metabolic states imply changes in local and/or global histone modification patterns 

which influence the availability of chromatin and gene expression. The methyl-

transferase activity of Dot1 and Set1, important for heterochromatin establishment 

and maturation, depends on the availability of the cofactor SAM (S-adenosine 

methionine), normally generated by cellular metabolism (Mentch & Locasale, 2016). 

Similarly, Sir2-mediated deacteylation and Sas2-mediated acetylation both contribute 

to the generation of heterochromatin domains and their containment to appropriate 

genomic loci. Sir2 and Sas2 are enzymatically active only in the presence of their 

respective cofactors, NAD+ and acetyl-CoA. These cofactors and their derivatives are 

usually found at the crossroads of anabolic and catabolic pathways. The 

unconventional metabolic context of stationary cells could therefore indirectly 

influence the structure of heterochromatin domains by modulating the availability of 

cofactors involved in H3K4 and H3K79 methylation patterns and H4K16 

(de)acetylation (Denu, 2003; Galdieri, Zhang, Rogerson, Lleshi, & Vancura, 2014; 

Shia et al., 2006; C. P. Young et al., 2017). 

 

 Recent studies aimed to map histone methylation patterns in stationary 

phase and upon reentry to the cell cycle. During stationary phase (7 and 14 days 

after glucose inoculation), both Q and NQ cells seem to retain most forms of H3 

methylation. However, H3K4me3 seems to decrease by 50%, while H3K79me3 
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increases in both Q and NQ cells compared to log cells. Q cells could be further 

distinguished from NQ and log cells by their selective loss of H3K79me and 

H3K79me2. The methylation landscape of Q cells together with the presence of 

untranslated mRNAs and Pol II occupancy at growth genes suggest Q cells are 

poised for a quick global response upon refeeding (C. P. Young et al., 2017). RNA 

seq and mass spectrometry experiments seem to further this notion by confirming 

that growth gene upregulation and stress gene dowregulation after refeeding are 

accompanied by a stable presence of methylation marks detected in stationary 

phase. Despite dramatic metabolic changes, histone methylation seems to retain a 

generally stable presence during and after stationary phase (Mews et al., 2014). 

 

 Contrary to histone methylation, mass spectrometry results confirmed that H3 

and H4 are generally hypoacetylaed in the stationary phase (Ngubo, Kemp, & 

Patterton, 2011). Furthermore, the general empirical consensus seems to agree that 

global levels of acetyl-CoA dramatically decrease in stationary cells, while NAD+ 

levels increase, despite occasional fluctuations due to the dynamic interplay of the de 

novo and salvage pathways (Galdieri et al., 2014; Minard & McAlister-Henn, 2009). 

The observed decrease in acetyl-CoA can be correlated with low global histone 

acetylation levels in stationary phase, which implies transcriptional inactivity (Galdieri 

et al., 2014). As previously discussed, a variety of genes seem to however be 

upregulated upon entering stationary phase. Additional experimental data revealed 

transcriptional activation of a group of heat shock proteins during diauxic shift when 

acetyl-CoA levels started decreasing and could not maintain promoter acetylation, 

suggesting hypoacetylation activates genes relevant for metabolic states with low 

acetyl-CoA production (Mehrotra et al., 2014). After nutrients are restored, a quick 

burst in acetyl-CoA synthesis seems to be the predominant factor that activates the 

transcription of growth genes and restarts exponential growth (Cai, Sutter, Li, & Tu, 

2011). Low levels of acetyl-CoA and global histone hypoacetylation suggest that 

H4K16 stays hypoacetylated within heterochromatin during stationary phase. This 

could weaken barriers and promote promiscuous Sir binding beyond heterochromatin 

in stationary cells (Ngubo et al., 2011). Further research is necessary to uncover 

additional mechanistic links and implications of histone acetylation patterns on 

heterochromatin maintenance in the stationary phase.  
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Abstract 

The budding yeast SIR complex (Silent Information Regulator) is the principal actor in 

heterochromatin formation, which causes epigenetically regulated gene silencing 

phenotypes. The maternal chromatin bound SIR complex is disassembled during 

replication. Consequently, if heterochromatin is to be restored on both daughter 

strands, the SIR complex has to be reformed on both strands to pre-replication 

levels. The dynamics of SIR complex maintenance and re-formation during the cell-

cycle and in different growth conditions are however not clear. Understanding 

exchange rates of SIR subunits during the cell cycle and their distribution pattern to 

daughter chromatids after replication has important implications for how 

heterochromatic states may be inherited and therefore how epigenetic states are 

maintained from one cellular generation to the next. We used the tag switch RITE 

system to measure genome wide turnover rates of the SIR subunit Sir3 before and 

after exit from stationary phase and show that maternal Sir3 subunits are completely 

replaced with newly synthesized Sir3 at subtelomeric regions during the first cell 

cycle after release from stationary phase. The SIR complex is therefore not 

“inherited” and the silenced state has to be established de novo upon exit from 

stationary phase. Additionally, our analysis of genome-wide transcription dynamics 

shows that precise Sir3 dosage is needed for the optimal up-regulation of “growth” 

genes during the first cell-cycle after release from stationary phase.  
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Introduction 

Budding yeast heterochromatin is a repressive structure located at the silent 

mating type loci (HMR and HML), telomeres and rDNA repeats. The essential 

component of the structure is the non-histone protein complex SIR (Silent Information 

Regulator), which consists mainly of Sir2, Sir3 and Sir4. Sir4 scaffolds the complex 

while Sir2 functions as an NAD-dependent H4K16 deacetylase, providing a high-

affinity binding site for Sir3 which recruits Sir4 and so on (for review see (Grunstein 

and Gasser 2013)). In the classical polymerization model, SIR components are first 

recruited to silencer regions by a combination of silencer-binding factors (ORC –

Origin Recognition Complex, Rap1 and Abf1). The SIR complex then spreads from 

the nucleation site (silencer) through cycles of deacetylation and nucleosome 

binding, which continue until the SIR complex reaches boundary elements that 

prevent unwanted spreading to transcriptionally active regions (for review see 

(Gartenberg and Smith 2016) ). For example, one well-characterized boundary 

element is the threonine tRNA gene in the telomere-proximal region of HMR (Donze 

and Kamakaka 2001).  Recent studies have shown that the SIR complex can also be 

recruited to unconventional binding sites, including tRNA genes. SIR binds to these 

sites mostly during genomic replication. Since these loci are tightly bound by non-

histone proteins such as transcription factors which may cause replication fork 

stalling, it has been proposed that SIR may play a role in releasing stalled forks or 

preventing fork stalling (Dubarry et al. 2011; Nikolov and Taddei 2016).  

 

 It has been shown that over-expressed Sir3p can be incorporated into existing 

heterochromatin(Cheng and Gartenberg 2000). However, beyond this bulk 

measurement, the locus-specific dynamics of the chromatin bound SIR complex 

within and from one cell generation to another have not yet been measured.  How 

heterochromatic SIR complexes exchange their components during the cell cycle and 

how they are distributed to daughter chromatids after replication has important 

implications for how heterochromatic states are maintained and whether they may be 

inherited. The maternal SIR complex has to be disassembled during replication and if 

heterochromatin is to be restored on both daughter strands, the SIR complex has to 

be reformed on both strands to pre-replication levels.  
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 Another open question is how chromatin bound complexes that epigenetically 

determine gene expression states, like the SIR complex, respond to environmental 

challenges such as nutrient depletion. Indeed, under unfavorable conditions, yeast 

cells stop growing and enter the stationary phase, which lasts until depleted nutrients 

are restored. Molecular hallmarks of the stationary phase include transcriptional 

reprogramming, spatial reorganization of the genome and a 300-fold decrease in 

protein synthesis rates(McKnight et al. 2015). While the organization of the SIR 

complex in stationary phase has been described, the dynamics of the SIR complex 

during and following exit from the stationary phase are still poorly understood(Guidi 

et al. 2015).  These questions have motivated us to investigate the dynamics of the 

SIR complex during and upon release from the stationary phase. Our strategy was to 

use the Recombination-Induced Tag Exchange (RITE) method(Verzijlbergen et al. 

2010; Terweij et al. 2013) to map genome wide Sir3 turnover rates with the goal to 

better understand the mechanisms of heterochromatin maintenance and find out 

whether the SIR complex is “inherited” on newly replicated daughter chromatids.  We 

chose to focus on the Sir3 subunit because Sir3 is the limiting factor that determines 

the extent of SIR complex polymerization and the location of SIR complex 

boundaries.(Renauld et al. 1993; Hecht et al. 1996; Radman-Livaja et al. 2011). 

 

Our results show that during stationary phase, subtelomeric Sir3 occupancy is 

reduced 4-fold and Sir3 turnover is undetectable. Sir3 bound to chromatin is then 

completely replaced with newly synthesized Sir3 subunits at the end of the first cell 

cycle upon release from stationary phase, suggesting that at least the Sir3 subunit of 

the SIR complex is not inherited and therefore does not contribute to the epigenetic 

inheritance of the silenced state in these conditions. Heterochromatic complexes are 

instead completely “reset” after exit from quiescence. Additionally, average Sir3 

occupancy at subtelomeric loci decreases rapidly before the first cell division after 

release from stationary phase and then increases gradually over multiple cell 

divisions. We propose that the observed transient instability of the SIR complex after 

release from stationary phase is a functional adaptation that allows the cell to rapidly 

respond to changing growth conditions and upregulate genes involved in carbon 

source metabolism and cellular growth. 
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Results 

 

Sir3 subunit exchange dynamics during and after release from stationary 

phase 

 We used the RITE tag switch system developed by Fred van 

Leeuwen(Verzijlbergen et al. 2010) to construct the Sir3 “tag switch” module. The 

genomic Sir3 locus was engineered with a C-terminal tag switch cassette containing 

loxP sites, and the HA and T7 tags, separated by a transcription termination signal, 

and the hygromycin resistance gene (Figure 1A). The host strain carries the 

CreEBD78 recombinase, which is activated upon estradiol addition. After Cre-

mediated recombination of LoxP sites, the HA tag on Sir3 is switched to the T7 tag. 

Recombination efficiency is assessed by growth on hygromycin plates, and is 

typically ~97% if arrested cells are treated with estradiol for at least 16hrs. 

 

 Cells were grown in glucose rich medium (YPD) for 48hrs until they reached 

the stationary phase.  Since it has been shown that after 48hrs the majority of cells in 

the population have the characteristics of quiescent cells i.e. the ability to retain 

viability and reproductive capacity in the absence of nutrients, we consider that our 

experiments record the average behavior of quiescent cells upon exit from stationary 

phase(Allen et al. 2006).  Stationary phase cells were incubated with estradiol for 

16hrs to induce the Cre mediated tag switch.  Anti-HA (old Sir3) and anti-T7 (new 

Sir3) chromatin immuno-precipitations were performed in parallel at regular intervals 

before and after Cre activation. Formaldehyde cross-linked chromatin was sonicated 

to 300-500bp fragments before immune precipitation and DNA isolated from immune-

precipitated chromatin fragments was analyzed with deep-sequencing.  

 

 ChIP-seq of old and new Sir3 showed that Sir3 dynamics are similar at all 

heterochromatic loci, including silent mating type loci and subtelomeric regions 

(Figure 1 B-C, E-F). Namely, the old Sir3 is maintained in stationary phase cells 

even after the tag switch, although overall Sir3 occupancy is decreased 4 fold 

compared to the pre-stationary midlog phase (Supplementary Figure S1 B-C). After 
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release into fresh media old Sir3 completely disappears at the time of the first cell 

doubling and is replaced by new Sir3. New Sir3 enrichment is however still low even  

after the twelfth doubling: 3 fold lower  than old Sir3 immediately after release  and  

~7 fold lower than Sir3  in mid-log cells (Radman-Livaja et al. 2011) (Figure 1 B-C 

and Supplementary Figure S1 B-C). While the differences in Sir3 enrichment levels 

between new Sir3 after several divisions following the exit from stationary phase and 

old Sir3 in mid-log before stationary phase could be due to differences in binding 

affinities of the anti-T7 (new Sir3) and anti-HA (old Sir3) antibodies to their respective 

epitopes, it is nevertheless apparent that new Sir3 binding to subtelomeric loci does 

not reach saturation even after several doublings.   The observed pattern of Sir3 

binding dynamics in cell populations after exit from stationary phase suggests that 

the existing Sir3 is rapidly removed from chromatin when cells resume growth before 

the first cell division and is gradually replaced with new Sir3 over several cell division 

cycles. Interestingly, Sir3 replacement at silent mating type loci is faster than at 

subtelomeric loci and new Sir3 occupancy reaches a plateau after 1-3 doublings, 

probably as a consequence of the stronger SIR complex nucleation capacity of HML 

and HMR silencers compared to subtelomeric silencers (Figure 1 E-F, 

Supplementary Figure S1 E-F). 

 

Sir3 removal, heterochromatin instability and “growth” genes up-regulation 

upon release from stationary phase 

 

 The SIR complex appears to be unstable in the first cell cycle after exit from 

stationary phase, thus making heterochromatin potentially permissive to transcription 

during that period. The rapid decrease in chromatin occupancy of old Sir3 during the 

first cell cycle after release coincides with a fast decline in total cellular old Sir3 levels 

resulting in the complete disappearance of old Sir3 by the time of the first cellular 

doubling accompanied by a slow and gradual increase in new Sir3 which starts 

around 90min after release (Figure 2A).  Since the rapidly declining levels of old Sir3 

and the slow synthesis of new Sir3 could compromise heterochromatin function we 

tested the silencing potential of SIR complexes after exit from stationary phase using 

the “α-factor test”, described below (Figure 2B). 
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 MATa (Mating Type a) cells will respond to the presence of α-factor (mating 

pheromone α) by arresting in G1 and forming a “shmoo” if the silent mating type 

locus HML (containing the genes for mating type α) is stably heterochromatinized 

with the SIR complex. If HML is not fully silenced, cells will behave like pseudo-

diploids and will not respond to α-factor. Log-phase cells should therefore 

predominantly respond to α-factor and become shmoo. On the other hand, we expect 

that populations exposed to α-factor immediately upon exit from quiescence will have 

a higher fraction of cells that form buds. This is exactly what we observe: there are 

~two times more cells that divide and don’t form shmoon in populations exiting 

stationary phase than in mid-log populations.  If cells are allowed to divide even just 

once after release and are then exposed to α-factor they arrest normally and form 

stable “shmoon” like mid-log cells (Figure 2B).  

 

 The inability to form shmoon in a subpopulation of cells exiting quiescence is 

not due to a Sir3 independent defect since cells that can shmoo in log phase in the 

absence of α-factor irrespective of the presence Sir3 due to a HMLα/MATa double 

deletion, also shmoo with 100% efficiency upon release from stationary phase even 

in the absence of Sir3 (Figure 2C). The transient decrease in Sir3 amount at 

subtelomeric regions during the first cell cycle upon exit from quiescence can 

however be overcome with Sir3 overexpression (Figure 3).  In a galactose inducible 

overexpression system, Sir3 occupancy starts increasing immediately upon release 

of stationary cells into galactose even before the first cell division, suggesting that 

SIR complex renewal does not directly depend on DNA replication or cell division but 

is likely driven by the rate of accumulation of newly synthesized Sir3. Overexpression 

of Sir3 can therefore compensate for the rapid removal of old Sir3 that was bound to 

chromatin in stationary phase.  It is however important to note that the process of old 

Sir3 removal occurs independently of Sir3 synthesis as evidenced by the complete 

disappearance of chromatin bound old Sir3 by the second doubling upon release into 

dextrose or raffinose in which new Sir3 is not expressed  (Figure 3 F, N). In other 

words, the removal of old Sir3 from chromatin is not “driven” by its replacement with 

new Sir3. 
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 We have also tested the effects of Sir3 dynamics during the stationary to 

growth phase transition on genome wide gene expression levels. Changes in mRNA 

enrichment relative to a genome-wide average in the wt Sir3 (strain used in Figures 1 

and S1), Sir3Δ or oeSir3 (used in Figure 3) strains show that wt Sir3 levels are 

needed to maintain the up-regulation of 710 genes during the first cell cycle after 

release from stationary phase (Figure 4). The up –regulated genes are enriched for 

“growth” genes involved in ribosome synthesis, mitochondrial processes and amino-

acid and carbon metabolism (Table S1). These genes are all upregulated in 

stationary phase but their expression starts to decrease immediately after release 

from stationary phase either in the absence of Sir3 (Sir3Δ strain) or in the presence 

of excess total Sir3 (oe Sir3 strain). In wt cells on the other hand, they are further 

upregulated immediately after release and their mRNA levels stay high until the first 

division when they drop abruptly down to approximately mid-log levels (Figure 4C-

D). An analysis of median Sir3 enrichment in the coding regions of these genes 

suggests that the observed transcription up-regulation may be a direct consequence 

of low level Sir3 enrichment at these genes (Figure 4 E). The observed Sir3 

enrichment values are relative to average genome-wide Sir3 enrichment in each 

time-point since our ChIP-seq experiments were not normalized to a spike-in control.   

Even though we cannot measure absolute changes in Sir3 occupancy at these 

genes, we do detect a trend in relative Sir3 occupancy upon release from stationary 

phase. The median Sir3 enrichment over the time course is proportional to 

transcription levels with the highly expressed cluster 1 having the highest Sir3 

occupancy, as has been documented before (Radman-Livaja et al. 2011). Unlike at 

subtelomeric regions where old Sir3 levels decrease abruptly immediately after 

release, old Sir3 enrichment at induced genes appears to be mostly constant 

although with a slight drop immediately after release in clusters 2 and 3 (Figure 4E).  

On the other hand Sir3 dynamics after the first cell division are similar on 

subtelomeric regions and on these “growth” response genes: the exchange of old 

Sir3 subunits with new Sir3 starts with the first cell division after release with similar 

rates as in subtelomeric regions (Figure 4 F-G). When Sir3 is over-expressed 

however, Sir3 enrichment drops immediately after release (except for cluster 1 where 

there is an initial increase 1hr after release) and continues to decrease with each cell 

division. Since Sir3 enrichments are calculated relative to a genome-wide average, 

the apparent depletion of Sir3 at these genes is a consequence of Sir3 accumulation 
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in subtelomeric regions after release and its spreading beyond heterochromatin 

boundaries found in wt cells (compare Figures 1B and 3B).  The correlation between 

relative Sir3 depletion and impaired up-regulation of “growth” response genes in cells 

with over expressed Sir3 as well as the correlation between constant Sir3 occupancy 

and up-regulation of these same genes in wt cells, suggest that controlled and 

potentially transcription dependent Sir3 binding may have a direct effect on gene 

expression. 

 

Sir2 binding during and after release from stationary phase 

 

 Genome-wide Sir2 binding dynamics during the stationary to growth phase 

transition are similar to Sir3 dynamics with some quantitative differences as shown in 

Figure 5.  Like for Sir3, we observe a decrease in Sir2 occupancy at subtelomeres, 

silent mating type loci and rDNA in stationary phase, although the decrease is more 

modest: 50% (silent mating type loci; Figure 5E-F) to ~2 fold (subtelomeric regions, 

Figure 5C and rDNA, Figure 5G). Also, the return to (subtelomeric regions) or even 

above pre-stationary phase levels (silent mating type loci and rDNA) is observed 

immediately after the first cell division after release, while Sir3 has not reached 

saturation even after 12 doublings. 

 

Sir3 and Sir2 binding to tDNA 

 

 Our results have unexpectedly uncovered non-canonical Sir3 binding to tRNA 

genes (Figures 1D, S1D, 3G-J). New, T7 tagged Sir3 is significantly enriched at all 

but 20 tRNA genes immediately upon release from stationary phase and this high 

Sir3 occupancy persists at least for 5 subsequent doublings (Figure 1D). The source 

of the gradual increase in Sir3-HA binding to tRNA genes is likely originating from the 

fraction of cells (~2.5%) that did not complete the tag switch.  A replicate experiment 

using a different anti-T7 antibody (a monoclonal one versus the polyclonal one in 

Figure 1) does confirm Sir3-T7 binding to tDNAs upon release (Figure S1 D) but with 
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Sir3 enrichment levels that are 8 to 16 fold lower than with the polyclonal antibody 

used in Figure 1. Unlike their dynamics at subtelomeric loci, new Sir3-T7 and old 

Sir3-HA in the replicate experiment seem to follow the same binding dynamics with 

the same level of occupancy: no binding during the stationary phase followed by a 

“jump” in occupancy after the first doubling and constant binding for at least twelve 

doublings afterwards. The discrepancies in Sir3-T7 enrichment at tDNAs between the 

two replicates are puzzling and are possibly a consequence of different affinities of 

the polyclonal and the monoclonal antibodies for the T7 epitope in the context of 

different Sir3 configurations found at tDNAs and subtelomeres. The monoclonal and 

the polyclonal anti-T7 antibodies seem to bind with comparable efficiency to Sir3 

when it is present in multiple subunits in the densely packaged configuration of a SIR 

polymer at subtelomeric and silent mating type loci. The polyclonal anti-T7 is on the 

other hand more efficient than the monoclonal antibody when Sir3 stoichiometry is 

low as it is likely to be at tDNAs.  

 

 The signal clearly correlates with Sir3 presence in the cell: 1. only Sir3-HA is 

detected in midlog cells before the tag switch from HA to T7, while Sir3-T7 and Sir3-

HA are both detected after release from stationary phase following the tag switch 

(Figure S1 D, the Sir3-HA signal comes probably from cells that did not recombine 

the two tags); 2. The Sir3-HA signal from the Sir3 overexpression system is 

undetectable in the 12th doubling after release into dextrose or raffinose media where 

Sir3 is not expressed while it is still there in the 12th doubling after release into 

galactose when Sir3 is overexpressed (Figure 3G-J). Consequently, the enrichment 

of tDNA sequences in our Sir3 ChIP-seq datasets cannot be due to non-specific 

binding of these sequences to antibodies or protein A beads as has been proposed 

previously(Teytelman et al. 2013), nor is it likely to be a tag artefact since tDNA 

sequences were isolated with the anti-HA (Figures 1D, S1D, and 3G-J) and the anti-

T7 antibodies (Figures 1D, S1D). We cannot, however exclude the possibility that 

Sir3 binding to tDNAs has no biological significance and is merely a consequence of 

transient and non-specific “stickiness” of nucleoplasmic Sir3 to tDNA sequences in 

vivo or even after cell fixation. 
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 Sir2 also binds to tDNAs although the binding pattern and kinetics are 

somewhat different from Sir3. While Sir3 occupies a footprint from -100bp to 200bp 

around the start of the tRNA gene throughout the time course, Sir2’s footprint 

spreads progressively from +-150bp around the tRNA gene start in the first cell cycle 

to +-400bp by the 12th cycle (compare the top panels of Figures 1D, S1D and 5D). 

Also, while the position of peak binding immediately downstream of the tRNA gene 

start is common to both Sir3 and Sir2, the rate of peak height changes is different for 

the two proteins. Peak height already reaches a plateau after the first cell cycle for 

Sir3, while it is still growing (although slowly) after the 12th doubling for Sir2 (Figure 

6D).  The timing of the binding signals and the footprint patterns of the two proteins 

suggest that Sir3 might be binding first and might then recruit Sir2 which then 

spreads to the nucleosomes immediately adjacent to the tRNA gene. 

 

 It is curious that the enrichment signal at tDNAs disappears in stationary 

phase for both Sir3 tag switch replicates and in the Sir3 overexpression system as 

well as Sir2 (Figures 1D, S1D, 3G-J and 5D, respectively) even though Sir3 and Sir2 

still bind to silent mating type loci and subtelomeric regions although at reduced 

levels, and may reflect the scarcity of nucleoplasmic Sir3 and possibly Sir2 in 

stationary cells. The fluctuations in Sir3 occupancy at tDNAs coincide with changes 

in growth conditions:  1.low level binding in mid-log (Figure S1D); 2. no binding in 

stationary phase; 3. increased binding upon release from stationary phase that 

reaches a plateau after the first cell division and stays higher than the previous 

midlog phase even twelve doublings after release from stationary phase. This 

suggests that Sir3 binding may be linked to changes in the chromatin configuration 

and/or gene expression state of tRNA genes. 

 TFIIIC is a transcription factor responsible for the recruitment of the RNApolIII 

transcription machinery and its binding sites are verified heterochromatin boundary 

and chromatin insulator elements (Simms et al. 2008).  We therefore mapped the 

TAP-tagged TFC3 (a subunit of TFIIIC) genome wide binding pattern upon release 

from stationary phase to find out whether there is a correlation between TFIIIC and 

Sir3 binding to tDNAs  (Figure 6).  
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 We have identified three tRNA gene clusters with specific TFIIIC binding 

dynamics (Figure 6B-C). Sir3 and Sir2 binding dynamics correlate with TFIIIC 

binding in less than 50% of all tRNA genes (124 tRNA genes in cluster 1 out of a total 

of 273 tRNA genes) (Figure 6 D-F). Consequently Sir3 and Sir2 are not likely to bind 

to tDNAs in response to tRNA gene activation but they may be “recognizing” 

structural chromatin features common to all tRNA genes independently of their gene 

expression state.   

 

Discussion 

 

 Our results suggest that yeast heterochromatin is reprogrammed upon exit 

from stationary phase. We observe a ~4 fold and ~2 fold drop in Sir3 and Sir2 

subtelomeric occupancy, respectively, when cells enter the stationary phase that is 

followed by an even steeper drop of Sir3 occupancy during the first cell cycle after 

release from stationary phase. All Sir3 proteins bound to subtelomeric and silent 

mating type loci are replaced with newly synthesized Sir3 after the first division 

following release. Surprisingly, the enrichment of new Sir3 subunits in subtelomeric 

regions increases slowly and appears to not reach saturation even after 12 cell 

divisions. Even though we have not measured Sir2 turnover rates, our Sir2 ChIP-seq 

time-course experiment clearly shows that Sir2, unlike Sir3, comes back to pre-

stationary levels by the first cell division after release, suggesting that 

heterochromatin function is potentially regulated by modulating Sir3 dosage. Further 

experiments will be necessary to understand how the differences in the stoichiometry 

of Sir2 and Sir3 in this “reset” form of heterochromatin in which Sir2 levels are 

constant and Sir3 gradually increases over multiple cell generations affect the 

functionality and stability of heterochromatin. 

 

  The biological significance of this kind of heterochromatic “clean slate” upon 

exit from quiescence and the slow rebuilding of heterochromatin structure is not 

clear. The apparent depletion of Sir3 before the first cell division after release can be 
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overcome with Sir3 overexpression, bringing up the possibility that the naturally 

limiting amount of Sir3 has a regulatory function. It opens up the question of the 

function of Sir3 stoichiometry at heterochromatic loci. Are there different higher order 

conformations of heterochromatin that depend on the amount of Sir3 and does 

heterochromatin that contains less Sir3 have greater plasticity that would facilitate the 

cell’s response to environmental changes and stressful growth conditions? 

 

 Sir3 appears to be actively kept at low levels in the first two divisions after 

release as our Western blot results suggest, even though global protein synthesis is 

greatly increased (for review see(Valcourt et al. 2012)). Heterochromatin formation 

may be impaired to potentially prevent mating during first divisions when the cell is 

replenishing its protein content or to allow expression of subtelomeric genes or both. 

Sir3 also becomes hyperphosphorylated in stress conditions, such as nutrient 

depletion, following the inactivation of the TOR pathway(Stone and Pillus 1996).  Sir3 

hyperphosphorylation in turn causes the derepression of subtelomeric PAU genes 

involved in cell wall restructuring (Ai et al. 2002). Since TOR activity is necessary for 

growth, an alternative pathway to Sir3 phosphorylation that insures the expression of 

subtelomeric genes upon exit from quiescence may be necessary and may involve 

targeted degradation of Sir3 proteins and/or reduced synthesis of Sir3 proteins. A 

small increase in relative mRNA abundance of low expressed genes cannot be 

detected in our RNA-seq experiment because mRNA enrichment is normalized to 

average genome-wide sequencing read density. We were therefore unable to detect 

changes in subtelomeric gene expression that are likely to be subtle.  We do detect, 

however, Sir3 dependent up–regulation of ~700 “growth” response genes localized 

throughout the genome. Indeed, a precise control of genome-wide Sir3 density upon 

exit from stationary phase appears to be necessary for sustained up-regulation of 

“growth” genes, which presumably enables optimal cell growth in the first cell cycle 

after release (Figure 4).  Cells without Sir3 or with excessive amounts of Sir3 both 

fail to maintain high levels of up-regulation of these genes in the first cell cycle after 

release. Moreover, the correlation between mRNA and Sir3 levels and the specific 

pattern of Sir3 turnover at these genes suggest that Sir3 may play a direct role in 

transcription regulation. Interestingly, (Weiner et al. 2012) also proposed that Sir3 
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might play a direct role in the regulation of ribosomal protein gene expression during 

the stress response. There is therefore an intriguing possibility that apparently 

transcription dependent low level Sir3 binding to gene bodies of environmentally 

responsive genes directly regulates transcription of these genes in response to 

environmental signals. 

 

 Our genome-wide maps of Sir3 dynamics have also unexpectedly revealed a 

potentially new function of the Sir complex at tDNA loci. Even though the pervasive 

binding of Sir3 and Sir2 to tRNA genes may be an experimental artefact with no 

biological function, the dynamics of Sir3 and Sir2 binding during stationary to growth 

phase transitions do raise some intriguing possibilities. Sir3 binding may precede 

TFIIIC binding to reorganize the nucleosome configuration that may have been 

altered in stationary phase and thus prepare tRNA genes for optimal activation. tRNA 

genes have a specific nucleosome organization that somewhat resembles a yeast 

RNApol2 gene promoter (Supplementary Figure S2A). There is a nucleosome free 

region (NFR) covering the entire tRNA gene (-100bp to 150bp around the tRNA gene 

start site (datasets used for the analysis were taken from (Weiner et al. 2010; Ziane 

et al. 2019)), and the nucleosomes surrounding the NFR on either side are enriched 

for H3K56ac (a mark of newly synthesized histone H3, dataset from (Ziane et al. 

2019)) and  the H2A variant Htz (dataset from (Watanabe et al. 2013)), both 

characteristics of high nucleosome turnover rates (Dion et al. 2007).  The 

nucleosomal organization of tRNA genes is a dynamic structure as is evident from 

nucleosome and H3K56ac tDNA profiles from replicating mid-log cells (Figure S2B). 

Replicated tRNA genes have a wider and shallower NFR that seems to be partially 

populated with nucleosomes (compare the MNAse-seq profiles from bulk and 

nascent chromatin in the left panel) and an asymmetric H3K56ac distribution with 

less H3K56ac downstream of the tRNA gene that is more pronounced in early S-

phase compared to mid-S-phase. Thus, DNA replication disrupts chromatin 

organization of tRNA genes which needs to be subsequently restored. This is 

supported by evidence that shows that concerted activity of DNA polymerase epsilon, 

the H3K56 acetylase rtt109 and the chromatin remodeler Rsc is needed to create the 

nucleosome positioning pattern of the tRNA insulator at HMR(Dhillon et al. 2009).  
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tRNA genes are also known “obstacles” for replication forks (Deshpande and Newlon 

1996)  but not all tRNA genes have the same capacity to slow forks down in optimal 

growth conditions(Ivessa et al. 2003).  It will therefore be interesting to see whether 

the chromatin structure of tRNA genes is altered in stationary phase and whether the 

Sir complex functions to reorganize nucleosomes at tRNA genes after exit from 

quiescence to prevent dangerous fork stalling in the first S-phase after release and/or 

prime tRNA genes for transcription activation or insulator function. 

 

 Our results have revealed the dynamic nature of yeast heterochromatin that 

changes in response to environmental challenges that cells face in variable growth 

conditions. Future studies should explore the regulatory mechanisms that ensure 

heterochromatin plasticity while preserving its functionality. We have also uncovered 

two potential new roles for Sir3: one in gene expression regulation of genes involved 

in the stationary to growth phase transition and the other in tDNA binding. Our study 

joins the growing body of work that delves into the dynamics of chromatin structure in 

different organisms and is yet another reminder that chromatin organization is not a 

static structure that reaches some sort of final stable state that just needs to be 

maintained once cells have differentiated. It is instead an active element in the cell’s 

response to its environment that has to be continuously shaped and reshaped by 

specialized cellular processes in order to ensure the survival and preserve the 

function of each cell. 
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Materials and Methods 

 

Yeast Strains 

 

The strain used in Figures 1, 2, and S1 is MRL9.1 (S288C: MATa his3d200 

leu2d0 lys2d0 met15d0 trp1d63 ura3d0 bar1::HisG    HIS3  Pgpd_CRE_EBD78 

Sir3Histag-LoxP-3xHA-Hygro-LoxP-3xT7) that was constructed by transforming 

NKI12318 (MATa his3d200 leu2d0 lys2d0 met15d0 trp1d63 ura3d0 bar1::HisG    

HIS3  Pgpd_CRE_EBD78; courtesy of Fred van Leeuwen) with the RITE-switch 

(LoxP-3xHA-Hygro-LoxP-3xT7) cassette amplified from the pFvL159 plasmid (Fred 

van Leeuwen) with primers ( 

forward: 

5’GCCTTTTCGATGGATGAAGAATTCAAAAATATGGACTGCATTCATCACCATCAC

CATCACGGTGGATCTGGTGGATCT;  

reverse: 

5’CATAGGCATATCTATGGCGGAAGTGAAAATGAATGTTGGTGGTGATTACGCCA

AGCTCG) compatible for homologous recombination with the C-terminal end of the 

Sir3 gene. Cassette incorporation was verified by PCR. 

The Sir3 over-expression strain in Figure 3 is THC70 (W303: MATa HMLa HMRa 

ade2-1 can1-100 his3-11,15 leu2-3,112 trp1-1 mat∆::TRP1 hmr::rHMRa 

hml∆::kanMX ura3-1::GAL10P–Sir3HA::URA3 bar1∆::hisG lys2∆ sir3∆::HIS3) 

(courtesy of K.Struhl (Cheng and Gartenberg 2000; Katan-Khaykovich and Struhl 

2005)). TAP-tagged Sir2 (YDL042C) and TFC3 (YAL001C, subunit TFIIIC) (S288C:  

MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 ORF-TAP:HIS3MX6) strains were both 

obtained from the yeast TAP-tagged ORF library (Dharmacon).  The Sir3D strain 

from Figure 6 is MRL5.1 (S288C: MATa  ura3D  leu2D  his3D  met15D sir3D:KANR). 
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Cell culture 

 

Sir3 tag exchange time course:  

 

All cultures were incubated at 30˚C in an incubator shaker at 220 rpm, 

crosslinked for 20 min with 1% formaldehyde and quenched for 5 min with 125mM 

Glycine, unless indicated otherwise. Two 10 ml cultures were grown overnight in 

YPD (2% glucose). One culture contained hygromicin (0,3 mg/mL; the Hyg+ culture).  

Hyg+ and Hyg- saturated cultures were then transferred to flasks with 90 ml YPD and 

hygromicin was added to the Hyg+ culture and incubated for 24h until glucose was 

depleted and they entered the  stationary phase.  A 20 ml aliquot from the Hyg+ 

culture was fixed, pelleted and flash frozen in liquid nitrogen and kept at -80°C as the 

“before switch” stationary phase sample. The rest of the Hyg+ and Hyg- cultures 

were pelleted and 80 ml of the Hyg- supernatant was used to resuspend the Hyg+ 

pellet, and the Hyg+ supernatant and Hyg- pellet were discarded. The resuspended 

80 ml culture was inoculated with 1 µM estradiol (Sigma) in order to induce tag 

exchange, and and incubated overnight for at least 16h.  An aliquot for the “after 

switch” stationary phase sample was processed as above. The remaining culture 

was diluted to OD 0.3  with fresh YPD (total volume: 1600-2000 ml) and incubated at 

30°C to release the culture from stationary phase. 400 ml aliquots were taken at 0, 

30 and 1h 30 min after release and after indicated cell doublings (monitored by OD 

measurements; the first doubling typically takes place 3.5 hours after release and 

each subsequent doubling takes 1.5hrs). Aliquots for each time point were processed 

as above and  fresh YPD was added to the rest of the culture in order to keep cell 

density constant (constant OD)  maintain cells in exponential growth.  

 

Small cell aliquots (50ul of from a 1:100000 dilution) before and after tag 

switch were plated on YPD plates and replica-plated on YPD+hygromycin to estimate 

recombination efficiency. The average recombination efficiency in our cell culture 

conditions is 96.9% (from 11 independent experiments). 
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Sir2-TAP and  TFC3-TAP time course :  

 

Cultures were done as above except without the Hyg+ culture and estradiol 

addition, and cells were released from stationary phase after a 48h incubation in 

YPD. 

 

Western blot 

 

10 mL aliquots from time points above were mixed with 2 mL 100% TCA and 

kept on ice for 10 min. Cells were then pelleted and washed twice with 500 µL  10% 

cold TCA. Pellets were resuspended in 300 µL 10% cold TCA and bead beated with 

Zirconium Sillicate beads (0.5 mm) in a bullet blender (Next Advance) for 3 times x 3 

min (intensity 8). Zirconium beads were removed from the cell lysate by 

centrifugation and the entire cell lysate was washed twice with 200 µL 10% cold TCA. 

The cells lysate was then pelleted and re-suspended in 70 µL 2xSDS loading buffer 

(125 mM Tris pH 6.8, 20% glycerol; 4% SDS, 10% β-mercaptoethanol, 0,004% 

bromophenol blue) preheated at 95˚C. Approximately 30 µL Tris (1M, pH 8,7) was 

added to each sample to stabilize the pH. Samples were heated for 10 min at 95˚C, 

pelleted and the soluble protein extract in the supernatant was transferred to new 

tubes. Protein concentrations were measured by Bradford test kit (Sigma, B6916) 

and 40 µg/sample was loaded on a 7% polyacrylamide SDS-PAGE gel (30:1 

acrylamide/bis-acrylamide). Proteins were transferred after electrophoresis to a 

PDVF membrane (Bio-Rad, 1620177). The membrane was incubated for 1h at room 

temperature with either anti-HA (Abcam, ab9110 (lot# GR3245707-3)) or  anti-T7 

(Bethyl A190-117A (lot# A190-117A-7)) antibodies to detect Sir3 and anti-α-tubulin 

(Sigma T6199 (lot#116M48C2V)) to detect the α-tubulin loading control. Secondary 

goat anti-rat-HRP (Santa Cruz Biotechnology G2514), goat anti-rabbit-HRP (Santa 

Cruz Biotechnology sc-2054) and bovine anti-mouse-HRP (Santa Cruz 

Biotechnology sc-2375) were added after the corresponding primary antibody and 

incubated for 1h at room temperature. All antibodies (primary and secondary) were 

diluted 1/10000 in 5% milk/TBS. The membrane was washed 3x in 1xTBS-

10%Tween after each antibody incubation step. The blot was then covered with 500 
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µL Immobilon Forte Western HRP substrate (Millipore WBLUF0500) for 2 min and 

protein bands were detected on a high-performance chemiluminescent film 

(Amersham 28906837). 

 

Microscopy and image analysis 

 

Cells were grown as above and concentrated by centrifugation. 3ul of the cell 

pellet was injected under the 0.8% agarose/YPD layer that had been poured into 

each well of an 8-well glass bottom microscopy plate (BioValley). 

 

We used a wide field inverted microscope for epifluorescence and TIRF 

acquisition (Nikon) under the HiLo setting, with a 60X water objective with a water 

dispenser, and a EMCCD Evolve 512 Photometrics camera (512*512, 16µm pixel 

size). The time courses on growing cells were performed at 30°C. Pictures in bright 

field (Exposure time= 300ms and the Hilo angle= 62°) were taken every 10 or 20min 

for 6.5hrs.  

 

Shmoon and budding cells were counted manually using the Image J software 

for visualization. 

 

Chromatin Sonication 

Cross-linked frozen cell pellets were re-suspended in 500 µL cell breaking 

buffer (20% glycerol, 100 mM Tris pH 7.5, 1xEDTA-free protease inhibitor cocktail 

(Roche)). Zirconium Sillicate beads (400 µL, 0.5 mm) were then added to each 

aliquot and cells were mechanically disrupted using a bullet blender (Next Advance) 

for 5 times x 3 min (intensity 8). Zirconium beads were removed from the cell lysate 

by centrifugation and the entire cell lysate was subject to sonication using the 

Bioruptor-Pico (Diagenode) for 3x10 cycles of 30 seconds ON/OFF each for a 500bp 

final median size of chromatin fragments. Cellular debris was then removed by 

centrifugation and the supernatant was used for ChIP. 
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ChIP 

 

All steps were done at 4˚C unless indicated otherwise.  For each aliquot, 

Buffer L (50 mM Hepes-KOH pH 7.5, 140 mM NaCl, 1 mM EDTA, 1% Triton X-100, 

0.1% sodium deoxycholate) components were added from concentrated stocks (10-

20X) for a total volume of 0.8 ml per aliquot. For anti-Ha and anti-T7 ChIP, each 

aliquot was rotated for 1 hour with 100 µL 50% Sepharose Protein A Fast-Flow bead 

slurry (IPA400HC, Repligen) previously equilibrated in Buffer L. The beads were 

pelleted at 3000 X g for 30sec, and approximately 200 µl of the supernatant was set 

aside for the input sample. The reminder (equivalent to 200 ml of cell culture of 0.5 

OD) was separated into anti-HA and anti-T7 fractions. 10 µL anti-HA (Abcam, 

ab9110 (lot# GR3245707-3) and 10 µL polyclonal anti-T7 (Bethyl A190-117A (lot# 

A190-117A-7) (Figure 1) or 10 µL monoclonal anti-T7 (Cell Signaling Technology, 

DSE1X (lot#1)) (Supplementary Figure S1) were added to the corresponding 

aliquots. Immunoprecipitation, washing, protein degradation, and DNA isolation were 

performed as previously described (Liu et al., 2003). 

 

Purified DNA was treated with RNAse A (Qiagen) (5µg per sample 1hr at 

37°C) and purified once more with Phenol-Chloroform. Purified fragments were used 

for NGS library construction (Input, ChIP) and subsequent NGS library construction. 

 

For anti-TAP ChIP, aliquots were incubated directly with 10 µL anti-TAP 

antibodies (Thermo Scientific, CAB10001 (lot# TA261224) overnight with rotation. 50 

µL of Dynabeads protein G (Thermo Scientific, 30 mg/mL) were added to each 

aliquot and incubated for 2h. All the following steps were as above with the following 

modifications: cross-links were removed after DNA elution, with a 65°C overnight 

incubation without proteinase K. After RNAse A treatment as above, 1mg/ml of 

proteinase K was added for 2hrs ate 65°C. DNA was purified with Phenol-Chloroform 

and further processed as above.  
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Cell culture and RNA isolation for RNA-seq 

 

MRL9.1 (Sir3wt) and  MRL5.1 (Sir3D) were grown as above in YPD and 

MRL9.1 was not subject to tag switching with estradiol. THC70 (oeSir3) were grown 

in conditions of Sir3 over-expression in YPGalactose. Cells were flash frozen in liquid 

N2 and total RNA was isolated from frozen cell pellets with Trizol. Frozen cell pellets 

were re-suspended directly in Trizol and bead beated in the Bullet Blender (Next 

Advance) for 4 times x3 min (intensity 8). RNA was then purified and DNAseI treated 

with the RNAeasy Column purification kit (Qiagen). Extracted total RNA amounts 

were measured on the Qubit and the Nanodrop and the quality was checked in a 

Bioanalyzer scan (Agilent). The RNA samples were then used for NGS library 

preparation using the Illumina TruSeq Stranded mRNA kit according to the 

manufacturer’s protocol. Libraries were sequenced on the Illumina NextSeq550 

(2x75bp) (Plateforme Transcriptome, IRMB, Montpellier, France). 

 

GS Input and ChIP library construction and Illumina sequencing 

DNA fragments were blunt ended and phosphorylated with the Epicentre End-

it-Repair kit. Adenosine nucleotide overhangs were added using Epicentre exo- 

Klenow.  Illumina Genome sequencing adaptors with in line barcodes ( 

PE1-NNNNN: PhosNNNNNAGATCGGAAGAGCGGTTCAGCAGGAATGCCGAG 

PE2-NNNNN: ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNT 

, NNNNN indicates the position of the 5bp barcode, (IDT)) were then ligated 

over night at 16°C using the Epicentre Fast-Link ligation kit. Ligated fragments were 

amplified as above using the Phusion enzyme (NEB) for 18 PCR cycles with Illumina 

PE1 

(AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCG

ATCT) and PE2 

(CAAGCAGAAGACGGCATACGAGATCGGTCTCGGCATTCCTGCTGAACCGCTCT

TCCGATCT) primers (IDT). Reactions were cleaned between each step using 

MagNa beads. 
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Libraries were mixed in equimolar amounts (12 to 21 libraries per pool) and library 

pools were sequenced on the HiSeq 2000 (2x75bp) (Illumina) at the CNAG, 

Barcelona, Spain or the NextSeq550 (2x75bp) (Plateforme Transcriptome, IRMB, 

Montpellier, France). 

 

ChIP-seq data analysis 

 

 All analysis was done using in house Perl and R scripts available upon 

request. 

 

Sequences were aligned to S. Cerevisiae genome using BLAT (Kent 

Informatics, http://hgdownload.soe.ucsc.edu/admin/). We kept reads that had at least 

one uniquely aligned 100% match in the paired end pair. Read count distribution was 

determined in 1bp windows and then normalized to 1 by dividing each base pair 

count with the genome-wide average base-pair count. Forward and reverse reads 

were then averaged and ChIP reads were normalized to their corresponding input 

reads.  

 

The repetitive regions map was constructed by “BLATing” all the possible 70 

bp sequences of the yeast genome and parsing all the unique 70bp sequences. All 

the base coordinates that were not in those unique sequences were considered 

repetitive. 

 

RNA-seq data analysis 

 

 Reads were aligned and normalized as above. Normalized read densities for 

each gene were aligned by the transcription start site and divided into sense and 

antisense transcripts. The median read density for each gene (from the tss to the end 

of the coding sequence) was then determined for each transcript. Intron regions were 

excluded from the calculation. 
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Figure Legends 

 

Figure 1: A. Diagram of the Sir3 tag switch construct used in ChIP-seq experiments 

(top left). Bottom: Experiment outline. Cells were arrested by glucose depletion 

before the tag switch, induced with estradiol addition to stationary cells 

(recombination efficiency :98.1% ). Cells were then released from arrest with addition 

of fresh media and allowed to grow for one to five doublings (monitored by OD 

measurements). Cell aliquots were fixed with 1% formaldehyde for 20min at times 

indicated below the diagrams and anti-HA and anti-T7 (polyclonal) ChIPs were 

performed on sonicated chromatin. B. Heat map of new Sir3 (T7 tag) enrichment 

over old Sir3 (HA tag) during and after exit from quiescence, at all yeast telomeres 

(30kbp from chromosomes ends). Time points are aligned by the ARS Consensus 

Sequence (ACS) located in telomeric silencer regions, which are Sir complex 

nucleation sites at telomeres. White arrows show tRNA genes where new Sir3 binds 

after exit from quiescence. Silent mating type loci HML and HMR, on 3L and 3R, 

respectively, are framed with a white rectangle.  Sir3 is enriched in a small 1kb region 

upstream of the ACS at all telomeres. Repetitive and unmapped regions are shown 

in grey.  The HMLa reads have been eliminated as repetitive sequences during 

alignment to the reference genome which is MATa. C-D. Old (top) and new (middle) 

Sir3 enrichment around ACS averaged for all 32 telomeres (C) or tRNA genes 

averaged for all 274 genes (D)  at indicated time points during the stationary and the 

renewed growth phases. The bottom panel shows average enrichment around the 

ACS (C) or tRNA genes (D) for old and new Sir3 over time. E-F. Old (top left) and 

new (bottom left) Sir3 enrichment at HML (E) and HMR (F) at indicated time points 

(same color code for E and F) during the stationary and the renewed growth phase. 

The right panel shows average enrichment over the entire silent mating type locus for 

old and new Sir3 over time. 

 

Figure 2: Heterochromatin is destabilized before the first division following exit from 

stationary phase. A. Western blot of old Sir3-HA (anti-HA antibody) and new Sir3-T7 

(anti T7 antibody) from total cell extracts during and after release from stationary 

phase. The top panel shows the experimental outline and describes the time points 
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shown in the blot (marked by arrows above the blot). * marks a non-specific band 

detected with the anti-T7 antibody. The graph below the blot shows the quantification 

of the bands from the blot. Sir3 band intensities were first normalized to the a-tubulin 

loading control and then divided by the normalized Sir3-HA intensity from mid-log 

cells (bar graph). The line plot inset shows the same normalized Sir3-HA and Sir3-T7 

band intensities for all time points after mid-log. B. α-factor heterochromatin stability 

test. The diagram on top shows the expected response of MATa cells to α-factor 

added after release from stationary phase. If the SIR heterochromatic complex is 

unstable HMLα and HMRa will be transcribed along with MATa, thus creating 

pseudo-diploid cells that don’t respond to α-factor and consequently do not become 

shmoo but start budding instead. The bottom panel shows examples of frames from 

a live cell imaging experiment that follows log phase cells (top), stationary phase 

cells in the first cell cycle after release (middle) or stationary phase cells that have 

undergone one cell division after release (bottom) in the presence of  0.2mg/ml α-

factor 0 and 380min after the beginning of the time course. The bar graph on the right 

shows the fraction of budding cells in all cells (budding and shmoo) for each cell 

population. The p-values for the null-hypothesis between released stationary phase 

cells and log-phase cells shown above the bars are calculated from the Z score 

obtained using Z-test statistics with significance cutoff a=0.05: 

 

! =
("1 # "2) # 0
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where p1 and p2 are n(budding)/n(shmoon +budding) in cells released from 

stationary phase and log-phase cells respectively, n1 and n2 are n(shmoon+budding) 

in stationary phase and mid-log cells respectively and p  is (n(budding)stationary + 

n(budding)midlog ) / (n1+n2). C.  α-factor test with the OE Sir3 strain which  shmooes 

independently of Sir3 in the presence of  α-factor because of the deletion of HML and 

MAT loci. 
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Figure 3: A. Diagram of the Sir3 gene construct controlled by a Galactose inducible 

promoter in the Sir3 OE strain (OverExpression) (top left). Bottom: Experiment 

outline. Cells were arrested by galactose depletion, and released of fresh media with 

the indicated carbon source (2%) and allowed to grow for 2 and 12 doublings 

(monitored by OD measurements). Cell aliquots were fixed with 1% formaldehyde for 

20min at times indicated below the diagrams and anti-HA ChIPs were performed on 

sonicated chromatin. B. Heat map of Sir3 (HA tag) enrichment over input during and 

after exit from quiescence, at all yeast telomeres (30kbp from chromosomes ends).  

Time points are aligned by the ARS Consensus Sequence (ACS) located in telomeric 

silencer regions, which are Sir complex nucleation sites at telomeres.  Silent mating 

type loci HML (HML is deleted in this strain) and HMR, on 3L and 3R, respectively, 

are framed with a white rectangle.  Repetitive and unmapped regions are shown in 

grey.  C-E.  Sir3 enrichment around ACS averaged for all 32 telomeres after release 

into Galactose- over expression of Sir3 (C), Dextrose- inhibition of Sir3 expression 

(D) or Raffinose- low Sir3 expression (E).  F-G. Average Sir3 enrichment around the 

ACS (E) or tRNA genes (F) over time in indicated carbon sources. H-J. Average Sir3 

enrichment at tRNA genes for all 274 genes after release into Galactose (H), 

Dextrose (I) or Raffinose (J).  K-M. Sir3 enrichment at HMR after release into 

Galactose (K), Dextrose (L) or Raffinose (M). N Average Sir3 enrichment over the 

entire HMR over time. 

 

Figure 4: Gene expression upregulation upon release from stationary phase is 

impaired in the absence of Sir3 depletion. A. Left: Genotypes of yeast strains 

used in the RNA-seq experiment outlined on the right. B. Heat map of median mRNA 

enrichment (normalized to the genome average per time point)  in wtSir3, Sir3D and 

oeSir3 strains before and after release from stationary phase for 710 genes that are 

upregulated before the first division after release from stationary phase in the wtSir3 

strain. The genes are divided into three clusters based on average mRNA 

abundance in midlog (bar graph on the left). GO analysis shows enrichment for 

“growth” genes: ribosome biogenesis, metabolic processes, mitochondrial proteins 

(Table S1) C. Line plot of average median mRNA enrichment (over all 710 genes 

from B) for wtSir3, Sir3D and oeSir3 at each time point. D.-E. Box plot distributions of 

median mRNA per cluster  from B (D) compared to the median wt Sir3 (dataset from 
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Figure S1) and oeSir3 (Figure 3) CDS enrichment (E). F. Sir3 exchange rates after 

release from stationary phase at genes from clusters in B and D. The new/old Sir3 

ratios are calculated from the medians of the log2(median Sir3 CDS enrichment) 

distributions from E. G. Sir3 exchange rates after release from stationary phase at 

subtelomeric regions and HMR and HML from Figure S1. The new/old Sir3 ratios are 

calculated from the average Sir3 enrichment shown in Figure S1.  

 

Figure 5: A. Diagram of the Sir2-TAP tag construct used in ChIP-seq experiments 

shown here (top left). Bottom: Experiment outline. Cells were grown for 48hrs until 

they reached stationary phase by glucose depletion . Cells were then released from 

arrest with addition of fresh media and allowed to grow for one to twelve doublings 

(monitored by OD measurements). Cell aliquots were fixed with 1% formaldehyde for 

20min at times indicated below the diagrams and anti-TAP  ChIPs were performed 

on sonicated chromatin. B. Heat map of  Sir2 (TAP tag) enrichment over input during 

and after exit from quiescence, at all yeast telomeres (30kbp from chromosomes 

ends).  Time points are aligned by the ARS Consensus Sequence (ACS) located in 

telomeric silencer regions i.e. Sir complex nucleation sites at telomeres. Silent mating 

type loci HML and HMR, on 3L and 3R, respectively, are framed with a white 

rectangle.  Sir2 is enriched in a small 1kb region upstream of the ACS at all 

telomeres. Repetitive and unmapped regions are shown in grey.  The HMLa reads 

have been eliminated as repetitive sequences during alignment to the reference 

genome which is MATa. C-D.  Sir2 enrichment around ACS averaged for all 32 

telomeres (C) or tRNA genes averaged for all 274 genes (D)  at indicated time points 

during the stationary and the renewed growth phases. The bottom panel shows 

average enrichment around the ACS (C) or tRNA genes (D) for Sir2 over time. E-G.  

Sir2 enrichment at HML (E), HMR (F) and rDNA (G) (NTS1-2 is the non-transcribed 

region of the rDNA repeat between the 3' ETS and RDN5)  at indicated time points 

during the stationary and the renewed growth phase. The bottom panel shows 

average enrichment over the entire silent mating type locus or rDNA for Sir2 over 

time. 
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Figure 6: TFIIIC binding to tRNA genes upon release from stationary phase. A. 

Diagram of the TFC3-TAP tag construct used in ChIP-seq experiments shown here 

(top). Right: Experiment outline. Cells were grown for 48hrs until they reached 

stationary phase by glucose depletion. Cells were then released from arrest with 

addition of fresh media and allowed to grow for one to twelve doublings (monitored 

by OD measurements). Cell aliquots were fixed with 1% formaldehyde for 20min at 

times indicated below the diagrams and anti-TAP  ChIPs were performed on 

sonicated chromatin. B. Average profiles of TFIIIC (TAP tag) enrichment over input at 

all 274 tRNA genes before, during and after exit from quiescence. C. K-means 

clustering of median TFIIIC enrichment at tRNA genes (-50 to +150 bp around the 

start of the gene) at indicated time points (columns). Cluster 1: tRNA genes with 

increased TFIIIC binding after release; Cluster 2:tRNA genes with reduced TFIIIC 

binding after release; Cluster 3:low  binding TFIIIC tRNA genes with slow recovery 

after release. D-F box plot distributions of median read density enrichment comparing 

TFIIIC binding  to old(HA)/new(T7) Sir3 (D: Figure 1, polyclonal anti-T7; E: Figure S1, 

monoclonal anti-T7) , over-expressed Sir3 (Galactose inducible, Figure S2) and Sir2 

(F, Figure 3) at tRNA genes from clusters shown in C. Sir3 and Sir2 binding is 

independent of TFIIIC binding (and consequently tRNA expression) since  binding 

dynamics of Sir3 and Sir2 before and after stationary phase are the same for all three 

clusters from C: Sir3 and Sir2 are depleted from tRNA genes in stationary phase and 

rebind gradually before the first doubling after release and stay stably bound through 

at least 12 doublings.  The polyclonal anti-T7 antibody (D, Figure 1) appears to have 

a much higher affinity for the T7 tag than the monoclonal anti-T7 used in Figure S1 

(E), at least in the  Sir3 configuration bound to tRNA genes since a difference 

between these two antibodies is not detected at telomeres and silent mating type loci 

(compare Figures 1 and S1). It is therefore difficult to judge whether binding of old 

Sir3 detectable even at 12 doublings after release comes from cells that have not 

undergone tag switch (about 2% of the initial population in stationary phase) or from 

a fraction of old Sir3 that has “survived” since the stationary phase. Sir3 binding is 

not a “tag” artefact as untagged “wt Sir3” (custom ant-Sir3 antibody, dataset 

from(Radman-Livaja et al. 2011)) (F)  and old-Sir3 HA (E) have similar enrichment 

distributions in midlog cells. 
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Supplementary Table S1: GO annotations of “growth response genes” from 

Figure 4 

 

Supplementary Figure Legends  

 

Figure S1: A. Diagram of the Sir3 tag switch construct used in ChIP-seq 

experiments shown here (top left). Bottom: Experiment outline. Cells were arrested 

by glucose depletion before the tag switch, which is induced with estradiol addition to 

arrested cells (recombination efficiency :97.5%). Cells were then released from arrest 

with addition of fresh media and allowed to grow for one to twelve doublings 

(monitored by OD measurements). Cell aliquots were fixed with 1% formaldehyde for 

20min at times indicated below the diagrams and anti-HA and anti-T7 (monoclonal 

Cell Signaling Technology, DSE1X (lot#1)) ChIPs were performed on sonicated 

chromatin. B. Heat map of new Sir3 (T7 tag) enrichment over old Sir3 (HA tag) 

during and after exit from quiescence, at all yeast telomeres (30kbp from 

chromosomes ends).  Time points are aligned by the ARS Consensus Sequence 

(ACS) located in telomeric silencer regions i.e. Sir complex nucleation sites at 

telomeres. Silent mating type loci HML and HMR, on 3L and 3R, respectively, are 

framed with a white rectangle.  Sir3 is enriched in a small 1kb region upstream of the 

ACS at all telomeres. Repetitive and unmapped regions are shown in grey.  The 

HMLα reads have been eliminated as repetitive sequences during alignment to the 

reference genome which is MATα. C-D. Old (top) and new (middle) Sir3 enrichment 

around ACS averaged for all 32 telomeres (C) or tRNA genes averaged for all 274 

genes (D)  at indicated time points during the stationary and the renewed growth 

phases. The bottom panel shows average enrichment around the ACS (C) or tRNA 

genes (D) for old and new Sir3 over time. E-F. Old (top left) and new (bottom left) 

Sir3 enrichment at HML (E) and HMR (F) at indicated time points (same color code 

for E and F) during the stationary and the renewed growth phase. The right panel 

shows average enrichment over the entire silent mating type locus for old and new 

Sir3 over time. 
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Supplementary Figure S2: Nucleosome features at tRNA genes. A. Average read 

density profiles for all tRNA genes from wt cells in mid-log: nucleosome positioning 

(red 1 and green2) from MNAse-seq datasets; H3K56ac (purple) 2 and Htz ChIP-seq 

(blue)3.  Read densities were normalized to the average genomic read density for 

each dataset. Watson and Crick reads were treated separately and then averaged 

together. Datasets for analysis were taken from the articles indicated in the figure 

legened. B. Chromatin dynamics at tRNA genes during genome replication. Read 

density profiles of early replicating tRNA genes (76 genes with replication timing 

earlier than 35min after release from G1 arrest as measured in 4) in early (left) and 

mid S-phase (right). The datasets were taken from2. Read densities were normalized 

to the average genomic read density for each dataset. Only Watson reads are 

shown. The solid line represents a 50bp moving window average of the dotted line. 
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