P. D. Abeyrathne, M. Chami, and H. Stahlberg, Biochemical and biophysical approaches to study the structure and function of the chloride channel (ClC) family of proteins, Biochimie, pp.154-162, 2016.

P. D. Abeyrathne and N. Grigorieff, Expression, purification, and contaminant detection for structural studies of Ralstonia metallidurance ClC protein rm1, PLoS One, vol.12, pp.1-24, 2017.

A. Accardi, Structure and gating of CLC channels and exchangers, J. Physiol, vol.593, pp.4129-4138, 2015.

A. Accardi, S. Lobet, C. Williams, C. Miller, and R. Dutzler, Synergism Between Halide Binding and Proton Transport in a CLC-type Exchanger, J. Mol. Biol, vol.362, pp.691-699, 2006.

A. Accardi and C. Miller, Secondary active transport mediated by a prokaryotic homologue of ClC Cl-channels, Nature, vol.427, pp.803-807, 2004.

A. Accardi, M. Walden, W. Nguitragool, H. Jayaram, C. Williams et al., Separate Ion Pathways in a Cl-/H+ Exchanger, J. Gen. Physiol, vol.126, pp.563-570, 2005.

A. Alboresi, C. Gestin, M. T. Leydecker, M. Bedu, C. Meyer et al., Nitrate, a signal relieving seed dormancy in Arabidopsis, Plant, Cell Environ, vol.28, pp.500-512, 2005.

Z. Andrés, J. Pérez-hormaeche, and E. O. Leidi, Control of vacuolar dynamics and regulation of stomatal aperture by tonoplast potassium uptake, Proc. Natl. Acad. Sci. U. S. A, vol.111, pp.1806-1820, 2014.

A. Angeli, . De, D. Monachello, G. Ephritikhine, J. M. Frachisse et al., The nitrate/proton antiporter AtCLCa mediates nitrate accumulation in plant vacuoles, Nature, vol.442, pp.939-942, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00119917

A. Angeli, . De, O. Moran, S. Wege, S. Filleur et al., , 2009.

, Nitrate/Proton Antiporter, AtCLCa, Regulates Nitrate Transport into Plant Vacuoles, J. Biol. Chem, vol.284, pp.26526-26532

D. Basilio, K. Noack, A. Picollo, and A. Accardi, Conformational changes required for H(+)/Cl(-) exchange mediated by a CLC transporter, Nat. Struct. Mol. Biol, vol.21, pp.456-63, 2014.

B. Bennetts, G. Y. Rychkov, H. L. Ng, C. J. Morton, D. Stapleton et al., Cytoplasmic ATP-sensing domains regulate gating of skeletal muscle ClC-1 chloride channels, J. Biol. Chem, vol.280, pp.32452-32458, 2005.

E. Bergsdorf, A. A. Zdebik, and T. J. Jentsch, Residues Important for Nitrate / Proton Coupling in Plant and Mammalian CLC Transporters *, vol.284, pp.11184-11193, 2009.

M. M. Blanke and A. R. Belcher, Stomata of apple leaves cultured in vitro, Plant Cell. Tissue Organ Cult, vol.19, pp.85-89, 1989.

A. J. Bloom, Photorespiration and nitrate assimilation: A major intersection between plant carbon and nitrogen, Photosynth. Res, vol.123, pp.117-128, 2015.

J. S. Boyer, Plant Productivity and Environment. Science (80-. ), vol.218, pp.443-448, 1982.

J. S. Boyer, Relationship of Water Potential to Growth of Leaves, vol.1, pp.1056-1062, 1968.

M. M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem, vol.72, pp.248-254, 1976.

L. Braidwood, C. Breuer, and K. Sugimoto, My body is a cage: Mechanisms and modulation of plant cell growth, New Phytol, vol.201, pp.388-402, 2014.

R. Brouwer, Nutritive influences on the distribution of dry matter in the plant, Netherlands J. Agric. Sci, vol.10, pp.399-408, 1962.

G. Carr, N. Simmons, and J. Sayer, A role for CBS domain 2 in trafficking of chloride channel CLC-5, Biochem. Biophys. Res. Commun, vol.310, pp.600-605, 2003.

B. M. Chen, Z. H. Wang, S. X. Li, G. X. Wang, H. X. Song et al., Effects of nitrate supply on plant growth, nitrate accumulation, metabolic nitrate concentration and nitrate reductase activity in three leafy vegetables, Plant Sci, vol.167, pp.635-643, 2004.

T. Chen and T. Hwang, CLC-0 and CFTR: Chloride Channels Evolved From Transporters, Physiol. Rev, vol.88, pp.351-387, 2008.

C. Chiu, C. Lin, A. Hsia, R. Su, H. Lin et al., Mutation of a nitrate transporter, AtNRT1:4, results in a reduced petiole nitrate content and altered leaf development, Plant Cell Physiol, vol.45, pp.1139-1148, 2004.

G. A. Chope, Y. Wan, S. P. Penson, D. G. Bhandari, S. J. Powers et al., Effects of Genotype, Season, and Nitrogen Nutrition on Gene Expression and Protein Accumulation in Wheat Grain, J. Agric. Food Chem, vol.62, pp.4399-4407, 2014.

F. Chopin, M. Orsel, M. Dorbe, F. Chardon, H. Truong et al., The Arabidopsis ATNRT2.7 nitrate transporter controls nitrate content in seeds, Plant Cell, vol.19, pp.1590-1602, 2007.

H. Claeys and D. Inze, The Agony of Choice: How Plants Balance Growth and Survival under Water-Limiting Conditions, Plant Physiol, vol.162, pp.1768-1779, 2013.

S. J. Clough and A. F. Bent, Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana, Plant J, vol.16, pp.735-743, 1998.

E. Cominelli, M. Galbiati, A. Vavasseur, L. Conti, T. Sala et al., A guard-cell-specific MYB transcription factor regulates stomatal movements and plant drought tolerance, Curr. Biol, vol.15, pp.1196-1200, 2005.

S. J. Cookson, L. E. Williams, and A. J. Miller, Light-dark changes in cytosolic nitrate pools depend on nitrate reductase activity in Arabidopsis leaf cells, Plant Physiol, vol.138, pp.1097-1105, 2005.

A. Costa, P. Vijay-kanth-gutla, and A. Boccaccio, The Arabidopsis central vacuole as an expression system for intracellular transporters: Functional characterization of the Cl -/H + exchanger CLC-7, J. Physiol, vol.590, pp.3421-3430, 2012.

V. Cotelle and N. Leonhardt, Proteins in Guard Cell Signaling. Front. Plant Sci, vol.6, pp.1-10, 2016.

M. D. Cramer, H. Hawkins, and G. A. Verboom, The importance of nutritional regulation of plant, Oecologia, vol.161, pp.15-24, 2009.

N. M. Crawford, Nitrate: nutrient and signal for plant growth, Plant Cell, vol.7, pp.859-68, 1995.

M. D. Curtis and U. Grossniklaus, A Gateway cloning vector set for high-hhroughput hunctional hnalysis of henes in planta, Breakthr. Technol, vol.133, pp.462-469, 2003.

S. Davenport, P. Lay, . Le, and J. P. Sanchez-tamburrrino, Nitrate metabolism in tobacco leaves overexpressing Arabidopsis nitrite reductase, Plant Physiol. Biochem, vol.97, pp.96-107, 2015.

D. D. Davies and T. J. Humphrey, Amino Acid Recycling in Relation to Protein Turnover, Plant Physiol, vol.61, pp.54-58, 1978.

J. Dechorgnat, C. T. Nguyen, P. Armengaud, M. Jossier, E. Diatloff et al., From the soil to the seeds: the long journey of nitrate in plants, J. Exp. Bot, vol.62, pp.1349-1359, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00855468

R. Dutzler, The ClC family of chloride channels and transporters, Curr Opin Struct.Biol, vol.16, pp.439-446, 2006.

R. Dutzler, E. B. Campbell, M. Cadene, B. T. Chait, and R. Mackinnon, X-ray structure of a CIC chloride channel at 3.0 Å reveals the molecular basis of anion selectivity, Nature, vol.415, pp.287-294, 2002.

R. Dutzler, E. B. Campbell, and R. Mackinnon, Gating the selectivity filter in ClC chloride channels, Science, vol.300, pp.108-112, 2003.

C. Eisenach, A. Angeli, and . De, Ion Transport at the Vacuole during Stomatal Movements, Plant Physiol, vol.174, pp.520-530, 2017.

W. R. Engelsberger and W. X. Schulze, Nitrate and ammonium lead to distinct global dynamic phosphorylation patterns when resupplied to nitrogen-starved Arabidopsis seedlings, Plant J, vol.69, pp.978-995, 2012.

R. Estévez, M. Pusch, C. Ferrer-costa, M. Orozco, and T. J. Jentsch, Functional and structural conservational of CBS domains from CLC chloride channels, J. Physiol, vol.557, pp.363-378, 2004.

J. V. Fecht-bartenbach, . Der, M. Bogner, M. Dynowski, and U. Ludewig, CLC-b-mediated no3-/H+ exchange across the tonoplast of arabidopsis vacuoles, Plant Cell Physiol, vol.51, pp.960-968, 2010.

J. V. Fecht-bartenbach, M. Bogner, M. Krebs, Y. D. Stierhof, K. Schumacher et al., Function of the anion transporter AtCLC-d in the trans-Golgi network, Plant J, vol.50, pp.466-474, 2007.

L. Feng, E. B. Campbell, Y. Hsiung, and R. Mackinnon, Structure of a eukaryotic CLC transporter defines an intermediate state in the transport cycle, Science, vol.330, pp.635-676, 2010.

L. Feng, E. B. Campbell, R. Mackinnon, L. Feng, R. Mackinnon et al., Molecular mechanism of proton transport in CLC Cl-/H+ exchange transporters, Proc. Natl. Acad. Sci, vol.109, pp.11699-11704, 2012.

S. Filleur, M. F. Dorbe, M. Cerezo, M. Orsel, F. Granier et al., , 2001.

, An Arabidopsis T-DNA mutant affected in Nrt2 genes is impaired in nitrate uptake, FEBS Lett, vol.489, pp.220-224

L. Frigerio, G. Hinz, and D. G. Robinson, Multiple vacuoles in plant cells: Rule or exception?, Traffic, vol.9, pp.1564-1570, 2008.

D. C. Gadsby, Ion channels versus ion pumps: The principal difference, in principle, Nat. Rev. Mol. Cell Biol, vol.10, pp.344-352, 2009.

R. A. Gaxiola, D. S. Yuan, R. D. Klausner, and G. R. Fink, The yeast CLC chloride channel functions in cation homeostasis, Proc. Natl. Acad. Sci. U. S. A, vol.95, pp.4046-4050, 1998.

D. Geelen, C. Lurin, D. Bouchez, J. M. Frachisse, F. Lelièvre et al., Disruption of putative anion channel gene AtCLC-a in Arabidopsis suggests a role in the regulation of nitrate content, Plant J, vol.21, pp.259-267, 2000.
URL : https://hal.archives-ouvertes.fr/hal-00162995

T. Girin, L. Lejay, J. Wirth, T. Widiez, P. M. Palenchar et al., Identification of a 150 bp cis-acting element of the AtNRT2.1 promoter involved in the regulation of gene expression by the N and C status of the plant, Plant, Cell Environ, vol.30, pp.1366-1380, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00191105

K. S. Gjetting, C. K. Ytting, A. Schulz, and A. T. Fuglsang, Live imaging of intra-and extracellular pH in plants using pHusion, a novel genetically encoded biosensor, J. Exp. Bot, vol.63, pp.3207-3218, 2012.

M. Godde and R. Conrad, Influence of soil properties on the turnover of nitric oxide and nitrous oxide by nitrification and denitrification at constant temperature and moisture, Biol. Fertil. Soils, vol.32, pp.120-128, 2000.

A. Gorska, Q. Ye, N. M. Holbrook, and M. A. Zwieniecki, Nitrate Control of Root Hydraulic Properties in Plants: Translating Local Information to Whole Plant Response, Plant Physiol, vol.148, pp.1159-1167, 2008.

R. C. Granstedt and R. C. Huffaker, Identification of the leaf vacuole as a major nitrate storage pool, Plant Physiol, vol.70, pp.410-413, 1982.

A. R. Graves, P. K. Curran, C. L. Smith, and J. A. Mindell, The Cl-/H+antiporter ClC-7 is the primary chloride permeation pathway in lysosomes, Nature, vol.453, pp.788-792, 2008.

P. L. Gregersen, A. Culetic, L. Boschian, and K. Krupinska, Plant senescence and crop productivity, Plant Mol. Biol, vol.82, pp.603-622, 2013.

B. D. Gruber, R. F. Giehl, S. Friedel, N. Wiren, and . Von, Plasticity of the Arabidopsis Root System under Nutrient Deficiencies, Plant Physiol, vol.163, pp.161-179, 2013.

A. Guiboileau, R. Sormani, C. Meyer, and C. Masclaux-daubresse, Senescence and death of plant organs: Nutrient recycling and developmental regulation, Comptes Rendus -Biol, vol.333, pp.382-391, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01203896

W. Günther, . Lüchow, F. Cluzeaud, . Vandewalle, and T. J. Jentsch, ClC-5, the chloride channel mutated in Dent's disease, colocalizes with the proton pump in endocytotically active kidney cells, Proc. Natl. Acad. Sci. U. S. A, vol.95, pp.8075-8080, 1998.

F. Guo, J. Young, and N. M. Crawford, The nitrate transporter AtNRT1.1 (CHL1) functions in stomatal opening and contributes to drought susceptibility in Arabidopsis, Plant Cell, vol.15, pp.107-124, 2003.

W. Guo, Z. Zuo, X. Cheng, J. Sun, H. Li et al., The chloride channel family gene CLCd negatively regulates pathogen-associated molecular pattern (PAMP)-triggered immunity in Arabidopsis, J. Exp. Bot, vol.65, pp.1205-1215, 2014.

Y. Guo and S. Gan, Leaf Senescence: Signals, Execution, and Regulation, Curr. Top. Dev. Biol, vol.71, pp.83-112, 2005.

C. Hackett, Method of applying nutrients locally to roots under controlled conditions, and some morphological effects of locally applied nitrate on the branching of wheat roots, Aust. J. Biol. Sci, vol.25, pp.1169-80, 1972.

Y. Han, H. Song, and Q. Liao, Nitrogen use efficiency is mediated by vacuolar nitrate sequestration capacity in roots of Brassica napus, Plant Physiol, vol.170, p.1377, 2015.

W. Hanke and C. Miller, Single chloride channels from Torpedo electroplax. Activation by protons, J. Gen. Physiol, vol.82, pp.25-45, 1983.

M. Havé, A. Marmagne, F. Chardon, and C. Masclaux-daubresse, Nitrogen remobilization during leaf senescence: Lessons from Arabidopsis to crops, J. Exp. Bot, vol.68, pp.2513-2529, 2017.

M. J. Hawkesford, Reducing the reliance on nitrogen fertilizer for wheat production, J. Cereal Sci, vol.59, pp.276-283, 2014.

Y. He, J. Peng, Y. Cai, D. Liu, Y. Guan et al., Tonoplastlocalized nitrate uptake transporters involved in vacuolar nitrate efflux and reallocation in Arabidopsis, Sci. Rep, vol.7, p.6417, 2017.

M. Hechenberger, B. Schwappach, W. N. Fischer, W. B. Frommer, J. Jentsch et al., Membranes and Bioenergetics : A Family of Putative Chloride Channels from Arabidopsis and Functional Complementation of a Yeast Strain with a CLC Gene Disruption A Family of Putative Chloride Channels from Arabidopsis and Functional Complementation of a Y, J. Biol. Chem, vol.271, pp.33632-33638, 1996.

A. Herdean, H. Nziengui, O. Zsiros, K. Solymosi, G. Garab et al., The Arabidopsis Thylakoid Chloride Channel AtCLCe Functions in Chloride Homeostasis and Regulation of Photosynthetic Electron Transport, Front. Plant Sci, vol.7, pp.1-15, 2016.

T. M. Hildebrandt, A. Nunes-nesi, W. L. Araújo, and H. P. Braun, Amino Acid Catabolism in Plants, Mol. Plant, vol.8, pp.1563-1579, 2015.

C. H. Ho, S. H. Lin, H. C. Hu, and Y. F. Tsay, CHL1 Functions as a Nitrate Sensor in Plants, Cell, vol.138, pp.1184-1194, 2009.

N. C. Huang, K. H. Liu, H. J. Lo, and Y. F. Tsay, Cloning and functional characterization of an Arabidopsis nitrate transporter gene that encodes a constitutive component of low-affinity uptake, Plant Cell, vol.11, pp.1381-1392, 1999.

Y. Huang, T. Drengstig, and P. Ruoff, Integrating fluctuating nitrate uptake and assimilation to robust homeostasis, Plant, Cell Environ, vol.35, pp.917-928, 2012.

A. Jacquot, Z. Li, A. Gojon, W. Schulze, and L. Lejay, Post-translational regulation of nitrogen transporters in plants and microorganisms, J. Exp. Bot, vol.68, pp.2567-2580, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01595539

H. Jayaram, J. L. Robertson, F. Wu, C. Williams, and C. Miller, Structure of a slow CLC Cl-/H+ antiporter from a cyanobacterium, Biochemistry, vol.50, pp.788-794, 2011.

T. J. Jentsch, Discovery of CLC transport proteins: cloning, structure, function and pathophysiology, J. Physiol, 2015.

T. J. Jentsch, W. Gunther, M. Pusch, and B. Schwappach, Properties of voltage-gated chloride channels of the C1C gene family, p.13, 2014.

T. J. Jentsch, K. Steinmeyer, and G. Schwarz, Primary structure of Torpedo marmorata chloride channel isolated by expression cloning in Xenopus oocytes, Nature, vol.348, pp.510-514, 1990.

M. Jossier, L. Kroniewicz, and F. Dalmas, The Arabidopsis vacuolar anion transporter, AtCLCc, is involved in the regulation of stomatal movements and contributes to salt tolerance, Plant J, vol.64, pp.563-576, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00855481

M. Karimi, D. Inze, and A. Depicker, GATEWAY TM vectors for Agrobacterium-mediated plant transformation, Trends Plant Sci, vol.7, pp.193-195, 2002.

T. Kataoka, A. Watanabe-takahashi, N. Hayashi, M. Ohnishi, T. Mimura et al., Vacuolar sulfate transporters are essential determinants controlling internal distribution of sulfate in Arabidopsis, Plant Cell, vol.16, pp.2693-704, 2004.

C. M. Khantwal, S. J. Abraham, and W. Han, Revealing an outward-facing open conformational state in a CLC CL-/H+ exchange transporter, Elife, vol.5, pp.1-30, 2016.

T. Kiba, A. Feria-bourrellier, and F. Lafouge, The Arabidopsis nitrate transporter NRT2.4 plays a double role in roots and shoots of nitrogen-starved plants, Plant Cell, vol.24, pp.245-58, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01204108

M. Konishi and S. Yanagisawa, Arabidopsis NIN-like transcription factors have a central role in nitrate signalling, Nat. Commun, vol.4, pp.1617-1619, 2013.

M. Konishi and S. Yanagisawa, Identification of a nitrate-responsive cis-element in the Arabidopsis NIR1 promoter defines the presence of multiple cis-regulatory elements for nitrogen response, Plant J, vol.63, pp.269-282, 2010.

S. Koshuchowa, K. Zoglauer, and H. Göring, Structure of Guard Cells and Function of Stomata of Plants cultured in vitro, Biochem. und Physiol. der Pflanz, vol.186, pp.289-299, 1990.

A. Krapp, Plant nitrogen assimilation and its regulation: A complex puzzle with missing pieces, Curr. Opin. Plant Biol, vol.25, pp.115-122, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01204189

A. Krapp, R. Berthome, and M. Orsel, Arabidopsis Roots and Shoots Show Distinct Temporal Adaptation Patterns toward Nitrogen Starvation, Plant Physiol, vol.157, pp.1255-1282, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01001248

A. Krapp, L. C. David, and C. Chardin, Nitrate transport and signalling in Arabidopsis, J. Exp. Bot, vol.65, pp.789-798, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01204040

M. Krebs, D. Beyhl, E. Gorlich, K. A. Al-rasheid, I. Marten et al., Arabidopsis V-ATPase activity at the tonoplast is required for efficient nutrient storage but not for sodium accumulation, Proc. Natl. Acad. Sci, vol.107, pp.3251-3256, 2010.

G. Krouk, Hormones and nitrate: a two-way connection, Plant Mol. Biol, vol.91, pp.599-606, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01321091

C. Kühn and C. P. Grof, Sucrose transporters of higher plants, Curr. Opin. Plant Biol, vol.13, pp.288-298, 2010.

U. Kutschera and K. J. Niklas, Cell division and turgor-driven stem elongation in juvenile plants: A synthesis, Plant Sci, vol.207, pp.45-56, 2013.

R. M. Lark, A. E. Milne, T. M. Addiscott, K. W. Goulding, C. P. Webster et al., Scale-and location-dependent correlation of nitrous oxide emissions with soil properties: An analysis using wavelets, Eur. J. Soil Sci, vol.55, pp.611-627, 2004.

S. Lee, J. M. Swanson, and G. A. Voth, Multiscale Simulations Reveal Key Aspects of the Proton Transport Mechanism in the ClC-ec1 Antiporter, Biophys. J, vol.110, pp.1334-1345, 2016.

M. Leij, . Van-der, S. J. Smith, and A. J. Miller, Remobilisation of vacuolar stored nitrate in barley root cells, Planta, vol.205, pp.64-72, 1998.

L. Lejay, P. Tillard, M. Lepetit, F. D. Olive, S. Filleur et al., Molecular and functional regulation of two NO3/-uptake systems by N-and C-status of Arabidopsis plants, Plant J, vol.18, pp.509-519, 1999.

T. Lemaître, L. Gaufichon, S. Boutet-mercey, A. Christ, and C. Masclaux-daubresse, Enzymatic and metabolic diagnostic of nitrogen deficiency in Arabidopsis thaliana Wassileskija accession, Plant Cell Physiol, vol.49, pp.1056-1065, 2008.

L. Lezhneva, T. Kiba, A. B. Feria-bourrellier, F. Lafouge, S. Boutet-mercey et al., The Arabidopsis nitrate transporter NRT2.5 plays a role in nitrate acquisition and remobilization in nitrogen-starved plants, Plant J, vol.80, pp.230-241, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01204108

G. Li, V. Santoni, and C. Maurel, Plant aquaporins: Roles in plant physiology, Biochim. Biophys. Acta -Gen. Subj, vol.1840, pp.1574-1582, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00962141

G. Li, P. Tillard, A. Gojon, and C. Maurel, Dual regulation of root hydraulic conductivity and plasma membrane aquaporins by plant nitrate accumulation and high-affinity nitrate transporter NRT2.1, Plant Cell Physiol, vol.57, pp.733-742, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01321089

W. Li, Y. Wang, M. Okamoto, N. M. Crawford, M. Y. Siddiqi et al., Dissection of the AtNRT2.1:AtNRT2.2 Inducible High-Affinity Nitrate Transporter Gene Cluster, Plant Physiol, vol.143, pp.425-433, 2006.

H. Lim and C. Miller, Intracellular Proton-Transfer Mutants in a CLC Cl ? /H + Exchanger, 2009.

, J. Gen. Physiol, vol.133, pp.131-138

H. H. Lim, T. Shane, and C. Miller, Intracellular Proton Access in a Cl-/H+ Antiporter, PLoS Biol, vol.10, 2012.

S. Lin, H. Kuo, and G. Canivenc, Mutation of the Arabidopsis NRT1.5 Nitrate Transporter Causes Defective Root-to-Shoot Nitrate Transport, Plant Cell Online, vol.20, pp.2514-2528, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00356462

J. Lísal and M. Maduke, The ClC-0 chloride channel is a "broken" Cl-/H+ antiporter, Nat. Struct. Mol. Biol, vol.15, pp.805-815, 2008.

C. W. Liu, Y. Sung, B. C. Chen, and H. Y. Lai, Effects of nitrogen fertilizers on the growth and nitrate content of lettuce (Lactuca sativa L.), Int. J. Environ. Res. Public Health, vol.11, pp.4427-4440, 2014.

K. H. Liu, C. Y. Huang, and Y. F. Tsay, CHL1 is a dual-affinity nitrate transporter of Arabidopsis involved in multiple phases of nitrate uptake, Plant Cell, vol.11, pp.865-874, 1999.

K. H. Liu and Y. F. Tsay, Switching between the two action modes of the dual-affinity nitrate transporter CHL1 by phosphorylation, EMBO J, vol.22, pp.1005-1013, 2003.

J. A. Lockhart, An analysis of irreversible plant cell elongation, J. Theor. Biol, vol.8, pp.264-275, 1965.

U. Ludewig, M. Pusch, and T. J. Jentsch, Two physically distinct pores in the dimeric CIC-0 chloride channel, Nature, vol.383, pp.340-343, 1996.

M. Ludwig, J. Doroszewicz, H. W. Seyberth, A. Bökenkamp, B. Balluch et al., Functional evaluation of Dent's disease-causing mutations: Implications for ClC-5 channel trafficking and internalization, Hum. Genet, vol.117, pp.228-237, 2005.

C. Lurin, D. Geelen, H. Barbier-brygoo, J. Guern, and C. Maurel, Cloning and functional expression of a plant voltage-dependent chloride channel, Plant Cell, vol.8, pp.701-712, 1996.

Q. Lv, R. Tang, H. Liu, X. Gao, . Shu et al., Cloning and molecular analyses of the Arabidopsis thaliana chloride channel gene family, Plant Sci, vol.176, pp.650-661, 2009.

M. Maduke, C. Williams, and C. Miller, Formation of CLC-0 chloride channels from separated transmembrane and cytoplasmic domains, Biochemistry, vol.37, pp.1315-1321, 1998.

S. I. Maeda, M. Konishi, S. Yanagisawa, and T. Omata, Nitrite transport activity of a novel HPP family protein conserved in cyanobacteria and chloroplasts, Plant Cell Physiol, vol.55, pp.1311-1324, 2014.

C. Marchive, F. Roudier, L. Castaings, V. Bréhaut, E. Blondet et al., Nuclear retention of the transcription factor NLP7 orchestrates the early response to nitrate in plants, Nat. Commun, vol.4, pp.1-9, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01190574

A. Marmagne, M. Vinauger-douard, and D. Monachello, Two members of the, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00187097

, Arabidopsis CLC (chloride channel) family, AtCLCe and AtCLCf, are associated with thylakoid and Golgi membranes, respectively, J. Exp. Bot, vol.58, pp.3385-3393

A. Martin, J. Lee, and T. Kichey, Two Cytosolic Glutamine Synthetase Isoforms of Maize Are Specifically Involved in the Control of Grain Production, Plant Cell Online, vol.18, pp.3252-3274, 2006.
URL : https://hal.archives-ouvertes.fr/hal-01927336

E. Martinoia, U. Heck, and A. Wiemken, Vacuoles as storage compartmentsfor nitrate in barley leaves, Nature, vol.289, pp.292-294, 1981.

E. Martinoia, S. Meyer, A. Angeli, . De, and R. Nagy, Vacuolar Transporters in Their Physiological Context, Annu. Rev. Plant Biol, vol.63, pp.183-213, 2012.

C. Masclaux-daubresse, F. Daniel-vedele, J. Dechorgnat, F. Chardon, L. Gaufichon et al., Nitrogen uptake, assimilation and remobilization in plants: Challenges for sustainable and productive agriculture, Ann. Bot, vol.105, pp.1141-1157, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01203920

G. I. Mcintyre, Control of plant development by limiting factors: A nutritional perspective, Physiol. Plant, vol.113, pp.165-175, 2001.

G. I. Mcintyre, The Role of Nitrate in the Osmotic and Nutritional Control of Plant Development, Aust. J. Plant Physiol, vol.24, pp.103-118, 1997.

T. C. Mensinga, G. J. Speijers, and J. Meulenbelt, Health implications of exposure to environmental nitrogenous compounds, Toxicol. Rev, vol.22, pp.41-51, 2003.

J. Menz, Z. Li, W. X. Schulze, and U. Ludewig, Early nitrogen-deprivation responses in Arabidopsis roots reveal distinct differences on transcriptome and (phospho-) proteome levels between nitrate and ammonium nutrition, Plant J, vol.88, pp.717-734, 2016.

B. J. Miflin, The location of nitrite reductase and other enzymes related to amino Acid biosynthesis in the plastids of root and leaves, Plant Physiol, vol.54, pp.550-555, 1974.

A. Migge, E. Carrayol, B. Hirel, and T. W. Becker, Leaf-specific overexpression of plastidic glutamine synthetase stimulates the growth of transgenic tobacco seedlings, Planta, vol.210, pp.252-260, 2000.

A. J. Miller, X. Fan, M. Orsel, S. J. Smith, and D. M. Wells, Nitrate transport and signalling, J. Exp. Bot, vol.58, pp.2297-2306, 2007.

A. J. Miller and S. J. Smith, Cytosolic nitrate ion homeostasis: Could it have a role in sensing nitrogen status?, Ann. Bot, vol.101, pp.485-489, 2008.

A. J. Miller and S. J. Smith, The mechanism of nitrate transport across the tonoplast of barley root cells, Planta, vol.187, pp.554-557, 1992.

C. Miller and M. M. White, Dimeric structure of single chloride channels from Torpedo electroplax, Proc. Natl. Acad. Sci. U. S. A, vol.81, pp.2772-2777, 1984.

E. C. Miller, A physiological study of the winter wheat plant at different stages of its development, 1939.

J. A. Mindell and M. Maduke, ClC chloride channels, Genome Biol, issue.2, 2001.

K. M. Miranda, M. G. Espey, and D. A. Wink, A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite, Biol. Chem, vol.5, pp.62-71, 2001.

A. L. Møller, P. Pedas, B. Andersen, B. Svensson, J. K. Schjoerring et al., Responses of barley root and shoot proteomes to long-term nitrogen deficiency, short-term nitrogen starvation and ammonium, Plant, Cell Environ, vol.34, pp.2024-2037, 2011.

D. Monachello, M. Allot, S. Oliva, A. Krapp, F. Daniel-vedele et al., Two anion transporters AtClCa and AtClCe fulfil interconnecting but not redundant roles in nitrate assimilation pathways, New Phytol, vol.183, pp.88-94, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00855498

S. Munemasa, F. Hauser, J. Park, R. Waadt, B. Brandt et al., Mechanisms of abscisic acid-mediated control of stomatal aperture, Curr. Opin. Plant Biol, vol.28, pp.154-162, 2015.

P. Nazoa, J. J. Vidmar, T. J. Tranbarger, K. Mouline, I. Damiani et al., Regulation of the nitrate transporter gene AtNRT2.1 in Arabidopsis thaliana: Responses to nitrate, amino acids and developmental stage, Plant Mol. Biol, vol.52, pp.689-703, 2003.

C. T. Nguyen, A. Agorio, M. Jossier, S. Depré, S. Thomine et al., Characterization of the chloride channel-like, AtCLCg, involved in chloride tolerance in arabidopsis thaliana, Plant Cell Physiol, vol.57, pp.764-775, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01401612

G. Noctor, G. Bergot, C. Mauve, D. Thominet, C. Lelarge-trouverie et al., A comparative study of amino acid measurement in leaf extracts by gas chromatography-time of flight-mass spectrometry and high performance liquid chromatography with fluorescence detection, Metabolomics, vol.3, pp.161-174, 2007.

M. Noguero and B. Lacombe, Transporters Involved in Root Nitrate Uptake and Sensing by, Arabidopsis. Front. Plant Sci, vol.7, pp.1-7, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01389065

G. Novarino, S. Weinert, G. Rickheit, and T. J. Jentsch, Endosomal Chloride-Proton Exchange, Science, vol.328, pp.1398-1402, 2010.

A. Nunes-nesi, A. R. Fernie, and M. Stitt, Metabolic and signaling aspects underpinning the regulation of plant carbon nitrogen interactions, Mol. Plant, vol.3, pp.973-996, 2010.

A. Oaks and B. Hirel, Nitrogen Metabolism in Roots, Annu. Rev. Plant Physiol, vol.36, pp.345-365, 1985.

Y. Ohkubo, M. Tanaka, R. Tabata, M. Ogawa-ohnishi, and Y. Matsubayashi, Shoot-toroot mobile polypeptides involved in systemic regulation of nitrogen acquisition, Nat. Plants, vol.3, pp.1-6, 2017.

K. Ohyama, M. Ogawa, and Y. Matsubayashi, Identification of a biologically active, small, secreted peptide in Arabidopsis by in silico gene screening, followed by LC-MS-based structure analysis, Plant J, vol.55, pp.152-160, 2008.

I. C. Oliveira, T. Brears, T. J. Knight, A. Clark, and G. M. Coruzzi, Overexpression of cytosolic glutamine synthetase. Relation to nitrogen, light, and photorespiration, Plant Physiol, vol.129, pp.1170-1180, 2002.

S. Pandey, W. Zhang, and S. M. Assmann, Roles of ion channels and transporters in guard cell signal transduction, FEBS Lett, vol.581, pp.2325-2336, 2007.

N. Paris, C. M. Stanley, R. L. Jones, and J. C. Rogers, Plant-Cells Contain 2 Functionally Distinct Vacuolar Compartments, Cell, vol.85, pp.563-572, 1996.

E. Park, E. B. Campbell, and R. Mackinnon, Structure of a CLC chloride ion channel by cryoelectron microscopy, Nature, vol.541, pp.500-505, 2017.

G. Peña-münzenmayer, M. Catalán, I. Cornejo, C. D. Figueroa, J. E. Melvin et al., Basolateral localization of native ClC-2 chloride channels in absorptive intestinal epithelial cells and basolateral sorting encoded by a CBS-2 domain dileucine motif, J. Cell Sci, vol.118, pp.4243-4252, 2005.

J. Pessemier, . De, F. Chardon, M. Juraniec, P. Delaplace et al., Natural variation of the root morphological response to nitrate supply in Arabidopsis thaliana, Mech. Dev, vol.130, pp.45-53, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01001610

A. Picollo and M. Pusch, Chloride/proton antiporter activity of mammalian CLC proteins ClC-4 and ClC-5, Nature, vol.436, pp.420-423, 2005.

D. R. Poroca, R. M. Pelis, and V. M. Chappe, ClC channels and transporters: Structure, physiological functions, and implications in human chloride channelopathies, Front. Pharmacol, vol.8, pp.1-25, 2017.

P. M. Ray, P. B. Green, and R. Cleland, Role of turgor in plant cell growth, Nature, vol.239, pp.163-164, 1972.

E. A. Richard and C. Miller, Steady-State Coupling of Ion-Channel Conformations to a Transmembrane Ion Gradient, Science, vol.247, pp.1208-1210, 1990.

M. R. Roelfsema and R. Hedrich, the light of stomatal opening: New insights into "the Watergate, vol.167, pp.665-691, 2005.

S. J. Roy, T. A. Cuin, and R. A. Leigh, Nanolitre-scale assays to determine the activities of enzymes in individual plant cells, Plant J, vol.34, pp.555-564, 2003.

S. Ruffel and A. Gojon, Systemic nutrient signalling: On the road for nitrate, Nat. Plants, vol.3, pp.1-2, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01595538

F. Rusconi, F. Simeoni, and P. Francia, The Arabidopsis thaliana MYB60 promoter provides a tool for the spatio-temporal control of gene expression in stomatal guard cells, J. Exp. Bot, vol.64, pp.3361-3371, 2013.

N. Satoh, M. Suzuki, M. Nakamura, A. Suzuki, S. Horita et al., Functional coupling of V-ATPase and CLC-5, World J. Nephrol, vol.6, pp.14-20, 2017.

J. P. Schimel and J. B. Bennett, Nitrogen Mineralization: Challenges of a Changing Paradigm, Ecology, vol.85, pp.591-602, 2004.

U. Schluter, M. Mascher, C. Colmsee, U. Scholz, A. Brautigam et al., Maize Source Leaf Adaptation to Nitrogen Deficiency Affects Not Only Nitrogen and Carbon Metabolism But Also Control of Phosphate Homeostasis, Plant Physiol, vol.160, pp.1384-1406, 2012.

K. S. Schumaker and H. Sze, Decrease of pH Gradients in Tonoplast Vesicles by NO(3) and Cl: Evidence for H-Coupled Anion Transport, Plant Physiol, vol.83, pp.490-496, 1987.

B. Schwappach, S. Stobrawa, M. Hechenberger, K. Steinmeyer, and T. J. Jentsch, Golgi localization and functionally important domains in the NH2 and COOH terminus of the yeast CLC putative chloride channel Gef1p, J. Biol. Chem, vol.273, pp.15110-15118, 1998.

M. Sebilo, B. Mayer, B. Nicolardot, G. Pinay, and A. Mariotti, Long-term fate of nitrate fertilizer in agricultural soils, Proc. Natl. Acad. Sci, vol.110, pp.18185-18189, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00932156

C. Segonzac, J. Boyer, E. Ipotesi, W. Szponarski, P. Tillard et al., Nitrate Efflux at the Root Plasma Membrane: Identification of an Arabidopsis Excretion Transporter, Plant Cell Online, vol.19, pp.3760-3777, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00250972

Z. P. Shangguan, M. A. Shao, and J. Dyckmans, Nitrogen nutrition and water stress effects on leaf photosynthetic gas exchange and water use efficiency in winter wheat, Environ. Exp. Bot, vol.44, pp.141-149, 2000.

H. S. Srivastava, Regulation of nitrate reductase activity in higher plants, Phytochemistry, vol.19, pp.725-733, 1980.

M. Stitt and . Krapp, The interaction between elevated carbon dioxide and nitrogen nutrition: the physiological and molecular background, Plant, Cell Environ, vol.22, pp.553-621, 1999.
URL : https://hal.archives-ouvertes.fr/hal-01608545

G. Stölting, G. Teodorescu, and B. Begemann, Regulation of ClC-2 gating by intracellular ATP. Pflugers Arch, Eur. J. Physiol, vol.465, pp.1423-1437, 2013.

B. D. Strahm and R. B. Harrison, Nitrate Sorption in a Variable-Charge Forest Soil of the Pacific Northwest, Soil Sci, vol.171, pp.313-321, 2006.

C. Sun, J. Yu, and D. Hu, Nitrate: A Crucial Signal during Lateral Roots Development, Front. Plant Sci, vol.8, pp.1-9, 2017.

R. Tabata, K. Sumida, T. Yoshii, K. Ohyama, H. Shinohara et al., Perception of root-derived peptides by shoot LRR-RKs mediates systemic N-demand signaling, Science, vol.346, pp.343-346, 2014.

M. Tegeder and C. Masclaux-daubresse, Source and sink mechanisms of nitrogen transport and use, New Phytol, vol.217, pp.35-53, 2018.

H. Tian, I. Smet, . De, and Z. Ding, Shaping a root system: Regulating lateral versus primary root growth, Trends Plant Sci, vol.19, pp.426-431, 2014.

Y. F. Tsay, C. C. Chiu, C. B. Tsai, C. H. Ho, and P. K. Hsu, Nitrate transporters and peptide transporters, FEBS Lett, vol.581, pp.2290-2300, 2007.

Y. F. Tsay, J. I. Schroeder, K. A. Feldmann, and N. M. Crawford, The herbicide sensitivity gene CHL1 of arabidopsis encodes a nitrate-inducible nitrate transporter, Cell, vol.72, pp.705-713, 1993.

A. S. Umar and M. Iqbal, Agronomy for sustainable development, Agron. Sustain. Dev, vol.27, pp.45-57, 2007.

J. Urriola and K. S. Rathore, Overexpression of a glutamine synthetase gene affects growth and development in sorghum, Transgenic Res, vol.24, pp.397-407, 2015.

M. Vien, D. Basilio, L. Leisle, and A. Accardi, Probing the conformation of a conserved glutamic acid within the Cl? pathway of a CLC H+/Cl? exchanger, J. Gen. Physiol, vol.149, pp.1-7, 2017.

. Vitousek, Nutrient Imbalances in Agricultural Development, Europe, pp.1519-1521, 2009.

P. D. Vivancos, S. P. Driscoll, C. A. Bulman, L. Ying, K. Emami et al., Perturbations of Amino Acid Metabolism Associated with, 2011.

, Glyphosate-Dependent Inhibition of Shikimic Acid Metabolism Affect Cellular Redox Homeostasis and Alter the Abundance of Proteins Involved in Photosynthesis and Photorespiration, Plant Physiol, vol.157, pp.256-268

M. Walden, A. Accardi, F. Wu, C. Xu, C. Williams et al., Uncoupling and turnover in a Cl-/H+ exchange transporter, J. Gen. Physiol, vol.129, pp.317-329, 2007.

M. Wang, L. Ding, L. Gao, Y. Li, Q. Shen et al., The Interactions of Aquaporins and Mineral Nutrients in Higher Plants, Int. J. Mol. Sci, p.17, 2016.

R. Wang, Genomic Analysis of a Nutrient Response in Arabidopsis Reveals Diverse Expression Patterns and Novel Metabolic and Potential Regulatory Genes Induced by Nitrate, Plant Cell Online, vol.12, pp.1491-1510, 2000.

Y. Wang, Y. Cheng, K. Chen, and Y. Tsay, Nitrate Transport , Signaling , and Use Efficiency, 2018.

Y. H. Wang, D. F. Garvin, and L. Kochian, Nitrate-induced genes in tomato roots. Array analysis reveals novel genes that may play a role in nitrogen nutrition, Plant Physiol, vol.127, pp.345-59, 2001.

S. Wege, A. Angeli, . De, and M. .. Droillard, Phosphorylation of the vacuolar anion exchanger AtCLCa is required for the stomatal response to abscisic acid, Sci. Signal, vol.7, 2014.

S. Wege, M. Jossier, S. Filleur, S. Thomine, H. Barbier-brygoo et al., The proline 160 in the selectivity filter of the Arabidopsis NO3?/H+ exchanger AtCLCa is essential for nitrate accumulation in planta, Plant J, vol.63, pp.861-869, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00855483

S. Weinert, S. Jabs, and C. Supanchart, Lysosomal pathology and osteopetrosis upon loss of H+-driven lysosomal Cl-accumulation, Science, vol.328, pp.1401-1403, 2010.

M. White and C. Miller, A voltage-gated anion channel from the electric organ of Torpedo californica, J. Biol. Chem, vol.254, pp.10161-10166, 1979.

J. Wirth, F. Chopin, V. Santoni, G. Viennois, P. Tillard et al., Regulation of root nitrate uptake at the NRT2.1 protein level in Arabidopsis thaliana, J. Biol. Chem, vol.282, pp.23541-23552, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00168099

T. H. Wong, M. W. Li, X. Q. Yao, and H. M. Lam, The GmCLC1 protein from soybean functions as a chloride ion transporter, J. Plant Physiol, vol.170, pp.101-104, 2013.

H. Yan, L. Xie, L. Guo, J. Fan, T. Diao et al., Characteristics of nitrous oxide emissions and the affecting factors from vegetable fields on the North China Plain, J. Environ. Manage, vol.144, pp.316-321, 2014.

S. Y. Yang, T. K. Huang, H. F. Kuo, and T. J. Chiou, Role of vacuoles in phosphorus storage and remobilization, J. Exp. Bot, vol.68, pp.3045-3055, 2017.

Z. Yong, Z. Kotur, and A. D. Glass, Characterization of an intact two-component highaffinity nitrate transporter from Arabidopsis roots, Plant J, vol.63, pp.739-748, 2010.

L. H. Yu, J. Wu, H. Tang, Y. Yuan, S. M. Wang et al., Overexpression of arabidopsis NLP7 improves plant growth under both nitrogenlimiting and-sufficient conditions by enhancing nitrogen and carbon assimilation, Sci. Rep, vol.6, pp.1-13, 2016.

A. A. Zdebik, G. Zifarelli, E. Y. Bergsdorf, P. Soliani, O. Scheel et al., Determinants of anion-proton coupling in mammalian endosomal CLC proteins, J. Biol. Chem, vol.283, pp.4219-4227, 2008.

H. Zhang and B. G. Forde, An Arabidopsis MADS Box Gene That Controls Nutrient-Induced Changes in Root Architecture, Science, vol.279, pp.407-409, 1998.

H. Zhang and B. G. Forde, Regulation of Arabidopsis root development by nitrate availability, J. Exp. Bot. MP Spec. Issue, vol.51, pp.51-59, 2000.

H. Zhang, H. Rong, and D. Pilbeam, Signalling mechanisms underlying the morphological responses of the root system to nitrogen in Arabidopsis thaliana, J. Exp. Bot, vol.58, pp.2329-2338, 2007.

Y. Zhang, H. Wang, S. Liu, Q. Lei, J. Liu et al., Identifying critical nitrogen application rate for maize yield and nitrate leaching in a Haplic Luvisol soil using the DNDC model, Sci. Total Environ, vol.514, pp.388-398, 2015.

X. Q. Zhao, X. L. Nie, and X. G. Xiao, Over-Expression of a Tobacco Nitrate Reductase Gene in Wheat (Triticum aestivum L.) Increases Seed Protein Content and Weight without Augmenting Nitrogen Supplying, PLoS One, vol.8, pp.1-11, 2013.

P. J. Zhong, F. Gallardo, M. B. Pascual, R. Sampalo, J. Romero et al., Improved growth in a field trial of transgenic hybrid poplar overexpressing glutamine synthetase, New Phytol, vol.164, pp.137-145, 2004.

G. Zifarelli and M. Pusch, CLC transport proteins in plants, FEBS Lett, vol.584, pp.2122-2127, 2010.

G. Zifarelli and M. Pusch, Conversion of the 2 Cl-/1 H+ antiporter ClC-5 in a NO3-/H+ antiporter by a single point mutation, EMBO J, vol.28, pp.175-182, 2009.