R. E. Shope, . Swine, and . Iii, FILTRATION EXPERIMENTS AND ETIOLOGY. J. Exp. Med, vol.54, pp.373-385, 1931.

P. K. Olitsky, F. L. Gates, . Experimental, . Of, . Nasopharyngeal et al.,

. Med, , vol.33, pp.125-145, 1921.

W. Smith, C. H. Andrewes, and P. P. Laidlaw, A VIRUS OBTAINED FROM INFLUENZA PATIENTS, The Lancet, vol.222, pp.66-68, 1933.

D. G. Evans and W. Smith, Biogr. Mem. Fellows R. Soc, vol.12, pp.478-487, 1966.

H. G. Pereira, B. Tumova, and R. G. Webster, Antigenic Relationship between Influenza A Viruses of Human and Avian Origins, Nature, vol.215, pp.982-983, 1967.

T. Francis, A New Type of Virus from Epidemic Influenza, Science, vol.92, pp.405-408, 1940.

R. M. Taylor, Studies on Survival of Influenza Virus Between Epidemics and Antigenic Variants of the Virus, Am. J. Public Health Nations Health, vol.39, pp.171-178, 1949.

B. M. Hause, Characterization of a Novel Influenza Virus in Cattle and Swine: Proposal for a New Genus in the Orthomyxoviridae Family, vol.5, pp.31-45, 2014.

M. F. Ducatez, C. Pelletier, and G. Meyer, Influenza D Virus in Cattle, Emerg. Infect. Dis, vol.21, 2011.

S. Tong, A distinct lineage of influenza A virus from bats, Proc. Natl. Acad. Sci. U. S. A, vol.109, pp.4269-4274, 2012.

S. Tong, New World Bats Harbor Diverse Influenza A Viruses, PLoS Pathog, vol.9, p.1003657, 2013.

L. Brunotte, M. Beer, M. Horie, and M. Schwemmle, Chiropteran influenza viruses: flu from bats or a relic from the past?, Curr. Opin. Virol, vol.16, pp.114-119, 2016.

E. C. Claas, Human influenza A H5N1 virus related to a highly pathogenic avian influenza virus, Lancet Lond. Engl, vol.351, pp.472-477, 1998.

R. Gao, Human infection with a novel avian-origin influenza A (H7N9) virus, N. Engl. J. Med, vol.368, pp.1888-1897, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-00823211

Y. J. Guo, X. Y. Xu, and N. J. Cox, Human influenza A (H1N2) viruses isolated from, China. J. Gen. Virol, vol.73, issue.2, pp.383-387, 1992.

Y. Xu, Identification of the source of A (H10N8) virus causing human infection, Infect. Genet. Evol, vol.30, pp.159-163, 2015.

S. Wei, Human infection with avian influenza A H6N1 virus: an epidemiological analysis, Lancet Respir. Med, vol.1, pp.771-778, 2013.

S. Rahimirad, A. Alizadeh, E. Alizadeh, and S. M. Hosseini, The avian influenza H9N2 at avian-human interface: A possible risk for the future pandemics, J. Res

, Med. Sci. Off. J. Isfahan Univ. Med. Sci, vol.21, 2016.

S. Guindon, New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the Performance of PhyML 3.0, Syst. Biol, vol.59, pp.307-321, 2010.
URL : https://hal.archives-ouvertes.fr/lirmm-00511784

J. Chen, Structure of the Hemagglutinin Precursor Cleavage Site, a Determinant of Influenza Pathogenicity and the Origin of the Labile Conformation, Cell, vol.95, pp.409-417, 1998.

E. Böttcher-friebertshäuser, H. Klenk, and W. Garten, Activation of influenza viruses by proteases from host cells and bacteria in the human airway epithelium, Pathog. Dis, vol.69, pp.87-100, 2013.

N. Kühn, The Proteolytic Activation of (H3N2) Influenza A Virus Hemagglutinin Is Facilitated by Different Type II Transmembrane Serine Proteases, J. Virol, vol.90, pp.4298-4307, 2016.

A. Stieneke-gröber, Influenza virus hemagglutinin with multibasic cleavage site is activated by furin, a subtilisin-like endoprotease, EMBO J, vol.11, pp.2407-2414, 1992.

T. Horimoto, K. Nakayama, S. P. Smeekens, and Y. Kawaoka, Proproteinprocessing endoproteases PC6 and furin both activate hemagglutinin of virulent avian influenza viruses, J. Virol, vol.68, pp.6074-6078, 1994.

L. Thomas,

T. Horimoto and Y. Kawaoka, The hemagglutinin cleavability of a virulent avian influenza virus by subtilisin-like endoproteases is influenced by the amino acid immediately downstream of the cleavage site, Virology, vol.210, pp.466-470, 1995.

J. Bogs, Highly Pathogenic H5N1 Influenza Viruses Carry Virulence Determinants beyond the Polybasic Hemagglutinin Cleavage Site, PLoS ONE, vol.5, 2010.

A. S. Gambaryan, Receptor-Binding Profiles of H7 Subtype Influenza Viruses in Different Host Species, J. Virol, vol.86, pp.4370-4379, 2012.

P. N. Graves, J. L. Schulman, J. F. Young, and P. Palese, Preparation of influenza virus subviral particles lacking the HA1 subunit of hemagglutinin: Unmasking of cross-reactive HA2 determinants, Virology, vol.126, pp.106-116, 1983.

J. J. Skehel, Changes in the conformation of influenza virus hemagglutinin at the pH optimum of virus-mediated membrane fusion, Proc. Natl. Acad. Sci. U. S. A, vol.79, pp.968-972, 1982.

B. J. Chen, G. P. Leser, E. Morita, and R. A. Lamb, Influenza Virus Hemagglutinin and Neuraminidase, but Not the Matrix Protein, Are Required for Assembly and Budding of Plasmid-Derived Virus-Like Particles, J. Virol, vol.81, pp.7111-7123, 2007.

C. S. Anderson, Natural and directed antigenic drift of the H1 influenza virus hemagglutinin stalk domain, Sci. Rep, vol.7, p.14614, 2017.

S. J. Gamblin and J. J. Skehel, Influenza Hemagglutinin and Neuraminidase Membrane Glycoproteins, J. Biol. Chem, vol.285, pp.28403-28409, 2010.

A. García-sastre, Influenza Virus Receptor Specificity, Am. J. Pathol, vol.176, pp.1584-1585, 2010.

T. Costa, Distribution patterns of influenza virus receptors and viral attachment patterns in the respiratory and intestinal tracts of seven avian species, Vet. Res, vol.43, p.28, 2012.

L. Byrd-leotis, R. D. Cummings, and D. A. Steinhauer, The Interplay between the Host Receptor and Influenza Virus Hemagglutinin and Neuraminidase, Int. J. Mol. Sci, vol.18, p.1541, 2017.

J. Stevens, Receptor specificity of influenza A H3N2 viruses isolated in mammalian cells and embryonated chicken eggs, J. Virol, vol.84, pp.8287-8299, 2010.

J. Mercer, M. Schelhaas, and A. Helenius, Virus entry by endocytosis, Annu. Rev. Biochem, vol.79, pp.803-833, 2010.

S. B. Sieczkarski and G. R. Whittaker, Influenza virus can enter and infect cells in the absence of clathrin-mediated endocytosis, J. Virol, vol.76, pp.10455-10464, 2002.

M. O. Pohl, T. O. Edinger, and S. Stertz, Prolidase Is Required for Early Trafficking Events during Influenza A Virus Entry, J. Virol, vol.88, pp.11271-11283, 2014.

T. Eierhoff, E. R. Hrincius, U. Rescher, S. Ludwig, and C. Ehrhardt, The epidermal growth factor receptor (EGFR) promotes uptake of influenza A viruses (IAV) into host cells, PLoS Pathog, vol.6, p.1001099, 2010.

C. Ehrhardt, Bivalent role of the phosphatidylinositol-3-kinase (PI3K) during influenza virus infection and host cell defence, Cell. Microbiol, vol.8, pp.1336-1348, 2006.

K. J. Cross, W. A. Langley, R. J. Russell, J. J. Skehel, and D. A. Steinhauer, Composition and functions of the influenza fusion peptide, Protein Pept. Lett, vol.16, pp.766-778, 2009.

T. Ivanovic, J. L. Choi, S. P. Whelan, A. M. Van-oijen, and S. C. Harrison, Influenzavirus membrane fusion by cooperative fold-back of stochastically induced hemagglutinin intermediates, 2013.

M. Schelker, Viral RNA Degradation and Diffusion Act as a Bottleneck for the Influenza A Virus Infection Efficiency, PLOS Comput Biol, vol.12, p.1005075, 2016.

T. Sakai, Dual Wavelength Imaging Allows Analysis of Membrane Fusion of Influenza Virus inside Cells, J. Virol, vol.80, 2006.

M. Imai, Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets, Nature, vol.486, pp.420-428, 2012.

S. E. Galloway, M. L. Reed, C. J. Russell, and D. A. Steinhauer, Influenza HA Subtypes Demonstrate Divergent Phenotypes for Cleavage Activation and pH of Fusion: Implications for Host Range and Adaptation, PLOS Pathog, vol.9, p.1003151, 2013.

A. Puri, F. P. Booy, R. W. Doms, J. M. White, and R. Blumenthal, Conformational changes and fusion activity of influenza virus hemagglutinin of the H2 and H3 subtypes: effects of acid pretreatment, J. Virol, vol.64, pp.3824-3832, 1990.

M. Russier, H1N1 influenza viruses varying widely in hemagglutinin stability transmit efficiently from swine to swine and to ferrets, PLOS Pathog, vol.13, p.1006276, 2017.

M. L. Reed, The pH of Activation of the Hemagglutinin Protein Regulates H5N1 Influenza Virus Pathogenicity and Transmissibility in Ducks, J. Virol, vol.84, pp.1527-1535, 2010.

M. Russier, Molecular requirements for a pandemic influenza virus: An acidstable hemagglutinin protein, Proc. Natl. Acad. Sci. U. S. A, vol.113, pp.1636-1641, 2016.

M. Lipsitch, Viral factors in influenza pandemic risk assessment, vol.5, p.18491, 2016.

R. J. Russell, Structure of influenza hemagglutinin in complex with an inhibitor of membrane fusion, Proc. Natl. Acad. Sci. U. S. A, vol.105, pp.17736-17741, 2008.

L. H. Pinto and R. A. Lamb, The M2 proton channels of influenza A and B viruses, J. Biol. Chem, vol.281, pp.8997-9000, 2006.

J. R. Schnell and J. J. Chou, Structure and mechanism of the M2 proton channel of influenza A virus, Nature, vol.451, pp.591-595, 2008.

I. V. Chizhmakov, Selective proton permeability and pH regulation of the influenza virus M2 channel expressed in mouse erythroleukaemia cells, J. Physiol, vol.494, pp.329-336, 1996.

R. Nachbagauer and F. Krammer, Universal influenza virus vaccines and therapeutic antibodies, Clin. Microbiol. Infect, vol.23, pp.222-228, 2017.

Y. Chou, Colocalization of Different Influenza Viral RNA Segments in the Cytoplasm before Viral Budding as Shown by Single-molecule Sensitivity FISH Analysis, PLoS Pathog, vol.9, 2013.

J. F. Cros, A. García-sastre, and P. Palese, An unconventional NLS is critical for the nuclear import of the influenza A virus nucleoprotein and ribonucleoprotein, Traffic Cph. Den, vol.6, pp.205-213, 2005.

S. Boulo, H. Akarsu, R. W. Ruigrok, and F. Baudin, Nuclear traffic of influenza virus proteins and ribonucleoprotein complexes, Virus Res, vol.124, pp.12-21, 2007.

A. V. Vasin, Molecular mechanisms enhancing the proteome of influenza A viruses: An overview of recently discovered proteins, Virus Res, vol.185, pp.53-63, 2014.

H. M. Wise, A complicated message: Identification of a novel PB1-related protein translated from influenza A virus segment 2 mRNA, J. Virol, vol.83, pp.8021-8031, 2009.

W. Chen, A novel influenza A virus mitochondrial protein that induces cell death, Nat. Med, vol.7, pp.1306-1312, 2001.

Y. Muramoto, T. Noda, E. Kawakami, R. Akkina, and Y. Kawaoka, Identification of novel influenza A virus proteins translated from PA mRNA, J. Virol, vol.87, pp.2455-2462, 2013.

H. M. Wise, Identification of a novel splice variant form of the influenza A virus M2 ion channel with an antigenically distinct ectodomain, PLoS Pathog, vol.8, p.1002998, 2012.

J. Ortega, Ultrastructural and Functional Analyses of Recombinant Influenza Virus Ribonucleoproteins Suggest Dimerization of Nucleoprotein during Virus Amplification, J. Virol, vol.74, pp.156-163, 2000.

I. Ulmanen, B. A. Broni, and R. M. Krug, Role of two of the influenza virus core P proteins in recognizing cap 1 structures (m7GpppNm) on RNAs and in initiating viral RNA transcription, Proc. Natl. Acad. Sci. U. S. A, vol.78, pp.7355-7359, 1981.

D. Blaas, E. Patzelt, and E. Kuechler, Identification of the cap binding protein of influenza virus, Nucleic Acids Res, vol.10, pp.4803-4812, 1982.

M. L. Li, B. C. Ramirez, and R. M. Krug, RNA-dependent activation of primer RNA production by influenza virus polymerase: different regions of the same protein subunit constitute the two required RNA-binding sites, EMBO J, vol.17, pp.5844-5852, 1998.

P. Yuan, Crystal structure of an avian influenza polymerase PA(N) reveals an endonuclease active site, Nature, vol.458, pp.909-913, 2009.

A. Dias, The cap-snatching endonuclease of influenza virus polymerase resides in the PA subunit, Nature, vol.458, pp.914-918, 2009.

L. Thomas,

J. Braam, I. Ulmanen, and R. M. Krug, Molecular model of a eucaryotic transcription complex: functions and movements of influenza P proteins during capped RNAprimed transcription, Cell, vol.34, pp.609-618, 1983.

R. A. Lamb, P. W. Choppin, R. M. Chanock, and C. J. Lai, Mapping of the two overlapping genes for polypeptides NS1 and NS2 on RNA segment 8 of influenza virus genome, Proc. Natl. Acad. Sci. U. S. A, vol.77, pp.1857-1861, 1980.

U. Garaigorta and J. Ortín, Mutation analysis of a recombinant NS replicon shows that influenza virus NS1 protein blocks the splicing and nucleo-cytoplasmic transport of its own viral mRNA, Nucleic Acids Res, vol.35, pp.4573-4582, 2007.

A. Mor, Influenza Virus mRNA Trafficking Through Host Nuclear Speckles, Nat. Microbiol, 2016.

P. Gastaminza, B. Perales, A. M. Falcón, and J. Ortín, Mutations in the N-terminal region of influenza virus PB2 protein affect virus RNA replication but not transcription, J. Virol, vol.77, pp.5098-5108, 2003.

A. J. Hay, B. Lomniczi, A. R. Bellamy, and J. J. Skehel, Transcription of the influenza virus genome, Virology, vol.83, pp.337-355, 1977.

F. T. Vreede, T. E. Jung, and G. G. Brownlee, Model Suggesting that Replication of Influenza Virus Is Regulated by Stabilization of Replicative Intermediates, J. Virol, vol.78, pp.9568-9572, 2004.

R. Bullido, P. Gómez-puertas, M. J. Saiz, and A. Portela, Influenza A Virus NEP (NS2 Protein) Downregulates RNA Synthesis of Model Template RNAs, J. Virol, vol.75, pp.4912-4917, 2001.

F. T. Vreede and E. Fodor, The role of the influenza virus RNA polymerase in host shut-off, Virulence, vol.1, pp.436-439, 2010.

A. Rodriguez, A. Pérez-gonzález, and A. Nieto, Influenza virus infection causes specific degradation of the largest subunit of cellular RNA polymerase II, J. Virol, vol.81, pp.5315-5324, 2007.

E. Yángüez and A. Nieto, So similar, yet so different: selective translation of capped and polyadenylated viral mRNAs in the influenza virus infected cell, Virus Res, vol.156, pp.1-12, 2011.

G. Neumann, M. T. Hughes, and Y. Kawaoka, Influenza A virus NS2 protein mediates vRNP nuclear export through NES-independent interaction with hCRM1

, EMBO J, vol.19, pp.6751-6758, 2000.

J. Chen, S. Huang, and Z. Chen, Human cellular protein nucleoporin hNup98 interacts with influenza A virus NS2/nuclear export protein and overexpression of its GLFG repeat domain can inhibit virus propagation, J. Gen. Virol, vol.91, pp.2474-2484, 2010.

M. L. Shaw, K. L. Stone, C. M. Colangelo, E. E. Gulcicek, and P. Palese, Cellular Proteins in Influenza Virus Particles, PLOS Pathog, vol.4, p.1000085, 2008.

J. Zhang, A. Pekosz, and R. A. Lamb, Influenza Virus Assembly and Lipid Raft Microdomains: a Role for the Cytoplasmic Tails of the Spike Glycoproteins, J. Virol, vol.74, pp.4634-4644, 2000.

B. Thaa, A. Herrmann, and M. Veit, The polybasic region is not essential for membrane binding of the matrix protein M1 of influenza virus, Virology, vol.383, pp.150-155, 2009.

R. Ruigrok, F. Baudin, I. Petit, and W. Weissenhorn, Role of influenza virus M1 protein in the viral budding process, Int. Congr. Ser, vol.1219, pp.397-404, 2001.

C. J. Elleman and W. S. Barclay, The M1 matrix protein controls the filamentous phenotype of influenza A virus, Virology, vol.321, pp.144-153, 2004.

L. M. Burleigh, L. J. Calder, J. J. Skehel, and D. A. Steinhauer, Influenza A Viruses with Mutations in the M1 Helix Six Domain Display a Wide Variety of Morphological Phenotypes, J. Virol, vol.79, pp.1262-1270, 2005.

B. Dadonaite, S. Vijayakrishnan, E. Fodor, D. Bhella, and E. C. Hutchinson, Filamentous influenza viruses, J. Gen. Virol, vol.97, pp.1755-1764, 2016.

M. L. Grantham, S. M. Stewart, E. N. Lalime, and A. Pekosz, Tyrosines in the Influenza A Virus M2 Protein Cytoplasmic Tail Are Critical for Production of Infectious Virus Particles, J. Virol, vol.84, pp.8765-8776, 2010.

M. Simpson-holley, A functional link between the actin cytoskeleton and lipid rafts during budding of filamentous influenza virions, Virology, vol.301, pp.212-225, 2002.

G. I. Shapiro, T. Gurney, and R. M. Krug, Influenza virus gene expression: control mechanisms at early and late times of infection and nuclear-cytoplasmic transport of virus-specific RNAs, J. Virol, vol.61, pp.764-773, 1987.

L. Thomas,

G. Whittaker, I. Kemler, and A. Helenius, Hyperphosphorylation of mutant influenza virus matrix protein, M1, causes its retention in the nucleus, J. Virol, vol.69, pp.439-445, 1995.

P. Chlanda, Palmitoylation contributes to membrane curvature in Influenza A virus assembly and hemagglutinin-mediated membrane fusion, J. Virol, 2017.

S. Barman, A. Ali, E. K. Hui, .. Adhikary, L. Nayak et al., Transport of viral proteins to the apical membranes and interaction of matrix protein with glycoproteins in the assembly of influenza viruses, Virus Res, vol.77, pp.61-69, 2001.

C. Schroeder, H. Heider, E. Möncke-buchner, and T. Lin, The influenza virus ion channel and maturation cofactor M2 is a cholesterol-binding protein, Eur. Biophys. J. EBJ, vol.34, pp.52-66, 2005.

M. Enami, G. Sharma, C. Benham, and P. Palese, An influenza virus containing nine different RNA segments, Virology, vol.185, pp.291-298, 1991.

J. R. Gog, Codon conservation in the influenza A virus genome defines RNA packaging signals, Nucleic Acids Res, vol.35, pp.1897-1907, 2007.

T. Noda, Architecture of ribonucleoprotein complexes in influenza A virus particles, Nature, vol.439, pp.490-492, 2006.

M. C. White, J. Steel, and A. C. Lowen, Heterologous packaging signals on HA, but not NA or NS, limit influenza A virus reassortment, J. Virol. JVI, pp.195-212, 2017.

J. S. Rossman and R. A. Lamb, Influenza Virus Assembly and Budding, Virology, vol.411, pp.229-236, 2011.

D. Wang, The lack of an inherent membrane targeting signal is responsible for the failure of the matrix (M1) protein of influenza A virus to bud into virus-like particles, J. Virol, vol.84, pp.4673-4681, 2010.

J. S. Rossman, X. Jing, G. P. Leser, and R. A. Lamb, Influenza virus M2 protein mediates ESCRT-independent membrane scission, Cell, vol.142, pp.902-913, 2010.

Q. Li, Structural and functional characterization of neuraminidase-like molecule N10 derived from bat influenza A virus, Proc. Natl. Acad. Sci, vol.109, pp.18897-18902, 2012.

X. Zhu, Crystal structures of two subtype N10 neuraminidase-like proteins from bat influenza A viruses reveal a diverged putative active site, Proc. Natl. Acad. Sci. U. S. A, vol.109, pp.18903-18908, 2012.

A. K. Chong, M. S. Pegg, and M. Von-itzstein, Influenza virus sialidase: effect of calcium on steady-state kinetic parameters, Biochim. Biophys. Acta BBAProtein Struct. Mol. Enzymol, vol.1077, pp.65-71, 1991.

W. P. Burmeister, S. Cusack, and R. W. Ruigrok, Calcium is needed for the thermostability of influenza B virus neuraminidase, J. Gen. Virol, vol.75, pp.381-388, 1994.

X. Yang, A Beneficiary Role for Neuraminidase in Influenza Virus Penetration through the Respiratory Mucus, PLoS ONE, vol.9, 2014.

M. A. Yondola, Budding Capability of the Influenza Virus Neuraminidase Can Be Modulated by Tetherin, J. Virol, vol.85, pp.2480-2491, 2011.

M. Ohuchi, N. Asaoka, T. Sakai, and R. Ohuchi, Roles of neuraminidase in the initial stage of influenza virus infection, Microbes Infect, vol.8, pp.1287-1293, 2006.

B. Su, Enhancement of the Influenza A Hemagglutinin (HA)-Mediated CellCell Fusion and Virus Entry by the Viral Neuraminidase (NA), PLOS ONE, vol.4, p.8495, 2009.
URL : https://hal.archives-ouvertes.fr/pasteur-00457737

R. Chen and E. C. Holmes, Avian influenza virus exhibits rapid evolutionary dynamics, Mol. Biol. Evol, vol.23, pp.2336-2341, 2006.

N. L. Briand, La balance HA-NA des virus influenza A(H1N1), Virologie, vol.20, pp.47-60, 2016.

J. Casalegno, Functional Balance between the Hemagglutinin and Neuraminidase of Influenza A(H1N1)pdm09 HA D222 Variants, PLoS ONE, vol.9, 2014.

R. Mögling, Neuraminidase-mediated haemagglutination of recent human influenza A(H3N2) viruses is determined by arginine 150 flanking the neuraminidase catalytic site, J. Gen. Virol, 2017.

M. J. Gerl, Quantitative analysis of the lipidomes of the influenza virus envelope and MDCK cell apical membrane, J. Cell Biol, vol.196, pp.213-221, 2012.

L. Thomas,

P. T. Ivanova, Lipid composition of viral envelope of three strains of influenza virus -not all viruses are created equal, ACS Infect. Dis, vol.1, pp.399-452, 2015.

S. Shigematsu, Influenza A virus survival in water is influenced by the origin species of the host cell, Influenza Other Respir. Viruses, vol.8, pp.123-130, 2014.

G. E. Atilla-gokcumen, Dividing Cells Regulate Their Lipid Composition and Localization, Cell, vol.156, pp.428-439, 2014.

A. Kawaguchi, M. Hirohama, Y. Harada, S. Osari, and K. Nagata, Influenza Virus Induces Cholesterol-Enriched Endocytic Recycling Compartments for Budozone Formation via Cell Cycle-Independent Centrosome Maturation, PLoS Pathog, vol.11, p.1005284, 2015.

K. E. Zawada, D. Wrona, R. J. Rawle, and P. M. Kasson, Influenza viral membrane fusion is sensitive to sterol concentration but surprisingly robust to sterol chemical identity, Sci. Rep, vol.6, p.29842, 2016.

M. K. Domanska, D. Wrona, and P. M. Kasson, Multiphasic Effects of Cholesterol on Influenza Fusion Kinetics Reflect Multiple Mechanistic Roles, Biophys. J, vol.105, pp.1383-1387, 2013.

X. Sun and G. R. Whittaker, Role for Influenza Virus Envelope Cholesterol in Virus Entry and Infection, J. Virol, vol.77, pp.12543-12551, 2003.

I. A. Schaap, F. Eghiaian, A. Georges, and C. Veigel, Effect of Envelope Proteins on the Mechanical Properties of Influenza Virus, J. Biol. Chem, vol.287, pp.41078-41088, 2012.

S. Bajimaya, T. Frankl, T. Hayashi, and T. Takimoto, Cholesterol is required for stability and infectivity of influenza A and respiratory syncytial viruses, Virology, vol.510, pp.234-241, 2017.

E. C. Hutchinson, Conserved and host-specific features of influenza virion architecture, Nat. Commun, vol.5, 2014.

A. García-sastre, Influenza A virus lacking the NS1 gene replicates in interferon-deficient systems, Virology, vol.252, pp.324-330, 1998.

M. U. Gack, Influenza A virus NS1 targets the ubiquitin ligase TRIM25 to evade recognition by RIG-I, Cell Host Microbe, vol.5, pp.439-449, 2009.

B. G. Hale, R. E. Randall, J. Ortín, and D. Jackson, The multifunctional NS1 protein of influenza A viruses, J. Gen. Virol, vol.89, pp.2359-2376, 2008.

J. L. Mcauley, PB1-F2 Proteins from H5N1 and 20th Century Pandemic Influenza Viruses Cause Immunopathology, PLOS Pathog, vol.6, p.1001014, 2010.

Z. T. Varga, A. Grant, B. Manicassamy, and P. Palese, Influenza Virus Protein PB1-F2 Inhibits the Induction of Type I Interferon by Binding to MAVS and Decreasing Mitochondrial Membrane Potential, J. Virol, vol.86, pp.8359-8366, 2012.

J. L. Mcauley, Expression of the 1918 influenza A virus PB1-F2 enhances the pathogenesis of viral and secondary bacterial pneumonia, Cell Host Microbe, vol.2, pp.240-249, 2007.

M. Fourment, J. T. Wood, A. J. Gibbs, and M. J. Gibbs, Evolutionary dynamics of the N1 neuraminidases of the main lineages of influenza A viruses, Mol. Phylogenet. Evol, vol.56, pp.526-535, 2010.

R. G. Webster, W. J. Bean, O. T. Gorman, T. M. Chambers, and Y. Kawaoka, Evolution and ecology of influenza A viruses, Microbiol. Rev, vol.56, pp.152-179, 1992.

M. Orlich, H. Gottwald, and R. Rott, Nonhomologous recombination between the hemagglutinin gene and the nucleoprotein gene of an influenza virus, Virology, vol.204, pp.462-465, 1994.

P. M. Hansbro, Surveillance and Analysis of Avian Influenza Viruses, Australia. Emerg. Infect. Dis, vol.16, pp.1896-1904, 2010.

A. J. Pereda, Avian Influenza Virus Isolated in Wild Waterfowl in Argentina: Evidence of a potentially unique phylogenetic lineage in South America, Virology, vol.378, pp.363-370, 2008.

W. J. Bean, Evolution of the H3 influenza virus hemagglutinin from human and nonhuman hosts, J. Virol, vol.66, pp.1129-1138, 1992.

S. Yoon, R. J. Webby, and R. G. Webster, Evolution and Ecology of Influenza A Viruses, Influenza Pathogenesis and Control, vol.I, pp.359-375, 2014.

V. J. Munster, Spatial, Temporal, and Species Variation in Prevalence of Influenza A Viruses in Wild Migratory Birds, PLOS Pathog, vol.3, p.61, 2007.

B. Olsen, Global Patterns of Influenza A Virus in Wild Birds, Science, vol.312, pp.384-388, 2006.

L. Thomas,

Y. Kawaoka, T. M. Chambers, W. L. Sladen, and R. Gwebster, Is the gene pool of influenza viruses in shorebirds and gulls different from that in wild ducks?, Virology, vol.163, pp.247-250, 1988.

N. Latorre-margalef, Effects of influenza A virus infection on migrating mallard ducks, Proc. Biol. Sci, vol.276, pp.1029-1036, 2009.

S. Krauss, The enigma of the apparent disappearance of Eurasian highly pathogenic H5 clade 2.3.4.4 influenza A viruses in North American waterfowl, Proc. Natl. Acad. Sci, vol.113, pp.9033-9038, 2016.

K. Tsukamoto, Impact of different husbandry conditions on contact and airborne transmission of H5N1 highly pathogenic avian influenza virus to chickens

, Avian Dis, vol.51, pp.129-132, 2007.

Y. Shen, Novel Reassortant Avian Influenza A(H5N6) Viruses in Humans, Emerg. Infect. Dis, vol.22, pp.1507-1509, 2015.

Y. L. Al and . Et, Novel Reassortant Influenza A(H5N8) Viruses, South Korea, Emerging Infectious Disease journal -CDC, vol.20, issue.6, 2014.

K. Kanehira, Characterization of an H5N8 influenza A virus isolated from chickens during an outbreak of severe avian influenza in Japan in, Arch. Virol, vol.160, pp.1629-1643, 2014.

D. Lee, K. Bertran, J. Kwon, and D. E. Swayne, Evolution, global spread, and pathogenicity of highly pathogenic avian influenza, J. Vet. Sci, vol.18, pp.269-280, 2017.

A. Bronner, Situation épidémiologique des virus IAHP issus du clade 2.3.4.4 en Europe : point de situation au 17/09/2017 inclus | Centre de ressources épidémiosurveillance, 2017.

H. Guo, Highly Pathogenic Influenza A(H5Nx) Viruses with Altered H5 Receptor-Binding Specificity, Emerg. Infect. Dis, vol.23, pp.220-231, 2017.

J. M. Watson, Characterisation of a wild-type influenza (A/H1N1) virus strain as an experimental challenge agent in humans, Virol. J, vol.12, p.13, 2015.

P. R. Lagacé-wiens, E. Rubinstein, and A. Gumel, Influenza epidemiologypast, present, and future, Crit. Care Med, vol.38, pp.1-9

W. G. Lindsley, Measurements of Airborne Influenza Virus in Aerosol Particles from Human Coughs, PLOS ONE, vol.5, p.15100, 2010.

B. J. Cowling, Aerosol transmission is an important mode of influenza A virus spread, Nat. Commun, vol.4, p.1935, 2013.

M. P. Atkinson and L. M. Wein, Quantifying the Routes of Transmission for Pandemic Influenza, Bull. Math. Biol, vol.70, pp.820-867, 2008.

J. M. Simmerman, Findings from a household randomized controlled trial of hand washing and face masks to reduce influenza transmission in, Influenza Other Respir. Viruses, vol.5, pp.256-267, 2011.

A. Varble, Influenza A Virus Transmission Bottlenecks Are Defined by Infection Route and Recipient Host, Cell Host Microbe, vol.16, pp.691-700, 2014.

J. D. Tamerius, Environmental Predictors of Seasonal Influenza Epidemics across Temperate and Tropical Climates, PLoS Pathog, vol.9, p.1003194, 2013.

F. Santé-public, Bulletin épidémiologique grippe, Bilan saison, p.28, 2016.

Y. Gao, Identification of Amino Acids in HA and PB2 Critical for the Transmission of H5N1 Avian Influenza Viruses in a Mammalian Host, PLoS Pathog, vol.5, p.1000709, 2009.

S. Herfst, Airborne Transmission of Influenza A/H5N1 Virus Between Ferrets, Science, vol.336, pp.1534-1541, 2012.

M. Lipsitch, Viral factors in influenza pandemic risk assessment, 2016.

Y. Suzuki, Sialic Acid Species as a Determinant of the Host Range of Influenza A Viruses, J. Virol, vol.74, pp.11825-11831, 2000.

R. Xu, Functional Balance of the Hemagglutinin and Neuraminidase Activities Accompanies the Emergence of the 2009 H1N1 Influenza Pandemic, J. Virol, vol.86, pp.9221-9232, 2012.

R. Yamaji, Mammalian Adaptive Mutations of the PA Protein of Highly Pathogenic Avian H5N1 Influenza Virus, J. Virol, vol.89, pp.4117-4125, 2015.

D. Blumenkrantz, K. L. Roberts, H. Shelton, S. Lycett, and W. S. Barclay, The short stalk length of highly pathogenic avian influenza H5N1 virus neuraminidase limits transmission of pandemic H1N1 virus in ferrets, J. Virol, vol.87, pp.10539-10551, 2013.

P. J. Campbell, The M segment of the 2009 pandemic influenza virus confers increased neuraminidase activity, filamentous morphology, and efficient contact transmissibility to A/Puerto Rico/8/1934-based reassortant viruses, J. Virol, vol.88, pp.3802-3814, 2014.

J. M. Barry, The site of origin of the 1918 influenza pandemic and its public health implications, J. Transl. Med, vol.2, p.3, 2004.

A. H. Reid, J. K. Taubenberger, and T. G. Fanning, Evidence of an absence: the genetic origins of the 1918 pandemic influenza virus, Nat. Rev. Microbiol, vol.2, pp.909-914, 2004.

E. Baudon, M. Peyre, M. Peiris, and B. J. Cowling, Epidemiological features of influenza circulation in swine populations: A systematic review and meta-analysis

, PLOS ONE, vol.12, p.179044, 2017.

S. Herfst, M. Imai, Y. Kawaoka, and R. A. Fouchier, Avian Influenza Virus Transmission to Mammals, Influenza Pathogenesis and Control, vol.I, pp.137-155, 2014.

M. I. Nelson, M. R. Gramer, A. L. Vincent, and E. C. Holmes, Global transmission of influenza viruses from humans to swine, J. Gen. Virol, vol.93, pp.2195-2203, 2012.

D. Vijaykrishna, Long-term evolution and transmission dynamics of swine influenza A virus, Nature, vol.473, pp.519-522, 2011.
URL : https://hal.archives-ouvertes.fr/pasteur-00596779

N. Rose, Dynamics of influenza A virus infections in permanently infected pig farms: evidence of recurrent infections, circulation of several swine influenza viruses and reassortment events, Vet. Res, vol.44, p.72, 2013.

C. R. Parrish, P. R. Murcia, and E. C. Holmes, Influenza Virus Reservoirs and Intermediate Hosts: Dogs, Horses, and New Possibilities for Influenza Virus Exposure of Humans, J. Virol, vol.89, pp.2990-2994, 2015.

D. Song, A novel reassortant canine H3N1 influenza virus between pandemic H1N1 and canine H3N2 influenza viruses in Korea, J. Gen. Virol, vol.93, pp.551-554, 2012.

C. T. Lee, Outbreak of Influenza A(H7N2) Among Cats in an Animal Shelter With Cat-to-Human Transmission, Clin. Infect. Dis, 2016.

D. K. Lvov, Comparison of influenza viruses isolated from man and from whales, Bull. World Health Organ, vol.56, pp.923-930, 1978.

S. Fereidouni, O. Munoz, S. V. Dobschuetz, and M. D. Nardi, Influenza Virus Infection of Marine Mammals, EcoHealth, vol.1, p.10, 2014.

R. G. Webster, Characterization of an influenza A virus from seals, Virology, vol.113, pp.712-724, 1981.

A. D. Osterhaus, G. F. Rimmelzwaan, B. E. Martina, T. M. Bestebroer, and R. A. Fouchier, Influenza B virus in seals, Science, vol.288, pp.1051-1053, 2000.

X. Sun, Bat-Derived Influenza Hemagglutinin H17 Does Not Bind Canonical Avian or Human Receptors and Most Likely Uses a Unique Entry Mechanism, Cell Rep, vol.3, pp.769-778, 2013.

X. Zhu, Hemagglutinin homologue from H17N10 bat influenza virus exhibits divergent receptor-binding and pH-dependent fusion activities, Proc. Natl

M. Juozapaitis, An infectious bat-derived chimeric influenza virus harbouring the entry machinery of an influenza A virus, Nat. Commun, vol.5, p.4448, 2014.

B. Zhou, Characterization of Uncultivable Bat Influenza Virus Using a Replicative Synthetic Virus, PLOS Pathog, vol.10, p.1004420, 2014.

S. K. Chothe, Avian and human influenza virus compatible sialic acid receptors in little brown bats, Sci. Rep, vol.7, p.660, 2017.

É. A. Moreira, Synthetically derived bat influenza A-like viruses reveal a cell type-but not species-specific tropism, Proc. Natl. Acad. Sci. 201608821, 2016.

G. S. Freidl, Serological evidence of influenza A viruses in frugivorous bats from Africa, PloS One, vol.10, p.127035, 2015.

L. Clendening, Source Book of Medical History, 1960.

L. Thomas,

L. Pasteur, Mémoire sur les corpuscules organisés qui existent dans l'atmosphère, 1861.

P. A. Lewis, R. E. Shope, . Swine, and . Ii, A HEMOPHILIC BACILLUS FROM THE RESPIRATORY TRACT OF INFECTED SWINE, J. Exp. Med, vol.54, pp.361-371, 1931.

C. V. Chapin and V. Charles, The sources and modes of infection, 1910.

W. F. Wells, On air-borne infection. Study II, Droplets and droplet nuclei, Am. J. Epidemiol, 1934.

W. F. Wells and H. W. Brown, RECOVERY OP INFLUENZA VIRUS SUSPENDED IN AIR AND ITS DESTRUCTION BY ULTRAVIOLET RADIATION

, AmJ Epidemiol, pp.407-413, 1936.

W. F. Wells, M. W. Wells, and T. S. Wilder, The Environmental Control of Epidemic Contagion I. an Epidemiologic Study of Radiant Disinfection of Air in Day Schools, Am. J. Epidemiol, vol.35, pp.97-121, 1942.

D. G. Edward, D. Lush, and R. B. Bourdillon, Studies on air-borne virus infections II. The killing of virus aerosols by ultra-violet radiation, J. Hyg. (Lond.), vol.43, pp.11-15, 1943.

C. Kling, A. Petterson, and W. Wernstedt, Experimental and Pathological Investigation. I. The presence of the microbe of infantile paralysis in human beings

, Commun. Inst Med Etat Stockh, vol.35, 1912.

S. G. Lensen, M. Rhian, M. R. Stebbins, R. C. Backus, and C. E. Peterson, Inactivation of Partially Purified Poliomyelitis Virus in Water by Chlorination-III. Experiments with Natural Waters, Am. J. Public Health Nations Health, vol.39, pp.1120-1128, 1949.

C. A. Knight, THE STABILITY OF INFLUENZA VIRUS IN THE PRESENCE OF SALTS, J. Exp. Med, vol.79, pp.285-290, 1944.

V. S. Hinshaw, R. G. Webster, and B. Turner, Water-Borne Transmission of Influenza A Viruses?, Intervirology, vol.11, pp.66-68, 1979.

W. Yang, S. Elankumaran, and L. C. Marr, Concentrations and size distributions of airborne influenza A viruses measured indoors at a health centre, a day-care centre and on aeroplanes, J. R. Soc. Interface, vol.8, pp.1176-1184, 2011.

A. Djikeng, R. Kuzmickas, N. G. Anderson, and D. J. Spiro, Metagenomic Analysis of RNA Viruses in a Fresh Water Lake, PLOS ONE, vol.4, p.7264, 2009.

R. Cavicchioli, Microbial ecology of Antarctic aquatic systems, Nat. Rev. Microbiol, vol.13, pp.691-706, 2015.

J. R. Brum, Patterns and ecological drivers of ocean viral communities, Science, vol.348, p.1261498, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01768331

U. Hesse, Virome Assembly and Annotation: A Surprise in the Namib Desert, Front. Microbiol, vol.8, 2017.

T. Hsu, Urban Transit System Microbial Communities Differ by Surface Type and Interaction with Humans and the Environment, vol.1, 2016.

E. M. Adriaenssens, Environmental drivers of viral community composition in Antarctic soils identified by viromics, vol.5, p.83, 2017.

K. A. Perry, Persistence of Influenza A (H1N1) Virus on Stainless Steel Surfaces, Appl. Environ. Microbiol, vol.82, pp.3239-3245, 2016.

Q. Nian, High thermostability of the newly emerged influenza A (H7N9) virus, J. Infect, vol.72, pp.393-394, 2016.

C. Lebarbenchon, Reassortant influenza A viruses in wild duck populations: effects on viral shedding and persistence in water, Proc. R. Soc. B Biol. Sci, vol.279, pp.3967-3975, 2012.

A. Dublineau, Persistence of the 2009 Pandemic Influenza A (H1N1) Virus in Water and on Non-Porous Surface, PLoS ONE, vol.6, p.28043, 2011.

D. Stallknecht and J. D. Brown, Tenacity of avian influenza viruses, Rev. Sci. Tech. OIE, vol.28, pp.59-67, 2009.

Y. Thomas, P. Boquete-suter, D. Koch, D. Pittet, and L. Kaiser, Survival of influenza virus on human fingers, Clin. Microbiol. Infect, vol.20, pp.58-64, 2014.

T. P. Weber and N. I. Stilianakis, Inactivation of influenza A viruses in the environment and modes of transmission: A critical review, J. Infect, vol.57, pp.361-373, 2008.

H. Sooryanarain and S. Elankumaran, Environmental Role in Influenza Virus Outbreaks, Annu. Rev. Anim. Biosci, vol.3, 2015.

L. Thomas,

J. Yu, The Hemagglutinin-Esterase Fusion Glycoprotein Is a Primary Determinant of the Exceptional Thermal and Acid Stability of Influenza D Virus, 2017.

J. D. Brown, D. E. Swayne, R. J. Cooper, R. E. Burns, and D. E. Stallknecht, Persistence of H5 and H7 avian influenza viruses in water, Avian Dis, vol.51, pp.285-294, 2007.

J. Nazir, Long-Term Study on Tenacity of Avian Influenza Viruses in Water (Distilled Water, Normal Saline, and Surface Water) at Different Temperatures

, Avian Dis, vol.54, pp.720-724, 2010.

J. D. Brown, G. Goekjian, R. Poulson, S. Valeika, and D. E. Stallknecht, Avian influenza virus in water: infectivity is dependent on pH, salinity and temperature, Vet. Microbiol, vol.136, pp.20-26, 2009.

S. P. Keeler, R. D. Berghaus, and D. E. Stallknecht, Persistence of low pathogenic avian influenza viruses in filtered surface water from waterfowl habitats in georgia, usa, J. Wildl. Dis, vol.48, pp.999-1009, 2012.

H. Zhang, Y. Li, J. Chen, Q. Chen, and Z. Chen, Perpetuation of H5N1 and H9N2 avian influenza viruses in natural water bodies, J. Gen. Virol, vol.95, pp.1430-1435, 2014.

R. L. Poulson, S. M. Tompkins, R. D. Berghaus, J. D. Brown, and D. E. Stallknecht, Environmental Stability of Swine and Human Pandemic Influenza Viruses in Water under Variable Conditions of Temperature, Salinity, and pH, Appl. Environ. Microbiol, vol.82, pp.3721-3726, 2016.

L. Byrd-leotis, S. E. Galloway, E. Agbogu, and D. A. Steinhauer, Influenza Hemagglutinin (HA) Stem Region Mutations That Stabilize or Destabilize the Structure of Multiple HA Subtypes, J. Virol, vol.89, pp.4504-4516, 2015.

A. S. Lang, A. Kelly, and J. A. Runstadler, Prevalence and diversity of avian influenza viruses in environmental reservoirs, J. Gen. Virol, vol.89, pp.509-519, 2008.

M. Vittecoq, Modeling the spread of avian influenza viruses in aquatic reservoirs: A novel hydrodynamic approach applied to the Rhône delta (southern France), Sci. Total Environ, vol.595, pp.787-800, 2017.

B. Roche, Adaptive Evolution and Environmental Durability Jointly Structure Phylodynamic Patterns in Avian Influenza Viruses, PLOS Biol, vol.12, p.1001931, 2014.

A. C. Hurt, Evidence for the introduction, reassortment and persistence of diverse influenza A viruses in Antarctica, J. Virol. JVI, pp.1404-1420, 2016.

S. Ly, Environmental contamination and risk factors for transmission of highly pathogenic avian influenza A(H5N1) to humans, 2006.
URL : https://hal.archives-ouvertes.fr/pasteur-01739356

, BMC Infect. Dis, vol.16, 2016.

J. R. Brown, Influenza virus survival in aerosols and estimates of viable virus loss resulting from aerosolization and air-sampling, J. Hosp. Infect, vol.91, pp.278-281, 2015.

C. A. Mitchell and L. F. Guerin, Influenza A of Human, Swine, Equine and Avian Origin: Comparison of Survival in Aerosol Form, Can. J. Comp. Med, vol.36, pp.9-11, 1972.

J. D. Noti, High Humidity Leads to Loss of Infectious Influenza Virus from Simulated Coughs, PLoS ONE, vol.8, p.57485, 2013.

W. Yang, S. Elankumaran, and L. C. Marr, Relationship between Humidity and Influenza A Viability in Droplets and Implications for Influenza's Seasonality, vol.7, p.46789, 2012.

A. C. Lowen and J. Steel, Roles of humidity and temperature in shaping influenza seasonality, J. Virol. JVI, pp.3544-3557, 2014.

M. Linster, Identification, Characterization, and Natural Selection of Mutations Driving Airborne Transmission of A/H5N1 Virus, Cell, vol.157, pp.329-339, 2014.

E. M. Abdelwhab, Progressive glycosylation of the haemagglutinin of avian influenza H5N1 modulates virus replication, virulence and chicken-to-chicken transmission without significant impact on antigenic drift, J. Gen. Virol, vol.97, pp.3193-3204, 2016.

B. Bean, Survival of Influenza Viruses on Environmental Surfaces, J. Infect. Dis, vol.146, pp.47-51, 1982.

L. Thomas,

K. Ikeda, K. Tsujimoto, Y. Suzuki, and A. H. Koyama, Survival of influenza A virus on contaminated student clothing, Exp. Ther. Med, vol.9, pp.1205-1208, 2015.

J. Oxford, The survival of influenza A(H1N1)pdm09 virus on 4 household surfaces, Am. J. Infect. Control, vol.42, pp.423-425, 2014.

J. Guan, M. Chan, and A. Vanderzaag, Inactivation of Avian Influenza Viruses on Porous and Non-porous Surfaces is Enhanced by Elevating Absolute Humidity

, , 2016.

S. L. Warnes, Z. R. Little, and C. W. Keevil, Human Coronavirus 229E Remains Infectious on Common Touch Surface Materials. mBio, vol.6, pp.1697-1712, 2015.

J. L. Sagripanti, L. B. Routson, and C. D. Lytle, Virus inactivation by copper or iron ions alone and in the presence of peroxide, Appl. Environ. Microbiol, vol.59, pp.4374-4376, 1993.

J. O. Noyce, H. Michels, and C. W. Keevil, Inactivation of Influenza A Virus on Copper versus Stainless Steel Surfaces, Appl. Environ. Microbiol, vol.73, pp.2748-2750, 2007.

Y. Thomas, Survival of Influenza Virus on Banknotes, Appl. Environ. Microbiol, vol.74, pp.3002-3007, 2008.

R. Hirose, Mechanism of Human Influenza Virus RNA Persistence and Virion Survival in Feces: Mucus Protects Virions From Acid and Digestive Juices

, J. Infect. Dis, vol.216, pp.105-109, 2017.

M. Souris, Potential Role of Fresh Water Apple Snails on H5N1 Influenza Virus Persistence and Concentration in Nature. Air Water Borne Dis, vol.4, 2015.

S. Hirve, Influenza Seasonality in the Tropics and Subtropics -When to Vaccinate?, PLOS ONE, vol.11, p.153003, 2016.

M. Lipsitch and C. Viboud, Influenza seasonality: Lifting the fog, Proc. Natl. Acad. Sci. U. S. A, vol.106, pp.3645-3646, 2009.

S. F. Dowell, Seasonal variation in host susceptibility and cycles of certain infectious diseases, Emerg. Infect. Dis, vol.7, pp.369-374, 2001.

S. M. Yellon, O. R. Fagoaga, and S. L. Nehlsen-cannarella, Influence of photoperiod on immune cell functions in the male Siberian hamster, Am. J. Physiol, vol.276, pp.97-102, 1999.

M. Lippmann, Factors affecting tracheobronchial mucociliary transport, Inhaled Part. 4 Pt, vol.1, pp.305-319, 1975.

J. J. Cannell, Epidemic influenza and vitamin D, Epidemiol. Infect, vol.134, pp.1129-1140, 2006.

D. Guo, Multi-scale modeling for the transmission of influenza and the evaluation of interventions toward it, Sci. Rep, vol.5, 2015.

L. S. Souza and F. De, Viral respiratory infections in young children attending day care in urban Northeast Brazil, Pediatr. Pulmonol, vol.35, pp.184-191, 2003.

K. Smith, J. Samet, I. Romieu, and N. Bruce, Indoor air pollution in developing countries and acute lower respiratory infections in children, Thorax, vol.55, pp.518-532, 2000.

J. R. Gog, Spatial Transmission of 2009 Pandemic Influenza in the US, PLoS Comput Biol, vol.10, p.1003635, 2014.

B. Bean, Survival of influenza viruses on environmental surfaces, J Infect Dis, vol.146, pp.47-51, 1982.

A. C. Lowen, S. Mubareka, J. Steel, and P. Palese, Influenza Virus Transmission Is Dependent on Relative Humidity and Temperature, PLoS Pathog, vol.3, p.151, 2007.

J. Shaman and M. Kohn, Absolute humidity modulates influenza survival, transmission, and seasonality, Proc. Natl. Acad. Sci, vol.106, pp.3243-3248, 2009.

A. C. Lowen, J. Steel, S. Mubareka, and P. Palese, High Temperature (30°C) Blocks Aerosol but Not Contact Transmission of Influenza Virus, J. Virol, vol.82, pp.5650-5652, 2008.

J. Li, Identification of climate factors related to human infection with avian influenza A H7N9 and H5N1 viruses in China, Sci. Rep, vol.5, p.18094, 2015.

C. M. Bui, L. Gardner, R. Macintyre, and S. Sarkar, Influenza A H5N1 and H7N9 in China: A spatial risk analysis, PLOS ONE, vol.12, p.174980, 2017.

E. Fodor, Rescue of Influenza A Virus from Recombinant DNA, J. Virol, vol.73, pp.9679-9682, 1999.

E. Hoffmann, G. Neumann, Y. Kawaoka, G. Hobom, and R. G. Webster, A DNA transfection system for generation of influenza A virus from eight plasmids, Proc. Natl. Acad. Sci, vol.97, pp.6108-6113, 2000.

Y. Fang, P. Ye, X. Wang, X. Xu, and W. Reisen, Real-time monitoring of flavivirus induced cytopathogenesis using cell electric impedance technology, J. Virol. Methods, vol.173, pp.251-258, 2011.

G. Kärber, Beitrag zur kollektiven Behandlung pharmakologischer Reihenversuche, Naunyn-Schmiedebergs Arch. Für Exp. Pathol. Pharmakol, vol.162, pp.480-483, 1931.

K. J. Livak and T. D. Schmittgen, Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2???CT Method, Methods, vol.25, pp.402-408, 2001.

A. Dublineau, Persistence of the 2009 Pandemic Influenza A (H1N1) Virus in Water and on Non-Porous Surface, PloS One, vol.6, p.28043, 2011.

C. M. Chu, Inactivation of haemagglutinin and infectivity of influenza and Newcastle disease viruses by heat and by formalin, J. Hyg. (Lond.), vol.46, pp.247-251, 1948.

I. Nunes-correia, Fluorescent probes for monitoring virus fusion kinetics: comparative evaluation of reliability, Biochim. Biophys. Acta BBA -Biomembr, vol.1561, pp.65-75, 2002.

D. A. Costello, G. R. Whittaker, and S. Daniel, Variation of pH sensitivity, acid stability, and fusogenicity of three influenza H3 subtypes, J. Virol. JVI, pp.1927-1941, 2014.

I. Banerjee, Y. Yamauchi, A. Helenius, and P. Horvath, High-Content Analysis of Sequential Events during the Early Phase of Influenza A Virus Infection, PLoS ONE, vol.8, p.68450, 2013.

B. M. Krenn, Single HA2 Mutation Increases the Infectivity and Immunogenicity of a Live Attenuated H5N1 Intranasal Influenza Vaccine Candidate Lacking NS1, PLOS ONE, vol.6, p.18577, 2011.

A. Parupudi, Biophysical characterization of influenza A virions, J. Virol. Methods

D. G. Sharp, A. R. Taylor, I. W. Mclean, D. Beard, and J. W. Beard, Density and Size of Influenza Virus a (pr8 Strain) in Solution, Science, vol.100, pp.151-153, 1944.

I. Sultana, Stability of neuraminidase in inactivated influenza vaccines, Vaccine, vol.32, pp.2225-2230, 2014.

N. J. Baker and S. S. Gandhi, Effect of Ca++ on the stability of influenza virus neuraminidase, Arch. Virol, vol.52, pp.7-18, 1976.

G. M. Air, Influenza neuraminidase. Influenza Other Respir, Viruses, vol.6, pp.245-256, 2012.

Q. Li, The 2009 pandemic H1N1 neuraminidase N1 lacks the 150-cavity in its active site, Nat. Struct. Mol. Biol, vol.17, pp.1266-1268, 2010.

M. J. Gerl, Quantitative analysis of the lipidomes of the influenza virus envelope and MDCK cell apical membrane, J. Cell Biol, vol.196, pp.213-221, 2012.

G. M. Gray and H. J. Yardley, Different populations of pig epidermal cells: isolation and lipid composition, J. Lipid Res, vol.16, pp.441-447, 1975.

K. Nakamura, Interspecies Comparison of Muscle Gangliosides by TwoDimensional Thin-Layer Chromatography, J. Biochem. (Tokyo), vol.94, pp.1359-1365, 1983.

G. Rouser, A. Yamamoto, and G. Kritchevsky, Cellular membranes: Structure and regulation of lipid class composition species differences, changes with age, and variations in some pathological states, Arch. Intern. Med, vol.127, pp.1105-1121, 1971.

E. Esnault, A novel chicken lung epithelial cell line: characterization and response to low pathogenicity avian influenza virus, Virus Res, vol.159, pp.32-42, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01129500

A. Moussavi-nik and P. Carlsson, Separation of intact intestinal epithelium from mesenchyme, vol.55, pp.42-44, 2013.

M. França, D. E. Stallknecht, R. Poulson, J. Brown, and E. W. Howerth, The Pathogenesis of Low Pathogenic Avian Influenza in Mallards, Avian Dis, vol.56, pp.976-980, 2012.

B. Schwartz, P. Vicart, C. Delouis, and D. Paulin, Mammalian cell lines can be efficiently established in vitro upon expression of the SV40 large T antigen driven by a promoter sequence derived from the human vimentin gene, Biol. Cell, vol.73, pp.7-14, 1991.

D. P. Chopra, A. A. Dombkowski, P. M. Stemmer, and G. C. Parker, Intestinal Epithelial Cells In Vitro, Stem Cells Dev, vol.19, pp.131-141, 2010.

D. J. Caldwell, Isolation and primary culture of chicken intestinal epithelial cells retaining normal in vivo-like morphology, J. Tissue Cult. Methods, vol.15, pp.15-18, 1993.

L. Thomas,

I. R. Sanderson, Human fetal enterocytes in vitro: modulation of the phenotype by extracellular matrix, Proc. Natl. Acad. Sci. U. S. A, vol.93, pp.7717-7722, 1996.

N. Perreault and J. Beaulieu, Primary Cultures of Fully Differentiated and Pure Human Intestinal Epithelial Cells, Exp. Cell Res, vol.245, pp.34-42, 1998.

I. Leclercq, Use of consensus sequences for the design of high density resequencing microarrays: the influenza virus paradigm, BMC Genomics, vol.11, p.586, 2010.
URL : https://hal.archives-ouvertes.fr/pasteur-00670619

L. Glaser, A Single Amino Acid Substitution in 1918 Influenza Virus Hemagglutinin Changes Receptor Binding Specificity, J. Virol, vol.79, pp.11533-11536, 2005.

N. M. Ferguson, A. P. Galvani, and R. M. Bush, Ecological and immunological determinants of influenza evolution, Nature, vol.422, pp.428-433, 2003.

A. Rambaut, The genomic and epidemiological dynamics of human influenza A virus, Nature, vol.453, pp.615-619, 2008.

B. Fiszon, C. Hannoun, A. Garcia-sastre, E. Villar, and J. A. Cabezas, Comparison of biological and physical properties of human and animal A(H1N1) influenza viruses, Res. Virol, vol.140, pp.395-404, 1989.

J. A. Castelán-vega, A. Magaña-hernández, A. Jiménez-alberto, and R. M. Ribasaparicio, The hemagglutinin of the influenza A(H1N1)pdm09 is mutating towards stability, Adv. Appl. Bioinforma. Chem. AABC, vol.7, pp.37-44, 2014.

J. B. Plotkin and J. Dushoff, Codon bias and frequency-dependent selection on the hemagglutinin epitopes of influenza A virus, Proc. Natl. Acad. Sci, vol.100, pp.7152-7157, 2003.

C. R. Cotter, H. Jin, and Z. Chen, A Single Amino Acid in the Stalk Region of the H1N1pdm Influenza Virus HA Protein Affects Viral Fusion, Stability and Infectivity, vol.10, p.1003831, 2014.

H. Yang, Structural Stability of Influenza A(H1N1)pdm09 Virus Hemagglutinins, J. Virol, vol.88, pp.4828-4838, 2014.

Y. Jiang, Enhanced protective efficacy of H5 subtype avian influenza DNA vaccine with codon optimized HA gene in a pCAGGS plasmid vector, Antiviral Res, vol.75, pp.234-241, 2007.

R. Hirose, Viscosity is an important factor of resistance to alcohol-based disinfectants by pathogens present in mucus, Sci. Rep, vol.7, 2017.

C. D. O'donnell, L. Vogel, Y. Matsuoka, H. Jin, and K. Subbarao, The Matrix Gene Segment Destabilizes the Acid and Thermal Stability of the Hemagglutinin of Pandemic Live Attenuated Influenza Virus Vaccines, J. Virol, vol.88, pp.12374-12384, 2014.

Y. Monteerarat, Inhibition of H5N1 highly pathogenic influenza virus by suppressing a specific sialyltransferase, Arch. Virol, vol.155, pp.889-893, 2010.

B. Ramstedt and J. P. Slotte, Sphingolipids and the formation of sterol-enriched ordered membrane domains, Biochim. Biophys. Acta BBA -Biomembr, vol.1758, pp.1945-1956, 2006.

R. B. Chan, L. Tanner, and M. R. Wenk, Implications for lipids during replication of enveloped viruses, Chem. Phys. Lipids, vol.163, pp.449-459, 2010.

I. V. Polozov, L. Bezrukov, K. Gawrisch, and J. Zimmerberg, Progressive ordering with decreasing temperature of the phospholipids of influenza virus, Nat. Chem. Biol, vol.4, pp.248-255, 2008.

G. Bitton and R. Mitchell, Effect of colloids on the survival of bacteriophages in seawater, Water Res, vol.8, pp.227-229, 1974.

E. M. Smith, C. P. Gerba, and J. L. Melnick, Role of sediment in the persistence of enteroviruses in the estuarine environment, Appl. Environ. Microbiol, vol.35, pp.685-689, 1978.

M. Sorre, Complexes pathogènes et géographie médicale, Ann. Géographie, vol.42, pp.1-18, 1933.

M. Vittecoq, M. Ottmann, F. Renaud, F. Thomas, and M. Gauthier-clerc, Persistance des virus influenza A en fonction des paramètres environnementaux, Virologie, vol.15, pp.371-379, 2011.

G. Zhang, Evidence of Influenza A Virus RNA in Siberian Lake Ice, J. Virol, vol.80, pp.12229-12235, 2006.

E. Patois, M. A. Capelle, R. Gurny, and T. Arvinte, Stability of seasonal influenza vaccines investigated by spectroscopy and microscopy methods, Vaccine, vol.29, pp.7404-7413, 2011.

L. Thomas,

O. S. Kumru, Vaccine instability in the cold chain: Mechanisms, analysis and formulation strategies, Biologicals, vol.42, pp.237-259, 2014.

J. Sagripanti, A. M. Rom, and L. E. Holland, Persistence in darkness of virulent alphaviruses, Ebola virus, and Lassa virus deposited on solid surfaces, Arch. Virol, vol.155, pp.2035-2039, 2010.

E. H. Stephenson, E. W. Larson, and J. W. Dominik, Effect of environmental factors on aerosol-induced lassa virus infection, J. Med. Virol, vol.14, pp.295-303, 1984.

R. Fischer, Ebola Virus Stability on Surfaces and in Fluids in Simulated Outbreak Environments, Emerg. Infect. Dis, vol.21, pp.1243-1246, 2015.

M. Schuit, Differences in the Comparative Stability of Ebola Virus Makona-C05 and Yambuku-Mayinga in Blood, PLOS ONE, vol.11, p.148476, 2016.

N. Doremalen, . Van, T. Bushmaker, and V. J. Munster, Stability of Middle East respiratory syndrome coronavirus (MERS-CoV) under different environmental conditions, Eurosurveillance, vol.18, p.20590, 2013.

M. A. Elazhary and J. B. Derbyshire, Aerosol stability of bovine parainfluenza type 3 virus, Can. J. Comp. Med, vol.43, pp.295-304, 1979.

E. R. Kallio, Prolonged survival of Puumala hantavirus outside the host: evidence for indirect transmission via the environment, J. Gen. Virol, vol.87, pp.2127-2134, 2006.

. Alignement, . Sequences, and . Des,

H. Thomas, , 1999.

L. Travaux,

T. ?-labadie, I. Leclercq, and J. C. Manuguerra, Identification of H1N1 influenza virus survival determinant: Amino acids on the HA protein modulate the stability of viruses in the environment. Présentation Orale, 6 th ESWI Influenza Conferences, 2017.

T. ?-labadie, I. Leclercq, and J. C. Manuguerra, Virus Influenza A dans l'environnement : Quels sont les composants viraux responsables des différences de stabilité observées? Présentation orale, Journées francophones de virologie, 2017.

T. ?-labadie, O. Sawoo, I. Leclercq, and J. C. Manuguerra, Influenza A virus particles outside their hosts: is the Hemagglutinin a key factor for virus durability? Poster, Option IX for the control of Influenza, 2016.

T. ?-labadie, I. Leclercq, and J. C. Manuguerra, Maintien du pouvoir infectieux en dehors de l'hôte : influence de l'hémagglutinine dans les virus grippaux de type A, Poster, Journées francophones de virologie, p.204, 2016.

A. Lecture, JOURNAL author: India Leclercq & Thomas Labadie 1-Thomas Labadie, thomas.labadie@pasteur.fr, a,b 2-Christophe Batéjat, christophe.batejat@pasteur.fr, a 3-Jean-Claude Manuguerra, jean-claude.manuguerra@pasteur.fr, a, * 4-India Leclercq

, Unité Environnement et Risques Infectieux, Cellule d'Intervention Biologique d'Urgence (CIBU), 28 rue du Dr Roux

J. D. Brown, D. E. Swayne, R. J. Cooper, R. E. Burns, and D. E. Stallknecht, Persistence of H5 and H7 Avian Influenza Viruses in Water, Avian Dis, vol.51, pp.285-289, 2007.

J. D. Brown, G. Goekjian, R. Poulson, S. Valeika, and D. E. Stallknecht, Avian influenza virus in water: Infectivity is dependent on pH, salinity and temperature, Vet Microbiol, vol.136, pp.20-26, 2009.

D. Stallknecht and J. D. Brown, Tenacity of avian influenza viruses, Rev Sci Tech OIE, vol.28, pp.59-67, 2009.

J. Nazir, R. Haumacher, A. Ike, P. Stumpf, R. Böhm et al., Long-Term Study on Tenacity of Avian Influenza Viruses in Water (Distilled Water, Normal Saline, and Surface Water) at Different Temperatures, Avian Dis, vol.54, pp.720-724, 2010.

A. Dublineau, C. Batéjat, A. Pinon, A. M. Burguière, I. Leclercq et al., Persistence of the 2009 Pandemic Influenza A (H1N1) Virus in Water and on NonPorous Surface, PLoS ONE, vol.6, p.28043, 2011.

H. Zhang, Y. Li, J. Chen, Q. Chen, and Z. Chen, Perpetuation of H5N1 and H9N2 avian influenza viruses in natural water bodies, J Gen Virol, vol.95, pp.1430-1435, 2014.

S. P. Keeler, M. S. Dalton, A. M. Cressler, R. D. Berghaus, and D. E. Stallknecht, Abiotic Factors Affecting the Persistence of Avian Influenza Virus in Surface Waters of Waterfowl Habitats, Appl Environ Microbiol, vol.80, pp.2910-2917, 2014.

R. L. Poulson, S. M. Tompkins, R. D. Berghaus, J. D. Brown, and D. E. Stallknecht, Environmental Stability of Swine and Human Pandemic Influenza Viruses in Water under Variable Conditions of Temperature, Salinity, and pH, Appl Environ Microbiol, vol.82, pp.3721-3726, 2016.

B. Roche, J. M. Drake, J. Brown, D. E. Stallknecht, T. Bedford et al., Adaptive Evolution and Environmental Durability Jointly Structure Phylodynamic Patterns in Avian Influenza Viruses, PLOS Biol, vol.12, p.1001931, 2014.

D. E. Stallknecht, V. H. Goekjian, B. R. Wilcox, R. L. Poulson, and J. D. Brown, Avian influenza virus in aquatic habitats: what do we need to learn?, Avian Dis, vol.54, pp.461-465, 2010.

C. Lebarbenchon, S. Sreevatsan, T. Lefèvre, M. Yang, M. A. Ramakrishnan et al.,

S. Jd and . De, Reassortant influenza A viruses in wild duck populations: effects on viral shedding and persistence in water, Proc Biol Sci, vol.279, pp.3967-3975, 2012.

C. Lebarbenchon, C. J. Feare, F. Renaud, F. Thomas, and M. Gauthier-clerc, , 2010.

, Persistence of Highly Pathogenic Avian Influenza Viruses in Natural Ecosystems

, Emerg Infect Dis, vol.16, pp.1057-1062

S. Shigematsu, A. Dublineau, O. Sawoo, C. Batéjat, T. Matsuyama et al.,

J. Manuguerra, Influenza A virus survival in water is influenced by the origin species of the host cell, Influenza Other Respir Viruses, vol.8, pp.123-130, 2014.

S. Bajimaya, T. Frankl, T. Hayashi, and T. Takimoto, Cholesterol is required for stability and infectivity of influenza A and respiratory syncytial viruses, Virology, vol.510, pp.234-241, 2017.

M. L. Reed, O. A. Bridges, P. Seiler, J. Kim, Y. et al.,

R. G. Webster and C. J. Russell, The pH of Activation of the Hemagglutinin Protein Regulates H5N1 Influenza Virus Pathogenicity and Transmissibility in Ducks, J Virol, vol.84, pp.1527-1535, 2010.

C. Lebarbenchon, S. Sreevatsan, T. Lefèvre, M. Yang, M. A. Ramakrishnan et al.,

S. Jd and . De, Reassortant influenza A viruses in wild duck populations: effects on viral shedding and persistence in water, Proc R Soc B Biol Sci, vol.279, pp.3967-3975, 2012.

F. J. Millero, R. Feistel, D. G. Wright, and T. J. Mcdougall, The composition of, 2008.

, Standard Seawater and the definition of the Reference-Composition Salinity Scale, Deep Sea Res Part Oceanogr Res Pap, vol.55, pp.50-72

O. Sawoo, A. Dublineau, C. Batéjat, P. Zhou, J. Manuguerra et al., , 2014.

, Cleavage of Hemagglutinin-Bearing Lentiviral Pseudotypes and Their Use in the Study of Influenza Virus Persistence, PLoS ONE, vol.9, p.106192

C. M. Chu, Inactivation of haemagglutinin and infectivity of influenza and Newcastle disease viruses by heat and by formalin, J Hyg (Lond), vol.46, pp.247-251, 1948.

L. Thomas, , p.221, 2017.

M. O. Pohl, T. O. Edinger, and S. Stertz, Prolidase Is Required for Early Trafficking Events during Influenza A Virus Entry, J Virol, vol.88, pp.11271-11283, 2014.

M. Schelker, C. M. Mair, F. Jolmes, R. Welke, E. Klipp et al.,

M. Sieben and C. , Viral RNA Degradation and Diffusion Act as a Bottleneck for the Influenza A Virus Infection Efficiency, PLOS Comput Biol, vol.12, p.1005075, 2016.

M. Imai, T. Watanabe, M. Hatta, S. C. Das, M. Ozawa et al.,

A. Katsura, H. Watanabe, S. Li, C. Kawakami, E. Yamada et al., Experimental adaptation of an influenza H5, 2012.

, HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets, Nature, vol.486, pp.420-428

B. M. Krenn, A. Egorov, E. Romanovskaya-romanko, M. Wolschek, and S. Nakowitsch,

T. Ruthsatz, B. Kiefmann, A. Morokutti, J. Humer, J. Geiler et al.,

M. Hinterdorfer, P. Kiselev, O. Muster, T. Romanova, and J. , Single HA2 Mutation Increases the Infectivity and Immunogenicity of a Live Attenuated H5N1 Intranasal Influenza Vaccine Candidate Lacking NS1, PLOS ONE, vol.6, p.18577, 2011.

N. J. Baker and S. S. Gandhi, Effect of Ca++ on the stability of influenza virus neuraminidase, Arch Virol, vol.52, pp.7-18, 1976.

W. P. Burmeister, S. Cusack, and R. Ruigrok, Calcium is needed for the thermostability of influenza B virus neuraminidase, J Gen Virol, vol.75, pp.381-388, 1994.

Q. Li, J. Qi, W. Zhang, C. J. Vavricka, Y. Shi et al., The 2009 pandemic H1N1 neuraminidase N1 lacks the 150-cavity in its active site, Nat Struct Mol Biol, vol.17, pp.1266-1268, 2010.

J. B. Plotkin and J. Dushoff, Codon bias and frequency-dependent selection on the hemagglutinin epitopes of influenza A virus, Proc Natl Acad Sci, vol.100, pp.7152-7157, 2003.

M. Russier, G. Yang, J. E. Rehg, S. Wong, H. H. Mostafa et al.,

S. Krauss, R. G. Webster, R. J. Webby, and C. J. Russell, Molecular requirements for a pandemic influenza virus: An acid-stable hemagglutinin protein, Proc Natl Acad Sci U S A, vol.113, pp.1636-1641, 2016.

L. Byrd-leotis, S. E. Galloway, E. Agbogu, and D. A. Steinhauer, , 2015.

. Hemagglutinin, HA) Stem Region Mutations That Stabilize or Destabilize the Structure of Multiple HA Subtypes, J Virol, vol.89, pp.4504-4516

B. M. Krenn, A. Egorov, E. Romanovskaya-romanko, M. Wolschek, and S. Nakowitsch,

T. Ruthsatz, B. Kiefmann, A. Morokutti, J. Humer, J. Geiler et al.,

M. Hinterdorfer, P. Kiselev, O. Muster, T. Romanova, and J. , Single HA2 Mutation Increases the Infectivity and Immunogenicity of a Live Attenuated H5N1 Intranasal Influenza Vaccine Candidate Lacking NS1, PLOS ONE, vol.6, p.18577, 2011.

Y. Jiang, K. Yu, H. Zhang, P. Zhang, C. Li et al.,

H. , Enhanced protective efficacy of H5 subtype avian influenza DNA vaccine with codon optimized HA gene in a pCAGGS plasmid vector, Antiviral Res, vol.75, pp.234-241, 2007.

T. Ivanovic, J. L. Choi, S. P. Whelan, A. M. Van-oijen, and S. C. Harrison, , 2013.

R. Hirose, T. Nakaya, Y. Naito, T. Daidoji, Y. Watanabe et al., Mechanism of Human Influenza Virus RNA Persistence and Virion Survival in Feces: Mucus Protects Virions From Acid and Digestive Juices, J Infect Dis, vol.216, pp.105-109, 2017.

M. Souris, D. Gonzalez, W. Wiriyarat, K. Chumpolbanchorn, and S. Khaklang,

S. Ninphanomchai, W. Paungpin, S. Chaiwattanarungruengpaisan, L. Sariya, and . Selenic,

D. Gouilh, M. A. Kittayapong, P. Gonzalez, and J. , Potential Role of Fresh Water Apple Snails on H5N1 Influenza Virus Persistence and Concentration in Nature, 2015.

T. P. Weber and N. I. Stilianakis, Inactivation of influenza A viruses in the environment and modes of transmission: a critical review, J Infect, vol.57, pp.361-373, 2008.

H. Sooryanarain and S. Elankumaran, Environmental Role in Influenza Virus Outbreaks, Annu Rev Anim Biosci, vol.3, 2015.

A. S. Lang, A. Kelly, and J. A. Runstadler, Prevalence and diversity of avian influenza viruses in environmental reservoirs, J Gen Virol, vol.89, pp.509-519, 2008.

L. Thomas, , p.223, 2017.

M. Vittecoq, H. Gauduin, T. Oudart, O. Bertrand, B. Roche et al.,

O. , Modeling the spread of avian influenza viruses in aquatic reservoirs: A novel hydrodynamic approach applied to the Rhône delta (southern France), Sci Total Environ, vol.595, pp.787-800, 2017.

A. C. Hurt, Y. Su, M. Aban, H. Peck, H. Lau et al.,

P. Ellström, J. Hernandez, B. Olsen, I. G. Barr, D. Vijaykrishna et al., Evidence for the introduction, reassortment and persistence of diverse influenza A viruses in Antarctica, J Virol JVI, pp.1404-1420, 2016.

G. Zhang, D. Shoham, D. Gilichinsky, S. Davydov, J. D. Castello et al., Evidence of Influenza A Virus RNA in Siberian Lake Ice, J Virol, vol.80, pp.12229-12235, 2006.

E. Fodor, L. Devenish, O. G. Engelhardt, P. Palese, and G. G. Brownlee,

A. , Rescue of Influenza A Virus from Recombinant DNA, J Virol, vol.73, pp.9679-9682, 1999.

E. Hoffmann, G. Neumann, Y. Kawaoka, G. Hobom, and R. G. Webster, A DNA transfection system for generation of influenza A virus from eight plasmids, Proc Natl Acad Sci, vol.97, pp.6108-6113, 2000.

Y. Fang, P. Ye, X. Wang, X. Xu, and W. Reisen, Real-time monitoring of flavivirus induced cytopathogenesis using cell electric impedance technology, J Virol Methods, vol.173, pp.251-258, 2011.