M. A. Zahed, Optimal conditions for bioremediation of oily seawater, Bioresource Technology, vol.101, issue.24, pp.9455-9460, 2010.

M. G. Pintado-herrera, Distribution, mass inventories, and ecological risk assessment of legacy and emerging contaminants in sediments from the Pearl River Estuary in China, J Hazard Mater, vol.323, pp.128-138, 2017.

M. Board, O. S. Board, and N. R. Council, Oil in the sea III: inputs, fates, and effects2003

R. J. Brooijmans, M. I. Pastink, and R. J. Siezen, Hydrocarbon-degrading bacteria: the oil-spill clean-up crew, Microbial Biotechnology, vol.2, issue.6, pp.587-594, 2009.

M. Tyagi, M. M. Da-fonseca, and C. C. De-carvalho, Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes, Biodegradation, vol.22, issue.2, pp.231-241, 2011.

N. Weng, Insight into unresolved complex mixtures of aromatic hydrocarbons in heavy oil via two-dimensional gas chromatography coupled with time-of-flight mass spectrometry analysis, Journal of Chromatography A, vol.1398, pp.94-107, 2015.

A. Perfumo, Production and roles of biosurfactants and bioemulsifiers in accessing hydrophobic substrates, in Handbook of hydrocarbon and lipid microbiology2010, pp.1501-1512

M. Nikolopoulou and N. Kalogerakis, Biostimulation strategies for enhanced bioremediation of marine oil spills including chronic pollution, in Handbook of hydrocarbon and lipid microbiology2010, pp.2521-2529

J. Vandecasteele and G. Ourisson, Microbiologie pétrolière(concepts, implications environnementales, applications industrielles), 2005.

T. J. Mcgenity, Marine crude-oil biodegradation: a central role for interspecies interactions, Aquatic Biosystems, vol.8, issue.1, p.10, 2012.

Q. Chen, Rhamnolipids enhance marine oil spill bioremediation in laboratory system, Marine Pollution Bulletin, vol.71, issue.1-2, pp.269-275, 2013.

J. D. Desai and I. M. Banat, Microbial production of surfactants and their commercial potential. Microbiology and Molecular biology reviews, vol.61, pp.47-64, 1997.

R. Marchant and I. M. Banat, Microbial biosurfactants: challenges and opportunities for future exploitation, Trends in Biotechnology, vol.30, issue.11, pp.558-565, 2012.

S. Mukherjee, P. Das, and R. Sen, Towards commercial production of microbial surfactants, Trends in Biotechnology, vol.24, issue.11, pp.509-515, 2006.

J. G. Speight, The chemistry and technology of petroleum2014

S. J. Varjani, Microbial degradation of petroleum hydrocarbons, Bioresource Technology, vol.223, pp.277-286, 2017.

P. Vieira, Biodegradation of effluent contaminated with diesel fuel and gasoline, J Hazard Mater, vol.140, issue.1-2, pp.52-59, 2007.

S. Chandra, Application of bioremediation technology in the environment contaminated with petroleum hydrocarbon, Annals of microbiology, vol.63, issue.2, pp.417-431, 2013.

S. J. Varjani, Synergistic ex-situ biodegradation of crude oil by halotolerant bacterial consortium of indigenous strains isolated from on shore sites of Gujarat, India. International Biodeterioration & Biodegradation, vol.103, pp.116-124, 2015.

R. M. Atlas and F. Abbasian, Microbial degradation of petroleum hydrocarbons: an environmental perspective. Microbiological reviews, A Comprehensive Review of Aliphatic Hydrocarbon Biodegradation by Bacteria, vol.45, issue.1, 1981.

R. U. Meckenstock, Anaerobic degradation of benzene and polycyclic aromatic hydrocarbons, Journal of molecular microbiology and biotechnology, vol.26, issue.1-3, pp.92-118, 2016.

S. Harayama, Y. Kasai, and A. Hara, Microbial communities in oilcontaminated seawater. Current opinion in biotechnology, vol.15, pp.205-214, 2004.

A. S. Costa, Environmental strategies to remove volatile aromatic fractions (BTEX) from petroleum industry wastewater using biomass, Bioresource Technology, vol.105, pp.31-39, 2012.

K. S. Rahman, Enhanced bioremediation of n-alkane in petroleum sludge using bacterial consortium amended with rhamnolipid and micronutrients, Bioresource Technology, vol.90, issue.2, pp.159-168, 2003.

M. Farhadian, In situ bioremediation of monoaromatic pollutants in groundwater: a review, Bioresource Technology, vol.99, issue.13, pp.5296-5308, 2008.

H. Wilkes, Metabolism of hydrocarbons in n-alkane-utilizing anaerobic bacteria, Journal of molecular microbiology and biotechnology, vol.26, issue.1-3, pp.138-151, 2016.

B. M. Macaulay and D. Rees, Bioremediation of oil spills: a review of challenges for research advancement, Annals of Environmental Science, vol.8, pp.9-37, 2014.

M. Balba, N. Al-awadhi, and R. Al-daher, Bioremediation of oilcontaminated soil: microbiological methods for feasibility assessment and field evaluation, Journal of microbiological methods, vol.32, issue.2, pp.155-164, 1998.

N. Das and P. Chandran, Microbial degradation of petroleum hydrocarbon contaminants: an overview, Biotechnology research international, 2011.

H. Parra-barraza, The zeta potential and surface properties of asphaltenes obtained with different crude oil/n-heptane proportions?, Fuel, vol.82, issue.8, pp.869-874, 2003.

S. Mohamed, Distribution lipidique et voies métaboliques chez quatre bactéries Gram-négatives hydrocarbonoclastes. Variation en fonction de la source de carbone, p.23, 2004.

S. Harayama, Petroleum biodegradation in marine environments, Journal of molecular microbiology and biotechnology, vol.1, issue.1, pp.63-70, 1999.

J. W. Desforges, Immunotoxic effects of environmental pollutants in marine mammals, Environ Int, vol.86, pp.126-139, 2016.

E. C. Souza, T. C. Vessoni-penna, R. P. De-souza, and . Oliveira, Biosurfactantenhanced hydrocarbon bioremediation: an overview, International Biodeterioration & Biodegradation, vol.89, pp.88-94, 2014.

T. I. Federation, Fate of Oil Spills, 2018.

R. Kanan, Développements méthodologiques pour l'extraction et l'analyse des polluants organiques d'intérêt pour l'environnement marin: Application aux hydrocarbures aromatiques polycycliques, 2012.

K. Tjessem, D. Pedersen, and A. Aaberg, On the environmental fate of a dispersed Ekofisk crude oil in sea-immersed plastic columns, Water Research, vol.18, issue.9, pp.1129-1136, 1984.

N. R. Council, Oil in the sea: inputs, fates and effects, 2003.

M. Fingas, Water-in-oil emulsion formation: A review of physics and mathematical modelling, Spill Science & Technology Bulletin, vol.2, pp.55-59, 1995.

M. Ehrhardt and R. R. Weber, Formation of low molecular weight carbonyl compounds by sensitized photochemical decomposition of aliphatic hydrocarbons in seawater. Fresenius' journal of analytical chemistry, vol.339, pp.772-776, 1991.

D. E. Nicodem, Photochemical processes and the environmental impact of petroleum spills, Biogeochemistry, vol.39, issue.2, pp.121-138, 1997.

R. M. Atlas and T. C. Hazen, Oil biodegradation and bioremediation: a tale of the two worst spills in US history, 2011.

J. Xue, Marine oil-degrading microorganisms and biodegradation process of petroleum hydrocarbon in marine environments: a review. Current microbiology, vol.71, pp.220-228, 2015.

J. G. Leahy and R. R. Colwell, Microbial degradation of hydrocarbons in the environment, Microbiological reviews, vol.54, issue.3, pp.305-315, 1990.

E. Z. Ron and E. Rosenberg, Enhanced bioremediation of oil spills in the sea. Current opinion in biotechnology, vol.27, pp.191-194, 2014.

M. M. Yakimov, K. N. Timmis, and P. N. Golyshin, Obligate oil-degrading marine bacteria. Current opinion in biotechnology, vol.18, pp.257-266, 2007.

R. C. Prince, The microbiology of marine oil spill bioremediation, Petroleum microbiology2005, pp.317-335

C. Sauret, Ecologie des communautés bactériennes marines soumises à une pollution pétrolière

S. E. Dyksterhouse, Cycloclasticus pugetii gen. nov., sp. nov., an aromatic hydrocarbon-degrading bacterium from marine sediments, International Journal of Systematic and Evolutionary Microbiology, vol.45, issue.1, pp.116-123, 1995.

I. M. Head, D. M. Jones, and W. F. Röling, Marine microorganisms make a meal of oil, Nature Reviews Microbiology, vol.4, issue.3, p.173, 2006.

R. J. Müller, Biodegradability of polymers: regulations and methods for testing, Biopolymers Online: Biology? Chemistry? Biotechnology? Applications, p.10, 2005.

R. Boopathy, Factors limiting bioremediation technologies, Bioresource Technology, vol.74, issue.1, pp.63-67, 2000.

F. Widdel and R. Rabus, Anaerobic biodegradation of saturated and aromatic hydrocarbons. Current opinion in biotechnology, vol.12, pp.259-276, 2001.

K. Das and A. K. Mukherjee, Crude petroleum-oil biodegradation efficiency of Bacillus subtilis and Pseudomonas aeruginosa strains isolated from a petroleum-oil contaminated soil from North-East India, Bioresource Technology, vol.98, issue.7, pp.1339-1345, 2007.

R. M. Atlas, Microbial hydrocarbon degradation-bioremediation of oil spills, Journal of Chemical Technology & Biotechnology, vol.52, issue.2, pp.149-156, 1991.

M. Thamer, Biodegradation of Kirkuk light crude oil by Bacillus thuringiensis, Northern of Iraq, p. 865. 58. Atlas, R.M, vol.31, pp.178-182, 1995.

A. B. Salleh, Biosurfactants production and possible uses in microbial enhanced oil recovery and oil pollution remediation: a review, Bioresource Technology, vol.60, issue.1, pp.1-12, 1995.

E. Rosenberg, Petroleum bioremediation-a multiphase problem, Biodegradation, vol.3, issue.2-3, pp.337-350, 1992.

B. Hendrickx, Alternative primer sets for PCR detection of genotypes involved in bacterial aerobic BTEX degradation: distribution of the genes in BTEX degrading isolates and in subsurface soils of a BTEX contaminated industrial site, Journal of microbiological methods, vol.64, issue.2, pp.250-265, 2006.

F. Rojo, Degradation of alkanes by bacteria, Environmental microbiology, vol.11, issue.10, pp.2477-2490, 2009.

M. Zeinali, M. Vossoughi, and S. K. Ardestani, Naphthalene metabolism in Nocardia otitidiscaviarum strain TSH1, a moderately thermophilic microorganism, Chemosphere, vol.72, issue.6, pp.905-909, 2008.

S. Gao, Multiple degradation pathways of phenanthrene by Stenotrophomonas maltophilia C6, International Biodeterioration & Biodegradation, vol.79, pp.98-104, 2013.

C. Cui, Metabolic pathway for degradation of anthracene by halophilic Martelella sp. AD-3, International Biodeterioration & Biodegradation, vol.89, pp.67-73, 2014.

Y. Lyu, Biodegradation of polycyclic aromatic hydrocarbons by Novosphingobium pentaromativorans US6-1. PloS one, vol.9, p.101438, 2014.

D. T. Gibson and R. E. Parales, Aromatic hydrocarbon dioxygenases in environmental biotechnology, Current opinion in biotechnology, vol.11, issue.3, pp.236-243, 2000.

R. Peng, Microbial biodegradation of polyaromatic hydrocarbons. FEMS microbiology reviews, vol.32, pp.927-955, 2008.

B. Cao, K. Nagarajan, and K. Loh, Biodegradation of aromatic compounds: current status and opportunities for biomolecular approaches, Appl Microbiol Biotechnol, vol.85, issue.2, pp.207-228, 2009.

R. Bartha, Biotechnology of petroleum pollutant biodegradation. Microbial ecology, vol.12, pp.155-172, 1986.

R. J. Watkinson and P. Morgan, Physiology of aliphatic hydrocarbondegrading microorganisms, Physiology of Biodegradative Microorganisms1991, pp.79-92

J. B. Van-beilen and E. G. Funhoff, Expanding the alkane oxygenase toolbox: new enzymes and applications. Current opinion in biotechnology, vol.16, pp.308-314, 2005.

S. Varjani, Screening and identification of biosurfactant (bioemulsifier) producing bacteria from crude oil contaminated sites of Gujarat, India, Int J Inno Res Sci Eng Technol, issue.3, 2014.

K. Sugiura, Physicochemical properties and biodegradability of crude oil, Environmental Science & Technology, vol.31, issue.1, pp.45-51, 1996.

C. N. Mulligan, Environmental applications for biosurfactants, Environmental Pollution, vol.133, issue.2, pp.183-198, 2005.

H. Saeki, Oil spill remediation by using the remediation agent JE1058BS that contains a biosurfactant produced by Gordonia sp. strain JE-1058, Bioresource Technology, vol.100, issue.2, pp.572-577, 2009.

V. S. Cerqueira, Biodegradation potential of oily sludge by pure and mixed bacterial cultures, Bioresource Technology, vol.102, issue.23, pp.11003-11010, 2011.

A. B. Al-hawash, Isolation and characterization of two crude oildegrading fungi strains from Rumaila oil field, Iraq. Biotechnology reports, vol.17, pp.104-109, 2018.

J. Aislabie, D. J. Saul, and J. M. Foght, Bioremediation of hydrocarboncontaminated polar soils, Extremophiles, vol.10, issue.3, pp.171-179, 2006.

A. I. Okoh, Biodegradation alternative in the cleanup of petroleum hydrocarbon pollutants, Biotechnology and Molecular Biology Reviews, vol.1, issue.2, pp.38-50, 2006.

G. Qin, D. Gong, and M. Fan, Bioremediation of petroleum-contaminated soil by biostimulation amended with biochar, International Biodeterioration & Biodegradation, vol.85, pp.150-155, 2013.

J. Bertrand, Hydrocarbon biodegradation and hydrocarbonoclastic bacterial communities composition grown in seawater as a function of sodium chloride concentration, Journal of experimental marine biology and ecology, vol.168, issue.1, pp.125-138, 1993.

A. Ebadi, Effective bioremediation of a petroleum-polluted saline soil by a surfactant-producing Pseudomonas aeruginosa consortium, Journal of advanced research, vol.8, issue.6, pp.627-633, 2017.

G. A. Hambrick, R. D. Delaune, and W. Patrick, Effect of estuarine sediment pH and oxidation-reduction potential on microbial hydrocarbon degradation, Applied and Environmental Microbiology, vol.40, issue.2, pp.365-369, 1980.

R. Thavasi, Effect of salinity, temperature, pH and crude oil concentration on biodegradation of crude oil by Pseudomonas aeruginosa, J. Biol. Environ. Sci, vol.1, issue.2, pp.51-57, 2007.

V. Wedel and R. , Bacterial biodegradation of petroleum hydrocarbons in groundwater: in situ augmented bioreclamation with enrichment isolates in California. Water Science and Technology, vol.20, pp.501-503, 1988.

A. Haritash and C. Kaushik, Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review, J Hazard Mater, vol.169, issue.1-3, pp.1-15, 2009.

M. Hassanshahian and S. Cappello, Crude oil biodegradation in the marine environments, Biodegradation-Engineering and Technology2013

R. R. Colwell, J. D. Walker, and J. J. Cooney, Ecological aspects of microbial degradation of petroleum in the marine environment, CRC critical reviews in microbiology, vol.5, issue.4, pp.423-445, 1977.

F. Chaillan, Factors inhibiting bioremediation of soil contaminated with weathered oils and drill cuttings, Environmental Pollution, vol.144, issue.1, pp.255-265, 2006.

J. Oudot, F. Merlin, and P. Pinvidic, Weathering rates of oil components in a bioremediation experiment in estuarine sediments, Marine Environmental Research, vol.45, issue.2, pp.113-125, 1998.

C. Chaineau, Effects of nutrient concentration on the biodegradation of crude oil and associated microbial populations in the soil, Soil Biology and Biochemistry, vol.37, issue.8, pp.1490-1497, 2005.

E. Z. Ron and E. Rosenberg, Biosurfactants and oil bioremediation. Current opinion in biotechnology, vol.13, pp.249-252, 2002.

I. M. Banat, Microbial biosurfactants production, applications and future potential, Appl Microbiol Biotechnol, vol.87, issue.2, pp.427-444, 2010.

?. ?awniczak, R. Marecik, and ?. Chrzanowski, Contributions of biosurfactants to natural or induced bioremediation, Appl Microbiol Biotechnol, vol.97, issue.6, pp.2327-2339, 2013.

A. A. Juwarkar, S. K. Singh, and A. Mudhoo, A comprehensive overview of elements in bioremediation, vol.9, pp.215-288, 2010.

C. Liu and Z. Shao, Alcanivorax dieselolei sp. nov., a novel alkane-degrading bacterium isolated from sea water and deep-sea sediment, International Journal of Systematic and Evolutionary Microbiology, vol.55, issue.3, pp.1181-1186, 2005.

R. C. Prince, Bioremediation of stranded oil on an Arctic shoreline, Spill Science & Technology Bulletin, vol.8, issue.3, pp.303-312, 2003.

R. Swannell, K. Lee, and M. Mcdonagh, Field evaluations of marine oil spill bioremediation. Microbiological reviews, vol.60, pp.342-365, 1996.

X. Zhu, Guidelines for the bioremediation of marine shorelines and freshwater wetlands, 2001.

E. Rosenberg and E. Z. Ron, Bioremediation of petroleum contamination, Biotechnology Research Series, vol.6, pp.100-124, 1996.

H. Maki, Crude oil bioremediation field experiment in the Sea of Japan, Marine Pollution Bulletin, vol.47, issue.1-6, pp.74-77, 2003.

F. Ma, Application of bioaugmentation to improve the activated sludge system into the contact oxidation system treating petrochemical wastewater, Bioresource Technology, vol.100, issue.2, pp.597-602, 2009.

M. Palittapongarnpim, Biodegradation of crude oil by soil microorganisms in the tropic, Biodegradation, vol.9, issue.2, pp.83-90, 1998.

R. M. Atlas and R. L. Raymond, Stimulated petroleum biodegradation. CRC critical reviews in microbiology, vol.5, pp.371-386, 1977.

M. Márquez and A. Ventosa, Marinobacter hydrocarbonoclasticus Gauthier et al. 1992 and Marinobacter aquaeolei Nguyen et al. 1999 are heterotypic synonyms, International Journal of Systematic and Evolutionary Microbiology, vol.55, issue.3, pp.1349-1351, 2005.

B. A. Mckew, Efficacy of intervention strategies for bioremediation of crude oil in marine systems and effects on indigenous hydrocarbonoclastic bacteria. Environmental microbiology, vol.9, pp.1562-1571, 2007.

M. Nikolopoulou, N. Pasadakis, and N. Kalogerakis, Evaluation of autochthonous bioaugmentation and biostimulation during microcosmsimulated oil spills, Marine Pollution Bulletin, vol.72, issue.1, pp.165-173, 2013.

S. Tagger, Effect of microbial seeding of crude oil in seawater in a model system, Marine Biology, vol.78, issue.1, pp.13-20, 1983.

A. Horowitz and R. Atlas, Microbial seeding to enhance petroleum hydrocarbon biodegradation in aquatic arctic ecosystems. Biodeterioration, pp.15-20, 1978.

A. K. Mukherjee and K. Das, Microbial surfactants and their potential applications: an overview, in Biosurfactants2010, pp.54-64

J. D. Rouse, Influence of surfactants on microbial degradation of organic compounds, Critical Reviews in Environmental Science and Technology, vol.24, issue.4, pp.325-370, 1994.

C. C. West and J. H. Harwell, Environmental Science & Technology, 1992, vol.26, pp.2324-2330

S. Mehta, Biomimetic amphiphiles: Properties and potential use, in Biosurfactants2010, pp.102-120

R. Marchant and I. M. Banat, Biosurfactants: a sustainable replacement for chemical surfactants? Biotechnology letters, vol.34, pp.1597-1605, 2012.

S. Rebello, Surfactants: chemistry, toxicity and remediation, Pollutant Diseases, Remediation and Recycling2013, pp.277-320

S. Mnif, Microbiologie de certains gisements pétroliers tunisiens : Biodégradation des hydrocarbures, production de biosurfactants et étude de la biodiversité microbienne moyennant la technique de la SSCP, Faculté des sciences de Sfax2012, p.169

G. Soberón-chávez and R. M. Maier, Biosurfactants: a general overview, pp.1-11, 2011.

E. Rosenberg, Exploiting microbial growth on hydrocarbons-new markets, Trends in Biotechnology, vol.11, issue.10, pp.419-424, 1993.

A. Khopade, Production and stability studies of the biosurfactant isolated from marine Nocardiopsis sp. B4. Desalination, vol.285, pp.198-204, 2012.

B. Saharan, R. Sahu, and D. Sharma, A review on biosurfactants: fermentation, current developments and perspectives, Genetic Engineering and Biotechnology Journal, issue.1, pp.1-14, 2011.

A. Franzetti, Environmental fate, toxicity, characteristics and potential applications of novel bioemulsifiers produced by Variovorax paradoxus 7bCT5, Bioresource Technology, vol.108, pp.245-251, 2012.

A. Franzetti, E. Tamburini, and I. M. Banat, Applications of biological surface active compounds in remediation technologies, pp.121-134, 2010.

L. Derguine-mecheri, Screening and biosurfactant/bioemulsifier production from a high-salt-tolerant halophilic Cryptococcus strain YLF isolated from crude oil, Journal of Petroleum Science and Engineering, vol.162, pp.712-724, 2018.

T. Morita, Isolation of Pseudozyma churashimaensis sp. nov., a novel ustilaginomycetous yeast species as a producer of glycolipid biosurfactants, mannosylerythritol lipids, Journal of bioscience and bioengineering, vol.112, issue.2, pp.137-144, 2011.

M. Konishi, Yeast extract stimulates production of glycolipid biosurfactants, mannosylerythritol lipids, by Pseudozyma hubeiensis SY62, Journal of bioscience and bioengineering, vol.111, issue.6, pp.702-705, 2011.

M. Henkel, Rhamnolipids as biosurfactants from renewable resources: concepts for next-generation rhamnolipid production, Process Biochemistry, vol.47, issue.8, pp.1207-1219, 2012.

S. J. Varjani and V. N. Upasani, Carbon spectrum utilization by an indigenous strain of Pseudomonas aeruginosa NCIM 5514: Production, characterization and surface active properties of biosurfactant, Bioresource Technology, vol.221, pp.510-516, 2016.

M. Ongena and P. Jacques, Bacillus lipopeptides: versatile weapons for plant disease biocontrol, Trends in microbiology, vol.16, issue.3, pp.115-125, 2008.

P. Jacques, Surfactin and other lipopeptides from Bacillus spp, pp.57-91, 2011.

M. Healy, C. Devine, and R. Murphy, Microbial production of biosurfactants. Resources, Conservation and Recycling, vol.18, pp.41-57, 1996.

J. Zajic and A. Mahomedy, Biosurfactants: Intermediates in the biosynthesis of amphipathic molecules in microbes, 1984.

L. Al-araji, Microbial surfactant, Asia Pacific Journal of Molecular Biology & Biotechnology, vol.15, issue.3, pp.99-105, 2007.

S. K. Satpute, Biosurfactants, bioemulsifiers and exopolysaccharides from marine microorganisms, Biotechnology advances, vol.28, issue.4, pp.436-450, 2010.

K. Poremba, Toxicity testing of synthetic and biogenic surfactants on marine microorganisms, Environmental Toxicology and Water Quality, vol.6, issue.2, pp.157-163, 1991.

D. Schulz, Marine biosurfactants, I. Screening for biosurfactants among crude oil degrading marine microorganisms from the North Sea. Zeitschrift für Naturforschung C, vol.46, pp.197-203, 1991.

R. Thavasi, Production and characterization of a glycolipid biosurfactant from Bacillus megaterium using economically cheaper sources, World Journal of Microbiology and Biotechnology, vol.24, issue.7, pp.917-925, 2008.

R. Makkar and S. Cameotra, An update on the use of unconventional substrates for biosurfactant production and their new applications, Appl Microbiol Biotechnol, vol.58, issue.4, pp.428-434, 2002.

Z. A. Raza, Improved production of biosurfactant by a Pseudomonas aeruginosa mutant using vegetable oil refinery wastes, Biodegradation, vol.18, issue.1, pp.115-121, 2007.

J. C. Mata-sandoval, J. Karns, and A. Torrents, High-performance liquid chromatography method for the characterization of rhamnolipid mixtures produced by Pseudomonas aeruginosa UG2 on corn oil, Journal of Chromatography A, vol.864, issue.2, pp.211-220, 1999.

L. H. Guerra-santos, O. Käppeli, and A. Fiechter, Dependence of Pseudomonas aeruginosa continous culture biosurfactant production on nutritional and environmental factors, Appl Microbiol Biotechnol, vol.24, issue.6, pp.443-448, 1986.

A. Abu-ruwaida, Isolation of biosurfactant-producing bacteria, product characterization, and evaluation, Acta biotechnologica, vol.11, issue.4, pp.315-324, 1991.

S. R. Mutalik, Use of response surface optimization for the production of biosurfactant from Rhodococcus spp. MTCC 2574, Bioresource Technology, vol.99, issue.16, pp.7875-7880, 2008.

A. Franzetti, Potential applications of surface active compounds by Gordonia sp. strain BS29 in soil remediation technologies, Chemosphere, vol.75, issue.6, pp.801-807, 2009.

T. Smyth, Isolation and analysis of low molecular weight microbial glycolipids, in Handbook of hydrocarbon and lipid microbiology2010, pp.3705-3723

T. Smyth, Isolation and analysis of lipopeptides and high molecular weight biosurfactants, in Handbook of hydrocarbon and lipid microbiology2010, pp.3687-3704

S. S. Cameotra, Synthesis of biosurfactants and their advantages to microorganisms and mankind, Biosurfactants2010, pp.261-280

K. Eddouaouda, Etude de potentiel biodegradatif des souches isolées de Hassi Massoude contamine par du pétrole : criblage, biodégradation de PAH et production de bio surfactant, Département de Chimie industrielle2012, p.194

F. Ramade, Introduction à l'écotoxicologie, 2007.

A. Amara, Evaluation de la toxicité de pesticides sur quatre niveaux trophiques marins: microalgues, échinoderme, bivalves et poisson, 2012.

G. Triffault-bouchet, Effets sur les écosystèmes aquatiques lentiques des émissions de polluants provenant de différents modes de valorisation/élimination de déchets-Application à des mâchefers d'IUOM et à des boues de dragage de canaux, 2004.

P. Rhd and . Analysis, , 1952.

/. Rm/46 and S. , Document d'orientation sur les méthodes statistiques applicables aux essais d'écotoxicité, 2005.

R. Beiras, Chapter 13 -Theory and Practice of Toxicology: Toxicity Testing, pp.215-232, 2018.

W. S. Abbott, A method of computing the effectiveness of an insecticide, J. econ. Entomol, vol.18, issue.2, pp.265-267, 1925.

G. Begum, , 2012.

C. Ferra, , 2008.

T. M. Oliveira and C. Vaz, Marine toxicology: Assays and perspectives for developing countries, in Bioassays2018, pp.387-401

S. H. Hassan, Toxicity assessment using different bioassays and microbial biosensors, Environ Int, vol.92, pp.106-118, 2016.

G. Van-stappen, Introduction, biology and ecology of Artemia, in Manual on the production and use of live food for aquaculture1996, pp.79-106

P. Vanhaecke, Proposal for a short-term toxicity test with Artemia nauplii, Ecotoxicology and Environmental Safety, vol.5, issue.3, pp.382-387, 1981.

P. Sorgeloos, C. Remiche-van-der-wielen, and G. Persoone, The use of Artemia nauplii for toxicity tests-a critical analysis, Ecotoxicology and Environmental Safety, vol.2, issue.3-4, pp.249-255, 1978.

B. S. Nunes, Use of the genus Artemia in ecotoxicity testing, Environmental Pollution, vol.144, issue.2, pp.453-462, 2006.

C. Gaggi, Toxicity and hazard ranking of s-triazine herbicides using microtox® two green algal species and a marine crustacean, Environmental toxicology and chemistry, vol.14, issue.6, pp.1065-1069, 1995.

R. Guerra, Ecotoxicological and chemical evaluation of phenolic compounds in industrial effluents, Chemosphere, vol.44, issue.8, pp.1737-1747, 2001.

X. Sun, E. Kim, and S. Sun, Laboratory study on the ecological impact of sophorolipid used for harmful algae elimination, Chinese Journal of Oceanology and Limnology, vol.28, issue.6, pp.1240-1247, 2010.

N. M. Silva, Screening of Pseudomonas species for biosurfactant production using low-cost substrates, Biocatalysis and Agricultural Biotechnology, vol.3, issue.2, pp.132-139, 2014.

S. Silva, Glycerol as substrate for the production of biosurfactant by Pseudomonas aeruginosa UCP0992, Colloids and Surfaces B: Biointerfaces, vol.79, issue.1, pp.174-183, 2010.

D. K. Santos, Biosurfactant production from Candida lipolytica in bioreactor and evaluation of its toxicity for application as a bioremediation agent, Process Biochemistry, vol.54, pp.20-27, 2017.

F. Widdel and N. Pfennig, Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. Archives of microbiology, vol.129, pp.395-400, 1981.

I. Zrafi-nouira, Molecular diversity analysis and bacterial population dynamics of an adapted seawater microbiota during the degradation of Tunisian zarzatine oil, Biodegradation, vol.20, issue.4, pp.467-486, 2009.

S. Belkaid, M. A. Ladjouzi, and S. Hamdani, Effect of biofilm on naval steel corrosion in natural seawater, Journal of Solid State Electrochemistry, vol.15, issue.3, pp.525-537, 2011.

M. Hassanshahian, M. S. Zeynalipour, and F. H. Musa, Isolation and characterization of crude oil degrading bacteria from the Persian Gulf (Khorramshahr provenance), Marine Pollution Bulletin, vol.82, issue.1-2, pp.39-44, 2014.

S. Mnif, M. Chamkha, and S. Sayadi, Isolation and characterization of Halomonas sp. strain C2SS100, a hydrocarbon-degrading bacterium under hypersaline conditions, Journal of Applied Microbiology, vol.107, issue.3, pp.785-794, 2009.

S. Barathi and N. Vasudevan, Utilization of petroleum hydrocarbons by Pseudomonas fluorescens isolated from a petroleum-contaminated soil, Environ Int, vol.26, pp.413-416, 2001.

J. Zampolli, Biodegradation of variable-chain-length n-alkanes in Rhodococcus opacus R7 and the involvement of an alkane hydroxylase system in the metabolism, vol.4, p.73, 2014.

M. Bouchez-naïtali and J. Vandecasteele, Biosurfactants, an help in the biodegradation of hexadecane? The case of Rhodococcus and Pseudomonas strains, World Journal of Microbiology and Biotechnology, vol.24, issue.9, pp.1901-1907, 2008.

T. H. Jukes and C. R. Cantor, Evolution of protein molecules. Mammalian protein metabolism, vol.3, p.132, 1969.

K. Tamura, MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular biology and evolution, vol.28, pp.2731-2739, 2011.

F. Ferradji, Etude des voies métaboliques de la biodégradabilité des hydrocarbures en vue d'une application d'un procédé de biodépollution des eaux de mer, Chimie industrielle2014

J. Chang, Pseudoxanthomonas kaohsiungensis, sp. nov., a novel bacterium isolated from oil-polluted site produces extracellular surface activity. Systematic and applied microbiology, vol.28, pp.137-144, 2005.

M. Abouseoud, Evaluation of different carbon and nitrogen sources in production of biosurfactant by Pseudomonas fluorescens. Desalination, vol.223, pp.143-151, 2008.

K. Eddouaouda, Characterization of a novel biosurfactant produced by Staphylococcus sp. strain 1E with potential application on hydrocarbon bioremediation, J Basic Microbiol, vol.52, issue.4, pp.408-418, 2012.

M. Morikawa, A new lipopeptide biosurfactant produced by Arthrobacter sp. strain MIS38, Journal of bacteriology, vol.175, pp.6459-6466, 1920.

D. Francy, Emulsification of hydrocarbons by subsurface bacteria, Journal of Industrial Microbiology, vol.8, issue.4, pp.237-245, 1991.

A. A. Bodour, Structure and characterization of flavolipids, a novel class of biosurfactants produced by Flavobacterium sp. strain MTN11, Applied and Environmental Microbiology, vol.70, issue.1, pp.114-120, 2004.

H. Yin, Characteristics of biosurfactant produced by Pseudomonas aeruginosa S6 isolated from oil-containing wastewater, Process Biochemistry, vol.44, issue.3, pp.302-308, 2009.

K. Urum and T. Pekdemir, Evaluation of biosurfactants for crude oil contaminated soil washing, Chemosphere, vol.57, issue.9, pp.1139-1150, 2004.

S. Mnif, Simultaneous hydrocarbon biodegradation and biosurfactant production by oilfield-selected bacteria, Journal of Applied Microbiology, vol.111, issue.3, pp.525-536, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00713642

P. A. Willumsen and U. Karlson, Screening of bacteria, isolated from PAHcontaminated soils, for production of biosurfactants and bioemulsifiers, Biodegradation, vol.7, issue.5, pp.415-423, 1996.

A. H. Khan, Role of nutrients in bacterial biosurfactant production and effect of biosurfactant production on petroleum hydrocarbon biodegradation, Ecological Engineering, vol.104, pp.158-164, 2017.

M. Hassanshahian, G. Emtiazi, and S. Cappello, Isolation and characterization of crude-oil-degrading bacteria from the Persian Gulf and the Caspian Sea, Marine Pollution Bulletin, vol.64, issue.1, pp.7-12, 2012.

K. Rahman, Towards efficient crude oil degradation by a mixed bacterial consortium, Bioresource Technology, vol.85, issue.3, pp.257-261, 2002.

J. Felsenstein, Confidence limits on phylogenies: an approach using the bootstrap. Evolution, vol.39, pp.783-791, 1985.

J. P. Gauthier, H. Hammouri, and S. Othman, A simple observer for nonlinear systems applications to bioreactors, IEEE Transactions on automatic control, vol.37, issue.6, pp.875-880, 1992.

E. Stackebrandt and B. Goebel, Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology, International Journal of Systematic and Evolutionary Microbiology, vol.44, issue.4, pp.846-849, 1994.

M. Kim, Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes, International Journal of Systematic and Evolutionary Microbiology, vol.64, issue.2, pp.346-351, 2014.

B. Kumari, S. N. Singh, and D. P. Singh, Characterization of two biosurfactant producing strains in crude oil degradation, Process Biochemistry, vol.47, issue.12, pp.2463-2471, 2012.

M. Sathishkumar, Biodegradation of crude oil by individual bacterial strains and a mixed bacterial consortium isolated from hydrocarbon contaminated areas, CLEAN-Soil, Air, Water, vol.36, issue.1, pp.92-96, 2008.

S. Kavitha and R. Parimalavalli, Effect of processing methods on proximate composition of cereal and legume flours, Journal of Human Nutrition and Food Science, vol.2, issue.4, p.1051, 2014.

C. Li, Biodegradation of crude oil by a newly isolated strain Rhodococcus sp. JZX-01, Applied Biochemistry and Biotechnology, vol.171, issue.7, pp.1715-1725, 2013.

S. Sharma and A. Pant, Biodegradation and conversion of alkanes and crude oil by a marine Rhodococcus, Biodegradation, vol.11, issue.5, pp.289-294, 2000.

M. Chamkha, Isolation and characterization of Klebsiella oxytoca strain degrading crude oil from a Tunisian off-shore oil field, J Basic Microbiol, vol.51, issue.6, pp.580-589, 2011.

H. Mehdi and E. Giti, Investigation of alkane biodegradation using the microtiter plate method and correlation between biofilm formation, biosurfactant production and crude oil biodegradation, International Biodeterioration & Biodegradation, vol.62, issue.2, pp.170-178, 2008.

Z. Bayat, M. Hassanshahian, and M. A. Hesni, Enrichment and isolation of crude oil degrading bacteria from some mussels collected from the Persian Gulf, Marine Pollution Bulletin, vol.101, issue.1, pp.85-91, 2015.

H. Li, Molecular detection, quantification and distribution of alkanedegrading bacteria in production water from low temperature oilfields, International Biodeterioration & Biodegradation, vol.76, pp.49-57, 2013.

N. B. Huu, Marinobacter aquaeolei sp. nov., a halophilic bacterium isolated from a Vietnamese oil-producing well, International Journal of Systematic and Evolutionary Microbiology, vol.49, issue.2, pp.367-375, 1999.

H. Liu, Isolation and characterization of crude-oil-degrading bacteria from oil-water mixture in Dagang oilfield, China. International Biodeterioration & Biodegradation, vol.87, pp.52-59, 2014.

A. Tanase, Characterization of hydrocarbon-degrading bacterial strains isolated from oil-polluted soil, International Biodeterioration & Biodegradation, vol.84, pp.150-154, 2013.

Y. Pi, Degradation of crude oil and relationship with bacteria and enzymatic activities in laboratory testing, International Biodeterioration & Biodegradation, vol.106, pp.106-116, 2016.

L. A. Bernardez, A rotating disk apparatus for assessing the biodegradation of polycyclic aromatic hydrocarbons transferring from a non-aqueous phase liquid to solutions of surfactant Brij 35, Bioprocess and biosystems engineering, vol.32, issue.3, pp.415-424, 2009.

T. Liu, Biodegradation of n-hexadecane by bacterial strains B1 and B2 isolated from petroleum-contaminated soil. Science China Chemistry, vol.55, pp.1968-1975, 2012.

M. Bouchez-naïtali, Diversity of bacterial strains degrading hexadecane in relation to the mode of substrate uptake, Journal of Applied Microbiology, vol.86, issue.3, pp.421-428, 1999.

W. H. Noordman, The enhancement by surfactants of hexadecane degradation by Pseudomonas aeruginosa varies with substrate availability, Journal of Biotechnology, vol.94, issue.2, pp.195-212, 2002.

Z. Zhang, Degradation of n-alkanes and polycyclic aromatic hydrocarbons in petroleum by a newly isolated Pseudomonas aeruginosa DQ8, Bioresource Technology, vol.102, issue.5, pp.4111-4116, 2011.

L. L. Piccolo, Involvement of an alkane hydroxylase system of Gordonia sp. strain SoCg in degradation of solid n-alkanes, Applied and Environmental Microbiology, vol.77, issue.4, pp.1204-1213, 2011.

H. Liu, Characterization of the medium-and long-chain n-alkanes degrading Pseudomonas aeruginosa strain SJTD-1 and its alkane hydroxylase genes, PloS one, vol.9, issue.8, p.105506, 2014.

L. Rivet, n-Alkane biodegradation by a marine bacterium in the presence of an oleophilic nutriment, Biotechnology letters, vol.15, issue.6, pp.637-640, 1993.

C. A. Rocha, A. M. Pedregosa, and F. Laborda, Biosurfactant-mediated biodegradation of straight and methyl-branched alkanes by Pseudomonas aeruginosa ATCC 55925, vol.1, p.9, 2011.

W. Xia, Biosurfactant produced by novel Pseudomonas sp. WJ6 with biodegradation of n-alkanes and polycyclic aromatic hydrocarbons, J Hazard Mater, vol.276, pp.489-498, 2014.

W. Chen, High efficiency degradation of alkanes and crude oil by a salt-tolerant bacterium Dietzia species CN-3. International Biodeterioration & Biodegradation, vol.118, pp.110-118, 2017.

S. Mishra and S. Singh, Microbial degradation of n-hexadecane in mineral salt medium as mediated by degradative enzymes, Bioresource Technology, vol.111, pp.148-154, 2012.

Y. Liu, Effect of rhamnolipid solubilization on hexadecane bioavailability: enhancement or reduction?, J Hazard Mater, vol.322, pp.394-401, 2017.

Y. Zhang and R. M. Miller, Effect of a Pseudomonas rhamnolipid biosurfactant on cell hydrophobicity and biodegradation of octadecane, Applied and Environmental Microbiology, vol.60, issue.6, pp.2101-2106, 1994.

Z. Hua, Effects of biosurfactants produced by Candida antarctica on the biodegradation of petroleum compounds, World Journal of Microbiology and Biotechnology, vol.20, issue.1, pp.25-29, 2004.

M. Hassanshahian, Isolation and characterization of alkane degrading bacteria from petroleum reservoir waste water in Iran (Kerman and Tehran provenances), Marine Pollution Bulletin, vol.73, issue.1, pp.300-305, 2013.

X. Song, Isolation, characterization of Rhodococcus sp. P14 capable of degrading high-molecular-weight polycyclic aromatic hydrocarbons and aliphatic hydrocarbons, Marine Pollution Bulletin, vol.62, issue.10, pp.2122-2128, 2011.

M. Deng, Isolation and characterization of a novel hydrocarbondegrading bacterium Achromobacter sp. HZ01 from the crude oilcontaminated seawater at the Daya Bay, southern China, Marine Pollution Bulletin, vol.83, issue.1, pp.79-86, 2014.

B. P. Hedlund, A. D. Geiselbrecht, and J. T. Staley, Marinobacter strain NCE312 has a Pseudomonas-like naphthalene dioxygenase, FEMS Microbiology Letters, vol.201, issue.1, pp.47-51, 2001.

K. Das and A. Mukherjee, Differential utilization of pyrene as the sole source of carbon by Bacillus subtilis and Pseudomonas aeruginosa strains: role of biosurfactants in enhancing bioavailability, Journal of Applied Microbiology, vol.102, issue.1, pp.195-203, 2007.

M. Kumar, A halotolerant and thermotolerant Bacillus sp. degrades hydrocarbons and produces tensio-active emulsifying agent, World Journal of Microbiology and Biotechnology, vol.23, issue.2, pp.211-220, 2007.

B. Tiwari, Biodegradation and dissolution of polyaromatic hydrocarbons by Stenotrophomonas sp, Bioresource Technology, vol.216, pp.1102-1105, 2016.

A. Gomes, A. L. Costa, and R. L. Cunha, Impact of oil type and WPI/Tween 80 ratio at the oil-water interface: Adsorption, interfacial rheology and emulsion features, Colloids and Surfaces B: Biointerfaces, vol.164, pp.272-280, 2018.

O. C. Nwinyi and O. O. Amund, Biodegradation of selected polycyclic aromatic hydrocarbons by axenic bacterial species belonging to the genera Lysinibacillus and Paenibacillus, Iranian Journal of Science and Technology, vol.41, issue.3, pp.577-587, 2017.

F. Mesbaiah, Biodégradation des hydrocarbures aromatiques polycycliques et production de biosurfactants par des souches bactériennes thermophiles isolées à partir d'un sol contamine par le pétrole brut de la région de Hassi-Messaoud

I. Ghosh, J. Jasmine, and S. Mukherji, Biodegradation of pyrene by a Pseudomonas aeruginosa strain RS1 isolated from refinery sludge, Bioresource Technology, vol.166, pp.548-558, 2014.

S. Kumari, Simultaneous biodegradation of polyaromatic hydrocarbons by a Stenotrophomonas sp: characterization of nid genes and effect of surfactants on degradation. Indian journal of microbiology, vol.57, pp.60-67, 2017.

M. Taran, Surface active agent production from olive oil in high salt conditions and its process optimization, Polish Journal of Chemical Technology, vol.14, issue.4, pp.30-34, 2012.

P. Chiewpattanakul, Isolation and structure elucidation of biosurfactant from microorganism and its application model in drug delivery system, 2010.
URL : https://hal.archives-ouvertes.fr/tel-01748793

L. Prieto, The production of rhamnolipid by a Pseudomonas aeruginosa strain isolated from a southern coastal zone in Brazil, Chemosphere, vol.71, issue.9, pp.1781-1785, 2008.

T. B. Lotfabad, An efficient biosurfactant-producing bacterium Pseudomonas aeruginosa MR01, isolated from oil excavation areas in south of Iran, Colloids and Surfaces B: Biointerfaces, vol.69, issue.2, pp.183-193, 2009.

M. Marti, Production and characterization of microbial biosurfactants for potential use in oil-spill remediation. Enzyme and microbial technology, vol.55, pp.31-39, 2014.

G. S. Kiran, Optimization and production of a biosurfactant from the sponge-associated marine fungus Aspergillus ustus MSF3, Colloids and Surfaces B: Biointerfaces, vol.73, issue.2, pp.250-256, 2009.

R. M. Patel and A. J. Desai, Surface-active properties of rhamnolipids from Pseudomonas aeruginosa GS3, J Basic Microbiol, vol.37, issue.4, pp.281-286, 1997.

D. Onbasli and B. Aslim, Biosurfactant production in sugar beet molasses by some Pseudomonas spp, J Environ Biol, vol.30, issue.1, pp.161-163, 2009.

M. Mercade, New substrate for biosurfactant production, Bioresource Technology, vol.43, issue.1, pp.1-6, 1993.

V. Shah, M. Jurjevic, and D. Badia, Utilization of restaurant waste oil as a precursor for sophorolipid production. Biotechnology progress, vol.23, pp.512-515, 2007.

J. Kock, Used cooking oil: science tackles a potential health hazard. South African journal of science, vol.92, pp.513-514, 1996.

E. Haba, Screening and production of rhamnolipids by Pseudomonas aeruginosa 47T2 NCIB 40044 from waste frying oils, Journal of Applied Microbiology, vol.88, issue.3, pp.379-387, 2000.

Z. Luo, Optimizing rhamnolipid production by Pseudomonas aeruginosa ATCC 9027 grown on waste frying oil using response surface method and batch-fed fermentation, Journal of Central South University, vol.20, issue.4, pp.1015-1021, 2013.

S. Wadekar, Microbial synthesis of rhamnolipids by Pseudomonas aeruginosa (ATCC 10145) on waste frying oil as low cost carbon source, Preparative Biochemistry and Biotechnology, vol.42, issue.3, pp.249-266, 2012.

R. Thavasi, Biosurfactant production by Pseudomonas aeruginosa from renewable resources. Indian journal of microbiology, vol.51, pp.30-36, 2011.

Z. Sadouk, H. Hacene, and A. Tazerouti, Biosurfactants production from low cost substrate and degradation of diesel oil by a Rhodococcus strain. Oil & Gas Science and Technology-Revue de l'IFP, vol.63, pp.747-753, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02002052

S. Ferhat, Production de biosurfactants par des souches de Brevibacterium et Ochrobacterum isolées du sol de Hassi-Messaoud contamines par le pétrole brut, Chimie industrielle2012, vol.1

A. A. Pantazaki, Sunflower seed oil and oleic acid utilization for the production of rhamnolipids by Thermus thermophilus HB8, Appl Microbiol Biotechnol, vol.88, issue.4, pp.939-951, 2010.

M. Nitschke, S. G. Costa, and J. Contiero, Structure and applications of a rhamnolipid surfactant produced in soybean oil waste, Applied Biochemistry and Biotechnology, vol.160, issue.7, pp.2066-2074, 2010.

C. Chayabutra, J. Wu, and L. K. Ju, Rhamnolipid production by Pseudomonas aeruginosa under denitrification: effects of limiting nutrients and carbon substrates, Biotechnol Bioeng, vol.72, issue.1, pp.25-33, 2001.

R. R. Saikia, Isolation of biosurfactant-producing Pseudomonas aeruginosa RS29 from oil-contaminated soil and evaluation of different nitrogen sources in biosurfactant production, Annals of microbiology, vol.62, issue.2, pp.753-763, 2012.

S. Gabet, Remobilisation d'Hydrocarbures Aromatiques Polycycliques (HAP) présents dans les sols contaminés à l'aide d'un tensioactif d'origine biologique, 2004.

A. Saimmai, S. Udomsilp, and S. Maneerat, Production and characterization of biosurfactant from marine bacterium Inquilinus limosus KB3 grown on lowcost raw materials, Annals of microbiology, vol.63, issue.4, pp.1327-1339, 2013.

S. Anna and L. , Production of biosurfactants from Pseudomonas aeruginosa PA 1 isolated in oil environments, Brazilian Journal of Chemical Engineering, vol.19, issue.2, pp.159-166, 2002.

M. Benincasa and F. R. Accorsini, Pseudomonas aeruginosa LBI production as an integrated process using the wastes from sunflower-oil refining as a substrate, Bioresource Technology, vol.99, issue.9, pp.3843-3849, 2008.

Y. Zhu, Reuse of waste frying oil for production of rhamnolipids using Pseudomonas aeruginosa zju. u1M, Journal of Zhejiang University-Science A, vol.8, issue.9, pp.1514-1520, 2007.

C. Syldatk, Production of four interfacial active rhamnolipids from nalkanes or glycerol by resting cells of Pseudomonas species DSM 2874. Zeitschrift für Naturforschung C, vol.40, pp.61-67, 1985.

W. Bednarski, Application of oil refinery waste in the biosynthesis of glycolipids by yeast, Bioresource Technology, vol.95, issue.1, pp.15-18, 2004.

J. M. Campos, T. L. Stamford, and L. A. Sarubbo, Production of a bioemulsifier with potential application in the food industry, Applied Biochemistry and Biotechnology, vol.172, issue.6, pp.3234-3252, 2014.

C. Cunha, SVGG16: a promising biosurfactant producer isolated from tropical soil during growth with ethanol-blended gasoline, Process Biochemistry, vol.39, issue.12, pp.2277-2282, 2004.

M. Pepi, An antarctic psychrotrophic bacterium Halomonas sp. ANT3b, growing on n-hexadecane, produces a new emulsyfying glycolipid, FEMS Microbiology Ecology, vol.53, issue.1, pp.157-166, 2005.

N. Raddadi, Marinobacter sp. from marine sediments produce highly stable surface-active agents for combatting marine oil spills. Microb Cell Fact, vol.16, p.186, 2017.

S. Kebbouche-gana, Isolation and characterization of halophilic Archaea able to produce biosurfactants, Journal of industrial microbiology & biotechnology, vol.36, issue.5, pp.727-738, 2009.

R. Gandhimathi, Production and characterization of lipopeptide biosurfactant by a sponge-associated marine actinomycetes Nocardiopsis alba MSA10, Bioprocess and biosystems engineering, vol.32, issue.6, pp.825-835, 2009.

G. Ebrahimipour, Bioemulsification activity assessment of an indigenous strain of halotolerant Planococcus and partial characterization of produced biosurfactants, International Journal of Environmental Science and Technology, vol.11, issue.5, pp.1379-1386, 2014.

C. Liu, Biosurfactant production from Pseudomonas taiwanensis L1011 and its application in accelerating the chemical and biological decolorization of azo dyes, Ecotoxicology and Environmental Safety, vol.145, pp.8-15, 2017.

M. Elshikh, Rhamnolipids from non-pathogenic Burkholderia thailandensis E264: physicochemical characterization, antimicrobial and antibiofilm efficacy against oral hygiene related pathogens, New biotechnology, vol.36, pp.26-36, 2017.

C. De-lima, Biosurfactant production by Pseudomonas aeruginosa grown in residual soybean oil, Applied Biochemistry and Biotechnology, vol.152, issue.1, p.156, 2009.

M. A. Bahri, Investigation of SDS, DTAB and CTAB micelle microviscosities by electron spin resonance, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol.290, issue.1-3, pp.206-212, 2006.

J. M. Luna, Characterisation, surface properties and biological activity of a biosurfactant produced from industrial waste by Candida sphaerica UCP0995 for application in the petroleum industry, Colloids and Surfaces B: Biointerfaces, vol.102, pp.202-209, 2013.

S. Ferhat, Screening and preliminary characterization of biosurfactants produced by Ochrobactrum sp. 1C and Brevibacterium sp. 7G isolated from hydrocarbon-contaminated soils, International Biodeterioration & Biodegradation, vol.65, issue.8, pp.1182-1188, 2011.

E. J. Gudiña, Antimicrobial and antiadhesive properties of a biosurfactant isolated from Lactobacillus paracasei ssp. paracasei A20. Letters in applied microbiology, vol.50, pp.419-424, 2010.

N. I. Haddad, J. Wang, and B. Mu, Identification of a biosurfactant producing strain: Bacillus subtilis HOB2. Protein and peptide letters, vol.16, pp.7-13, 2009.

F. A. Bezza and E. M. Chirwa, Production and applications of lipopeptide biosurfactant for bioremediation and oil recovery by Bacillus subtilis CN2, Biochemical engineering journal, vol.101, pp.168-178, 2015.

A. Knoblich, Electron cryo-microscopic studies on micellar shape and size of surfactin, an anionic lipopeptide, Colloids and Surfaces B: Biointerfaces, vol.5, issue.1-2, pp.43-48, 1995.

E. J. Gudiña, Novel bioemulsifier produced by a Paenibacillus strain isolated from crude oil. Microb Cell Fact, vol.14, p.14, 2015.

A. K. Pradhan, Inhibition of pathogenic bacterial biofilm by biosurfactant produced by Lysinibacillus fusiformis S9, Bioprocess and biosystems engineering, vol.37, issue.2, pp.139-149, 2014.

O. Pornsunthorntawee, Structural and physicochemical characterization of crude biosurfactant produced by Pseudomonas aeruginosa SP4 isolated from petroleum-contaminated soil, Bioresource Technology, vol.99, issue.6, pp.1589-1595, 2008.

R. Patowary, Utilization of paneer whey waste for cost-effective production of rhamnolipid biosurfactant, Applied Biochemistry and Biotechnology, vol.180, issue.3, pp.383-399, 2016.

R. M. Jain, Effect of unconventional carbon sources on biosurfactant production and its application in bioremediation, International journal of biological macromolecules, vol.62, pp.52-58, 2013.

D. W. Lee, Biosurfactant-assisted bioremediation of crude oil by indigenous bacteria isolated from Taean beach sediment, Environmental Pollution, vol.241, pp.254-264, 2018.

M. Singer, Standardization of the preparation and quantitation of water-accommodated fractions of petroleum for toxicity testing, Marine Pollution Bulletin, vol.40, issue.11, pp.1007-1016, 2000.

D. Rial, Toxicity of binary mixtures of oil fractions to sea urchin embryos, J Hazard Mater, vol.263, pp.431-440, 2013.

Z. Weiszhár, Complement activation by polyethoxylated pharmaceutical surfactants: Cremophor-EL, Tween-80 and Tween-20, European Journal of Pharmaceutical Sciences, vol.45, issue.4, pp.492-498, 2012.

J. Rocchio, A solvent-free lecithin-Tween 80 system for oil dispersion, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol.533, pp.218-223, 2017.

B. Meyer, Brine shrimp: a convenient general bioassay for active plant constituents, Planta medica, vol.45, issue.05, pp.31-34, 1982.

Í. W. De-frança, Production of a biosurfactant by Bacillus subtilis ICA56 aiming bioremediation of impacted soils, Catalysis Today, vol.255, pp.10-15, 2015.

K. R. Edwards, J. E. Lepo, and M. A. Lewis, Toxicity comparison of biosurfactants and synthetic surfactants used in oil spill remediation to two estuarine species, Marine Pollution Bulletin, vol.46, issue.10, pp.1309-1316, 2003.

D. Rial, Effects of simulated weathering on the toxicity of selected crude oils and their components to sea urchin embryos, J Hazard Mater, vol.260, pp.67-73, 2013.

P. Perrichon, Toxicity assessment of water-accommodated fractions from two different oils using a zebrafish (Danio rerio) embryo-larval bioassay with a multilevel approach, Science of the Total Environment, vol.568, pp.952-966, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01385694

K. W. Fucik, K. A. Carr, and B. J. Balcom, Toxicity of oil and dispersed oil to the eggs and larvae of seven marine fish and invertebrates from the Gulf of Mexico, in The use of chemicals in oil spill response1995

F. M. Mitchell and D. A. Holdway, The acute and chronic toxicity of the dispersants Corexit 9527 and 9500, water accommodated fraction (WAF) of crude oil, and dispersant enhanced WAF (DEWAF) to Hydra viridissima (green hydra), Water Research, vol.34, issue.1, pp.343-348, 2000.

B. Echols, Acute aquatic toxicity studies of Gulf of Mexico water samples collected following the Deepwater Horizon incident, Chemosphere, vol.120, pp.131-137, 2010.

S. Mohanty, J. Jasmine, and S. Mukherji, Practical considerations and challenges involved in surfactant enhanced bioremediation of oil, 2013.

K. Urum, A comparison of the efficiency of different surfactants for removal of crude oil from contaminated soils, Chemosphere, vol.62, issue.9, pp.1403-1410, 2006.

L. Whang, Application of biosurfactants, rhamnolipid, and surfactin, for enhanced biodegradation of diesel-contaminated water and soil, J Hazard Mater, vol.151, issue.1, pp.155-163, 2008.

N. Bordoloi and B. Konwar, Bacterial biosurfactant in enhancing solubility and metabolism of petroleum hydrocarbons, J Hazard Mater, vol.170, issue.1, pp.495-505, 2009.

H. Zhong, Aggregate-based sub-CMC solubilization of n-alkanes by monorhamnolipid biosurfactant, New Journal of Chemistry, vol.40, issue.3, pp.2028-2035, 2016.

R. Thavasi, S. Jayalakshmi, and I. M. Banat, Effect of biosurfactant and fertilizer on biodegradation of crude oil by marine isolates of Bacillus megaterium, Corynebacterium kutscheri and Pseudomonas aeruginosa, Bioresource Technology, vol.102, issue.2, pp.772-778, 2011.

R. Thavasi, S. Jayalakshmi, and I. M. Banat, Application of biosurfactant produced from peanut oil cake by Lactobacillus delbrueckii in biodegradation of crude oil, Bioresource Technology, vol.102, issue.3, pp.3366-3372, 2011.

S. Laorrattanasak, Production and application of gordonia westfalica GY40 biosurfactant for remediation of fuel oil spill, Water, Air, & Soil Pollution, vol.227, issue.9, p.325, 2016.

A. R. Gentili, Bioremediation of crude oil polluted seawater by a hydrocarbon-degrading bacterial strain immobilized on chitin and chitosan flakes, International Biodeterioration & Biodegradation, vol.57, issue.4, pp.222-228, 2006.

K. V. Sajna, Crude oil biodegradation aided by biosurfactants from Pseudozyma sp. NII 08165 or its culture broth, Bioresource Technology, vol.191, pp.133-139, 2015.

Q. Shi, Characterization of heteroatom compounds in a crude oil and its saturates, aromatics, resins, and asphaltenes (SARA) and non-basic nitrogen fractions analyzed by negative-ion electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry, Energy & Fuels, vol.24, issue.4, pp.2545-2553, 2010.

E. Rojo-nieto and J. A. , Perales-Vargas-Machuca, Microbial degradation of PAHs: organisms and environmental compartments, Microbial Degradation of Xenobiotics2012, pp.263-290