, Identification des autres coefficients de conductivité thermique

, projet TOUPIE avec la société Safran Nacelles par exemple), l'étude du comportement à haute température des matériaux composites à matrice thermoplastique est une des thématiques importantes de l, Conclusions Depuis une dizaine d'années et dans le cadre de projet collaboratifs

. Dans-le-domaine-de-l'aéronautique, des matériaux composites à matrice thermoplastique est moins riche que pour les composites à matrice thermodurcissable. Cela constitue un frein à leur développement dans des applications structurelles. En effet, les normes de sécurité du secteur nécessitent de garantir certaines propriétés du matériau durant une période plus ou moins longue (qui dépend de son application), afin d'assurer la sécurité des passagers. Parmi les pré-requis à l'utilisation dans un avion on peut citer la capacité à contenir un feu

, Cette thèse s'inscrit dans la continuite du projet Carnot DECOLLE (développement d'un banc d'essais pour l'étude du comportement mécanique lors d'une exposition à un flux thermique), mené en 2015, Les principaux résultats issus de cette thèse sont résumés ici

, Chapitre 1), trois axes principaux d'études ont été abordés : ? Influence de la température sur le comportement d'un stratifié C/PPS et de ses constituants

, ? Comportement du matériau composite soumis à des sollicitations thermo-mécaniques combinées, vol.3

, Simulation numérique du comportement thermo-mécanique du matériau soumis à un flux thermique

, Comprendre l'évolution de l'état de décomposition d'un matériau soumis à des conditions critiques est nécessaire à la compréhension de l'évolution de ses propriétés

J. , Berthelot : Matériaux composites : Comportement mécanique et analyse des structures, vol.12, p.196, 2005.

S. Bensaid, Contribution à la caractérisation et à la modélisation électromagnétique des matériaux composites anisotropes, 2006.

S. Dermarkar, Matériaux composites à matrice métallique. Techniques de l'ingé-nieur, 1990.

P. Combette and I. Ernoult, Physique des polymères. Enseignement des sciences, vol.14, p.46, 2005.

C. M. Ma, H. Hsia, W. Liu, and J. Hu, Thermal and rheological properties of poly(phenylene sulfide) and poly(ether etherketone) resins and composites, Polymer Composites, vol.8, issue.4, p.46, 1987.

J. Geibel and J. Leland, Polymers Containing Sulfur, Poly(Phenylene Sulfide). In Kirk-Othmer Encyclopedia of Chemical Technology, p.16, 2000.

J. Aucher, Etude comparative du comportement composites à matrice thermoplastique ou thermodurcissable, vol.183, p.189, 2009.
URL : https://hal.archives-ouvertes.fr/tel-00557897

W. Albouy, De la contribution de la visco-élasto-plasticité au comportement en fatigue de composites à matrice thermoplastique et thermodurcissable, vol.17, p.189, 2013.

B. Vieille, W. Albouy, L. Chevalier, and L. Taleb, About the influence of stamping on thermoplastic-based composites for aeronautical applications, Composites Part B : Engineering, vol.45, issue.1, p.16, 2013.

, Tencate : Cetex PPS technical data. Rapport technique, Tencate Advanced Composite, 2000.

. Références,

M. Chabchoub, Contribution à la surveillance de la croissance des fissures par les ondes guidées et émission acoustique des structures stratifiées sous sollicitations statiques et dynamiques, vol.16, p.189, 2017.

P. Vautey, Bilan des performances mécaniques des composites carbone/thermoplastiques pour l'aéronautique, p.16, 1993.

P. Passebon, L'A350 XWB, premier Airbus avec plus de 50% de composites, 2013.

R. Vodicka, Thermoplastics for airframes applications : a review of the properties and repair methods for thermoplastic composites, p.18, 1996.

M. Véricourt, Composites : thermoplastiques contre thermodurcissables, le match, p.18, 2010.

U. Sorathia, C. Beck, and T. Dapp, Residual Strength of Composites during and after Fire Exposure, Journal of Fire & Flammability, vol.11, issue.3, p.61, 1993.

D. Marquis, Caractérisation et modélisation multi-échelle du comportement au feu d'un composite pour son utilisation en construction navale, vol.57, p.88, 2010.

E. Kandare, B. K. Kandola, P. Myler, and G. Edwards, Thermo-mechanical Responses of Fiber-reinforced Epoxy Composites Exposed to High Temperature Environments. Part I : Experimental Data Acquisition, Journal of Composite Materials, vol.44, issue.26, p.23, 2010.

E. Kandare, G. J. Griffin, S. Feih, A. G. Gibson, B. Y. Lattimer et al., Mouritz : Fire structural modelling of fibre-polymer laminates protected with an intumescent coating, Composites Part A : Applied Science and Manufacturing, vol.43, issue.5, pp.793-802, 2012.

A. E. Elmughrabi, A. M. Robinson, and A. G. Gibson, Effect of stress on the fire reaction properties of polymer composite laminates, Engineering Against Fracture, vol.93, p.53, 2008.

A. P. Mouritz and A. G. , Gibson : Fire properties of polymer composite materials. Numéro v. 143 de Solid mechanics and its applications, vol.39, p.68, 2006.

M. M. Hirschler, Smoke and heat release and ignitability as measures of fire hazard from burning of carpet tiles, Fire Safety Journal, vol.18, issue.4, pp.305-324, 1992.

V. Babrauskas and R. D. Peacock, Heat release rate : The single most important variable in fire hazard, Fire Safety Journal, vol.18, issue.3, pp.255-272, 1992.

V. Babrauskas, Development of the cone calorimeter-A bench-scale heat release rate apparatus based on oxygen consumption, Fire and Materials, vol.8, issue.2, pp.81-95, 1984.

. Références,

A. B. Morgan and C. A. Wilkie, An introduction to polymer flame retardancy, its role in materials science, and the current state of the field, Fire retardancy of polymeric materials, vol.23, p.24, 2010.

C. A. Wilkie and A. B. Morgan, éditeurs. Fire retardancy of polymeric materials, 2010.

S. Bourbigot, Comportement au feu des composites. Techniques de l'ingénieur, p.24, 2006.

V. Biasi, Modélisation thermique de la dégradation d'un matériau composite soumis au feu, ISAE, vol.74, p.166, 2014.

Y. I. Dimitrienko, de Solid Mechanics and Its Applications, Thermomechanics of Composite Structures under High Temperatures, vol.224, p.24, 2016.

P. Y. Lagrée, Equation de la chaleur, p.25

J. Bergheau and R. Fortunier, Simulation numérique des transferts thermiques par éléments finis, p.25, 2004.

J. A. Charles and D. W. Wilson, A model of passive thermal nondestructive evaluation of composite laminates, Polymer Composites, vol.2, issue.3, p.25, 1981.

C. A. Griffis, R. A. Masumura, and C. I. Chang, Thermal Response of Graphite Epoxy Composite Subjected to Rapid Heating, Journal of Composite Materials, vol.15, issue.5, p.25, 1981.

D. Drysdale, An introduction to fire dynamics, p.27, 2011.

M. M. Hirschler, Chemical aspects of thermal decomposition of polymeric materials, Fire Retardancy of Polymeric Materials, p.28, 2000.

C. L. Beyler and M. M. Hirschler, Thermal Decomposition of Polymers, SFPE Handbook of Fire Protection Engineering, p.28, 2002.

S. Levchik and C. A. Wilkie, Char Formation, Fire Retardancy of Polymeric Materials, p.28, 2000.

A. F. Grand and C. A. Wilkie, éditeurs. Fire retardancy of polymeric materials. Marcel Dekker, p.29, 2000.

A. I. Balabanovich, W. Schnabel, G. F. Levchik, S. V. Levchik, and C. A. , Wilkie : Influence of high energy radiation on the thermal stability of polyamide-6, Fire Retardancy of Polymers, p.29, 1998.

G. F. Levchik, K. Si, S. V. Levchik, G. Camino, and C. A. Wilkie, The correlation between cross-linking and thermal stability : Cross-linked polystyrenes and polymethacrylates, Polymer Degradation and Stability, vol.65, issue.3, p.29, 1999.

C. M. Ma, H. Hsia, W. Liu, and J. Hu, Studies on Thermogravimetric Properties of Polyphenylene Sulfide and Polyetherether Ketone Resins and Composites, Journal of Thermoplastic Composite Materials, vol.1, issue.1, p.83, 1988.

D. Price and A. R. , Horrocks : Polymer degradation and the matching of FR chemistry to degradation, Fire retardancy of polymeric materials, p.29, 2000.

P. Patel, T. R. Hull, R. E. Lyon, S. Stoliarov, R. N. Walters et al., Investigation of the thermal decomposition and flammability of PEEK and its carbon and glass-fibre composites, Polymer Degradation and Stability, vol.96, issue.1, p.82, 1929.

F. Yao, J. Zheng, M. Qi, W. Wang, and Z. Qi, The thermal decomposition kinetics of poly(ether-ether-ketone) (PEEK) and its carbon fiber composite, Thermochimica Acta, vol.183, p.29

A. Berthereau, Dallies : Fibres de verre de renforcement. Techniques de l'ingénieur, p.29, 2008.

S. Feih and A. P. Mouritz, Tensile properties of carbon fibres and carbon fibre-polymer composites in fire, Composites Part A : Applied Science and Manufacturing, vol.43, issue.5, p.132, 2012.

A. Khawam and D. R. Flanagan, Solid-State Kinetic Models : Basics and Mathematical Fundamentals, The Journal of Physical Chemistry B, vol.110, issue.35, p.32, 2006.

E. Guillaume, Modélisation de la décomposition thermique des matériaux en cas d'incendie, vol.32, p.60, 2013.

M. Day and D. R. , Budgell : Kinetics of the thermal degradation of poly(phenylene sulfide), Thermochimica Acta, vol.203, p.113, 1992.

S. Vyazovkin and C. A. Wight, Model-free and model-fitting approaches to kinetic analysis of isothermal and nonisothermal data, Thermochimica Acta, vol.93, p.96

A. W. Coats and J. P. Redfern, Thermogravimetric analysis. A review, vol.88, p.906, 1053.

P. Budrugeac, The evaluation of the non-isothermal kinetic parameters of the thermal and thermo-oxidative degradation of polymers and polymeric materials : its use and abuse, Polymer Degradation and Stability, vol.71, issue.1, p.34, 2000.

N. Rose, M. L. Bras, S. Bourbigot, and R. Delobel, Thermal oxidative degradation of epoxy resins : evaluation of their heat resistance using invariant kinetic parameters, Polymer Degradation and Stability, vol.45, issue.3, p.93, 1994.

L. Valencia, Experimental and numerical investigation of the thermal decomposition of materials at three scales : application to polyether polyurethane foam used in upholstered furniture, p.33, 2009.
URL : https://hal.archives-ouvertes.fr/tel-00444898

. Références,

P. Budrugeac, Some methodological problems concerning the kinetic analysis of non-isothermal data for thermal and thermo-oxidative degradation of polymers and polymeric materials, Polymer Degradation and Stability, vol.89, issue.2, p.100, 2005.

M. J. Starink, The determination of activation energy from linear heating rate experiments : a comparison of the accuracy of isoconversion methods, Thermochimica Acta, vol.404, issue.1, p.98, 2003.

H. L. Friedman, Kinetics of thermal degradation of char-forming plastics from thermogravimetry, Journal of Polymer Science Part C : Polymer Symposia, vol.6, issue.1, pp.183-195

J. H. Flynn, The 'Temperature Integral' -Its use and abuse, Thermochimica Acta, vol.300, issue.1, p.35, 1997.

M. J. Starink, A new method for the derivation of activation energies from experiments performed at constant heating rate, Thermochimica Acta, vol.288, issue.1, p.35, 1996.

P. Murray and J. White, Kinetics of the thermal dehydration of clays, Transactions and journal of the British Ceramic Society, vol.48, p.35, 1949.

P. Murray and J. White, Kinetics of the thermal dehydration of clays. Part IV : Interpretation of the differential thermal analysis of the clay minerals, Transactions and journal of the British Ceramic Society, vol.54, p.35, 1955.

C. D. Doyle, Estimating isothermal life from thermogravimetric data, Journal of Applied Polymer Science, vol.6, issue.24, p.98, 1962.

J. H. Flynn and L. A. Wall, General treatment of the thermogravimetry of polymers, Journal of Research of the National Bureau of Standards -A. Physics and Chemistry, vol.70, issue.6, p.98, 1966.

T. Ozawa, A New Method of Analyzing Thermogravimetric Data, Bulletin of the Chemical Society of Japan, vol.38, issue.11, p.98, 1965.

G. I. Senum and R. T. Yang, Rational approximations of the integral of the Arrhenius function, Journal of thermal analysis, vol.11, issue.3, p.35

R. E. Lyon, An integral method of nonisothermal kinetic analysis, Thermochimica Acta, vol.297, issue.1, p.35, 1997.

H. E. Kissinger, Variation of peak temperature with heating rate in differential thermal analysis, Journal of Research of the National Bureau of Standards, vol.57, issue.4, p.35, 1956.

H. E. Kissinger, Reaction Kinetics in Differential Thermal Analysis, vol.29, pp.1702-1706

Y. Bai and T. Keller, Modeling of post-fire stiffness of E-glass fiber-reinforced polyester composites, Composites Part A, vol.38, issue.10, p.43, 2007.

. Références,

G. Montaudo, C. Puglisi, and F. Samperi, Primary thermal degradation processes occurring in poly(phenylenesulfide) investigated by direct pyrolysis-mass spectrometry, Journal of Polymer Science Part A : Polymer Chemistry, vol.32, issue.10, p.37, 1994.

D. R. Budgell, M. Day, and J. D. Cooney, Thermal degradation of poly(phenylene sulfide) as monitored by pyrolysis-GC/MS, Polymer Degradation and Stability, vol.43, issue.1, pp.109-115, 1994.

L. H. Perng, Thermal decomposition characteristics of poly(phenylene sulfide) by stepwise Py-GC/MS and TG/MS techniques, Polymer Degradation and Stability, vol.69, issue.3, p.113, 2000.

O. A. Peters and R. H. , Still : The thermal degradation of poly(phenylene sulphide)-Part 1, Polymer Degradation and Stability, vol.42, issue.1, p.37, 1993.

P. Patel, T. R. Hull, R. W. Mccabe, D. Flath, J. Grasmeder et al., Mechanism of thermal decomposition of poly(ether ether ketone) (PEEK) from a review of decomposition studies, Polymer Degradation and Stability, vol.95, issue.5, p.37, 2010.

R. T. Hawkins, Chemistry of the Cure of Poly(p-phenylene sulfide). Macromolecules, vol.9, pp.189-194

L. G. Lage and Y. Kawano, Kinetic studies of thermal decomposition of poly(phenylene sulfide), vol.9, p.90, 1999.

D. Q. Chang, J. X. Liu, N. Mao, and B. Z. Chen, Study on the Thermal Stability of Polyphenylene Sulfide Filter Media by Non-Isothermal Thermogravimetry, vol.663, p.90, 2013.

J. Schuster, D. Heider, K. Sharp, and M. Glowania, Thermal conductivities of three-dimensionally woven fabric composites, Composites Science and Technology, vol.68, issue.9, p.39, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00594916

G. Dupupet, Fibres de carbone. Techniques de l'ingénieur, p.39, 2008.

R. E. Lyon, Plastics and rubber. In Handbook of building materials for fire protection, McGraw-Hill handbooks, vol.39, p.43, 2004.

K. Eiermann and K. Hellwege, Thermal conductivity of high polymers from -180°C to 90°C, vol.57, p.39, 1962.

K. Eiermann, Thermal conductivity of high polymers, Journal of Polymer Science Part C : Polymer Symposia, vol.6, issue.1, p.39, 1964.

C. Pradère, J. C. Batsale, J. M. Goyhénèche, R. Pailler, and S. Dilhaire, Thermal properties of carbon fibers at very high temperature, Carbon, vol.47, issue.3, p.174, 2009.

J. B. Henderson, M. R. Tant, M. P. Doherty, and E. F. O'brien, Characterization of the high-temperature behaviour of a glass-filled polymer composite, Composites, vol.18, issue.3, p.41, 1987.

P. Tranchard, F. Samyn, S. Duquesne, B. Estèbe, and S. Bourbigot, Modelling Behaviour of a Carbon Epoxy Composite Exposed to Fire : Part II-Comparison with Experimental Results, Materials, vol.10, p.470

Y. Bai and T. Keller, High temperature performance of polymer composites, 2014.

R. C. Progelhof, J. L. Throne, and R. R. Ruetsch, Methods for predicting the thermal conductivity of composite systems : A review, Polymer Engineering & Science, vol.16, issue.9, p.41, 1976.

B. Y. Lattimer and J. Ouellette, Properties of composite materials for thermal analysis involving fires, Composites Part A : Applied Science and Manufacturing, vol.37, issue.7, p.45, 2006.

Y. Bai, T. Keller, and T. Vallée, Modeling of stiffness of FRP composites under elevated and high temperatures, Composites Science and Technology, vol.68, p.41, 2008.

N. Grange, P. Tadini, K. Chetehouna, N. Gascoin, I. Reynaud et al., Senave : Determination of thermophysical properties for carbon-reinforced polymerbased composites up to 1000°C, Thermochimica Acta, vol.659, p.41, 2018.

Y. I. Dimitrienko, Thermomechanical behaviour of composite materials and structures under high temperatures : 1. Materials, vol.28, p.41, 1997.

G. W. Hohne, K. H. Breuer, and W. Eysel, Differential scanning calorimetry : Comparison of power compensated and heat flux instruments, Thermochimica Acta, vol.69, issue.1, pp.145-151

B. Wunderlich, Thermal analysis of polymeric materials, p.59081185, 2005.

J. B. Henderson, J. A. Wiebelt, M. R. Tant, and G. R. Moore, A method for the determination of the specific heat and heat of decomposition of composite materials, Thermochimica Acta, vol.57, issue.2, p.42, 1982.

J. B. Henderson and W. D. , Emmerich : Measurement of the specific heat of a glass-filled polymer composite to high temperatures, Thermochimica Acta, vol.131, p.42

C. Lautenberger and C. Fernandez-pello, Pyrolysis modeling, thermal decomposition, and transport processes in combustible solids, Transport phenomena in fires, pp.209-260, 2008.

S. I. Stoliarov and R. N. Walters, Determination of the heats of gasification of polymers using differential scanning calorimetry, Polymer Degradation and Stability, vol.93, issue.2, p.103, 2008.

. Références,

W. J. Frederick and C. C. , Mentzer : Determination of heats of volatilization for polymers by differential scanning calorimetry, Journal of Applied Polymer Science, vol.19, issue.7

J. E. Staggs, The heat of gasification of polymers, Fire Safety Journal, vol.39, issue.8, pp.711-720, 2004.

R. E. Lyon, Polymer Flammability, Encyclopedia of Polymer Science and Technology, vol.43, p.57, 2015.

S. I. Stoliarov, N. Safronava, and R. E. Lyon, The effect of variation in polymer properties on the rate of burning, Fire and Materials, vol.33, issue.6, p.103, 2009.

C. Sauder, Relation microstructure/propriétés à haute température dans les fibres et matrices de carbone, vol.1, p.108, 2001.

C. Pradère, Caractérisation thermique et thermomécanique de fibres de ccarbon et céramique à très haute température, vol.43, p.44, 2004.

D. G. Brady, The crystallinity of poly(phenylene sulfide) and its effect on polymer properties, Journal of Applied Polymer Science, vol.20, issue.9, p.43, 1976.

A. Atreya and S. , An experimental and theoretical investigation into burning characteristics of PPS-glass fiber composites, 8th AIAA/ASME joint thermophysics and heat transfer conference, vol.43, p.126, 2002.

B. Y. Lattimer, J. Ouellette, and J. Trelles, Thermal response of composite materials to elevated temperatures, Fire Technology, vol.47, issue.4, p.75, 2011.

Y. Bai, N. L. Post, J. J. Lesko, and T. Keller, Experimental investigations on temperature-dependent thermo-physical and mechanical properties of pultruded GFRP composites, vol.469, p.51, 2008.

, Groupe Français d'Etude des Carbones : Les carbones. Masson & Cie, p.44, 1965.

J. Schulte-fischedick, S. Seiz, N. Lützenburger, and A. Wanner, Voggenreiter : The crack development on the micro-and mesoscopic scale during the pyrolysis of carbon fibre reinforced plastics to carbon/carbon composites, Composites Part A : Applied Science and Manufacturing, vol.38, issue.10, p.44, 2007.

J. Florio, J. B. Henderson, and F. L. , Test : Measurement of the thermochemical expansion of porous composite materials, High Temperatures -High Pressures, vol.21, p.45, 1989.

M. R. Tant, J. B. Henderson, and C. T. Boyer, Measurement and modelling of the thermochemical expansion of polymer composites, vol.16, p.138, 1986.

P. Boulet, D. Brissinger, A. Collin, Z. Acem, and G. Parent, On the influence of the sample absorptivity when studying the thermal degradation of materials, Materials, vol.8, issue.8, p.46, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01416494

. Références,

C. A. Mahieux, A Systematic Stiffness-Temperature Model for Polymers and Applications to the Prediction of Composite Behavior, vol.46, p.187, 1999.

C. A. Mahieux and K. L. Reifsnider, Property modeling across transition temperatures in polymers : application to thermoplastic systems, Journal of Materials Science, vol.37, p.178, 2002.

S. Wang, J. Zhang, Z. Zhou, G. Fang, and Y. Wang, Compressive and flexural behavior of carbon fiber-reinforced PPS composites at elevated temperature. Mechanics of Advanced Materials and Structures, vol.47, p.48, 2018.

A. G. Gibson, M. E. Torres, T. N. Browne, S. Feih, and A. , Mouritz : High temperature and fire behaviour of continuous glass fibre/polypropylene laminates, Composites Part A : Applied Science and Manufacturing, vol.41, issue.9, p.75, 2010.

T. N. Browne, A model for the structural integrity of composite laminates in fire, vol.48, p.75, 2006.

S. Feih, A. P. Mouritz, Z. Mathys, and A. G. Gibson, Tensile strength modeling of glass fiber-polymer composites in fire, Journal of Composite Materials, vol.41, p.65, 2007.

J. A. Grape and V. Gupta, The effect of temperature on the strength and failure mechanisms of a woven carbon/polyimide laminate under compression, Mechanics of Materials, vol.30, issue.3, p.49, 1998.

N. A. Fleck, P. M. Jelf, and P. T. Curtis, Compressive Failure of Laminated and Woven Composites, Journal of Composites Technology and Research, vol.17, issue.3, p.49, 1995.

N. Nawaz, Modelling and experimental analysis of aerospace composites in fire, vol.49, p.66, 2011.

C. Sauder, J. Lamon, and R. Pailler, The tensile behavior of carbon fibers at high temperatures up to 2400°C, Carbon, vol.42, issue.4, p.49, 2004.

A. G. Gibson, Laminate Theory Analysis of Composites under Load in Fire, Journal of Composite Materials, vol.40, issue.7, p.126, 2006.

S. Timme, V. Trappe, and M. Korzen, Schartel : Fire stability of carbon fiber reinforced polymer shells on the intermediate-scale, Composite Structures, vol.178, p.51, 2017.

A. P. Mouritz and Z. Mathys, Mechanical properties of fire-damaged glassreinforced phenolic composites, Fire and Materials, vol.24, issue.2, p.61, 2000.

A. G. Gibson, The Integrity of Polymer Composites During and After Fire, Journal of Composite Materials, vol.38, issue.15, p.118, 1951.

S. E. Boyd, S. W. Case, and J. J. Lesko, Compression creep rupture behavior of a Références glass/vinyl ester composite subject to isothermal and one-sided heat flux conditions, Composites Part A : Applied Science and Manufacturing, vol.38, issue.6, p.51, 2007.

C. M. Westover, The Compressive Behavior of Glass Fiber Reinforced Composites Subjected to Local Thermal Loading, p.51, 2000.

P. Reulet and G. Leplat, Méthode inverse pour la détermination expérimentale des conductivités thermiques et de la capacité calorifique de matériaux orthotropes en fonction de la température, vol.51, p.52, 2011.

D. Swanson and J. Wolfrum, Time to failure modeling of carbon fiber reinforced polymer composites subject to simultaneous tension and one-sided heat flux, Journal of Composite Materials, p.51, 2018.

A. Zhou and A. Yu, Validating Thermal Response Models Using Bench-Scale and Intermediate-Scale Fire Experiment Data, Mechanics of Advanced Materials and Structures, vol.21, issue.5, p.69, 2014.

Z. Acem, D. Brissinger, A. Collin, G. Parent, T. H. Boulet et al., Surface temperature of carbon composite samples during thermal degradation, International Journal of Thermal Sciences, vol.112, p.53, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01578405

A. G. Gibson, Y. Wu, H. W. Chandler, and J. A. Wilcox, A model for the thermal performance of thick composite laminates in hydrocarbon fires, vol.50, p.69, 1995.

J. B. Henderson, J. A. Wiebelt, and M. R. Tant, A Model for the Thermal Response of Polymer Composite Materials with Experimental Verification, Journal of Composite Materials, vol.19, issue.6, p.68, 1985.

J. Li, J. Gong, and S. I. Stoliarov, Gasification experiments for pyrolysis model parameterization and validation, International Journal of Heat and Mass Transfer, vol.77, p.53, 2014.

N. Cholewa, P. T. Summers, S. Feih, A. P. Mouritz, B. Y. Lattimer et al., Case : A technique for oupled thermomechanical response measurement using Infrared Thermography and Digital Image Correlation (TDIC), Experimental Mechanics, vol.56, issue.2, pp.145-164, 2016.

J. P. Moncheau, Mesure d'émissivité pour la thermographie infrarouge appliquée au diagnostic quantitatif des structures, p.53, 2013.

C. Mercadé, Modélisation de la dégradation d'un matériau composite carbone-époxy soumis à une sollicitation thermo-mécanique couplée. Application aux réservoirs d'hydrogène de type IV, p.54, 2017.

P. Tranchard, F. Samyn, S. Duquesne, M. Thomas, B. Estèbe et al., Fire behaviour of carbon fibre epoxy composite for aircraft : Références Novel test bench and experimental study, Journal of Fire Sciences, vol.33, issue.3, p.58

A. Mouritz and . Mathys, Post-fire mechanical properties of marine polymer composites, Composite Structures, vol.47, issue.1-4, p.72, 1956.

R. Hariharan, F. L. Test, J. Florio, and J. , Henderson : Internal pressure and temperature distribution in decomposing polymer composites, Proceedings of the Ninth International Heat Transfer Conference, vol.56, p.57, 1990.

G. Leplat, C. Huchette, and V. Biasi, Thermal and damage analysis of laserinduced decomposition within carbon/epoxy composite laminates, Journal of Fire Sciences, vol.34, issue.5, p.71, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01401399

E. Schuhler, A. Coppalle, B. Vieille, J. Yon, and Y. Carpier, Behaviour of aeronautical polymer composite to flame : A comparative study of thermoset-and thermoplastic-based laminate, Polymer Degradation and Stability, vol.152, pp.105-115
URL : https://hal.archives-ouvertes.fr/hal-01766590

B. Vieille, A. Coppalle, C. Keller, M. Garda, Q. Viel et al., Correlation between post fire behavior and microstructure degradation of aeronautical polymer composites, Materials & Design, vol.74, pp.76-85
URL : https://hal.archives-ouvertes.fr/hal-01612372

A. Mouritz and Z. Mathys, Post-fire mechanical properties of glass-reinforced polyester composites, Composites Science and Technology, vol.61, issue.4, p.61, 1958.

C. I. Chang, Thermal effects on polymer composite structures, Theoretical and Applied Fracture Mechanics, vol.6, issue.2, p.58, 1986.

B. Vieille, C. Lefebvre, and A. Coppalle, Post fire behavior of carbon fibers Polyphenylene Sulfide-and epoxy-based laminates for aeronautical applications : A comparative study, Materials & Design, vol.63, p.62, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01612416

B. Vieille, A. Coppalle, Y. Carpier, M. A. Maaroufi, and F. Barbe, Influence of matrix nature on the post-fire mechanical behaviour of notched polymer-based composite structures for high temperature applications, Composites Part B : Engineering, vol.100, pp.114-124
URL : https://hal.archives-ouvertes.fr/hal-01611237

M. A. Maaroufi, Y. Carpier, B. Vieille, L. Gilles, A. Coppalle et al., Post-fire compressive behaviour of carbon fibers woven-ply Polyphenylene Sulfide laminates for aeronautical applications, Composites Part B : Engineering, vol.119, p.62, 1960.
URL : https://hal.archives-ouvertes.fr/hal-01766121

P. Berlin, O. Dickman, and F. Larsson, Effects of heat radiation on carbon/PEEK, carbon/epoxy and glass/epoxy composites, Composites, vol.23, issue.4, p.61, 1992.

J. B. Henderson, M. R. Tant, G. R. Moore, and J. , Wiebelt : Determination of kinetic parameters for the thermal decomposition of phenolic ablative materials by a multiple heating rate method, Thermochimica Acta, vol.44, issue.3, p.61, 1981.

Y. Bai, T. Vallée, and T. Keller, Modeling of thermo-physical properties for FRP Références composites under elevated and high temperature, Composites Science and Technology, vol.67, p.62, 2007.

S. Feih, Z. Mathys, A. G. Gibson, and A. P. , Mouritz : Modelling the compression strength of polymer laminates in fire, Composites Part A : Applied Science and Manufacturing, vol.38, issue.11, p.86, 2007.

J. V. Bausano, J. J. Lesko, and S. W. Case, Composite life under sustained compression and one sided simulated fire exposure : Characterization and prediction, Composites Part A : Applied Science and Manufacturing, vol.37, issue.7, p.73, 2006.

L. Liu, J. W. Holmes, G. A. Kardomateas, and V. Birman, Compressive Response of Composites Under Combined Fire and Compression Loading, Fire Technology, vol.47, issue.4, p.62, 2011.

K. Grigoriou and A. P. , Mouritz : Influence of ply stacking pattern on the structural properties of quasi-isotropic carbon-epoxy laminates in fire, Composites Part A : Applied Science and Manufacturing, vol.99, p.64, 2017.

S. E. Boyd, J. V. Bausano, S. W. Case, and J. J. Lesko, Mechanistic Approach to Structural Fire Modeling of Composites, Fire Technology, vol.47, issue.4, p.65, 2011.

L. A. Burns, S. Feih, and A. P. , Mouritz : Compression Failure of Carbon FiberEpoxy Laminates in Fire, Journal of Aircraft, vol.47, issue.2, p.65, 2010.

S. Feih, Z. Mathys, A. G. Gibson, and A. P. , Mouritz : Modelling the tension and compression strengths of polymer laminates in fire, Composites Science and Technology, vol.67, issue.3-4, p.65, 2007.

C. H. Bamford, J. Crank, D. H. Malan, and A. H. Wilson, The combustion of wood. Part I. Mathematical Proceedings of the Cambridge Philosophical Society, vol.42, p.67, 1946.

H. Kung, A mathematical model of wood pyrolysis, Combustion and Flame, vol.18, issue.2, pp.185-195, 1972.

J. B. Henderson and T. E. Wiecek, A mathematical model to predict the thermal response of decomposing, expanding polymer composites, Journal of Composite Materials, vol.21, issue.4, p.70, 1987.

J. Florio, J. B. Henderson, F. L. Test, and R. Hariharan, Characterization of Forced Convection Heat Transfer in Decomposing, Glass-Filled Polymer Composites, Journal of Composite Materials, vol.25, issue.11, p.71, 1991.

S. Shi, J. Liang, and G. Lin, Fang : High temperature thermomechanical behavior of silica-phenolic composite exposed to heat flux environments, Composites Science and Technology, vol.87, p.69, 2013.

C. Vovelle and J. Delfau, Combustion des plastiques. Techniques de l'ingénieur, p.69, 1997.

J. Trelles and B. Y. , Lattimer : Modelling thermal degradation of composite materials, Fire and materials, vol.31, issue.2, p.70, 2007.

. Références,

A. Goupil, J. Craveur, B. Mercier, and P. Barabinot, Decomposing composite material structures : Practical modelling issues for the large-scale fire tests, Journal of Structural Fire Engineering, vol.8, issue.1, p.70, 2017.

M. Mahmood, H. Shokrieh, and . Abdolvand, Three-dimensional modeling and experimental validation of heat transfer in polymer matrix composites exposed to fire, Journal of Composite Materials, vol.45, issue.19, p.70, 2011.

G. S. Springer, Model for Predicting the Mechanical Properties of Composites at Elevated Temperatures, Journal of Reinforced Plastics and Composites, vol.3, issue.1, p.70, 1984.

J. A. Milke and A. J. Vizzini, Thermal response of fire-exposed composites, Technology and Research, vol.13, issue.3, p.70, 1991.

H. L. Mcmanus and G. S. Springer, High temperature thermomechanical behavior of carbon-phenolic and carbon-carbon composites. Part I : analysis, Journal of Composite Materials, vol.26, issue.2, p.71, 1992.

H. L. Mcmanus and G. S. Springer, High Temperature Thermomechanical Behavior of Carbon-Phenolic and Carbon-Carbon Composites. Part II : Results, Journal of Composite Materials, vol.26, issue.2, p.71, 1992.

S. Shi, L. Li, G. Fang, J. Liang, F. Yi et al., Three-dimensional modeling and experimental validation of thermomechanical response of FRP composites exposed to one-sided heat flux, Materials & Design, vol.99, p.72, 2016.

L. Liu and J. W. Holmes, Experimental Investigation of the Buckling of Polymeric Composites During Simultaneous High Heat Flux Exposure and Compressive Loading, Journal of Composite Materials, vol.41, issue.2, pp.221-241

P. T. Summers, B. Y. Lattimer, S. W. Case, and S. Feih, Sensitivity of thermostructural model for composite laminates in fire, Composites Part A : Applied Science and Manufacturing, vol.43, issue.5, p.71, 2012.

D. Anilturk and W. S. Chan, Structural stability of composite laminated column exposed to high temperature or fire : rross, Journal of Composite Materials, vol.37, issue.8, p.73, 2003.

B. Budiansky and N. A. Fleck, Compressive failure of fibre composites, Journal of the Mechanics and Physics of Solids, vol.41, issue.1, p.73, 1993.

P. T. Summers, B. Y. Lattimer, S. W. Case, and S. Feih, Predicting compression failure of composite laminates in fire, Composites Part A : Applied Science and Manufacturing, vol.43, issue.5, p.73, 2012.

C. Lautenberger, G. Rein, and C. Fernandez-pello, The application of a genetic algorithm to estimate material properties for fire modeling from bench-scale fire test data, Fire Safety Journal, vol.41, issue.3, p.156, 2006.

M. Chaos, M. M. Khan, N. Krishnamoorthy, J. L. De-ris, and S. B. , Dorofeev : Evaluation of optimization schemes and determination of solid fuel properties for Références CFD fire models using bench-scale pyrolysis tests, Proceedings of the Combustion Institute, vol.33, p.74, 2011.

L. J. Fogel, A. J. Owens, and M. J. Walsh, Intelligent decision making through a simulation of evolution, Behavioral Science, vol.11, issue.4, p.74, 1966.

J. H. Holland, Adaptation in natural and artificial systems : an introductory analysis with applications to biology, control, and artificial intelligence. Complex adaptive systems

B. Y. Lattimer, J. Ouellette, and J. Trelles, Measuring properties for material decomposition modeling, Fire and Materials, vol.35, issue.1, p.74, 2011.

C. Cain and B. Y. , Lattimer : Measuring Properties for Material Decomposition Modeling, Journal of ASTM International, vol.7, issue.1, p.166, 2009.

G. Leplat and V. Biasi, Méthode d'homogénéisation avancée appliquée à l'identification des propriétés thermophysiques des matériaux composites soumis au feu, Actes du Congrès Français de Thermique

M. Reading and D. J. Hourston, Modulated Temperature Differential Scanning Calorimetry : Theoretical and Practical Applications in Polymer Characterisation, 2006.

J. H. Flynn, The historical development of applied nonisothermal kinetics, Thermal Analysis, vol.2, p.81, 1969.

R. L. Blaine and B. K. Hahn, Obtaining Kinetic Parameters by Modulated Thermogravimetry, Journal of Thermal Analysis and Calorimetry, vol.54, issue.2, p.81, 1998.

Y. Bo, C. Yanmo, Y. Hao, S. Bin, and Z. Meifang, Kinetics of the thermal degradation of hyperbranched poly(phenylene sulfide), Journal of Applied Polymer Science, vol.111, issue.4, pp.1900-1904, 2009.

X. Li, M. Huang, H. Bai, and Y. Yang, High-resolution thermogravimetry of polyphenylene sulfide film under four atmospheres, Journal of Applied Polymer Science, vol.83, issue.10, p.90, 2002.

E. Urbanovici and E. Segal, General Kinetic Equation for Solid State Reactions, Journal of Thermal Analysis and Calorimetry, vol.55, issue.3, p.90, 1999.

A. W. Coats and J. P. Redfern, Kinetic Parameters from Thermogravimetric Data, Nature, vol.201, issue.4914, p.92, 1964.

S. Vyazovkin, A unified approach to kinetic processing of nonisothermal data, International Journal of Chemical Kinetics, vol.28, issue.2, p.100, 1996.

D. Marquis, V. Scoarnec, B. Hay, J. Hameury, C. Chivas et al., Impact de la connaissance des propriétés thermophysiques dans les simulations incendie : exemple des difficultés de mesure de la conductivité thermique du balsa en température, Congrès Français de Thermique, 2011.

T. Osada, M. Mizoguchi, and M. Kotaki, Initial micro fracture behavior of woven fabric composites, Proceedings of the 13th International Conference on Composite Materials, Bejing, vol.108, p.197, 2001.

S. V. Lomov, . Ph, E. Boisse, F. Deluycker, K. Morestin et al., Full-field strain measurements in textile deformability studies, Composites Part A : Applied Science and Manufacturing, vol.39, issue.8, pp.1232-1244, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01657911

P. Krawczak, Essais des plastiques renforcés. Techniques de l'ingénieur, vol.118, 1997.

S. Rivallant, C. Bouvet, E. Abi-abdallah, B. Broll, and J. Barrau, Experimental analysis of CFRP laminates subjected to compression after impact : The role of impact-induced cracks in failure, Composite Structures, pp.147-157
URL : https://hal.archives-ouvertes.fr/hal-00933459

P. Thureau, Fluxmètres thermiques. Techniques de l'ingénieur, p.119, 1996.

Y. Carpier, B. Vieille, M. A. Maaroufi, A. Coppalle, and F. Barbe, Mechanical behavior of carbon fibers polyphenylene sulfide composites exposed to radiant heat flux and constant compressive force, Composite Structures, vol.200, p.134, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02018719

P. M. Moran and C. F. , Shih : Kink band propagation and broadening in ductile matrix fiber composites : Experiments and analysis, International Journal of Solids and Structures, vol.35, issue.15, p.136, 1998.

P. Ladeveze and E. Ledantec, Damage modelling of the elementary ply for laminated composites, Composites Science and Technology, vol.43, issue.3, pp.257-267

Y. Carpier, F. Barbe, B. Vieille, and A. Coppalle, Identification of thermal properties and decomposition modelling of carbon fibers-PPS composites exposed to fire, 18th European Conference on Composite Materials, Athènes, p.153, 2018.

R. Le-riche and G. Cailletaud, A mixed evolutionary/heuristic approach to shape optimization, International Journal for Numerical Methods in Engineering, vol.41, issue.8, pp.1463-1484, 1998.
URL : https://hal.archives-ouvertes.fr/emse-00759353

A. C. Long and L. P. Brown, Modelling the geometry of textile reinforcements for composites : TexGen. In Composite Reinforcements for Optimum Performance, p.161, 2011.

S. Daggumati, Concurrent modelling and experimental analysis of meso-scale strain fields and damage in woven composites under static and fatigue tensile loading. dissertation, vol.163, p.179, 2011.

, Torayca : T300 Data sheet N°CFA-001, p.168

S. Vyazovkin, Advanced isoconversional method, Journal of Thermal Analysis and Calorimetry, vol.49, issue.3, pp.1493-1499, 1997.

. Références,

S. Vyazovkin, Evaluation of activation energy of thermally stimulated solidstate reactions under arbitrary variation of temperature, Journal of Computational Chemistry, vol.18, issue.3, p.192, 1997.

Y. Bai, Material and structural performance of fiber-reinforced polymer composites at elevated and high temperatures, Citeseer, p.193, 2009.

J. Lankford, Compressive failure of fibre-reinforced composites : buckling, kinking, and the role of the interphase, Journal of Materials Science, vol.30, issue.17, pp.4343-4348, 0196.

S. T. Pinho, R. Gutkin, S. Pimenta, N. V. De-carvalho, and P. Robinson, Fibredominated compressive failure in polymer matrix composites, Failure mechanisms in polymer m atrix composites, pp.183-223, 0196.

M. Karayaka and P. Kurath, Deformation and Failure Behavior of Woven Composite Laminates, Journal of Engineering Materials, vol.116, issue.2, p.222, 0197.