A. Aharoni and G. Galili, Metabolic engineering of the plant primary-secondary metabolism interface, Curr. Opin. Biotechnol, vol.22, pp.239-244, 2011.

M. Albertini, E. Carcouet, O. Pailly, C. Gambotti, F. Luro et al., Changes in Organic Acids and Sugars during Early Stages of Development of Acidic and Acidless Citrus Fruit, J. Agric. Food Chem, vol.54, pp.8335-8339, 2006.

D. Aune, E. Giovannucci, P. Boffetta, L. T. Fadnes, N. Keum et al., Fruit and vegetable intake and the risk of cardiovascular disease, total cancer and all-cause mortality-a systematic review and dose-response meta-analysis of prospective studies, Int. J. Epidemiol, vol.46, pp.1029-1056, 2017.

H. Bae, S. K. Yun, J. H. Jun, I. K. Yoon, E. Y. Nam et al., Assessment of organic acid and sugar composition in apricot, plumcot, plum, and peach during fruit development, J. Appl. Bot. Food Qual, vol.87, pp.24-29, 2014.

P. Baldet, C. Ferrand, and C. Rothan, Vitamins in Fleshy Fruit, Fruit ripening : Physiology, Signalling and Genomics (USA), 2014.

M. H. Barros, F. M. Da-cunha, G. A. Oliveira, E. B. Tahara, and A. J. Kowaltowski, Yeast as a model to study mitochondrial mechanisms in ageing, Mech. Ageing Dev, vol.131, pp.494-502, 2010.

C. S. Barry and J. J. Giovannoni, Ethylene and Fruit Ripening, J. Plant Growth Regul, vol.26, pp.143-159, 2007.

O. Batz, R. Scheibe, and H. E. Neuhaus, Purification of chloroplasts from fruits of green pepper (Capsicum anuum L.) and characterization of starch synthesis, Planta, vol.196, pp.50-57, 1995.

F. A. Bazzaz, N. R. Chiariello, P. D. Coley, and L. F. Pitelka, Allocating Resources to Reproduction and Defense, BioScience, vol.37, pp.58-67, 1987.

A. Beauvoit, B. Belouah, I. Bertin, N. Cakpo, C. B. Colombié et al., Putting primary metabolism into perspective to obtain better fruits, Ann. Bot, vol.122, pp.1-21, 2018.

B. P. Beauvoit, S. Colombie, A. Monier, M. Andrieu, B. Biais et al., ModelAssisted Analysis of Sugar Metabolism throughout Tomato Fruit Development Reveals Enzyme and Carrier Properties in Relation to Vacuole Expansion, Plant Cell, vol.26, pp.3224-3242, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01058814

S. Bernillon, B. Biais, C. Deborde, M. Maucourt, C. Cabasson et al., Metabolomic and elemental profiling of melon fruit quality as affected by genotype and environment, Metabolomics, vol.9, pp.57-77, 2013.

J. Berüter, M. E. Feusi, and P. Rüedi, Sorbitol and sucrose partitioning in the growing apple fruit, J. Plant Physiol, vol.151, pp.269-276, 1997.

W. F. Beshir and V. B. Mbong, Dynamic labeling reveals temporal changes in carbon Reallocation within the central metabolism of developing apple fruit, Front Plant Sci, vol.8, p.1785, 2017.

B. Biais, C. Benard, B. Beauvoit, S. Colombie, D. Prodhomme et al., Remarkable Reproducibility of Enzyme Activity Profiles in Tomato Fruits Grown under Contrasting Environments Provides a Roadmap for Studies of Fruit Metabolism, Plant Physiol, vol.164, pp.1204-1221, 2014.

S. M. Blankenship, D. D. Ellsworth, P. , and R. , A Ripening Index for Banana Fruit Based on Starch Content, HortTechnology, vol.3, pp.338-339, 1993.

C. Bonghi and G. A. Manganaris, Systems Biology Approaches Reveal New Insights into Mechanisms Regulating Fresh Fruit Quality, OMICs Technologies -Tools for Food Science (Benkeblia N), pp.201-226, 2012.

N. Bouché and H. Fromm, GABA in plants: just a metabolite?, Trends Plant Sci, vol.9, pp.110-115, 2004.

D. M. Braun, L. Wang, and Y. Ruan, Understanding and manipulating sucrose phloem loading, unloading, metabolism, and signalling to enhance crop yield and food security, J. Exp. Bot, vol.65, pp.1713-1735, 2013.

P. Brookfield, P. Murphy, R. Harker, and E. Macrae, Starch degradation and starch pattern indices; interpretation and relationship to maturity, Postharvest Biol. Technol, vol.11, pp.1416-1422, 1997.

H. Brückner and T. Westhauser, Chromatographic determination of D-amino acids as native constituents of vegetables and fruits, Chromatographia, vol.39, pp.419-426, 1994.

J. N. Burdon and R. Sexton, Fruit abscission and ethylene production of four blackberry cultivars (Rubus spp, Ann. Appl. Biol, vol.123, pp.121-132, 1993.

L. F. Burroughs, The free amino-acids of certain British fruits, J. Sci. Food Agric, vol.11, pp.14-18, 1960.

E. Butelli, L. Titta, M. Giorgio, H. Mock, A. Matros et al., Enrichement of tomato fruit with healt-promoting anthocyanins by expression of selected transcription factors, Nat. Biotechnol, vol.26, pp.1301-1308, 2008.

R. Butowt, D. Granot, and M. I. Rodríguez-garcía, A Putative Plastidic Glucose Translocator is Expressed in Heterotrophic Tissues that do not Contain Starch, during Olive (Olea europea L.) Fruit Ripening, Plant Cell Physiol, vol.44, pp.1152-1161, 2003.

K. Cao, Z. Zheng, L. Wang, X. Liu, G. Zhu et al., Comparative population genomics reveals the domestication history of the peach, Prunus persica, and human influences on perennial fruit crops, Genome Biol, vol.15, pp.1-15, 2014.

S. Caretto, V. Linsalata, G. Colella, G. Mita, and V. Lattanzio, Carbon Fluxes between Primary Metabolism and Phenolic Pathway in Plant Tissues under Stress, Int. J. Mol. Sci, vol.16, pp.26378-26394, 2015.

C. Chen, Y. Yuan, C. Zhang, H. Li, F. Ma et al., Sucrose phloem unloading follows an apoplastic pathway with high sucrose synthase in Actinidia fruit, Plant Sci, vol.255, pp.40-50, 2017.

A. Chen, J. Wang, Z. Wu, J. Wang, Q. Hu et al., Chemical compositional characterization of eight pear cultivars grown in China, Food Chem, vol.104, pp.268-275, 2007.

J. Cheng, S. Wen, S. Xiao, B. Lu, M. Ma et al., Overexpression of the tonoplast sugar transporter CmTST2 in melon fruit increases sugar accumulation, J. Exp. Bot, vol.69, pp.511-523, 2018.

G. Cirillo, M. Curcio, O. Vittorio, F. Lemma, D. Restuccia et al., Polyphenol conjugates and human health: a perspective review, Crit. Rev. Food Sci. Nutr, vol.56, pp.326-337, 2014.

S. Cohen, M. Itkin, Y. Yeselson, G. Tzuri, V. Portnoy et al., The PH gene determines fruit acidity and contributes to the evolution of sweet melons, Nat. Commun, vol.5, pp.1-9, 2014.

S. Colombié, C. Nazaret, C. Bénard, B. Biais, V. Mengin et al., Modelling central metabolic fluxes by constraint-based optimization reveals metabolic reprogramming of developing Solanum lycopersicon (tomato) fruit, Plant J, vol.81, pp.24-39, 2015.

N. Dai, S. Cohen, V. Portnoy, G. Tzuri, R. Harel-beja et al., Metabolism of soluble sugars in developing melon fruit: a global transcriptional view of the metabolic transition to sucrose accumulation, Plant Mol. Biol, vol.76, pp.1-18, 2011.

Z. W. Dai, C. Léon, R. Feil, J. E. Lunn, S. Delrot et al., Metabolic profiling reveals coordinated switches in primary carbohydrate metabolism in grape berry (Vitis vinifera L.), a non-climacteric fleshy fruit, J. Exp. Bot, vol.64, pp.1345-1355, 2013.

Z. Dai, H. Wu, V. Baldazzi, C. Van-leeuwen, N. Bertin et al., Inter-Species Comparative Analysis of Components of Soluble Sugar Concentration in Fleshy Fruits, Front. Plant Sci, vol.7, pp.1-12, 2016.

A. De-angeli, U. Baetz, R. Francisco, J. Zhang, M. M. Chaves et al., The vacuolar channel VvALMT9 mediates malate and tartrate accumulation in berries of Vitis vinifera, Planta, vol.238, pp.283-291, 2013.

S. Debolt, D. R. Cook, and C. M. Ford, L-tartaric acid synthesis from vitamin C in higher plants, Proc. Natl. Acad. Sci, vol.103, pp.5608-5613, 2006.

F. C. Doerflinger, W. B. Miller, J. F. Nock, and C. B. Watkins, Relationships between starch pattern indices and starch concentrations in four apple cultivars, Postharvest Biol. Technol, vol.110, pp.86-95, 2015.

S. R. Drake and T. A. Eisele, Carbohydrate and Acid Contents of Gala Apples and Bartlett Pears from Regular and Controlled Atmosphere Storage, J. Agric. Food Chem, vol.47, pp.3181-3184, 1999.

A. Etienne, M. Génard, P. Lobit, D. Mbéguié-a-mbéguié, and C. Bugaud, What controls fleshy fruit acidity? A review of malate and citrate accumulation in fruit cells, J. Exp. Bot, vol.64, pp.1451-1469, 2013.

F. Famiani, A. Battistelli, S. Moscatello, J. G. Cruz-castillo, and R. P. Walker, The organic acids that are accumulated in the flesh of fruits: occurrence, metabolism and factors affecting their contents -a review, Rev. Chapingo Ser. Hortic, vol.21, pp.97-128, 2015.

F. Famiani, D. Farinelli, T. Frioni, A. Palliotti, A. Batistelli et al., Malate as substrate for catabolism and gluconeogenesis during ripening in the pericarp of different grape cultivars, Biol. Plant, vol.60, pp.155-162, 2016.

T. Fang, Q. Zhen, L. Liao, A. Owiti, L. Zhao et al., Variation of ascorbic acid concentration in fruits of cultivated and wild apples, Food Chem, vol.225, pp.132-137, 2017.

O. Fiehn, Metabolic networks of Cucurbita maxima phloem, Phytochemistry, vol.62, pp.875-886, 2003.

W. W. Fish and B. D. Bruton, Quantification of L-citrulline and other physiologic amino acids in watermelon and various cucurbits, Proc Amer Soc Hort Sci, vol.10, pp.152-154, 2010.

, Annexes

P. Flores, P. Hellín, and J. Fenoll, Determination of organic acids in fruits and vegetables by liquid chromatography with tandem-mass spectrometry, Food Chem, vol.132, pp.1049-1054, 2012.

P. Fraser and P. M. Bramley, The biosynthesis and nutritional uses of carotenoids, Prog. Lipid Res, vol.43, pp.228-265, 2004.

E. Fridman, F. Carrari, Y. .. Liu, A. R. Fernie, and D. Zamir, Zooming In on a Quantitative Trait for Tomato Yield Using Interspecific Introgressions, Science, vol.305, pp.1786-1789, 2004.

Q. Fu, L. Cheng, Y. Guo, T. , and R. , Phloem loading strategies and water relations in trees and herbaceous plants, Plant Physiol, 2011.

L. Gao, S. Zhao, X. Lu, N. He, and W. Liu, SW', a New Watermelon Cultivar with a Sweet and Sour Flavor, HortScience, vol.53, pp.895-896, 2018.

Q. Gascuel, G. Diretto, A. J. Monforte, A. M. Fortes, and A. Granell, Use of Natural Diversity and Biotechnology to Increase the Quality and Nutritional Content of Tomato and Grape, Front. Plant Sci, vol.8, pp.1-24, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01607346

I. Gonda, R. Davidovich-rikanati, E. Bar, S. Lev, P. Jhirad et al., Differential metabolism of L-phenylalaninein the formation of aromatic volatiles in melon (Cucumis melo) fruit, Phytochemistry, vol.148, pp.122-131, 2018.

N. Gould, D. R. Morrison, M. J. Clearwater, S. Ong, H. L. Boldingh et al., Elucidating the sugar import pathway into developing kiwifruit berries (Actinidia deliciosa), N. Z. J. Crop Hortic. Sci, vol.41, pp.189-206, 2013.

A. M. Gourieroux, B. P. Holzapfel, G. R. Scollary, M. E. Mccully, M. J. Canny et al., The amino acid distribution in rachis xylem sap and phloem exudate of Vitis vinifera 'Cabernet Sauvignon' bunches, Plant Physiol. Biochem, vol.105, pp.45-54, 2016.

A. Gritsunov, J. Peek, J. Diaz-caballero, D. Guttman, and D. Christendat, Structural and biochemical approaches uncover multiple evolutionary trajectories of plant quinate dehydrogenases, Plant J, 2018.

L. Guan, B. Wu, G. Hilbert, S. Li, E. Gomès et al., Cluster shading modifies amino acids in grape (Vitis vinifera L.) berries in a genotype-and tissue-dependent manner, Food Res. Int, vol.98, pp.2-9, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01608726

S. Guillaumie, A. Ilg, S. Réty, M. Brette, C. Trossat-magnin et al., Genetic analysis of the biosynthesis of 2-methox-3-isobutylpyrazine, a major grape-derived aroma compound impacting wine quality, Plant Physiol, vol.162, pp.604-615, 2013.

A. J. Hall, P. E. Minchin, M. J. Clearwater, and M. Génard, A biophysical model of kiwifruit (Actinidia deliciosa) berry development, J. Exp. Bot, vol.64, pp.5473-5483, 2013.

K. Haug, R. M. Salek, P. Conesa, J. Hastings, P. De-matos et al., MetaboLights-an open-access general-purpose repository for metabolomics studies and associated meta-data, Nucleic Acids Res, vol.41, pp.781-786, 2013.

F. Hijaz and N. Killiny, Collection and Chemical Composition of Phloem Sap from Citrus sinensis L. Osbeck (Sweet Orange), PLoS ONE, vol.9, pp.1-11, 2014.

S. A. Hill, A. Rees, and T. , Fluxes of carbohydrate-metabolism in ripening bananas, Planta, vol.192, pp.52-60, 1994.

L. Hu, H. Sun, R. Li, L. Zhang, S. Wang et al., Phloem unloading follows an extensive apoplasmic pathway in cucumber (Cucumis sativus L.) fruit from anthesis to marketable maturing stage, Plant Cell Environ, vol.34, pp.1835-1848, 2011.

L. Hu, F. Meng, S. Wang, X. Sui, W. Li et al., Changes in carbohydrate levels and their metabolic enzymes in leaves, phloem sap and mesocarp during cucumber (Cucumis sativus L.) fruit development, Sci. Hortic, vol.121, pp.131-137, 2009.

, Annexes

N. L. Hubbard, D. M. Pharr, and S. C. Huber, Sucrose metabolism in ripening muskmelon fruit as affected by leaf area, J. Am. Soc. Hortic. Sci, vol.115, pp.798-802, 1990.

S. B. Hussain, C. Shi, L. Guo, H. M. Kamran, A. Sadka et al., Recent advances in the regulation of citric Acid Metabolism in Citrus Fruit, Crit. Rev. Plant Sci, vol.36, pp.241-256, 2017.

M. Itkin, U. Heinig, O. Tzfadia, A. J. Bhide, B. Shinde et al., Biosynthesis of Antinutritional Alkaloids in Solanaceous Crops Is Mediated by Clustered Genes, Science, vol.1240230, 2013.

L. Jaakola, New insights into the regulation of anthocyanin biosynthesis in fruits, Trends Plant Sci, vol.18, pp.477-483, 2013.

P. Jaiswal, S. Avraham, K. Ilic, E. A. Kellogg, S. Mccouch et al., Plant Ontology (PO): a Controlled Vocabulary of Plant Structures and Growth Stages, Comp. Funct. Genomics, vol.6, pp.388-397, 2005.

K. H. Jensen, K. Berg-sørensen, H. Bruus, N. M. Holbrook, J. Liesche et al., Sap flow and sugar transport in plants, Rev. Mod. Phys, vol.88, p.35007, 2016.

K. H. Jensen, J. A. Savage, and N. M. Holbrook, Optimal concentration for sugar transport in plants, J. R. Soc. Interface, vol.10, 2013.

D. Jia, F. Shen, Y. Wang, T. Wu, X. Xu et al., Apple fruit acidity is genetically diversified by natural variations in three hierarchical epistatic genes: MdSAUR37, MdPP2CH and MdALMTII, Plant J, vol.95, pp.427-443, 2018.

V. Joshi and A. R. Fernie, Citrulline metabolism in plants, Amino Acids, vol.49, pp.1543-1539, 2017.

C. Jourda, C. Cardi, O. Gibert, G. Toro, A. Ricci et al., Lineage-Specific Evolutionary Histories and Regulation of Major Starch Metabolism Genes during Banana Ripening, Front. Plant Sci, vol.7, pp.1-21, 2016.

E. Katz, K. H. Boo, R. A. Eigenheer, B. S. Phinney, V. Shulaev et al., Label-free shotgun proteomics and metabolite analysis reveal a significant, J. Exp. Bot, vol.62, pp.5367-5384, 2011.

J. G. Kim, K. Beppu, and I. Kataoka, Physical and compositional characteristics of 'mitsuko' and local hardy kiwifruits in Japan, Hortic. Environ. Biotechnol, vol.53, pp.1-8, 2012.

K. Klages, H. Donnison, H. Boldingh, and E. Macrae, myo-Inositol is the major sugar in Actinidia arguta during early fruit development, Aust. J. Plant Physiol, vol.25, pp.61-67, 1998.

S. Klie, S. Osorio, T. Tohge, M. F. Drincovich, A. Fait et al., Conserved Changes in the Dynamics of Metabolic Processes during Fruit Development and Ripening across Species, Plant Physiol, vol.164, pp.55-68, 2014.

N. Kozukue, E. Kozukue, M. Kishiguchi, and S. Lee, Studies on keeping-quality of vegetables and fruits. III. Changes in sugar and organic acid contents accompanying the chilling-injury of eggplant fruits, Sci. Hortic, vol.8, pp.90065-90066, 1978.

K. Kurihara, Umami the fith basic taste: history of studies on receptor and role as a food flavor, BioMed Res. Int, p.189402, 2015.

P. Legua, J. B. Forner, F. Hernández, and M. A. Forner-giner, Total phenolics, organic acids, sugars and antioxidant activity of mandarin (Citrus clementina Hort. ex Tan.): Variation from rootstock, Sci. Hortic, vol.174, pp.60-64, 2014.

D. Li and F. Zhu, Physicochemical properties of kiwifruit starch, Food Chem, vol.220, pp.129-136, 2017.

J. Liesche, P. , and J. , An update on phloem transport: a simple bulk flow under complex regulation, vol.6, pp.1-12, 1000.

R. Lo-bianco and M. Rieger, Partitioning of Sorbitol and Sucrose Catabolism within Peach Fruit, J. Am. Soc. Hortic. Sci, vol.127, pp.115-121, 2002.

A. Lü, P. Yu, S. Zhu, N. Chen, Y. Zhou et al., Genome encode analyses reveal the basis of convergent evolution of fleshy fruit ripening, Nat. Plants, vol.4, pp.784-791, 2018.

D. I. Makrogianni, A. Tsistraki, I. C. Karapanos, and H. C. Passam, Nutritional value and antioxidant content of seed-containing and seedless eggplant fruits of two cultivars grown under protected cultivation during autumn-winter and spring-summer: Properties of seed-containing and seedless eggplants, J. Sci. Food Agric, vol.97, pp.3752-3760, 2017.

K. B. Marsh, H. L. Boldingh, R. S. Shilton, and W. A. Laing, Changes in quinic acid metabolism during fruit development in three kiwifruit species, Funct. Plant Biol, vol.36, pp.463-470, 2009.

R. F. Mcfeeters, H. P. Fleming, and R. L. Thompson, Malic and Citric Acids in Pickling Cucumbers, J. Food Sci, vol.47, pp.1859-1861, 1982.

T. Mechthild and U. Hammes, The way out and in: phloem loading and unloading of amino acids, Curr. Opin. Plant Biol, vol.43, pp.16-21, 2018.

J. Mehouachi, D. Serna, S. Zaragoza, M. Agusti, M. Talon et al., Defoliation increases fruit abscission and reduces carbohydrate levels in developing fruits and woody tissues of Citrus unshiu, Plant Sci, vol.107, pp.189-197, 1995.

V. J. Melino, K. L. Soole, and C. M. Ford, Ascorbate metabolism and the developmental demand for tartaric and oxalic acids in ripening grape berries, BMC Plant Biol, vol.9, p.145, 2009.

K. Mesa, S. Serra, A. Masia, F. Gagliardi, D. Bucci et al., Seasonal trends of starch and soluble carbohydrates in fruits and leaves of 'Abbé Fétel' pear trees and their relationship to fruit quality parameters, Sci. Hortic, vol.211, pp.60-69, 2016.

M. Mikulic-petkovsek, V. Schmitzer, A. Slatnar, F. Stampar, and R. Veberic, Composition of Sugars, Organic Acids, and Total Phenolics in 25 Wild or Cultivated Berry Species, J. Food Sci, vol.77, pp.1064-1070, 2012.

D. E. Mitchell, M. V. Gadus, and M. A. Madore, Patterns of Assimilate Production and Translocation in Muskmelon (Cucumis melo L.), Plant Physiol, vol.99, pp.959-965, 1992.

D. Mohnen, Pectin structure and biosynthesis, Curr. Opin. Plant Biol, vol.11, pp.266-277, 2008.

A. Moing, F. Carbonne, B. Zipperlin, L. Svanella, and J. Gaudillère, Phloem loading in peach: symplastic or apoplastic?, Physiol. Plant, vol.101, pp.489-496, 1997.

A. Moing, C. Renaud, M. Gaudillère, P. Raymond, P. Roudeillac et al., Biochemical Changes during Fruit Development of Four Strawberry Cultivars, J. Am. Soc. Hortic. Sci, vol.126, pp.394-403, 2001.

A. Moing, L. Svanella, D. Rolin, J. Gaudillère, M. et al., Compositional Changes during the Fruit Development of Two Peach Cultivars Differing in Juice Acidity, J. Am. Soc. Hortic. Sci, vol.123, pp.770-775, 1998.

L. L. Monti, C. A. Bustamante, S. Osorio, J. Gabilondo, J. Borsani et al., Metabolic profiling of a range of peach fruit varieties reveals high metabolic diversity and commonalities and differences during ripening, Food Chem, vol.190, pp.879-888, 2016.

S. Nardozza, H. L. Boldingh, S. Osorio, M. Höhne, M. Wohlers et al., Metabolic analysis of kiwifruit (Actinidia deliciosa) berries from extreme genotypes reveals hallmarks for fruit starch metabolism, J. Exp. Bot, vol.64, pp.5049-5063, 2013.

T. H. Nielsen, H. C. Skjaerbae, and P. Karlsen, Carbohydrate metabolism during fruit development in sweet pepper (Capsicum annuum) plants, Physiol. Plant, vol.82, pp.311-319, 1991.

I. Ofner, J. Lashbrooke, T. Pleban, A. Aharoni, and D. Zamir, Solanum pennellii backcross inbred lines (BILs) link small genomic bins with tomato traits, Plant J, vol.87, pp.151-160, 2016.

A. Ohkawa, W. Moriya, S. Kanahama, K. Kanayama, and Y. , Re-evaluation of sorbitol metabolism in fruit from rosaceae trees, Acta Hortic, vol.772, pp.159-166, 2008.

N. Ollat, P. Diakou-verdin, J. Carde, F. Barrieu, J. Gaudillère et al., Grape berry development : A review, J. Int. Sci. Vigne Vin, vol.36, pp.109-131, 2002.

S. Osorio, R. Alba, Z. Nikoloski, A. Kochevenko, A. R. Fernie et al., Integrative Comparative Analyses of Transcript and Metabolite Profiles from Pepper and Tomato Ripening and Development Stages Uncovers Species-Specific Patterns of Network Regulatory Behavior, Plant Physiol, vol.159, pp.1713-1729, 2012.

A. Padayachee, L. Day, K. Howell, and M. J. Gidley, Complexity and health functionality of plant cell wall fibers from fruits and vegetables, Crit. Rev. Food Sci. Nutr, vol.57, pp.59-81, 2017.

S. W. Park, K. J. Song, M. Y. Kim, J. Hwang, Y. U. Shin et al., Molecular cloning and characterization of four cDNAs encoding the isoforms of NAD-dependent sorbitol dehydrogenase from the Fuji apple, Plant Sci, vol.162, pp.599-603, 2002.

J. W. Patrick, Phloem Unloading: Sieve Element Unloading and Post-Sieve Element Transport, Annu. Rev. Plant Physiol. Plant Mol. Biol, vol.48, pp.191-222, 1997.

V. Paul, R. Pandey, and G. C. Srivastava, The fading distinctions between classical patterns of ripening in climacteric and non-climacteric fruit and the ubiquity of ethylene : An overview, J. Food Sci. Technol, vol.49, pp.1-21, 2012.

A. G. Pérez, R. Olias, P. Luaces, and C. Sanz, Biosynthesis of strawberry compounds through amino acid metabolism, J. Agric. Food Chem, vol.50, pp.4037-4042, 2002.

M. Petreikov, S. Shen, Y. Yeselson, I. Levin, M. Bar et al., Temporally extended gene expression of the ADP-Glc pyrophosphorylase large subunit (AgpL1) leads to increased enzyme activity in developing tomato fruit, Planta, vol.224, pp.1465-1479, 2006.

M. Petreikov, L. Yeselson, S. Shen, I. Levin, A. A. Schaffer et al., Carbohydrate Balance and Accumulation during Development of Near-isogenic Tomato Lines Differing in the AGPase-L1 Allele, J. Am. Soc. Hortic. Sci, vol.134, pp.134-140, 2009.

P. Porto-figueira, A. Freitas, C. J. Cruz, J. Figueira, and J. S. Câmara, Profiling of passion fruit volatiles: An effective tool to discriminate between species and varieties, Food Res. Int, vol.77, pp.408-418, 2015.

T. N. Prabha and N. Bhagyalakshmi, Carbohydrate metabolism in ripening banana fruit, Phytochemistry, vol.48, pp.915-919, 1998.

L. Qiao, M. Cao, J. Zheng, Y. Zhao, and Z. Zheng, Gene coexpression network analysis of fruit transcriptomes uncovers a possible mechanistically distinct class of sugar/acid ratioassociated genes in sweet orange, BMC Plant Biol, vol.17, pp.1-13, 2017.

E. J. Reidel, E. A. Rennie, V. Amiard, L. Cheng, T. et al., Phloem loading strategies in three plant species that transport sugar alcohols, Plant Physiol, vol.149, pp.1601-1608, 2009.

W. Reiter, Biochemical genetics of nucleotide sugar interconversion reactions, Curr. Opin. Plant Biol, vol.11, pp.236-243, 2008.

W. Reiter, Biosynthesis and properties of the plant cell wall, Curr. Opin. Plant Biol, vol.5, pp.536-542, 2002.

W. Reiter and G. F. Vanzin, Molecular genetics of nucleotide sugar interconversion pathways in plants, Plant Cell Walls, pp.95-113, 2001.

E. A. Rennie, T. , and R. , A comprehensive picture of phloem loading strategies, Proc. Natl. Acad. Sci, vol.106, pp.14162-14167, 2009.

A. C. Richardson, H. L. Boldingh, P. A. Mcatee, K. Gunaseelan, Z. Luo et al., Fruit development of the diploid kiwifruit, Actinidia chinensis "Hort16A, BMC Plant Biol, vol.11, p.182, 2011.

A. Rodriguez-casado and A. , The Health Potential of Fruits and Vegetables Phytochemicals: Notable Examples, Crit. Rev. Food Sci. Nutr, vol.56, pp.1097-1107, 2016.

Y. Ruan and J. W. Patrick, The cellular pathway of postphloem sugar transport in developing tomato fruit, Planta, vol.196, pp.434-444, 1995.

Y. Ruan, J. W. Patrick, M. Bouzayen, S. Osorio, and A. R. Fernie, Molecular regulation of seed and fruit set, Trends Plant Sci, vol.17, pp.656-665, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00780280

A. Sadka, E. Dahan, E. Or, M. L. Roose, K. B. Marsh et al., Comparative analysis of mitochondrial citrate synthase gene structure, transcript level and enzymatic activity in acidless and acid-containing Citrus varieties, Funct. Plant Biol, vol.28, pp.383-390, 2001.

M. Saladié, J. Cañizares, M. A. Phillips, M. Rodriguez-concepcion, C. Larrigaudière et al., Comparative transcriptional profiling analysis of developing melon (Cucumis melo L.) fruit from climacteric and non-climacteric varieties, BMC Genomics, vol.16, 2015.

F. Sato, T. Hashimoto, A. Hachiya, K. Tamura, K. Choi et al., Metabolic engineering of plant alkaloid biosynthesis, Proc. Natl. Acad. Sci, vol.98, pp.367-372, 2001.

A. A. Schaffer and M. Petreikov, Sucrose-to-Starch Metabolism in Tomato Fruit Undergoing Transient Starch Accumulation, Plant Physiol, vol.113, pp.739-746, 1997.

N. Schauer, D. Zamir, and A. R. Fernie, Metabolic profiling of leaves and fruit of wild species tomato: a survey of the Solanum lycopersicum complex, J. Exp. Bot, vol.56, pp.297-307, 2004.

P. Schläpfer, P. Zhang, C. Wang, T. Kim, M. Banf et al., Genome-Wide Prediction of Metabolic Enzymes, Pathways, and Gene Clusters in Plants, Plant Physiol, vol.173, pp.2041-2059, 2017.

T. Shimada, R. Nakano, V. Shulaev, A. Sadka, and E. Blumwald, Vacuolar citrate/H + symporter of citrus juice cells, Planta, vol.224, pp.472-480, 2006.

Y. Shinozaki, P. Nicolas, N. Fernandez-pozo, Q. Ma, D. J. Evanich et al., Highresolution spatiotemporal transcriptome mapping of tomato fruit development and ripening, Nat. Commun, vol.9, pp.1-13, 2018.

E. J. Souleyre, P. P. Iannetta, H. A. Ross, R. D. Hancock, L. V. Shepherd et al., Starch metabolism in developing strawberry (Fragaria x ananassa) fruits, Physiol. Plant, vol.121, pp.369-376, 2004.

M. C. Steinhauser, D. Steinhauser, K. Koehl, F. Carrari, Y. Gibon et al., Enzyme Activity Profiles during Fruit Development in Tomato Cultivars and Solanum pennellii, Plant Physiol, vol.153, pp.80-98, 2010.

C. A. Swanson and E. D. El-shishiny, Translocation of sugars in the Concord grape, Plant Physiol, vol.33, p.33, 1958.

L. J. Sweetlove, K. F. Beard, A. Nunes-nesi, A. R. Fernie, and R. G. Ratcliffe, Not just a circle: flux modes in the plant TCA cycle, Trends Plant Sci, vol.15, pp.462-470, 2010.

C. Sweetman, L. G. Deluc, G. R. Cramer, C. M. Ford, and K. L. Soole, Regulation of malate metabolism in grape berry and other developing fruits, Phytochemistry, vol.70, pp.1329-1344, 2009.

L. Szalay, M. Ordidge, G. Ficzek, P. Hadley, M. Tóth et al., Grouping of 24 apple cultivars on the basis of starch degradation rate and their fruit pattern, Hortic. Sci, vol.40, pp.93-101, 2013.

M. Tegeder and U. Z. Hammes, The way out and in: phloem loading and unloading of amino acids, Curr. Opin. Plant Biol, vol.43, pp.16-21, 2018.

. The-international-peach-genome-initiative, I. Verde, A. G. Abbott, S. Scalabrin, S. Jung et al., The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution, Nat. Genet, vol.45, pp.487-494, 2013.

A. Thevenet, D. Pastor, V. Baccelli, I. Balmer, A. Vallat et al., The priming molecule ? -aminobutyric acid is naturally present in plants and is induced by stress, New Phytol, vol.213, pp.552-559, 2017.

U. Tril, J. Fernández-lópez, J. A. Pérez-alvarez, and M. Vuida-martos, Chemical, physiochemical, technological, antibacterialand antioxydant properties of rich-fibre powder extract obtained from tamarind, Tamarindus indica L.). Ind. Crops Prod, vol.55, pp.155-162, 2014.

W. L. Turner and W. C. Plaxton, Purification and characterization of pyrophosphate-and ATPdependent phosphofructokinases from banana fruit, Planta, vol.217, pp.113-121, 2003.

V. Usenik, J. Fab?i?, and F. ?tampar, Sugars, organic acids, phenolic composition and antioxidant activity of sweet cherry (Prunus avium L.), Food Chem, vol.107, pp.185-192, 2008.

R. Verpoorte, Secondary Metabolism, Metabolic Engineering of Plant Secondary Metabolism, pp.1-29, 2000.

R. P. Walker, A. Batistelli, S. Moscatello, L. Técsi, R. C. Leegood et al., Phosphoenolpyruvate carboxykinase and gluconeogenesis in grape pericarp, Plant Physiol. Biochem, vol.97, pp.62-69, 2015.

G. Wang, M. Xu, W. Wang, and G. Gad, Fortifying horticutural crops with essential amino acids: a review, Int. J. Mol. Sci, vol.18, p.1306, 2017.

H. C. Wang, H. B. Huang, X. M. Huang, and Z. Q. Hu, Sugar and acid compositions in the arils of Litchi chinensis Sonn.: cultivar differences and evidence for the absence of succinic acid, J. Hortic. Sci. Biotechnol, vol.81, pp.57-62, 2006.

L. Wang, F. He, Y. Huang, J. He, S. Yang et al., Genome of Wild Mandarin and Domestication History of Mandarin, Mol. Plant, vol.11, pp.1024-1037, 2018.

L. Wang, X. Sun, J. Weiszmann, W. , and W. , System-level and Granger network analysis of integrated proteomic and metabolomic dynamics identitfies key points of grape berry develoment at teh interface of primary and secondary metabolism, Front Plant Sci, vol.8, p.1066, 2017.

P. Wang, J. Fang, Z. Gao, C. Zhang, and S. Xie, Higher intake of fruits, vegetables or their fiber reduces the risk of type 2 diabetes: A meta-analysis, J. Diabetes Investig, vol.7, pp.56-69, 2016.

Y. Wang, S. G. Wyllie, and D. N. Leach, Chemical Changes during the Development and Ripening of the Fruit of Cucumis melo (Cv. Makdimon), J. Agric. Food Chem, vol.44, pp.210-216, 1996.

G. C. Whiting, The non-volatile organic acids of some berry fruits, J. Sci. Food Agric, vol.9, pp.244-248, 1958.

R. B. Wills, F. M. Scriven, and H. Greenfield, Nutrient composition of stone fruit ( <I>Prunus</i> spp.) cultivars: Apricot, cherry, nectarine, peach and plum, J. Sci. Food Agric, vol.34, pp.1383-1389, 1983.

Y. Xiao, J. Kuang, X. Qi, Y. Ye, Z. Wu et al., A comprehensive investigation of starch degradation process and identification of a transcriptional activator MabHLH6 during banana fruit ripening, Plant Biotechnol. J, vol.16, pp.151-164, 2018.

X. Yang, J. Xie, F. Wang, J. Zhong, Y. Liu et al., Comparison of ascorbate metabolism in fruits of two citrus species with obvious difference in ascorbate content in pulp, J. Plant Physiol, vol.168, pp.2196-2205, 2011.

Y. Yao, M. Li, H. Zhei, C. You, and Y. Hao, Isolation and characterization of an apple cytosolic malate dehydrogenase gene reveal its function in malate synthesis, J Plant Physiol, vol.168, pp.474-480, 2011.

J. Ye, X. Wang, T. Hu, F. Zhang, B. Wang et al., An InDel in the Promoter of Al-ACTIVATED MALATE TRANSPORTER9 Selected during Tomato Domestication Determines Fruit Malate Contents and Aluminum Tolerance, Plant Cell, vol.29, pp.2249-2268, 2017.

S. Yelle, J. D. Hewitt, N. L. Robinson, S. Damon, and A. B. Bennett, Sink Metabolism in Tomato Fruit : III. Analysis of Carbohydrate Assimilation in a Wild Species, Plant Physiol, vol.87, pp.737-740, 1988.

R. Yoshida, T. Tamura, C. Takaoka, K. Harada, A. Kobayashi et al., , 2010.

, Metabolomics-based systematic prediction of yeast lifespan and its application for semi-rational screening of ageing-related mutants: Semi-rational screening of ageing-related mutants, Aging Cell, vol.9, pp.616-625

H. Zhang and Y. Ge, Dynamics of sugar-metabolic enzymes and sugars accumulation during watermelon (Citrullus lanatus) fruit developement, Pak. J. Bot, vol.48, pp.2535-2538, 2016.

L. Zhang, Y. Peng, S. Pelleschi-travier, Y. Fan, Y. Lu et al., Evidence for apoplasmic phloem unloading in developing apple fruit, Plant Physiol, vol.135, pp.574-586, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00107313

P. Zhang, R. L. Whistler, J. N. Bemiller, and B. R. Hamaker, Banana starch: production, physicochemical properties, and digestibility-a review, Carbohydr. Polym, vol.59, pp.443-458, 2005.

X. Zhang, X. Wang, X. Wang, G. Xia, Q. Pan et al., A shift of phloem unloading from symplasmic to apoplasmic pathway is involved in developmental onset of ripening in grape berry, Plant Physiol, vol.142, pp.220-232, 2006.

Y. Zhang, P. Li, and L. Cheng, Developmental changes of carbohydrates, organic acids, amino acids, and phenolic compounds in 'Honeycrisp' apple flesh, Food Chem, vol.123, pp.1013-1018, 2010.

R. Zhong, Y. , and Z. , Secondary Cell Walls: Biosynthesis, Patterned Deposition and Transcriptional Regulation, Plant Cell Physiol, vol.56, pp.195-214, 2015.

G. Zhu, S. Wang, Z. Huang, S. Zhang, Q. Liao et al., Rewiring of the Fruit Metabolome in Tomato Breeding, Cell, vol.172, pp.249-261, 2018.

, Evolution des concentrations des métabolites au cours du développement des fruits, vol.8

, Profils des évolutions des métabolites au cours du développement du poivron en µmol/fruit Annexes Annexe, vol.10