.. .. Clustering,

.. .. Principe,

.. .. Critères-d'agglomération, 84 Avantages et inconvénients de certains critères, p.85

, Formule de mise à jour des distances, vol.87

?. .. Comment-déterminer-le-nombre-de-parcelles,

. .. Algorithme-de-ward,

.. .. Calcul-de-la-matrice-de-distances,

, 2.3.1 Comment obtenir la répartition des vecteurs dans les parcelles, p.95

, Comment trouver la distance minimale et mettre à jour la distance ?

. .. Analyse-de-complexité,

. Parallélisation and . .. Ward,

.. .. Calcul,

. .. Matriciels, 2 Nombres triangulaires et conversion d'indices vectoriels

. .. Supérieures, 112 Transformation ? 1 des indices matriciels vers l'indice vectoriel, Cas des matrices triangulaires

, Cas des matrices triangulaires supérieures strictes

. .. Cas-d'une-matrice-triangulaire-inférieure,

. .. Cas-d'une-matrice-triangulaire-inférieure-stricte, , p.120

.. .. Stockage,

. .. De-la-parallélisation, 129 7.5.1 Calcul de la distance par découpage des lignes et

. Exemple, Regrouper les carrés en fonction de leur couleur

.. .. Clustering,

.. .. Critère,

.. .. Critère,

.. .. Lien-moyen,

. .. Lien-moyen-Équilibré,

. .. Méthode-du-centroïde,

.. .. Méthode-de-la-médiane,

. Exemple,

.. .. Exemple-:-lien-moyen,

. .. Exemple-:-centroïde,

. .. Exemple-:-médiane,

.. .. Exemple-:-critère-de-ward,

, Exemple : Dendrogramme avec le critère du saut minimal

, Exemple : Dendrogramme avec le critère du saut maximal

.. .. Exemple-:-dendrogramme-avec-le-lien-moyen,

, Exemple : Dendrogramme avec le lien moyen équilibré

, Exemple : Dendrogramme avec la méthode du centroïde

, Exemple : Dendrogramme avec la méthode de la médiane

.. .. Exemple-:-dendrogramme-avec-le-critère-de-ward,

]. .. ,

, Détermination du nombre optimal de parcelles pour l'exemple des carrés de couleur, p.93

.. .. Voisinage-d'un-point-dans-r-3,

, Exemple de dendrogramme pour 10 éléments à parcelliser

, Obtention de la composition des clusters à partir de mergedClusters, p.98

. .. , Obtention de la composition des clusters à partir de parent, p.99

. .. De-ward, Les diérentes parallélisations possibles de l'algorithme, vol.104

, Calcul de la distance par découpage en tuiles

. .. , Transformation d'une matrice triangulaire supérieure en vecteur, vol.109

, Transformation d'une matrice triangulaire supérieure stricte en vecteur, p.109

. .. , Transformation d'une matrice triangulaire inférieure en vecteur, p.110

. .. Premiers-nombres-triangulaires,

, Mise en évidence des nombres triangulaires parmi les indices vectoriels, p.113

, Construction du vecteur de distances à l'aide des triangles de construction des t n, p.113

, Article wikipédia sur l'analyse en composantes indépendantes

A. Abraham, E. Dohmatob, B. Thirion, D. Samaras, G. Varoquaux et al., Extracting Brain Regions from Rest fMRI with Total-Variation Constrained Dictionary Learning, in Medical Image Computing and Computer-Assisted Intervention MICCAI, vol.8150, p.607615, 2013.

A. Abraham, F. Pedregosa, M. Eickenberg, P. Gervais, A. Mueller et al., Machine learning for neuroimaging with scikit-learn, Frontiers in Neuroinformatics, vol.8, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01093971

D. A. Abrams, S. Ryali, T. Chen, P. Chordia, A. Khouzam et al., Inter-subject synchronization of brain responses during natural music listening, European Journal of Neuroscience, vol.37, p.14581469, 2013.

G. Aguirre, E. Zarahn, and M. D'esposito, The variability of human, bold hemodynamic responses, NeuroImage, vol.8, pp.360-369, 1998.

C. Allefeld and J. Haynes, Searchlight-based multi-voxel pattern analysis of fMRI by cross-validated MANOVA, NeuroImage, vol.89, p.345357, 2014.

M. Altafwani and S. M. Quadri, Accelerated Parallel Generation of Binomial Coefcients using GPU, International Journal of Computer Applications, vol.71, p.1113, 2013.

P. Amestoy and M. Daydé, Calcul Réparti et Grid Computing

F. Andreelli and H. Mosbah, Irm fonctionnelle cérébrale : les principes, Médecine des Maladies Métaboliques, vol.8, pp.13-19, 2014.

M. Angeletti, J. Bonny, F. Durif, and J. Koko, Parallel hierarchical agglomerative clustering for fmri data, Parallel Processing and Applied Mathematics, p.265275, 2018.

, Methods in Consumer Research, vol.2, 20188.

S. Arslan, S. I. Ktena, A. Makropoulos, E. C. Robinson, D. Rueckert et al., Human brain mapping : A systematic comparison of parcellation methods for the human cerebral cortex, NeuroImage, vol.170, p.530, 2018.

S. Arslan and D. Rueckert, Multi-Level Parcellation of the Cerebral Cortex Using Resting-State fMRI, Medical Image Computing and Computer-Assisted Intervention, vol.257

N. Bibliographie-miccai-2015, J. Navab, W. M. Hornegger, and . Wells, , vol.9351, p.4754, 2015.

J. Ashburner, A fast dieomorphic image registration algorithm, NeuroImage, vol.38, pp.95-113, 2007.

M. Bacha-trams, E. Glerean, R. Dunbar, J. M. Lahnakoski, E. Ryyppö et al., Dierential inter-subject correlation of brain activity when kinship is a variable in moral dilemma, Scientic Reports, p.7, 2017.

M. Bader and C. Zenger, Cache oblivious matrix multiplication using an element ordering based on a peano curve, Linear Algebra and its Applications, vol.417, p.301313, 2006.

R. Baumgartner, L. Ryner, W. Richter, R. Summers, M. Jarmasz et al., Comparison of two exploratory data analysis methods for fMRI : fuzzy clustering vs. principal component analysis, Magnetic Resonance Imaging, vol.18, p.8994, 2000.

E. B. Beall and M. J. Lowe, Isolating physiologic noise sources with independently determined spatial measures, NeuroImage, vol.37, p.12861300, 2007.

C. Beckmann and S. M. Smith, Tensorial extensions of independent component analysis for multisubject FMRI analysis, NeuroImage, 2005.

C. F. Beckmann, Modelling with independent components, NeuroImage, 2012.

Y. Behzadi, K. Restom, J. Liau, and T. T. Liu, A Component Based Noise Correction Method (CompCor) for BOLD and Perfusion Based fMRI, NeuroImage, vol.37, pp.90-101, 2007.

Y. Benjamini and Y. Hochberg, Controlling the false discovery rate-a pratical and powerful approach for multiple testing, Journal of the Royal Statistical Society, 1995.

C. M. Bennett, A. A. Baird, M. B. Miller, and G. L. Wolford, Neural Correlates of Interspecies Perspective Taking in the Post-Mortem Atlantic Salmon : An Argument For Proper Multiple Comparisons Correction, Journal of Serendipitous and Unexpected Results, 2009.

C. M. Bennett, G. L. Wolford, and M. B. Miller, The principled control of false positives in neuroimaging, Tools of the Trade, 2009.

R. M. Birn, P. A. Bandettini, R. W. Cox, A. Jesmanowicz, and R. Shaker, Magnetic eld changes in the human brain due to swallowing or speaking, Magnetic Resonance in Medicine, vol.40, p.5560, 1998.

J. M. Bonny, C. Sinding, and T. Thomas-danguin, Functional MRI and Sensory Perception of Food, p.120, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01603146

E. N. Brown and M. Behrmann, Controversy in statistical analysis of functional magnetic resonance imaging data, Proceedings of the National Academy of Sciences, vol.114, pp.3368-3369, 2017.

A. Buettner, Observation of the Swallowing Process by Application of Videouoroscopy and Real-time Magnetic Resonance ImagingConsequences for Retronasal Aroma Stimulation, Chemical Senses, vol.26, p.12111219, 2001.

E. Bullmore, M. Brammer, S. Rabe-hesketh, V. Curtis, R. Morris et al., Methods for diagnosis and treatment of stimulus-correlated motion in generic brain activation studies using fMRI, Human Brain Mapping, vol.7, p.3848, 1999.

A. Buttari, Multicore and multicore programmaing with openmp

R. B. Buxton, E. C. Wong, and L. R. Frank, Dynamics of blood ow and oxygenation changes during brain activation : The balloon model, Magnetic Resonance in Medicine, vol.39, p.855864, 1998.

C. Caballero-gaudes and R. C. Reynolds, Methods for cleaning the BOLD fMRI signal, NeuroImage, vol.154, p.128149, 2017.

V. Calhoun, T. Adali, G. Pearlson, and J. Pekar, A Method for Making Group Inference from Functional MRI Data Using Indepednent Component Analysis, Human Brain Mapping, 2001.

V. D. Calhoun, T. Adali, V. B. Mcginty, J. Pekar, T. Watson et al., Pearlson, fMRI Activation in a Visual-Perception Task : Network of Areas Detected Using the General Linear Model and Independent Components Analysis, NeuroImage, p.14, 2001.

V. D. Calhoun, T. Adali, G. D. Pearlson, and J. J. Pekar, Spatial and temporal independent component analysis of functional MRI data containing a pair of task-related waveforms, Human brain mapping, vol.13, p.4353, 2001.

V. D. Calhoun, J. Liu, and T. , A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic, and ERP data, NeuroImage, pp.163-172, 2009.

J. Carp, On the plurality of (methodological) worlds : Estimating the analytic exibility of fmri experiments, Frontiers in Neuroscience, vol.6, p.149, 2012.

, The secret lives of experiments : Methods reporting in the fMRI literature, NeuroImage, vol.63, p.289300, 2012.

B. Cerf-ducastel and C. Murphy, Validation of a stimulation protocol suited to the investigation of odor-taste interactions with fMRI, Physiology&Behaviour, p.81, 2004.

D. Chang, N. A. Jones, D. Li, and M. Ouyang, Compute pairwise euclidean distances of data points with GPUs, 2008.

A. Charpentier, Article sur la valeur

G. Chen, Y. Shin, P. A. Taylor, D. R. Glen, R. C. Reynolds et al., Untangling the relatedness among correlations, part I : Nonparametric approaches to inter-subject correlation analysis at the group level, NeuroImage, vol.142, p.248259, 2016.

G. Chen, P. A. Taylor, and R. W. Cox, Is the statistic value all we should care about in neuroimaging ?, NeuroImage, p.952959, 2017.

J. R. Chumbley and K. J. Friston, False discovery rate revisited : FDR and topolgical inference using Gaussian random eld, 2009.

J. R. Chumbley, K. Worsley, G. Flandinn, and K. J. Friston, Topological FDR for neuroimaging, 2010.

D. Cordes, V. M. Haughton, K. Arfanakis, G. J. Wendt, P. A. Turski et al.,

M. A. Moritz, M. E. Quigley, and . Meyerand, Mapping functionally related regions of brain with functional connectivity mr imaging, American Journal of Neuroradiology, vol.21, p.16361644, 2000.

N. Correa, T. Adali, Y. Li, and V. D. Calhoun, Comparison of blind source separation algorithms for fmri using a new matlab toolbox : Gift, IEEE International Conference on Acoustics, Speech, and Signal Processing, vol.5, 2005.

R. W. Cox, G. Chen, D. R. Glen, R. C. Reynolds, and P. A. Taylor, fMRI clustering and false-positive rates, Proceedings of the National Academy of Sciences, vol.114, pp.3370-3371, 2017.

R. C. Craddock, G. James, P. E. Holtzheimer, X. P. Hu, and H. S. Mayberg, A whole brain fMRI atlas generated via spatially constrained spectral clustering, Human Brain Mapping, vol.33, p.19141928, 2012.

. Nvidia-cuda-c-programming-guide, , 2012.

P. , Parallelization of large vector similarity computations in a hybrid CPU+GPU environment, The Journal of Supercomputing, vol.74, p.768786, 2018.

J. R. Dalenberg, H. R. Hoogeveen, R. J. Renken, D. R. Langers, and G. J. Horst, Functional specialization of the male insula during taste perception, NeuroImage, vol.119, p.210220, 2015.

M. Dash, S. Petrutiu, and P. Scheuermann, Ecient parallel hierarchical clustering, European Conference on Parallel Processing, p.363371, 2004.

I. Daubechies, E. Roussos, S. Takerkart, M. Benharrosh, C. Golden et al., Independent component analysis for brain fMRI does not select for independence, Proceedings of the National Academy of Sciences, vol.106, p.1041510422, 2009.

E. Dayan and L. G. Cohen, Neuroplasticity Subserving Motor Skill Learning, vol.72, p.443454, 2011.

B. Deen and K. Pelphrey, Perspective : Brain scans need a rethink, Nature, p.491, 2012.

S. Dehaen, Neuroimagerie cognitive : principes et limites

Z. Du and F. Lin, A novel parallelization approach for hierarchical clustering, Parallel Computing, vol.31, p.523527, 2005.

V. Eijkhout, Introduction to High Performance Scientic Computing

A. Eklund, M. Andersson, C. Josephson, M. Johannesson, and H. Knutsson, Does parametric fMRI analysis with SPM yield valid results ?An empirical study of 1484 rest datasets, NeuroImage, p.565578, 2012.

A. Eklund, T. E. Nichols, and H. Knutsson, Cluster failure : Why fMRI inferences for spatial extent have inated false-positive rates, Proceedings of the National Academy of Sciences, vol.113, p.79007905, 2016.

. Reply-to-brown, . Behrmann, and . Cox, Data and code sharing is the way forward for fMRI, Proceedings of the National Academy of Sciences, vol.114, pp.3374-3375, 2017.

E. B. Erhardt, S. Rachakonda, E. J. Bedrick, E. A. Allen, T. Adali et al., Comparison of Multi-Subject ICA Methods for Analysis of fMRI Data ?, Human Brain Mapping, 2011.

F. Esposito, T. Scarabino, A. Hyvarinen, J. Himberg, E. Formisano et al., Independent component analysis of fMRI group studies by self-organizing clustering, NeuroImage, 2005.

J. E. Reims and . Spring-school, , 2016.

D. A. Feinberg, S. Moeller, S. M. Smith, E. Auerbach, S. Ramanna et al.,

K. L. Glasser, K. Miller, E. Ugurbil, and . Yacoub, Multiplexed echo planar imaging for sub-second whole brain fmri and fast diusion imaging, PLOS ONE, vol.5, p.111, 2010.

G. Flandin, F. Kherif, X. Pennec, G. Malandain, N. Ayache et al., Improved Detection Sensitivity in Functional MRI Data Using a Brain Parcelling Technique, Medical Image Computing and Computer-Assisted Intervention MICCAI 2002, vol.2488, p.467474, 2002.
URL : https://hal.archives-ouvertes.fr/inria-00615921

M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran, Cache-oblivious algorithms, 40th Annual Symposium on Foundations of Computer Science, FOCS '99, p.285298, 1999.

K. J. Friston, S. Williams, R. Howard, R. S. Frackowiak, and R. Turner, Movement-Related eects in fMRI time-series, Magnetic Resonance in Medicine, vol.35, p.346355, 1996.

A. Fujita, D. Y. Takahashi, A. G. Patriota, and J. R. Sato, A non-parametric statistical test to compare clusters with applications in functional magnetic resonance imaging data, Statistics in Medicine, vol.33, p.49494962, 2014.

G. Gaggioni, P. Maquet, C. Schmidt, D. Dijk, and G. Vandewalle, Neuroimaging, cognition, light and circadian rhythms, Frontiers in Systems Neuroscience, vol.8, 2014.

J. Gao and S. Yee, Iterative temporal clustering analysis for the detection of multiple response peaks in fMRI, Magnetic Resonance Imaging, vol.21, p.5153, 2003.

X. Gao, T. Zhang, and J. Xiong, Comparison between spatial and temporal independent component analysis for blind source separation in fMRI data, Biomedical Engineering and Informatics (BMEI), 2011 4th International Conference on, vol.2, p.690692, 2011.

G. H. Glover, Overview of functional magnetic resonance imaging, Neurosurgery clinics of North America, 2011.

G. H. Glover, T. Li, and D. Ress, Image-based method for retrospective correction of physiological motion eects in fMRI : RETROICOR, Magnetic Resonance in Medicine, vol.44, p.162167, 2000.

Y. Golland, S. Bentin, H. Gelbard, Y. Benjamini, R. Heller et al., Extrinsic and Intrinsic Systems in the Posterior Cortex of the Human Brain Revealed during Natural Sensory Stimulation, Cerebral Cortex, p.17, 2007.

Y. Golland, P. Golland, S. Bentin, and R. Malach, Data-driven clustering reveals a fundamental subdivision of the human cortex into two global system, Neuropsychologia, p.46, 2008.

J. Gonzalez-castillo, G. Chen, T. E. Nichols, and P. A. Bandettini, Variance decomposition for single-subject task-based fMRI activity estimates across many sessions, NeuroImage, vol.154, p.206218, 2017.

J. Gonzalez-castillo, Z. S. Saad, D. A. Handwerker, S. J. Inati, N. Brenowitz et al., Whole-brain, time-locked activation with simple tasks revealed using massive averaging and model-free analysis, Proceedings of the National Academy of Sciences, vol.109, p.54875492, 2012.

S. N. Goodman, D. Fanelli, and J. P. Ioannidis, What does research reproducibility mean ?, Science Translational Medicine, vol.8, pp.341-12341, 2016.

T. K. Goto, A. W. Yeung, J. L. Suen, B. S. Fong, and Y. Ninomiya, High resolution timeintensity recording with synchronized solution delivery system for the human dynamic taste perception, Journal of Neuroscience Methods, vol.245, p.147155, 2015.

L. Gouarin, V. Louvet, and L. Series, Formation en Calcul Scientique -LIEM2i -Introduction au calcul parallèle

T. Grootswagers, S. G. Wardle, and T. A. Carlson, Decoding Dynamic Brain Patterns from Evoked Responses : A Tutorial on Multivariate Pattern Analysis Applied to Time Series Neuroimaging Data, Journal of Cognitive Neuroscience, vol.29, p.677697, 2017.

Q. Guo, M. Parlar, W. Truong, G. Hall, L. Thabane et al., The Reporting of Observational Clinical Functional Magnetic Resonance Imaging Studies : A Systematic Review, PLoS ONE, vol.9, p.94412, 2014.

J. V. Hajnal, R. Myers, A. Oatridge, J. E. Schwieso, I. R. Young et al.,

. Bydder, Artifacts due to stimulus correlated motion in functional imaging of the brain, Magnetic Resonance in Medicine, vol.31, p.283291, 1994.

K. Hamandi, A. Haddadi, A. Liston, H. Laufs, D. Fish et al., fMRI temporal clustering analysis in patients with frequent interictal epileptiform discharges : Comparison with EEG-driven analysis, NeuroImage, vol.26, p.309316, 2005.

D. A. Handwerker, J. M. Ollinger, and M. D'esposito, Variation of bold hemodynamic responses across subjects and brain regions and their eects on statistical analyses, NeuroImage, vol.21, pp.1639-1651, 2004.

S. J. Hanson and B. M. Bly, The distribution of BOLD susceptibility eects in the brain is non-Gaussian, Neuroreport, vol.12, p.19711977, 2001.

U. Hasson, G. Avidan, H. Gelbard, I. Vallines, M. Harel et al., Shared and idiosyncratic cortical activation patterns in autism revealed under continuous real-life viewing conditions, Autism Research, vol.2, p.220231, 2009.

U. Hasson, Y. Nir, I. Levy, G. Fuhrmann, and R. Malach, Intersubject Synchronization of Cortical Activity During Natural Vision, p.303, 2004.

U. Hasson, E. Yang, I. Vallines, D. J. Heeger, and N. Rubin, A Hierarchy of Temporal Receptive Windows in Human Cortex, The Journal of Neuroscience, p.28, 2008.

J. Haynes, A Primer on Pattern-Based Approaches to fMRI : Principles, Pitfalls, and Perspectives, vol.87, p.257270, 2015.

M. N. Hebart and C. I. Baker, Deconstructing multivariate decoding for the study of brain function, NeuroImage, 2017.

M. N. Hebart, K. Görgen, and J. Haynes, The Decoding Toolbox (TDT) : a versatile software package for multivariate analyses of functional imaging data, Frontiers in Neuroinformatics, vol.8, 2015.

R. Heller, D. Stanley, D. Yekutieli, N. Rubin, and Y. Benjamini, Cluster-based analysis of fMRI data, NeuroImage, 2006.

A. Herbec, J. Kauppi, C. Jola, J. Tohka, and F. E. Pollick, Dierences in fMRI intersubject correlation while viewing unedited and edited videos of dance performance, Cortex, pp.341348-263, 2015.

M. Hodgson, R. S. Linforth, and A. J. Taylor, Simultaneous Real-Time Measurements of Mastication, Swallowing, Nasal Airown and Aroma Release, Journal of Agricultural and Food Chemistry, p.51, 2003.

A. Hyvarinen, Independent component analysis : recent advances, Philosophical Transactions of the Royal Society A : Mathematical, Physical and Engineering Sciences, vol.371, p.2011053420110534, 2012.

A. Hyvärinen and E. Oja, Independent component analysis : algorithms and applications, Neural networks, vol.13, p.411430, 2000.

A. Hyvärinen and P. Ramkumar, Testing independent component patterns by intersubject or inter-session consistency, Frontiers in Human Neuroscience, 2013.

, Reims gpu spring school 2016 :intoduction. REIMS GPU SPRING SCHOOL, 2016.

J. P. Ioannidis, Why Most Published Research Findings Are False, PLoS Medicine, vol.2, p.6, 2005.

J. Iranpour, G. Morrot, B. Claise, B. Jean, and J. Bonny, Using High Spatial Resolution to Improve BOLD fMRI Detection at 3t, PLOS ONE, vol.10, p.115, 2015.

G. A. James, O. Hazaroglu, and K. A. Bush, A human brain atlas derived via ncut parcellation of resting-state and task-based fMRI data, Magnetic Resonance Imaging, vol.34, p.209218, 2016.

P. Jezzard and R. S. Balaban, Correction for geometric distortion in echo planar images from b0 eld variations, Magnetic Resonance in Medicine, vol.34, p.6573

W. Johnson, Applied Multivariate Statistical Anlaysis, 2007.

I. P. Jääskeläinen, K. Koskentalo, M. H. Balk, T. Autti, J. Kauramäki et al., Inter-Subject Synchronization of Prefontal Cortex Hemodynamic Activity During Natural Viewing, 2008.

T. Kahnt, L. J. Chang, S. Q. Park, J. Heinzle, and J. Haynes, ConnectivityBased Parcellation of the Human Orbitofrontal Cortex, Journal of Neuroscience, vol.32, p.62406250, 2012.

S. Kalus, L. Bothmann, C. Yassouridis, M. Czisch, P. G. Sämann et al., Statistical modeling of time-dependent fMRI activation eects : Time-Dependent fMRI Activation Eects, Human Brain Mapping, vol.36, p.731743, 2015.

Y. N. Kami, T. K. Goto, K. Tokumori, T. Yoshiura, K. Kobayashi et al., The development of a novel automated taste stimulus delivery system for fmri studies on the human cortical segregation of taste, Journal of Neuroscience Methods, vol.172, pp.48-53, 2008.

. Kauppi, Inter-subject correlation of brain hemodynamic responses during watching a movie : localization in space and frequency, Frontiers in Neuroinformatics, 2010.

J. Kauppi, J. Pajula, and J. Tohka, A versatile software package for inter-subject correlation based analyses of fMRI, Frontiers in Neuroinformatics, vol.8, 2014.

D. Kessler, M. Angstadt, and C. S. Sripada, Reevaluating cluster failure in fMRI using nonparametric control of the false discovery rate, Proceedings of the National Academy of Sciences, vol.114, pp.3372-3373, 2017.

S. Kim and M. Ouyang, Compute Distance Matrices with GPU, Global Science Technology Forum, 2012.

K. K. Kwong, J. W. Belliveau, D. A. Chesler, I. E. Goldberg, R. M. Weisskoff et al., Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation, Proceedings of the National Academy of Sciences, vol.89, p.56755679, 1992.

G. N. Lance and W. T. Williams, A general theory of classicatory sorting strategies 1. hierarchical systems, The Computer Journal, vol.9, p.373380, 1967.

D. Langlois, S. Chartier, and D. Gosselin, An introduction to independent component analysis : InfoMax and FastICA algorithms, Tutorials in Quantitative Methods for Psychology, vol.6, p.3138, 2010.

B. Lenoski, L. C. Baxter, L. J. Karam, J. Maisog, and J. Debbins, On the Performance of Autocorrelation Estimation Algorithms for fMRI Analysis, IEEE Journal of Selected Topics in Signal Processing, vol.2, p.828838, 2008.

N. Leonardi, J. Richiardi, M. Gschwind, S. Simioni, J. Annoni et al., Principal components of functional connectivity : A new approach to study dynamic brain connectivity during rest, vol.83, p.937950, 2013.

Y. Lerner, C. J. Honey, L. J. Silbert, and U. Hasson, Topographic Mapping of a Hierarchy of Temporal Receptive Windows Using a Narrated Story, The Journal of Neuroscience, 2011.

Q. Li, V. Kecman, and R. Salman, A Chunking Method for Euclidean Distance Matrix Calculation on Large Dataset Using Multi-GPU, p.208213, 2010.

X. Li and Z. Fang, Parallel clustering algorithms, Parallel Computing, vol.11, pp.275-290, 1989.

A. Lillywhite, D. Glowinski, A. Camurri, and F. E. Pollick, Using fMRI and intersubject correlation to explore brain activity during audiovisual observation of a string quartet, Frontiers in Human Neuroscience, 2015.

M. A. Lindquist, The Statistical Analysis of fMRI Data, Statistical Science, 2008.

M. A. Lindquist, J. Loh, L. Y. Atlas, and T. D. Wager, Modeling the hemodynamic response function in fMRI : Eciency, bias and mis-modeling, NeuroImage, pp.187-198, 2009.

T. T. Liu, Noise contributions to the fMRI signal : An overview, NeuroImage, vol.143, p.141151, 2016.

T. T. Liu, Y. Behzadi, K. Restom, K. Uludag, K. Lu et al.,

R. B. Dubowitz and . Buxton, Caeine alters the temporal dynamics of the visual BOLD response, NeuroImage, vol.23, p.14021413, 2004.

Y. Liu, J. Gao, H. Liu, and P. T. Fox, The temporal response of the brain after eating revealed by functional MRI, Nature, p.10551058, 2000.

N. K. Logothethis, What we can do and what we cannot do with fmri, vol.453, p.869878, 2008.

N. K. Logothetis, The Underpinnings of the BOLD Functional Magnetic Resonance Imaging Signal, The Journal of Neuroscience, vol.23, p.39633971, 2003.

J. M. Loh, M. Lindquist, and T. Wager, Residual analysis for detecting mis-modeling in fmri, vol.18, p.14211448, 2008.

J. Loula, G. Varoquaux, and B. Thirion, Decoding fmri activity in the time domain improves classication performance, New advances in encoding and decoding of brain signals, vol.180, pp.203-210, 2018.

N. Lu, B. Shan, J. Xu, W. Wang, and K. Li, An improved temporal clustering analysis method applied to whole-brain data in fMRI study, Magnetic Resonance Imaging, vol.25, p.5762, 2007.

W. Luo and T. E. Nichols, Diagnosis and exploration of massively univariate neuroimaging models, NeuroImage, vol.19, p.10141032, 2003.

D. J. Madden, M. C. Costello, N. A. Dennis, S. W. Davis, A. M. Shepler et al., Adult age dierences in functional connectivity during executive control, vol.52, pp.643-657, 2010.

C. D. Manning, P. Raghavan, and H. Schütze, Introduction to Information Retrieval, 2008.

J. Marchini and A. Presanis, Comparing methods of analyzing fMRI statistical parametric maps, NeuroImage, 2004.

F. D. Martino, F. Gentile, F. Esposito, M. Balsi, F. D. Salle et al., Classication of fMRI independent components using IC-ngerprints and support vector machine classiers, NeuroImage, 2007.

J. F. Matias-rodrigues and C. Mering, HPC-CLUST : distributed hierarchical clustering for large sets of nucleotide sequences, Bioinformatics, vol.30, p.287288, 2014.

M. J. Mckeown, L. K. Hansen, and T. J. Sejnowski, Independent component analysis of functional mri : what is signal and what is noise ?, Current opinion in Neurobiology, 2003.

M. J. Mckeown, S. Makeig, G. G. Brown, T. Jung, S. S. Kindermann et al.,

T. J. Bell and . Sejnowski, Analysis of fMRI Data by Blind Separation Into Independant Spatial Components, Human Brain Mapping, 1998.

M. J. Mckeown and T. J. , Sejnowski, and others, Independent component analysis of fMRI data : examining the assumptions, Human brain mapping, vol.6, p.368372, 1998.

V. Michel, A. Gramfort, G. Varoquaux, E. Eger, C. Keribin et al., A supervised clustering approach for fMRI-based inference of brain states, Pattern Recognition, p.20412049, 2012.
URL : https://hal.archives-ouvertes.fr/inria-00589201

M. Monti, Statistical analysis of fmri time-series : A critical review of the glm approach, Frontiers in Human Neuroscience, vol.5, p.28, 2011.

V. L. Morgan, R. R. Price, A. Arain, P. Modur, and B. Abou-khalil, Resting functional MRI with temporal clustering analysis for localization of epileptic activity without EEG, NeuroImage, vol.21, p.473481, 2004.

C. H. Moritz, B. P. Rogers, and M. E. Meyerand, Power Spectrum Ranked Independent Component Analysis of a Periodic fMRI Complex Motor Paradigm, Human Brain Mapping, 2003.

G. Morrot, J. Bonny, B. Lehallier, and M. Zanca, fMRI of human olfaction at the individual level : Interindividual variability, Journal of Magnetic Resonance Imaging, vol.37, p.92100, 2013.

, MPI-une bibliothèque de communication par messages

J. A. Mumford, J. Poline, and R. A. Poldrack, Orthogonalization of Regressors in fMRI Models, PLOS ONE, vol.10, p.126255, 2015.

Y. Nakamura, T. K. Goto, K. Tokumori, T. Yoshiura, K. Kobayashi et al., The temporal change in the cortical activations due to salty and sweet tastes in humans : fmri and time-intensity sensory evaluation, Neuroreport, p.4004, 2012.

D. E. Nee, , p.32, 2014.

T. Nichols and S. Hayasaka, Controlling the familywise error rate in functional neuroimaging : a comparative review, 2003.

W. S. Noble, How does multiple testing correction work ?, NATURE BIOTECHNO-LOGY, 2009.

L. Nummenmaa, E. Glerean, M. Viinikainen, I. P. Jaaskelainen, R. Hari et al., Emotions promote social interaction by synchronizing brain activity across individuals, Proceedings of the National Academy of Sciences, vol.109, p.95999604, 2012.

S. Ogawa, T. M. Lee, A. R. Kay, and D. W. Tank, Brain magnetic resonance imaging with contrast dependent on blood oxygenation, Proceedings of the National Academy of Sciences, vol.87, p.98689872, 1990.

C. F. Olson, Parallel algorithms for hierarchical clustering, Parallel computing, vol.21, p.13131325, 1995.

P. Orban, J. Doyon, M. Petrides, M. Mennes, R. Hoge et al., The Richness of Task-Evoked Hemodynamic Responses Denes a Pseudohierarchy of Functionally Meaningful Brain Networks, Cerebral Cortex, vol.25, p.26582669, 2015.

J. Pajula, J. Kauppi, and J. Tohka, Inter-Subject Correlation in fMRI : Method Validation against Stimulus-Model Based Analysis, PLoS ONE, 2012.

J. Pajula and J. Tohka, Eects of spatial smoothing on inter-subject correlation based analysis of FMRI, Magnetic Resonance Imaging, vol.32, p.11141124, 2014.

, How Many Is Enough ? Eect of Sample Size in Inter-Subject Correlation Analysis of fMRI, Computational Intelligence and Neuroscience, p.110, 2016.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion et al., Scikit-learn : Machine learning in Python, Journal of Machine Learning Research, vol.12, p.28252830, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00650905

V. Perlbarg, P. Bellec, J. Anton, M. Pélégrini-issac, J. Doyon et al., CORSICA : correction of structured noise in fMRI by automatic identication of ICA components, Magnetic Resonance Imaging, vol.25, p.3546, 2007.

J. C. Pfeiffer, T. A. Hollowood, J. Hort, and A. J. Taylor, Temporal Synchrony and Integration of Sub-threshold Taste and Smell Signals, Chem Senses, 2005.

R. A. Poldrack, C. I. Baker, J. Durnez, K. J. Gorgolewski, P. M. Matthews et al., Scanning the horizon : towards transparent and reproducible neuroimaging research, Nature Reviews Neuroscience, vol.18, p.115126, 2017.
URL : https://hal.archives-ouvertes.fr/cea-01896468

J. Poline and M. Brett, The general linear model and fmri : Does love last forever ?, NeuroImage, p.62, 2012.

J. D. Power, A simple but useful way to assess fMRI scan qualities, NeuroImage, p.9, 2017.

J. D. Power, A. Mitra, T. O. Laumann, A. Z. Snyder, B. L. Schlaggar et al., Methods to detect, characterize, and remove motion artifact in resting state fMRI, NeuroImage, 2014.

R. H. Pruim, M. Mennes, J. K. Buitelaar, and C. F. Beckmann, Evaluation of ICA-AROMA and alternative strategies for motion artefact removal in resting state fMRI, NeuroImage, p.278287, 2015.

R. H. Pruim, M. Mennes, D. Van-rooij, A. Llera, J. K. Buitelaar et al.,

I. Beckmann, AROMA : A robust ICA-based strategy for removing motion artifact from fMRI data, NeuroImage, p.267277, 2015.

M. E. Raichle, Two views of brain function, Trends in Cognitive Sciences, vol.14, pp.180-190, 2010.

E. M. Rasmussen and P. Willett, Eciency of Hierarchic Agglomerative Clustering Using USING the ICL Distributed Array Processor, Journal of Documentation, vol.45, p.124, 1989.

P. J. Rousseeuw, Silhouettes : A graphical aid to the interpretation and validation of cluster analysis, Journal of Computational and Applied Mathematics, vol.20, pp.53-65, 1987.

C. S. Roy and C. S. Sherrington, On the regulation of the blood-supply of the brain, 1890.

R. S. Patel, D. Borsook, and L. Becerra, Modulation of resting state functional connectivity of the brain by naloxone infusion, vol.2, p.1120, 2008.

F. K. Salem and M. A. Arab, Cache-oblivious matrix multiplication for exact factorisation, CoRR, 2017.

A. Sarje and S. Aluru, All-pairs computations on many-core graphics processors, Parallel Computing, vol.39, p.7993, 2013.

V. Schmithorst and S. K. Holland, Multiple Networks Recruited during a Story Processing Task Found using Group Inferences across Subjects from Independent Component Analysis, 2010.

V. J. Schmithorst and S. K. Holland, Comparison of three methods for generating group statistical inferences from independent component analysis of functional magnetic resonance imaging data, Journal of Magnetic Resonance Imaging, vol.19, p.365368, 2004.

E. Seifritz, F. Esposito, F. Hennel, H. Mustovic, J. G. Neuhoff et al., Spatiotemporal Pattern of Neural Processing in the Human Auditory Cortex, 2002.

C. Shalizi, Distances between Clustering, Hierarchical Clustering

. Bibliographie,

J. S. Siegel, J. D. Power, J. W. Dubis, A. C. Vogel, J. A. Church et al., Statistical improvements in functional magnetic resonance imaging analyses produced by censoring high-motion data points, Human Brain Mapping, vol.35, 2013.

J. S. Siegel, J. D. Power, J. W. Dubis, A. C. Vogel, J. A. Church et al., Statistical improvements in functional magnetic resonance imaging analyses produced by censoring high-motion data points, Human Brain Mapping, 2014.

S. M. Smith, A. Hyvärinen, G. Varoquaux, K. L. Miller, and C. F. Beckmann, Group-PCA for very large fMRI datasets, vol.101, p.738749, 2014.

J. Soch and C. Allefeld, MACS a new SPM toolbox for model assessment, comparison and selection, Journal of Neuroscience Methods, vol.306, p.1931, 2018.

J. Soch, J. Haynes, and C. Allefeld, How to avoid mismodelling in GLM-based fMRI data analysis : cross-validated Bayesian model selection, NeuroImage, p.469489, 2016.

D. A. Soltysik, D. Thomasson, S. Rajan, and N. Biassou, Improving the use of principal component analysis to reduce physiological noise and motion artifacts to increase the sensitivity of task-based fMRI, Journal of Neuroscience Methods, p.1829, 2015.

C. Sorg, V. Riedl, M. Mühlau, V. D. Calhoun, T. Eichele et al., Selective changes of resting-state networks in individuals at risk for alzheimer's disease, Proceedings of the National Academy of Sciences, vol.104, p.1876018765, 2007.

C. Spence, Multisensory Flavor Perception, Cell, p.2435, 2015.

S. Sten, K. Lundengård, S. Witt, G. Cedersund, F. Elinder et al., Neural inhibition can explain negative bold responses : A mechanistic modelling and fmri study, NeuroImage, pp.219-231, 2017.

S. Suzuki, L. Cross, and J. O'doherty, Elucidating the underlying components of food valuation in the human orbitofrontal cortex, p.20, 2017.

M. Svensén, F. Kruggel, and H. Benali, , vol.16, 2002.

D. Tang, L. Fellows, D. Small, and A. Dagher, Food and drug cues activate similar brain regions : A meta-analysis of functional MRI studies, Physiology & Behavior, vol.106, p.317324, 2012.

M. Tchiboukdjian, Algorithmes parallèles ecaces en cache Applications à la visualisation scientique, 2010.

B. Thirion, G. Flandin, P. Pinel, A. Roche, P. Ciuciu et al., Dealing with the shortcomings of spatial normalization : Multi-subject parcellation of fMRI datasets, Human Brain Mapping, vol.27, p.678693, 2006.

B. Thirion, G. Varoquaux, E. Dohmatob, and J. Poline, Which fMRI clustering gives good brain parcellations ?, Frontiers in Neuroscience, vol.8, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01015172

C. G. Thomas, R. A. Harshman, and R. S. Menon, Noise reduction in BOLD-Based fMRI Using Component Analysis, NeuroImage, 2002.

T. Thomas-danguin, C. Rouby, G. Sicard, M. Vigouroux, V. Farget et al.,

. Dumont, Development of the etoc : A european test of olfactory capabilities, vol.41, p.14251, 2003.

B. T. Thomas-yeo, F. M. Krienen, J. Sepulcre, M. R. Sabuncu, D. Lashkari et al., The organization of the human cerebral cortex estimated by intrinsic functional connectivity, Journal of Neurophysiology, vol.106, p.11251165, 2011.

J. Tohka, Non-parametric test for inter-subject correlations, p.3

J. Tohka, K. Foerde, A. R. Aron, S. M. Tom, A. W. Toga et al., Poldrack, Automatic independent component labeling for artifact removing in fMRI, 2008.

B. O. Turner, E. J. Paul, M. B. Miller, and A. K. Barbey, Small sample sizes reduce the replicability of task-based fMRI studies, Communications Biology, p.1, 2018.

R. Turner, A. Howseman, G. E. Rees, O. Josephs, and K. Friston, Functional magnetic resonance imaging of the human brain : data acquisition and analysis, Experimental Brain Research, vol.123, p.512, 1998.

K. Uluda-§ and P. Blinder, Linking brain vascular physiology to hemodynamic response in ultra-high eld mri, Neuroimaging with Ultra-high Field MRI : Present and Future, vol.168, pp.279-295, 2018.

J. E. , G. R. Nvidia), A. Reims, and . Spring-school, , 2016.

M. Van-den-heuvel, R. Mandl, and H. Hulshoff-pol, Normalized cut group clustering of resting-state fmri data, PLOS ONE, vol.3, p.111, 2008.

L. Van-der-laan, D. De-ridder, M. Viergever, and P. Smeets, The rst taste is always with the eyes : A meta-analysis on the neural correlates of processing visual food cues, NeuroImage, vol.55, p.296303, 2011.

F. Van-meer, L. N. Van-der-laan, R. A. Adan, M. A. Viergever, and P. ,

. Smeets, What you see is what you eat : An ALE meta-analysis of the neural correlates of food viewing in children and adolescents, NeuroImage, vol.104, p.3543, 2015.

M. G. Veldhuizen, G. Bender, R. T. Constable, and D. M. Small, Trying to detect taste in a tasteless solution : Modulation of early gustatory cortex by attention to taste, Chemical Senses, vol.32, p.569581, 2007.

R. Viviani, G. Grön, and M. Spitzer, Functional principal component analysis of fMRI data : Functional PCA of fMRI Data, Human Brain Mapping, vol.24, p.109129, 2005.

P. Vuilleumier and J. Driver, Modulation of visual processing by attention and emotion : windows on causal interactions between human brain regions, Philosophical Transactions of the Royal Society B : Biological Sciences, vol.362, p.837855, 2007.

T. D. Wager, M. Lindquist, and L. Kaplan, Meta-analysis of functional neuroimaging data : current and future directions, Social Cognitive and Aective Neuroscience, vol.2, p.150158, 2007.

F. Wang, H. Franco-penya, J. D. Kelleher, J. Pugh, and R. Ross, An Analysis of the Application of Simplied Silhouette to the Evaluation of k-means Clustering Validity, Machine Learning and Data Mining in Pattern Recognition, P. Perner, vol.10358, p.291305, 2017.

Y. Wang and T. Li, Analysis of Whole-Brain Resting-State fMRI Data Using Hierarchical Clustering Approach, PLoS ONE, vol.8, p.76315, 2013.

Z. Wang, M. Xia, Z. Jin, L. Yao, and Z. Long, Temporally and Spatially Constrained ICA of fMRI data Analysis, p.9, 2014.

N. Weiskopf, C. Hutton, O. Josephs, R. Turner, and R. Deichmann, Optimized epi for fmri studies of the orbitofrontal cortex : compensation of susceptibility-induced gradients in the readout direction, Magnetic Resonance Materials in Physics, Biology and Medicine, vol.20, p.39, 2007.

. Wikipedia, Article de wikipedia sur

S. M. Wilson, I. Molnar-szakacs, and M. Iacoboni, Beyond Superior Temporal Cortex : Intersubject Correlations in Narrative Speach Comprehension, Cerebral Cortex, p.18, 2008.

D. Wishart, An algorithm for hierarchical classications, Biometrics, pp.165-170, 1969.

S. , The Experience of Eating, 2011.

C. Wolf, , vol.218

Y. Xu, Y. Tong, S. Liu, H. M. Chow, N. Y. Abdulsabur et al., Denoising the speaking brain : Toward a robust technique for correcting artifact-contaminated fMRI data under severe motion, NeuroImage, p.103, 2014.

S. Yee and J. Gao, Improved detection of time windows of brain responses in fMRI using modied temporal clustering analysis, Magnetic resonance imaging, vol.20, p.1726, 2002.

A. W. Yeung, T. K. Goto, and W. K. Leung, Basic taste processing recruits bilateral anteroventral and middle dorsal insulae : An activation likelihood estimation metaanalysis of fMRI studies, Brain and Behavior, vol.7, p.655, 2017.

A. W. Yeung, T. K. Goto, and W. K. Leung, Aective value, intensity and quality of liquid tastants/food discernment in the human brain : An activation likelihood estimation meta-analysis, NeuroImage, p.189199, 2018.

W. Zeng, A. Qiu, B. Chodkowski, and J. J. Pekar, Spatial and temporal reproductibility-based ranking of the independant components of BOLD fMRI data, 2009.

Q. Zhang and Y. Zhang, Hierarchical clustering of gene expression proles with graphics hardware acceleration, Pattern Recognition Letters, vol.27, p.676681, 2006.

X. Zhao, D. Glahn, L. H. Tan, N. Li, J. Xiong et al., Comparison of TCA and ICA techniques in fMRI data processing, Journal of Magnetic Resonance Imaging, vol.19, p.397402, 2004.

, voir Rotational absolute displacement Absolute translational displacement . voir Translational absolute displacement

. Accélération, , vol.36, p.163, 154156.

, Algorithme cache-aware 3334, vol.105, p.199

W. .. Algorithme-de, , vol.9399, p.223

, Analyse en composantes indépendantes 1824, vol.29, p.51

, Analyse en composantes principales, vol.18, p.29

. .. Analyse-multivariée, , vol.13

, Architecture à mémoire distribuée

. Mpi, , vol.4445, p.202, 136139.

. .. Openmp, , vol.103, p.202, 0201.

. .. Bêta and . .. Bold-.-.-.-.-.-.-.-.-.-.-.-.-;-c-censure, , vol.12, p.207

, Clustering hiérarchique agglomératif 2627, vol.51, p.7981

. .. Coregistration, , vol.5, p.58

. .. Corrélation-inter-sujet, , p.2426

C. .. , voir Processeur, vol.103, p.148, 128131.

. .. Ecacité, , vol.36, p.157

, Ellipse de conance, vol.7072, p.207

. .. Epi, , vol.7, p.16

. .. Fdr, , vol.8, p.16

, Framewise displacement 50, vol.58, p.173

. .. Fwer, , vol.16, p.77

. .. Gpu, , vol.3841, p.202, 0201.

.. , 37, 46 , 145 I Indice de Calinski et Harabaz, vol.45, p.175, 0201.

. .. Indice-de-silhouette, , vol.89, p.248

. .. Irm,

. .. Irmf, , vol.167, p.199, 1518.

. .. Isc, voir Corrélation inter-sujet K

. .. K-means, , vol.26, p.81

. .. M-mémoire-cache, , vol.32, p.143

. .. Modèle, , vol.5, p.57199

. .. P-p-valeur, , vol.16, p.24

M. .. Paramètres-de, , vol.62, p.68

. .. Paramètres-de-réalignement and . Voir-réalignement, , p.173

. .. Paramètres-de-réalignement, , p.70

. Paramètres-de-recalage-rigide,

.. .. Processus-léger, , vol.5, p.57

. .. Réalignement-rigide, voir Réalignement Recalage rigide 58, voir Réalignement Régresseur, vol.12, p.173

, Rotational absolute displacement

. .. S-segmentation, , vol.57, p.211, 0200.