G. Shaw, M. Sykes, R. W. Humble, G. Mackenzie, and E. Pehlivan, The Use of Modified Sporopollenin from Lycopodium Clavatum as a Novel Ion-or Ligand-Exchange Medium

, Reactive Polymers, Ion Exchangers, Sorbents, vol.1988, issue.2, pp.211-217

S. Barrier, A. Diego-taboada, M. J. Thomasson, L. Madden, J. C. Pointon et al., Viability of Plant Spore Exine Capsules for Microencapsulation, Journal of Materials Chemistry, vol.21, issue.4, pp.975-981, 2011.

S. Mulijani, K. Dahlan, and A. Wulanawati, Sulfonated Polystyrene Copolymer: Synthesis, Characterization and Its Application of Membrane for, Direct Methanol Fuel Cell

, International Journal of Materials, Mechanics and Manufacturing, vol.2, pp.36-40, 2014.

X. Li, C. Zhao, H. Lu, Z. Wang, and H. Na, Direct Synthesis of Sulfonated Poly (Ether Ether Ketone Ketone) s (SPEEKKs) Proton Exchange Membranes for Fuel Cell Application, Polymer, vol.46, issue.15, pp.5820-5827, 2005.

M. M. Nasef, H. Saidi, H. M. Nor, and M. A. Yarmo, XPS Studies of Radiation Grafted PTFE-g-Polystyrene Sulfonic Acid Membranes, Journal of Applied Polymer Science, vol.76, issue.3, pp.336-349, 2000.

G. B. Varadwaj, S. Rana, K. Parida, and B. B. Nayak, A Multi-Functionalized Montmorillonite for Co-Operative Catalysis in One-Pot Henry Reaction and Water Pollution Remediation, Journal of Materials Chemistry A, vol.2014, issue.20, pp.7526-7534

Y. Wang, D. Wang, M. Tan, B. Jiang, J. Zheng et al., Monodispersed Hollow SO3H-Functionalized Carbon/Silica as Efficient Solid Acid Catalyst for Esterification of Oleic Acid, ACS Applied Materials & Interfaces, vol.7, issue.48, 2015.

L. Guenic, S. Delbecq, F. Ceballos, C. Len, and C. , Microwave-Assisted Dehydration of D-Xylose into Furfural by Diluted Inexpensive Inorganic Salts Solution in a Biphasic System, Journal of Molecular Catalysis A: Chemical, vol.410, pp.1-7, 2015.

C. Xiouras, N. Radacsi, G. Sturm, and G. D. Stefanidis, Furfural Synthesis from D-Xylose in the Presence of Sodium Chloride: Microwave versus Conventional Heating, ChemSusChem, vol.2016, issue.16, pp.2159-2166

T. Lloyd and C. E. Wyman, Application of a Depolymerization Model for Predicting Thermochemical Hydrolysis of Hemicellulose, In Biotechnology for Fuels and Chemicals

. Springer, , pp.53-67, 2003.

F. M. Kerton, Y. Liu, K. W. Omari, and K. Hawboldt, Green Chemistry and the Ocean-Based Biorefinery, Green Chemistry, vol.15, issue.4, pp.860-871, 2013.

A. Haug, B. Larsen, and O. Smidsrød, Uronic Acid Sequence in Alginate from Different Sources, Carbohydrate Research, vol.32, issue.2, pp.217-225, 1974.

P. J. Williams, B. Le, and L. M. Laurens, Microalgae as Biodiesel & Biomass Feedstocks: Review & Analysis of the Biochemistry, vol.2010, pp.554-590

A. H. Ug and B. Larsen, Quantitative Determination of the Uronic Acid Composition of Alginates, Acta chem. scand, issue.8, p.16, 1962.

L. Brennan and P. Owende, Biofuels from Microalgae-a Review of Technologies for Production, Processing, and Extractions of Biofuels and Co-Products. Renewable and Sustainable Energy Reviews, vol.14, pp.557-577, 2010.

T. M. Mata, A. A. Martins, and N. S. Caetano, Microalgae for Biodiesel Production and Other, vol.166, p.342

, Applications: A Review. Renewable and Sustainable Energy Reviews, vol.14, issue.1, pp.217-232, 2010.

W. Jeon, C. Ban, G. Park, T. Yu, J. Suh et al., Catalytic Hydrothermal Conversion of Macroalgae-Derived Alginate: Effect of PH on Production of Furfural and Valuable Organic Acids under Subcritical Water Conditions, Journal of Molecular Catalysis A: Chemical, vol.399, pp.106-113, 2015.

W. Jeon, C. Ban, G. Park, H. C. Woo, and D. H. Kim, Hydrothermal Conversion of Alginic Acid to Furfural Catalyzed by Cu (II) Ion, Catalysis Today, vol.265, pp.154-162, 2016.

G. Park, W. Jeon, C. Ban, H. C. Woo, and D. H. Kim, Direct Catalytic Conversion of Brown Seaweed-Derived Alginic Acid to Furfural Using 12-Tungstophosphoric Acid Catalyst in

, Tetrahydrofuran/Water Co-Solvent. Energy Conversion and Management, vol.118, pp.135-141, 2016.

J. A. Stapley and J. N. Bemiller, The Hofer-Moest Decarboxylation of d-Glucuronic Acid and d-Glucuronosides, Carbohydrate Research, vol.342, issue.3-4, pp.610-613, 2007.

L. Guenic, S. Gergela, D. Ceballos, C. Delbecq, F. Len et al., Furfural Production from D-Xylose and Xylan by Using Stable Nafion NR50 and NaCl in a Microwave-Assisted Biphasic Reaction, Molecules, vol.21, issue.8, p.1102, 2016.

F. Delbecq, Y. Wang, and C. Len, Conversion of Xylose, Xylan and Rice Husk into Furfural via Betaine and Formic Acid Mixture as Novel Homogeneous Catalyst in Biphasic System by Microwave-Assisted Dehydration, Journal of Molecular Catalysis A: Chemical, vol.423, pp.520-525, 2016.

S. Holtan, Q. Zhang, and W. I. Strand, Skj\a ak-Br\a ek, vol.167

, Hydrolysis Mechanism of Polyalternating Alginate in Weak Acid and Assignment of the Resulting MG-Oligosaccharides by NMR Spectroscopy and ESI-Mass Spectrometry, Biomacromolecules, vol.7, issue.7, pp.2108-2121, 2006.

A. Heyraud, C. Gey, C. Leonard, C. Rochas, S. Girond et al., NMR Spectroscopy Analysis of Oligoguluronates and Oligomannuronates Prepared by Acid or Enzymatic Hydrolysis of Homopolymeric Blocks of Alginic Acid. Application to the Determination of the Substrate Specificity of Haliotis Tuberculata Alginate Lyase, Carbohydrate Research, vol.289, pp.11-23, 1996.

A. Ikeda, A. Takemura, and H. Ono, Preparation of Low-Molecular Weight Alginic Acid by Acid Hydrolysis, Carbohydrate Polymers, vol.42, issue.4, pp.421-425, 2000.

D. Leal, B. Matsuhiro, M. Rossi, and F. Caruso, FT-IR Spectra of Alginic Acid Block Fractions in Three Species of Brown Seaweeds, Carbohydrate Research, vol.343, issue.2, pp.308-316, 2008.

N. P. Chand?a, B. Matsuhiro, and A. E. Vásquez, Alginic Acids in Lessonia Trabeculata: Characterization by Formic Acid Hydrolysis and FT-IR Spectroscopy, Carbohydrate Polymers, vol.46, issue.1, pp.81-87, 2001.

T. Saito, M. Sasaki, H. Kawanabe, Y. Yoshino, and M. Goto, Subcritical Water Reaction Behavior of D-Glucose as a Model Compound for Biomass Using Two Different Continuous-Flow Reactor Configurations, Chemical Engineering & Technology: Industrial Chemistry-Plant Equipment-Process Engineering-Biotechnology, vol.32, issue.4, pp.527-533, 2009.

C. Aellig, Hermans, I. Continuous D-Fructose Dehydration to 5-Hydroxymethylfurfural Under Mild Conditions, ChemSusChem, vol.2012, issue.9, pp.1737-1742

K. Niknam, B. Karami, and A. R. Kiasat, Basic Al 2 O 3 /PCl 5 as an Efficient Reagent for the Direct Synthesis of Nitriles from Aldehydes under Solvent-Free Conditions, Bulletin of the Korean Chemical Society, vol.26, issue.6, pp.975-978, 2005.

C. Huo, C. Wang, D. Hu, and X. Jia, A Clean and Efficient Conversion of Aldehydes into the Corresponding Nitriles Using Ionic Supported Triphenylphosphine and CBr 4, Letters in Organic Chemistry, vol.10, issue.6, pp.442-444, 2013.

S. Bose, D. Ravinder-goud, and P. , Bis (Trichloromethyl) Carbonate, an Efficient Activator for the One-Pot Conversion of Aldehydes into Nitriles under Mild Conditions

, Synthetic Communications, vol.32, issue.23, pp.3621-3624, 2002.

X. Ma, J. Ao, and Z. Chen, Copper (II)-Catalysed Direct Conversion of Aldehydes into Nitriles in Acetonitrile, Journal of Chemical Research, vol.41, issue.8, p.465, 2017.

Y. Yoon, B. R. Kim, C. Y. Lee, and J. Kim, Heterogeneous Copper-Catalyzed Aerobic Oxidative Conversions of Benzaldehydes with Aqueous Ammonia to Give Benzonitriles

, Asian Journal of Organic Chemistry, vol.5, issue.6, pp.746-749, 2016.

P. Capdevielle, A. Lavigne, and M. Maumy, Simple and Efficient Copper-Catalyzed One-Pot Conversion of Aldehydes into Nitriles, Synthesis, vol.21, issue.6, pp.451-452, 1989.

F. Chen, H. Fu, G. Meng, Y. Cheng, and Y. Lü, Tetrabutylammoninm Peroxydisulfate in Organic Synthesis X. An Efficient Nickel-Catalyzed One-Pot Synthesis of Nitriles from Aldehydes by Oxidation with Tetrabutylammonium Peroxydisulfate, Synthesis, pp.1519-1520, 2000.

P. Ghosh, B. Saha, G. C. Pariyar, and A. Tamang, , vol.206, p.342

, Catalyzed an Efficient Synthesis of Nitriles from Aldehydes, Tetrahedron Letters, vol.57, issue.32, pp.3618-3621, 2016.

H. Eshghi and Z. Gordi, Microwave-Assisted Efficient One-Pot Synthesis of Nitriles from Aldehydes in the Presence of P2O5/SiO2 in Solvent-Free Media. Phosphorus, Sulfur, and Silicon, vol.180, pp.619-623, 2005.

S. K. Dewan, R. Singh, and A. Kumar, One-Pot Synthesis of Nitriles from Aldehydes and Hydroxylamine Hydrochloride over Silica Gel, Montmorillonites K-10, and KSF Catalysts in Dry Media Under Microwave Irradiation, Synthetic Communications, vol.34, issue.11, pp.2025-2029, 2004.

S. H. Khezri, N. Azimi, M. Mohammed-vali, B. Eftekhari-sis, M. M. Hashemi et al., Mud Catalyzed One-Pot Synthesis of Nitriles from Aldehydes and Hydroxylamine Hydrochloride under Microwave Irradiation, Arkivoc, vol.15, pp.162-170, 2007.

P. N. Borase, P. B. Thale, G. S. Shankarling, and . Ru, Cl)-Salen Complex: Solvent Selective Homogeneous Catalyst for One-Pot Synthesis of Nitriles and Amides, ChemistrySelect, vol.2018, issue.20, pp.5660-5666

H. S. Kumar, B. S. Reddy, P. T. Reddy, and J. S. Yadav, Efficient One-Pot Preparation of Nitriles from Aldehydes Using N-Methyl-Pyrrolidone, Synthesis, issue.04, pp.586-587, 1999.

H. C. Aspinall, O. Beckingham, M. D. Farrar, N. Greeves, and C. D. Thomas, A General and Convenient Route to Oxazolyl Ligands, Tetrahedron letters, vol.52, issue.40, p.5120, 2011.

M. Zhou, Z. Zeng, H. Zhu, G. Xiao, and R. Xiao, Aqueous-Phase Catalytic Hydrogenation of Furfural to Cyclopentanol over Cu-Mg-Al Hydrotalcites Derived Catalysts: Model Reaction for Upgrading of Bio-Oil, Journal of Energy Chemistry, vol.23, issue.1, pp.91-96, 2014.

Y. Ma, H. Wang, G. Xu, X. Liu, Y. Zhang et al., Selective Conversion of Furfural to Cyclopentanol over Cobalt Catalysts in One Step, Chinese Chemical Letters, vol.28, issue.6, pp.1153-1158, 2017.

N. S. Date, R. C. Chikate, H. Roh, C. V. Rode, and . Bifunctional,

, Catalyst in Direct Transformation of Furfural to 1,2-Pentanediol, Catalysis Today, vol.309, pp.195-201, 2018.

F. Liu, Q. Liu, J. Xu, L. Li, Y. Cui et al., Catalytic Cascade Conversion of Furfural to 1,4-Pentanediol in a Single Reactor, Green Chemistry, vol.20, issue.8, pp.1770-1776, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02152617

S. Liu, Y. Amada, M. Tamura, Y. Nakagawa, and K. Tomishige, Performance and Characterization of Rhenium-Modified Rh-Ir Alloy Catalyst for One-Pot Conversion of Furfural into 1,5-Pentanediol, Catalysis Science & Technology, vol.4, issue.8, pp.2535-2549, 2014.

F. Li, T. Lu, B. Chen, Z. Huang, and G. Yuan, Pt Nanoparticles over TiO2-ZrO2 Mixed Oxide as Multifunctional Catalysts for an Integrated Conversion of Furfural to 1,4-Butanediol, Applied Catalysis A: General, vol.478, pp.252-258, 2014.

P. D. Vaidya and V. V. Mahajani, Kinetics of Liquid-Phase Hydrogenation of Furfuraldehyde to Furfuryl Alcohol over a Pt/C Catalyst. Industrial & Engineering Chemistry Research, vol.42, p.342, 2003.

S. Sitthisa, T. Sooknoi, Y. Ma, P. B. Balbuena, and D. E. Resasco, Kinetics and Mechanism of Hydrogenation of Furfural on Cu/SiO2 Catalysts, Journal of Catalysis, vol.277, issue.1, pp.1-13, 2011.

G. Wang, Z. Zhang, and L. Song, Efficient and Selective Alcoholysis of Furfuryl Alcohol to Alkyl Levulinates Catalyzed by Double SO3H-Functionalized Ionic Liquids, Green Chemistry, vol.16, issue.3, pp.1436-1443, 2014.

A. S. Mamman, J. Lee, Y. Kim, I. T. Hwang, N. Park et al., Hemicellulose/Xylosederived Biochemical. Biofuels, Bioproducts and Biorefining, vol.2, pp.438-454, 2008.

K. Yan and A. Chen, Efficient Hydrogenation of Biomass-Derived Furfural and Levulinic Acid on the Facilely Synthesized Noble-Metal-Free Cu-Cr Catalyst, vol.58, pp.357-363, 2013.

K. Yan and A. Chen, Selective Hydrogenation of Furfural and Levulinic Acid to Biofuels on the Ecofriendly Cu-Fe Catalyst, Fuel, vol.115, pp.101-108, 2014.

X. Yang, Q. Meng, G. Ding, Y. Wang, H. Chen et al., Construction of Novel Cu/ZnO-Al2O3 Composites for Furfural Hydrogenation: The Role of Al Components, Applied Catalysis A: General, vol.561, pp.78-86, 2018.

H. Chen, H. Ruan, X. Lu, J. Fu, T. Langrish et al., Efficient Catalytic Transfer Hydrogenation of Furfural to Furfuryl Alcohol in Near-Critical Isopropanol over

, Cu/MgO-Al2O3 Catalyst. Molecular Catalysis, vol.445, pp.94-101, 2018.

D. Vargas-hernández, J. M. Rubio-caballero, J. Santamaría-gonzález, R. Moreno-tost, J. M. Mérida-robles et al., , vol.219, p.342

P. Maireles-torres, Furfuryl Alcohol from Furfural Hydrogenation over Copper Supported on SBA-15 Silica Catalysts, Journal of Molecular Catalysis A: Chemical, pp.106-113, 2014.

C. P. Jiménez-gómez, J. A. Cecilia, I. Márquez-rodríguez, R. Moreno-tost, J. Santamaría-gonzález et al., Maireles-Torres, P. Gas-Phase Hydrogenation of Furfural over Cu/CeO 2 Catalysts, Catalysis Today, vol.279, pp.327-338, 2017.

X. Yang, H. Chen, Q. Meng, H. Zheng, Y. Zhu et al., Insights into Influence of Nanoparticle Size and Metal-Support Interactions of Cu/ZnO Catalysts on Activity for Furfural Hydrogenation, Catalysis Science & Technology, vol.7, issue.23, pp.5625-5634, 2017.

M. M. Villaverde, T. F. Garetto, and A. J. Marchi, Liquid-Phase Transfer Hydrogenation of Furfural to Furfuryl Alcohol on Cu-Mg-Al Catalysts, Catalysis Communications, vol.58, pp.6-10, 2015.

P. N. Romano, J. M. De-almeida, Y. Carvalho, P. Priecel, E. Falabella-sousaaguiar et al., Microwave-Assisted Selective Hydrogenation of Furfural to Furfuryl Alcohol Employing a Green and Noble Metal-Free Copper Catalyst, ChemSusChem, vol.2016, issue.24, pp.3387-3392

F. Dong, Y. Zhu, H. Zhao, and Z. Tang, Ratio-Controlled Synthesis of Phyllosilicate-like Materials as Precursors for Highly Efficient Catalysis of the Formyl Group, Catalysis Science & Technology, vol.7, issue.9, pp.1880-1891, 2017.

Y. Wang, W. Zhu, S. Sang, L. Gao, and G. Xiao, Supported Cu Catalysts for the Hydrogenation of Furfural in Aqueous Phase: Effect of Support, Asia-Pacific Journal, vol.220, p.342

, Chemical Engineering, vol.2017, issue.3, pp.422-431

P. Jia, X. Lan, X. Li, and T. Wang, Highly Active and Selective NiFe/SiO2 Bimetallic Catalyst with Optimized Solvent Effect for the Liquid-Phase Hydrogenation of Furfural to Furfuryl Alcohol, ACS Sustainable Chemistry & Engineering, vol.6, issue.10, pp.13287-13295, 2018.

W. Gong, C. Chen, H. Zhang, G. Wang, and H. Zhao, Highly Dispersed Co and Ni Nanoparticles Encapsulated in N-Doped Carbon Nanotubes as Efficient Catalysts for the Reduction of Unsaturated Oxygen Compounds in Aqueous Phase, Catalysis Science & Technology, vol.8, issue.21, pp.5506-5514, 2018.

T. V. Kotbagi, H. R. Gurav, A. S. Nagpure, S. V. Chilukuri, and M. G. Bakker, Highly Efficient Nitrogen-Doped Hierarchically Porous Carbon Supported Ni Nanoparticles for the Selective Hydrogenation of Furfural to Furfuryl Alcohol, RSC Advances, vol.6, issue.72, pp.67662-67668, 2016.

Y. Xu, S. Qiu, J. Long, C. Wang, J. Chang et al., Situ Hydrogenation of Furfural with Additives over a RANEY® Ni Catalyst, RSC Advances, vol.5, issue.111, pp.91190-91195, 2015.

. Rodiansono,

M. D. Astuti, D. R. Mujiyanti, U. T. Santoso, and S. Shimazu, Novel Preparation Method of Bimetallic Ni-In Alloy Catalysts Supported on Amorphous Alumina for the Highly Selective Hydrogenation of Furfural. Molecular Catalysis, vol.445, pp.52-60, 2018.

M. Manikandan, A. K. Venugopal, K. Prabu, R. K. Jha, and R. Thirumalaiswamy, Role of Surface Synergistic Effect on the Performance of Ni-Based Hydrotalcite Catalyst, vol.221, p.342

, Highly Efficient Hydrogenation of Furfural, Journal of Molecular Catalysis A: Chemical, vol.417, pp.153-162, 2016.

H. Jeong, C. Kim, S. Yang, and H. Lee, Selective Hydrogenation of Furanic Aldehydes Using Ni Nanoparticle Catalysts Capped with Organic Molecules, Journal of Catalysis, vol.344, pp.609-615, 2016.

W. Gong, C. Chen, H. Wang, R. Fan, H. Zhang et al., Sulfonate Group Modified Ni Catalyst for Highly Efficient Liquid-Phase Selective Hydrogenation of Bio-Derived Furfural, Chinese Chemical Letters, vol.29, issue.11, pp.1617-1620, 2018.

P. Jiang, X. Li, W. Gao, X. Wang, Y. Tang et al., Highly Selective Hydrogenation of ?, ?-Unsaturated Carbonyl Compounds over Supported Co Nanoparticles, Catalysis Communications, vol.111, pp.6-9, 2018.

A. J. Garcia-olmo, A. Yepez, A. M. Balu, A. A. Romero, Y. Li et al., Insights into the Activity, Selectivity and Stability of Heterogeneous Catalysts in the Continuous Flow Hydroconversion of Furfural, Catalysis Science & Technology, vol.6, issue.13, pp.4705-4711, 2016.

R. M. Mironenko, O. B. Belskaya, T. I. Gulyaeva, A. I. Nizovskii, A. V. Kalinkin et al., Effect of the Nature of Carbon Support on the Formation of Active Sites in Pd/C and Ru/C Catalysts for Hydrogenation of Furfural, Catalysis Today, vol.249, pp.145-152, 2015.

S. H. Pang, C. A. Schoenbaum, D. K. Schwartz, and J. W. Medlin, Effects of Thiol Modifiers on the Kinetics of Furfural Hydrogenation over Pd Catalysts, ACS Catalysis, vol.4, issue.9, pp.3123-3131, 2014.

Y. Wang, Q. Cui, Y. Guan, and P. Wu, Facile Synthesis of Furfuryl Ethyl Ether in High, vol.222

, Yield via the Reductive Etherification of Furfural in Ethanol over Pd/C under Mild Conditions, Green Chemistry, vol.20, issue.9, pp.2110-2117, 2018.

H. Nanao, Y. Murakami, O. Sato, A. Yamaguchi, N. Hiyoshi et al., Furfuryl Alcohol and Furfural Hydrogenation over Activated Carbon-Supported Palladium Catalyst in Presence of Water and Carbon Dioxide, ChemistrySelect, vol.2017, issue.8, pp.2471-2475

C. Nguyen-huy, J. S. Kim, S. Yoon, E. Yang, J. H. Kwak et al., Supported Pd Nanoparticle Catalysts with High Activities and Selectivities in Liquid-Phase Furfural Hydrogenation, Fuel, vol.226, pp.607-617, 2018.

R. Albilali, M. Douthwaite, Q. He, and S. H. Taylor, The Selective Hydrogenation of Furfural over Supported Palladium Nanoparticle Catalysts Prepared by Sol-Immobilisation: Effect of Catalyst Support and Reaction Conditions, Catalysis Science & Technology, vol.8, issue.1, pp.252-267, 2018.

W. Ouyang, A. Yepez, A. A. Romero, and R. Luque, Towards Industrial Furfural Conversion: Selectivity and Stability of Palladium and Platinum Catalysts under Continuous Flow Regime, Catalysis Today, vol.308, pp.32-37, 2018.

S. Nishimura, T. Shimura, and K. Ebitani, Transfer Hydrogenation of Furaldehydes with Sodium Phosphinate as a Hydrogen Source Using Pd-Supported Alumina Catalyst, Journal of the Taiwan Institute of Chemical Engineers, vol.79, pp.97-102, 2017.

L. Liu, H. Lou, and M. Chen, Selective Hydrogenation of Furfural over Pt Based and Pd Based Bimetallic Catalysts Supported on Modified Multiwalled Carbon Nanotubes (MWNT), vol.550, p.342, 2018.

B. Chen, F. Li, Z. Huang, and G. Yuan, Tuning Catalytic Selectivity of Liquid-Phase Hydrogenation of Furfural via Synergistic Effects of Supported Bimetallic Catalysts

, Applied Catalysis A: General, vol.500, pp.23-29, 2015.

S. Huang, N. Yang, S. Wang, Y. Sun, and Y. Zhu, Tuning the Synthesis of Platinum-Copper Nanoparticles with a Hollow Core and Porous Shell for the Selective Hydrogenation of Furfural to Furfuryl Alcohol, Nanoscale, vol.8, issue.29, pp.14104-14108, 2016.

R. V. Maligal-ganesh, C. Xiao, T. W. Goh, L. Wang, J. Gustafson et al., Feng); et al. A Ship-in-a-Bottle Strategy To Synthesize Encapsulated Intermetallic Nanoparticle Catalysts: Exemplified for Furfural Hydrogenation, ACS Catalysis, vol.6, issue.3, pp.1754-1763, 2016.

C. Zhang, Q. Lai, and J. H. Holles, Bimetallic Overlayer Catalysts with High Selectivity and Reactivity for Furfural Hydrogenation, Catalysis Communications, vol.89, pp.77-80, 2017.

Á. O'driscoll, J. J. Leahy, and T. Curtin, The Influence of Metal Selection on Catalyst Activity for the Liquid Phase Hydrogenation of Furfural to Furfuryl Alcohol, Catalysis Today, vol.279, pp.194-201, 2017.

J. J. Musci, A. B. Merlo, and M. L. Casella, Aqueous Phase Hydrogenation of Furfural Using Carbon-Supported Ru and RuSn Catalysts, Catalysis Today, vol.296, pp.43-50, 2017.

P. Panagiotopoulou, N. Martin, and D. G. Vlachos, Effect of Hydrogen Donor on Liquid Phase Catalytic Transfer Hydrogenation of Furfural over a Ru/RuO2/C Catalyst, Journal of Molecular Catalysis A: Chemical, vol.392, pp.223-228, 2014.

P. Panagiotopoulou and D. G. Vlachos, Liquid Phase Catalytic Transfer Hydrogenation of Furfural over a Ru/C Catalyst, Applied Catalysis A: General, vol.480, p.342, 2014.

C. Ramirez-barria, M. Isaacs, K. Wilson, and A. Guerrero-ruiz, Rodríguez-Ramos, I. Optimization of Ruthenium Based Catalysts for the Aqueous Phase Hydrogenation of Furfural to Furfuryl Alcohol, Applied Catalysis A: General, vol.563, pp.177-184, 2018.

O. F. Aldosari, S. Iqbal, P. J. Miedziak, G. L. Brett, D. R. Jones et al., Pd-Ru/TiO2 Catalyst -an Active and Selective Catalyst for Furfural Hydrogenation, Catalysis Science & Technology, vol.6, issue.1, pp.234-242, 2015.

Y. Yan, C. Bu, Q. He, Z. Zheng, and J. Ouyang, Efficient Bioconversion of Furfural to Furfuryl Alcohol by Bacillus Coagulans NL01, vol.8, pp.26720-26727, 2018.

A. Mandalika, L. Qin, T. K. Sato, and T. Runge, Integrated Biorefinery Model Based on Production of Furans Using Open-Ended High Yield Processes, Green Chemistry, vol.16, issue.5, pp.2480-2489, 2014.

Y. He, Y. Ding, C. Ma, J. Di, C. Jiang et al., One-Pot Conversion of Biomass-Derived Xylose to Furfuralcohol by a Chemo-Enzymatic Sequential Acid-Catalyzed Dehydration and Bioreduction, Green Chemistry, vol.19, issue.16, pp.3844-3850, 2017.

S. Jung and E. J. Biddinger, Electrocatalytic Hydrogenation and Hydrogenolysis of Furfural and the Impact of Homogeneous Side Reactions of Furanic Compounds in Acidic Electrolytes, ACS Sustainable Chemistry & Engineering, vol.2016, issue.12, pp.6500-6508

B. Zhao, M. Chen, Q. Guo, and Y. Fu, Electrocatalytic Hydrogenation of Furfural to Furfuryl Alcohol Using Platinum Supported on Activated Carbon Fibers, Electrochimica Acta, vol.135, p.342, 2014.

S. Jung, A. N. Karaiskakis, and E. J. Biddinger, Enhanced Activity for Electrochemical Hydrogenation and Hydrogenolysis of Furfural to Biofuel Using Electrodeposited Cu Catalysts, Catalysis Today, vol.323, pp.26-34, 2019.

L. Liu, H. Liu, W. Huang, Y. He, W. Zhang et al., Mechanism and Kinetics of the Electrocatalytic Hydrogenation of Furfural to Furfuryl Alcohol, Journal of Electroanalytical Chemistry, vol.804, pp.248-253, 2017.

X. H. Chadderdon, D. J. Chadderdon, J. E. Matthiesen, Y. Qiu, J. M. Carraher et al., Mechanisms of Furfural Reduction on Metal Electrodes: Distinguishing Pathways for Selective Hydrogenation of Bioderived Oxygenates, Journal of the American Chemical Society, vol.2017, issue.40, pp.14120-14128

C. Sun, P. Zeng, M. He, X. He, and X. Xie, Morphological Effect of Non-Supported Copper Nanocrystals on Furfural Hydrogenation, Catalysis Communications, vol.86, pp.5-8, 2016.

W. Gong, C. Chen, R. Fan, H. Zhang, G. Wang et al., Transfer-Hydrogenation of Furfural and Levulinic Acid over Supported Copper Catalyst, Fuel, vol.231, pp.165-171, 2018.

H. Zhang, Y. Lei, A. J. Kropf, G. Zhang, J. W. Elam et al., Enhancing the Stability of Copper Chromite Catalysts for the Selective Hydrogenation of Furfural Using ALD Overcoating, Journal of Catalysis, vol.317, pp.284-292, 2014.

H. R. , P. ;. , C. ;. , J. P. , and B. , Hydrogenation Efficiency of Highly Porous Cu-Al Oxides Derived from Dealuminated LDH in the Conversion of Furfural to Furfuryl Alcohol, Journal of Industrial and Engineering Chemistry, vol.62, p.342, 2018.

C. P. Jiménez-gómez, J. A. Cecilia, D. Durán-martín, R. Moreno-tost, J. Santamaría-gonzález et al., Gas-Phase Hydrogenation of Furfural to Furfuryl Alcohol over Cu/ZnO Catalysts, Journal of Catalysis, vol.336, pp.107-115, 2016.

C. P. Jiménez-gómez, J. A. Cecilia, F. I. Franco-duro, M. Pozo, R. Moreno-tost et al., Promotion Effect of Ce or Zn Oxides for Improving Furfuryl Alcohol Yield in the Furfural Hydrogenation Using Inexpensive Cu-Based Catalysts. Molecular Catalysis, vol.455, pp.121-131, 2018.

M. A. Jackson, M. G. White, R. T. Haasch, S. C. Peterson, and J. A. Blackburn, Hydrogenation of Furfural at the Dynamic Cu Surface of CuOCeO2/Al2O3 in a Vapor Phase Packed Bed Reactor. Molecular Catalysis, vol.445, pp.124-132, 2018.

S. Srivastava, P. Mohanty, J. K. Parikh, A. K. Dalai, S. S. Amritphale et al., Cr-Free Co-Cu/SBA-15 Catalysts for Hydrogenation of Biomass-Derived ?-, ?-Unsaturated Aldehyde to Alcohol, Chinese Journal of Catalysis, vol.36, issue.7, pp.933-942, 2015.

W. Gong, C. Chen, H. Zhang, G. Wang, and H. Zhao, Situ Synthesis of Highly Dispersed Cu-Co Bimetallic Nanoparticles for Tandem Hydrogenation/Rearrangement of Bioderived Furfural in Aqueous-Phase. ACS Sustainable Chemistry & Engineering, vol.6, pp.14919-14925, 2018.

Y. Wang, Y. Miao, S. Li, L. Gao, and G. Xiao, Metal-Organic Frameworks Derived Bimetallic Cu-Co Catalyst for Efficient and Selective Hydrogenation of Biomass-Derived Furfural to Furfuryl Alcohol. Molecular Catalysis, vol.436, pp.128-137, 2017.

Z. Zhang, Z. Pei, H. Chen, K. Chen, Z. Hou et al., , vol.227, p.342

, Situ Hydrogenation of Furfural over Bimetallic Cu-Ni Alloy Catalysts in Isopropanol

, Industrial & Engineering Chemistry Research, vol.57, issue.12, pp.4225-4230, 2018.

S. Srivastava, G. C. Jadeja, and J. Parikh, Synergism Studies on Alumina-Supported Copper-Nickel Catalysts towards Furfural and 5-Hydroxymethylfurfural Hydrogenation, Journal of Molecular Catalysis A, vol.426, pp.244-256, 2017.

S. H. Pang, N. E. Love, and J. W. Medlin, Synergistic Effects of Alloying and Thiolate Modification in Furfural Hydrogenation over Cu-Based Catalysts, The Journal of Physical Chemistry Letters, vol.5, issue.23, pp.4110-4114, 2014.

J. Wu, G. Gao, J. Li, P. Sun, X. Long et al., Efficient and Versatile CuNi Alloy Nanocatalysts for the Highly Selective Hydrogenation of Furfural, Applied Catalysis B: Environmental, vol.203, pp.227-236, 2017.

J. Zhang and J. Chen, Selective Transfer Hydrogenation of Biomass-Based Furfural and 5-Hydroxymethylfurfural over Hydrotalcite-Derived Copper Catalysts Using Methanol as a Hydrogen Donor, ACS Sustainable Chemistry & Engineering, vol.2017, issue.7, pp.5982-5993

M. Manikandan, A. K. Venugopal, A. S. Nagpure, S. Chilukuri, and T. Raja, Promotional Effect of Fe on the Performance of Supported Cu Catalyst for Ambient Pressure Hydrogenation of Furfural, RSC Advances, vol.6, issue.5, pp.3888-3898, 2016.

M. Audemar, C. Ciotonea, . De-oliveira, K. Vigier, S. Royer et al., Selective Hydrogenation of Furfural to Furfuryl Alcohol in the Presence of a Recyclable Cobalt/SBA-15 Catalyst, ChemSusChem, vol.2015, issue.11, pp.1885-1891
URL : https://hal.archives-ouvertes.fr/hal-01327190

J. Lee, S. P. Burt, C. A. Carrero, A. C. Alba-rubio, I. Ro et al., , vol.228, p.342

D. H. Jackson and T. F. Kuech, Hermans, I. Stabilizing Cobalt Catalysts for Aqueous-Phase Reactions by Strong Metal-Support Interaction, Journal of Catalysis, vol.330, pp.19-27, 2015.

T. P. Sulmonetti, S. H. Pang, M. T. Claure, S. Lee, D. A. Cullen et al., Vapor Phase Hydrogenation of Furfural over Nickel Mixed Metal Oxide Catalysts Derived from Layered Double Hydroxides, Applied Catalysis A: General, vol.517, pp.187-195, 2016.

C. Wang, J. Luo, V. Liao, J. D. Lee, T. M. Onn et al., A Comparison of Furfural Hydrodeoxygenation over Pt-Co and Ni-Fe Catalysts at High and Low H2 Pressures, Catalysis Today, vol.302, pp.73-79, 2018.

J. He, S. Yang, and A. Riisager, Magnetic Nickel Ferrite Nanoparticles as Highly Durable Catalysts for Catalytic Transfer Hydrogenation of Bio-Based Aldehydes, Catalysis Science & Technology, vol.8, issue.3, pp.790-797, 2018.

V. S. Marakatti, N. Arora, S. Rai, S. C. Sarma, and S. C. Peter, Understanding the Role of Atomic Ordering in the Crystal Structures of NixSny toward Efficient Vapor Phase Furfural Hydrogenation, ACS Sustainable Chemistry & Engineering, vol.6, issue.6, pp.7325-7338, 2018.

. Rodiansono,

M. D. Astuti, U. T. Santoso, and S. Shimazu, Hydrogenation of Biomass-Derived Furfural Over Highly Dispersed-Aluminium Hydroxide Supported Ni-Sn Alloy Catalysts, Procedia Chemistry, vol.16, pp.531-539, 2015.

J. Zhang, K. Dong, W. Luo, and H. Guan, Selective Transfer Hydrogenation of Furfural into Furfuryl Alcohol on Zr-Containing Catalysts Using Lower Alcohols as Hydrogen Donors

, , vol.3, pp.6206-6216, 2018.

Y. Sha, Z. Xiao, H. Zhou, K. Yang, Y. Song et al., Direct Use of Humic Acid Mixtures to Construct Efficient Zr-Containing Catalysts for MeerweinPonndorf-Verley Reactions, Green Chemistry, vol.19, issue.20, pp.4829-4837, 2017.

M. Koehle, R. F. Lobo, and . Lewis, Acidic Zeolite Beta Catalyst for the Meerwein-PonndorfVerley Reduction of Furfural, Catalysis Science & Technology, vol.6, issue.9, pp.3018-3026, 2016.

Y. Injongkol, T. Maihom, P. Treesukul, J. Sirijaraensre, B. Boekfa et al., Theoretical Study on the Reaction Mechanism of Hydrogenation of Furfural to Furfuryl Alcohol on Lewis Acidic BEA Zeolites: Effects of Defect Structure and Tetravalent Metals Substitution, Physical Chemistry Chemical Physics, vol.19, issue.35, pp.24042-24048, 2017.

M. S. Kim, F. S. Simanjuntak, S. Lim, J. Jae, J. Ha et al., Synthesis of Alumina-Carbon Composite Material for the Catalytic Conversion of Furfural to Furfuryl Alcohol, Journal of Industrial and Engineering Chemistry, vol.52, pp.59-65, 2017.

L. Xie, T. Chen, H. C. Chan, Y. Shu, and Q. Gao, Front Cover: Hydrogen Doping into MoO3 Supports toward Modulated Metal-Support Interactions and Efficient Furfural Hydrogenation on Iridium Nanocatalysts, Chemistry -An Asian Journal, vol.13, issue.6, pp.584-584, 2018.

Z. Zhang, X. Tong, H. Zhang, and Y. Li, Versatile Catalysis of Iron: Tunable and Selective Transformation of Biomass-Derived Furfural in Aliphatic Alcohol, Green Chemistry, vol.20, issue.13, pp.3092-3100, 2018.

L. Grazia, D. Bonincontro, A. Lolli, T. Tabanelli, C. Lucarelli et al., Exploiting H-Transfer as a Tool for the Catalytic Reduction of Bio-Based Building Blocks: The Gas-Phase Production of 2-Methylfurfural Using a FeVO4 Catalyst, vol.230, p.342

, Chemistry, vol.19, issue.18, pp.4412-4422, 2017.

W. Wu, W. Zhao, C. Fang, Z. Wang, T. Yang et al., Quantitative Hydrogenation of Furfural to Furfuryl Alcohol with Recyclable KF and Hydrosilane at Room Temperature in Minutes, Catalysis Communications, vol.105, pp.6-10, 2018.

A. J. Garcia-olmo, A. Yepez, A. M. Balu, P. Prinsen, A. Garcia et al., Activity of Continuous Flow Synthesized Pd-Based Nanocatalysts in the Flow Hydroconversion of Furfural, Tetrahedron, vol.2017, issue.38, pp.5599-5604

X. Hu, S. Kadarwati, Y. Song, and C. Li, Simultaneous Hydrogenation and Acid-Catalyzed Conversion of the Biomass-Derived Furans in Solvents with Distinct Polarities, RSC Advances, vol.6, issue.6, pp.4647-4656, 2016.

S. Bhogeswararao and D. Srinivas, Catalytic Conversion of Furfural to Industrial Chemicals over Supported Pt and Pd Catalysts, Journal of Catalysis, vol.327, pp.65-77, 2015.

M. Lesiak, M. Binczarski, S. Karski, W. Maniukiewicz, J. Rogowski et al., Hydrogenation of Furfural over Pd

C. Catalysts, The Role of Interaction between Palladium and Copper on Determining Catalytic Properties, Journal of Molecular Catalysis A: Chemical, vol.395, pp.337-348, 2014.

N. S. Date, N. S. Biradar, R. C. Chikate, and C. V. Rode, Effect of Reduction Protocol of Pd Catalysts on Product Distribution in Furfural Hydrogenation, Chemistryselect, vol.2017, issue.1, pp.24-32

N. Pino, S. Sitthisa, Q. Tan, T. Souza, D. López et al., Activity, and Selectivity of Bimetallic Pd-Fe/SiO2 and Pd-Fe/?-Al2O3 Catalysts for the, vol.231

, Conversion of Furfural, Journal of Catalysis, vol.350, pp.30-40, 2017.

P. Puthiaraj, K. Kim, and W. Ahn, Catalytic Transfer Hydrogenation of Bio-Based Furfural by Palladium Supported on Nitrogen-Doped Porous Carbon, Catalysis Today, 2018.

M. Chatterjee, A. Chatterjee, T. Ishizaka, and H. Kawanami, Defining Pt-Compressed CO2 Synergy for Selectivity Control of Furfural Hydrogenation, vol.8, pp.20190-20201, 2018.

M. J. Taylor, L. J. Durndell, M. A. Isaacs, C. M. Parlett, K. Wilson et al., Highly Selective Hydrogenation of Furfural over Supported Pt Nanoparticles under Mild Conditions, Applied Catalysis B: Environmental, vol.180, pp.580-585, 2016.

J. L. Castelbou, K. C. Szeto, W. Barakat, N. Merle, C. Godard et al., A New Approach for the Preparation of Well-Defined Rh and Pt Nanoparticles Stabilized by Phosphine-Functionalized Silica for Selective Hydrogenation Reactions, Chemical Communications, vol.53, issue.22, pp.3261-3264, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01872866

C. Wang, Z. Guo, Y. Yang, J. Chang, and A. Borgna, Hydrogenation of Furfural as Model Reaction of Bio-Oil Stabilization under Mild Conditions Using Multiwalled Carbon Nanotube (MWNT)-Supported Pt Catalysts, Industrial & Engineering Chemistry Research, vol.53, issue.28, pp.11284-11291, 2014.

Á. O'driscoll, T. Curtin, W. Y. Hernández, . Van-der, P. Voort et al., Hydrogenation of Furfural with a Pt-Sn Catalyst: The Suitability to Sustainable Industrial Application. Organic Process Research & Development, vol.20, p.342, 2016.

M. G. Dohade and P. L. Dhepe, Efficient Hydrogenation of Concentrated Aqueous Furfural Solutions into Furfuryl Alcohol under Ambient Conditions in Presence of PtCo Bimetallic Catalyst, Green Chemistry, vol.19, issue.4, pp.1144-1154, 2017.

G. Bagnato, A. Figoli, C. Ursino, F. Galiano, and A. Sanna, A Novel Ru-Polyethersulfone (PES) Catalytic Membrane for Highly Efficient and Selective Hydrogenation of Furfural to Furfuryl Alcohol, Journal of Materials Chemistry A, vol.6, issue.12, pp.4955-4965, 2018.

M. Li, Y. Hao, F. Cárdenas-lizana, and M. A. Keane, Selective Production of Furfuryl Alcohol via Gas Phase Hydrogenation of Furfural over Au/Al2O3, Catalysis Communications, vol.69, pp.119-122, 2015.

Q. Yuan, D. Zhang, L. Haandel, and . Van,

F. Ye, T. Xue, E. J. Hensen, and Y. Guan, Selective Liquid Phase Hydrogenation of Furfural to Furfuryl Alcohol by Ru/Zr-MOFs, Journal of Molecular Catalysis A: Chemical, vol.406, pp.58-64, 2015.

J. Yang, J. Ma, Q. Yuan, P. Zhang, and Y. Guan, Selective Hydrogenation of Furfural on Ru/Al-MIL-53: A Comparative Study on the Effect of Aromatic and Aliphatic Organic Linkers, RSC Advances, vol.6, issue.95, pp.92299-92304, 2016.

J. M. Tukacs, M. Bohus, G. Dibó, and L. T. Mika, Ruthenium-Catalyzed Solvent-Free Conversion of Furfural to Furfuryl Alcohol, vol.7, pp.3331-3335, 2017.

J. K. Augustine, A. Bombrun, and R. N. Atta, A Practical and Cost-Efficient, One-Pot Conversion of Aldehydes into Nitriles Mediated by ?Activated DMSO, Synlett, vol.15, pp.2223-2227, 2011.

A. Szczurek, V. Fierro, M. Thébault, A. Pizzi, and A. Celzard, Structure and Properties of Poly (Furfuryl Alcohol)-Tannin PolyHIPEs, European Polymer Journal, vol.78, pp.195-212, 2016.

F. Mangin, P. Prinsen, A. Yepez, M. R. Gilani, G. Xu et al., Microwave Assisted Benzyl Alcohol Oxidation Using Iron Particles on Furfuryl Alcohol Derived Supports, Catalysis Communications, vol.104, pp.67-70, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01680349

M. Ju, C. Zeng, C. Wang, and L. Zhang, Preparation of Ultrafine Carbon Spheres by Controlled Polymerization of Furfuryl Alcohol in Microdroplets, Industrial & Engineering Chemistry Research, vol.53, issue.8, pp.3084-3090, 2014.

H. Wei, D. Feng, G. Shu, M. Pan, Y. Guo et al., Experimental Investigation on the Combustion and Emissions Characteristics of 2-Methylfuran Gasoline Blend Fuel in Spark-Ignition Engine, Applied Energy, vol.132, pp.317-324, 2014.

S. Li, N. Li, W. Wang, L. Li, A. Wang et al., Synthesis of Jet Fuel Range Branched Cycloalkanes with Mesityl Oxide and 2-Methylfuran from Lignocellulose, Scientific reports, vol.6, p.32379, 2016.

S. Srivastava, G. C. Jadeja, and J. Parikh, Synergism Studies on Alumina-Supported Copper-Nickel Catalysts towards Furfural and 5-Hydroxymethylfurfural Hydrogenation, Journal of Molecular Catalysis A, vol.426, pp.244-256, 2017.

R. V. Sharma, U. Das, R. Sammynaiken, and A. K. Dalai, Liquid Phase Chemo-Selective Catalytic Hydrogenation of Furfural to Furfuryl Alcohol, Applied Catalysis A: General, vol.454, pp.127-136, 2013.

M. M. Villaverde, N. M. Bertero, T. F. Garetto, and A. J. Marchi, Selective Liquid-Phase Hydrogenation of Furfural to Furfuryl Alcohol over Cu-Based Catalysts, Catalysis Today, vol.213, pp.87-92, 2013.

A. J. Garcia-olmo, A. Yepez, A. M. Balu, A. A. Romero, Y. Li et al., , vol.283, p.342

, the Activity, Selectivity and Stability of Heterogeneous Catalysts in the Continuous Flow Hydroconversion of Furfural, vol.6, pp.4705-4711, 2016.

N. S. Biradar, A. A. Hengne, S. N. Birajdar, R. Swami, and C. V. Rode, Tailoring the Product Distribution with Batch and Continuous Process Options in Catalytic Hydrogenation of Furfural. Organic Process Research & Development, vol.18, pp.1434-1442, 2014.

K. Fulajtárova, T. Soták, M. Hronec, I. Vávra, E. Dobro?ka et al., Aqueous Phase Hydrogenation of Furfural to Furfuryl Alcohol over Pd-Cu Catalysts, Applied Catalysis A: General, vol.502, pp.78-85, 2015.

J. G. Stevens, R. A. Bourne, M. V. Twigg, and M. Poliakoff, Real-Time Product Switching Using a Twin Catalyst System for the Hydrogenation of Furfural in Supercritical CO2

, Angewandte Chemie International Edition, vol.122, issue.47, pp.9040-9043, 2010.

O. F. Aldosari, S. Iqbal, P. J. Miedziak, G. L. Brett, D. R. Jones et al., Pd-Ru/TiO2 Catalyst -an Active and Selective Catalyst for Furfural Hydrogenation, Catalysis Science & Technology, vol.6, issue.1, pp.234-242, 2015.

A. J. Garcia-olmo, A. Yepez, A. M. Balu, P. Prinsen, A. Garcia et al., Activity of Continuous Flow Synthesized Pd-Based Nanocatalysts in the Flow Hydroconversion of Furfural, Tetrahedron, vol.2017, issue.38, pp.5599-5604

B. Chen, F. Li, Z. Huang, and G. Yuan, Tuning Catalytic Selectivity of Liquid-Phase Hydrogenation of Furfural via Synergistic Effects of Supported Bimetallic Catalysts

, Applied Catalysis A: General, vol.500, pp.23-29, 2015.

Z. Xinghua, W. Tiejun, M. Longlong, and W. Chuangzhi, Aqueous-Phase Catalytic Process for Production of Pentane from Furfural over Nickel-Based Catalysts, Fuel, issue.10, pp.2697-2702, 2010.

W. Gong, C. Chen, H. Zhang, Y. Zhang, Y. Zhang et al., Highly Selective Liquid-Phase Hydrogenation of Furfural over N-Doped Carbon Supported Metallic Nickel Catalyst under Mild Conditions. Molecular Catalysis, vol.429, pp.51-59, 2017.

M. J. Taylor, L. J. Durndell, M. A. Isaacs, C. M. Parlett, K. Wilson et al., Highly Selective Hydrogenation of Furfural over Supported Pt Nanoparticles, vol.284, p.342

, under Mild Conditions, vol.180, pp.580-585, 2016.

X. Chen, L. Zhang, B. Zhang, X. Guo, and X. Mu, Highly Selective Hydrogenation of Furfural to Furfuryl Alcohol over Pt Nanoparticles Supported on GC 3 N 4 Nanosheets Catalysts in Water, Scientific reports, vol.6, p.28558, 2016.

P. Reyes, D. Salinas, C. Campos, M. Oportus, J. Murcia et al., Selective Hydrogenation of Furfural on Ir/TiO2 Catalysts. Quí mica Nova, vol.33, pp.777-780, 2010.

X. Chen, W. Sun, N. Xiao, Y. Yan, and S. Liu, Experimental Study for Liquid Phase Selective Hydrogenation of Furfuryl Alcohol to Tetrahydrofurfuryl Alcohol on Supported Ni Catalysts, Chemical Engineering Journal, vol.126, issue.1, pp.5-11, 2007.

M. Koehle, R. F. Lobo, and . Lewis, Acidic Zeolite Beta Catalyst for the Meerwein-PonndorfVerley Reduction of Furfural, Catalysis Science & Technology, vol.6, issue.9, pp.3018-3026, 2016.

M. J. Gilkey, P. Panagiotopoulou, A. V. Mironenko, G. R. Jenness, D. G. Vlachos et al., Mechanistic Insights into Metal Lewis Acid-Mediated Catalytic Transfer Hydrogenation of Furfural to 2-Methylfuran, ACS Catalysis, vol.5, issue.7, pp.3988-3994, 2015.

J. D. Lewis, S. Van-de-vyver, A. J. Crisci, W. R. Gunther, V. K. Michaelis et al., A Continuous Flow Strategy for the Coupled Transfer Hydrogenation and Etherification of 5-(Hydroxymethyl) Furfural Using Lewis Acid Zeolites, ChemSusChem, vol.7, issue.8, pp.2255-2265, 2014.

V. S. Polshettiwar and R. Varma, Revisiting the Meerwein-Ponndorf-Verley Reduction: A Sustainable Protocol for Transfer Hydrogenation of Aldehydes and Ketones, Green Chemistry, vol.11, issue.9, pp.1313-1316, 2009.

L. Bui, H. Luo, W. R. Gunther, and Y. Román-leshkov, Domino Reaction Catalyzed by Zeolites with Brønsted and Lewis Acid Sites for the Production of ?-Valerolactone from

. Furfural, Angewandte Chemie International Edition, vol.125, issue.31, pp.8180-8183, 2013.

J. Jae, E. Mahmoud, R. F. Lobo, and D. G. Vlachos, Cascade of Liquid-Phase Catalytic Transfer Hydrogenation and Etherification of 5-Hydroxymethylfurfural to Potential Biodiesel Components over Lewis Acid Zeolites, ChemCatChem, vol.6, issue.2, pp.508-513, 2014.

L. Yan, Q. Yao, and Y. Fu, Conversion of Levulinic Acid and Alkyl Levulinates into, Biofuels, vol.285, p.342

H. Chemicals, Green Chemistry, vol.19, issue.23, pp.5527-5547, 2017.

Z. Zhang, K. Dong, and Z. K. Zhao, Efficient Conversion of Furfuryl Alcohol into Alkyl Levulinates Catalyzed by an Organic-Inorganic Hybrid Solid Acid Catalyst, ChemSusChem, vol.4, issue.1, pp.112-118, 2011.

G. D. Yadav and I. V. Borkar, Kinetic Modeling of Immobilized Lipase Catalysis in Synthesis of N-Butyl Levulinate, Industrial & Engineering Chemistry Research, vol.47, issue.10, pp.3358-3363, 2008.

B. L. Oliveira and V. Teixeira-da-silva, Sulfonated Carbon Nanotubes as Catalysts for the Conversion of Levulinic Acid into Ethyl Levulinate, Catalysis Today, vol.234, pp.257-263, 2014.

G. Wang, Z. Zhang, and L. Song, Efficient and Selective Alcoholysis of Furfuryl Alcohol to Alkyl Levulinates Catalyzed by Double SO3H-Functionalized Ionic Liquids, Green Chemistry, vol.16, issue.3, pp.1436-1443, 2014.

C. Chang, G. Xu, and X. Jiang, Production of Ethyl Levulinate by Direct Conversion of Wheat Straw in Ethanol Media, Bioresource technology, vol.121, pp.93-99, 2012.

A. S. Amarasekara and B. Wiredu, Acidic Ionic Liquid Catalyzed One-Pot Conversion of Cellulose to Ethyl Levulinate and Levulinic Acid in Ethanol-Water Solvent System

, BioEnergy Research, vol.7, issue.4, pp.1237-1243, 2014.

X. Xu, X. Zhang, W. Zou, H. Yue, G. Tian et al., Conversion of Carbohydrates to Methyl Levulinate Catalyzed by Sulfated Montmorillonite, Catalysis Communications, vol.62, pp.67-70, 2015.

R. Liu, J. Chen, X. Huang, L. Chen, L. Ma et al., Conversion of Fructose into 5-Hydroxymethylfurfural and Alkyl Levulinates Catalyzed by Sulfonic Acid-Functionalized Carbon Materials, Green Chemistry, vol.15, issue.10, pp.2895-2903, 2013.

S. Saravanamurugan, O. Nguyen-van-buu, and A. Riisager, Conversion of Mono-and Disaccharides to Ethyl Levulinate and Ethyl Pyranoside with Sulfonic Acid-Functionalized Ionic Liquids, ChemSusChem, vol.4, issue.6, pp.723-726, 2011.

S. Zhao, G. Xu, C. Chang, S. Fang, Z. Liu et al., Direct Conversion of Carbohydrates into Ethyl Levulinate with Potassium Phosphotungstate as an Efficient Catalyst, Catalysts, vol.286, p.342

S. Zhao, G. Xu, J. Chang, C. Chang, J. Bai et al., Direct Production of Ethyl Levulinate from Carbohydrates Catalyzed by H-ZSM-5 Supported Phosphotungstic Acid, BioResources, vol.2015, issue.2, pp.2223-2234

J. Chen, G. Zhao, and L. Chen, Efficient Production of 5-Hydroxymethylfurfural and Alkyl Levulinate from Biomass Carbohydrate Using Ionic Liquid-Based Polyoxometalate Salts, vol.4, pp.4194-4202, 2014.

X. Hu, Y. Song, L. Wu, M. Gholizadeh, and C. Li, One-Pot Synthesis of Levulinic Acid/Ester from C5 Carbohydrates in a Methanol Medium, ACS Sustainable Chemistry & Engineering, vol.2013, issue.12, pp.1593-1599

S. Saravanamurugan and A. Riisager, Zeolite Catalyzed Transformation of Carbohydrates to Alkyl Levulinates, ChemCatChem, vol.2013, issue.7, pp.1754-1757

M. M. Antunes, P. A. Russo, P. V. Wiper, J. M. Veiga, M. Pillinger et al., Sulfonated Graphene Oxide as Effective Catalyst for Conversion of 5-(Hydroxymethyl)-2-Furfural into Biofuels, ChemSusChem, vol.7, issue.3, pp.804-812, 2014.

S. Zhu, Y. Cen, J. Guo, J. Chai, J. Wang et al., One-Pot Conversion of Furfural to Alkyl Levulinate over Bifunctional Au-H 4 SiW 12 O 40/ZrO 2 without External H2

, Green Chemistry, vol.18, issue.20, pp.5667-5675, 2016.

B. Chen, F. Li, Z. Huang, T. Lu, Y. Yuan et al., Integrated Catalytic Process to Directly Convert Furfural to Levulinate Ester with High Selectivity, ChemSusChem, vol.7, issue.1, pp.202-209, 2014.

M. M. Antunes, S. Lima, P. Neves, A. L. Magalhães, E. Fazio et al., Integrated Reduction and Acid-Catalysed Conversion of Furfural in, Alcohol Medium Using Zr

. Micro/mesoporous and . Silicates, Applied Catalysis B: Environmental, vol.182, pp.485-503, 2016.

L. Peng, R. Tao, and Y. Wu, Catalytic Upgrading of Biomass-Derived Furfuryl Alcohol to Butyl Levulinate Biofuel over Common Metal Salts, Catalysts, vol.6, issue.9, p.143, 2016.

L. Peng, X. Gao, and K. Chen, Catalytic Upgrading of Renewable Furfuryl Alcohol to Alkyl

, Levulinates Using AlCl 3 as a Facile, Efficient, and Reusable Catalyst, Fuel, vol.160, pp.123-131, 2015.

J. Lange, W. D. Van-de-graaf, and R. J. Haan, Conversion of Furfuryl Alcohol into Ethyl Levulinate Using Solid Acid Catalysts, ChemSusChem, vol.2, issue.5, pp.437-441, 2009.

P. Neves, S. Lima, M. Pillinger, S. M. Rocha, J. Rocha et al., Conversion of Furfuryl Alcohol to Ethyl Levulinate Using Porous Aluminosilicate Acid Catalysts

, Catalysis Today, vol.218, pp.76-84, 2013.

G. Wang, Z. Zhang, and L. Song, Efficient and Selective Alcoholysis of Furfuryl Alcohol to Alkyl Levulinates Catalyzed by Double SO 3 H-Functionalized Ionic Liquids, Green Chemistry, vol.16, issue.3, pp.1436-1443, 2014.

A. M. Hengne, S. B. Kamble, and C. V. Rode, Single Pot Conversion of Furfuryl Alcohol to Levulinic Esters and ?-Valerolactone in the Presence of Sulfonic Acid Functionalized ILs and Metal Catalysts, Green Chemistry, vol.15, issue.9, pp.2540-2547, 2013.

B. S. Rao, P. K. Kumari, D. Dhanalakshmi, and N. Lingaiah, Selective Conversion of Furfuryl Alcohol into Butyl Levulinate over Zinc Exchanged Heteropoly Tungstate Supported on Niobia Catalysts, Journal of Molecular Catalysis A, vol.427, pp.80-86, 2017.

W. D. Van-de-graaf and J. P. Lange, Process for the Conversion of Furfuryl Alcohol into Levulinic Acid or Alkyl Levulinate. US Pat, 2007.

X. Gao, L. Peng, H. Li, and K. Chen, Formation of Humin and Alkyl Levulinate in the Acid-Catalyzed Conversion of Biomass-Derived Furfuryl Alcohol, BioResources, vol.10, issue.4, pp.6548-6564, 2015.

A. S. Mamman, J. Lee, Y. Kim, I. T. Hwang, N. Park et al., Hemicellulose/Xylosederived Biochemical. Biofuels, Bioproducts and Biorefining, vol.2, pp.438-454, 2008.

Y. Huang, T. Yang, M. Zhou, H. Pan, and Y. Fu, Microwave-Assisted Alcoholysis of Furfural Alcohol into Alkyl Levulinates Catalyzed by Metal Salts, Green Chemistry, vol.18, issue.6, pp.1516-1523, 2016.

X. ;. Hu, R. J. Westerhof, L. Wu, D. Dong, and C. Li, Upgrading Biomass-Derived, vol.288, p.342

, Furans via Acid-Catalysis/Hydrogenation: The Remarkable Difference between Water and Methanol as the Solvent, Green Chemistry, vol.17, issue.1, pp.219-224, 2015.

G. Zhao, L. Hu, Y. Sun, X. Zeng, and L. Lin, Conversion of Biomass-Derived Furfuryl Alcohol into Ethyl Levulinate Catalyzed by Solid Acid in Ethanol, BioResources, vol.2014, issue.2, pp.2634-2644

D. Ren, J. Fu, L. Li, Y. Liu, F. Jin et al., Efficient Conversion of Biomass-Derived Furfuryl Alcohol to Levulinate Esters over Commercial ?-Fe 2 O 3, RSC Advances, vol.6, issue.26, pp.22174-22178, 2016.

T. M. Lima, C. G. Lima, A. K. Rathi, M. B. Gawande, J. Tucek et al., Magnetic ZSM-5 Zeolite: A Selective Catalyst for the Valorization of Furfuryl Alcohol to ?-Valerolactone, Alkyl Levulinates or Levulinic Acid. Green Chemistry, vol.18, issue.20, pp.5586-5593, 2016.

K. Y. Nandiwale, A. M. Pande, and V. V. Bokade, One Step Synthesis of Ethyl Levulinate Biofuel by Ethanolysis of Renewable Furfuryl Alcohol over Hierarchical Zeolite Catalyst, RSC Advances, vol.5, issue.97, pp.79224-79231, 2015.

D. Song, S. An, B. Lu, Y. Guo, and J. Leng, Arylsulfonic Acid Functionalized Hollow Mesoporous Carbon Spheres for Efficient Conversion of Levulinic Acid or Furfuryl Alcohol to Ethyl Levulinate, Applied Catalysis B: Environmental, vol.179, pp.445-457, 2015.

D. Song, S. An, Y. Sun, P. Zhang, Y. Guo et al., Ethane-Bridged Organosilica Nanotubes Functionalized with Arenesulfonic Acid and Phenyl Groups for the Efficient Conversion of Levulinic Acid or Furfuryl Alcohol to Ethyl Levulinate, ChemCatChem, vol.8, issue.12, pp.2037-2048, 2016.

G. M. Maldonado, R. S. Assary, J. A. Dumesic, and L. A. Curtiss, Acid-Catalyzed Conversion of Furfuryl Alcohol to Ethyl Levulinate in Liquid Ethanol, Energy & environmental science, vol.2012, issue.10, pp.8990-8997

T. Kim, R. S. Assary, C. L. Marshall, D. J. Gosztola, L. A. Curtiss et al., Acid-Catalyzed Furfuryl Alcohol Polymerization: Characterizations of Molecular Structure and Thermodynamic Properties, ChemCatChem, vol.2011, issue.9, pp.1451-1458

M. Choura, N. M. Belgacem, and A. Gandini, Acid-Catalyzed Polycondensation of Furfuryl

, Alcohol: Mechanisms of Chromophore Formation and Cross-Linking, Macromolecules, vol.29, issue.11, pp.3839-3850, 1996.

L. Pranger and R. Tannenbaum, Biobased Nanocomposites Prepared by In Situ Polymerization of Furfuryl Alcohol with Cellulose Whiskers or Montmorillonite Clay, Macromolecules, issue.22, pp.8682-8687, 2008.

B. , S. R. , K. K. , D. L. , and L. , One Pot Selective Transformation of Biomass Derived Chemicals towards Alkyl Levulinates over Titanium Exchanged Heteropoly Tungstate Catalysts, Catalysis Today, 2017.

J. Kazmierczak-razna, P. Nowicki, and R. Pietrzak, The Use of Microwave Radiation for Obtaining Activated Carbons Enriched in Nitrogen, Powder Technology, vol.273, pp.71-75, 2015.

R. I. Khusnutdinov, A. R. Baiguzina, A. A. Smirnov, R. R. Mukminov, and U. M. Dzhemilev, Furfuryl Alcohol in Synthesis of Levulinic Acid Esters and Difurylmethane with Fe and Rh Complexes, Russian Journal of Applied Chemistry, vol.80, issue.10, pp.1687-1690, 2007.

E. Ahmad, M. I. Alam, K. K. Pant, and M. A. Haider, Catalytic and Mechanistic Insights into the Production of Ethyl Levulinate from Biorenewable Feedstocks, Green Chemistry, 2016.

Y. Wang, F. Delbecq, W. Kwapinski, and C. Len, Application of Sulfonated Carbon-Based Catalyst for the Furfural Production from d-Xylose and Xylan in a Microwave-Assisted Biphasic Reaction. Molecular Catalysis, vol.438, pp.167-172, 2017.

W. Ouyang, D. Zhao, Y. Wang, A. M. Balu, C. Len et al., Continuous Flow Conversion of Biomass-Derived Methyl Levulinate into ?-Valerolactone Using Functional Metal Organic Frameworks, ACS Sustainable Chemistry & Engineering, vol.6, issue.5, pp.6746-6752, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02148545

D. Zhao, P. Prinsen, Y. Wang, W. Ouyang, F. Delbecq et al., Continuous Flow Alcoholysis of Furfuryl Alcohol to Alkyl Levulinates Using Zeolites, ACS Sustainable Chemistry & Engineering, vol.6, issue.5, pp.6901-6909, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02148563

Y. Wang, K. Li, L. Wei, and Y. Ma, Probing molecular interactions in 1-butyl-3-methylimidazolium chloride-water and 2,6-dimethoxyphenol mixtures using attenuated total reflection infrared spectroscopy, Chinese Journal of Chemical Physics, vol.30, issue.5, pp.521-528, 2017.

Y. Wang, T. Len, Y. Huang, A. D. Tabaoda, A. N. Boa et al.,

C. Mackenzie and . Len, Sulfonated Sporopollenin as an efficient and recyclable heterogeneous catalyst for dehydration of D-xylose and xylan into furfural, ACS Sustainable Chemistry & Engineering, vol.5, pp.392-398, 2017.

Y. Wang, F. Delbecq, W. Kwapinski, and C. Len, Application of sulfonated carbon-based catalyst for the furfural production from D-xylose and xylan in a microwave-assisted biphasic reaction, Mol. Catal, vol.438, pp.167-172, 2017.

Y. Wang, F. Delbecq, R. S. Varma, and C. Len, Comprehensive study on expeditious conversion of pre-hydrolyzed alginic acid to furfural in Cu(II) biphasic systems using microwaves, Mol. Catal, vol.445, pp.73-79, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02148556

Y. Wang, P. Prinsen, and K. S. , Batch vs. continuous flow performance of supported mono-and bimetallic nickel catalysts for catalytic transfer hydrogenation of furfural in isopropanol, Chemcatchem, vol.10, pp.3459-3468, 2018.

Y. Wang, P. Prinsen, and K. S. , A comparative study of supported monometallic catalysts in the liquid-phase hydrogenation of furfural: batch vs, vol.297, p.342

, ACS Sustainable Chemistry & Engineering, vol.6, pp.9831-9844, 2018.

Y. Wang, P. Prinsen, and M. Floriane, Microwave-assisted cinnamyl alcohol oxidation using supported iron and palladium. Chemcatchem, under review

F. Delbecq and Y. Wang, Hydrolysis of hemicellulose and derivatives-A review of recent advances in the production of furfural, J]. Frontiers in Chemistry, vol.6, p.146, 2018.
URL : https://hal.archives-ouvertes.fr/ineris-01863335

F. Delbecq, Y. Wang, and C. Len, Conversion of xylose, xylan and rice husk into furfural via betaine and formic acid mixture as novel homogeneous catalyst in biphasic system by microwave-assisted dehydration, Journal of Molecular Catalysis A: Chemical, vol.423, pp.520-525, 2016.

F. Delbecq, Y. Wang, and C. Len, Various carbohydrate precursors dehydration to 5-HMF in an acidic biphasic system uner microwave heating using betaine as a co-catalyst, Journal of Molecular Catalysis A: Chemical, vol.434, pp.80-85, 2017.

D. Zhao, P. Prinsen, and Y. Wang, Continuous flow alcoholysis of furfuryl alcohol to alkyl levulinates using zeolites
URL : https://hal.archives-ouvertes.fr/hal-02148563

W. Ouyang, D. Zhao, and Y. Wang, Continuous flow conversion of biomass-derived methyl levulinate into gamma valerolactone using functional metal organic frameworks

Y. Wang, T. Len, Y. Huang, A. D. Tabaoda, A. N. Boa et al., , vol.298, p.342

C. Mackenzie and . Len, Sulfonated Sporopollenin as an efficient and recyclable heterogeneous catalyst for dehydration of D-xylose and xylan into furfural, Journée scientifique TIMR, 2016.

Y. Wang, F. Delbecq, R. S. Varma, and C. Len, Expeditious conversion of alginic acid to furfural in Cu(II) biphasic systems using microwaves, 4th International Symposium on Green Chemistry -ISGC4, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02148556

Y. Wang, F. Delbecq, C. C. Corbas, E. Ruiz-ramos, and C. Len, Microwave assisted efficient furfural production using different catalytic system, FP1306 COST Action, Fourth Workshop 1 Fifth MC Meetin, 2018.

Y. Wang, T. Len, Y. Huang, A. D. Tabaoda, A. N. Boa et al.,

C. Mackenzie and . Len, Sulfonated Sporopollenin as an efficient and recyclable heterogeneous catalyst for dehydration of D-xylose and xylan into furfural, Journée scientifique TIMR, 2016.

Y. Wang, C. Ceballos, F. Delbecq, and C. Len, Microwave-aided furfural production by means of sulfonated sporopollenin in a water-CPME biphasic system, Catalysis Applied to Biomass -Toward sustainable processes and chemicalsCABiomass-2016, 2016.

Y. Wang, S. L. Guenic, F. Delbecq, C. Ceballos, and C. Len, Simple green dehydration in water : application to the synthesis of furfural. Colloque recherche de la fédération Gay-Lussac « Chimie et procédés du végétal, vol.299, p.342, 2016.

C. Len, Y. Wang, F. Delbecq, and R. S. Varma, Expeditious conversion of alginic acid to furfural in Cu(II) biphasic systems using microwaves. 253th American Chemical Society National meeting, Scientific research COST Action, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02148556

, STSM Applicant: Yantao Wang Host: Rafael LUQUE

, STSM Topic: Stability of the conversion and selectivity of monometallic Ni and bimetallic Ni-M catalysts in continuous flow hydrogenation of furfural to 2-methylfuran and in the hydrogenation of furonitrile to furfuryl amine and/or

, Reagents Substrates were purchased from Acros Organic (D-xylose ? 99%, xylan from

?. Beechwood and . 90%, Solvents were purchased from Acros (cyclopentyl methyl ether, ethanol, and acetone) and Fisher Scientific (acetonitrile)

, Raw spores of L. clavatum (100 g) were added to acetone (450 mL) and stirred for

C. Gbl) and . Erba, Furfural (99 %) and 2-furonitrile (99 %) for use as reference in HPLC were obtained from Acros. Heteropolyacid H 3 PW 12 O 40 (HPA) was obtained from Aldrich Chemical Co, dimethyl sulfoxide ? 99 %)

. D-xylose, mg, 1.0 mmol) and H 3 PW 12 O 40 (0.06 g, 40 wt/ %) in a mixture of DMSO-GBL (5 mL, 1:4, v/v) were introduced in a vial

. °c, At the end of the reaction, the sample was cooled down at 40 °C, diluted with acetonitrile (200 mL) and filtered prior to analysis through a syringe filter (PTFE, 0.45?m, VWR). purchased from Acros Organics (D-xylose ? 99 %, hydroxylamine hydrochloride 97 %)

C. Gbl) and . Erba, dimethyl sulfoxide ? 99 %). Furfural (99 %) and

, Furfural (96 mg, 1.0 mmol) and NH2OH.HCl (86 mg, 1.23 mmol)) in a mixture of DMSO-GBL (5 mL, 2:3, v/v) were introduced in a vial

. °c, At the end of the reaction, the sample was cooled down at 40 °C, diluted with acetonitrile (100 mL) and filtered prior to analysis through a syringe filter

, 60 mmol) and H3PW12O40 (1.68 g, 19 wt/ %) in a mixture of DMSO-GBL (150 mL, 1:4, v/v). The mixture was stirred at room temperature for 5 minutes and was pumped at 0.25 mL min-1 in a microwave reactor, An Erlenmeyer flask (250 mL) was charged with D-Xylose

. Nh2oh and . Hcl, 02 g, 29.3 mmol) in a mixture of DMSO-GBL (100 mL, 1:4, v/v) was loaded in the process with a second pump at 0.25 mL min-1 and the resulting flow stream went through the second microwave reactor

, MHz) (residence time 40 minutes) at 100 °C. The effluent from the reactor was condensed at room temperature in a separator, diluted with acetonitrile (200 mL) and filtered prior to analysis through a syringe filter

, 60 mmol) and H3PW12O40 (1.68 g, 19 wt/ %) in a mixture of DMSO-GBL (150 mL, 1:4, v/v). The mixture was stirred at room temperature for 5 minutes and was pumped at 0.25 mL min-1 (residence time 40 minutes) in a microwave reactor, An Erlenmeyer flask (250 mL) was charged with D-Xylose

W. Mhz, , p.150