
HAL Id: tel-02171934
https://theses.hal.science/tel-02171934

Submitted on 3 Jul 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Imperfect RDF Databases : From Modelling to Querying
Amna Abidi

To cite this version:
Amna Abidi. Imperfect RDF Databases : From Modelling to Querying. Other [cs.OH]. ISAE-ENSMA
Ecole Nationale Supérieure de Mécanique et d’Aérotechique - Poitiers; Université de Tunis (1958-1988),
2019. English. �NNT : 2019ESMA0008�. �tel-02171934�

https://theses.hal.science/tel-02171934
https://hal.archives-ouvertes.fr

THESE
Pour l’obtention du Grade de

DOCTEUR DE L’ECOLE NATIONALE SUPERIEURE DE
MECANIQUE ET D’AEROTECHNIQUE DE POITIERS et DE

L’INSTITUT SUPERIEUR DE GESTION DE TUNIS

(Diplôme National - Arrété du 25 Mai 2016)

Ecole doctorale: Sciences et Ingénierie des Systèmes, Mathématiques, Informatique

Secteur de recherche: INFORMATIQUE ET APPLICATIONS

Présentée par

Amna ABIDI

Imperfect RDF Databases: From Modelling to
Querying

Directeurs de thèse: Allel HADJALI et Boutheina BEN YAGHLANE

Soutenue le 11 Juin 2019

devant la commission d’examen

- JURY -
Rapporteurs:
Président de jury Djamal BENSLIMANE Professeur Univ. Lyon 1, France

Hajer BAAZAOUI MC-HDR Univ. de la Manouba, Tunisie
Membres de jury:

Juliette DIBIE BARTHELEMY Professeur AgroParisTech, France
Salah BEN ABDALLAH Professeur Univ. de Tunis, Tunisie
Allel HADJALI Professeur ENSMA, France
Boutheina BEN YAGHLANE Professeur Univ. Carthage, Tunisie
Mohamed Anis BACH TOBJI MC-HDR Univ. de la Manouba, Tunisie

i

Abstract

The ever-increasing interest of RDF (Resource Description Framework) data on
the Web has led to several and important research efforts to enrich traditional RDF data
formalism for the exploitation and analysis purpose. The work of this thesis is a part of the
continuation of those efforts by addressing the issue of RDF data management in presence
of imperfection (untruthfulness, uncertainty, etc.). As a first part of our dissertation, we
particularly tackled the trusted RDF data model. Hence, we proposed to extend the
skyline queries over trust RDF data, which consists in extracting the most interesting
trusted resources according to user-defined criteria. To this end, we introduced appropriate
semantics of the Trust-skyline, the set of the most interesting resources in a trust RDF
dataset. Then, we studied via statistical methods the impact of the trust measure on the
Trust-skyline set.
Second, we integrated in the structure of RDF data (i.e., subject-property-object triple)
a fourth element expressing a possibility measure to reflect the user opinion about the
truth of a statement. To deal with possibility requirements, appropriate framework related
to language is introduced, namely Pi-SPARQL, that extends SPARQL to be possibility-
aware query language.
Finally, we studied a new skyline operator variant to extract possibilistic RDF resources
that are possibly dominated by no other resources in the sense of Pareto optimality. We
introduced a dominance relation and a skyline model adapted to the aforementioned kind
of data. For experiments, we introduced a new algorithm which outperforms the naive
methods. As a first step, it summarizes the region of data explored in earlier iterations.
Indeed, new candidate skyline points are compared to this summary rather than the rest of
the skyline candidates. In addition, as reducing the number of dominance checks is crucial,
another optimization is added by reducing the complexity of the dominance function using
the properties of the new variant skyline defined on possibilistic RDF data.

Keywords: Semantic web, Ressource Description Framework, SPARQL, Trust, Uncer-
tainty, Possibility theory, Preference queries, Skyline queries, Querying, User-centered
system design

ii

Résumé

L’intérêt sans cesse croissant des données RDF (Resource Description Framework)
disponibles sur le Web a conduit à l’émergence de multiple et importants efforts de re-
cherche pour enrichir le formalisme traditionnel des données RDF à des fins d’exploitation
et d’analyse. Le travail de cette thèse s’inscrit dans la continuation de ces efforts en abor-
dant la problématique de la gestion des données RDF en présence d’imperfections (manque
de confiance/validité, incertitude, etc.). Dans la première partie de ce mémoire, nous nous
sommes intéressés aux données RDF pondérées par un degré de confiance (Trust-RDF).
En effet, nous avons proposé d’appliquer l’opérateur skyline sur ces données dans le but
d’extraire les ressources les plus confiantes selon des critères définis par l’utilisateur. Pour
cela, nous avons introduit une sémantique appropriée du Trust-skyline, l’ensemble des
ressources les plus intéressantes extraites d’un ensemble de données RDF pondérées par
un degré de confiance. Ensuite, nous avons discuté via des méthodes statistiques l’impact
des mesures de confiance sur le Trust-skyline.
Dans une deuxième contribution, nous avons intégré à la structure des données RDF (au
niveau du triplet sujet-prédicat-objet) un quatrième élément, exprimant une mesure de
possibilité, pour traduire l’expression de la véracité d’une déclaration. Pour gérer cette
mesure de possibilité, un cadre langagier appropriée est étudié, à savoir Pi-SPARQL, qui
étend le langage SPARQL aux requêtes permettant de traiter des distributions de possi-
bilités.
Enfin, nous avons étudié une variante d’opérateur skyline pour extraire les ressources
RDF possibilistes qui ne sont éventuellement dominées par aucune autre ressource dans
le sens de l’optimalité de Pareto. Nous avons introduit une relation de dominance et un
modèle skyline adaptés pour le contexte de données RDF possibilistes. Pour valider notre
approche, et à des fins d’expérimentations, nous avons proposé un nouvel algorithme plus
performant que la méthode naïve. Comme première étape, il résume les données précé-
demment explorées. Ainsi, les nouveaux candidats du skyline ne seront comparés qu’avec
ce résumé plutôt qu’avec tout l’ensemble des points. De plus, et comme la réduction du
nombre des comparaisons est cruciale, nous avons proposé une autre optimisation en ré-
duisant la complexité de la fonction de dominance en utilisant les propriétés de la nouvelle
variante du skyline introduite sur des données RDF possibilistes.

Mots-clés: Web sémantique, Ressource Description Framework, SPARQL, Bases de De-
gré de confiance, Incertitude, Théorie des possibilités, Requêtes à préférences, Opérateur
Skyline, données–Interrogation, Conception centrée sur l’utilisateur

iii

iv

Guide de lecture

Le Manuscrit est composé de deux parties contenant deux chapitres chacune, les deux
premiers chapitres présentent le background nécessaire à la compréhension des contri-
butions présentées dans les autres chapitres. Les deux derniers chapitres présentent les
contributions de ce travail.

Chapitre 1: RDF Formalism
Ce chapitre rappelle les principaux concepts et formalismes des données RDF (Resource
Description Framework) ainsi que les bases du langage de requêtes SPARQL. Il présente
ensuite les différents modèles de données RDF incertaines (Trust RDF, Probabilistic RDF,
etc).

Chapitre 2: Background on Possibility Theory and Skyline Queries
Ce chapitre est aussi lié à la première partie présentant les préliminaires. Il présente les
notions de la théorie des possibilités. La théorie des possibilités est comparée aux autres
théories d’incertitude: la théorie des probabilités et la théorie de l’évidence.

Il présente ensuite les requêtes de type skyline dans le cas certain ainsi que dans le cas des
données incertaines (skyline probabiliste, skyline possibiliste, skyline stochastique, skyline
évidentiel). Pour la deuxième partie, nous présentons les contributions de ce travail de
thèse.

Chapitre 3: Trust Skyline Model Semantics and Experimentations
Il présente deux principales contributions. La première contribution vise à étendre l’opé-
rateur classique de skyline au cas des données RDF pondérées par des degrés de confiance
(Trust-Weighted RDF data). Le nouvel opérateur est appelé Trust-skyline et l’extension
proposée est principalement basée sur l’adaptation de l’opérateur de dominance de sorte à
ce qu’il produise non pas une dominance binaire (1 si domine ou 0 si ne domine pas) mais
plutôt une dominance graduelle pondérée (un point X domine un point Y à un certain
degré). Pour le calcul du Trust-skyline de nouvelles méthodes sont introduites. Un algo-

v

rithme naif appelé Naive T-skyline est introduit, ainsi qu’un algorithme optimisé appelé
TRDF-Skyline basé sur l’exploitation de certaines propriétés de la sémantique associée à
l’opérateur Trust-skyline proposé. Les résultats de cet algorithme sont comparés à ceux
du Naive T-skyline. La deuxième contribution de ce chapitre consiste à analyser les ré-
sultats du Trust-skyline via l’utilisation de méthodes statistiques. L’objectif est d’étudier
l’impact de la mesure du seuil de confiance ALPHA (trust measure) sur le résultat du
T-skyline. Ainsi, avec une petite valeur d’ALPHA les résultats du T-Skyline sont de petite
taille, alors que pour une valeur moyenne ou grande du seuil de confiance, les résultats
du T-skyline peuvent être volumineux puisque plusieurs points, ayant un trust inférieur
à ALPHA, entrent directement au T-skyline.

Chapitre 4: Possibilistic RDF Data
Ce chapitre fait partie des contributions de cette thèse. Il propose d’abord la modélisa-
tion des données RDF incertaines à travers la théorie des possibilités. Ensuite, un langage
"Possibility-aware" nommé Pi-SPARQL a été proposé pour supporter les besoins de re-
quêtage de données RDF possibilistes.

Enfin une variante d’opérateur skyline est proposée pour extraire les ressources RDF
possibilistes qui ne sont éventuellement dominées par aucune autre ressource dans le sens
de l’optimalité de Pareto. Une relation de dominance et un modèle skyline adaptés pour
le contexte de données RDF possibilistes sont introduits. Pour valider cette approche, et
à des fins d’expérimentations un nouvel algorithme plus performant que la méthode naïve
a été proposé. Comme première étape, il résume les données précédemment explorées.
De plus, et comme la réduction du nombre des comparaisons est cruciale, une autre
optimisation liée à la réduction de la complexité de la fonction de dominance est introduite.

vi

Acknowledgements

A special thank goes to my supervisors Professor Allel HADJALI and Professor Bou-
theina BEN YAGHLANE for introducing me to this interesting research domain and for
giving me the opportunity to collaborate with other researchers. Thank you for all their
advices and guidance during this work.

I would also like to acknowledge with much appreciation my co-supervisor Doctor Mo-
hamed Anis BACH TOBJI for his crucial contributions during this work. I would like to
express my gratitude to the support, advice and encouragement he gave to me. I have
learned much from his guidance and corrections during my researches.

I would like to thank also the rest of my thesis committee: Prof. Djamal BENSLI-
MANE, Doctor Hajer BAAZAOUI, Prof. Juliette Débie Barthélemie, and Prof. Salah
BEN ABDALLAH, for their insightful comments and encouragement, but also for the
useful questions which incented me to widen my research from various perspectives.

I am profoundly grateful to Professor Ladjel BELLATRECHE, leader of Data Engi-
neering team, for his encouragement and advises during this project. Furthermore I would
also like to acknowledge with much appreciation the crucial role of the members of LIAS
and LARODEC laboratories and specially Bénédicte Boinot, Audrey Veron Wiem Hajji,
and Isabelle El Khiati whose support and assistance helped me to coordinate this thesis
project.

I would have not finished this thesis project without the support of my family espe-
cially my parents for their unconditional love. A special thanks goes to my sisters Rawya,
Imen Sarah, and my brothers Walid and Bilel for their encouragement and love.

To my friends Fatma, Lahna, Louis, Kods, Warda, Nourhene, Manel and Ravi thank
you for being part of my life, thank you for all the precious moments we shared together.
Your friendship is a major source of support when things would get a bit discouraging.

vii

viii

I dedicate this thesis to my parents: my father Anwer and my mother Hanifa for their endless

love and encouragement, my journey would never be the same without their support!

ix

x

Education is the most powerfull weapon we can use to
change the world

Nelson Mandela

The process of scientific discovery is, in effect, a continual
flight from wonder

Albert Einstein

xi

xii

Table of contents

List of figures xix

List of tables xxi

Nomenclature xxiii

Introduction 1

Part I Preleminaries 7

Chapter 1 RDF Formalism 9

Introduction . 10
1.1 Semantic Web vision . 10

1.1.1 Introduction to Ontologies . 11

1.1.1.1 Definition of ontology 11

1.1.1.2 Example of ontologies 12

1.1.2 Ontology languages . 12

1.2 RDF data model . 13
1.2.1 RDF triple . 13

1.2.2 RDF Graph . 14

1.2.3 RDF: XML-based syntax . 15

1.2.4 RDF databases . 16
1.2.4.1 Non-native RDF Databases 16
1.2.4.2 Triple Table . 16

xiii

Table of contents

1.2.4.3 Property triple table store 17

1.2.4.4 Horizontal table store 19

1.2.4.5 Native RDF Databases 19

1.3 SPARQL Specifications . 20

1.3.1 SPARQL General Form . 20

1.3.1.1 Triple pattern . 21

1.3.1.2 Graph pattern . 21

1.3.2 SELECT query Form . 22

1.3.3 Basic Graph Pattern . 25

1.3.4 Solution Mapping . 25

1.3.5 SPARQL Algebra . 26

1.3.5.1 Filter . 26

1.3.5.2 Join . 27

1.3.5.3 LeftJoin . 27

1.3.5.4 Union . 27

1.3.5.5 OrderBy . 28

1.3.5.6 Project . 29

1.4 Extended RDF Formalism . 30

1.4.1 Trust RDF data . 30

1.4.2 Probabilistic RDF data . 32

1.4.3 Other uncertain RDF models 33

Conclusion . 35

Chapter 2 Background on Possibility Theory and Skyline Queries 37

Introduction . 38

2.1 Possibility theory: An overview . 38

2.1.1 Typology of imperfect information 38

2.1.1.1 Imprecision . 39

2.1.1.2 Inconsistency . 39

2.1.1.3 Uncertainty . 39

xiv

2.1.2 Uncertainty theories: A refresher 40

2.1.2.1 Probability theory . 40

2.1.2.2 Evidence theory . 41

2.1.3 Possibility Theory . 42

2.1.3.1 Possibility distribution 42

2.1.3.2 Possibility and Necessity measures 43

2.1.4 Possibility theory vs Probability theory and Evidence theory . . 44

2.1.4.1 Possibility theory vs belief function theory 46

2.1.5 Possibilistic Databases . 46

2.2 Skyline queries . 47

2.2.1 Principle . 47

2.2.2 Skyline Computation Algorithms 49

2.2.3 Skyline Queries over Incomplete Data 52

2.2.3.1 Probabilistic Skyline Queries 52

2.2.3.2 Possiblistic Skyline Queries 55

2.2.3.3 Stochastic Skyline Queries 56

2.2.3.4 Evidential Skyline Queries 57

Conclusion . 59

Part II Contributions 61

Chapter 3 Trust Skyline Model: Semantics and Experimentations 63

Introduction . 65

3.1 Trust-Skyline model . 66

3.1.1 Trust Dominance . 67

3.1.2 Trust-Skyline semantics . 71

3.1.3 Trust-Skyline computation . 72

3.1.3.1 SQL-like Trust-Skyline queries 73

3.1.3.2 Naive T-Skyline Algorithm 74

xv

Table of contents

3.1.3.3 TRDF-Skyline Algorithm 75

3.2 Experimental Evaluation . 76

3.2.1 Experimental Setup . 77

3.2.2 Impact of the trust measure variation 77

3.2.3 Impact of the size of data set 79

3.2.4 Number of used properties in the skyline query 79

3.3 Statistical methods-driven Analysis . 79

3.3.1 Trust-Skyline list Analysis . 81

3.3.1.1 T-Skyline points with less trust 82

3.3.1.2 T-Skyline points with more trust 82

3.3.1.3 Behavior of Alpha . 82

3.3.2 Alpha v.s. the distribution of Trust values 83

3.3.3 Central Tendency measures . 84

3.3.4 Measures of spread: Quartile measure 85

3.3.5 Trust dependence . 85

3.4 Analysis Experimental . 86

3.4.1 Experimental Setup . 86

3.4.2 Impact of trust threshold variation and Central Tendency mea-
sures . 87

3.4.3 Impact of trust threshold variation and Quartile measures . . . 88

Conclusion . 89

Chapter 4 Possibilistic RDF Data 91

Introduction . 92
4.1 Possibilistic RDF model . 93

4.1.1 Possibilistic RDF databases . 93
4.1.2 Possibilistic RDF graph . 93

4.2 A SPARQL-like language for possibilistic RDF data 96

4.2.1 Possibility-aware Basic Graph Pattern Matching 97

4.2.2 Enhanced SPARQL algebra . 99

xvi

4.2.2.1 Join(Θ) . 99

4.2.2.2 Project(Π) . 101

4.2.2.3 Filter operator . 101

4.2.3 SPARQL Extension for Possibility distributions Requirements . 102

4.2.3.1 Converting Graph Patterns 102

4.2.3.2 Pi-SPARQL Algebra: Project Possibility Operator . . 103

4.3 Possibilistic Skyline over RDF data . 105

4.3.1 Comparison of two possibility distributions 105

4.3.2 Possibilistic dominance on RDF data 107
4.3.3 Possibilistic skyline on RDF data 110

4.4 Possibilistic skyline computation . 110

4.4.1 Experimental Evaluation . 111

4.4.2 Experimental Setup . 113

4.4.3 Size of the Skyline on RDF Data 113

4.4.4 Performance and Scalability . 114

Conclusion . 117

Conclusion 119

Appendices 123

Appendix . 122

Bibliography 129

xvii

Table of contents

xviii

List of figures

1.1 RDF Graph representation. 14

1.2 Example of RDF graph model. 17

1.3 Relational Representation of Triple RDF Stores. 18

1.4 Relational Representation of Property Tables RDF Stores. 18

1.5 Relational representation of Vertical Partitioning Table. 19

1.6 SPARQL graph pattern. 22

1.7 Trust values’ meaning. 31

1.8 Example trust weighted RDF graph. 32

1.9 SPARQL query on a probabilistic RDF database. 34

2.1 Uncertainty weighted models . 40

2.2 Skyline of Hotels . 49

2.3 An uncertain objects set. 53

3.1 Effect of α on skyline computation . 78

3.2 Effect of data size on skyline computation 80

3.3 Effect of criteria number on skyline computation 81

3.4 Trust-Skyline points analysis. 83

xix

List of figures

3.5 Alpha and Central Tendency measures . 88

3.6 Alpha and Quartile measure . 89

4.1 Graph representation of uncertain RDF data. 95

4.2 Pi-SPARQL representation of query Q2 96

4.3 Basic Graph pattern G . 97

4.4 Join operator(Θ) . 100

4.5 Project possibility operator. 104

4.6 Size of the skyline on RDF Data modeled by possibility theory. 115

4.7 Elapsed time to compute the skyline on the RDF data modeled by possi-
bility theory. 116

xx

List of tables

1.1 SPARQL query result. 25

2.1 Possibility measure properties . 43

2.2 Possibility and probability values associated with X. 45

2.3 A possibilistic relation pr. 46

2.4 Example of hotels properties. 49

2.5 Comparison of skyline computation algorithms 52

2.6 Imperfect skyline models . 52

2.7 dominance beliefs . 58

2.8 dominance beliefs . 58

3.1 Example of trust RDF data . 68

3.2 Example of hotels properties. 69

3.3 Dominance degree function. 70

3.4 Example of hotels candidate list of T-Sky. 72

3.5 Used functions Meaning. 73

3.6 Parameters under investigation. 77

3.7 Trust frequency distribution. 85

xxi

List of tables

3.8 Example of trust distribution. 86

3.9 Parameters under investigation. 87

4.1 Example of possibilistic RDF database . 94

4.2 The results of evaluating the BGP G against the query Q2. 97

4.3 The results of evaluating the BGP G against the RDF graph 98

4.4 Comparison of two possibility distributions 106

4.5 RDF data modeled by possibility theory. 107

4.6 RDF Data: hotel properties . 108

4.7 Parameters and Examined Values. 113

xxii

Nomenclature

Acronyms

G̃P A possibilistic graph

cardD(µ̃p) The cardinality of µ̃p in a multiset D of possibilistic solution mappings

d(Q � P) The trust dominance function between Q and P

exp An expression

hi.a
+
k The maximum value among all properties of a subject hi.ak

hi.a
−
k The minimum value among all properties of a subject hi.ak

less(,) A function that returns the least trust degree between two points

lessorequal(,) A function that returns the least trust degree between two points

p-SkyH The possibilistic Skyline operator of a data set H

p− dominance The possibility dominance function

P.t− The minimum trust degree among all properties of a given point

PA The project possibility operator

Projπ() The Project possibilistic operator

SPOT RDF quadruple < s, p, o, t >

T − Skyα The Trust-Skyline operator

T − Sky<α The T-Sky of points having trust degree less than α

T − Sky>α The T-Sky points having trust degree greater than α

X∗ RDF triple < s, p, o >

Trust(a φ b) The Trust degree of the comparison between a and b

xxiii

Nomenclature

Latin letters

α A trust measure

λ An arbiterary value

µ A mapping function

π Possibility measure

σ A multiset of solution mappings

µ̃p possibilistic solution mapping

xxiv

Introduction

Context and Motivaton

The amount of data in the Web is growing more and more; therefore retrieving re-
levant and useful information becomes a hard task. Over traditional Web, the pieces of
information are expressed in natural language and so understood only by humans. The
semantic Web brings structure to the meaningful content of the Web pages, creating an
environment where software agents roaming from page to page can readily carry out so-
phisticated tasks for users [Berners-Lee et al., 2001,Mark, 2009]. Hence, resources among
the Web became marked with labels that describe their various parts; those labels are
called the metadata. To achieve semantic Web, the W3C introduced Resource Description
Framework (RDF) as a standard for representing metadata.
The large adoption of Semantic Web in research and industry developed the amount of
RDF data on the Web, with a huge increase in diversity and size. However, variety of
sources affects the reliability of collected data. Given that an RDF triple is a tuple of
< Subject, Predicate, Object > also denoted < s, p, o >. To control information trust-
worthiness, new metrics were introduced in RDF representation to express the intention of
information provider about the information veracity issue [Hartig, 2009a,Tomaszuk et al.,
2012,Fionda and Greco, 2015]. To manage information in presence of trust, we need then
new methods to query RDF data. The last two decades have witnessed a profusion of
research effort on supporting complex decision making over uncertain RDF data, such
in [Huang and Liu, 2009,Lian and Chen, 2011]. Our ultimate aim in this thesis is to deal
with uncertain RDF data in the possibility theory setting [Zadeh, 1978], that represents a
non-classical theory of uncertainty. It constitutes an alternative to capture different kinds
of imperfection, such as imprecision, total ignorance, and partial ignorance that are not
faithfully represented in probability theory [Zimmermann, 1985].

On the other hand, we are interested in preference-based queries in order to extract
data according to users’ preference and then to reduce the massive amount of information.

1

Introduction

Among all preference models returned to the users, skyline model, defined using Pareto
dominance [Börzsönyi et al., 2001a], have been the most extensively studied [Jiang et al.,
2012, Zhang et al., 2013, Chomicki et al., 2013] and extended over Graph Data such as
in [Zou et al., 2010,Zheng et al., 2014]. The skyline operator aims to make multi-objective
decisions over multi-dimensional data when different, and often contradictory criteria are
to be taken into account. Given such a multi-criteria preference, the system should be able
to identify all potentially interesting data records according to user preferences [Chomicki,
2002,Chomicki, 2011].

Thesis contribution

Our main contributions in this work are:

1. Extending Skyline operator over Trust RDF data: We are interested in querying
trust RDF data (T-RDF) [Hartig, 2009a]. We particularly tackle the skyline com-
puting problem, which consists in extracting the most interesting trusted resources
according to user-defined criteria. To this end, we need to redefine the Pareto domi-
nance relationship in the context of trust RDF data. While this operator produces
a binary result in case of certain data, in the context of trust RDF data, it produces
a weighted set of results (i.e., each result is associated with a degree of dominance)
rather than a boolean (true/false) result. In addition, we need to provide a clear
semantics for the trust-skyline, i.e., the set of resources that are dominated by no
other resource with a degree exceeding a user-defined threshold (denoted α). A great
effort for providing efficient methods to compute the trust-skylinehas been made as
well.

2. Possibilistic RDF data: We propose to use possibility theory to express uncertainty
on RDF data. We introduce a model for representing and managing possibilistic
RDF data. Thus, we integrate in the structure of RDF data a possibility measure
for each subject-property-object triple to reflect the user opinion about the truth of
a statement. The possibility measure can be considered as a way to express a source
reliability.

3. Possibility-aware SPARQL query language: We describe a general framework for
supporting SPARQL-like queries on possibilistic RDF data, that we denote Pi-
SPARQL. To query possibilistic RDF data, our main contributions in this part
are:

— Introducing the possibilistic solution mappings for a given RDF query Q. In
order to define possibility-aware solution mapping, we need to introduce some
terminology related to semantics of SPARQL graph pattern expressions.

2

— Revisiting the conventional SPARQL algebra operators to operate on multisets
of possibilistic solution mappings.

4. Extending the skyline operator over possibilistic RDF data: Firstly, we introduce
comparison operators between possibility distributions to allow dominance compu-
tations in an RDF data set context. Starting from the work of [Chen et al., 2011],
we rethought the dominance operator between two possibilistic RDF objects. In ad-
dition, we define the possibilistic skyline, denoted p-SkyH, which retrieves the most
interesting subjects over the RDF data set H according to a subset of predicates.
The combination aims to filter the massive amount of uncertain resources among
the Web according to user preferences.
During the experimental evaluation step, we introduce two algorithms: A naive one
and an optimized one to compute the skyline queries over RDF data. The second
algorithm allows improving the performance of the naive one by summarizing the
region of data explored in earlier iterations.

Manuscript guide

The remainder of this thesis is organized in four chapters as follows:
In Chapter 1, we describe the basic notions related to RDF formalism. First, we introduce
the RDF data model, then we present the SPARQL query language developed to query
RDF data. Finally, as RDF data is often pervaded with uncertainty (due to the openness
of the Web and variety of sources). We, tackled thus the different extended forms of un-
certain RDF data.

In Chapter 2 we present the possibility theory, which is a non-Bayesian theory of uncer-
tainty. It constitutes the model that we use to model uncertain RDF data. Furthermore,
we discuss the preference-based queries, especifically, the skyline preference relations that
show encouraging results to personalize and filter the massive amount of information re-
siding in today’s databases and Information Systems according to the users’ preferences.

The contribution part starts by Chapter 3 which extend the skyline operator over trust-
weighted RDF data (T-RDF). We subdivise this contribution in two main parts. First
of all, we define the dominance over Trust-RDF data. Then, we provide a semantics for
the trust-skyline, i.e., the set of resources that are dominated by no other resource with
a certain degree of trust denoted α. We propose different methods for Trust-skyline com-
putation, then describe the experiments that show interesting results as well.

3

Introduction

Second, we analyze the results of the Trust-skyline list. To analyze the results we opt
for using statistical methods to investigate the trust measures dependence. We check the
impact of the trust measure α and the list of the generated trust measures on the resulting
trust-Skyline list. The experiments show interesting results.

In Chapter 4, we propose to model uncertain and imprecise RDF data through possibility
theory. Indeed, we add a possibility measure to each RDF triple (association between a
subject, predicate and object) to model the possibility of such association. We introduce
some comparison operators between possibility distributions to allow dominance compu-
tations in an RDF data set context. Second, we introduce a possibility-aware SPARQL
query language for supporting SPARQL-like queries on possibilistic RDF data. Finally, we
extend skyline queries over possibilistic RDF data by revisiting the dominance operator
between two possibilistic RDF data.

Reading Guide

We provide a reading guide that summarises the thesis outline by listing the different
chapters and their interactions. We illustrate also the prerequisites for the reading of each
chapter.

4

5

Introduction

6

Part I

Preleminaries

7

8

Chapter 1

RDF Formalism

Contents
Introduction . 10
1.1 Semantic Web vision . 10

1.1.1 Introduction to Ontologies 11
1.1.2 Ontology languages . 12

1.2 RDF data model . 13
1.2.1 RDF triple . 13
1.2.2 RDF Graph . 14
1.2.3 RDF: XML-based syntax 15
1.2.4 RDF databases . 16

1.3 SPARQL Specifications . 20
1.3.1 SPARQL General Form . 20
1.3.2 SELECT query Form . 22
1.3.3 Basic Graph Pattern . 25
1.3.4 Solution Mapping . 25
1.3.5 SPARQL Algebra . 26

1.4 Extended RDF Formalism 30
1.4.1 Trust RDF data . 30
1.4.2 Probabilistic RDF data . 32
1.4.3 Other uncertain RDF models 33

Conclusion . 35

9

Chapter 1. RDF Formalism

Introduction

The semantic Web is built on World Wide Web Consortium (W3C) standards. It was
an enormous undertaking to build the concept of linked data where comes best practice
for sharing data. There was a need to establish standards that make possible to change
the Web to a semantic Web by allowing users to add descriptive tags or metadata to the
Web content.
Therefore, many standards were created such as the Resource Description Framework
(RDF) model, the RDF Schema and the Web Ontology Language (OWL) standards for
storing vocabularies and ontologies.During this chapter we pinpoint the Semantic Web
concepts specially the RDF data.
Note, the large adoption of Semantic Web in research and industry has led to the de-
velopment of a large amount of Resource Description Framework (RDF) data on the
Web [Berners-Lee et al., 1998a,Mark, 2009,Antoniou and vanHarmelen, 2004a]. However,
due to the openness of the web and variety of sources in internet, the reliability of collected
data is questioned. To model information trustworthiness, new metrics were introduced
in RDF representation to express intention of information provider about information
trust [Hartig, 2009a, Tomaszuk et al., 2012, Fionda and Greco, 2015]. Other works are
proposed to handle uncertain RDF data, mostly modelled with probability theory such
as [Huang and Liu, 2009,Meiser et al., 2011,Lian and Chen, 2011,Meiser et al., 2011].
During this first chapter, we present the basic concepts related to RDF formalism. We
start with presenting the semantic Web vision in Section 1.1, Section 1.2 introduces RDF
data model, Section 1.3 presents SPARQL query language and Section 1.4, tackled the
different extended forms of uncertain RDF data. Finally, we end with a conclusion.

1.1 Semantic Web vision

The Semantic Web is a set of data that is processable by machine, as defined by Berners-
Lee et al. [Börzsönyi et al., 2001a]. Changing the Web from a place where different types
of information are merely displayed, to a place for interpretation and exchange of data,
where agents (which are not compatible between each other) could exchange data in dif-
ferent types. Hence the web changes from a multiple databases and resources to a gigantic
database, where resources are linked between each other and those links are understood
by computers to provide a more useful and relevant content for users.
As mentioned above, semantic Web aims to structure web resources, hence the produced
information becomes not only for human consumption but also for machine "understan-
ding" of the data that it is queried. Authors in [Mark, 2009] show that the use of semantic

10

1.1. Semantic Web vision

Web has two motivators; the first is data integration where a specific mapping is made
between the data models or schemas of the data sources involved. Hence describing the
data sources’ semantics in a machine-interpretable way facilitates the mapping that could
be at least semi-automatically. The second motivator, is having a more intelligent support
for the internet users. If a computer can process the semantic of information on the web,
it can give better results for user queries, by having a better selection, personalization
and combination of information from different resources.
The Semantic Web vision is a network of information sources with rich metadata. It
provides truly Web-scale integration of many information sources aided by automated
algorithms for search and discovery. We could not have a semantic Web without meta-
data, but metadata alone will not suffice. The metadata in Web pages will have to be
linked to special documents that define metadata terms and the relationships between the
terms. These sets of shared concepts and their interconnections are called "ontologies."
The authors in [Antoniou and vanHarmelen, 2004a] conclude that, in order to achieve the
semantic web there is a need to provide three main goals: The first one is vocabularies
for expressing the metadata (Ontologies), the second is syntax for representing metadata
(RDF and OWL) and third having metadata for lot of Web pages.

1.1.1 Introduction to Ontologies

Ontology is a term which originates from philosophy; it is used as the name of subfield
of philosophy. Recently, this term was hijacked by computer science and it changes to a
technical meaning different from the origin. Indeed, ontology was introduced to Artificial
Ontelligence (AI) by John McCarthy (about 1980) and then developed in other works.
Actually, ontology is used in lot of domains such Samantic Web, Data Mining, natural
language processing, etc.

1.1.1.1 Definition of ontology

Ontology is defined by [Gruber, 1993] as an explicit specification of conceptualization.
Hence, an ontology consists of a list of terms and relationships between these terms. The
terms are denoted by concepts which are classes and objects of the domain. Hence, there is
a list of classes and subclasses defined in a hierarchy, a part from the subclass relationship
contains the properties, the specification of logical relationships between objects. In gene-
ral, ontology provides shared understanding of a specific domain to overcome differences
in terminology (more details in [Antoniou and vanHarmelen, 2004a]).

11

Chapter 1. RDF Formalism

1.1.1.2 Example of ontologies

We illustrate some well-known examples of ontologies in the domain of Semantic Web. For
instance, DBpedia [Jens et al., 2015] is generated automatically by extracting data from
Wikipedia. Also the ontology Yago [Suchanek et al., 2008], which is created by extracting
data from Wikipedia and Wordnet.
For experiments, ontologies are also used to define benchmarks, such the LUBM bench-
mark [Guo et al., 2005]. This benchmark define an OWL ontology about the university
domain, customizable and repeatable synthetic data, a set of test queries, and several
performance metrics.

1.1.2 Ontology languages

As described by [Antoniou and vanHarmelen, 2004a] the most important ontology lan-
guages for the web are:

• XML: Extensible Markup Language (XML), created by the W3C and it is playing
an important role in the exchange of a wide variety of data on theWeb and elsewhere.
Although, it provides a surface syntax for structured documents, but there still no
semantic constraints on the meaning of the XML documents

• XML Schema: A language that restricted the structure of XML documents, in
more specific way. It provides a means for defining the structure, content and se-
mantics of XML documents.

• RDF: A data model for resources or objects and relations and links between them.
Otherwise, it provides a semantic for the data model which could be represented in
XML syntax (see Section 1.2 for more details).

• RDF Schema: A vocabulary description language for describing properties and
classes of RDF resources. It implicates generalization hierarchies of properties and
classes of those resources.

• OWL: Web Ontology Language (OWL) is a richer vocabulary description language
for describing properties and classes such as relations between classes and richer
typing and characteristics of properties.

The reason behind creating the semantic Web is to bring structure to the meaningful
content of Web pages to facilitate and automate its access. To this end, resources on the
Web are marked with labels that describe their structure; these labels are called meta-
data. The aim is to make content not only readable by humans, but also by machines,
making it possible to analyse and manage huge volumes of Web data. Therefore, the

12

1.2. RDF data model

W3C community introduced a recommendation for semantic annotations; the Resource
Description Framework (RDF). In the coming sections, we will focus our interest on the
model used in this thesis project, the RDF one. We are specifically interested in managing
uncertain RDF data that are used as an input for our data analysis to come up with new
concepts.

1.2 RDF data model

Resource Description Framework (RDF) is a W3C framework for representing meta-data
and describing the semantics of information in a machine-accessible way [W3C, 2004]. An
RDF statement is a triple < s, p, o > where s, p, and o stand for subject, predicate and
object respectively.

1.2.1 RDF triple

RDF describes Web resources (subject) related/characterized (via a predicate or a pro-
perty) to other resources/literals (object).

Definition 1.1. Assume we have a finite set of RDF URI references (U); a finite set of
Blank nodes (B); and a finite set of RDF Literals (L). A triple < Subject, Predicate, Object >

or (s, p, o) ∈ (U ∪ B) × U × (U ∪ B ∪ L) is called an RDF triple.

An RDF triple allows defining statements in form of a triple Subject-Predicate-Object:
— A subject is a resource and could be a Uniform Resource Identifier (URI) or a Blank

Node (BN). The resource is a thing, a person, a Web page. The aim from using URI
is to provide a universally unique name for a resource or property. Thus, it’s possible
to link data from different sources around the world.
We illustrate the example of LUBM ontology, the resource FullProfessor0 has a URI,
http://www.Department0.University0.edu/FullProfessor0. The book of [DuCharme,
2011a] is an excellent bibliographic reference for the whole specifications.

— A Predicate also called property is a relationship between a subject and an ob-
ject. It is an RDF URI reference. An example from the LUBM Benchmark, the
resource FullProfessor has as property teacherOf which is identified with the URI,
http://www.Department0.University0.edu/Course.

— An Object is the value of a subject property. It is a URI reference, a literal or a
blank node. the literals are used to identify values such as strings, numbers and

13

Chapter 1. RDF Formalism

dates by means of a lexical representation. A literal could be the object of an RDF
statement, but not the subject or the predicate. A Blank Node also called BNode is
drawn from an infinite set, which is the set of all the RDF URI references and the set
of all literals are pairwise disjoint. BNode is a node in an RDF graph representing
a resource for which a URI or literal in not given. The resource represented by a
blank node is also called an anonymous resource.

1.2.2 RDF Graph

A set of RDF triples is a graph for representing meta-data and describing the semantics of
information in a machine-accessible way. Therefore, RDF data can be thought in terms of
a decentralized directed labelled graph. The edges’ labels are the "properties", also called
"predicates" or "attributes". The RDF data is stored as a set of SubjectNode-PropertyArc-
ObjectNode triples often called < s, p, o > triples, and represented graphically as shown
in Figure 1.1.

Example 1. We present an example of RDF triple data (written in XML language)
illustrating information about hotel H1 (Extracted from source http://www.hotel.org/H1).
The hotel with ID H1 is "Philippos", the street address is "Solonos 9 & Dimitriados Str".
The Figure 1.1 is the graph representation of this example: <rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
<rdf:Description rdf:about="http://www.hotel.org/H1">
<hasName> Philippos </hasName>
<hasAdress>Solonos 9 & Dimitriados Str</hasAdress>
</rdf:Description>
</rdf:RDF>

Figure 1.1 – RDF Graph representation.

14

1.2. RDF data model

1.2.3 RDF: XML-based syntax

RDF is a data model it has several formats i.e several ways to represent data in the form
of triples such as:
— Turtle family of RDF languages (N-Triples, Turtle, TriG and N-Quads);
— JSON-LD (JSON-based RDF syntax);
— RDFa (for HTML and XML embedding);
— RDF/XML (XML syntax for RDF).

In this section, we present XML which is one of the syntax representations of the RDF
data model. Meanwhile, in XML, element names are defined by the developer. This often
results in a conflict when trying to mix XML documents from different XML applications.
XML Namespaces provide a method to avoid element name conflicts. The namespace can
be defined by an xmlns attribute in the start tag of an element. The namespace declaration
has the following syntax.

xmlns:prefix="Location".

Example 2. The location is the DTD or schema
<! Doctype owl [<! ENTITY xsd http://www.w3.org/2001/XMLSchema# >]>.
< rdf : RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
xmlns:uni="http://www.mydomain.org/uni-ns#" >
< rdf: Description rdf: about="949318">
<uni : name>Daniel Alberto</uni: name>
<uni : title>Professor</uni: title>
</ rdf: Description>
< rdf: Description rdf: about="949333">
<uni: courseName>Data Base</uni: courseName>
<uni: isToughtBy> Daniel Alberto </uni: isToughtBy>
</ rdf: Description>
</rdf:RDF>

The two elements uni:name and uni:title both define property-value pair for 949333,
the content of rdf: Description elements are called property elements. As shown in the last
example the two elements courseName and isToughtBy, both of them define the property-
value pairs for 949333. The description of a document could be in many categories, it
could be clear for human readers, but not for machine. In XML the fact is not formally

15

Chapter 1. RDF Formalism

cleared anywhere. In, RDF it is possible to add such statement by using the rdf: type
element, that could be in our example a course type, we add to the syntax <rdf: type
rdf: resource="&uni;course"/> to specify that the resource is a course type not lecturers
for example. There exists much more specification about XML syntax that was added to
fit with the RDF data, we did not illustrate all of them because it is not the aim of this
dissertation.

1.2.4 RDF databases

Within semantic Web applications, storing and querying RDF data is one of the basic
tasks. Therefore, many storage approaches have been proposed, some of them are native
approaches and others are not. This classification is not the most important criteria for
RDF data storage, since some non-native techniques performed well and are the most
used ones for storing and querying RDF data.

Example 3. We illustrate an example of RDF graph model about hotel’s properties as
shown in Figure 1.2. The hotel with id H1 has a price value equal to 5 (per night), a
distance (from the beach) equal to 3, a name value "Philippos", etc. We use this example
to present the different storage approaches of RDF data.

1.2.4.1 Non-native RDF Databases

The non-native approaches are a set of techniques proposed for storing RDF data in
RDBMS. Currently, this is widely considered to be the best performing approach for
their persistent data store due to the great amount of work achieved on making it efficient,
extremely scalable and robust [Sakr and Al-Naymat, 2009].

1.2.4.2 Triple Table

Each RDF statement of the form (Subject, Property, Object) is stored as a triple in
one large table with a three-columns schema . The storage system of 3Store is based
on a central triple table which holds the hashes for the subject, predicate, object and
graph identifier [Sakr and Al-Naymat, 2009] [Harris and Gibbins, 2003a]. Indexes are
then added for each of the columns in order to make joins less expensive. However, since
the collection of triples is stored in one single RDF table, the queries may be very slow
to execute. Indeed, when the number of triples scales, the RDF table may exceed main
memory size. Therefore [Neumann and Weikum, 2008] proposed a work over that field,

16

1.2. RDF data model

Figure 1.2 – Example of RDF graph model.

they have presented the RDF-3X (RDF Triple eXpress), an RDF query engine which
tries to overcome the criticism that triples stores incurs too many expensive self-joins by
creating the exhaustive set of indexes and relying on fast processing of merge joins. The
Figure 1.3 shows the triple table store of the RDF graph presented previously in Figure
1.2.

1.2.4.3 Property triple table store

Authors in [McBride, 2002] presented Jena as an open source toolkit for Semantic Web
programmers. It implements persistence for RDF graphs using a SQL database through a
JDBC connection. The schema of the first version of Jena, Jena1, consisted of a statement

17

Chapter 1. RDF Formalism

Figure 1.3 – Relational Representation of Triple RDF Stores.

table, a literals table and a resources table. Jena2 uses property table as a general facility
for clustering properties that are commonly accessed together. During their work [Sakr
and Al-Naymat, 2009] consider that a property table is a separated table that stores the
subject value pairs related by a particular property.
The property table technique was proposed to improove RDF data organization by al-
lowing multiple triple patterns referencing the same subject to be retrieved without an
expensive join.
A variant of the property table, named property-class table, uses the "rdf:type" property
of subjects to cluster similar sets of subjects together in the same table. The Figure 1.4
shows the RDF graph model stored over a property table, in which multiple triple patterns
refer the same subject.

Figure 1.4 – Relational Representation of Property Tables RDF Stores.

18

1.2. RDF data model

1.2.4.4 Horizontal table store

Among the horizontal table store, the RDF triples are modeled as one horizontal table or
into a set of vertically partitioned binary tables (one table for each RDF property) [Sakr
and Al-Naymat, 2009]. For the vertically partitioned binary table, RDF data are vertically
partitioned using a fully decomposed storage model (DSM). Each triple table is divided
into n two column tables where n is the number of unique properties in the data as shown
in Figure 1.5.
In each of these tables, the first column contains the subject and the second column the
object value of that subject. The tables are stored, by using a column-oriented DBMS
(DBMS designed especially for the vertically partitioned case, as opposed to a row-oriented
DBMS, gaining benefits of compressibility and performance), as collections of columns
rather than collections of rows. The goal is to avoid reading entire row into memory from
disk, like in row-oriented databases, if only a few attributes are accessed per query.

Figure 1.5 – Relational representation of Vertical Partitioning Table.

1.2.4.5 Native RDF Databases

The native storage solutions store RDF with respect to the data model, avoiding the
mapping to a Database Management System (DBMS). Those techniques aim to be closer
to the query model of the semantic Web and are based on the characteristic of multiple
indexes of the RDF triples. They can be subdivided in two main categories:

1. In memory storage, where the ontology is stored in central memory starting from
the launch of the application;

2. Non-memory storage, in which ontology and data are stored on disk, such that

19

Chapter 1. RDF Formalism

query processing can be performed more efficiently compared to straight-forward
approaches like triple tables.

The data representation in native RDF databases differs from one another. In fact, this
representation is specific and relative to each native RDF database. Nevertheless, it is
possible to characterize them from the data structure. Indeed, we found an RDF database
family that uses indexes and tree-structures to model data such RDF-3X [Neumann and
Weikum, 2008] , Hexastore [Weiss et al., 2008], or IBM DB2RDF [Bornea et al., 2013]. We
could identify another family wich uses graph to model data such the case of gStore [Özsu,
2016].

To query RDF data, several query languages were proposed. Indeed, they differ in many
aspects and can be grouped into several families according to data model, expressivity,
support for schema information, etc. Mainly there is six families: SPARQL, RQL [Kar-
vounarakis et al., 2002], XPath-, XSLT-, and XQuery-based Languages, Metalog, Reactive
Languages, and Deductive Languages [Bailey et al., 2005]. For instance, the SPARQL fa-
mily consists of the four query languages SquishQL [Miller et al., 2002], RDQL [Seaborne,
2004], SPARQL, and TriQL. The common property to this family is that they consider
RDF as triple data without considering the semantics linked to triples.

In our work we are interested in SPARQL. We present in the coming section, more details
about SPARQL.

1.3 SPARQL Specifications

SPARQL query language for RDF (SPARQL) is a SQL-like language for querying RDF
data. By 2004, the W3C formed the RDF Data Access Working Group (DAWG) that
gathered use cases and requirements to make the first draft of SPARQL Query Language
specifications. Before that, a dozen query languages had been developed as commercial,
academic, and personal projects. Later, the query language, protocol, and query results
XML format became Recommendations/official W3C specifications [DuCharme, 2011a].

1.3.1 SPARQL General Form

SPARQL is similar to SQL. It selects data from an RDF data set by using a SELECT
statement to determine which subset of the selected data is returned. Also, SPARQL uses
a WHERE clause to define graph patterns to find a match in the data set. Hence, a graph
pattern in a "SPARQL WHERE clause" consists of the subject, predicate and objects

20

1.3. SPARQL Specifications

triple to find a match in the data. Given that SPARQL is a query language developed
primarily to query RDF graphs, the vocabulary for RDF graphs is three disjoint sets: a
set of URIs Suri, a set of bnode identifiers Sbnode, and a set of well-formed literals Slit.
The union of these sets is called the set of RDF terms. Authors in [Evren and Bijan, 2007]
defined an RDF triple as a tuple (s, p, o) ∈ (Suri ∪ Sbnode) × Suri × (Suri ∪ Sbnode ∪
Slit). An RDF graph is a finite set of RDF triples.

SPARQL has four query forms which use the solutions from pattern matching to form
result sets or RDF graphs. The query forms are:
— SELECT: Returns all, or a subset of, the variables bound in a query pattern match.
— CONSTRUCT: Returns an RDF graph constructed by substituting variables in a

set of triple templates.
— ASK: Returns a Boolean indicating whether a query pattern matches or not.
— DESCRIBE: Returns an RDF graph that describes the resources found.

In our thesis project, we are interested in using the SELECT query form. Given that the
SELECT query is the most used one to query RDF data [Francois and Stijn, 2011,Saleem
et al., 2015].

1.3.1.1 Triple pattern

A triple pattern is the atomic element of a constraint’s description of a SPARQL query.
Indeed, SPARQL allows selecting values by letting triple patterns (one or more element of
the subject, predicate or object) contain values denoted by ? or $ before a string. The aim
from using triple patern is finding the corresponding RDF triples, this process is called
matching, it produces a binding of each variable.
Let us illustrate the example of the RDF triple pattern (?hotel, hasName, ?name), the
matching of that triple pattern to the RDF graph on Figure 1.2 consists on finding the
values of ?hotel having the requested properties ?name and ?price. The variable ?price
takes the value 10, hence, the triple pattern becames (H1, Distance, 10) that belongs
to the graph in Figure 1.2 indeed, forms a solution. The combination of multiple triple
patterns makes a graph pattern.

1.3.1.2 Graph pattern

A graph pattern is a set of triple patterns. Triple patterns are linked to eachother with
resources in common (variables, literals, etc.) to form the graph pattern. For a graph
pattern, the common variables between two or more triple patterns are called join operator

21

Chapter 1. RDF Formalism

variables.
Querying an RDF graph using a triple pettern means searching values for each variable
of the graph pattern. Indeed, the resulting graph (after replacing the variables with the
corresponding values) is considered as sub-graph of the RDF graph.
Authors in [Pérez et al., 2009] defined recursively a SPARQL graph pattern expression as
follows.

1. A tuple from (U ∪ B) × U × (U ∪ B ∪ L) is a graph pattern (a triple pattern).

2. If P1 and P2 are graph patterns, then expressions corresponding to conjunction
graph pattern (P1 AND P2), optional graph pattern (P1 OPT P2), and union graph
patternv (P1 UNION P2) are graph patterns.

3. If P is a graph pattern and R is a SPARQL built-in condition, then the expression
(P FILTER R) is a graph pattern (a filter graph pattern).

Example 4. We illustrate the example of two triple patterns t1 and t2:
?hotel hasName ?name (t1)
?hotel hasPrice ?price (t2)

Figure 1.6 – SPARQL graph pattern.

The Figure 1.6 is a graph pattern representation, that should correspond to a part of
the graph (see Figure 1.2) while executing the query. For instance, H1 is a join operator
variable that links both graph patterns t1 and t2.

1.3.2 SELECT query Form

We present the different clauses that define the SELECT query syntax:

22

1.3. SPARQL Specifications

— SELECT: This clause let the users specify the result set, it has generally the form
of: SELECT?Result-Set.

— FROM: Allows users to specify the Data set from which the result set will be
selected. It should be written in the form of: From <Location>.

— WHERE: Allows users to pinpoint the Query Triple Pattern. it is generally specified
as: WHERE { ?Set-conditions }

SPARQL also uses other operators in the SELECT clause such as FILTER, OPTIONAL,
Distinct, LIMIT, ORDER BY and GROUP BY.

— UNION: This operator creates multisets of responses from sets of two or more graph
patterns. They either have variables in common or they do not.

— FILTER: SPARQL FILTERs restrict the solutions of a graph pattern match accor-
ding to a given expression. Specifically, FILTERs eliminate any solutions that, when
substituted into the expression, either result in an effective boolean value of false or
produce an error.

— OPTIONAL: Allows information to be added to the solution where the information
is available, but do not reject the solution because some part of the query pattern
does not match (the optional part does not match). Hence it creates no bindings
but does not eliminate the solution.

The sequence modifiers are applied to create sequence (a solution sequence) with specific
orders. This sequence is used to generate one of the results of a SPARQL query form, we
illustrate below these sequence modifiers:

— ORDER BY: Allows sorting the fetched data in either ascending or descending
according to one or more columns.

— Projection modifier: choose certain variables

— Distinct modifier: ensure solutions in the sequence are unique

— Reduced modifier: permit elimination of some non-distinct solutions

— Offset modifier: control where the solutions start from in the overall sequence of
solutions

— Limit modifier: restrict the number of solutions

The syntax of the SELECT query in SPARQL is as follows [Eric and Andy, 2008]:

〈SelectQuery〉::= SELECT 〈DISTINCT|REDUCED〉?〈Var+〉| ∗
〈DatasetClause∗〉〈WhereClause〉〈SolutionModifier〉

23

Chapter 1. RDF Formalism

SELECT is the keyworld that identifies the type of the query. The clauses DISTINCT and
REDUCE allow modifying the structure of the answer. The symbol Var+ denotes the pro-
jection of at least one variable as an answer for the query and ∗ for all the variables. The
symbol DatasetClause∗ is used to define the set of queried data.
The symbol WhereClause represents the set of query constraints. Finally, the symbol
SolutionModifier denotes a set of modifiers, precisely ORDER BY and /or GROUP BY.

Example 5. We illustrate an example of SPARQL query that returns hotels having the
minimum values of the properties price and distance(from the beach):

PREFIX p: <http://www.semanticweb.org/ontology-exp#>

SELECT DISTINCT?name ?distance ?price

WHERE {

?hotel a p:Hotel .

?hotel p:hasName ?name .

?hotel p:hasDistance ?distance .

?hotel p:hasPrice ?price .

OPTIONAL {

?H a p:Hotel .

?H p:hasDistance ?dist .

?H p:hasPrice ?price .

FILTER ((?dist < ?distance) && (?pri < ?price)) .

}

FILTER (!bound (?H)).

}
We detail the SPARQL query here. Indeed, the first three triples match any hotel for
which a place and a distance are known. The pattern inside the OPTIONAL clause also
matches a hotel, and gets it’s properties (distance and price). We use the variable name
?Hx for this hotel because of the FILTER clause; we retain only the bindings of ?Hx

that have least values of distance and price than ?Hotel. Despite, what happens if we
can’t find anyone with less price and distance? Then all matches to the pattern inside
the OPTIONAL braces will be filtered out, and no bindings will remain for ?Hx. Back
outside the OPTIONAL, we filter based on the binding of ?Hx; if ?Hx is not bound, then
we didn’t find any hotel with a less price and distance values.

24

1.3. SPARQL Specifications

The result of this query is shown in Table 1.1 below, where we find hotel H1 associated
with its price and distance values. For instance, H1 has less price and distance value than
H2.

Hotel Price Distance
H1 3 5

Table 1.1 – SPARQL query result.

1.3.3 Basic Graph Pattern

The core of each SPARQL query is a Basic Graph Pattern (BGP). A BGP is the elemen-
tary graph pattern; it is a set of RDF triple patterns that may contain variables at the
subject, predicate, and object position. Indeed, a BGP is a graph structured query that
should be matched against the graph database G. Intuitively, a match for a BGP is a
mapping from variables in the query to constants (graph database). During evaluation, a
solution for a BGP is each solution mapping which, in combination with an RDF instance
mapping, maps the BGP to a subgraph of the queried RDF graph.

1.3.4 Solution Mapping

A solution mapping is a mapping from a set of variables to a set of RDF terms. The work
of [Eric and Andy, 2008] is an excellent bibliographic reference for the whole specifications.
A formal definition is given as follows:

Definition 1.2. A mapping µ from X to Y is a partial function µ : X → Y . The domain
of µ denoted by dom(µ) is the subset of X where µ is defined. Let σ be a multiset of solution
mappings, card[σ](µ) = card[σ] is the number of distinct RDF instance mappings, σ, such
that P = µ(σ) is a pattern instance mapping and P(BGP) is a subgraph of G.

The solution sequence modifiers defined by W3C in [Eric and Andy, 2008] are:
— Order By modifier: The aim from using it is to put the solution in order.
— Distinct modifier: It ensures solutions in the sequence are unique.
— Reduced modifier: It permits non-distinct solutions to be eliminated.
— Offset modifier: It controls where the solutions start from in the whole sequence of

solutions.
— Limit modifier: It restricts the number of solutions.

25

Chapter 1. RDF Formalism

1.3.5 SPARQL Algebra

The outcome of executing a SPARQL is defined by a series of steps as presented in [Eric
and Andy, 2008]:

1. Starting from the SPARQL query as a string;

2. Turning that string into an abstract syntax form;

3. Turning the abstract syntax into a SPARQL abstract query comprising operators
from the SPARQL algebra;

4. Evaluating this abstract query on an RDF dataset.

Given that a SPARQL abstract query is a tuple (exp,D,Q) where:

— exp is a SPARQL algebra expression

— D is an RDF Dataset

— Q is a query form

For each symbol in a SPARQL abstract query, an operator for evaluation is defined.
Besides BGPs, the SPARQL specification [Eric and Andy, 2008] introduces other graph
patterns CGPs (Complex Graph Patterns). CGPs extend BGPs with further traditio-
nal relational operations (projection, union, difference, optional (left-outer-join) and fil-
ter) [Angles et al., 2017]. During query evaluation, CGPs are represented by algebra
operators. Those operators operate on multisets of solution mappings. We present below
some operators which we redefined in Section 4.2 to consider the possibilistic data model.

1.3.5.1 Filter

The FILTER SPARQL clause restrict the solutions, which correspond to a graph pattern,
those who satisfy the specified condition (the filter expression is evaluated to true).

Example 6. We illustrate an example of a SPARQL query Qu1: "Give the name of hotels
with price value less than 30"

PREFIX ns: <http://hotel.org/example>

SELECT?name ?price

WHERE {

?x a ns:Hotel .
?x ns:hasPrice ?price .

26

1.3. SPARQL Specifications

FILTER (?price < 30) .

?x ns:hasName ?name }

1.3.5.2 Join

The join Θ operator represents a group of graph pattern (minimum two). µ1Θµ2 contains
all variable bindings from the two mappings in a new one. Knowing that, the mapping
from one operand is combined or merged to every mapping from another if they are
compatible. Indeed, µ1Θµ2 is the set of mappings that result from extending mappings in
µ1 with their compatible mappings in µ2.

1.3.5.3 LeftJoin

The LeftJoin performs a join starting with the left side. Indeed, it executes each operand
with the graph to query and performs the leftjoin operation by adding every solution from
the left, merging compatible solutions from the right that match an optional filter.

Example 7. We illustrate an example of LeftJoin query from [Eric and Andy, 2008],
group consisting of a basic graph pattern and two optional graph patterns:

{ ?s :p1 ?v1 OPTIONAL {?s :p2 ?v2 } OPTIONAL { ?s :p3 ?v3 } }

LeftJoin(

LeftJoin(

BGP(?s :p1 ?v1),

BGP(?s :p2 ?v2),

true) ,

BGP(?s :p3 ?v3),

true)

1.3.5.4 Union

The Union operator is useful in case of joining the criteria from two separated WHERE
statements or to join data using two different predicates and and there is a need to consider

27

Chapter 1. RDF Formalism

them as the same.

Example 8. We illustrate an example of a Union SPARQL query illustrated from [Eric
and Andy, 2008], the queried data model is as follows:
@prefix dc10: <http://purl.org/dc/elements/1.0/> .

@prefix dc11: <http://purl.org/dc/elements/1.1/> .

_:a dc10:title "SPARQL Query Language Tutorial" .

_:a dc10:creator "Alice" .

_:b dc11:title "SPARQL Protocol Tutorial" .

_:b dc11:creator "Bob" .

_:c dc10:title "SPARQL" .

_:c dc11:title "SPARQL (updated)" .

The SPARQL query is as follows:

PREFIX dc10: <http://purl.org/dc/elements/1.0/>

PREFIX dc11: <http://purl.org/dc/elements/1.1/>

SELECT?title

WHERE { { ?book dc10:title ?title } UNION { ?book dc11:title ?title } }

1.3.5.5 OrderBy

The ORDER BY clause establishes the order of a solution sequence. Following the OR-
DER BY clause is a sequence of order comparators, composed of an expression and an
optional order modifier (either ASC() or DESC()). Each ordering comparator is either
ascending (indicated by the ASC() modifier or by no modifier) or descending (indicated
by the DESC() modifier).

Example 9. We illustrate an example of a SPARQL query Qu1: "Give the name of hotels
ordered by their price values"

PREFIX ns: <http://hotel.org/example>

SELECT?name

28

1.3. SPARQL Specifications

WHERE {

?x a ns:Hotel .
?x ns:hasPrice ?price .

ORDER BY?name ASC (?price) }

1.3.5.6 Project

The project(π) operator allows for selecting a subset of the output variables of a graph
pattern as the new output variables. It allows for stating which variables deemed relevant
in the evaluation of Complex Graph Pattern (CGPs).
In the coming section, we present the main extended RDF formalism to manage uncer-
tainty in RDF data.

Example 10. We illustrate an example from [Eric and Andy, 2008] that shows a query
to extract the names of people described in an RDF graph using FOAF properties, the
queried data model is as follows::

@prefix foaf:<http://xmlns.com/foaf/0.1/> .

_:a foaf:name "Alice" .

_:a foaf:mbox <mailto:alice@work.example> .

_:b foaf:name "Bob" .

_:b foaf:mbox <mailto:bob@work.example> .

The SPARQL query is as follows:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT?name

WHERE

{ ?x foaf:name ?name }

29

Chapter 1. RDF Formalism

1.4 Extended RDF Formalism

RDF has been used in many real applications. A large amount of RDF data has been pu-
blished on the Web; the ease to combine it from different resources creates new challenges
linked to efficient query answering and RDF data trustworthiness. Therefore, unreliable
data could dominate results of queries, affect knowledge bases, and have negative or mis-
leading impact on software agents. In this section, we present the main extended formalism
to manage uncertainty residing in RDF data.

1.4.1 Trust RDF data

Uncertainty can result either from inconsistency between sources or from imprecision/inaccuracy
of them. Recently, there is a profusion of research works on this topic. There is an urgent
need of standardized mechanisms for data trustwothiness evaluation and a uniform way
to manage imperfection of the Web of data [Buche et al., 2005]. Authors in [Richardson
et al., 2003, Golbeck, 2006] introduced the Web of trust. For instance, in [Richardson
et al., 2003], they estimated user believes in statements supplied by any other user and
defined properties for combination functions to merge trusts. The work of [Golbeck, 2006]
deals with social networks. Indeed, authors presented an approach to integrate trust, pro-
venance and annotations in semantic Web systems. The work of [Golbeck et al., 2003]
investigated the applicability of social network analysis to the semantic Web. Authors
discussed the multi-dimensional networks evolving from ontological trust specifications.
To rate the trustworthiness of RDF Data, Olaf Hartig in [Hartig, 2009a] advocated the
need of a uniform way. He introduced a new model that associates RDF statements with
trust values (trust model). Trust-RDF or T-RDF model expresses the trustworthiness or
the trust degree associated to the RDF triple as a subject of belief and disbelief in the
truth of the information represented by this triple. In fact, belief (disbelief) of an RDF
triple is expressed as the degree of confidence in the truth (untruth) of the information (see
Figure 1.7). Indeed, the trust measure, denoted t, is either a value in the interval [−1, 1]
or unknown. In case, t = 1, the user is absolutely sure about the truth of the triple. A
positive trust value less than 1 represents belief in the information veracity. Meanwhile,
a negative value expresses a disbelief and a value t = −1 expresses a certitude in the
information untruth. In the last two decades There is a great research effort to develop
the trust RDF model such in [Hartig, 2009a,Hartig, 2009b,Tomaszuk et al., 2012,Ceolin
et al., 2014,Olaf, 2014,Fionda and Greco, 2015]. The trustworthiness of RDF triples could
be represented by a trust degree which is either a value in the interval [−1, 1] or unknown.
For a trust value of 1, the user is absolutely sure about the truth of the corresponding

30

1.4. Extended RDF Formalism

Figure 1.7 – Trust values’ meaning.

triples; a positive trust value less than 1 represents belief in the truth; meanwhile, to a
certain degree the user is not sure regarding the assessment.

In the trust model the RDF triple is extended to a quadruple < s, p, o, t > where the
value t expresses the trust degree of the RDF triple < s, p, o >. Therefore, authors in
[Hartig, 2009a] proposed a trust-aware query language, denoted tSPARQL, which extends
SPARQL to describe trust requirements and access the query solutions’ trustworthiness.
Indeed, tSPARQL let users access trust values which represent the matching subgraphs’
trustworthiness.

Example 11. We illustrate an example from [Hartig, 2009a] in Figure 1.8, which repre-
sents a trust-weighted RDF graph of the query "Return the most trustworthy review for
each hotel in the city of "Heraklio". For instance, the graph’s edges represent the predi-
cates of triples annotated with predicate identifier and with a consumer trust value of the
corresponding triple. As an example of nodes, the resource node ex1:Kastro represents a
hotel building. This triple is associated with a trust value of 0.95. Hence, each triple has a
trustworthiness value, in order to compute the trustworthiness of an RDF graph [Hartig,
2009a] defined an aggregation function that computes the trustworthiness of its triples.
Therefore, the author introduced a TRUST AS clause into SPARQL query language to
express the trust measure ?t. Indeed, the variable ?t allows access to the trust values of
the subgraphs that match the given query pattern.

SELECT ?h ?txt1 WHERE {
?h rdf:type <http://umbel.org/umbel/sc/HotelBuilding> ;
p:location <http://dbpedia.org/resource/Heraklion>.
{?hotel rev:hasReview [rev:text ?txt1]
TRUST AS ?t1 }

31

Chapter 1. RDF Formalism

Figure 1.8 – Example trust weighted RDF graph.

OPTIONAL { ?h rev:hasReview [rev:text ?txt2]
TRUST AS ?t2 FILTER (? t2 > ? t1) }
FILTER (!BOUND (?txt2))
}

1.4.2 Probabilistic RDF data

To manage uncertainty residing in RDF data, an effort of research was conducted such in
[Huang and Liu, 2009,Meiser et al., 2011,Lian and Chen, 2011]. Lian et al. [Lian and Chen,
2011] proposed to model uncertain RDF data by means of probability theory. Indeed, an
RDF query is equivalent to a search over subgraphs of probabilistic graphs. The result
of the query is the subgraphs that have high probabilities to match with a given query
graph. Huang et al. [Huang and Liu, 2009] proposed to evaluate queries over probabilistic
RDF data model. The fact that the sum degrees from a probabilistic distribution must
be equal to 1 makes dealing with incompletely known information difficult in probability
theory.

Definition 1.3 (Probabilistic RDF Database). A probabilistic RDF datatabase D as defi-
ned in [Huang and Liu, 2009] is a finite set of probabilistic triples. They denoted triples(D)
as all triples in the database. Indeed, each triple t is associated with a unique identifier and
a probability value. The triple t has the form < s, p, o, Pr(t), τ(t) > where s ∈ Indvs, p ∈
Props ∪ {rdf : type}, o ∈ Indvs ∪ L ∪ C. s, p and o are subject, property and object
of triple t. Pr: triples(D)→[0,1] is a probability function and τ : triples(D) →Strings

32

1.4. Extended RDF Formalism

is a mapping form each t to a unique identifier which they called the event of triple
t. They interpreted the RDF probabilistic database D in terms of possible worlds. A
database instance is any subset Ii ⊆ triples(D).I1, I2, ..., In are called possible worlds.
Pr(Ii) = ∏

t∈Ii Pr(t).
∏
t6∈Ii(1−Pr(t)). The sum of all probabilities of possible instances is

1, i.e., ∑Ii Pr(Ii) = 1

A set of RDF triples can be represented as a graph. The concept of probabilistic RDF
graph was introduced by [Huang and Liu, 2009] as follows:

Definition 1.4 (Probabilistic RDF Graph). A probabilistic RDF graph is a labeled direc-
ted graph denoted by G = (N,E, `E, τ, Pr) where:

1. N ⊆ Indvs is a set of nodes.
2. E = {edges,p,o : (s, p, o) ∈ G}
3. `E is a labeling function such that `E(edges,p,o) = p.
4. τ : E → Strings, is a mapping from edges to a unique identifier (event).
5. Pr : E → [0, 1] is a mapping from edges to a probability value.

Example 12. We illustrate an example of probabilistic RDF graph from [Lian and Chen,
2011] in Figure 1.9, where a SPARQL query is posed on a probabilistic diseases database.
The database consists of RDF triples with probabilities showing the confidence about the
relationship. The query asks for the diseases that are associated with cough and cause of
fatigue.

As a conclusion, to deal with uncertain RDF data the trust model associates RDF state-
ments with trust values in the interval [-1, 1] and explains the trustworthiness of data as a
subject of belief and disbelief in the truth of the information. Meanwhile, the probabilistic
one models uncertain RDF data through the means of a mathematical model (i.e., the
probability theory). The veracity of data is expressed with a probability measure in the
interval [0, 1]. Moreover, using the probability theory leads for more expressivity to reason
on uncertain RDF data, to benefit from its rich mathematical model such in information
fusion, in reasoning, etc.

1.4.3 Other uncertain RDF models

In [Zhu et al., 2013], authors extends description logics with possibilistic semantics to
reason with inconsistent and uncertain knowledge, which in a sense would subsume pos-
sibilistic RDF data. Straccia et al. [Straccia and Mucci, 2015] applied fuzzy logics to deal

33

Chapter 1. RDF Formalism

Figure 1.9 – SPARQL query on a probabilistic RDF database.

with uncertain semantic data. The authors focused on the problem of automatically learn
concept descriptions from OWL 2 data.
Furthermore, uncertainty over RDF data could also be seen as if we make an assessment
over a triple, where this assessment is the possibility degree of the triple. This is basically
the definition of Reification [Berners-Lee, 2004] which is a well known tool to express
properties of triples using the triples format (statement-level metadata), where a large
amount of work has been done [Hernández et al., 2015] [Hartig and Thompson, 2014].
To refer to a reified triple, it’s necessary to include four additional RDF triples. Such
addition for every reified triple makes writing queries to access statement-level metadata
awkward. Furthermore, This form is inefficient for exchanging as well as for managing
RDF data. To addresses the aforementioned shortcomings, other works offer alternative
to reification for the treatment of uncertainty [Nguyen et al., 2014].
In our thesis project we do not claim that the posssibilistic framework is "preferable" to
probabilistic one but it provides an interesting alternative to deal with different facets of
uncertainty. Therefore we present in Chapter 4 a possibilistic model for RDF data.

34

1.4. Extended RDF Formalism

Conclusion

The reason for creating the semantic Web is to bring structure to the meaningful
content of Web pages to facilitate and automate its access. To reach the semantic Web
the W3C introduced a recommendation for semantic annotations; the RDF data model.
During this chapter, we presented the RDF data that have reached reasonable degree of
maturity. RDF is a data model that expresses statements about objects or resources over
the Web. Within semantic web applications, storing and querying RDF data is one of
the basic tasks. Therefore, we presented some native and non-native storage approaches.
To query RDF data, many querying languages have been proposed, the most used que-
rying language is SPARQL. We presnted its specification, syntax and utility for querying
RDF data. SPARQL is an SQL-like for querying language, of declarative nature. As a
main part of our dissertation we aim to model and query uncertain RDF data. Hence,
SPARQL needs to be extended to an uncertainty-aware query language.
The semantic Web becames largely adopted, thus, the amount of RDF data on the Web
evoluates, with datasets increasing in variety and volume. However, during data integra-
tion, uncertainty on RDF data can result from either imprecision/inaccuracy of sources or
from inconsistency between them. Therefore, a research effort have been done to extend
RDF formalism, we presented in the last Section, the main works done to model imperfect
RDF data, i.e, trust-weighted and probabilistic RDF data.

35

Chapter 1. RDF Formalism

36

Chapter 2

Background on Possibility Theory
and Skyline Queries

Contents
Introduction . 38
2.1 Possibility theory: An overview 38

2.1.1 Typology of imperfect information 38
2.1.2 Uncertainty theories: A refresher 40
2.1.3 Possibility Theory . 42
2.1.4 Possibility theory vs Probability theory and Evidence theory 44
2.1.5 Possibilistic Databases . 46

2.2 Skyline queries . 47
2.2.1 Principle . 47
2.2.2 Skyline Computation Algorithms 49
2.2.3 Skyline Queries over Incomplete Data 52

Conclusion . 59

37

Chapter 2. Background on Possibility Theory and Skyline Queries

Introduction

Volume and veracity of data on the Web are two main issues in managing information.
In this chapter, we tackle these two issues, for veracity management, we rely on a powerful
uncertainty theory, namely possibility theory, which is a non-classical and non-bayesian
theory of uncertainty [Zadeh, 1978]. We recall here in Sction 2.1, the basic foundations
of this theory to make our contribution presented in Chapter 4 more easy to read and to
understand. On the other hand, to manage the large volume of information available in
today’s databases and Information Systems, we present the preference-based queries. The
aim from using such queries is to extract and filter data according to users’ preferences.
Among all preference relations, skyline queries, defined using Pareto dominance, have been
the most extensively studied [Börzsönyi et al., 2001a,Jiang et al., 2012,Zhang et al., 2013,
Chomicki et al., 2013] and extended over Graph Data such as in [Zou et al., 2010,Zheng
et al., 2014]. The skyline operator aims to make multi-objective decisions over complex
data. Given such a multi-criteria preference, the system needs to identify all potentially
interesting data records according to users’ preference [Chomicki, 2002,Chomicki, 2011].
The basis of skyline model are presented in Section 2.2 which are necessary for the reading
both chapters 3 and 4. We recall in this Chapter two main concepts for the understanding
of our work. Section 2.1 presents the rich Possibility theory, while, Section 2.2, recalls the
main concepts related to the skyline operator.

2.1 Possibility theory: An overview

2.1.1 Typology of imperfect information

The information about the real world needs to be stored in an information system to be
used in the process of decision-making. However, information is almost always imperfect
[Smets, 1996] [Dubois and Prade, 1988]. Therefore, imperfection must be incorporated into
every information system that attempts to provide a complete model of the real world.
This remains a major challenge because of the difficulty of understanding the various
aspects of imperfection. The use of inappropriate models can lead to results that might
be misunderstood by end users.
There exist many aspects of imperfection. We can group them into three main groups,
namely inconcistency, imprecision and uncertainty.

38

2.1. Possibility theory: An overview

2.1.1.1 Imprecision

A statement is imprecise (or incomplete), if it is insufficient for an agent to answer to a
given question. Imprecision is a property related to the information itself (i.e content of
the statement). Indeed, more than one world is compatible with the available information.

Example 13. Assume a query: Give the price (per night) of hotel h. The imprecision is
not an absolute notion. It depends on the proper frame Pr. Let v denotes the price of a
given hotel:
— Pr = {cheap, expensive}, v=cheap is precise,
— Pr = {0, 1, . . . , 500}, the term cheap is imprecise in this case, it provides incomplete

information.

2.1.1.2 Inconsistency

When combining several statements, different aspects of imperfection can appear. Indeed,
anything that affects the data integrity results in data inconsistency. [Smets, 1996] explains
that inconsistency is better used when time is involved, for example, someone claimed that
at 3 p.m. hotel H1 is 3 stars, at 3.15 p.m. the same hotel is 2 stars.
Inconsistency is used to define the incoherence that results from a conflicting information.
Conclusions will be confused when incoherent and when the involved incoherence can be
recovered by some small modifications of the data.

Example 14. A person P announced to arrive to hotel H1 by train at 3.05 p.m. but
the train is scheduled to arrive at 3.15 p.m. The incoherence is much smaller than would
be the case if there was no train arriving in the afternoon. In the first case, the hotel’s
reception accept that he will arrive just after 3 p.m. whereas in the second case they hardly
know what to accept.

2.1.1.3 Uncertainty

Uncertainty is an epistemic or random property that concerns the state of knowledge
of an agent about the relationship between the world and a statement about the world.
Therefore a statement is said to be uncertain if we have lack of information about the
world for deciding if this statement is true or false.
Uncertainty could be seen as subjective or objective property [Smets, 1996]. Indeed, un-
certainty related to randomness is an objective property and the term likely qualifies an
event that will probably occur. Objective properties of uncertainty are linked to the world

39

Chapter 2. Background on Possibility Theory and Skyline Queries

and to the information. Subjective properties of uncertainty are linked to agents opinions
about the true value of the data.
Note that any uncertain information can have either an uncertain measure which can be
numeric (line 1), symbolic/linguistic(lines 2 and 3) or an interval.

Example 15. An example of uncertain information can be as follows:
1. The probability that hotel H1 has a distance (from the beach) equal to 2Km is 0.9.
2. It is possible that hotel H1 is the closer one to the beach.
3. I believe that hotel H1 is 2 Km away from the beach.

We present in Figure 2.1 the uncertainty models which we detail in Section 2.1.2.

Figure 2.1 – Uncertainty weighted models

2.1.2 Uncertainty theories: A refresher

2.1.2.1 Probability theory

Probability theory, introduced in the seventeenth century by Laplace (1774), is the oldest
among uncertainty theories and the most widely acknowledged.

Definition 2.1 (Probability distribution). The probability distribution is a non-negative
mapping p : Ω → [0, 1] that quantifies the degree of probability P(A) that an arbitrary
element x ∈ Ω belongs to a well-defined subset A ⊆ Ω such that ∑A∈Ω p(x)=1.

40

2.1. Possibility theory: An overview

Definition 2.2 (Measure of probability P). Let A ⊆ Ω an event:

P(A)= ∑
ω∈A

p(ω).

It satisfies the following properties:
— P (∅) = 0 and p(Ω) = 1
— ∀A,B ⊆ Ω : ifA ∩B = ∅ ⇒ P (A ∪B) = P (A) + P (B) (Additivity)
— ∀A,B ⊂ Ω, P (A) = 1− P (Ac), with Ac is the opposite event of (A) (Duality)

Probability theory could have two main interpretations [Smets, 1996]:
Frequentist (randomness) probability theory: The probability of an event is the
ratio of the number of favorable cases to the number of all possible cases. It capture
variability through repeated observations and rely on statistical data.
Subjective (Bayesian, belief) probability theory: The probability of an event is a
subjective measure. Formally given, it is the degree of credibility that an agent grants to
the occurrence of an event A or that a proposition is true. It models unreliable evidence
and not necessary related to statics. Therefore, precise probability values are difficult.

2.1.2.2 Evidence theory

Evidence theory is a formal framework for representing and reasoning with imperfect
data. Also known as Dempster-Shafer theory or Belief Function theory, it originates from
the work of Dempster [Dempster, 1967] in the context of statistical inference after that
formalized by Shafer [Shafer, 1976] as a theory of evidence. It extends both the set-
membership approach and Probability Theory notions. Indeed, it is a generalization of
the Bayesian theory of subjective probabilities.

Definition 2.3 (Frame of Discernment). A frame of discernment denoted as θ and defined
as θ = {θ1, θ2, ..., θn}, a finite set of n exhaustive and mutually exclusive hypothesis for a
given problem.

Definition 2.4 (Mass Function). A mass function m or basic belief assignment (bba) is
defined as mθ. Let A be a variable taking values in a finite set (frame of discernment).
Evidence about A may be represented by a mass function: 2θ → [0, 1] and has the properties
below:

mθ(∅) = 0, m is normalized
∑
A⊆θm(A) = 1

41

Chapter 2. Background on Possibility Theory and Skyline Queries

Every proposition A of θ such that m(A) > 0 is a focal set of m.

Definition 2.5 (Belief function). A function bel : 2→ [0; 1] also called belief function is
defined as follows:

belθ(A) = ∑
B⊆Amθ(B)

Definition 2.6 (Plausibility function). A dual function of belief. The plausibility function:
plθ : 2 → [0; 1] is defined as the sum of the masses assigned to every subset B of θ that
intersects A, i.e.,

plθ(A) = ∑
B∩A 6=∅mθ(B)

plθ(A) = 1−Belθ(Ā)

2.1.3 Possibility Theory

Possibility theory is a non classical theory of uncertainty devoted to handle imperfect
informations. This section presents some basic concepts of this theory, more details are
available in [Zadeh, 1978] [Dubois and Prade, 1988].

2.1.3.1 Possibility distribution

Imperfection has many forms, mainly uncertainty, imprecision and inconsistency. Possi-
bility theory, introduced in [Zadeh, 1978] and developed by [Dubois and Prade, 1988] is
an uncertain theory devoted to the handling of incomplete knowledge.
Given U a referential (set of the states of the world), a possibility distribution π is a
mapping from U to a totally ordered scale L (e.g., L=[0, 1]). The function π represents
the state of knowledge of an agent distinguishing what is possible (plausible) from what
is less possible. Note that possibility theory provides a good representation of extreme
forms of partial knowledge such total ignorance (all propositions are possible) and com-
plete knowledge:
— π(u) = 0 means that state u is rejected as impossible;
— π(u) = 1 means that state u is totally possible (plausible).

Meanwhile, when an information is vague possibility can admit degrees, and the larger
the degree, the larger the possibility. The normalization condition of the possibility dis-
tribution imposes that at least one of the values of the domain (a0) is completely possible
(plausible) i.e., π(a0) = 1.

42

2.1. Possibility theory: An overview

We illustrate an example of incomplete information, «hotel h1 distance from the beach
d.h1 is above 10 kilometers», means that any distance above 10 km is possible and any
distance equal to or below 10 is impossible. By means of possibility theory we represent
such information as

π(d.h1) =

 0 if d.h1 < 20 (impossible proposition)
1 if d.h1 > 20 (totally possible proposition)

2.1.3.2 Possibility and Necessity measures

Probability is self dual, for any event A, P (¬A) = 1−P (A). Indeed, if A is not probable,
then ¬A is necessarily probable. Meanwhile, it is possible that A does not entail anything
about the possibility of ¬A.

Thus, the description of uncertainty about the occurrence of A needs two dual measures:
the possibility measure Π(A) and the necessity measure N(A). These two dual measures
are defined in possibility theory as follows:

Possibility measure
Given a subset of states A, it’s possibility to occur in a possibility scale L=[0, 1] is as
follows:

Π(A) = sups∈Aπ(s)

Π(A) evaluates to what extent A is consistent with π. Table 2.1 illustrates the possibility
measure properties.

Π(A)=1 and Π(¬A)=0 A is certainly true
Π(A)=1 and Π(¬A) ∈]0, 1[A is somewhat certain

Π(A)=1 and Π(¬A)=1 total ignorance
Π(A) > Π(¬A)=0 A is more plausible than B

max(Π(A),Π(¬A)=1 A and B cannot be both impossible

Table 2.1 – Possibility measure properties

Example 16. Let us treat a classification problem of hotels choice. Suppose that the
universe of discourse related to this problem is defined as follows: Ω = {H1, H2, H3}.
Suppose a client who is providing his opinion about the best quality (BQ) between the
hotels. The opinion is given in the form of a possibility distribution π1 defined as follows:

43

Chapter 2. Background on Possibility Theory and Skyline Queries

π1(BQ = H1) = 0.2;
π1(BQ = H2) = 0.4;
π1(BQ = H3) = 1;
For instance, the degree 0.2 represents the degree of possibility that the best quality is of
H1. π1 is normalized since max (0.2, 0.4, 1) is equal to 1. π1(BQ = H3) = 1 means that
it is fully possible that the hotel’s best quality is H3.

Necessity measure
In addition to its possibility measure, an event A is characterized by its necessity N

(expressing that A will occur more or less for sure). The possibility-necessity duality is
expressed by:

N(E) = 1 − Π(A) = 1−maxx∈A π(x), where A is the event opposite to A.

Necessity measure evaluates at which level A is certainly implied by our knowledge re-
presented by π. The following properties of possibility and necessity measures, where
A, B and E denote events, are of interest further.

• Π(A ∪B) = max(Π(A),Π(B))
• Π(A ∩B) = min(Π(A),Π(B)) if A and B are logically independent.
• N(A ∩B) = min(N(A), N(B))
• N(A ∪B) = max(N(A), N(B)) if A and B are logically independent.
• Π(E) < 1⇒ N(E) = 0
• N(E) > 0⇒ Π(E) = 1

Example 17. Let us consider the problem of disease detection. The universe of discourse
related to this problem is defined as follows ω= {d1, d2, d3, h}. Suppose that a doctor gave
his opinion on the patient state in the form of a possibility distribution π1 i.e.: π1(d1)=
0.5, π1(d2)=1 , π1(d3)=0.7 ,π1(h)=0, where di stands for disease and h stands for healthy.
A:"The patient suffers from d1 or d3, then we have:

• Π(A)=max{0.5,0.7}=0.7
• N(A)=min{(1-1), (1-0)}=0

2.1.4 Possibility theory vs Probability theory and Evidence theory

Probability theory is the classical method to manage statistical uncertainty. Probabilistic
logic provides insufficient tools to handle all facets of imperfection, thus new theories has

44

2.1. Possibility theory: An overview

emerged such belief function [Smets, 1996] and possibility theory. The latter differs from
the probability theory by the use of dual set functions (possibility and necessity). While,
probability theory relies on the use of a single probability distribution to represent uncer-
tainty, this can raise some serious problems such as:
Ambiguity: No difference between uncertainty due to incomplete information and uncer-
tainty due to randomness. In case of absence of information about some quantity Q, we
should assign equal probability to any possible value of Q. A probability agent is unable to
represent ignorance and does not have a plausibility model of how people make decisions
based on weak information.

Example 18. We illustrate the example of choosing between two hotels H1 and H2:
Agent 1 knows that hotels H1 and H2 are well-known:
P (H1) = P (H2) = 1/2 (Pure randomness)
Agent 1 ignore whether there is a disponibility in the both hotels:
P (H1) = P (H2) = 1/2 (Insufficient Reason Principle)

Instability: The same state of knowledge represented by incompatible distribution pro-
babilities More details to understand the relationship between the uncertainty theories
are given in [Dubois and Prade, 2001].

Example 19. We introduce an example to show the difference between possibility and
probability theory (inspired from [Zadeh, 1978]). Consider the statement "The price value
of hotel H1 is X per night", with X ∈ {10, 20, 30, 40}. A possibility distribution π(X) is
associated to each value of X($) to express the possibility of the event to accur. Also a
probability distribution P (X) is associated to express the probability that H1 will be X.
Table 2.2 below shows the corresponding values: We can observe from table 2.2 that a

X($) 10 20 30 40 50 60
π(x) 1 1 0.5 0.6 0 0.8
P(x) 0.2 0.4 0.1 0.3 0 0

Table 2.2 – Possibility and probability values associated with X.

high degree of possibility does not imply a high degree of probability (e.g. π(x = 20) = 1
and π(x = 20) = 0.4) neither low degree of probability imply a low degree of possibility.
Meanwhile, impossible events are bound to be improbable (e.g. π(x = 50) = 0 and π(x =
50) = 0).

45

Chapter 2. Background on Possibility Theory and Skyline Queries

2.1.4.1 Possibility theory vs belief function theory

Let us note that possibility theory in its numerical setting is considered as a special
case of belief function theory [D. Dubois, 1982]. In case focal elements Fi are nested (i.e.
F1 ⊂ F2 · · · ⊂ Fn), the believe function Bel is called consonant bba and for all f, g ∈ Ω
we have:

— Bel(f ∧ g) = min(Bel(f), Bel(g)); a belief function is a necessity measure N.

— Pl(f ∨ g) = max(Pl(f), P l(g)); a plausibility function is a possibility measure Π.

2.1.5 Possibilistic Databases

Possibilistic databases are first introduced by [Prade, 1984]. In fact, a possibilistic data-
base D can be interpreted as a weighted disjunctive set of regular databases (i.e. Worlds
Wor interpretations) denoted by rep(D). Any world Wi corresponds to a conjunction of
independent choices. Accordingly, to each world Wi is associated the minimum degree of
possibility tied to each of the chosen candidate values in the possibilistic database D. At
least one possible world is completely possible (Π = 1).

Example 20. Assume a possibilistic database D involving a relation pr, having a schema
PR(#i, pri, dist, loc) representing properties of some hotels. Each hotel is identified with
an attribute (#i), a price value/night (pri), a distance from the beach (dist) and specific
location (loc) as illustrated in Table 2.3.

#i pri dist location
H1 {p1/1, p2/0.8} {d1/1, d2/0.3} l1
H2 {p3/1, p4/0.6} d1 l2

Table 2.3 – A possibilistic relation pr.

• W1 = {< H1, p1, d1, l1 >,< H2, p3, d1, l2 >}, Π = 1

• W2 = {< H1, p1, d2, l1 >,< H2, p3, d1, l2 >}, Π = 0.3

• W3 = {< H1, p1, d1, l1 >,< H2, p4, d1, l2 >}, Π = 0.6

• W4 = {< H1, p1, d2, l1 >,< H2, p3, d1, l2 >}, Π = 0.3

• W5 = {< H1, p2, d1, l1 >,< H2, p3, d1, l2 >}, Π = 0.8

• W6 = {< H1, p2, d2, l1 >,< H2, p3, d1, l2 >}, Π = 0.3

• W7 = {< H1, p2, d1, l1 >,< H2, p4, d1, l2 >}, Π = 0.6

46

2.2. Skyline queries

• W8 = {< H1, p2, d2, l1 >,< H2, p4, d1, l2 >}, Π = 0.3

As illustrated in Table 2.3, we have 8 possible words, to each possible world is associated
a possibility degree Π and one of them pr1 is completely possible.

2.2 Skyline queries

In this section we illustrate some basic concepts related to preference queries, such as
preference relation and Pareto dominance. Finally, we present the most extensively studied
preference queries, the Skyline queries.

2.2.1 Principle

In a choice case with no uncertainty, choice became easier knowing the consequences of
each option. The alternatives choice became difficult when available options have strengths
and weakness that trade off against each other. The researches in literature about prefe-
rence are extensive; meanwhile a few of them tackle the problem of the user preferences
over database queries. In that field, two approaches are pursued qualitative and quanti-
tative [Chomicki, 2002].
Under Pareto efficiency, the dominance relationship has a particularly simple structure:
Let be two alternatives A1 and A2. We say that A1 dominates A2 if A1 is better than or
equal to A2 in all dimensions and strictly better than A2 in at least one dimension.

Definition 2.7 (Pareto Dominance). Let X and Y be two points defined in a set of
points denoted H with m attributes. A point Y dominates a point X denoted by Y � X,
if ∀i ∈ [1, m] yi ≤ xi ∧ ∃j, yj < xj

1. The logical dominance concept between two points
is modelled as follows:

Y � X =
∧

(
∧

1≤i≤n
yi ≤ xi,

∨
1≤i≤n

yi < xi)

Under the Pareto efficiency, the preference relation between alternatives could be defined
in two ways, Strong Pareto-dominance and Weak Pareto-dominance. A point Y strongly
Pareto-dominates a point X if ∀i ∈ [1, n] yi < xi otherwise, it is considered as weak. The
algorithms for evaluating Pareto preferences have been examined in the context of skyline
algorithms.

1. We assume in this definition, that the smaller value is the more preferable

47

Chapter 2. Background on Possibility Theory and Skyline Queries

The skyline preference operator uses Pareto accumulation. In a set of tuples denoted by S,
the skyline consists of the tuples which are dominated by no other tuple [Börzsönyi et al.,
2001a]. Skyline aims to make intelligent decisions over multi-dimensional data. Hence,
it consists in extrecting the most interesting objects according to user-defined criteria
(user’s preference). A skyline analysis involves multiple attributes. A user’s preference on
the values of an attribute can be modeled by a partial order on the attribute. A partial
order is irreflexive, asymmetric and transitive relation.

A formal definition of the skyline is given as follows:

Definition 2.8 (Skyline). Let H be a set of points having m attributes. The skyline of H
denoted by S is defined as:

S = {X ∈ H/@Y ∈ H, Y � X}

In order to specify skyline queries, [Börzsönyi et al., 2001a] proposed a new relational
operator to extend SQL’s SELECT statement by an optional SKYLINE OF clause as
follows:

SELECT . . . FROM . . . WHERE . . .

GROUP BY . . . HAVING . . .

SKYLINE OF [DISTINCT] d1 [MIN | MAX | DIFF],. . ., dm [MIN | MAX | DIFF]

ORDER BY. . .

The SKYLINE OF clause selects all the interesting records that are dominated by no other
point; the dominance between records depends on the user preference (i.e. minimum,
maximum, etc.). Hence many constraints could be satisfied at the same time between
different dimensions having specific preference for each dimension.

Example 21. We illustrate an example from the work of [Börzsönyi et al., 2001a]. Given
a list of hotels having two attributes price and distance (from the beach), we aim to find
the hotels having the least price and distance values (skyline candidate list) from the data
set in Table 2.4.
We illustrate in Figure 2.2 the set of hotels where each point is characterized by two values:
a price and a distance. Indeed, points in the curve represent the skyline set, i.e., hotels
dominated by no other point according to the above-mentioned criteria (minimum price
and distance). Tuple (h1, 27, 2) is dominated by no other tuple since it has the least price
among all the tuples. Tuple (h6, 70, 1.9) is dominated by the tuple (h5, 70, 1.4) therefore
it is pruned from the skyline candidate list.

48

2.2. Skyline queries

Hotel Price Distance
h1 27 2
h2 43 1.75
h3 55 1.50
h4 66 1.7
h5 70 1.40
h6 70 1.9
h7 80.12 0.80
h8 90 1
h9 125 0.56
h10 125 1.4
h11 140 0.50
h12 160 1
h13 190 0.30

Table 2.4 – Example of hotels properties.

50 100 150 200

0.5

1

1.5

2

Price($)

D
ist

an
ce

to
Be

ac
h
(m

ile
s) Hotels Skyline

Figure 2.2 – Skyline of Hotels

Many researches after [Börzsönyi et al., 2001a] were conducted to improve the use of
skyline over database sets such as [Tan et al., 2001,Chomicki, 2002] . We present in the
next Section the main skyline Algorithms used in literature.

2.2.2 Skyline Computation Algorithms

Several algorithms to compute the skyline are proposed in the literature. Here after, we
present three families of these algorithms. Block Nested Loop Algorithm

49

Chapter 2. Background on Possibility Theory and Skyline Queries

The block nested loop algorithm is an iterative algorithm that repeatedly scans a set of
records. In each iteration, a window of incomparable records is kept in the main memory.
When a record r is read from the input relation, r is compared with the records in the
window. There are three possible outcomes:

1. If r is dominated by a record in the window, it means that r cannot be in the skyline.
Thus, r is prunned.

2. If r dominates one or more records in the window, these records are eliminated
(since they cannot be in the skyline), and r is inserted into the window.

3. If r is incomparable with all records in the window (i.e., it neither dominates nor
being dominated), it is either inserted into the window if there is sufficient room in
the window, or written to a temporary file on disk.

At the end of each iteration, those records in the window that have been compared against
all records that have been written out to the temporary file are certain to be in the skyline,
and hence can be returned to the user (removed from the window). In the next iteration,
the algorithm will proceed in the same manner with the remaining records in the window
and the records in the temporary file as the input relation.

The nested loop algorithm is a näive way to compute the skyline, where every tuple is
compared to every other tuple. When a new tuple hi is read from the input, hi is compared
to all tuples of the window. Based on this comparison, hi is either eliminated (pruned),
placed into the window or into a temporary file (no enough rooms in the window) to be
considered in the next iteration of the algorithm. The complexity of the BNL algorithm
is O(n) in the best case and is of the order of O(n2) in the worst case. The researches
continue to improve the results of this algorithm [Börzsönyi et al., 2001a] [Deepak et al.,
2011].

Divide and Conquer Algorithm
Authors in [Börzsönyi et al., 2001a] extended the basic divide-and-conquer algorithm for
computing skyline from two-way to m-way partitioning. The basic divide and conquer was
proposed by [Preparata and Shamos, 1985] [Kung et al., 1975] , the best known algorithm
in the worst case O(n ∗ (log n)(d−2)) +O(n ∗ log n); where n is the number of input and
d is the number of dimensions in the skyline.

The basic Divide and Conquer algorithm presented in [Preparata and Shamos, 1985]
[Kung et al., 1975] works as follows:

1. Computing the median Mp of the input for some dimension dp (e.g., distance) then
Dividing the input into two partitions. Partition P1 contains all tuples whose attri-

50

2.2. Skyline queries

bute’s values dp is better (e.g., greater) than Mp. P2 contains all other tuples.
2. Computing the skylines S1 of partition P1 and S2 of partition P2. This is computed

by recursively applying the whole algorithm to P1 and P2 (i.e., P1 and P2 are again
partitioned). The recursive partitioning stops if a partition contains only one (or
very few) tuple. For such case, computing the skyline is trivial.

3. Computing the overall skyline as the result of merging S1 and S2. That is pruning
tuples of S2 which are dominated by anothor tuple in S1. (None of the tuples in S1

can be dominated by a tuple in S2 because a tuple in S1 is better in dimension dp
than all tuples of S2.)

Authors in [Börzsönyi et al., 2001a] proposed an extension of the basic divide and conquer
algorithm to an M-way Partitioning. indeed, authors noticed that in case the input does
not fit into main memory, the basic algorithm shows terrible performance. The M-way
partitioning algorithm can be used in the first step of the basic algorithm and also in the
third step. In the first step, M-way partitioning is used to produce M partitions denoted
P1, . . . , PM . Hence, each Pi fits into memory and Si, the skyline of Pi, can be computed
in memory using the basic algorithm. In the third step, the final answer is produced by
merging the Si pairwise. Within the merge function, M-way partitioning is applied thus
all sub-partitions can be merged in main memory.
B-trees Algorithm
B-trees generalize binary search trees in a natural manner. If a B-tree node x contains
n[x] keys, then x has n[x] + 1 children. The keys in node x are used as dividing points
separating the range of keys handled by x into n[x] + 1 subranges, each handled by one
child of x. When searching for a key in a B-tree, we make an (n[x]+1)-way decision based
on comparisons with, then[x] keys stored at node x.
The algorithm B-tree allows the use of an ordered index for a two-dimensional skyline
by scanning throw the whole index and getting the tuples in sorted order and filter out
the tuples of the skyline. In this algorithm [Börzsönyi et al., 2001a] proposed to use two
ordered indices: one on hotel.price and one on hotel.distance they used those indices
to find a superset of the skyline. They used the first step of the Fagin’s FA algorithm
for merging scores from multimedia databases by scanning simultaneously through both
indices and stop as soon as there is a match.
Firthermore, authors exploited the fact: Given a hotel h, there is no need to search in any
branches of the R-tree which are guaranteed to contain only hotels that are dominated
by h. The idea is to traverse the R-tree in a depth first way and to prune branches of the
R-tree with every new hotel found.

We present in Table 2.5 a comparison between the three algorithms [Kalyvas and Tzou-
ramanis, 2017]:

51

Chapter 2. Background on Possibility Theory and Skyline Queries

Algorithm Based on Pre-processing Complexity Main problem

BNL Naive Nested
Loop Sort-based O(n2) Not online

D&C
Maximal Vec-
tor Computa-
tion

Partial skylines
can be assumed O(n2)

Not online/
curse of dimen-
sionality

B-trees

Merging
scores from
multi-media
databases

ordered index O(log n) Lack of user in-
teraction

Table 2.5 – Comparison of skyline computation algorithms

2.2.3 Skyline Queries over Incomplete Data

As uncertainty infects most of modern real world applications, conducting advanced ana-
lysis on uncertain data remains a main and hot topic since the late 2000s, a research effort
has been done to extend skyline queries over uncertain data. We present in Table 2.6 a
comparative study between the probabilistic model and the possibilistic one.

Distributions Dominance relationship Degree to be in S

Probabilistic

Continuous
case

Pr[V ≺ U] =∫
u∈D

∫
u≺v f(u)f ′(v) dv du

Pr(U) =∫
u∈D f(u)∏V 6=U(1 −
f ′(v)dv)du

Discrete
case

Pr[V ≺ U] =
1
l1l2

∑l1
i=2 |{vj ∈

V/ vj ≺ ui}| Pr[U] =
1
l

∑
u∈U Pr(u)

Possibilistic

0 if{πi/t′j ∈ int(t′)|ti ≺ t′j} = ∅
maxπj/t′j∈int(t′)|ti≺t′j πj Otherwise

Π(t) =
maxπi/ti∈int(t) Π(πi/ti)

Table 2.6 – Imperfect skyline models

2.2.3.1 Probabilistic Skyline Queries

The probabilistic skyline queries were firstly introduced by [Pei et al., 2007]. In the un-
certain case, a set of object has multiple instances. Indeed, each object is associated with
a probability function. A main task to model skyline queries on uncertain data is to rede-
fine the dominance relation between uncertain objects and to choose the skyline on those
uncertain objects.

52

2.2. Skyline queries

Given a set of uncertain object U representing a set of multiple points in the data space
having instances, denoted by U = u1, . . . , ul. It can be considered as the discrete case.
For an uncertain object U , The number of its instances is denoted as |U | = l.
Assume two uncertain objects U and V and f and f’ be their corresponding probabi-
lity density functions, respectively. The probability that V dominates U is expressed as
follows:

Pr[V ≺ U] =
∫
u∈D

f(u)(
∫
u≺v

f ′(v) dv) du

=
∫
u∈D

∫
u≺v

f(u)f ′(v) dv du
(2.1)

For the discrete case, let U = u1, . . . , ul1 and V = v1, . . . , vl2 be two uncertain objects
and their instances. The probability that V dominates U is given by:

Pr[V ≺ U] =
l1∑
i=2

1
l1
.
|{vj ∈ V/ vj ≺ ui}|

l2

=
1
l1l2

l1∑
i=2
|{vj ∈ V/ vj ≺ ui}|

(2.2)

Example 22. We illustrate an example from [Pei et al., 2007] to explain a probabilistic
dominance ralation. Consider a set of four uncertain objects as shown in Figure 2.3. The

Figure 2.3 – An uncertain objects set.

object C has three instances, where, c1 and c2 are dominated by every instance of A, and c3

is dominated by no other instance of A. Therefore, the probability that object A dominates

object C is Pr[A ≺ C] =
1
3×

1
4 + (4 + 4 + 0) =

2
3 .

We detail the result here,
1
3(C has 3 instances),

1
4(A has 4 instances), 4(c1 is dominated

53

Chapter 2. Background on Possibility Theory and Skyline Queries

by every instance of A), 4(c2 is dominated by every instance of A), 0(c3 is dominated by

no instance of A). Similarly, Pr[B ≺ C] =
2
3.

Definition 2.9 (The probability skyline of U). Let an uncertain object U having a pro-
bability density function f . The function, f(u) represents the probability that U appears
at position u in a data space D. For any other object V 6= U having probability density
function f ′, the probability that V dominates u is given as

∫
u≺v f

′(v) dv. Therefore, the
probability that u isdominated by no other object is modelled by ∏V 6=U(1− f ′(v)dv). The
probability that U is in the skyline set is as follows:

Pr(U) =
∫
u∈D

f(u)
∏
V 6=U

(1− f ′(v)dv)du (2.3)

In the discrete case, given an uncertain object U = {u1, . . . , ul}, the probability that U is
in the skyline is as follows:

Pr(U) =
1
l

l∑
i=1

(1−
|{v ∈ V/ v ≺ u}|

|V |
) (2.4)

Authors in [Pei et al., 2007] extended the notion of skyline to probabilistic skyline denoted
p-skyline. Indeed, an uncertain object can take a probability measure to be in the skyline
set.

Definition 2.10 (Probabilistic Skyline). Given a set of uncertain objects S and a proba-
bility measure p(0 ≤ p ≤ 1), the p-skyline is the subset of objects in S each of which takes
a probability of at least p to be in the skyline. That is:

Sky(p) = U ∈ S/ Pr(U) ≥ p.

Example 23. We illustrate an example from [Pei et al., 2007]. Consider objects modelled
in Figure 2.3, each instance of object A is dominated by no other instances of objects B,
C or D. Therefore, the probability that A is dominated by no other object is 0 and the
probability that A is in the skyline set is 1. Also for object B, the probability that it is in
the skyline set is 1. Meanwhile, for instances of object D, d1 is dominated by a1, d2 is
dominated by a2, b1 and b2, and d3 is dominated by a2. Thus, the probability that D is
dominated by no other object is as follows:

1
3(
(1− 1

4) + case of d1

(1− 1
4)(1− 2

3) + case of d2

54

2.2. Skyline queries

(1− 1
4)) + case of d3

= 7
12)

After the work of [Pei et al., 2007] a profusion of research have been done to extend skyline
queries over uncertain data such [Lian and Chen, 2009,Jiang et al., 2012,Hyountaek et al.,
2014].

2.2.3.2 Possiblistic Skyline Queries

The work of [Bosc et al., 2011] submitted the Skyline queries to a possibilistic database.
The concept of dominance over possibilistic database was modified, they compute the
extent to which any tuple from a given relation is possibly/certainly not dominated by
any other tuple.
Authors in [Bosc et al., 2011] defined the degree of possibility Π(t) that a tuple t from
the result of the query res be non-dominated by any other tuple t′ from res is computed
as follows. For each interpretation πi/ti of t, one computes the possibility that for every
tuple t′ 6= t, there exists an interpretation t′j of t′ which does not dominate ti. The final
degree Π(t) is the maximum of these degrees, computed over all the interpretations of t.
They define the degree of possibility as follows:

Π(t) = max
πi/ti∈int(t)

Π(πi/ti) (2.5)

where int(t) denotes the set of interpretations of t and

Π(πi/ti) = min(πi, min
t′∈res\{t}

Π(ti ⊀ t′)) (2.6)

With

Π(ti ⊀ t′) =

 0 if{πi/t′j ∈ int(t′)|ti ⊀ t′j} = ∅
maxπj/t′j∈int(t′)|ti⊀t′j πj otherwise

(2.7)

The degree of possibility Π′(t) that tuple t is dominated by any other tuple t′ was defined
by [Bosc et al., 2011] as follows:

Π′(t) = max
πi/ti∈int(t)

Π′(πi/ti) (2.8)

Where Π′(πi/ti) = min(πi,maxt′∈res\{t}Π(ti ≺ t′j)) and

55

Chapter 2. Background on Possibility Theory and Skyline Queries

Π(ti ≺ t′j) =

 0 if{πi/t′j ∈ int(t′)|ti ≺ t′j} = ∅
maxπj/t′j∈int(t′)|ti≺t′j πj otherwise

Example 24. We illustrate an example from [Bosc et al., 2011], let consider a relation of
schema (make, category), the preferences (VW > Ford > Opel) and (SUV > roadster >

others) and the tuples:

t1 = 〈{1/Opel, 0.8/VW}, roadster〉

t2 = 〈Ford, {1/SUV, 0.7/sedan}〉

t3 = 〈{1/VW, 0.6/Opel}, roadster〉.

Let us compute Π(t1). The interpretations of t1 are: t11 = 1/〈 Opel, roadster 〉 and t12 =
0.8/〈 VW,roadster 〉, We detail here the operationhere:
Π(t11 ⊀ t2)=0.7 (corresponding to the interpretation 〈 Ford, sedan〉 of t2) and Π(t11 ⊀
t3)=0.6 (corresponding to the interpretation 〈Opel, roadster〉 of t3).
For the second interpretation of t1, we get Π(t12 ⊀ t2) = 1 (which corresponds to the
interpretation 〈 Ford, SUV 〉 of t2 that is completely possible and does not dominate t12)
and Π(t12 ⊀ t3) = 1 (which corresponds to the interpretation 〈VW, roadster〉

of t3).
Finally: Π(t1) = max(min(1,min(0.7, 0.6)),min(0.8,min(1, 1))) = 0.8.

Concerning the dominance computation, we get:
— Π(t1 ≺ t2) = min(1, 1) = 1 which corresponds to the pair 1 /〈Opel, roadster〉 for t1

and 1 Ford, SUV for t2.
— Π(t1 ≺ t3) = min(1, 1) = 1 which corresponds to the pair 1 /〈Opel, roadster〉 for t1

and 1 VW, roadster for t3.
Finally, N(t1) = 1−max(Π(t1 ≺ t2),Π(t1 ≺ t3)) = 1−max(1, 1) = 0

2.2.3.3 Stochastic Skyline Queries

Lot of applications request a personal trade-off among all optimal solutions. The skyline
queries, are extensively studied as a multi-dimensional criteria analysis. The probabilis-
tic skyline model proposed to retrieve uncertain objects based on skyline probabilities.
Meanwhile, skyline probabilities cannot capture the preference of monotonic utility func-
tions. Base on that gap, authors in [Kijima and Ohnishi, 1999] [Lin et al., 2011] proposed
a stochastic skyline operator that guarantees providing the minimum set of candidates
for the optimal solutions over all possible monotonic multiplicative utility functions.

56

2.2. Skyline queries

Rd
+ is used to denote the points in Rd with non negative coordinate values. In the discrete

case, an uncertain object U consists of a set {u1, . . . , um} of instances (points) in Rd
+ where

for 1 ≤ I ≤ m,ui is in Rd
+ and occurs with probability pui(pui > 0) and ∑m

i=1 pui = 1.
For a point x ∈ Rd

+, the probability mass U.cdf(x) of U is the sum of the probabilities of
the instances in R((0, . . . , 0), x) where (0, 0, . . . , 0) is the origin in Rd, that is U.cdf(x) =∑
u � x, u ∈ UPu. The stochastic dominance is presented as follows:

Definition 2.11 (Stochastic Dominance). Assume two uncertain objects U and V , U
stochastically dominates an object V ,denoted by U ≺sd V , if U.cdf(x) ≥ V.cdf(y) for
any point x ∈ Rd+ and ∃y ∈ Rd+ such that U.cdf(x) ≥ V.cdf(x).

Definition 2.12 (Stochastic Skyline). Given a set of uncertain objects U , an object U ∈ U
is a stochastic skyline object if there is no object V ∈ U , such that V ≺sd U . The set of
stochastic skyline objects is called the stochastic skyline of U .

2.2.3.4 Evidential Skyline Queries

The evidential skyline queries was introduced by [Sayda et al., 2014] and enriched in [Sayda
et al., 2016b, Sayda et al., 2016a]. Given two objects of an evidential database, authors
calculated the belief that each object dominates the other.

Definition 2.13 (Dominance belief degree). Given a set of objects O = {o1, o2, . . . , on}
defined on a set of attributes A = {a1, a2, . . . , ad}, with oi.ak denotes the bba of object oi
w.r.t. attribute ak. The degree of belief that an object oi is better than or equal (or strictly
better) to another object oj w.r.t. an attribute ak is as follows:

bel(oi.ak ≤ oj.ak) =
∑

A⊆θak
(mik(A)

∑
B⊆θak,A≤∀B

mjk(B)) (2.9)

Where A ≤∀ B stands for a ≤ b, ∀(a, b) ∈ A×B

bel(oi.ak < oj.ak) =
∑

A⊆θak
(mik(A)

∑
B⊆θak,A≤∀B

mjk(B)) (2.10)

Based on this dominance relationship, they proposed the notion of b-dominant skyline,
which comprises the objects that are not dominated with some belief threshold b.

Definition 2.14 (b-dominance). Given two objects oi, oj ∈ O : oi6 = oj and a belief
threshold b, oi b-dominates oj denoted by oi �b oj if and only if bel(oi �b oj) ≥ b.

57

Chapter 2. Background on Possibility Theory and Skyline Queries

Example 25. We illustrate an example from [Sayda et al., 2014]. Given a set of weight-
loss products, defined over two attributes; weight loss per month and repayment (if the
user is not satisfied). Each product may have one or more focal elements w.r.t. each attri-
bute. For example, the weight loss per month of product o1 comprises two focal elements
〈{15, 16, 18}, 0.1〉and〈{19, 20}, 0.9〉. Thus, the attribute value is either 15, 16 or 18 with
mass function 0.1 or one of the values 19 or 20 with mass 0.9.

Product Weight loss per month (Kilograms) Repayement (%)
o1 〈{15, 16, 18}, 0.1〉, 〈{19, 20}, 0.9〉 〈90, 0.3〉, 〈{90, 100}, 0.7〉
o2 〈7, 0.7〉, 〈{8, 9}, 0.3〉 〈{70, 80}, 0.8〉, 〈80, 0.2〉
o3 〈{1, 4}0.1〉, 〈5, 0.9〉 〈{70, 80}, 0.7〉, 〈100, 0.3〉
o4 〈10, 0.2〉, 〈12, 0.2〉, 〈{13, 14}, 0.6〉 〈100, 1〉
o5 〈{12, 13, 14}, 0.2〉, 〈17, 0.4〉, 〈19, 0.4〉 〈{20, 30}, 0.6〉, 〈30, 0.4〉

Table 2.7 – dominance beliefs

Table 2.8 shows the dominance belief that each object in lines dominates another object
in columns.

Objects o1 o2 o3 o4 o5
o1 1 1 0.7 0.3 0.92
o2 0 1 0 0 0
o3 0 0 1 0 0
o4 0 1 1 1 0
o5 0 0 0 0 1

Table 2.8 – dominance beliefs

Indeed, o1 0.9-dominates both o2 and o5. However, it does not 0.9-dominate o4 since
bel(o1 � o4) = 0.3 < 0.9.
To define the notion of evidential skyline, b-dominance relationship needs to be used. For
instance, an object is in the evidential skyline if it is not dominated with some threshold.
Thus, [Sayda et al., 2014] defined the notion of b-dominant skyline as follows.

Definition 2.15 (b-dominant skyline). The skyline of O, denoted by b-SkyO, comprise
those objects in O that are not b-dominated by any other object, i.e., b-SkyO = {oi ∈
O/ @oj ∈ O, oj � oi}

We continue with the same example of [Sayda et al., 2014] illustrated in Table 2.8. The
0.4-dominant skyline comprises objects o1 and o4, since they are not 0.4-dominated by
any other object, while the 0.2 contains only o1 as o4 is 0.2 dominated by o1.

58

2.2. Skyline queries

Conclusion

Imperfection, be it imprecision or uncertainty, should be incroporated in today’s ap-
plications and information systems to provide a complete and accurate model of the real
world. During this chapter we pinpointed the utility of using possibility theory to handle
one facet of uncertainty, i.e, epistemic uncertainty. This theory will be used to deal with
uncertainty in the RDF data context.

On the other hand, skyline preference queries has became an important issue in database
research for extracting the most interesting objects from a multi-dimensional dataset. The
skyline query processing is used in many applications that demand multi-criteria decision
making without using cumulative functions in order to extract the most interesting ob-
jects based on users’ preferences. An object is considered as interesting, if it is dominated
by no other object in all the evaluation criteria. The extensive use of the skyline operator
is mainly due the model’s simplicity and its applicability on multi-criteria decision deci-
sion making with reference to user preferences. We presented a reminder about skyline
preference queries, the basic concepts and the main introduced algorithms. Finally, a brief
refresher about extending skyline queries over uncertain data was detailed.
In the coming chapter, we are interested in extending the skyline queries over RDF data,
particularly when they are associatedwith trust measures [Hartig, 2009a].

59

Chapter 2. Background on Possibility Theory and Skyline Queries

60

Part II

Contributions

61

62

Chapter 3

Trust Skyline Model: Semantics and
Experimentations

Contents
Introduction . 65
3.1 Trust-Skyline model . 66

3.1.1 Trust Dominance . 67
3.1.2 Trust-Skyline semantics . 71
3.1.3 Trust-Skyline computation 72

3.2 Experimental Evaluation . 76
3.2.1 Experimental Setup . 77
3.2.2 Impact of the trust measure variation 77
3.2.3 Impact of the size of data set 79
3.2.4 Number of used properties in the skyline query 79

3.3 Statistical methods-driven Analysis 79
3.3.1 Trust-Skyline list Analysis 81
3.3.2 Alpha v.s. the distribution of Trust values 83
3.3.3 Central Tendency measures 84
3.3.4 Measures of spread: Quartile measure 85
3.3.5 Trust dependence . 85

3.4 Analysis Experimental . 86
3.4.1 Experimental Setup . 86
3.4.2 Impact of trust threshold variation and Central Tendency

measures . 87
3.4.3 Impact of trust threshold variation and Quartile measures 88

63

Chapter 3. Trust Skyline Model: Semantics and Experimentations

Conclusion . 89

64

Introduction

As mentioned in the previous chapter, variety of sources on the Web affects the relia-
bility of collected data. To rate information trustworthiness, new metrics were introduced
in RDF representation model such in [Hartig, 2009a,Tomaszuk et al., 2012, Fionda and
Greco, 2015].
On the other hand, to reason in presence of trust information, there is a need of new ap-
proaches to query RDF data. In this thesis project, we are interested in preference-based
queries [Chomicki, 2002,Kiessling, 2002,Chomicki, 2011,Chomicki et al., 2013] to extract
and filter the huge amount of data contained in databases. An important kind of prefe-
rence queries is introduced in [Börzsönyi et al., 2001a], the Skyline operator. It returns
the most interesting objects based on the Pareto dominance operator and according to
user-defined criteria.
For instance, extending skyline queries over RDF data is proposed in litereture in the work
of [Chen et al., 2011]. Authors proposed applying skyline model over RDF data. However,
this work did not tackle imperfections of the RDF data model. Although, literature is
abundant on works about skyline queries over uncertain relational data, such as [Jiang
et al., 2012], [Bosc et al., 2011], [Zhang et al., 2013], the extraction and filter of imperfect
RDF data usiong skyline queries has not been advocated, in this proposal we try to tackle
this issue.
During this chapter, we present two main contributions as part of our work, we recall that
the aim of this thesis project is to model and query imperfect RDF data. Imperfection
signifies here the lack of trustworthiness and certainty of RDF data.
First contribution: The first part of our work concerns adapting the skyline operator
to trust-weighted RDF data (T-RDF). We begin with redefining the dominance between
such type of data. Although, the skyline operator produces a binary result (0/1) in the
context of certain data, it produces a degree of dominance in case of trust RDF data.
Therefore, we provide semantics for the trust-skyline operator, i.e., the set of objects that
are dominated by no other object with a degree greater than a user-defined measure that
we denote α. Up to our knowledge the extension of skyline queries over RDF data to
extract and filter the massive amount of resources among the data sets have only been
advocated in the proposal of [Chen et al., 2011]. Meanwhile, this work did not consider
the trust thresholds and deals only with the basic definition of the RDF data model.
To compute the trust-skyline, we propose a new algorithm denoted TRDF-Skyline. This
algorithm is based on the checked and proved properties over the redefined dominance
relationship. In addition, we compare the proposed solution to the naive method for com-
puting the trust-skyline set, and also with an SQL query that we implemented for which
data is stored in a relational table of quadruples. The experiments show interesting and

65

Chapter 3. Trust Skyline Model: Semantics and Experimentations

encouraging results.
Second contribution: It consists in analysing the results presented in the first part and
published in [Amna et al., 2017b]. First of all, we distinguish between the trust-Skyline
resulting list. While the points with trust measures less than the user-defined threshold α
enter directly to the trust-Skyline list, they are not considered as interesting points. This
is due to the non-check of Pareto dominance operator. Therefore, we opt for separating
the two categories of points (i.e points with less trust and points with greater trust).
To analyze the results we opt for using statistical methods to investigate the trust measures
dependence. Indeed we use the central tendency measures (mean and median standards),
and the measures of spread (Quartile measure) for such analysis. We checked the impact
of the trust measure α and the list of the generated trust measures on the resulting trust-
Skyline list. Finally we present the experiments that showed interesting results.
The rest of the chapter is organized as follows: In Section 3.1, we introduce our new model,
the Trust-Skyline and we show how it operates over weighted RDF data. Then, Section
3.2 illustrate our experimental study. For Section 3.3, we analyze our trust-Skyline list.
Furthermore, we present the proposed methods to check the dependence between trust
measures. Finally, we illustrate our experimental study in Section 3.4.

The contributions presented in this chapter are published in:

— The 19th International Conference on Enterprise Information Systems
[Amna et al., 2017a]

— The extension of [Amna et al., 2017a] is published as a book chapter in
Springer Lecture Notes in Business Information Processing [Amna et al.,
2017b]

3.1 Trust-Skyline model

The only existing work about skyline queries over RDF data is the proposal of [Chen
et al., 2011]. The authors introduced a skyline model over RDF data stored in a multiple
relations way. Although absence of works on skyline queries over trust-weighted RDF
data, the literature is abundant on works about extending skyline queries over uncertain
relational data, such as [Bosc et al., 2011, Jiang et al., 2012, Zhang et al., 2013]. The
extension of skyline queries over uncertain RDF has not been advocated in the literature,
in our work we attempt fill the gap.
During this section, we aim to extend the classic model of skyline queries to deal with the
Trust RDF model. Indeed, we introduce the Trust-Skyline model in which we extract the

66

3.1. Trust-Skyline model

set of objects (resources) that are dominated by no other object (resource) according to
user-defined criteria (trust measure).
In the context of trust model the RDF triple < s, p, o > is extended to an RDF quadruple
< s, p, o, t > where the trust value t represents the trustworthiness of the triple < s, p, o >

and takes its values in the interval [-1, 1] [Hartig, 2009a]. We denote the quadruple a
"SPOT".

Definition 3.1 (RDF SPOT). An RDF SPOT X is a quadruple < s, p, o, t >, where o is
a value of a property (predicate) p related to a subject (resource) s, with a trust measure
t. We denote the triple < s, p, o > by X∗.

Given that an RDF SPOT describes a unique property of a subject, we need to propose
new semantics to compare two resources. Indeed such comparison needs to consider all
common properties. Therefore, we propose the notion of point. We define a point as the
set of SPOTs related to a unique subject (resource). In a multi-dimensional domain, a
point is characterized by several dimensions, as well as an RDF subject, characterized by
several predicates (properties).

Definition 3.2 (Trust RDF point). A trust RDF point Pt is the set of SPOTs related to a
unique subject s having m properties pi, the values oi and the trusts ti such that 1 ≤ i ≤ m.
We denote P ∗t the set of SPOs, i.e., the quadruple SPOT without trust measures, related
to the subject s.

Example 26. Let us consider the RDF data set illustrated in table 3.1. Four hotels are
considered, having each one two properties ("HasPrice" and "HasDistance"). The qua-
druple < h1, HasPrice, 21, 0.8 > is an RDF SPOT which we denote X. Accordingly, X∗
is the RDF SPO < h1, HasPrice, 21 >. Let the pattern matching P be the set of SPOTs
related to h1. P = {< h1, HasPrice, 21, 0.8 >,< h1, HasDistance, 110, 0.9 >}. P ∗ is the
set of SPOs related to h1:

P ∗ = {< h1, HasPrice, 21 >,< h1, HasDistance, 110 >}.

As the skyline query is based on the dominance relation (see Definition 2.7), we need to
start with redefining this relation in the context of T-RDF data.

3.1.1 Trust Dominance

The dominance relation is based on the comparison between the properties’ values (see De-
finition 2.7). In the context of certain data, the comparison of two values produces a binary

67

Chapter 3. Trust Skyline Model: Semantics and Experimentations

Table 3.1 – Example of trust RDF data

Subject Predicate Object Trust
h1 HasPrice 21 0.8
h1 HasDistance 110 0.9
h2 HasPrice 31 0.5
h2 HasDistance 120 0.2
h3 HasPrice 21 0.2
h3 HasDistance 130 0.7
h4 HasPrice 31 0.8
h4 HasDistance 60 0.3

result (0/1). Meanwhile, for the uncertain case, comparison is not binary. It is rather quan-
tified with a degree. For example, assume two RDF SPOTs, p1 = (H1,

′ distance′, 50, 0.6)
and p2 = (H2,

′ distance′, 40, 0.4). The distance that separates hotels H1 and H2 from the
beach are 50 with a trust value 0.6, and 40 with a trust value 0.4, respectively. Howe-
ver, we are not able to conclude that H1.distance is greater than H2.distance. We only
quantify the trustworthiness of this comparison as presented in definition 3.3.

Definition 3.3 (Comparison trust). Assume two properties’ values a and b, having the
trusts Trust(a) and Trust(b), respectively. Let λ be an arbitrary value, where, λ ≤ −1.
The trust degree of the comparison between a and b, denoted by Trust(a φ b), such that
the operator φ ∈ {≤, <,≥, >,=, 6=}, is defined as follows:

Trust(a φ b) =

 min(Trust(a), T rust(b)) if aφb is true

λ else

In the rest of the chapter, λ is arbitrary fixed to λ=-1.

At this stage, we need to define the dominance between two RDF triples. To consider
uncertain context of data, we need to adapt the Pareto dominance presented in definition
2.7. Indeed, we changed the logical connectors ∧ and ∨, that represents the conjunction
and disjunction of two binary comparisons, to the minimum and maximum operators,
respectively, in order to deal with uncertain data.

Definition 3.4 (Trust dominance degree). Let P and Q be two subjects having n proper-
ties pi and qi, respectively with 1 ≤ i ≤ n. The degree of dominance between P and Q,
denoted by d(Q � P) is defined as follows 2:

d(Q � P) = min(min
1≤i≤n

Trust(qi ≤ pi), max
1≤i≤n

Trust(qi < pi))

2. We assume in this work, that the smaller value, the more preferable

68

3.1. Trust-Skyline model

Example 27. Let us consider two hotels h1 and h2, having the properties price and
distance. We illustrate four cases in order to test all scenarios between h1 and h2 as
presented in Table 3.2.

Table 3.2 – Example of hotels properties.

Hotels case 1 case 2 case 3 case 4
price distance price distance price distance price distance

h1 20(0.2) 100(0.4) 20(0.6) 80(0.7) 20(0.3) 100(0.5) 20(0.3) 70(0.5)
h2 30(0.3) 110(0.5) 25(0.3) 70(0.1) 20(0.4) 100(0.6) 25(0.4) 70(0.5)

Here after, we present the computation of the Trust-Skyline over those four cases:
— case 1: To compute d(h1 � h2), we have: 20 ≤ 30 is true thus the trust of the

comparison is min(0.2, 0.3)=0.2 and 100 ≤ 110 is true, thus the trust of the com-
parison in min (0.4, 0.5)= 0.4. Moreover, 20 < 30 thus, the trust of the comparison
is min(0.2, 0.3)=0.2, also for 100 < 110, the trust value is min (0.4, 0.5)= 0.4.
To conclude, we have d(h1 � h2)= min(min(0.2,0.4), max(0.2,0.4))=0.2

— case 2:
d(h1 � h2)= min(min(0.3,-1), max(0.3,-1))=-1

— case 3:
d(h1 � h2)= min(min(0.3,0.5), max(-1,-1))=-1

— case 4:
d(h1 � h2)= min(min(0.3,0.5), max(0.3,-1))=0.3

We introduce the concept of point trust in order to simplify the computation of dominance
degree between two RDF triples.

Definition 3.5 (Point trust). Let an RDF point P having m properties pi, where, 1 ≤
i ≤ m. Each property is associated with a trust ti. The point trust, denoted by P.t− is the
minimum trust degree among all its properties.

P.t− = min
1≤i≤n

(pi.t)

The aim from using the notion of point trust is to simplify the computation of the trust
dominance as illustrated in Proposition 3.1.

Proposition 3.1. Given two points P and Q having the trusts Q.t− and P.t−.

d(Q � P) =

 min(Q.t−, P.t−) if Q∗ � P∗
−1 else

69

Chapter 3. Trust Skyline Model: Semantics and Experimentations

Proof 1. For two RDF points P and Q, d(Q � P) is the minimum between two measures;
min1≤i≤n Trust(qi ≤ pi), and max1≤i≤n Trust(qi < pi).

For the first measure(min1≤i≤n Trust(qi ≤ pi)), we have two scenarios:

— if there exists any property i where qi ≤ pi is false, then the measure is equal to -1.

— if for each property i, qi ≤ pi is true, then the measure is equal to the smallest trust
among all properties of P and Q. It is equal to min(Q.t−, P.t−)

Concerning the second measure(max1≤i≤n Trust(qi < pi)), we have two possible scenarios:

— if there exists at least one property i such that qi < pi, then the measure is equal to
the greatest value between the trusts of all comparisons qi < pi that return true.

— if there is no property i such that qi ≤ pi is true, then the measure is equal to -1.

We combined the scenarios above in Table 3.3. The only case that returns a value different
from λ occurs when ∀i, qi ≤ pi and ∃i, qi < pi. In this case, we return:

min(min1≤i≤n Trust(qi ≤ pi),max1≤i≤n Trust(qi < pi)). We are sure that min1≤i≤n Trust(qi ≤ pi)
is less or equal than max1≤i≤n Trust(qi < pi).

Hence, the measure min1≤i≤n Trust(qi ≤ pi) returns the minimal trust among all proper-
ties’ values of P and Q (see definition 3.3), that is simply min(P.t−, Q.t−). The case

Table 3.3 – Dominance degree function.

∃i, qi < pi @i, qi < pi
∀i, qi ≤ pi min(min1≤i≤n Trust(qi ≤ pi),max1≤i≤n Trust(qi < pi)) -1
∃i, qi > pi -1 -1

where ∀i, qi ≤ pi and ∃i, qi < pi, corresponds in fact to Q∗ � P ∗. In this case, d(Q � P)
is equal to the smallest trust among all properties’ trusts of P and Q (see definitions 3.4
and 3.5), which is the minimum value between Q.t− and P.t−.

Example 28. If we take the same cases shown in example 27 using proposition 3.1, we obtain:

— case 1: h∗1 � h∗2 then d(h1 � h2) = min(Q.t−, P.t−) = min(0.2, 0.3) = 0.2

— case 2: h∗1 � h∗2 then d(h1 � h2)=-1

— case 3: h∗1 � h∗2 then d(h1 � h2)=-1

— case 4: h∗1 � h∗2 then d(h1 � h2) = min(Q.t−, P.t−) = min(0.3, 0.4) = 0.3

Note that we obtain the same results as in the example 27.

Proposition 3.2. The trust dominance is transitive. Given two RDF triples P and Q,
and a threshold α ∈ [−1, 1]

70

3.1. Trust-Skyline model

if d(R � Q) > α and d(Q � P) > α; Then d(R � P) > α

Proof 2. d(R � Q) > α and d(Q � P) > α (1)
d(R � Q) = min(R.t−, Q.t−) and d(Q � P) = min(Q.t−, P.t−) (2)
(1) and (2) imply min(R.t−, Q.t−) > α and min(Q.t−, P.t−) > α (3)
(3) implies min(R.t−, Q.t−, P.t−) > α (4)
(4) implies d(R � P) > α

Proposition 3.3. The trust dominance is asymmetric. Given two RDF triples P and Q,
and a threshold α ∈ [−1, 1]

d(Q � P) > α ⇒ d(P � Q) = −1 < α

Proof 3. According to Proposition 3.1, we have:

d(Q � P) > α⇒ Q∗ � P ∗

Q∗ � P ∗ ⇒ P ∗ � Q∗

P ∗ � Q∗ ⇒ d(P � Q) = −1

3.1.2 Trust-Skyline semantics

In [Börzsönyi et al., 2001a], skyline is defined as the set of database objects dominated
by no other object. In such perfect context, dominance is binary. However, in context of
trust RDF data, dominance is a quantified relation rather than a boolean one. Therefore,
the skyline is defined as the set of points dominated by no other point according to some
trust value α.

Definition 3.6 (Trust-Skyline). Let α ∈ [−1, 1] be a user defined threshold. The T-Skyline
of a data set H, denoted by T − Skyα, contains each point P in H such there is no point
Q that dominates P with a trust degree greater than α.

T − skyα = {P ∈ H/@Q ∈ H, d(Q � P) ≥ α}

Example 29. Let us consider the example of five hotels, with two properties each one
(Price and Distance), see Table 3.4 . For each property we specify a trust degree to describe
the data trustworthiness.

We detail below the computation of the T-Skyline of the RDF data set presented in Table
3.4 when α is fixed to 0.1 (α = 0.1).

71

Chapter 3. Trust Skyline Model: Semantics and Experimentations

Table 3.4 – Example of hotels candidate list of T-Sky.

Hotel Price Distance
h1 23 (0.5) 5 (0.3)
h2 50 (0.2) 4 (0.6)
h3 50 (0.7) 3 (0.5)
h4 40 (0.1) 1 (0.3)
h5 50 (0.6) 2 (0.4)

— h1 dominates h2 with a degree equals to 0.2 (≥ α). Given that, the trust-dominance
is asymetric h2 does not dominate h1. We conclude that h2 could not integrate the
skyline. Hence, h2 is pruned from the Trust-Skyline set.

— d(h1 � h3) = 0.3, thus h3 is also pruned.
— d(h1 � h4) = −1 and d(h4 � h1) = −1. We make no pruning.
— d(h1 � h5) = 0.3. h5 is pruned.

We conclude that the Trust-Skyline list includes h1 and h4 which are dominated by no
other point.

Remark. One can observe that some points could enter directly the trust-Skyline without
being compared with other ones. Indeed, if the trust of a point P (see definition 7) is less
than the trust threshold α, then we conclude directly that P is in the skyline because we
are sure there is no other point Q able to dominate it with a degree greater than α, even
if Q∗ � P ∗. We detail the analysis of this remark in Section 3.3.

Proposition 3.4. Given a data set H and its T-Skyline T − Skyα and a point P ∈ H.
If P.t− < α then P ∈ T − Skyα.

Proof 4. If P.t− < α, then we are sure there exists no point Q ∈ H such that d(Q �
P) ≥ α since d(Q � P) is equal to min(Q.t−, P.t−) or -1. In this case, (there is no Q ∈ H
such that d(Q � P) ≥ α), we are sure that P ∈ T − Skyα.

3.1.3 Trust-Skyline computation

In order to compute the Trust-Skyline, we propose two algorithms; the Naive T-Skyline
algorithm and the TRDF-Skyline algorithm. In addition, for the evaluation purpose, we
discuss also a non-native solution that consists in representing trust-RDF data in relational
table and then extract the trust-Skyline using an SQL query. In particular, we show how
the Trust-Skyline can be implemented on a relational database using an SQL query. We
illustrate in Table 3.5 the stored functions used in that query.

72

3.1. Trust-Skyline model

3.1.3.1 SQL-like Trust-Skyline queries

Trust RDF data could be stored in a relational table as quadruplets (see for instance Table
3.1). To implement our SQL-based method, we created a table named TRDF with four
attributes: s, p, o and t that stands for subject, predicate, object and trust respectively.
As the comparison between objects is not binary, we implemented two comparison ope-
rators to specifically deal with the imperfect context; the less and lessorequal functions
which return a degree between −1 and 1. The two functions are described in Table 3.5.

Table 3.5 – Used functions Meaning.

returns the least trust degree
less(v1,v2) between two points v1 and v2

if v1 < v2
returns the least trust degree

lessorequal(v1,v2) between two points v1 and v2
if v1 ≤ v2

Below, we present the SQL query syntax that returns the Trust-Skyline of the table TRDF
according to the trust threshold α. This latter selects each subject A such there is no
subject B that dominates it. Meanwhile, B dominates A if two conditions are satisfied.
First, there exists no predicate (property) whose value for A is better or equal than its
value for B. The second, it exists at least one predicate whose value for A is strictly better
than its value for B. We recall here that the smaller values, the more preferable are, thus,
the use of functions less and lessorequal.

SELECT DISTINCT s FROM TRDF A WHERE NOT EXISTS(

SELECT * FROM TRDF B WHERE B.s! = A.s AND NOT EXISTS(

SELECT * FROM TRDF C WHERE C.s = A.s AND NOT EXISTS(

SELECT * FROM TRDF D WHERE D.s= B.s AND C.p= D.p

AND lessorequal(D.o, D.t, C.o, C.t)>=&α))

AND EXISTS

(SELECT * FROM TRDF E WHERE E.s=A.s AND EXISTS(

SELECT * FROM TRDF F WHERE F.s=B.s AND F.p= E.p

AND less(F.o, F.t, E .o, E.t)>=&α)));

Below, we provide the SQL code of the two functions less and lessorequal.

73

Chapter 3. Trust Skyline Model: Semantics and Experimentations

CREATE OR REPLACE FUNCTION less(v1 IN NUMBER, t1 NUMBER, v2 IN NUMBER, t2
NUMBER) RETURN NUMBER IS

inferior NUMBER := -1;

BEGIN

IF (v1<v2) THEN

inferior := least(t1,t2);

END IF;

RETURN inferior;

END;

CREATE OR REPLACE FUNCTION lessorequal(v1 IN NUMBER, t1 NUMBER, v2 IN NUMBER,
t2 NUMBER) RETURN NUMBER IS

inferior NUMBER := -1;

BEGIN

IF (v1<=v2) THEN

inferior := least(t1,t2);

END IF;

RETURN inferior;

END;

3.1.3.2 Naive T-Skyline Algorithm

The Block Nested Loop (BNL) algorithm was presented in many works about the Skyline
operator such as [Börzsönyi et al., 2001a] [Deepak et al., 2011]. The main idea of the BNL
algorithm is that it reads repeatedly the set of tuples. Once a point is read from the input
list, it is compared to all the tuples of the candidate list which makes the execution time
exponential. This is considered as a naive approach to solve the problem of extracting the
trust skyline.
In our algorithm Naive T-Skyline (see Algorithm 1) we propose an optimization of the
naive method in order to filter the input list because for large input size, the number
of compared tuples will be T × T. For instance, based on proposition 3.4, we optimized
the naive method by adding directly all points having trust values less or equal to the
threshold α. These points could not be dominated with a degree greater than α. Note
that Complexity of this method is O(n2).

74

3.1. Trust-Skyline model

We continue with the same example presented on Table 3.4 we proceed on modifying
α to check its impact on the Skyline resulting list. If we fix α to 0.1, to be part of the
T-Skyline, each point should be dominated by no other point with a degree greater than
0.1. The T-Skyline resulting list is {h1,h4}. If we increase α, points having trust measures
inferior than α are in the T-skyline because no other point could dominate them over
this degree. The trust degree α has a big impact on computing the T-Skyline list. Hence,
we used this measure in our Naive T-Skyline algorithm to make an earlier filtering of the
candidate list.

Algorithm 1: The Naive T-Skyline Algorithm
Input: n RDF triples;
Output: T − Sky Trust-Skyline points;

1 begin
2 foreach point P ∈ DB do
3 SKY ← true
4 if P.t− < α then
5 Add P to TSky
6 else
7 foreach point Q ∈ DB such that Q 6= P do
8 if (dominates(Q,P))>= α /*Using dominates function*/ then
9 SKY ← false

10 Break

11 if SKY = true then
12 Add P to TSky

13 return T − Sky

3.1.3.3 TRDF-Skyline Algorithm

We introduce a new algorithm, denoted TRDF-Skyline which uses, in addition to the
optimization (based on property 3.4) in the naive T-Skyline method, a second optimization
based on the transitivity property (proposition 3.2). Hence, we are not obliged to compare
all the pairs of points. If a point A dominates a point B, then B is eliminated and A is
added to the trust skyline. Then, when we find that a point C dominates A, then A is
eliminated and C is added to the skyline. Indeed, the comparison between C and B is
useless because B cannot dominate A. We even know that C dominates B thanks to the
transitivity property (A � B and C � A implies C � B).

Even if the complexity of this method is O(n), we are sure we pruned useless points thanks

75

Chapter 3. Trust Skyline Model: Semantics and Experimentations

to the transitivity property. The TRDF-Skyline algorithm is presented as follows.

Algorithm 2: The TRDF-Skyline Algorithm
Input: n RDF triples;
Output: TSky Trust-Skyline points;

1 begin
2 foreach point P ∈ DB do
3 if P.t− < α then
4 Add P to TSky
5 else
6 inSKY ← true
7 foreach point Q ∈ TSky, Q 6= P do
8 if dominates(P,Q) >= α /*Using dominates function*/ then
9 Remove (Q) from TSky

10 else
11 if dominates(Q,P) >= α then
12 inSKY ← false
13 Break

14 if inSKY:=true then
15 Add P to TSky

16 return T − Sky

3.2 Experimental Evaluation

In this section, we evaluate the methods introduced in subsection 3.1.3, which are conside-
red as exact methods. Therefore, evaluation doesn’t deal with the output quality. Indeed,
the produced skyline is exactly the same regardless of the used method. Consequently,
the experiments we led were about (1) the performance of the methods (time execution),
and (2) the size of the skyline (size control). For each measure, we varied (1) the trust
threshold, (2) the size of the target database and (3) the number of properties in the
skyline query. The aim is to understand the impacts of these parameters on the execution
time and the size of the skyline.

76

3.2. Experimental Evaluation

3.2.1 Experimental Setup

Due to the lack of trust RDF databases, we generated synthetic data sets according to
the parameters in table 3.6. For each experiment, we vary one parameter and set the
others to the default values (referred in the above-mentioned table). Note that data are
generated following the uniform law. Indeed, we used the triple storage approach [Sakr
and Al-Naymat, 2009], extended to a quadruple format to deal with the trust measure.
The data generator and the algorithms 2 and 1 were implemented in Java. The SQL query
were implemented under Oracle 11g. Stored functions were implemented using PL/SQL.
All experiments were conducted under Windows 7 on a 2.10 GHz Intel Core Duo processor
computer with 4GB of RAM.

Symbol Parameter Default
P Number of properties 6
D Number of quadruples 300 K
T Size of T-Skyline data -
α Trust measure 0.2
X Time execution (ms) -

Table 3.6 – Parameters under investigation.

3.2.2 Impact of the trust measure variation

The Trust-Skyline operator is defined as the set of points dominated by no other point
according to a trust threshold α. In this experiment, we varied α in order to measure its
impact on the execution time and on the size of the trust skyline set, as shown in Figure
3.1.

When α has a great value, both methods perform quickly (Figure 3.1a). This is due to
the fact that points’ trusts are more probably less than α, and thus enter directly to
the skyline without processing. In this case, using Proposition 3.4 leads to considerably
pruning the search space. Size of the trust skyline (see figure 3.1b) is important, because
it is rare to check a dominance between two points, according to a threshold whose value
is important. If there is rare dominance between points, then we obtain a great size of
Trust-Skyline set.

On the other hand, when α has a small value, several points are dominated and thus
do not enter to the skyline. Hence, Trust-Skyline size is small in this case. The Naive
T-Skyline do not benefit from the Proposition 3.4 pruning method, and execution time

77

Chapter 3. Trust Skyline Model: Semantics and Experimentations

is very important. Meanwhile, for TRDF-skyline, execution time is very acceptable, since
pruning based on the transitivity property is always efficient and doesn’t depend from α.

Concerning the SQL query, with a database of 6k tuples the execution time exceeds
12.103ms . SQL query is logically costly since we do not use a native environment, and
we don’t optimize computation as in the other methods. For instance, the SQL query
compares all the points’ pairs in the database.

(a) Effect on time execution

(b) Effect on skyline size

Figure 3.1 – Effect of α on skyline computation

78

3.3. Statistical methods-driven Analysis

3.2.3 Impact of the size of data set

During this experiment, we tackle the impact of the data size on the performance and size
of the Trust-Skyline. For instance, we varied the input data size from 100k, to 500k tuples
as shown in Figure 3.2. Figure 3.2 depicts a comparison between the two algorithms.
As shown in the previous experiment, TRDF-Skyline algorithm outperforms the Naive
Trust-Skyline algorithm. When the size of data reaches 300k, the execution time of the
Naive T-Skyline becomes exponential. At 500k it exceeded 223s. However, for the TRDF-
Skyline it does not exceed 50s. The execution time of the SQL query is the worst, it is
very high over a size greater than 12K.
We think that distributed methods are recommended, when data set are very huge. Since
Pareto dominance is transitive, data set could be divided. Hence, extraction of trust-
Skyline is computed in parallel, and then a smart fusion of the results is operated. An
interesting perspective of this work is to model and implement distributed methods to
extract trust-Skyline.

3.2.4 Number of used properties in the skyline query

In this experiment, we tackle the impact of properties (criteria) number in the skyline
query over the result computation. To this end, we increased the number of skyline query’s
properties as illustrated in Figure 3.3. The trust skyline size increased with the increase
of P (see figure 3.3b), due to the fact that subject has more chance to be not dominated
when comparison copes with a high number of criteria. Figure 3.3a illustrates again the
performance of the TRDF-Skyline that takes advantage from the transitivity property.
The naive algorithm, even worst, performs better than the SQL query which compares
all pairs of points, without pruning using the property 3.4.

3.3 Statistical methods-driven Analysis

In this section we are interested in analyzing the results presented in our work [Amna
et al., 2017a]. In [Amna et al., 2017a], we proposed to extend the classic model of skyline
queries to cope with the trust RDF model. We introduced the Trust-Skyline in which we
extract the set of most interesting resources in a trust RDF dataset. As the skyline query
is based on the Pareto dominance operator, we redefined the dominance relationship in
the context of trust RDF data. Then, we proposed an appropriate semantics of the trust-
Skyline in which we extract the set of most interesting resources in a trust RDF dataset.

79

Chapter 3. Trust Skyline Model: Semantics and Experimentations

(a) Effect on time execution

(b) Effect on skyline size

Figure 3.2 – Effect of data size on skyline computation

To analyze the results, we distinguish between the points of the computed trust-Skyline.
Indeed, points with trust measures less than the user-defined threshold α enter directly
to the trust-Skyline list. Therefore, we don’t considered as interesting points. This is
due to the non-check of Pareto dominance relationship. Thus, we opt for separating the
two categories of points. Indeed, we make use of statistical methods to investigate the
trust measures dependence. We use the central tendency measures (Mean and Median
standards), and the measures of spread (Quartile measure) for such analysis.
For the experiments, we proceed on checking the impact of the trust measure α and the

80

3.3. Statistical methods-driven Analysis

(a) Effect on time execution

(b) Effect on skyline size

Figure 3.3 – Effect of criteria number on skyline computation

list of the generated trust measures on the resulting trust-Skyline list.

3.3.1 Trust-Skyline list Analysis

In [Amna et al., 2017a] a set of properties have been defined and used to optimize the
computation of the T-Skyline list. The first property used is adding directly all points
having trust measure less or equal to the threshold α. These points could not be dominated

81

Chapter 3. Trust Skyline Model: Semantics and Experimentations

with a degree greater than α. Note that the complexity of this method is O(n2).
The second method is a combination between the first one and the use of transitivity
property. Indeed, there is no need to compare all the pairs of points.
Based on the used methods to compute the T-Skyline list, we can make an analysis of
the resulting list. The first category is the list of points having trust values less than α

(i.e., points with less trust), the second one is the points that are Pareto-dominated by
no other point (i.e., points with more trust).

3.3.1.1 T-Skyline points with less trust

We recall the property 3.4 (see Section 3.1) in which we let the points with trust measure
less than α enter directly to the T-Skyline list without processing:
Given a data set D and its T-Skyline T − Skyα and a point P ∈ D. If P.t− < α then
P ∈ T − Skyα.
This category of points could be dominated by no other point with a trust degree greater
than α. The search space is considerably pruned because the dominance check between
points is reduced, we denote this list of points T − Sky<α. T − Sky<α points are added
to T-Skyline list without considering their property values. Therefore, the list of points is
not interested in the T-Skyline final list due to the non-check of Pareto-dominance.
The greater α, the greater the size of the T − Sky<α points. The lower the trust value,
the lower the T − Sky<α set and the greater the uncertainty.

3.3.1.2 T-Skyline points with more trust

We denote the list of points added to the T-Skyline list after Pareto-dominance check
T − Sky>α. The list of T − Sky>α are the most interesting points in the result list since
they have the best values among all the properties.
Figure 3.4 presents the difference between the two sets of points. For instance, the greater
α, the greater the size of the T − Sky<α points. The lower the trust value, the lower the
T −Sky<α set. However, the less value of α the great T −Sky>α and the less skyline size
set bacause several points are dominated and so do not enter to the skyline.

3.3.1.3 Behavior of Alpha

Great values
We recall the definition about the trust of a given point (see Definition 3.5). Assume an

82

3.3. Statistical methods-driven Analysis

Figure 3.4 – Trust-Skyline points analysis.

RDF point P with m properties pi. The trust of a point, denoted by P.t− is the minimum
trust degree among all its properties and presented as follows:

P.t− = min
1≤i≤n

(pi.t)

For a great value of α, the size of the T-Skyline becames greater and the algorithm
performs better. This is due to the fact that points’ trusts are more probably less than
α, and thus enter directly to the skyline without processing.
In this case, thanks to Proposition 3.4 , the search space is considerably pruned. The size
of the trust skyline is important, because the dominance check between two points is rare,
according to a threshold whose value is important.
Small values
For a small size of α, several points are dominated and thus do not enter to the skyline.
Therefore, the skyline size is small in this case. The Naive T-Skyline algorithm do not
benefit from the Proposition 3.4. Hence, pruning method, and execution time is very
important. However, for TRDF-Skyline algorithm, execution time is very acceptable, since
pruning based on the transitivity property is always efficient and doesn’t depend from α.

3.3.2 Alpha v.s. the distribution of Trust values

In this section, we aim to study the dependence between α and the rest of trust values
P.t− of the set of T-Skyline candidate points. There are many methods to describe the
variability in data set, in this section we choose to use statistical methods to organize and

83

Chapter 3. Trust Skyline Model: Semantics and Experimentations

summarize a set of trust scores, which are: The measure of Spread and the measure of
Central Tendency [Gravetter and Wallnau, 2000].
The purpose of central tendency (or central location) is to determine the single value
that identifies the center of the distribution and best represents the entire set of scores.
The three standard measures of central tendency are the mean, the mode, and the me-
dian, we give more explanations in subsection 3.3.3. While, a measure of spread (or of
dispersion), is used to describe the variability in a sample or population. From the set
of spread measures, we choose to use the quartile method as introduced in subsection 3.3.4.

3.3.3 Central Tendency measures

Summarizing the set of trust values can help us understand the data, especially when the
dataset is large. There exist multiple measures of Central Tendency that summarize the
data into a single value.
There are three main measures of central tendency: The mean, the median and the mode.
Each of these measures describes a different indication of the typical or central value in
the distribution.

• The mean: This measure is the sum of the value of each observation in a dataset
divided by the number of observations. This is also known as the arithmetic average.
Looking at the trust values below:

0.2, 0.3, 0.4, 0.2, 0.3, 0.8, 0.3

The mean is calculated by adding together all the trust values and dividing by the
number of observations (Mean of trusts= (0.2+0.3+0.4+0.2+0.3+0.8+0.3)/ (7))
which equals 0.357.

• The median: is the middle value in distribution when the values are arranged in
ascending or descending order. The median divides the distribution in half (there
are 50% of observations on either side of the median value). In a distribution with
an odd number of observations, the median value is the middle value. We illustrate
the same example given in the mean measure, after sorting the trust thresholds: 0.2,
0.2, 0.3, 0.3, 0.3, 0.4, 0.8. The median is 0.3.

• The mode: It is the most commonly occurring value in a distribution. Consider same
example shown before, the table 3.7 shows a simple frequency distribution of trust
measures. The most commonly occurring trust value is 0.3. Therefore the mode of
this distribution is 0.3.

84

3.3. Statistical methods-driven Analysis

Table 3.7 – Trust frequency distribution.

Trust Frequency
0.2 2
0.3 3
0.4 1
0.8 1

3.3.4 Measures of spread: Quartile measure

In order to study the dependence between α and the trust set points P.t− we choose to
use the quartile statistical measure.
Quartiles tell us about the spread of a data set by breaking the data set into quarters.

Example 30. For example, consider the price of 11 hotels below, which have been ordered
from the lowest to the highest value:

6, 7, 15, 36, 39, 41, 41, 43, 43, 47, 49

— The first quartile (Q1) is the value of the middle of the first set, for which 25% of
the values are least then it and 75% are greater.

— The third quartile (Q3) is the value of the middle of the second set, in which 75%
of the values are less than Q3 and 25% are greater.

The first quartile (Q1) lies between the 3rd and 5th price values and the third quartile
(Q3) between the 8th and 10th price values, Hence:

— First quartile (Q1) = 15

— Second quartile (Q2) = 43

3.3.5 Trust dependence

The use of the quartile measure allow subdividing the generated data set into four parts.
Indeed, we can have a global view about the distribution of trust P.t− of the global set.
Such information could be useful for the user in order to know which value of α could fit
the best with his query. We illustrate the example below of a set of points with a finite

85

Chapter 3. Trust Skyline Model: Semantics and Experimentations

interval of trust each set:
A brief analysis of the table 3.8, let as know that if we choose α greater or equal to 0.5,

Number of points Interval of trust
54 points [0.5 ;1]
26 points [0.3 ;0.5[
16 points [0.2 ;0.3[
4 points [0.1 ;0.2[

Table 3.8 – Example of trust distribution.

we will have 46 points (46%) of the database will be included directly in the T-Skyline set.
However with an α equals to 0.1, only 4 points will be directly included in the T-Skyline
list, etc.

The trust assignment allows users to classify resources as trusted or not. For instance, the
user is allowed to give more preferences to get the final result such the size of the returned
T-skyline points (according to the trust distribution). In the case where the user wants
the most trusted resources, the value of α needs to be not great and vise versa.

Another statistical measure is the interquartile range that describes the difference between
the third quartile (Q3) and the first quartile (Q1), telling us about the range of the middle
half of the values in the distribution. For the example 30, the interquartile is 43-15=28.

3.4 Analysis Experimental

In this section, we evaluate the dependence between the set of trust measures and the
user-defined trust value α. Consequently, the experiments we led were about (1) the
performance of the methods (time execution), and (2) the size of the skyline (controle the
size). For each measure, we varied (1) the trust threshold, (2) the size of the database.
The aim is to understand the effects of these parameters on the execution time and the
resulted Trust-Skyline.

3.4.1 Experimental Setup

We have presented in Section 3.1.3 (published in [Amna et al., 2017a]) several methods
to compute the Trust-Skyline model. Due to the lack of trust RDF databases, we gene-
rated synthetic data sets according to the parameters presented in table 3.9. For each

86

3.4. Analysis Experimental

experiment, we vary one parameter and set the others to the default values (see Table
3.9). We extended the 3Store model presented in [Harris and Gibbins, 2003b] [Sakr and
Al-Naymat, 2010] [Sakr and Al-Naymat, 2009], using RDF quadruple store representa-
tion to deal with the trust measure. The data generator and the algorithms presented
in [Amna et al., 2017a] were implemented in Java. Stored functions were implemented
using PL/SQL. All the experiments were conducted under Windows 7 on an Intel(R)
Core(TM) i5-2410M CPU with 4GB of RAM.

Symbol Parameter Default
D Number of quadruples 300 K
X Size of T-Skyline data -
α Trust measure 0.2
T Time execution (ms) -

Table 3.9 – Parameters under investigation.

3.4.2 Impact of trust threshold variation and Central Tendency
measures

As we presented previously, this work is an analysis of the T-Skyline model (see Section
3.1) and an extension of [Amna et al., 2017a], in which we have introduced the Trust-
Skyline as the set of points dominated by no other point according to a trust threshold α.
In this experiment, we aim to investigate the relation between the user-defined threshold
α and the distribution of the set of trust measures P.t−. We start by studying the impact
of central tendency measures (we opt for using the mean and the median) and α on the
execution time and on the trust skyline, as shown in figure 3.5.
When α has a great value, the TRDF-Skyline algorithm performs quickly. This is due to
the fact that T−Sky<α points(defined previously in section 3.3.1) are huge, and thus enter
directly to the skyline without processing with respect to the property 3.4. Indeed, the
search space is considerably pruned. Size of the trust skyline (figure 3.5a) is important,
because it is rare to check a dominance between two points, according to a threshold
whose value is important. If we check the central tendency measures, for great values of
α we found that the median and mean values are less than α. Therefore, the T-Skyline
list is huge, and the algorithm performs well. If there is rare dominance-check between
points, then we obtain a great number of skyline points.
On the other hand, when α has a small value, The mod and median of the set of points
are greater than alpha as shown in figure 3.5. Indeed, the set of T −Sky>α points (defined
previously in section 3.3.1) is huge, and several points are dominated and so do not enter
to the skyline. That is why skyline size is small in this case.

87

Chapter 3. Trust Skyline Model: Semantics and Experimentations

(a) Dependence of trust measures

(b) Effect on skyline size X

(c) Effect on time execution, T

Figure 3.5 – Alpha and Central Tendency measures

3.4.3 Impact of trust threshold variation and Quartile measures

As we presented previously in section 3.3.2, we selected quartile measure to study the
spread of trust values. Quartiles are less affected by outliers or skewed data set than the

88

3.4. Analysis Experimental

equivalent measures of mean and standard deviation. This approach sets upper and lower
hit selection thresholds based on number of interquartile ranges above or below Q1 and
Q3 quartiles. In our experiments we studied the Q1 and Q3 quartiles as shown in figure
3.6.
For low values of α, the quartile range (difference between Q3 and Q1) is greater than α,
indeed T −Sky<α list is small. The Q1 quartile represents the most likely points to enter
the T-Skyline list without dominance-check, and Q3 represents the most likely points
to enter this list after dominance-check. We can conclude that the user can use those
two measure to specify the value of α, if he wants to have an aggressive pruning of the
candidate list, the value of alpha needs to be small and the value of the points in Q1
quartile. Another important point is, if the user wants to only let the most interesting
points, that we represented with T −Sky>α, enter the T-Skyline, the value of alpha needs
to be low.

Figure 3.6 – Alpha and Quartile measure

Conclusion

During this chapter, we proposed an extension of the skyline operator to the context
of trust RDF data. Indeed, a new variant of the skyline, called the trust-Skyline, is intro-
duced. Therefore, semantics of Pareto dominance relationship and (traditional) skyline
operator were revised.
To compute the trust-Skyline, we implemented two algorithms that consider the trust
thresholds to compute the trust-Skyline set. The Naive T-Skyline algorithm uses points’
trust degrees to make an earlier filtering of data. For the TRDF-Skyline algorithm, it is

89

Chapter 3. Trust Skyline Model: Semantics and Experimentations

optimized based on the transitivity property of the trust dominance operator. Further-
more, we presented an SQL query to show how Trust-Skyline can be implemented on a
relational database system.
The conducted experiments showed the efficiency of the TRDF-Skyline algorithm. The
naive T-Skyline method is acceptable in case the input data size is not huge and the trust
threshold is medium or high. Meanwhile, the SQL query showed very limited performance.
As a second contribution, we proposed to analyze the Trust-Skyline resulting list. To this
end, statistical methods were used to analyze the dependence between α and the set of
generated trust thresholds.
To study the trust-Skyline list, we used two statistical methods that take into account
the trust measures to compute the trust-Skyline set. The first method is the central ten-
dency measures, we specifically used the mean and median standards. And the measures
of spread that tell us about the spread of a data set by breaking the data set into quarters.
Our experiments showed the impact of the user-defined trust measure α on the T-Skyline
list. The T-Skyline list is huge if the trust threshold is medium or high. However, small
values of α restrict the entering to this list, only interesting points can be selected.
For the next chapter, we tackle uncertain RDF data in the setting of the rich possibility
theory. Indeed, we add a possibility measure to each RDF triple (association between a
subject, predicate and object) to model the possibility of such association. Indeed, a new
framework is proposed to query possibilistic RDF data denoted Pi-SPARQL. Further-
more, we extend skyline queries to possibilistic RDF data and we present the appropriate
experimental evaluations.

90

Chapter 4

Possibilistic RDF Data

Contents
Introduction . 92
4.1 Possibilistic RDF model . 93

4.1.1 Possibilistic RDF databases 93
4.1.2 Possibilistic RDF graph . 93

4.2 A SPARQL-like language for possibilistic RDF data . . . 96
4.2.1 Possibility-aware Basic Graph Pattern Matching 97
4.2.2 Enhanced SPARQL algebra 99
4.2.3 SPARQL Extension for Possibility distributions Requirements102

4.3 Possibilistic Skyline over RDF data 105
4.3.1 Comparison of two possibility distributions 105
4.3.2 Possibilistic dominance on RDF data 107
4.3.3 Possibilistic skyline on RDF data 110

4.4 Possibilistic skyline computation 110
4.4.1 Experimental Evaluation 111
4.4.2 Experimental Setup . 113
4.4.3 Size of the Skyline on RDF Data 113
4.4.4 Performance and Scalability 114

Conclusion . 117

91

Chapter 4. Possibilistic RDF Data

Introduction

A central task in decision-making is to consider the uncertainty associated with data.
Thus, a profusion of research work have been conducted to model uncertain RDF data such
as in [Huang and Liu, 2009,Lian and Chen, 2011]. Our idea is to deal with uncertain RDF
data using possibility theory [Zadeh, 1978], which is a non-classical theory of uncertainty.
It constitutes an alternative to capture different kinds of imperfection, such as imprecision,
total ignorance, and partial ignorance that are not faithfully representable in probability
theory [Zimmermann, 1985].
Thus, we integrated in the structure of RDF data a possibility measure for each subject-
property-object triple to reflect the user opinion about the truth of a statement. The
possibility measure can be considered as a way to express a source reliability.
On the other hand, the great advance in Web-based information extraction provides an
increase of automatic construction of semantic knowledge bases. Indeed, an increase in
variety and volume of RDF data format. Furthermore, the process of extraction provides
RDF knowledge bases pervaded with some imperfections. In this chapter, we opt for
skyline queries [Börzsönyi et al., 2001a, Jiang et al., 2012, Zhang et al., 2013, Chomicki
et al., 2013] to exploit the massive amount of imperfect RDF data. Skyline queries have
been extended over Graph Data such in [Zou et al., 2010,Zheng et al., 2014]. They aim to
make multi-objective decisions over complex data. Given such a multi-criteria preference
set, the system should be able to identify all potentially interesting data records according
to user preferences [Chomicki, 2002,Chomicki, 2011].
Our main contributions in this Chapter are summarized as follows:

— Modelling uncertain RDF data through possibility theory. We introduce comparison
operators between possibility distributions to allow dominance computations in the
RDF data set context.

— Extending the skyline operator over possibilistic RDF data. The starting from [Chen
et al., 2011], we rethought the dominance operator between two possibilistic RDF
points.

The rest of the chapter is organized as follows: Section 4.1 introduces the possibilistic
model of uncertain RDF data. Section 4.2 presents the general framework for querying
possibilistic RDF data. Then, Section 4.3 extends skyline queries over possibilistic RDF
data. Finally, Section 4.4.1 shows the skyline computation and the experimental evalua-
tions.
The contributions presented in this chapter are published in the:
Intenational Journal of Approximate Reasoning [Amna et al., 2018b]
International Conference on Tools with Artificial Intelligence (ICTAI) [Amna
et al., 2018a]

92

4.1. Possibilistic RDF model

4.1 Possibilistic RDF model

In this section, we propose a possibilistic model for uncertain RDF data. In regular da-
tabase system, the answer to a query q is a crisp set of records. Each record has a binary
degree of membership to the result set; 0 if false, and 1 if true. However, in the possi-
bilistic case, the database system returns several possible answers and assigns to each
answer a possibility degree that represents the plausibility of such answer to be the so-
lution of a user defined query. In the coming subsections, we introduce the possibilistic
database [Prade, 1984,Bosc et al., 2011] model for RDF data. Then, we represent RDF
data by possibilistic graph, knowing that RDF data could be equivalently viewed from a
graph perspective. We define it as follows.

4.1.1 Possibilistic RDF databases

Due to the uncertainty pervading today’s data, databases may have some uncertain pre-
dicates or properties. Authors in [Prade, 1984] presented the first version of possibilistic
database where the subset of the possible values of an attribute of a given object is suppo-
sed to be crisp. Indeed, based on Zadeh theory [Zadeh, 1978], in the case the value of an
attribute is unknown, several values being possible. Nevertheless there is some knowledge
indicating that among possible values, some of them are more possible than others.
A possibilistic RDF databaseD is a database of resources whose description may be uncer-
tain. Uncertainty in such databases is modelled and managed through the rich Possibility
Theory.

Definition 4.1 (Possibilistic RDF database). A possibilistic RDF database D is a set of
possibilistic triples. Each triple t is associated with a possibility value Π(t) indicating its
ability to occur. In the possibility distribution we extend the RDF triple < S,P,O > to a
quadruple < S,P,O,Π > where O is a value of a predicate P related to a subject S, with
a possibility degree Π.

4.1.2 Possibilistic RDF graph

Definition 4.2 (Possibilistic RDF Graph Data). A possibilistic RDF graph data G̃P=(V,E,Π)
is a graph represented by the triple (V (G), E(G),Π(G)), where:

1. V (G) = {V1 . . . Vm} represents a finite set of vertices,

2. E(G) = {e1 . . . en} is a finite set of edges that connect pairs of vertices,

93

Chapter 4. Possibilistic RDF Data

3. Π(G) is the possibility associated to each triple of G.

Example 31. Assume we collected information about hotels: price, distance (from the
beach), address etc., from another source R2 different than R1 presented in Example 3.
We notice a mismatch between the information gathered from R1 and the one from R2.

1. (http : //hotel.org/H1, < hasName >, ”Gaia”);
2. (http : //hotel.org/H1, < hasPrice >, 6);
3. (http : //hotel.org/H1, < hasDistance >, 4);
4. . . .
5. (http : //hotel.org/H2, < hasName >, ”V ia− dei− valeri”);
6. (http : //hotel.org/H2, < hasPrice >, 5);
7. (http : //hotel.org/H2, < hasDistance >, 4);
8. . . .

Accordingly,H1 has different name, price and distance than the one cited previously which
report inconsistent data about H1. Thus, the uncertainty/inconsistency in the collected
RDF data can result from either the extraction accuracy or the reliability of sources. In
order to model such uncertainty, we assign each possible triple a possibility degree to
indicate its plausibility to occur. Figure 4.1 shows an example of possibilistic RDF data-
base using a graph representation. Below, in Table 4.1 we present the possibilistic RDF
database corresponding to Figure 4.1. It is a database of quadruples (subject, preedicate,
object,Π). For short, we present only four quadruples related to the hotel H1.

Table 4.1 – Example of possibilistic RDF database

Subject Predicate Object Possibility(Π)
H1 hasName Philippos 0.7
H1 hasName Gaia 1
H1 hasPrice 6 1
H1 hasPrice 5 0.8
.

To query possibilistic RDF data, we need to extend SPARQL to be possibility-aware query
language. Indeed, users as well as software agents have to be able to access and use possi-
bility measures associated to triples. Many works focus on improving the performance of
answering SPARQL queries such in [Abadi et al., 2007,Hartig, 2009a, Sidirourgos et al.,
2008].
Hartig. O [Hartig, 2009a] proposed a trust model that associates RDF statements with
trust values and extended the SPARQL semantics to access these trust values in (tS-
PARQL). Huang et al. [Huang and Liu, 2009] proposed a general framework for supporting

94

4.1. Possibilistic RDF model

Figure 4.1 – Graph representation of uncertain RDF data.

SPARQL queries on probabilistic data model. However as we mentioned previously, we
chose possibility theory to deal with uncertain RDF data as it constitutes an alternative to
capture different levels of imperfection (uncertainty, imprecision, ignorance, partial igno-
rance). Therefore, existing techniques for querying uncertain RDF data are not directly
applicable to our possibilistic RDF model.

95

Chapter 4. Possibilistic RDF Data

4.2 A SPARQL-like language for possibilistic RDF
data

Authors in [Eric and Andy, 2008] presented the official syntax of SPARQL. The proposed
operators to construct a graph pattern expression are OPTIONAL, UNION, FILTER, and
concatenation via a point symbol (.) (operator AND in traditional algebraic formalism),
The syntax also considers { } to group patterns, and some implicit rules of precedence and
association. We will give more details about the use of SPARQL graph pattern expression
in the coming sections.
Given that the RDF query language SPARQL is of declarative nature, we need to extend
SPARQL to a possibility-aware query language. We denote it Pi−SPARQL. It extends
SPARQL to describe possibilistic requirements and to access the ability of query solutions
to occur and to match with a definite query.
Assume the query Q2: "Return the price and distance (from the beach) of hotel H1

ordered by their possibility measure ?Πi". With Pi-SPARQL users can additionally access
possibility measures that represent the possibility of matching subgraphs to occur. This
additional expressivity allows for making queries such as Q2. We introduce a new algebra
operator, the POSSIBLE AS clause to the query language. The POSSIBLE AS clause
permits access to the possibility distributions. Thus, possibility measures can became part
of the solutions and can be associated with parts of the query pattern.
For query Q2, it additionally asks for the occurrence possibility of the price and distance of
H1. Below the Pi-SPARQL representation of Q2, (we give more details about POSSIBLE
AS clause in Section 4.2.3.2):

1. Prefix ab :< http : //hotel.org/example >
2. SELECT?distance ?price ?Pi
3. WHERE {H1 ab:hasDistance ?distance (q1)
4. H1 ab:hasPrice ?price (q2)
5. POSSIBLE AS ?Pi
6. }
7. ORDER BY?Pi

Figure 4.2 – Pi-SPARQL representation of query Q2

96

4.2. A SPARQL-like language for possibilistic RDF data

4.2.1 Possibility-aware Basic Graph Pattern Matching

The core of each SPARQL query is a Basic Graph Pattern (BGP) (see Section 1.3.3 for
more details).

Example 32. We illustrate the example of Q2 (see Fig. 4.2) in the certain case. It consists
of the conjunction of two atomic queries or triple patterns:
Q2 = q1 ∧ q2: q1(H1, hasDistance, ?distance) and q2(H1, hasPrice, ?price).
The BGP corresponding to query Q2 is modeled in Fig. 4.3 and the result of evaluating
the BGP G against the query Q2 is illustrated in Table 4.2.

Figure 4.3 – Basic Graph pattern G

Table 4.2 – The results of evaluating the BGP G against the query Q2.

q1.?distance q2.?price
3 5
3 6
4 5
4 6

In order to define the possibility-aware solution mapping, we need to introduce some
terminology related to semantics of SPARQL graph pattern expressions. As defined in
the specification of SPARQL [Eric and Andy, 2008], solutions are defined in the context
of BGP matching where each solution basically represents a matching subgraph in the
queried RDF graph G.
Intuitively, we define a possibilistic solution mapping (for certain case, see Section 1.3.4])
µ̃p that represents a solution to the BGP G. µ̃p is one matching subgraph; the possibility
degree of this solution mapping must represent the possibility of the subgraph to occur.
Knowing that, the possibility value can be calculated by a possibility aggregation function
(Definition. 4.4).

Definition 4.3 (Possibilistic solution mapping). Let µ̃p be a pair (µ,Π) representing of
a solution mapping µ associated with a possibility degree Π.

97

Chapter 4. Possibilistic RDF Data

We denote the cardinality of µ̃p in a multiset D of possibilistic solution mappings with
cardD(µ̃p).

Every solution mapping that is a solution to a BGP represents one matching subgraph.
The possibility of a subgraph is an aggregation of the possibility distributions of its triples
that are specified by a possibility function. Intuitively, the possibility of the subgraph can
be represented by a possibility measure that is calculated from the possibility distributions
of its triple using a possibility aggregation function.

Definition 4.4 (Possibility aggregation function). Given a possibilistic RDF graph G̃P ,
the possibility aggregation function Πa assigns to G̃P an aggregated possibility degree Πa

(G̃P) that represents the possibility of G̃P . The possibility is calculated using min or max
operators corresponding respectively to conjunctive and disjunctive events.

Definition 4.5. Let B be a BGP, Let G̃P = (G,Π) be a possibilistic RDF graph. The
possibilistic solution mapping µ̃p is a solution for B in G̃P if there is an RDF instance
mapping σ such that:
(1) µ(σ(B)) is a subgraph of G
(2) µ is a mapping for the query variables in B and,
(3) Π = Πa(G̃P) is the aggregated possibility distribution of the possibilistic RDF graph
G̃P = (µ(σ(B)), Π) calculated using the possibility aggregating function Πa.
For each solution µ for B cardDÂ(µ̃p) is the number of distinct RDF instance mapping
σ given that (µ(σ(B)) is a subgraph of G.

Example 33. Let us consider the example of the query in Fig. 4.2. When we apply the
BGP in line 5 to our possibilistic RDF graph in Fig. 4.1 we find two matching subgraphs
resulting in the four solutions shown in Table 4.3. To explain intuitively this result, we

Table 4.3 – The results of evaluating the BGP G against the RDF graph

S ?Pi
?distance ?price

3 5 0.8
3 6 1
4 5 1
4 6 1

detail the operation here after. Following the work of [Simon et al., 2018], we used the max
operator to compute the possibility measure of the triple < H1, 3, 5 >. Indeed, from the
joint possibility distribution of two variables Π(3, 5), the marginal possibility distributions
is computed by projection.

98

4.2. A SPARQL-like language for possibilistic RDF data

Π(3, 5) = max(Π(3),Π(5)) = max(0.5, 0.8) = 0.8

The solution S1 maps ?distance to 3 and ?price to 5; S2 maps ?distance to 3 and ?price to
6; S3 maps ?distance to 4 and ?price to 5 and S4 maps ?distance to 4 and ?price to 6;

After defining the notion of solutions in the context of Pi-SPARQL, in the following
subsection we take a closer look at Pi-SPARQL query processing and query evaluation.
Apart from BGPs, the SPARQL specification introduces other graph patterns CGPs.
CGPs supports all complex graph pattern features. Indeed, it extends BGPs with further
traditional relational operations (projection, union, difference, optional (left-outer-join)
and filter) [Angles et al., 2017]. During query evaluation, CGPs are represented by al-
gebra operators which operate on multisets of solution mappings. To access possibility
distributions, Pi-SPARQL needs new types of operators. To this end, Pi-SPARQL rede-
fines the conventional SPARQL algebra operators to operate on multisets of possibilistic
solution mappings.

4.2.2 Enhanced SPARQL algebra

In the following subsections, Pi-SPARQL redefines the operators of SPARQL algebra. For
a precise redefinition, we introduce the following symbols (inspired from the correspon-
ding symbols in [Eric and Andy, 2008]). With cardΩ̃(µ̃p) denote the cardinality of the
possibilistiy solution mapping µ̃p in a multiset of possibilistic solution mappings Ω̃.

4.2.2.1 Join(Θ)

A join operator (see Section 1.3.5.2 for certain case) that operates on possibilistic solution
mappings has to consider the possibility measure Π while merging solutions. To get a
precise redefinition of the Join operator, we followed the corresponding definition for
SPARQL query evaluation in [Eric and Andy, 2008].

Definition 4.6. Let Ω̃1 and Ω̃2 be multisets of possibilistic solution mappings. We define:

Join(Ω̃1, Ω̃2) = { merge(µ̃p1, µ̃p2) | µ̃p1 = (µ1,Π) ∈ Ω̃1 ∧ µ̃p2 = (µ2,Π) ∈ Ω̃2 and µ̃p1 ∧ µ̃p2
are compatible }

99

Chapter 4. Possibilistic RDF Data

cardJoin(Ω̃1,Ω̃2)(µ̃p) =
∑
µ̃p1∈Ω̃1

µ̃p2∈Ω̃2



cardΩ̃1
(µ̃p1) ∗ cardΩ̃2

(µ̃p2)
if µ̃p = (µ,Π) with
Π = Πa(µ̃p1, µ̃p2) and
µ = merge(µ1, µ2)

0 else

Example 34. Let us consider the following query Q3: Return the plausible minimum price
and distance (from the beach) values of hotel h1. The Pi-SPARQL query corresponding
to query Q3 is as follows:

1. Prefix ab :< http : //hotel.org/example >
2. SELECT (MIN(?distance) AS ?mindistance) (MIN(?price) AS ?minprice) ?Pi

3. WHERE {?hotel ab:hasDistance ?distance

4. ?hotel ab:hasPrice ?price

5. POSSIBLE AS ?Pi

6. }
7. ORDER BY ?Pi

The group graph pattern in query Q3 groups two BGPs that ask for the minimum of price
and distance of H1. The result of the query is shown in Fig. 4.4 where we found two
merged mapping solutions.
To explain intuitively this result, we detail the operation here after. We found two solu-

Figure 4.4 – Join operator(Θ)

tions for our sample graph in Fig. 4.1. After joining the two solutions, we get the result
illustrated in the upper figure. We recall here that we look for the minimum values of the
two properties (price and distance).

100

4.2. A SPARQL-like language for possibilistic RDF data

4.2.2.2 Project(Π)

For certain case, the project(Π) operator allows for selecting a subset of the output va-
riables of a graph pattern as the new output variables. In our case we need to add solutions
provided by this operator an additional binding for variable ?Pi.

Definition 4.7. Let Ω̃ be a multiset of possibilistic solution mappings, let va be a set of
variables. For a given possibilisic solution mapping µ̃p, we denote:
Projπ(µ̃p, va) the restriction of µ̃p to variables in va. We define the result of a project
possibilistic operator as a multiset of possibilistic solution mapping. A formal definition is
given as follows:

Project(Ω̃, va) =
{

(Projπ(Ω̃[µ̃p], va) | µ̃p ∈ Ω̃
}

With card[Projπ(Ω̃,va)](µ̃p) = card[Ω̃](µ̃p)

What follows is a list of definitions of some Pi-SPARQL operators, we followed the
SPARQL specifications defined in [Eric and Andy, 2008].

4.2.2.3 Filter operator

The Filter operator let for restricting the matches of a CGP over a possibilistic graph
database G based on the use of inequalities, or other types of expressions. A formal
definition is given as follows:

Definition 4.8. Let Ω̃ be a multiset of possibilistic solution mappings and exp be an
expression. We define the Filter operator as follows:

Filter (expr, Ω̃) =
{
µ̃p|µ̃p = (µ,Π) ∈ Ω̃ and exp(µ) is an expression that has an

effective boolean value of true
}

With card[Filter(exp,Ω̃)](µ̃p) = card[Ω̃](µ̃p)

Let be two graph patterns g1 and g2. The difference or Diff of g1 and g2 is a CGP whose
evaluation is defined as the set of matches in the evaluation of g1 that do not belong to
the evaluation of g2. We give a formal definition as follows.

101

Chapter 4. Possibilistic RDF Data

Definition 4.9. Let Ω̃1 and Ω̃2 be multisets of possibilistic solution mappings, we define
the Diff operator as follows:
Diff(Ω̃1, Ω̃2, exp) =

{
µ̃p1 | µ̃

p
1 ∈ Ω̃1

such that: for all µ̃p2 ∈ Ω̃2, either µ̃p1 and µ̃p2 are not compatible or µ̃p1 and µ̃p2 are compatible
and exp(merge(µ̃p1, µ̃p2)) has an effective boolean value equals false

}
With card[Diff(Ω̃1,Ω̃2,exp)] (µ̃p) = card[Ω̃1] (µ̃p)

Diff is used internally for the definition of LeftJoin (see Definition 4.10).

Definition 4.10. Let Ω̃1 and Ω̃2 be multisets of possibilistic solution mappings and exp
be an expression. We define the LeftJoin operator as follows:

LeftJoin(Ω̃1, Ω̃2, exp) = Filter(expr, Join(Ω̃1, Ω̃2)) ∪ Diff(Ω̃1, Ω̃2, exp)

With card[LeftJoin(Ω̃1,Ω̃2,exp)](µ̃p) =
card[Filter(exp,Join(Ω̃1,Ω̃2))](µ̃p) + card[Diff(Ω̃1,Ω̃2,exp)](µ̃p)

4.2.3 SPARQL Extension for Possibility distributions Require-
ments

In this section, we describe formally the different clauses of Pi-SPARQL such: POSSIBLE
AS and we explain how we adapt existing clauses to deal with data pervaded with uncer-
tainty.

4.2.3.1 Converting Graph Patterns

Authors in [Eric and Andy, 2008] defined the process of converting graph patterns and
solution modifiers in a SPARQL query string into a SPARQL algebra expression. Ac-
cordingly, we need to redefine the translation of a graph pattern to algebra expressions
to consider the possibility measures in Pi-SPARQL. Based on [Eric and Andy, 2008] the
process is defined by specifying a recursive Transform procedure. The input to Transform
procedure (see Algorithm 3) is a graph pattern and the result is an algebra expression. To
consider the different types of graph patterns, the definition of Transform is subdivided.
In this section, we redefine the part which considers the graph patterns of the syntax form

102

4.2. A SPARQL-like language for possibilistic RDF data

of a GroupGraphPattern. We recall that a SPARQL Abstract Query is a tuple (E,DS,R)
where: E is a SPARQL algebra expression, DS is an RDF Dataset and R is a query form.
To consider the Pi-SPARQl requirements, we adjusted the Transform procedure as shown
in the bold faced parts of Algorithm 3, in lines (3, 7, 8, 18, 19, 20). We used the following
symbols Join(Pattern, Pattern), LeftJoin(Pattern, Pattern, expression), Filter(expression,
Pattern) and the new algebra symbol: PA(Pattern, V ariable) (see Definition 4.11).

Algorithm 3: Adjusted Transform procedure for Pi-SPARQL requirements
1 Let FS := ∅;
2 Let G := the empty pattern, /* a basic graph pattern which is the empty set */
3 Let PO := ∅;
4 foreach element E in the GroupGraphPattern do
5 if E is of the form FILTER(expr) then
6 FS := FS ∪ expr;
7 if E is of the form POSSIBLE AS v then
8 PO := PO ∪ v;
9 if E is of the form OPTIONAL {P} then

10 Let A := Transform(P);
11 if A is of the form Filter(F, A2) then
12 G := LeftJoin(G, A2, F);
13 else
14 G := LeftJoin(G, A, true);

15 if E is any other form: then
16 Let A := Transform(E);
17 G := Join(G, A);

18 if PO 6= 0 ; then
19 foreach variable v in PO do
20 G := PA(G, v); /*Using the POSSIBLE AS operator*/

21 if FS 6= ∅: then
22 Let X := Conjunction of expressions in FS
23 G := Filter(X, G)
24 return G.

4.2.3.2 Pi-SPARQL Algebra: Project Possibility Operator

The project possibility operator evaluates the POSSIBLE AS clause. For every mapping
the operator accesses the possibility measure, creates a new variable binding which maps
the specified variable to an RDF literal that represents the possibility measure, and adds

103

Chapter 4. Possibilistic RDF Data

the new binding to the mapping.

Definition 4.11. Let Ω̃ be a multiset of possibilistic solution mappings; let v be a query
variable which is not bound in any µ̃p ∈ Ω̃, let L(t) be a function that returns an RDF
literal with the value of π. The result of a project possibility operator is a multiset of
possibilistic solution mappings which is defined as:
PA(v, Ω̃) =

{
(µ′,Π) | (µ,Π) ∈ Ω̃ ∧ µ′ = µ ∪ {(v, L(Π))}

}
With cardPA(v,Ω̃)(µ̃p) = cardΩ̃Â(µ̃p)

Example 35. We illustrate in Fig. 4.5 the sample solutions for the query pattern of the
query Q3. Every solution provided by the project possibility operator contains an additional
binding for variable ?Pi that maps ?Pi to a value corresponding to the possibility measure.
This possibility measure is associated with the respective solution when the project possi-
bility operator is evaluated (e.g. Π = 1 for the price property). Note, we used the principle
of minimal specificity [Simon et al., 2018] to compute the possibility measure of the resul-
ting solution. The principle of minimal specificity considers the min operator to compute
the joint possibility distributions. Thus, the possibility of the resulting solution is 0.5. The

Figure 4.5 – Project possibility operator.

POSSIBLE AS clause has been defined for the whole group graph pattern (see example
34). Intuitively, the project possibility operator is applied after joining the solutions.

The extension of SPARQL query language to a possibility-aware query language have
been published into the International Conference on Tools with Artificial Intelligence
(ICTAI) [Amna et al., 2018a]. In the coming section, we propose to extend skyline queries
over possiblisitc RDF data to filter the massive ammount of such data.

104

4.3. Possibilistic Skyline over RDF data

4.3 Possibilistic Skyline over RDF data

In this section, we first introduce an extension of the dominance relationship for RDF data
modeled by possibility theory. In addition, we define the possibilistic skyline denoted p-
SkyH which retrieves the most interesting subjects over the RDF data set H according to
a subset of properties(predicates).

4.3.1 Comparison of two possibility distributions

The dominance operator is based on comparison between the values of the properties (see
Definition 2.7). In the context of certain data, the comparison between two values produces
a binary result (0 if false, and 1 if true). However, for the uncertain case, comparison is
not binary, it is rather quantified with a degree.

In this subsection, given tow possibilistic values X and Y , we define the degree of possi-
bility that X < Y and X ≤ Y .

Definition 4.12. Comparing possibility distributions

Let X and Y be two ill-known values represented by two possibility distributions ΠX ,ΠY ,
the comparison between X and Y is as follows [Dubois and Prade, 1983]:

Π(X ≤ Y) =

 max
(

minx≤y(πX(x), πY (y))
)

if ∃ x ∈ X and ∃ y ∈ Y | x ≤ y

0 else

Π(X < Y) =

 max
(

minx<y(πX(x), πY (y))
)

if ∃ x ∈ X and ∃ y ∈ Y | x < y

0 else

The Definition 4.12 is illustrated as follows. Assume two ill-known values X and Y with
two possible values for X; x1 and x2 and one value y1 for variable Y . The possibility
that X is less than Y is the possibility that x1 < y1 or the possibility that x2 < y1 or
both, hence using the max function. Now, what does it mean the possibility that x1 < y1

denoted Π(x1 < y1)? It measures the possibility that a value x1 is less than y1. It is zero if
x1 < y2 is false, and min(π(x1), π(y1)) if x1 < y1 is true. We return the minimum because
it measures the existence possibility of both x1 and y1 (see Subsection 2.1.3.1).

105

Chapter 4. Possibilistic RDF Data

Example 36. We have the following information about the hotels price h1 and h2 defined
on the predicate Price 3. We have two possibility distributions h1.pr and h2.pr described
as follows: h1.pr = {2\0.2, 3\0.8, 7\1} 4 and h2.pr= {5\1, 6\0.6}. In h1.pr, we suppose
that the hotel price is 2 with a possibility degree equals to 0.2 and it is 3 with a possibility
degree equals to 0.8 and 7 with a possibility degree equal to 1.
Using the Definition 4.12, let us compute the degrees of possibility that h1.pr is smaller
or equal to h2.pr:
Π(h1.pr ≤ h2.pr)= max

(
min(0.2, 1),min(0.2, 0.6),min(0.8, 1),min(0.8, 0.6), 0, 0

)
=

max
(

0.2, 0.2, 0.8, 0.6, 0, 0
)
=0.8

To explain intuitively this result, we detail the operation here. To assess Π(h1.pr ≤ h2.pr),
we should compare all combinations of the distributions’ elements of h1.pr and h2.pr. All
combinations are mentioned in Table 4.4. In the first line, h1.pr and h2.pr are assumed
to be equal to 2 and 5, respectively. In this case, it is true that h1.pr = 2 ≤ h2.pr = 5,
so Π(h1.pr ≤ h2.pr) is equivalent to Π(h1.pr = 2 ∧ h2.pr = 5), hence the use of the min
operator, inherited from the conjunctive logical operator as noted in line 1, column 3. In
the last line (Table 4.4), prices of hotels h1 and h2 are assumed to be 7 and 6 respectively.
Here it is not possible that h1.pr ≤ h2.pr, so Π(h1.pr ≤ h2.pr) = 0. After evaluation
of Π(h1.pr ≤ h2.pr) for each combination, we can deduce the overall possibility degree of
comparing the two distributions. The couple (h1.pr, h2.pr) is either (2, 5) or (2, 6), or (3, 5)
etc, so the max operator is used to assess the overall possibility because of the disjunctive
nature of the logical operation. Thus, Π(h1.pr ≤ h2.pr) = max(Π(h1.pr = 2 ≤ h2.pr =
5),Π(h1.pr = 2 ≤ h2.pr = 6), ...,Π(h1.pr = 7 ≤ h2.pr = 6)) = 0.8

Table 4.4 – Comparison of two possibility distributions

h1.pr h2.pr Π(h1.pr ≤ h2.pr)
2 5 min(0.2,1)=0.2
2 6 min(0.2,0.6)=0.2
3 5 min(0.8,1)=0.8
3 6 min(0.8,0.6)=0.6
7 5 0
7 6 0

3. For short, we use pr to denote the price of a given hotel, it is so for the rest of the chapter.
4. π(2) = 0.2, π(3) = 0.8, π(7) = 1

106

4.3. Possibilistic Skyline over RDF data

4.3.2 Possibilistic dominance on RDF data

We need now to define the dominance between two possibilistic RDF triples. To consider
the uncertain nature of the data, we adapt the Pareto dominance shown in Definition 2.7.
The logical connectors ∧ and ∨, that represents the conjunction and disjunction of two
binary comparisons, are changed to the minimum and maximum functions, respectively.
Given a set of RDF data modeled by possibility theory H = {h1, h2, . . . , hn} defined on a
set of predicates A = {a1, a2, . . . , ad}, with hi.ak denoting the possibilistic value of object
hi w.r.t. predicate ak.

Let us now extend the dominance relationship to uncertain RDF data modeled in the
possibilistic theory framework.

Definition 4.13. Given two subjects hi and hj in H : hi 6= hj, the degree of possibility
that hi dominates hj is given by:

Π(hi � hj) = min
(
minak∈A(Π(hi.ak ≤ hj.ak)),maxak∈A(Π(hi.ak < hj.ak))

)
,∀ak ∈ A

(4.1)
where hi.ak denotes the possibilistic value of object hi defined on the predicate ak.

Table 4.5 – RDF data modeled by possibility theory.

Hotels Price Distance
h1 {5\0.8, 6\1} {3\0.5, 4\1}
h2 {3\0.6, 5\1} {4\0.8, 5\1}
h3 {2\0.2, 5\1} {1\0.2, 3\1}
h4 {1\0.3, 4\1} {1\0.4, 6\1}
h5 {10\1, 9\0.2} {5\1, 8\0.3}

Example 37. Consider the Table 4.5 containing a set of hotels, defined over two predi-
cates: price and distance. The reason behind using the same properties is that by extending
skyline queries over possibilistic RDF data, we need to compute the dominance degree bet-
ween two RDF resources that should have necessarily some common properties. Each hotel
may have one or more values provided with possibility degrees w.r.t. each predicate. For
example, the price of hotel h1 comprises the value 5 with a possibility degree equals to 0.8
and the value 6 with a possibility degree equals to 1. Let us compute the degree of possibility
that the object h1 dominates the object h2. We have:

107

Chapter 4. Possibilistic RDF Data

Π(h1.pr ≤ h2.pr) = max
(

min(0.8, 1), 0
)
= 0.8

Π(h1.d ≤ h2.d) = max
(

min(0.5, 0.8),min(0.5, 1),min(1, 0.8),min(1, 1)
)
= 1

Π(h1.pr < h2.pr) = 0
Π(h1.d < h2.d) = max

(
min(0.5, 0.8),min(0.5, 1),min(1, 1)

)
= 1

As a result, according to the Equation 4.1,
Π(h1 � h2) = min

(
min(0.8, 1),max(0, 1)

)
= 0.8

Definition 4.14. The p-dominance Given two subjects hi, hj ∈ H and a possible
threshold p, hi possibly dominates (p-dominates) hj, denoted by hi �p hj if and only
if Π(oi � oj) ≥ p.

Subject Predicate Object Possibility degree(π)
hl HasPrice 3 0.8
hl HasPrice 5 1
hl HasDistance 13 0.6
hl HasDistance 15 1
hm HasPrice 1 1
hm HasPrice 4 0.8
hm HasDistance 21 1
hm HasDistance 44 0.8
hn HasPrice 2 1
hn HasPrice 2.5 0.4
hn HasDistance 27 1
hn HasDistance 25 0.3

Table 4.6 – RDF Data: hotel properties

In order to define the possibilistic skyline over the RDF data, it is essential to investigate
some key properties of the possibilistic dominance (p-dominance). Some of these proper-
ties are used further to optimize skyline computation.
Note, the physical data model used in our work is an extension of the 3Store model
presented in [Harris and Gibbins, 2003b] and [Sakr and Al-Naymat, 2010]. It represents
possibility degree in addition to the subject, predicate and object information. More de-
tails about the different kinds of RDF storage techniques are available in the excellent
surveys [Faye et al., 2012] and [Özsu, 2016].

Property 1. The p-dominance relationship does not satisfy the property of transitivity.

Proof 5. Consider the subjects depicted in Table 4.6, using RDF quadruple store repre-
sentation [Harris and Gibbins, 2003b] [Sakr and Al-Naymat, 2010], related to the subjects

108

4.3. Possibilistic Skyline over RDF data

defined on the predicates Price and Distance, respectively. Each quadruple < S,P,O,Π >

is stored directly in a four-column table. We have Π(hl � hm) = 0.8, Π(hm � hn) = 1,
and Π(hl � hn) = 0. Observe that, hl 0.8-dominates hm and hm 1-dominates hn, but hl
does not 0.8-dominate hn. Thus, the p-dominance relationship is not transitive.

Given a subject hi, we denote by hi.a−k and by hi.a+
k respectively the minimum value and

the maximum value of hi.ak. For example, in Table 4.6, the possibilistic price value is
hl.price = {3\0.8, 5\1}. One can observe that hl.price− = 3 and hl.price+ = 5.

Property 2. if hi.a+
k < hj.a

−
k then Π(hi.ak ≤ hj.ak) = 1.

Proof 6. if hj does not dominate hi, i.e., hj 6� hi then Π(hj.ak ≤ hi.ak) = 0. Given a
normalized possibility distribution, an ill-known variable X, ∃x ∈ X,ΠX(x) = 1, as we
use max(min()) functions to compare the possibility distributions, the value 1 will appear
in the maximum value of our possibility comparison.

Example 38. Let hi.ak and hj.ak be two possibility distributions defined on subjects hi
and hj, respectively, and defined on the predicate ak such that hi.ak = {1\0.8, 2\1} and
hj.ak = {3\1, 4\0.2}.
We have Π(hi.ak ≤ hj.ak) = max(min(0.8, 1),min(0.8, 0.2),min(1, 1),min(1, 0.2)) = 1
since hi.a+

k = 2 < hj.a
−
k = 3 .

Property 3. if ∃ak ∈ A where hi.a−k > hj.a
+
k then Π(hi.ak ≤ hj.ak) = 0

Property 4. if ∃ak ∈ A where Π(hi.ak ≤ hj.ak) = 0 then Π(hi � hj) = 0

Property 5. Given a possibility threshold p ∈]0, 1], if ∃ak ∈ A where Π(hi.ak ≤ hj.ak) <
p, then Π((hi � hj) < p .

Property 6. Let X and Y be two ill-known variables defined on the subjects hX and
hY , respectively. Let p be the possibility threshold. Let Π(x)+ be the maximum possibility
degree of the possibility distribution X where Π(x)+ < 1. Let y+ be the greatest value
(proposition) of variable Y .
if x > y+ and Π(x)+ < p then Π(X ≤ Y) < p. Thus, Π(hX � hY) < p

Example 39. Let p = 0.4. Consider the following possibility distributions; X = {5\0.3, 7\1}
and Y = {3\0.2, 4\1}.
We have x = 5 and y+ = 4. One can observe that 5 > 4 and Π(5) = 0.3 < 0.4, then,
Π(X ≤ Y) = 0. Thus, Π(hX � hY) < p.

109

Chapter 4. Possibilistic RDF Data

4.3.3 Possibilistic skyline on RDF data

Intuitively, a subject is in the possible skyline if it is not possibly dominated by another
subject. Based on the p-dominance relationship, the notion of the p-skyline is defined as
follows.

Definition 4.15. (The possibilistic Skyline (p-Skyline)) The possibilistic Skyline of a data
set H, denoted by p-SkyH, comprises those subjects in H that are not p-dominated by any
other object, i.e.,
p-SkyH = {hi ∈ H | @ hj ∈ H, hj �p hi}.

Example 40. Let the possibility threshold p where p = 0.5. In Table 4.5, we have Π(h1 �
h2) = 0.8, thus, h2 can not be in the 0.5-Skyline. In addition, Π(h2 � h1) = 0.8 and
Π(h2 � h5) = 1. As a result, h1, h2 and h5 can not be the 0.5-Skyline since they are
0.5-dominated. However, Π(h4 � h3) = 0.4 and Π(h3 � h4) = 0.2. Thus, {h3, h4} form
the 0.5-Skyline.

Property 7. Given two possibility thresholds p and p′, if p < p′ then the p′-skyline is a
subset of the p-skyline, i.e., p < p′ ⇒ p′-skyline ⊆ p-skyline.

Proof 7. Let be a subject hi such that hi ∈ p-skyline and hi /∈ p′-skyline. @hj,Π(hj �
hi) ≥ p. If p < p′ ⇒ @hj,Π(hj � hi) ≥ p′since hi /∈ p′ − skyline

Property 7 indicates that the size of the p′-Skyline is smaller than the p-Skyline if p < p′.
Roughly speaking, from Property 7, we can see that users have the flexibility to control
the size of the retrieved possibilistic skyline by varying the possibility threshold p.

4.4 Possibilistic skyline computation

In this section, we present the skyline algorithms that answer the skyline query over un-
certain RDF data modeled by possibility theory. Then, we introduce efficient methods in
order to reduce the complexity of the possibilistic dominance computation.
A straightforward algorithm to compute the Skyline over Possibilistic RDF data (de-
noted by BSPR) is to compare each subject hi against the other subjects. If hi is not
p-dominated, then it belongs to the possibilistic skyline (p-skyline). However, this ap-
proach results in a high computational cost (see Section 4.4.1) as it needs to compare
each subject with every other subjects in H, it’s complexity is O(n2).
Also, while the p-dominance relationship is not transitive (see Property 1), a subject
cannot be eliminated from the comparison even if it is p-dominated since it will be useful

110

4.4. Possibilistic skyline computation

for eliminating other subjects. For this reason, we propose an algorithm (see Algorithm
4) that follows the principle of the two scan algorithm [Chee Yong et al., 2006].
Our proposed algorithm, named SPR, computes the possibilistic skyline through two
phases. In the first phase (lines 2–12), a set of candidate subjects p-skyline is selected
by comparing each subject hi in H with those selected in p-skyline. If an object hj in
p-skyline is p-dominated by hj, then hj is removed from the set of candidate subjects
since it is not part of the possibilistic skyline. At the end of the comparison of hi with
subjects of p-skyline, if hi is not p-dominated by any subject then, it is added to p-skyline
as a candidate subject. After the first phase, the p-skyline comprises a set of subjects that
may be part of the p-skyline. The complexity of this method is O(n).
To avoid the situation illustrated by the example in Table 4.6, a second phase is needed
(lines 13–16). To determine if a subject hi in the set p-skyline is indeed a really skyline
subject, it is sufficient to compare hi with those in H \ {p-skyline ∪undom(hi) ∪ {hi}}
that occurs earlier than hi since the other ones have been already compared against hi,
where undom(hi) is the set of subjects that occurs before hi and that do not p-dominate
hj. This set is computed in the first phase in order to reduce the dominance checks in the
second phase.

Even if SPR minimizes the number of dominance checks, it also may result in a high com-
putational cost, in particular when the average number of propositions xi in a possibility
distribution X, and the number of predicates per subject are large. Thus, it is crucial
to optimize the method �p (called in lines 6 and 10 in Algorithm 4) in order to reduce
the dominance checks and improve the performance of the SPR algorithm. We devise
an efficient method that overcomes this problem using the minimum and the maximum
values of each possibility distribution w.r.t. each predicate, according to Property 1 and
Property 2 .
The method p-dominates(hi, hj, p) denoted by �p in the Algorithm 4 (line 6) is detailed
in Function p-dominates. The details of the p-dominates(hi, hj, p) function are as follows.
To reduce the complexity of the dominance computation, we essentially rely on the Pro-
perties 2 and 3. For each predicate ak ∈ A, hi.a−k is compared against hj.a+

k . If there is
any attribute ak for which hj.a+

k < hi.a
−
k holds then return false (loop in line 1); since hi

cannot p-dominate hj according to Property 3.

4.4.1 Experimental Evaluation

In this section, we present an extensive experimental evaluation of our approach. More
specifically, we focus on two issues: (i) the size of the skyline; and (ii) the scalability of
our proposed methods for computing the possibilistic skyline. For comparison purposes,

111

Chapter 4. Possibilistic RDF Data

Algorithm 4: The Skyline over Possibilistic RDF data SPR
Input: Subjects H; Possibility threshold p;
Output: Possibilistic skyline p-skyline;

1 begin
2 foreach hi in H do
3 isSkyline← true
4 foreach hj in p-skyline do
5 if isSkyline then
6 if hj �p hi then
7 isSkyline← false
8 else
9 undom(hi)← undom(hi) ∪ {hj}

10 if hi �p hj then
11 remove hj from p-skyline

12 if isSkyline then
13 insert hi in p-skyline

14 foreach hi in p-skyline do
15 foreach hj in H \ (p-skyline∪undom(hi) ∪ {hi}), pos(hj) < pos(hi) do
16 if hj �p hi then
17 remove hi from p-skyline

18 return p-skyline

Function p-dominates(hi, hj, p)
Input: Objects hi,hj; Possibility threshold p;
Output: boolean;

1 foreach ak in A do
2 if hi.a−k > hj.a

+
k then

3 return false

4 Dom← 0
5 foreach ak in A do
6 pi[ak]← Π(hi.ak ≤ hj.ak)
7 piStrict[ak]← Π(hi.ak < hj.ak)
8 Dom← min(min(pi[]),max(piStrict[]))
9 return Dom < p

we also implemented a baseline algorithm referred to as BSPR (baseline algorithm for the
Skyline over Possibilistic RDF data).

112

4.4. Possibilistic skyline computation

4.4.2 Experimental Setup

The generation of synthetic sets of RDF data modelled by possibility theory is controlled
by the parameters in Table 4.7, which lists the parameters under investigation, their
examined and default values. In each experimental setup, we investigate the effect of one
parameter, while we set the remaining ones to their default values. The data generator
and the algorithms, i.e., SPR and BSPR were implemented in Java, and all experiments
were conducted on a 2.3 GHz Intel Core i7 processor, with 6GB of RAM.

Table 4.7 – Parameters and Examined Values.

Parameter Symbol Values Default
Number of subjects n 1K, 2K, 5K, 8K, 10K, 50K, 100K, 500K 10K
Number of predicates d 4, 5, 7, 10, 15, 20 4

Max Nbr of propositions/pred s 2, 3, 5, 8, 10 3
Possibility threshold p 0.1, 0.3, 0.5, 0.7, 0.9 0.5
Cardinality/pred c 20, 50, 70, 100 20

4.4.3 Size of the Skyline on RDF Data

Figure 4.6 shows the size (i.e., the number of subjects returned) of the possibilistic skyline
w.r.t. n, d, s, p, and c. Recall that when we varry a parameter, the other parameters take
the default values.
In Figure 4.6a, the general trend of the curve is decreasing. It is logic because when we
compare a subject against 100 subjects, it has more chance to be not dominated than
when we compare it against 1000 subjects. That is why the skyline size decreases when
the number of subjects increases.
As shown in Figure 4.6b the cardinality of the skyline on RDF data increases significantly
with the increase of d. This is because with the increase of d a subject has better oppor-
tunity to be not possibly dominated in all predicates.
Figure 4.6c shows that the size of the skyline over RDF data increases with the increase
of the possibility thresholds p since the possibilistic p-skyline contains the p′-skyline if
p > p′; see Property 7 – recall that from this property, users have the flexibility to control
the size of the returned subjects.
Figure 4.6d shows that the size of the skyline over RDF data decreases with the increase
of the number of propositions in a possibility distribution, i.e., the predicate value for
each subject. That is because when the comparisons between propositions increase, the

113

Chapter 4. Possibilistic RDF Data

possibility of dominance increases. Thus the skyline size decreases.

4.4.4 Performance and Scalability

Figure 4.7 depicts the execution time of the implemented algorithms w.r.t. n, d, p and
s. Overall, SPR outperforms BSPR. More specifically, SPR is faster than BSPR. As
expected, Figure 4.7a shows that performance of the algorithms deteriorates with the
increase of n. Observe that SPR is one order of magnitude faster BSPR since it can
quickly identifies if a subject is dominated or not. As shown in Figure 4.7b BSPR does
not scale with d. This is because when d increases the size of the skyline over RDF data
becomes larger, thus a large number of subjects will be selected to the second phase.
Hence, BSPR performs a large number of dominance checks with a basic function. Even
if SPR performs the same number of dominance checks than BSPR, SPR is efficient than
BSPR since it can detect immediately whether a subject dominates or not another. As
shown in Figure 4.7c, SPR is not affected by p as it computes the possibility dominance
between all subjects. However, BSPR increases slightly because the size of the skyline
increases with the increase of p, thus, less subjects will be eliminated.
Figure 4.7d shows that the execution time of the algorithm slightly decreases with the
increase of s. As shown in Figure 4.6d, when the skyline size decreases, the execution time
decreases since more the dominance exists, more the search space is early pruned.

114

4.4. Possibilistic skyline computation

 0

 5

 10

 15

 20

 25

 30

 35

1K 2K 5K 8K 10K 50K 100K 500K

S
ky

lin
e

 S
iz

e

Number of subjects

SPR

(a) Effect of n

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

4 5 7 10 15 20

S
ky

lin
e

 S
iz

e

Number of predicates

SPR

(b) Effect of d

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

0.1 0.3 0.5 0.7 0.9

S
ky

lin
e

 S
iz

e

Possibility threshold

SPR

(c) Effect of p

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

2 3 4 5 8 10

S
ky

lin
e

 S
iz

e

Number of propositions/Possibilistic distribution

SPR

(d) Effect of s

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

20 50 70 100

S
ky

lin
e

 S
iz

e

Predicate Cardinality

SPR

(e) Effect of c

Figure 4.6 – Size of the skyline on RDF Data modeled by possibility theory.

115

Chapter 4. Possibilistic RDF Data

 0

 50

 100

 150

 200

 250

1K 2K 5K 8K 10K 50K 100K 500K

C
P

U
 T

im
e

 (
s)

Number of subjects

SPR
BSPR

(a) Effect of n

 0

 200

 400

 600

 800

 1000

 1200

 1400

4 5 7 10 15 20

C
P

U
 T

im
e

 (
s)

Number of predicates

SPR
BSPR

(b) Effect of d

 0

 2

 4

 6

 8

 10

 12

 14

 16

0.1 0.3 0.5 0.7 0.9

C
P

U
 T

im
e

 (
s)

Possibility Threshold p

SPR
BSPR

(c) Effect of p

 0

 1

 2

 3

 4

 5

 6

 7

2 3 4 5 8 10

C
P

U
 T

im
e

 (
s)

Number of propositions/Possibilistic distribution

SPR
BSPR

(d) Effect of s

 0

 2

 4

 6

 8

 10

 12

20 50 70 100

C
P

U
 T

im
e

 (
s)

Number of propositions/Possibilistic distribution

SPR
BSPR

(e) Effect of c

Figure 4.7 – Elapsed time to compute the skyline on the RDF data modeled by possibility
theory.

116

4.4. Possibilistic skyline computation

Conclusion

In this chapter, we have presented a possibilistic model for uncertain RDF data. In this
part, we have proposed a possibilistic model for uncertain RDF data. Indeed, we added
a possibility measure to each RDF triple (association between a subject, predicate and
object) to model the possibility of such association.
To query possibilistic RDF data, we introduced a general framework denoted Pi-SPARQL.
The query evaluation framework is developed based on possibilistic model requirements.
Then, appropriate semantics of the solution mappings and evaluation are proposed.
As second part, we extended skyline queries to possibilistic RDF data. The combination
aims to filter the massive amount of uncertain resources among the Web according to user
preferences. To compute the possibilistic skyline over RDF data, we have implemented
two algorithms, the BSPR; a naive method to compute skyline queries. Then, we have
proposed the SPR algorithm to reduce the complexity of BSPR. Hence, we have discussed
the idea of how to summarize the region of data explored in earlier iterations. Indeed,
new candidate skyline points are compared to this summary rather than the rest of the
skyline candidates. In addition, as reducing the number of dominance checks is crucial, we
proposed to optimize our algorithm by reducing the complexity of the dominance func-
tion using the properties that we have established over the possibilistic skyline operator.
Experimental evaluations have shown that the SPR outperforms the BSPR algorithm due
to the summarization process of the earlier explored data.

117

Chapter 4. Possibilistic RDF Data

118

Conclusion

Summary

Semantic Web is a Web of data shared using a set of standards. The large adoption of
semantic Web has lead to create huge amount of RDF data. Due to variety of resources
and openness of the web, the veracity of collected data is questioned. Uncertainty is an
epistemic property that concerns the state of knowledge of an agent about the relationship
between the world and a statement about the world. In our case, uncertainty can result
from either imprecision/inaccuracy of resources or from inconsistency between them.
In this thesis project, we tackled the issue of uncertain RDF data. We relied on a powerful
uncertainty theory, namely possibility theory to extend the RDF data formalism. Hence,
we introduced the possibilistic RDF data model. Alongside, to extract data and filter the
massive amount of uncertain RDF data, we use the skyline operator to find out a small
set of resources that satisfy predefined user preferences.

We summarise below, the main contributions presented in this dissertation:

Notable Findings

— The first part of this work extended the skyline queries over trust-weighted RDF
data [Hartig, 2009a]. We introduced a new variant of the skyline, denoted trust-
Skyline or T − Skyα (α is a user-defined trust measure). To this end, semantics of
Pareto dominance relationship and skyline operator were redefined. Furthermore,
new metrics for computing the Trust-skyline were introduced. Indeed, we proposed
two algorithms that take into account the trust measures to compute the trust-
Skyline set. A naive algotithm and an optimized one based on the transitivity pro-
perty of the trust dominance operator. We also implemented an SQL query to show
how Trust-Skyline can be implemented on a relational database system.

119

Conclusion

— Second, we introduced a possibilistic model to manage uncertain RDF data. Indeed,
we integrated in the structure of RDF data a possibility measure for each subject-
property-object triple to reflect the user opinion about the truth of a statement. The
possibility measure can be considered as a way to express a source reliability. Fur-
thermore, we described a general framework for supporting SPARQL-like queries on
possibilistic RDF data, that we denote Pi-SPARQL. Pi-SPARQL extends SPARQL
to allow expressing possibility degrees by associating the solutions for graph patterns
with possibility measures. Therefore, Pi-SPARQL proposed appropriate semantics
of the solution mappings and evaluation, i.e., it enables users to deal with uncertain
RDF data specifications and access the possibility measures associated to the solu-
tions.

— Third, We introduced comparison operators between possibility distributions to al-
low dominance computation in an RDF data set context. To this aim, we used the
skyline operator [Bosc et al., 2011] to extract possibilistic RDF resources that are
possibly dominated by no other resources in the sense of Pareto dominance defini-
tion. We proposed appropriate semantics of the possibilistic-skyline to extract the
most interesting resources in a possibilistic RDF database according to user-defined
criteria.

— Finally, We provided efficient methods to compute the possibilistic-skyline as well,
experiments showed promising results.

Future Work
As for future work, we plan to pursue this study following three lines of research:
— Tackle the issue of the optimization techniques for improving the computation of the

possibilistic skyline. Indeed, we plan to extend some existing techniques to summa-
rise the already visited regions, such the Header Point technique presented in [Chen
et al., 2011]. It summarizes the region of data explored in earlier join iterations.
Meanwhile, we need to extend it to deal with uncertain data.

— Discuss the opportunities to optimize the execution of Pi-SPARQL queries. Indeed,
we aim to propose efficient methods for querying Possibilistic RDF data. Such ex-
tension opens new challenges linked to filtering query answers, to obtain a set of
qualified candidate matches of query Q in a graph G, by adding a possibilistic
constraint.

— Another interesting future direction for querying uncertain RDF data is to improve
the execution of large SPARQL queries. Indeed, authors in [Huang et al., 2012] dis-
tingueshed three kinds of query patterns: the star query patterns (multiple triple

120

patterns with different properties sharing the same subject), the chain query pat-
terns (sequence of triple patterns where the object of a triple pattern is also the
subject of the next triple pattern) and composite query patterns (combination of
star and chain patterns).

— Extend possibilistic skyline queries over Graph data. Given that RDF data can be
thought in terms of a decentralized directed labeled graph, it is interesting to tackle
the issue of uncertain graph data, where uncertainty is modeled thanks to possibility
theory.

121

Conclusion

122

Appendices

123

Possibilistic Skyline model

125

Academic Achievements

Journal paper
[1] Amna Abidi, Sayda Elmi, Mohamed Anis Bach Tobji, Allel Hadjali, Boutheina Ben
Yaghlane, Skyline queries over possibilistic RDF data, International Journal of Approxi-
mate Reasoning (IJAR), VOL.93, page 277-289, 2018.

Book Chapter
[2] Amna Abidi, Mohamed Anis Bach Tobji, Allel Hadjali , Boutheina Ben Yaghlane,
Statistical Methods for Use in Analysis of Trust-Skyline Sets Revised selected papers),
Lecture Notes in Business Information Processing, Enterprise Information Systems, Sprin-
ger, June, 2018.

International conferences
[3] Amna Abidi, Mohamed Anis BACH TOBJI, Allel HADJALI, Boutheina Ben Yagh-
lane, A General Framework for Querying Possibilistic RDF Data, International Conference
on Tools with Artificial Intelligence (ICTAI), IEEE, Volos, Greece, November, 2018, pp.
158-162

[4] Amna Abidi, Mohamed Anis Bach Tobji, Allel Hadjali , Boutheina Ben Yaghlane,
Skyline Modeling and Computing over Trust RDF Data, Proc. of the 19th International
Conference on Enterprise Information Systems (ICEIS’2017), page, 634-643, April, 2017,
Porto, Portugal. Best Paper Award

Lecture Notes (Springer)
[5] Amna Abidi, Nassim Barhri, Mohamed Anis Bach Tobji, Allel Hadjali , Boutheina
Ben Yaghlane, First steps towards an electronic meta-journal platform based on crowd-
sourcing, Proc. of the 2nd International Conference on Digital Economy (ICDEc’2017),
Springer-LNBIP, 04-06 May, 2017, Sidi Bou Said, Tunisia.

[6] Rim Jallouli, Mohamed Jallouli, Jihene Rekik, Mohamed Anis Bach Tobji, Amna
Abidi, Nassim Bahri, The CEVEP medical application for innovative management of
Central Venous Port (CVP) Technical issues and research challenges. In proceedings of
the International Conference on Digital Economy (ICDEc’2016), Springer-LNBIP, page
68-73, 2016, Carthage, Tunisia.

126

127

128

Bibliography

[Abadi et al., 2007] Abadi, D. J., Marcus, A., Madden, S. R., and Hollenbach, K. (2007).
Scalable semantic web data management using vertical partitioning. In Proceedings of
the 33rd International Conference on Very Large Data Bases, pages 411–422. 4.1.2

[Abadi et al., 2009] Abadi, D. J., Marcus, A., Madden, S. R., and Hollenbach, K. (2009).
Sw-store: A vertically partitioned dbms for semantic web data management. The VLDB
Journal, 18:385–406.

[Agrawal and Wimmers, 2000] Agrawal, R. and Wimmers, E. L. (2000). A framework for
expressing and combining preferences. SIGMOD Rec.

[Amna et al., 2017a] Amna, A., Mohamed Anis, B. T., Allel, H., and Boutheina, B. Y.
(2017a). Skyline modeling and computing over trust RDF data. In ICEIS 2017 -
Proceedings of the 19th International Conference on Enterprise Information Systems,
Volume 27, pages 634–643. 3, 3.3, 3.3.1, 3.4.1, 3.4.2

[Amna et al., 2017b] Amna, A., Mohamed Anis, B. T., Allel, H., and Boutheina, B. Y.
(2017b). Statistical methods for use in analysis of trust-skyline sets. In Enterprise
Information Systems, pages 413–427. Springer. 3

[Amna et al., 2018a] Amna, A., Mohamed Anis, B. T., Allel, H., and Boutheina, B. Y.
(2018a). A General Framework for Querying Possibilistic RDF Data. In International
Conference on Tools with Artificial Intelligence (ICTAI), pages 158–162. IEEE. 4,
4.2.3.2

[Amna et al., 2018b] Amna, A., Sayda, E., Mohamed Anis, B. T., Allel, H., and Bou-
theina, B. Y. (2018b). Skyline queries over possibilistic rdf data. International Journal
of Approximate Reasoning, 93:277 – 289. 4

[Angles et al., 2017] Angles, R., Arenas, M., Barceló, P., Hogan, A., Reutter, J., and
Vrgoč, D. (2017). Foundations of modern query languages for graph databases. ACM
Comput. Surv., 50:68:1–68:40. 1.3.5, 4.2.1

[Antoniou and vanHarmelen, 2004a] Antoniou, G. and vanHarmelen, F. (2004a). A Se-
mantic Web Primer. MIT Press. 1, 1.1, 1.1.1.1, 1.1.2

129

Bibliography

[Antoniou and vanHarmelen, 2004b] Antoniou, G. and vanHarmelen, F. (2004b). A Se-
mantic Web Primer. MIT Press, Cambridge, MA, USA.

[Bailey et al., 2005] Bailey, J., Bry, F., Furche, T., and Schaffert, S. (2005). Web and
semantic web query languages: A survey. In Proceedings of the First International
Conference on Reasoning Web, pages 35–133. Springer-Verlag. 1.2.4.5

[Berners-Lee, 2004] Berners-Lee, T. (2004). Reifying RDF (properly), and N3.
https://www.w3.org/DesignIssues/Reify.html. 1.4.3

[Berners-Lee et al., 1998a] Berners-Lee, T., Fielding, R., and Masinter, L. (1998a). Uni-
form resource identifiers (uri): Generic syntax. 1

[Berners-Lee et al., 1998b] Berners-Lee, T., Fielding, R., and Masinter, L. (1998b). Uni-
form resource identifiers (uri): Generic syntax.

[Berners-Lee et al., 2001] Berners-Lee, T., Hendler, J., and Lassila, O. (May 2001). The
semantic web. Scientific American. (document)

[Bornea et al., 2013] Bornea, M. A., Dolby, J., Kementsietsidis, A., Srinivas, K., Dan-
tressangle, P., Udrea, O., and Bhattacharjee, B. (2013). Building an efficient rdf store
over a relational database. In Proceedings of the 2013 ACM SIGMOD International
Conference on Management of Data, pages 121–132. ACM. 1.2.4.5

[Börzsönyi et al., 2001a] Börzsönyi, S., Kossmann, D., and Stocker, K. (2001a). The sky-
line operator. In Proceedings of the 17th International Conference on Data Engineering,
pages 421–430. IEEE Computer Society. (document), 1.1, 2, 2.2.1, 2.2.1, 21, 2.2.1, 2.2.2,
2.2.2, 3, 3.1.2, 3.1.3.2, 4

[Börzsönyi et al., 2001b] Börzsönyi, S., Kossmann, D., and Stocker, K. (2001b). The sky-
line operator. In Proceedings of the 17th International Conference on Data Engineering.

[Bosc et al., 2011] Bosc, P., Hadjali, A., and Pivert, O. (2011). On possibilistic skyline
queries. In Proceedings of the 9th International Conference on Flexible Query Answering
Systems, pages 412–423. Springer-Verlag. 2.2.3.2, 2.2.3.2, 24, 3, 3.1, 4.1, 4.4.4

[Buche et al., 2005] Buche, P., Dervin, C., Haemmerle, O., and Thomopoulos, R. (2005).
Fuzzy querying of incomplete, imprecise, and heterogeneously structured data in the
relational model using ontologies and rules. IEEE Transactions on Fuzzy Systems,
13:373–383. 1.4.1

[Ceolin et al., 2014] Ceolin, D., Nottamkandath, A., Fokkink, W., and Maccatrozzo, V.
(2014). Towards the definition of an ontology for trust in (web) data. In Proceedings
of the 10th International Conference on Uncertainty Reasoning for the Semantic Web
- Volume 1259, pages 73–78. 1.4.1

[Chee Yong et al., 2006] Chee Yong, C., H. V., J., Kian-Lee, T., Anthony K. H., T., and
Zhenjie, Z. (2006). Finding k-dominant skylines in high dimensional space. In Procee-

130

dings of the ACM SIGMOD International Conference on Management of Data, pages
503–514. 4.4

[Chen et al., 2011] Chen, L., Gao, S., and Anyanwu, K. (2011). Efficiently evaluation
skyline queries on RDF databases. In 8th Extended Semantic Web Conference, ESWC
2011, pages 123–138, Heraklion, Crete, Greece. 4, 3, 3.1, 4, 4.4.4

[Chomicki, 2002] Chomicki, J. (2002). Querying with intrinsic preferences. In Proceedings
of the 8th International Conference on Extending Database Technology: Advances in
Database Technology, pages 34–51. Springer-Verlag. (document), 2, 2.2.1, 2.2.1, 3, 4

[Chomicki, 2003] Chomicki, J. (2003). Preference formulas in relational queries. ACM
Trans. Database Syst., 28:427–466.

[Chomicki, 2011] Chomicki, J. (2011). Logical foundations of preference queries. IEEE
Data Eng. Bull., 34:3–10. (document), 2, 3, 4

[Chomicki et al., 2013] Chomicki, J., Ciaccia, P., and Meneghetti, N. (2013). Skyline
queries, front and back. SIGMOD Rec., 42:6–18. (document), 2, 3, 4

[Codd, 1990] Codd, E. F. (1990). The Relational Model for Database Management: Ver-
sion 2. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

[D. Dubois, 1982] D. Dubois, H. P. (1982). On several representations of an uncertain
body of evidence. Fuzzy Information and Decision Processes. 2.1.4.1

[Deepak et al., 2011] Deepak, S., Deepak, A., Rakesh, Kr., P., and K. K., A. (2011).
Article: An efficient approach of block nested loop algorithm based on rate of block
transfer. International Journal of Computer Applications, 21:24–30. 2.2.2, 3.1.3.2

[Dempster, 1967] Dempster, A. P. (1967). Upper and lower probabilities induced by a
multivalued mapping. The Annals of Mathematical Statistics, 38:325–339. 2.1.2.2

[Dempster, 1968] Dempster, A. P. (1968). A generalization of bayesian inference (with
discussion). Journal of the Royal Statistical Society, Series B: Methodological, 30:205–
247.

[Dragoni and Tettamanzi, 2007] Dragoni, M. and Tettamanzi, A. G. B. (2007). Evolu-
tionary algorithms for reasoning in fuzzy description logics with fuzzy quantifiers. In
Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation,
pages 1967–1974. ACM.

[Dubois and Prade, 1983] Dubois, D. and Prade, H. (1983). Ranking fuzzy numbers in
the setting of possibility theory. Inf. Sci., 30:183–224. 4.12

[Dubois and Prade, 1988] Dubois, D. and Prade, H. (1988). Possibility theory. Plenum
Press, New-York. 2.1.1, 2.1.3, 2.1.3.1

[Dubois and Prade, 2001] Dubois, D. and Prade, H. (2001). Possibility theory, probability
theory and multiple-valued logics: A clarification. Annals of Mathematics and Artificial
Intelligence, 32:35–66. 2.1.4

131

Bibliography

[DuCharme, 2011a] DuCharme, B. (2011a). Learning SPARQL. O’Reilly Media, Inc.
1.2.1, 1.3

[DuCharme, 2011b] DuCharme, B. (2011b). Learning SPARQL. O’Reilly Media, Inc.

[Eric and Andy, 2008] Eric, P. and Andy, S. (2008). Sparql query language for rdf.
https://www.w3.org/TR/rdf-sparql-query/ #sparqlSolutions. 1.3.2, 1.3.4, 1.3.4, 1.3.5,
1.3.5, 7, 8, 10, 4.2, 4.2.1, 4.2.2, 4.2.2.1, 4.2.2.2, 4.2.3.1

[Evren and Bijan, 2007] Evren, S. and Bijan, P. (2007). SPARQL-DL: SPARQL query
for OWL-DL. In Proceedings of the OWLED 2007 Workshop on OWL: Experiences and
Directions, Innsbruck, Austria, June 6-7, 2007. 1.3.1

[Faye et al., 2012] Faye, D. C., Curé, O., and Blin, G. (2012). A survey of RDF sto-
rage approaches. Revue Africaine de la Recherche en Informatique et Mathématiques
Appliquées, 15:11–35. 4.3.2

[Fionda and Greco, 2015] Fionda, V. and Greco, G. (2015). Trust models for RDF data:
Semantics and complexity. In Proceedings of the Twenty-Ninth AAAI Conference on
Artificial Intelligence, pages 95–101, Austin, Texas, USA. (document), 1, 1.4.1, 3

[Francois and Stijn, 2011] Francois, P. and Stijn, V. (2011). What are real sparql queries
like? In International Workshop on Semantic Web Information Management. ACM.
1.3.1

[Frank and Eric, 2003] Frank, M. and Eric, M. (2003). Rdf primer.

[Golbeck, 2006] Golbeck, J. (2006). Combining provenance with trust in social networks
for semantic web content filtering. In Proceedings of the 2006 International Conference
on Provenance and Annotation of Data, pages 101–108. Springer-Verlag. 1.4.1

[Golbeck et al., 2003] Golbeck, J., Parsia, B., and Hendler, J. A. (2003). Trust networks
on the semantic web. In Cooperative Information Agents VII, 7th International Work-
shop, CIA, pages 238–249. 1.4.1

[Graham et al., 2004] Graham, K., Jeremy, J. C., and Brian, M. (2004). Resource des-
cription framework RDF: Concepts and abstract syntaxr. https://www.w3.org/TR/rdf-
concepts/#section-Graph-syntax.

[Gravetter and Wallnau, 2000] Gravetter, F. and Wallnau, L. (2000). Statistics for the
behavioral sciences. 5th ed. Belmont: Wadsworth, Thomson Learning. 3.3.2

[Gruber, 1993] Gruber, T. R. (1993). Toward principles for the design of ontologies used
for knowledge sharing. In In Formal Ontology in Conceptual Analysis and Knowledge
Representation. Kluwer Academic Publishers. 1.1.1.1

[Guo et al., 2005] Guo, Y., Pan, Z., and Heflin, J. (2005). LUBM: A benchmark for owl
knowledge base systems. Web Semant., 3:158–182. 1.1.1.2

132

[Gutierrez et al., 2004] Gutierrez, C., Hurtado, C., and Mendelzon, A. O. (2004). Foun-
dations of semantic web databases. In Proceedings of the Twenty-third ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems, pages 95–106, New
York, NY, USA.

[Gutierrez et al., 2011] Gutierrez, C., Hurtado, C. A., Mendelzon, A. O., and Pérez, J.
(2011). Foundations of semantic web databases. J. Comput. Syst. Sci., 77.

[Harris and Gibbins, 2003a] Harris, S. and Gibbins, N. (2003a). 3store: Efficient bulk
RDF storage. In PSSS1 - Practical and Scalable Semantic Systems, Proceedings of
the First International Workshop on Practical and Scalable Semantic Systems, Sanibel
Island, Florida, USA, October 20, 2003. 1.2.4.2

[Harris and Gibbins, 2003b] Harris, S. and Gibbins, N. (2003b). 3store: Efficient bulk
RDF storage. In Practical and Scalable Semantic Systems, Proceedings of the First
International Workshop on Practical and Scalable Semantic Systems. 3.4.1, 4.3.2, 5

[Hartig, 2009a] Hartig, O. (2009a). Querying trust in rdf data with tsparql. In The
Semantic Web: Research and Applications, 6th European Semantic Web Conference,
ESWC, pages 5–20, Heraklion, Crete, Greece. (document), 1, 1, 1.4.1, 1.4.1, 11, 2.2.3.4,
3, 3.1, 4.1.2, 4.4.4

[Hartig, 2009b] Hartig, O. (2009b). Towards a data-centric notion of trust in the semantic
web (a position statement). In The Semantic Web: Research and Applications,the 7th
Extended Semantic Web Conference , ESWC 2010, Heraklion, Greece, May 2010, pages
5–20. 1.4.1

[Hartig and Thompson, 2014] Hartig, O. and Thompson, B. (2014). Foundations of an
alternative approach to reification in rdf. CoRR, abs/1406.3399. 1.4.3

[Hernández et al., 2015] Hernández, D., Hogan, A., and Krötzsch, M. (2015). Reifying
RDF: what works well with wikidata? In Proceedings of the 11th International Workshop
on Scalable Semantic Web Knowledge Base Systems, volume 1457, pages 32–47. 1.4.3

[Hristidis et al., 2001] Hristidis, V., Koudas, N., and Papakonstantinou, Y. (2001). Prefer:
A system for the efficient execution of multi-parametric ranked queries. In Proceedings
of the 2001 ACM SIGMOD International Conference on Management of Data.

[Huang and Liu, 2009] Huang, H. and Liu, C. (2009). Query evaluation on probabilistic
rdf databases. In Proceedings of the 10th International Conference on Web Information
Systems Engineering, WISE ’09, pages 307–320. (document), 1, 1.4.2, 1.3, 1.4.2, 4, 4.1.2

[Huang et al., 2012] Huang, H., Liu, C., and Zhou, X. (2012). Approximating query ans-
wering on rdf databases. World Wide Web, 15:89–114. 4.4.4

[Hyountaek et al., 2014] Hyountaek, Y., Jongwuk, L., Jinha, K., and Seung, W. H. (2014).
Skyline ranking for uncertain databases. Information Sciences, 273:247–262. 2.2.3.1

133

Bibliography

[Jens et al., 2015] Jens, L., Robert, I., Max, J., Anja, J., Dimitris, K., Pablo, N. M., Se-
bastian, H., Mohamed, M., Patrick, v. K., Sören, A., and Christian, B. (2015). Dbpedia
- a large-scale, multilingual knowledge base extracted from wikipedia. Semantic Web,
6:167–195. 1.1.1.2

[Jiang et al., 2012] Jiang, B., Pei, J., Lin, X., and Yuan, Y. (2012). Probabilistic skylines
on uncertain data: Model and bounding-pruning-refining methods. J. Intell. Inf. Syst.,
38:1–39. (document), 2, 2.2.3.1, 3, 3.1, 4

[Kalyvas and Tzouramanis, 2017] Kalyvas, C. and Tzouramanis, T. (2017). A survey of
skyline query processing. CoRR, abs/1704.01788. 2.2.2

[Karvounarakis et al., 2002] Karvounarakis, G., Alexaki, S., Christophides, V., Plexousa-
kis, D., and Scholl, M. (2002). Rql: A declarative query language for rdf. In Proceedings
of the 11th International Conference on World Wide Web, WWW ’02, pages 592–603.
1.2.4.5

[Kiessling, 2002] Kiessling, W. (2002). Foundations of preferences in database systems.
In Proceedings of the 28th International Conference on Very Large Data Bases. 3

[Kijima and Ohnishi, 1999] Kijima, M. and Ohnishi, M. (1999). Stochastic orders and
their applications in financial optimization. Mathematical Methods of Operations Re-
search, 50:351–372. 2.2.3.3

[Kung et al., 1975] Kung, H. T., Luccio, F., and Preparata, F. P. (1975). On finding the
maxima of a set of vectors. J. ACM. 2.2.2

[Lian and Chen, 2009] Lian, X. and Chen, L. (2009). Probabilistic inverse ranking queries
over uncertain data. In Proceedings of the 14th International Conference on Database
Systems for Advanced Applications, DASFAA ’09. Springer-Verlag. 2.2.3.1

[Lian and Chen, 2011] Lian, X. and Chen, L. (2011). Efficient query answering in probabi-
listic RDF graphs. In Proceedings of the 2011 ACM SIGMOD International Conference
on Management of Data, pages 157–168. (document), 1, 1.4.2, 12, 4

[Lin et al., 2011] Lin, X., Zhang, Y., Zhang, W., and Cheema, M. A. (2011). Stochastic
skyline operator. In Proceedings of the 2011 IEEE 27th International Conference on
Data Engineering, pages 721–732. IEEE Computer Society. 2.2.3.3

[Mark, 2009] Mark, F. (2009). A smarter web. Technology Review, November 2001.
(document), 1, 1.1

[McBride, 2002] McBride, B. (2002). Jena: A semantic web toolkit. IEEE Internet Com-
puting, 6:55–59. 1.2.4.3

[Meiser et al., 2011] Meiser, T., Dylla, M., and Theobald, M. (2011). Interactive reaso-
ning in uncertain rdf knowledge bases. In Proceedings of the 20th ACM International
Conference on Information and Knowledge Management, pages 2557–2560. ACM. 1,
1.4.2

134

[Miller et al., 2002] Miller, L., Seaborne, A., and Reggiori, A. (2002). Three implementa-
tions of squishql, a simple rdf query language. In Proceedings of the First International
Semantic Web Conference on The Semantic Web, ISWC ’02, pages 423–435. Springer-
Verlag. 1.2.4.5

[Neumann and Weikum, 2008] Neumann, T. and Weikum, G. (2008). Rdf-3x: A risc-style
engine for rdf. Proc. VLDB Endow., 1:647–659. 1.2.4.2, 1.2.4.5

[Nguyen et al., 2014] Nguyen, V., Bodenreider, O., and Sheth, A. P. (2014). Don’t like rdf
reification?: making statements about statements using singleton property. In WWW,
pages 759–770. ACM. 1.4.3

[Olaf, 2014] Olaf, H. (2014). Reconciliation of rdf* and property graphs. CoRR,
abs/1409.3288. 1.4.1

[Özsu, 2016] Özsu, M. T. (2016). A survey of RDF data management systems. Front.
Comput. Sci., 10:418–432. 1.2.4.5, 4.3.2

[Pei et al., 2007] Pei, J., Jiang, B., Lin, X., and Yuan, Y. (2007). Probabilistic skylines
on uncertain data. In Proceedings of the 33rd International Conference on Very Large
Data Bases, VLDB ’07, pages 15–26. 2.2.3.1, 22, 2.2.3.1, 23, 2.2.3.1

[Pérez et al., 2009] Pérez, J., Arenas, M., and Gutierrez, C. (2009). Semantics and com-
plexity of sparql. ACM Trans. Database Syst., 34:16:1–16:45. 1.3.1.2

[Prade, 1984] Prade, H. (1984). Lipski’s approach to incomplete information data bases
restated and generalized in the setting of Zadeh’s possibility theory. Inf. Syst., 9. 2.1.5,
4.1, 4.1.1

[Preparata and Shamos, 1985] Preparata, F. P. and Shamos, M. (1985). Computational
Geometry: An Introduction. Springer-Verlag New York. 2.2.2

[Richardson et al., 2003] Richardson, M., Agrawal, R., and Domingos, P. (2003). Trust
management for the semantic web. In Proceedings of the Second International Confe-
rence on Semantic Web Conference, pages 351–368. Springer-Verlag. 1.4.1

[Robinson et al., 2013a] Robinson, I., Webber, J., and Eifrem, E. (2013a). Graph Data-
bases. O’Reilly Media, Inc.

[Robinson et al., 2013b] Robinson, I., Webber, J., and Eifrem, E. (2013b). Graph Data-
bases. O’Reilly Media, Inc.

[Sakr and Al-Naymat, 2009] Sakr, S. and Al-Naymat, G. (2009). Relational processing of
rdf queries: a survey. SIGMOD Rec., 38:23–28. 1.2.4.1, 1.2.4.2, 1.2.4.3, 1.2.4.4, 3.2.1,
3.4.1

[Sakr and Al-Naymat, 2010] Sakr, S. and Al-Naymat, G. (2010). Relational processing of
RDF queries: A survey. SIGMOD Rec., 38(4):23–28. 3.4.1, 4.3.2, 5

135

Bibliography

[Saleem et al., 2015] Saleem, M., Ali, M. I., Hogan, A., Mehmood, Q., and Ngomo, A.-
C. N. (2015). Lsq: The linked sparql queries dataset. In The Semantic Web - ISWC
2015, pages 261–269, Cham. Springer International Publishing. 1.3.1

[Sayda et al., 2014] Sayda, E., Karim, B., Allel, H., Mohamed Anis, B. T., and Boutheina,
B. Y. (2014). Computing skyline from evidential data. In Scalable Uncertainty Ma-
nagement - 8th International Conference, SUM, pages 148–161. 2.2.3.4, 25, 2.2.3.4,
2.2.3.4

[Sayda et al., 2016a] Sayda, E., Mohamed Anis, B. T., Allel, H., and Boutheina, B. Y.
(2016a). Efficient distributed skyline over imperfect data modeled by the evidence
theory. In Proceeding of the 28th IEEE International Conference on Tools with Artificial
Intelligence, ICTAI, pages 335–342. 2.2.3.4

[Sayda et al., 2016b] Sayda, E., Mohamed Anis, B. T., Allel, H., and Boutheina, B. Y.
(2016b). Efficient skyline maintenance over frequently updated evidential databases.
In Proceeding of the16th International Conference, IPMU, pages 199–210. 2.2.3.4

[Seaborne, 2004] Seaborne, A. (January 2004). Rdql - a query language for rdf.
hhttp://www.w3.org/Submission/2004/SUBM-RDQL-20040109/. 1.2.4.5

[Shafer, 1976] Shafer, G. (1976). A Mathematical Theory of Evidence. Princeton Univer-
sity Press, Princeton, NJ. 2.1.2.2

[Sidirourgos et al., 2008] Sidirourgos, L., Goncalves, R., Kersten, M., Nes, N., and Ma-
negold, S. (2008). Column-store support for rdf data management: Not all swans are
white. Proc. VLDB Endow., 1:1553–1563. 4.1.2

[Simon et al., 2018] Simon, C., Weber, P., and Sallak, M. (2018). Data Uncertainty and
Important Measures. ISTE Ltd and John Wiley & Sons. 33, 35

[Smets, 1996] Smets, P. (1996). Imperfect information: Imprecision and uncertainty. In
Uncertainty Management in Information Systems, pages 225–254. Springer-US. 2.1.1,
2.1.1.2, 2.1.1.3, 2.1.2.1, 2.1.4

[Smets, 1997] Smets, P. (1997). Imperfect Information: Imprecision and. Springer, Bos-
ton, MA.

[Steve and Andy, 2013] Steve, H. and Andy, S. (2013). Sparql query language.
https://www.w3.org/TR/sparql11-query/#sparqlAlgebra.

[Straccia and Mucci, 2015] Straccia, U. and Mucci, M. (2015). pFOIL-DL: Learning
(fuzzy) el concept descriptions from crisp owl data using a probabilistic ensemble es-
timation. In Proceedings of the 30th Annual ACM Symposium on Applied Computing,
SAC ’15, pages 345–352. ACM. 1.4.3

[Suchanek et al., 2008] Suchanek, F. M., Kasneci, G., and Weikum, G. (2008). Yago: A
large ontology from wikipedia and wordnet. Web Semant., 6:203–217. 1.1.1.2

136

[Tan et al., 2001] Tan, K.-L., Eng, P.-K., and Ooi, B. C. (2001). Efficient progressive
skyline computation. In Proceedings of the 27th International Conference on Very
Large Data Bases. 2.2.1

[Tomaszuk et al., 2012] Tomaszuk, D., Pak, K., and Rybinski, H. (2012). Trust in RDF
graphs. In Advances in Databases and Information Systems - 16th East European
Conference, ADBIS, pages 273–283, Poznań, Poland. (document), 1, 1.4.1, 3

[van Harmelen, 2004] van Harmelen, F. (2004). The semantic web: what, why, how, and
when. IEEE Distributed Systems Online, 5.

[W3C, 2004] W3C (2004). RDF semantics. https://www.w3.org/. 1.2
[Weiss et al., 2008] Weiss, C., Karras, P., and Bernstein, A. (2008). Hexastore: Sextuple

indexing for semantic web data management. Proc. VLDB Endow., 1:1008–1019. 1.2.4.5
[Wu et al., 2006] Wu, P., Zhang, C., Feng, Y., Zhao, B. Y., Agrawal, D., and El Abbadi,

A. (2006). Parallelizing skyline queries for scalable distribution. In Proceedings of the
10th International Conference on Advances in Database Technology.

[Zadeh, 1978] Zadeh, L. A. (1978). Fuzzy sets as a basis for theory of possibility. Fuzzy
Sets and Systems, 1:3–28. (document), 2, 2.1.3, 2.1.3.1, 19, 4, 4.1.1

[Zhang et al., 2013] Zhang, Q., Ye, P., Lin, X., and Zhang, Y. (2013). Skyline probability
over uncertain preferences. In Proceedings of the 16th International Conference on
Extending Database Technology, pages 395–405. ACM. (document), 2, 3, 3.1, 4

[Zheng et al., 2014] Zheng, W., Zou, L., Lian, X., Hong, L., and Zhao, D. (2014). Efficient
subgraph skyline search over large graphs. In Proceedings of the 23rd ACM International
Conference on Information and Knowledge Management, pages 1529–1538. (document),
2, 4

[Zhu et al., 2013] Zhu, J., Qi, G., and Suntisrivaraporn, B. (2013). Tableaux algo-
rithms for expressive possibilistic description logics. In Proceedings of the 2013
IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intel-
ligent Agent Technologies (IAT) - Volume 01, pages 227–232, Washington, DC, USA.
IEEE Computer Society. 1.4.3

[Zimmermann, 1985] Zimmermann, H.-J. (1985). Possibility Theory vs. Probability
Theory, pages 103–118. Springer Netherlands, Dordrecht. (document), 4

[Zou et al., 2010] Zou, L., Chen, L., Özsu, M. T., and Zhao, D. (2010). Dynamic skyline
queries in large graphs. In Proceedings of the 15th International Conference on Data-
base Systems for Advanced Applications - Volume Part II, DASFAA’10, pages 62–78.
(document), 2, 4

137

Bibliography

Don’t ever lose the dreamer inside, no matter what you witness in life.
Keep that part safe, warm and guarded with all your heart and soul

Jeff Emmerson

138

Base de Données RDF Imparfaites: Du Modélisation à l’interrogation

Résumé: L’intérêt sans cesse croissant des données RDF disponibles sur le Web a conduit à
l’émergence de multiple et importants efforts de recherche pour enrichir le formalisme tradition-
nel des données RDF à des fins d’exploitation et d’analyse. Le travail de cette thèse s’inscrit
dans la continuation de ces efforts en abordant la problématique de la gestion des données RDF
en présence d’imperfections (manque de confiance/validité, incertitude, etc.). Les contributions
de la thèse sont comme suit: (1) Nous avons proposé d’appliquer l’opérateur skyline sur les
données RDF pondérées par des mesures de confiance (Trust-RDF) dans le but d’extraire les
ressources les plus confiantes selon des critères définis par l’utilisateur. (2) Nous avons discuté
via des méthodes statistiques l’impact des mesures de confiance sur le Trust-skyline.
(3) Nous avons intégré à la structure des données RDF un quatrième élément, exprimant une
mesure de possibilité. Pour gérer cette mesure de possibilité, un cadre langagier appropriée est
étudié, à savoir Pi-SPARQL, qui étend le langage SPARQL aux requêtes permettant de traiter
des distributions de possibilités. (4) Nous avons étudié une variante d’opérateur skyline pour
extraire les ressources RDF possibilistes qui ne sont éventuellement dominées par aucune autre
ressource dans le sens de l’optimalité de Pareto.

Mots clés:Web sémantique, Ressource Description Framework, SPARQL, Bases de Degré de
confiance, Incertitude, Théorie des possibilités, Requêtes à préférences, Opérateur Skyline,
données–Interrogation, Conception centrée sur l’utilisateur

Imperfect RDF Databases: From Modelling to Querying

Abstract: The ever-increasing interest of RDF data on the Web has led to several and impor-
tant research efforts to enrich traditional RDF data formalism for the exploitation and analysis
purpose. The work of this thesis is a part of the continuation of those efforts by addressing the
issue of RDF data management in presence of imperfection (untruthfulness, uncertainty, etc.).
The main contributions of this dissertation are as follows. (1) We tackled the trusted RDF data
model. Hence, we proposed to extend the skyline queries over trust RDF data, which consists
in extracting the most interesting trusted resources according to user-defined criteria. (2) We
studied via statistical methods the impact of the trust measure on the Trust-skyline set.
(3) We integrated in the structure of RDF data (i.e., subject-property-object triple) a fourth ele-
ment expressing a possibility measure to reflect the user opinion about the truth of a statement.
To deal with possibility requirements, appropriate framework related to language is introduced,
namely Pi-SPARQL, that extends SPARQL to be possibility-aware query language.
Finally, we studied a new skyline operator variant to extract possibilistic RDF resources that
are possibly dominated by no other resources in the sense of Pareto optimality.

KeyWords: Semantic web, Ressource Description Framework, SPARQL, Trust, Uncertainty,
Possibility theory, Preference queries, Skyline queries, Querying, User-centered system design

139

	Abstract
	Résumé
	Acknowledgements
	Preface

	Dédicace
	Table of contents
	List of figures
	List of tables
	Nomenclature
	Introduction
	Part I Preleminaries
	RDF Formalism
	Introduction
	Semantic Web vision
	Introduction to Ontologies
	Definition of ontology
	Example of ontologies

	Ontology languages

	RDF data model
	RDF triple
	RDF Graph
	RDF: XML-based syntax
	RDF databases
	Non-native RDF Databases
	Triple Table
	Property triple table store
	Horizontal table store
	Native RDF Databases

	SPARQL Specifications
	SPARQL General Form
	Triple pattern
	Graph pattern

	SELECT query Form
	Basic Graph Pattern
	Solution Mapping
	SPARQL Algebra
	Filter
	Join
	LeftJoin
	Union
	OrderBy
	Project

	Extended RDF Formalism
	Trust RDF data
	Probabilistic RDF data
	Other uncertain RDF models

	Conclusion

	Background on Possibility Theory and Skyline Queries
	Introduction
	Possibility theory: An overview
	Typology of imperfect information
	Imprecision
	Inconsistency
	Uncertainty

	Uncertainty theories: A refresher
	Probability theory
	Evidence theory

	Possibility Theory
	Possibility distribution
	Possibility and Necessity measures

	Possibility theory vs Probability theory and Evidence theory
	Possibility theory vs belief function theory

	Possibilistic Databases

	Skyline queries
	Principle
	Skyline Computation Algorithms
	Skyline Queries over Incomplete Data
	Probabilistic Skyline Queries
	Possiblistic Skyline Queries
	Stochastic Skyline Queries
	Evidential Skyline Queries

	Conclusion

	Part II Contributions
	Trust Skyline Model: Semantics and Experimentations
	Introduction
	Trust-Skyline model
	Trust Dominance
	Trust-Skyline semantics
	Trust-Skyline computation
	SQL-like Trust-Skyline queries
	Naive T-Skyline Algorithm
	TRDF-Skyline Algorithm

	Experimental Evaluation
	Experimental Setup
	Impact of the trust measure variation
	Impact of the size of data set
	Number of used properties in the skyline query

	Statistical methods-driven Analysis
	Trust-Skyline list Analysis
	T-Skyline points with less trust
	T-Skyline points with more trust
	Behavior of Alpha

	Alpha v.s. the distribution of Trust values
	Central Tendency measures
	Measures of spread: Quartile measure
	Trust dependence

	Analysis Experimental
	Experimental Setup
	Impact of trust threshold variation and Central Tendency measures
	Impact of trust threshold variation and Quartile measures

	Conclusion

	Possibilistic RDF Data
	Introduction
	Possibilistic RDF model
	Possibilistic RDF databases
	Possibilistic RDF graph

	A SPARQL-like language for possibilistic RDF data
	Possibility-aware Basic Graph Pattern Matching
	Enhanced SPARQL algebra
	Join()
	Project()
	Filter operator

	SPARQL Extension for Possibility distributions Requirements
	Converting Graph Patterns
	Pi-SPARQL Algebra: Project Possibility Operator

	Possibilistic Skyline over RDF data
	Comparison of two possibility distributions
	Possibilistic dominance on RDF data
	Possibilistic skyline on RDF data

	Possibilistic skyline computation
	Experimental Evaluation
	Experimental Setup
	Size of the Skyline on RDF Data
	Performance and Scalability

	Conclusion

	Conclusion
	Appendix
	Appendices

	Bibliography

