C. Gasb and /. Gasb, Cap -GaSb(p), pp.1-5

. Window--gasb, , pp.1-5

. Emitter--gasb, , pp.1-18

. Base--gasb, , pp.2-17

, BSF/Buffer -GaSb(n) @1.5E18 -500nm

. Substrat--gasb,

, PROMIS Solar cell on GaSb -L1, vol.2, p.5

B. Chung, J. G. Virshup, and . Werthen, High-efficiency, one-sun (22.3% at air mass 0; 23.9% at air mass 1.5) monolithic two-junction cascade solar cell grown by metalorganic vapor phase epitaxy, Applied physics letters, vol.52, issue.22, pp.1889-1891, 1988.

S. Rte, E. , and A. , Panorama de l'électricité renouvelable en 2016, pp.2017-2025

R. Perez and M. Perez, A fundamental look at energy reserves for the planet. The IEA SHC Solar Update, vol.50, 2009.

A. Rosenthal, A record of NASA space missions since 1958, pp.2018-2027

M. A. Green, Y. Hishikawa, E. D. Dunlop, D. H. Levi, J. Hohl-ebinger et al., Solar cell efficiency tables (version 52), Progress in Photovoltaics, vol.26, issue.7, 2018.

W. Shockley and H. J. Queisser, Detailed balance limit of efficiency of p-n junction solar cells, Journal of applied physics, vol.32, issue.3, pp.510-519, 1961.

M. Schachinger, Module price index, pp.2019-2024

. Capgemini, , pp.2018-2022

, Le coût de production de l'électricité nucléaire actualisation, 2014.

. Lazard, Lazard's levelized cost of energy analysis, pp.2018-2022, 2017.

S. Rte, E. , and A. , Panorama de l'électricité renouvelable au 30 septembre, pp.2018-2019, 2017.

A. Polman, M. Knight, E. C. Garnett, B. Ehrler, and W. C. Sinke, Photovoltaic materials: present efficiencies and future challenges, Science, vol.352, issue.6283, p.4424, 2016.

M. P. Lumb, S. Mack, K. J. Schmieder, M. González, M. F. Bennett et al., GaSb-based solar cells for full solar spectrum energy harvesting, Advanced Energy Materials, vol.7, issue.20, 2017.

J. F. Geisz, M. A. Steiner, N. Jain, K. L. Schulte, R. M. France et al., Building a six-junction inverted metamorphic concentrator solar cell, IEEE Journal of Photovoltaics, 2017.

F. Dimroth and S. Kurtz, High-efficiency multijunction solar cells, MRS bulletin, vol.32, issue.3, pp.230-235, 2007.

S. P. Philipps, A. W. Bett, K. Horowitz, and S. Kurtz, Current status of concentrator photovoltaic (CPV) technology, 2015.

E. D. Jackson and I. Texas, Proposing increased conversion efficiency by employing stacked, multijunction cells, Proceedings of Transactions of the Conference on the Use of Solar Ener-gy, vol.122, 1955.

L. W. James and R. L. Moon, GaAs concentrator solar cell, Applied Physics Letters, vol.26, issue.8, pp.467-470, 1975.

L. M. Fraas and R. C. Knechtli, Design of high-efficiency monolithic stacked multijunction solar cells, 13th Photovoltaic Specialists Conference, pp.886-891, 1978.

S. M. Bedair, S. B. Phatak, and J. R. Hauser, Material and device considerations for cascade solar cells, IEEE Transactions on Electron Devices, vol.27, issue.4, pp.822-831, 1980.

J. A. Cacheux, Double heterojunction solar cells, US Patent, vol.4, p.593, 0191.

S. M. Bedair, M. L. Timmons, and M. Simons, Growth and characterization of cascade solar cells, pp.408-412, 1981.

S. P. Tobin, C. Bajgar, S. M. Vernon, L. M. Geoffroy, and C. J. Keavney, A 23.7 efficient one-sun GaAs solar cell, 19th IEEE Photovoltaic Specialists Conference, p.1492, 1987.

R. R. King, N. H. Karam, J. H. Ermer, N. Haddad, P. Colter et al., Next-generation, high-efficiency III-V multijunction solar cells, Photovoltaic Specialists Conference, pp.998-1001, 2000.

R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey et al., 40% efficient metamorphic GaInP GaInAs Ge multijunction solar cells, Applied Physics Letters, vol.90, issue.18, p.183516, 2007.

F. Dimroth, T. N. Tibbits, M. Niemeyer, F. Predan, P. Beutel et al., Four-junction wafer-bonded concentrator solar cells, IEEE Journal of Photovoltaics, vol.6, issue.1, pp.343-349, 2016.

S. Essig, C. Allebé, T. Remo, J. F. Geisz, M. A. Steiner et al., Raising the one-sun conversion efficiency of III-V/Si solar cells to 32.8% for two junctions and 35.9% for three junctions, Nature Energy, vol.2, issue.9, p.17144, 2017.

R. Cariou, J. Benick, F. Feldmann, O. Höhn, H. Hauser et al., III-V-on-silicon solar cells reaching 33% photoconversion efficiency in two-terminal configuration, Nature Energy, vol.3, issue.4, p.326, 2018.
URL : https://hal.archives-ouvertes.fr/cea-01882171

X. Sheng, C. A. Bower, S. Bonafede, J. W. Wilson, B. Fisher et al., Printing-based assembly of quadruple-junction four-terminal microscale solar cells and their use in high-efficiency modules, Nature materials, vol.13, issue.6, pp.593-598, 2014.

K. Xiong, H. Mi, T. H. Chang, D. Liu, Z. Xia et al., AlGaAs/Si dual-junction tandem solar cells by epitaxial lift-off and print-transfer-assisted direct bonding, Energy Science & Engineering, 2018.

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass et al., Very high efficiency solar cell modules, Progress in Photovoltaics: Research and Applications, vol.17, issue.1, pp.75-83, 2009.

M. A. Green, M. J. Keevers, I. Thomas, J. B. Lasich, K. Emery et al., 40% efficient sunlight to electricity conversion, Progress in Photovoltaics: Research and Applications, vol.23, issue.6, pp.685-691, 2015.

R. I. Rabady and H. Manasreh, Thicknesses optimization of two-and three-junction photovoltaic cells with matched currents and matched lattice constants, Solar Energy, vol.158, pp.20-27, 2017.

J. M. Olson, S. R. Kurtz, A. E. Kibbler, and P. Faine,

, Ga 0.5 In 0.5 P/GaAs tandem solar cell, Applied Physics Letters, vol.56, issue.7, pp.623-625, 1990.

B. M. Kayes, L. Zhang, R. Twist, I. K. Ding, and G. S. Higashi, Flexible thin-film tandem solar cells with 30% efficiency, IEEE Journal of Photovoltaics, vol.4, issue.2, pp.729-733, 2014.

M. A. Steiner, J. F. Geisz, I. Garcia, D. J. Friedman, A. Duda et al., Effects of internal luminescence and internal optics on V OC and J SC of III-V solar cells, IEEE Journal of Photovoltaics, vol.3, issue.4, pp.1437-1442, 2013.

R. R. King, C. M. Fetzer, P. C. Colter, K. M. Edmondson, D. C. Law et al., Lattice-matched and metamorphic GaInP/GaInAs/Ge concentrator solar cells, Proceedings of 3rd World Conference on, vol.1, pp.622-625, 2003.

R. R. King, A. Boca, W. Hong, X. Q. Liu, D. Bhusari et al., Band-gap-engineered architectures for high-efficiency multijunction concentrator solar cells, European Photovoltaic Solar Energy Conference and Exhibition, vol.21, p.55, 2009.

V. Sabnis, H. Yuen, and M. Wiemer, High-efficiency multijunction solar cells employing dilute nitrides, AIP Conference Proceedings, vol.1477, pp.14-19, 2012.

D. Lackner, O. Höhn, A. W. Walker, M. Niemeyer, P. Beutel et al., Status of four-junction cell development at fraunhofer ISE, E3S Web of Conferences, vol.16, p.3009, 2017.

F. Suarez, T. Liu, A. Sukiasyan, J. Lang, E. Pickett et al., Advances in dilute nitride multi-junction solar cells for space power applications, E3S Web of Conferences, vol.16, p.3006, 2017.

Y. Zhang, Q. Wang, X. Zhang, B. Chen, B. Wu et al.,

, AlGaInP/Ge double-junction solar cell with Sb incorporation directly used for latticematched five-junction solar cell application, Japanese Journal of Applied Physics, vol.56, issue.2, p.25501, 2017.

M. González, M. P. Lumb, M. K. Yakes, J. Abell, J. G. Tischler et al., Modeling, design and experimental results for high efficiency multi-junction solar cells lattice matched to InP. In Physics, Simulation, and Photonic Engineering of Photovoltaic Devices III, International Society for Optics and Photonics, vol.8981, p.898117, 2014.

L. C. Hirst, M. P. Lumb, J. Abell, C. T. Ellis, J. G. Tischler et al., Spatially indirect radiative recombination in InAlAsSb grown lattice-matched to InP by molecular beam epitaxy, Journal of Applied Physics, vol.117, issue.21, p.215704, 2015.

M. F. Bennett, M. González, M. P. Lumb, M. K. Yakes, K. J. Schmieder et al., Development of wet etch processing for In x Al 1?x As y Sb 1?y solar cells grown on InP, Photovoltaic Specialist Conference (PVSC), pp.1-4, 2015.

M. Yamaguchi, K. H. Lee, K. Araki, N. Kojima, and Y. Ohshita, Potential and activities of III-V/Si tandem solar cells, ECS Journal of Solid State Science and Technology, vol.5, issue.2, pp.68-73, 2016.

B. W. Dodson and J. Y. Tsao, Relaxation of strained-layer semiconductor structures via plastic flow, Applied Physics Letters, vol.51, issue.17, pp.1325-1327, 1987.

E. A. Fitzgerald, A. Y. Kim, M. T. Currie, T. A. Langdo, G. Taraschi et al., Bulsara. Dislocation dynamics in relaxed graded composition semiconductors, Materials Science and Engineering: B, vol.67, issue.1, pp.53-61, 1999.

R. M. France, F. Dimroth, T. J. Grassman, and R. R. King, Metamorphic epitaxy for multijunction solar cells, MRS Bulletin, vol.41, issue.3, pp.202-209, 2016.

T. Takamoto, H. Washio, and H. Juso, Application of InGaP/GaAs/InGaAs triple junction solar cells to space use and concentrator photovoltaic, Photovoltaic Specialist Conference (PVSC), pp.1-0005, 2014.

R. M. France, J. F. Geisz, I. García, M. A. Steiner, W. E. Mcmahon et al., Design flexibility of ultrahigh efficiency four-junction inverted metamorphic solar cells, IEEE Journal of Photovoltaics, vol.6, issue.2, pp.578-583, 2016.

M. A. Green, Y. Hishikawa, W. Warta, E. D. Dunlop, D. H. Levi et al., Solar cell efficiency tables (version 50), Progress in Photovoltaics: Research and Applications, vol.25, pp.668-676, 2017.

C. H. Henry, Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells, Journal of applied physics, vol.51, issue.8, pp.4494-4500, 1980.

A. Marti and G. L. Araújo, Limiting efficiencies for photovoltaic energy conversion in multigap systems, Solar Energy Materials and Solar Cells, vol.43, issue.2, pp.203-222, 1996.

S. P. Bremner, M. Y. Levy, and C. B. Honsberg, Analysis of tandem solar cell efficiencies under AM1.5G spectrum using a rapid flux calculation method, Progress in photovoltaics: Research and Applications, vol.16, pp.225-233, 2008.

S. P. Philipps and A. W. Bett, Chapter 4 III-V multi-junction solar cells, Advanced concepts in photovoltaics, pp.87-117, 2014.

M. S. Leite, R. L. Woo, J. N. Munday, W. D. Hong, S. Mesropian et al., Towards an optimized all lattice-matched InAlAs/InGaAsP/InGaAs multijunction solar cell with efficiency 50%, Applied Physics Letters, vol.102, issue.3, p.33901, 2013.

S. Soresi, G. Hamon, A. Larrue, J. Alvarez, M. P. Pires et al., InP:S/AlInAs:C tunnel junction grown by MOVPE for photovoltaic applications. physica status solidi (a), vol.215, p.1700427, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01797053

S. Adachi, Energy-band structure: energy band gaps, 2009.

O. Dier, C. Lauer, and M. C. Amann, n-InAsSb/p-GaSb tunnel junctions with extremely low resistivity, Electronics Letters, vol.42, issue.7, pp.419-420, 2006.

B. M. Kayes, H. Nie, R. Twist, S. G. Spruytte, F. Reinhardt et al., 27.6% conversion efficiency, a new record for single-junction solar cells under 1 sun illumination, Photovoltaic Specialists Conference (PVSC), pp.4-000008, 2011.

M. Wanlass, Systems and methods for advanced ultra-high-performance InP solar cells, National Renewable Energy Lab.(NREL), 2017.

G. T. Nelson, B. C. Juang, M. A. Slocum, Z. S. Bittner, R. B. Laghumavarapu et al., GaSb solar cells grown on GaAs via interfacial misfit arrays for use in the III-Sb multi-junction cell, Applied Physics Letters, vol.111, issue.23, p.231104, 2017.

S. Parola, A. Vauthelin, F. Martinez, J. Tournet, J. E. Husseini et al., Investigation of antimonide-based semiconductors for high-efficiency multi-junction solar cells, 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC)(A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC), pp.937-0942, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02052823

, Intro to CPV technology, opportunities and challenges, pp.2018-2022

, Best research-cell efficiencies chart, pp.2018-2021

. Soitec, Financial press release of may 21st, pp.2018-2021, 2015.

K. A. Horowitz, M. Woodhouse, H. Lee, and G. P. Smestad, A bottom-up cost analysis of a high-concentration PV module, AIP Conference Proceedings, vol.1679, p.100001, 2015.

K. Derendorf, S. Essig, E. Oliva, V. Klinger, T. Roesener et al., Fabrication of GaInP/GaAs//Si solar cells by surface activated direct wafer bonding, IEEE Journal of Photovoltaics, vol.3, issue.4, pp.1423-1428, 2013.

J. Yang, Z. Peng, D. Cheong, and R. Kleiman, Fabrication of high-efficiency III-V on silicon multijunction solar cells by direct metal interconnect, IEEE Journal of Photovoltaics, vol.4, issue.4, pp.1149-1155, 2014.

S. M. Vernon, S. P. Tobin, V. E. Haven, C. Bajgar, T. M. Dixon et al., Efficiency improvements in GaAs-on-Si solar cells, Proc. of 20th IEEE Photovoltaic Specialists Conference, pp.481-485, 1988.

S. M. Vernon, S. P. Tobin, V. E. Haven, L. M. Geoffroy, and M. M. Sanfacon, Highefficiency concentrator cells from GaAs on Si, Conference Record of the Twenty Second IEEE, pp.353-357, 1991.

Y. Ohmachi, Y. Kadota, Y. Watanabe, and H. Okamoto, High quality GaAs on Si and its application to a solar cell, MRS Online Proceedings Library Archive, vol.144, 1988.

C. L. Andre, J. A. Carlin, J. J. Boeckl, D. M. Wilt, M. A. Smith et al., Investigations of high-performance GaAs solar cells grown on Ge-Si 1?x Ge x -Si substrates, IEEE Transactions on Electron Devices, vol.52, issue.6, pp.1055-1060, 2005.

C. L. Andre, D. M. Wilt, A. J. Pitera, M. L. Lee, E. A. Fitzgerald et al., Impact of dislocation densities on n+/p and p+/n junction GaAs diodes and solar cells on SiGe virtual substrates, Journal of applied physics, vol.98, issue.1, p.14502, 2005.

Y. Wang, Z. Ren, M. Thway, K. Lee, S. F. Yoon et al., Fabrication and characterization of single junction GaAs solar cells on Si with As-doped Ge buffer, Solar Energy Materials and Solar Cells, vol.172, pp.140-144, 2017.

K. N. Yaung, M. Vaisman, J. Lang, and M. L. Lee, GaAsP solar cells on GaP/Si with low threading dislocation density, Applied Physics Letters, vol.109, issue.3, p.32107, 2016.

M. Vaisman, S. Fan, K. Yaung, E. Perl, D. Martín-martín et al., 3%-efficient GaAsP solar cells on GaP/Si templates, ACS Energy Letters, vol.15, issue.8, pp.1911-1918, 2017.

A. Jallipalli, M. N. Kutty, G. Balakrishnan, J. Tatebayashi, N. Nuntawong et al., 1.54 µm GaSb/AlGaSb multi-quantum-well monolithic laser at 77 K grown on miscut Si substrate using interfacial misfit arrays, Electronics Letters, vol.43, issue.22, pp.1198-1199, 2007.

K. M. Ko, J. H. Seo, D. E. Kim, S. T. Lee, Y. K. Noh et al., The growth of a low defect InAs HEMT structure on Si by using an AlGaSb buffer layer containing InSb quantum dots for dislocation termination, Nanotechnology, vol.20, issue.22, p.225201, 2009.

A. Castellano, L. Cerutti, J. B. Rodriguez, G. Narcy, A. Garreau et al., Room-temperature continuous-wave operation in the telecom wavelength range of GaSb-based lasers monolithically grown on Si, APL Photonics, vol.2, issue.6, p.61301, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01626979

H. Nguyen-van, A. N. Baranov, Z. Loghmari, L. Cerutti, J. B. Rodriguez et al., Quantum cascade lasers grown on silicon, Scientific reports, vol.8, issue.1, p.7206, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02078298

S. H. Huang, G. Balakrishnan, A. Khoshakhlagh, L. R. Dawson, and D. L. Huffaker, Simultaneous interfacial misfit array formation and antiphase domain suppression on miscut silicon substrate, Applied Physics Letters, vol.93, issue.7, p.71102, 2008.

A. Trampert, E. Tournie, and K. H. Ploog, Defect control during growth of highly mismatched (100)InAsGaAs-heterostructures, Journal of crystal growth, vol.146, issue.1-4, pp.368-373, 1995.

A. Rocher and E. Snoeck, Misfit dislocations in (001) semiconductor heterostructures grown by epitaxy, Materials Science and Engineering: B, vol.67, issue.1-2, pp.62-69, 1999.

K. Akahane, N. Yamamoto, S. Gozu, A. Ueta, and N. Ohtani, Initial growth stage of GaSb on Si(001) substrates with AlSb initiation layers, Journal of crystal growth, vol.283, issue.3-4, pp.297-302, 2005.

K. W. Shin, H. W. Kim, J. Kim, C. Yang, S. Lee et al., The effects of low temperature buffer layer on the growth of pure Ge on Si(001), Thin Solid Films, vol.518, issue.22, pp.6496-6499, 2010.

Y. B. Bolkhovityanov and O. P. Pchelyakov, GaAs epitaxy on Si substrates: modern status of research and engineering, Physics-Uspekhi, vol.51, issue.5, pp.437-456, 2008.

J. B. Rodriguez, L. Cerutti, G. Patriarche, L. Largeau, K. Madiomanana et al., Characterization of antimonide based material grown by molecular epitaxy on vicinal silicon substrates via a low temperature AlSb nucleation layer, Journal of Crystal Growth, vol.477, pp.65-71, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01755268

M. A. Herman and H. Sitter, Molecular beam epitaxy fundamentals and current status, 2012.

J. Tsao, Material fundamentals of molecular beam epitaxy, 2012.

R. F. Farrow, Molecular beam epitaxy: application to key materials, 2012.

M. Henini, Molecular beam epitaxy: from research to mass production, 2012.

A. S. Bracker, M. J. Yang, B. R. Bennett, J. C. Culbertson, and W. J. Moore, Surface reconstruction phase diagrams for InAs, AlSb, and GaSb, Journal of Crystal Growth, vol.220, issue.4, pp.384-392, 2000.

J. J. Harris, B. Joyce, and P. J. Dobson, Oscillations in the surface structure of Sn-doped GaAs during growth by MBE, Surface Science, vol.103, issue.1, pp.90-96, 1981.

D. , K. Bowen, and B. K. Tanner, X-ray metrology in semiconductor manufacturing, 2006.

B. D. Cullity, Elements of X-ray diffraction, 2001.

. Jacques-i-pankove, Optical processes in semiconductors, Courier Corporation, 1975.

A. Macleod and H. Macleod, Thin-film optical filters, 2010.

K. R. Mcintosh and S. C. Baker-finch, OPAL 2: rapid optical simulation of silicon solar cells, Photovoltaic Specialists Conference (PVSC), 2012 38th IEEE, pp.265-000271, 2012.

D. E. Aspnes and A. A. Studna, Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV, Physical review B, vol.27, issue.2, p.985, 1983.

S. Subbanna, G. Tuttle, and H. Kroemer, N-type doping of gallium antimonide and aluminum antimonide grown by molecular beam epitaxy using lead telluride as a tellurium dopant source, J. Electron. Mater, vol.17, issue.4, pp.297-303, 1988.

A. Samuel, M. Miller, S. Dylla, K. Anand, J. Gordiz et al., Empirical modeling of dopability in diamond-like semiconductors, npj Computational Materials, vol.4, issue.1, p.71, 2018.

J. A. Robinson and S. E. Mohney, An improved In-based ohmic contact to n-GaSb, Solid State Electronics, vol.48, pp.1667-1672, 2004.

K. Ikossi, M. Goldenberg, and J. Mittereder, Metallization options and annealing temperatures for low contact resistance ohmic contacts to n-type GaSb, Solid-State Electronics, vol.46, issue.10, pp.1627-1631, 2002.

B. Tadayon, C. S. Kyono, M. Fatemi, S. Tadayon, and J. A. Mittereder, Extremely low specific contact resistivities for p-type GaSb, grown by molecular beam epitaxy, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, vol.13, pp.1-3, 1995.

F. Y. Soldatenkov, S. V. Sorokina, N. K. Timoshina, V. P. Khvostikov, Y. M. Zadiranov et al., A decrease in ohmic losses and an increase in power in GaSb photovoltaic converters, Semiconductors, vol.45, issue.9, pp.1219-1226, 2011.

L. M. Fraas, J. E. Avery, V. S. Sundaram, V. T. Dinh, T. M. Davenport et al., Over 35% efficient GaAs/GaSb stacked concentrator cell assemblies for terrestrial applications, Conference Record of the Twenty First IEEE, pp.190-195, 1990.

V. M. Andreev, S. V. Sorokina, N. K. Timoshina, V. P. Khvostikov, and M. Z. Shvarts, Solar cells based on gallium antimonide, Semiconductors, vol.43, issue.5, pp.668-671, 2009.

A. S. Vlasov, V. P. Khvostikov, L. B. Karlina, S. V. Sorokina, N. S. Potapovich et al., Spectral-splitting concentrator photovoltaic modules based on AlGaAs/GaAs/GaSb and GaInP/InGaAs(P) solar cells, vol.58, pp.1034-1038, 2013.

A. W. Bett, C. Baur, R. Beckert, F. Dimroth, G. Letay et al., Development of high-efficiency mechanically stacked GaInP/GaInAs-GaSb triple-junction concentrator solar cells, Conference Record, 17th European Solar Energy Conference, pp.84-87, 2001.

M. Z. Shvarts, P. Y. Gazaryan, N. A. Kaluzhniy, V. P. Khvostikov, V. M. Lantratov et al., InGaP/GaAs-GaSb and InGaP/GaAs/Ge-InGaAsSb hybrid monolithic/stacked tandem concentrator solar cells, Proc. of 21st EUPVSEC, 2006.

A. Mansoori, S. J. Addamane, E. J. Renteria, D. M. Shima, M. Behzadirad et al., Reducing threading dislocation density in GaSb photovoltaic devices on GaAs by using AlSb dislocation filtering layers, Solar Energy Materials and Solar Cells, vol.185, pp.21-27, 2018.

M. Burgelman, P. Nollet, and S. Degrave, Modelling polycrystalline semiconductor solar cells, Thin Solid Films, vol.361, pp.527-532, 2000.

E. Q. Macabebe and E. E. Van-dyk, Parameter extraction from dark current-voltage characteristics of solar cells, South African Journal of Science, vol.104, issue.9, pp.401-404, 2008.

R. King, . Law, . Fetzer, K. Sherif, S. Edmondson et al., Pathways to 40%-efficient concentrator photovoltaics, Proc. 20th European Photovoltaic Solar Energy Conference, pp.10-11, 2005.

T. H. Glisson, J. R. Hauser, M. A. Littlejohn, and C. K. Williams, Energy bandgap and lattice constant contours of III-V quaternary alloys, Journal of Electronic Materials, vol.7, issue.1, pp.1-16, 1978.

R. L. Moon, G. A. Antypas, and L. W. James, Bandgap and lattice constant of GaInAsP as a function of alloy composition, Journal of Electronic Materials, vol.3, issue.3, pp.635-644, 1974.

M. Kudo and T. Mishima, MBE growth of Si-doped InAlAsSb layers lattice-matched with InAs, Journal of crystal growth, vol.175, pp.844-848, 1997.

L. G. Vaughn, Mid-infrared multiple quantum wells lasers using digitally-grown AlInAsSb barriers and strained InAsSb wells, 2006.

R. Magno, E. R. Glaser, B. P. Tinkham, J. G. Champlain, J. B. Boos et al., Narrow band gap InGaSb, InAlAsSb alloys for electronic devices, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, vol.24, issue.3, pp.1622-1625, 2006.

M. P. Lumb, M. Gonzalez, I. Vurgaftman, J. R. Meyer, J. Abell et al., Simulation of novel InAlAsSb solar cells, Proc. SPIE, vol.8256, p.82560, 2012.

W. L. Sarney, S. P. Svensson, D. Wang, D. Donetsky, G. Kipshidze et al., AlInAsSb for M-LWIR detectors, Journal of Crystal Growth, vol.425, pp.357-359, 2015.

M. Ren, S. Maddox, Y. Chen, M. Woodson, J. C. Campbell et al., AlInAsSb/-GaSb staircase avalanche photodiode, Applied Physics Letters, vol.108, issue.8, p.81101, 2016.

K. Onabe, Unstable regions in III-V quaternary solid solutions composition plane calculated with strictly regular solution approximation, Japanese Journal of Applied Physics, vol.21, issue.6, p.323, 1982.

A. Yildirim, Phase separation and defect formation in stable, metastable, and unstable GaInAsSb alloys for infrared applications, 2014.

A. N. Semenov, V. A. Solov'ev, B. Y. Meltser, Y. V. Terent'ev, L. G. Prokopova et al., Molecular beam epitaxy of AlInAsSb alloys near the miscibility gap boundary, Journal of crystal growth, vol.278, issue.1, pp.203-208, 2005.

J. S. Rojas-ramirez, S. Wang, R. Contreras-guerrero, M. Caro, K. Bhatnagar et al.,

, Al x In 1?x As y Sb 1?y alloys lattice matched to InAs(100) grown by molecular beam epitaxy, Journal of Crystal Growth, vol.425, pp.33-38, 2015.

T. Zederbauer, A. M. Andrews, D. Macfarland, H. Detz, W. Schrenk et al., Enhanced crystal quality of Al x In 1?x As y Sb 1?y for terahertz quantum cascade lasers, Photonics, vol.3, 2016.

E. R. Glaser, R. Magno, B. V. Shanabrook, and J. G. Tischler, Optical characterization of In 0.27 Ga 0.73 Sb and In x Al 1?x As y Sb 1?y epitaxial layers for development of 6.2-å-based heterojunction bipolar transistors, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, vol.24, issue.3, pp.1604-1606, 2006.

D. Washington-stokes, T. P. Hogan, P. C. Chow, T. D. Golding, U. Kirschbaum et al., Al x In 1?x As1 ? ySb y /GaSb effective mass superlattices grown by molecular beam epitaxy, Journal of crystal growth, vol.201, pp.854-857, 1999.

L. G. Vaughn, L. R. Dawson, E. A. Pease, L. F. Lester, H. Xu et al., Type I mid-infrared MQW lasers using AlInAsSb barriers and InAsSb wells, Proc. SPIE, vol.5722, p.307, 2005.

T. Y. Seong, A. G. Norman, I. T. Ferguson, and G. R. Booker, Transmission electron microscopy and transmission electron diffraction structural studies of heteroepitaxial InAs y Sb 1?y molecular-beam epitaxial layers, Journal of applied physics, vol.73, issue.12, pp.8227-8236, 1993.

H. Fu, Optical characterization of AlInAsSb digital alloy films, NNIN Research Accomplishments, pp.138-139, 2015.

S. J. Maddox, S. D. March, and S. R. Bank, Broadly tunable AlInAsSb digital alloys grown on GaSb, vol.16, pp.3582-3586, 2016.

T. Nuytten, M. Hayne, B. Bansal, H. Y. Liu, M. Hopkinson et al., Charge separation and temperature-induced carrier migration in Ga 1?x In x N y As 1?y multiple quantum wells, Physical Review B, vol.84, issue.4, p.45302, 2011.

M. González, M. P. Lumb, L. C. Hirst, S. Tomasulo, J. G. Tischler et al., Rapid thermal annealing of InAlAsSb lattice-matched to InP for top cell applications, Photovoltaic Specialist Conference (PVSC), pp.1-4, 2015.

N. Baladés, D. L. Sales, M. Herrera, F. J. Delgado, M. González et al., Effect of annealing on the compositional modulation of InAlAsSb, Applied Surface Science, vol.395, pp.105-109, 2017.

J. Hernández-saz, M. Herrera, F. J. Delgado, S. Duguay, T. Philippe et al., Atom-scale compositional distribution in InAlAsSb-based triple-junction solar cells by atom probe tomography, Nanotechnology, vol.27, issue.30, pp.305402-305402, 2016.

J. Hernández-saz, M. Herrera, J. Pizarro, P. L. Galindo, M. Gonzalez et al., Influence of the growth temperature on the composition distribution at sub-nm scale of InAlAsSb for solar cells, Journal of Alloys and Compounds, 2018.

Y. Lyu, X. Han, Y. Sun, Z. Jiang, C. Guo et al., Digitally grown AlInAsSb for high gain separate absorption, grading, charge, and multiplication avalanche photodiodes, Journal of Crystal Growth, vol.482, pp.70-74, 2018.

O. Dier, M. Sterkel, M. Grau, C. Lin, C. Lauer et al., Tunnel junctions for ohmic intra-device contacts on GaSb-substrates, Applied physics letters, vol.85, issue.12, pp.2388-2389, 2004.

K. Vizbaras, M. Törpe, S. Arafin, and M. C. Amann, Ultra-low resistive GaSb/InAs tunnel junctions, Semiconductor Science and Technology, vol.26, issue.7, p.75021, 2011.

M. P. Lumb, S. Mack, M. Gonzalez, K. Schmieder, and R. J. Walters, Tunnel diode with broken-gap quantum well, p.357, 2016.

G. P. Donati, R. Kaspi, and K. J. Malloy, Interpolating semiconductor alloy parameters: Application to quaternary III-V band gaps, Journal of Applied Physics, vol.94, issue.9, pp.5814-5819, 2003.

J. Burdick and T. Glatfelter, Spectral response and I-V measurements of tandem amorphous-silicon alloy solar cells, Solar Cells, vol.18, issue.3-4, pp.301-314, 1986.

M. Meusel, C. Baur, G. Létay, A. W. Bett, W. Warta et al., Spectral response measurements of monolithic GaInP/Ga(In)As/Ge triple-junction solar cells: measurement artifacts and their explanation, Progress in Photovoltaics: Research and Applications, vol.11, issue.8, pp.499-514, 2003.

I. Vurgaftman, J. R. Meyer, and L. R. Ram-mohan, Band parameters for III-V compound semiconductors and their alloys, Journal of applied physics, vol.89, issue.11, pp.5815-5875, 2001.

V. K. Yang, M. Groenert, C. W. Leitz, A. J. Pitera, M. T. Currie et al., Crack formation in GaAs heteroepitaxial films on Si and SiGe virtual substrates, Journal of applied physics, vol.93, issue.7, pp.3859-3865, 2003.

D. , K. Bowen, and B. K. Tanner, High resolution X-ray diffractometry and topography, 2005.

T. J. Grassman, M. R. Brenner, S. Rajagopalan, R. Unocic, R. Dehoff et al., Control and elimination of nucleation-related defects in GaP/Si(001) heteroepitaxy, Applied Physics Letters, vol.94, issue.23, p.232106, 2009.

T. W. Poon, S. Yip, P. S. Ho, and F. F. Abraham, Equilibrium structures of Si(100) stepped surfaces, Physical review letters, vol.65, issue.17, p.2161, 1990.

D. Jarek and M. Hans-joachim, Silicon surfaces and formation of interfaces: basic science in the industrial world, 2000.

M. Akiyama, Y. Kawarada, and K. Kaminishi, Growth of single domain GaAs layer on (100)-oriented Si substrate by MOCVD, Japanese Journal of Applied Physics, vol.23, issue.11A, p.843, 1984.

T. Nishinaga, T. Nakano, and S. Zhang, Epitaxial lateral overgrowth of GaAs by LPE, Japanese journal of applied physics, vol.27, issue.6A, p.964, 1988.

R. Fischer, H. Morkoc, D. A. Neumann, H. Zabel, C. Choi et al., Material properties of high-quality GaAs epitaxial layers grown on Si substrates, Journal of applied physics, vol.60, issue.5, pp.1640-1647, 1986.

S. F. Fang, K. Adomi, S. Iyer, H. Morkoc, H. Zabel et al., Gallium arsenide and other compound semiconductors on silicon, Journal of Applied Physics, vol.68, issue.7, pp.31-58, 1990.

R. J. Malik, J. P. Van-der-ziel, B. F. Levine, C. G. Bethea, and J. Walker, Molecularbeam epitaxy of GaSb/AlSb optical device layers on Si(100), Journal of applied physics, vol.59, issue.11, pp.3909-3911, 1986.

C. Chang, H. Takaoka, L. L. Chang, and L. Esaki, Molecular beam epitaxy of AlSb, Applied Physics Letters, vol.40, issue.11, pp.983-985, 1982.

G. Griffiths, K. Mohammed, S. Subbana, H. Kroemer, and J. L. Merz, GaSb/AlSb multiquantum well structures: molecular beam epitaxial growth and narrow-well photoluminescence, Applied physics letters, vol.43, issue.11, pp.1059-1061, 1983.

H. Gotoh, K. Sasamoto, S. Kuroda, and M. Kimata, Molecular beam epitaxy of AlSb on GaAs and GaSb on AlSb films. physica status solidi (a), vol.75, pp.641-645, 1983.

K. Akahane, N. Yamamoto, S. Gozu, and N. Ohtani, Heteroepitaxial growth of GaSb on Si(001) substrates, Journal of crystal growth, vol.264, issue.1, pp.21-25, 2004.

Y. H. Kim, J. Y. Lee, Y. G. Noh, M. D. Kim, S. M. Cho et al., Growth mode and structural characterization of GaSb on Si(001) substrate: a transmission electron microscopy study, Applied physics letters, vol.88, issue.24, p.241907, 2006.

Y. H. Kim, Y. K. Noh, M. D. Kim, J. E. Oh, and K. S. Chung, Transmission electron microscopy study of the initial growth stage of GaSb grown on Si(001) substrate by molecular beam epitaxy method, Thin solid films, vol.518, issue.8, pp.2280-2284, 2010.

G. Balakrishnan, S. Huang, L. R. Dawson, Y. C. Xin, P. Conlin et al., Growth mechanisms of highly mismatched AlSb on a Si substrate, Applied Physics Letters, vol.86, issue.3, p.34105, 2005.

G. Balakrishnan, S. Huang, A. Khoshakhlagh, L. R. Dawson, Y. C. Xin et al., High quality AlSb bulk material on Si substrates using a monolithic self-assembled quantum dot nucleation layer, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, vol.23, issue.3, pp.1010-1012, 2005.

S. H. Vajargah, S. Ghanad-tavakoli, J. S. Preston, R. N. Kleiman, and G. A. Botton, Growth mechanisms of GaSb heteroepitaxial films on Si with an AlSb buffer layer, Journal of Applied Physics, vol.114, issue.11, p.113101, 2013.

J. B. Rodriguez, K. Madiomanana, L. Cerutti, A. Castellano, and E. Tournié, X-ray diffraction study of GaSb grown by molecular beam epitaxy on silicon substrates, Journal of Crystal Growth, vol.439, pp.33-39, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01626675

F. Dimroth, T. Roesener, S. Essig, C. Weuffen, A. Wekkeli et al., Comparison of direct growth and wafer bonding for the fabrication of GaInP/GaAs dual-junction solar cells on silicon, IEEE Journal of Photovoltaics, vol.4, issue.2, pp.620-625, 2014.

J. W. Lee, H. Shichijo, H. L. Tsai, and R. J. Matyi, Defect reduction by thermal annealing of GaAs layers grown by molecular beam epitaxy on Si substrates, Applied Physics Letters, vol.50, issue.1, pp.31-33, 1987.

M. Yamaguchi, T. Nishioka, and M. Sugo, Analysis of strained-layer superlattice effects on dislocation density reduction in GaAs on Si substrates, Applied physics letters, vol.54, issue.1, pp.24-26, 1989.

M. Yamaguchi, Dislocation density reduction in heteroepitaxial III-V compound films on Si substrates for optical devices, Journal of Materials Research, vol.6, issue.2, pp.376-384, 1991.

K. Akahori, G. Wang, K. Okumura, T. Soga, T. Jimbo et al., Improvement of the MOCVD-grown InGaP-on-Si towards high-efficiency solar cell application. Solar energy materials and solar cells, vol.66, pp.593-598, 2001.

W. Stolz, Y. Horikoshi, M. Naganuma, and K. Nozawa, Optimized growth start and controlled formation of misfit dislocations for heteroepitaxial GaAs on (100)Si grown by migration-enhanced epitaxy, Journal of Crystal Growth, vol.95, issue.1-4, pp.87-90, 1989.

P. J. Taylor, W. A. Jesser, J. D. Benson, M. Martinka, J. H. Dinan et al., Optoelectronic device performance on reduced threading dislocation density GaAs/Si, Journal of Applied Physics, vol.89, issue.8, pp.4365-4375, 2001.

W. Y. Uen, S. Sakawa, and T. Nishinaga, Comparative study of amorphous and crystalline buffer layers in MBE growth of GaAs on Si, Journal of crystal growth, vol.115, issue.1-4, pp.122-127, 1991.

W. Y. Uen and T. Nishinaga, Growth of GaAs on Si by employing AlAs/GaAs double amorphous buffer, Journal of crystal growth, vol.128, issue.1-4, pp.521-526, 1993.

M. Peach and J. S. Koehler, The forces exerted on dislocations and the stress fields produced by them, Physical Review, vol.80, issue.3, p.436, 1950.

J. W. Matthews and A. E. Blakeslee, Defects in epitaxial multilayers: I. Misfit dislocations, Journal of Crystal growth, vol.27, pp.118-125, 1974.

J. S. Whelan, T. George, E. R. Weber, S. Nozaki, A. T. Wu et al., Transmission electron microscopy investigation of dislocation bending by GaAsP/GaAs strained-layer superlattices on heteroepitaxial GaAs/Si, Journal of applied physics, vol.68, issue.10, pp.5115-5118, 1990.

Z. Mi, J. Yang, P. Bhattacharya, and D. L. Huffaker, Self-organised quantum dots as dislocation filters: the case of GaAs-based lasers on silicon, Electronics Letters, vol.42, issue.2, 2006.

W. Qian, M. Skowronski, and R. Kaspi, Dislocation density reduction in GaSb films grown on GaAs substrates by molecular beam epitaxy, Journal of the Electrochemical Society, vol.144, issue.4, pp.1430-1434, 1997.

D. H. Nguyen, J. Park, Y. K. Noh, M. D. Kim, D. Lee et al., Strong photoluminescence at 1.53 µm from GaSb/AlGaSb multiple quantum wells grown on Si substrate, Applied Physics Letters, vol.95, issue.6, p.61910, 2009.

Y. K. Noh, M. D. Kim, J. E. Oh, W. C. Yang, and Y. H. Kim, Growth of low defect AlGaSb films on Si(100) using AlSb and InSb quantum dots intermediate layers, Journal of Crystal Growth, vol.323, issue.1, pp.405-408, 2011.

S. K. Madisetti, V. Tokranov, A. Greene, S. Novak, M. Yakimov et al., GaSb on Si: structural defects and their effect on surface morphology and electrical properties, MRS Online Proceedings Library Archive, vol.1635, pp.115-120, 2014.

S. Sasaki, K. Dropiewski, S. Madisetti, V. Tokranov, M. Yakimov et al., Electrical properties related to growth defects in metamorphic GaSb films on Si, Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, vol.35, issue.1, p.11203, 2017.

N. Jain and M. K. Hudait, III-V multijunction solar cell integration with silicon: present status, challenges and future outlook, Energy Harvesting and Systems, vol.1, issue.3-4, pp.121-145, 2014.

M. Yamaguchi, K. H. Lee, K. Araki, and N. Kojima, A review of recent progress in heterogeneous silicon tandem solar cells, Journal of Physics D: Applied Physics, vol.51, issue.13, p.133002, 2018.

M. R. Lueck, C. L. Andre, A. J. Pitera, M. L. Lee, E. A. Fitzgerald et al., Dual junction GaInP/GaAs solar cells grown on metamorphic SiGe/Si substrates with high open circuit voltage, IEEE Electron Device Letters, vol.27, issue.3, pp.142-144, 2006.

L. Wang, B. Conrad, A. Soeriyadi, X. Zhao, D. Li et al., Current matched three-terminal dual junction GaAsP/SiGe tandem solar cell on si, Solar Energy Materials and Solar Cells, vol.146, pp.80-86, 2016.

T. Soga, K. Baskar, T. Kato, T. Jimbo, and M. Umeno, MOCVD growth of high efficiency current-matched AlGaAs/Si tandem solar cell, Journal of crystal growth, vol.174, issue.1-4, pp.579-584, 1997.

T. J. Grassman, D. J. Chmielewski, S. D. Carnevale, J. A. Carlin, and S. A. , GaAs 0.75 P 0.25 /Si dual-junction solar cells grown by MBE and MOCVD, IEEE Journal of Photovoltaics, vol.6, issue.1, pp.326-331, 2016.

M. A. Green, Y. Hishikawa, E. D. Dunlop, D. H. Levi, J. Hohl-ebinger et al., Solar cell efficiency tables (version 53), Progress in Photovoltaics: Research and Applications, vol.27, pp.3-12, 2019.

M. Feifel, J. Ohlmann, J. Benick, M. Hermle, J. Belz et al., Direct growth of III-V/Silicon triple-junction solar cells with 19.7% efficiency, IEEE Journal of Photovoltaics, issue.99, pp.1-6, 2018.

K. Tanabe, K. Watanabe, and Y. Arakawa, III-V/Si hybrid photonic devices by direct fusion bonding, Scientific reports, vol.2, p.349, 2012.

E. Kasper, M. Bauer, and M. Oehme, Quantitative secondary ion mass spectrometry analysis of SiO 2 desorption during in situ heat cleaning, Thin Solid Films, vol.321, issue.1-2, pp.148-152, 1998.

K. Madiomanana, M. Bahri, J. B. Rodriguez, L. Largeau, L. Cerutti et al., Silicon surface preparation for III-V molecular beam epitaxy, Journal of Crystal Growth, vol.413, issue.0, pp.17-24, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01626282

E. D. Palik, Handbook of optical constants of solids, 1985.

. Ioffe, GaSb band structure and carrier concentration, pp.2018-2026

L. Tang, L. M. Fraas, Z. Liu, C. Xu, and X. Chen, Performance improvement of the GaSb thermophotovoltaic cells with n-type emitters, IEEE transactions on electron devices, vol.62, issue.9, pp.2809-2815, 2015.

B. Galiana, I. Rey-stolle, I. Beinik, C. Algora, C. Teichert et al., Characterization of antiphase domains on GaAs grown on Ge substrates by conductive atomic force microscopy for photovoltaic applications, Solar Energy Materials and Solar Cells, vol.95, issue.7, pp.1949-1954, 2011.

H. E. Ghitani, M. Pasquinelli, and S. Martinuzzi, Influence of dislocations on photovoltaic properties of multicrystalline silicon solar cells, Journal de Physique III, vol.3, issue.10, pp.1941-1946, 1993.
URL : https://hal.archives-ouvertes.fr/jpa-00249056

B. C. Juang, R. B. Laghumavarapu, B. J. Foggo, P. J. Simmonds, A. Lin et al., GaSb thermophotovoltaic cells grown on GaAs by molecular beam epitaxy using interfacial misfit arrays, Applied Physics Letters, vol.106, issue.11, p.111101, 2015.

M. Yamaguchi and C. Amano, Efficiency calculations of thin-film GaAs solar cells on Si substrates, Journal of applied physics, vol.58, issue.9, pp.3601-3606, 1985.

S. H. Lim, C. R. Allen, D. Ding, X. Liu, J. K. Furdyna et al., Cascade tunnel diode incorporating InAs/GaSb broken gap interface for multi-junction solar cells, Photovoltaic Specialists Conference (PVSC), pp.252-000255, 2011.