D. Lin, Y. Liu, and Y. Cui, Reviving the lithium metal anode for high-energy batteries, Nat. Nanotechnol, vol.12, issue.3, pp.194-206, 2017.

K. J. Stevenson, The origin, development, and future of the lithium-ion battery, J. Solid State Electrochem, vol.16, issue.6, pp.2017-2018, 2012.

S. Ramakumar, C. Deviannapoorani, L. Dhivya, L. S. Shankar, and R. Murugan, Lithium garnets: synthesis, structure, Li+ conductivity, Li+ dynamics and applications, Prog. Mater. Sci, vol.88, pp.325-411, 2017.

N. Besnard, Etude des propriétés de transport des charges aux différentes échelles d'une électrode de batterie lithium-ion et de leurs influences sur les performances en puissance pour l'application véhicule électrique, 2016.

N. Nitta, F. Wu, J. T. Lee, and G. Yushin, Li-ion battery materials: Present and future, Mater. Today, vol.18, issue.5, pp.252-264, 2015.

P. Verma, P. Maire, and P. Novák, A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries, Electrochim. Acta, vol.55, issue.22, pp.6332-6341, 2010.

S. Chen, K. Wen, J. Fan, Y. Bando, and D. Golberg, Progress and future prospects of high-voltage and high-safety electrolytes in advanced lithium batteries: from liquid to solid electrolytes, J. Mater. Chem. A, vol.6, issue.25, pp.11631-11663, 2018.

, Research Progress: Next Generation Secondary Batteries Toyota Motor Europe, p.29, 2019.

W. G. Zeier and J. Janek, A solid future for battery development, Nat. Energy, vol.1, p.16141, 2016.

R. Chen, W. Qu, X. Guo, L. Li, and F. Wu, The pursuit of solid-state electrolytes for lithium batteries: from comprehensive insight to emerging horizons, Mater. Horiz, vol.3, issue.6, pp.487-516, 2016.

M. Armand, The history of polymer electrolytes, Solid State Ionics, vol.69, issue.3-4, pp.309-319, 1994.

R. Bouchet, S. Lascaud, and M. Rosso, An EIS Study of the Anode Li/PEO-LiTFSI of a Li Polymer Battery, J. Electrochem. Soc, vol.150, issue.10, p.1385, 2003.

F. B. Dias, L. Plomp, and J. B. Veldhuis, Trends in polymer electrolytes for secondary lithium batteries, J. Power Sources, vol.88, issue.2, pp.169-191, 2000.

D. Devaux, R. Bouchet, D. Glé, and R. Denoyel, Mechanism of ion transport in PEO/LiTFSI complexes: Effect of temperature, molecular weight and end groups, Solid State Ionics, vol.227, pp.119-127, 2012.

D. Devaux, Optimization of Block Copolymer Electrolytes for Lithium Metal Batteries, Chem. Mater, vol.27, issue.13, pp.4682-4692, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01416733

Y. Tominaga and K. Yamazaki, Fast Li-ion conduction in poly(ethylene carbonate)-based electrolytes and composites filled with TiO 2 nanoparticles, Chem. Commun, vol.50, issue.34, pp.4448-4450, 2014.

J. Zhang, Safety-Reinforced Poly(Propylene Carbonate)-Based All-Solid-State Polymer Electrolyte for Ambient-Temperature Solid Polymer Lithium Batteries, Adv. Energy Mater, vol.5, issue.24, p.1501082, 2015.

J. C. Bachman, Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction, Chem. Rev, vol.116, issue.1, pp.140-162, 2016.

Y. S. Jung, D. Y. Oh, Y. J. Nam, and K. H. Park, Issues and challenges for bulk-type all-solid-state rechargeable lithium batteries using sulfide solid electrolytes, Isr. J. Chem, vol.55, issue.5, pp.472-485, 2015.

M. Tatsumisago and A. Hayashi, Sulfide Glass-Ceramic Electrolytes for All-SolidState Lithium and Sodium Batteries, Int. J. Appl. Glas. Sci, vol.5, issue.3, pp.226-235, 2014.

M. R. Busche, Situ Monitoring of Fast Li-Ion Conductor

, Chem. Mater, vol.28, issue.17, pp.6152-6165, 2016.

Y. Seino, T. Ota, K. Takada, A. Hayashi, and M. Tatsumisago, A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries, Energy Environ. Sci, vol.7, issue.2, pp.627-631, 2014.

D. Wohlmuth, V. Epp, and M. Wilkening,

. Li-nmr-spin, Lattice Relaxation, ChemPhysChem, vol.16, issue.12, pp.2582-2593, 2015.

A. Sakuda, A. Hayashi, and M. Tatsumisago, Interfacial Observation between LiCoO 2 Electrode and Li 2 S?P 2 S 5 Solid Electrolytes of All-Solid-State Lithium Secondary Batteries Using Transmission Electron Microscopy ?, Chem. Mater, vol.22, issue.3, pp.949-956, 2010.

N. Kamaya, A lithium superionic conductor, Nat. Mater, vol.10, issue.9, pp.682-686, 2011.

D. A. Weber, Structural Insights and 3D Diffusion Pathways within the Lithium Superionic Conductor Li10GeP2S12, Chem. Mater, vol.28, issue.16, pp.5905-5915, 2016.

Y. Kato, R. Saito, M. Sakano, A. Mitsui, M. Hirayama et al., Synthesis, structure and lithium ionic conductivity of solid solutions of Li10(Ge1?xMx)P2S12 (M = Si, Sn), vol.271, pp.60-64, 2014.

Y. Kato, High-power all-solid-state batteries using sulfide superionic conductors, Nat. Energy, vol.1, issue.4, p.16030, 2016.

F. Han, T. Gao, Y. Zhu, K. J. Gaskell, and C. Wang, A battery made from a single material, Adv. Mater, vol.27, issue.23, pp.3473-3483, 2015.

R. P. Rao and S. Adams, Studies of lithium argyrodite solid electrolytes for all-solidstate batteries, Phys. status solidi, vol.208, issue.8, pp.1804-1807, 2011.

J. B. Bates, Fabrication and characterization of amorphous lithium electrolyte thin films and rechargeable thin-film batteries, J. Power Sources, vol.43, issue.1-3, pp.103-110, 1993.

H. Hong, Crystal structure and ionic conductivity of Li14Zn(GeO4)4 and other new Li+ superionic conductors, Mater. Res. Bull, vol.13, issue.2, pp.117-124, 1978.

R. Kanno and M. Murayama, Lithium Ionic Conductor Thio-LISICON: The Li2S-GeS2-P2S5 System, J. Electrochem. Soc, vol.148, issue.7, p.742, 2001.

H. Aono, E. Sugimoto, Y. Sadaoka, N. Imanaka, and G. Adachi, Ionic Conductivity of Solid Electrolytes Based on Lithium Titanium Phosphate, J. Electrochem. Soc, vol.137, issue.4, p.1023, 1990.

J. K. Feng, L. Lu, and M. O. Lai, Lithium storage capability of lithium ion conductor Li1.5Al0.5Ge1.5(PO4)3, J. Alloys Compd, vol.501, issue.2, pp.255-258, 2010.

H. Xie, J. B. Goodenough, and Y. Li, Li1.2Zr1.9Ca0.1(PO4)3, a room-temperature Liion solid electrolyte, J. Power Sources, vol.196, issue.18, pp.7760-7762, 2011.

Y. Zhao and L. L. Daemen, Superionic Conductivity in Lithium-Rich Anti-Perovskites, J. Am. Chem. Soc, vol.134, issue.36, pp.15042-15047, 2012.

M. H. Braga, J. A. Ferreira, V. Stockhausen, J. E. Oliveira, and A. El-azab, Novel Li 3 ClO based glasses with superionic properties for lithium batteries, J. Mater. Chem. A, vol.2, issue.15, pp.5470-5480, 2014.

S. Troy, Life Cycle Assessment and resource analysis of all-solid-state batteries, Appl. Energy, vol.169, pp.757-767, 2016.

H. Visbal, Y. Aihara, S. Ito, T. Watanabe, Y. Park et al., The effect of diamondlike carbon coating on LiNi0.8Co0.15Al0.05O2 particles for all solid-state lithium-ion batteries based on Li2S-P2S5 glass-ceramics, J. Power Sources, vol.314, pp.85-92, 2016.

S. Ito, A rocking chair type all-solid-state lithium ion battery adopting Li2O-ZrO2 coated LiNi0.8Co0.15Al0.05O2 and a sulfide based electrolyte, J. Power Sources, vol.248, pp.943-950, 2014.

U. Ulissi, M. Agostini, S. Ito, Y. Aihara, and J. Hassoun, All solid-state battery using layered oxide cathode, lithium-carbon composite anode and thio-LISICON electrolyte, Solid State Ionics, vol.296, pp.13-17, 2016.

J. Yin, Influence of the Li-Ge-P-S based solid electrolytes on NCA electrochemical performances in all-solid-state lithium batteries, Solid State Ionics, vol.274, pp.8-11, 2015.

G. Peng, Insights on the fundamental lithium storage behavior of all-solid-state lithium batteries containing the LiNi 0.8 Co 0.15 Al 0.05 O 2 cathode and sulfide electrolyte, J. Power Sources, vol.307, pp.724-730, 2016.

Y. J. Nam, Bendable and Thin Sulfide Solid Electrolyte Film: A New Electrolyte Opportunity for Free-Standing and Stackable High-Energy All-Solid-State Lithium-Ion Batteries, Nano Lett, vol.15, issue.5, pp.3317-3323, 2015.

Y. J. Nam, D. Y. Oh, S. H. Jung, and Y. S. Jung, Toward practical all-solid-state lithium-ion batteries with high energy density and safety: Comparative study for electrodes fabricated by dry-and slurry-mixing processes, J. Power Sources, vol.375, pp.93-101, 2017.

, Toyota Prototypes All-solid-state Battery With 5x Higher Output Density | NIKKEI XTECH

, Report: Toyota looking to commercialize solid state Li-ion battery in 2015-2020

, Toyota: Solid-State Batteries Likely to Arrive in 2030

, Saft s'associe à des partenaires européens pour développer la batterie du futur | Saft Batteries

S. Geller, Crystal chemistry of the garnets, Zeitschrift fur Krist. -New Cryst. Struct, vol.125, issue.125, pp.1-47, 1967.

Q. Yang, H. Zhang, Y. Liu, Q. Wen, and L. Jia, The magnetic and dielectric properties of microwave sintered yttrium iron garnet (YIG), Mater. Lett, vol.62, pp.2647-2650, 2008.

C. R. Varney, D. T. Mackay, S. M. Reda, and F. A. Selim, On the optical properties of undoped and rare-earth-doped yttrium aluminium garnet single crystals, J. Phys. D. Appl. Phys, vol.45, issue.1, p.15103, 2012.

V. Thangadurai, H. Kaack, and W. J. Weppner, Novel fast lithium ion conduction in garnet-type Li5La3M2O12 (M = Nb, Ta), J. Am. Ceram. Soc, vol.86, issue.3, pp.437-440, 2003.

V. Thangadurai and W. Weppner, Li6ALa2Ta2O12 (A=Sr, Ba): Novel garnet-like oxides for fast lithium ion conduction, Adv. Funct. Mater, vol.15, issue.1, pp.107-112, 2005.

R. Murugan, V. Thangadurai, and W. Weppner, Fast lithium ion conduction in garnettype Li(7)La(3)Zr(2)O(12), Angew. Chem. Int. Ed. Engl, vol.46, issue.41, pp.7778-7781, 2007.

E. J. Cussen, The structure of lithium garnets: cation disorder and clustering in a new family of fast Li+ conductors, Chem. Commun. (Camb), issue.4, pp.412-413, 2006.

V. Thangadurai, S. Narayanan, and D. Pinzaru, Garnet-type solid-state fast Li ion conductors for Li batteries: critical review, Chem. Soc. Rev, vol.43, issue.13, pp.4714-4741, 2014.

M. P. O&apos;callaghan and E. J. Cussen, Lithium dimer formation in the Li-conducting garnets Li(5+x)Ba(x)La(3-x)Ta2O12 (0 < x < or =1.6), Chem. Commun. (Camb), vol.12, issue.20, pp.2048-2050, 2007.

M. Xu, M. S. Park, J. M. Lee, T. Y. Kim, Y. S. Park et al., Mechanisms of Li + transport in garnet-type cubic Li 3+xLa 3M 2O 12 (M = Te, Nb, Zr), Phys. Rev. BCondens. Matter Mater. Phys, vol.85, issue.5, pp.1-5, 2012.

A. K. Baral, S. Narayanan, F. Ramezanipour, and V. Thangadurai, Evaluation of fundamental transport properties of Li-excess garnet-type Li(5+2x)

, Y(x)O(12) (x = 0.25, 0.5 and 0.75) electrolytes using AC impedance and dielectric spectroscopy, Phys. Chem. Chem. Phys, vol.16, issue.23, pp.11356-65, 2014.

J. Awaka, N. Kijima, H. Hayakawa, and J. Akimoto, Synthesis and structure analysis of tetragonal Li7La3Zr2O12 with the garnet-related type structure, J. Solid State Chem, vol.182, issue.8, pp.2046-2052, 2009.

J. Percival, E. Kendrick, R. I. Smith, and P. R. Slater, Cation ordering in Li containing garnets: synthesis and structural characterisation of the tetragonal system, Li7La3Sn2O12, Dalton Trans, issue.26, pp.5177-5181, 2009.

C. A. Geiger, Crystal chemistry and stability of 'Li7La3Zr2O12' garnet: A fast lithium-ion conductor, Inorg. Chem, vol.50, issue.3, pp.1089-1097, 2011.

H. Buschmann, Structure and dynamics of the fast lithium ion conductor 'Li7La3Zr2O12, Phys. Chem. Chem. Phys, vol.13, issue.43, p.19378, 2011.

E. Rangasamy, J. Wolfenstine, and J. Sakamoto, The role of Al and Li concentration on the formation of cubic garnet solid electrolyte of nominal composition Li 7La 3Zr 2O 12, Solid State Ionics, vol.206, pp.28-32, 2012.

J. Van-den-broek, J. L. Rupp, and S. Afyon, Boosting the electrochemical performance of Li-garnet based all-solid-state batteries with Li4Ti5O12electrode: Routes to cheap and large scale ceramic processing, J. Electroceramics, vol.38, issue.2-4, pp.182-188, 2017.

A. Sharafi, H. M. Meyer, J. Nanda, J. Wolfenstine, and J. Sakamoto, Characterizing the Li-Li7La3Zr2O12 interface stability and kinetics as a function of temperature and current density, J. Power Sources, vol.302, pp.135-139, 2016.

W. Xia, Ionic Conductivity and Air Stability of Al-Doped Li7La3Zr2O12 Sintered in Alumina and Pt Crucibles, ACS Appl. Mater. Interfaces, vol.8, issue.8, pp.5335-5342, 2016.

J. Wolfenstine, J. Ratchford, E. Rangasamy, J. Sakamoto, and J. L. Allen, Synthesis and high Li-ion conductivity of Ga-stabilized cubic Li 7La 3Zr 2O 12, Mater. Chem. Phys, vol.134, issue.2-3, pp.571-575, 2012.

C. Bernuy-lopez, W. Manalastas, J. M. Lopez-del-amo, A. Aguadero, F. Aguesse et al., Atmosphere controlled processing of ga-substituted garnets for high li-ion conductivity ceramics, Chem. Mater, vol.26, issue.12, pp.3610-3617, 2014.

H. E. Shinawi and J. Janek, Stabilization of cubic lithium-stuffed garnets of the type 'li 7La3Zr2O12' by addition of gallium, J. Power Sources, vol.225, pp.13-19, 2013.

H. Buschmann, S. Berendts, B. Mogwitz, and J. Janek, Lithium metal electrode kinetics and ionic conductivity of the solid lithium ion conductors 'Li7La3Zr2O12' and Li7-xLa3Zr2-xTaxO12 with garnet-type structur, J. Power Sources, vol.206, pp.236-244, 2012.

S. Adams and R. P. Rao, Ion transport and phase transition in Li7?xLa3(Zr2?xMx)O12 (M = Ta5+, Nb5+, x = 0, 0.25), vol.22, p.1426, 2012.

S. Ohta, Y. Kihira, and T. Asaoka, Grain Boundary Analysis of the Garnet-Like Oxides Li7+X?YLa3?XAXZr2?YNbYO12 (A = Sr or Ca), Front. Energy Res, vol.4, pp.1-6, 2016.

S. Song, D. Sheptyakov, A. M. Korsunsky, H. M. Duong, and L. Lu, High Li ion conductivity in a garnet-type solid electrolyte via unusual site occupation of the doping Ca ions, Mater. Des, vol.93, pp.232-237, 2016.

A. Dumon, M. Huang, Y. Shen, and C. Nan, High Li ion conductivity in strontium doped Li 7 La 3 Zr 2 O 12 garnet, Solid State Ionics, vol.243, pp.36-41, 2013.

L. J. Miara, W. D. Richards, Y. E. Wang, and G. Ceder, First-principles studies on cation dopants and electrolyte|cathode interphases for lithium garnets, Chem. Mater, vol.27, issue.11, pp.4040-4047, 2015.

Y. Li, J. Han, C. Wang, H. Xie, and J. B. Goodenough, Optimizing Li+ conductivity in a garnet framework, J. Mater. Chem, vol.22, p.15357, 2012.

Y. Wang and W. Lai, High Ionic Conductivity Lithium Garnet Oxides of Li 7?x La 3 Zr 2?x Ta x O 12 Compositions, Electrochem. Solid-State Lett, vol.15, issue.5, pp.68-71, 2012.

J. L. Allen, J. Wolfenstine, E. Rangasamy, and J. Sakamoto, Effect of substitution (Ta, Al, Ga) on the conductivity of Li 7La 3Zr 2O 12, J. Power Sources, vol.206, pp.315-319, 2012.

Y. Matsuda, K. Sakamoto, M. Matsui, O. Yamamoto, Y. Takeda et al., Phase formation of a garnet-type lithium-ion conductor Li7-3xAlxLa3Zr2O12, Solid State Ionics, vol.277, pp.23-29, 2015.

A. E. Danks, S. R. Hall, and Z. Schnepp, The evolution of 'sol-gel' chemistry as a technique for materials synthesis, Mater. Horiz, vol.3, issue.2, pp.91-112, 2016.

C. H. Lee, Low temperature synthesis of garnet type solid electrolyte by modified polymer complex process and its characterization, Mater. Res. Bull, vol.83, pp.309-315, 2016.

J. Sakamoto, E. Rangasamy, H. Kim, Y. Kim, and J. Wolfenstine, Synthesis of nanoscale fast ion conducting cubic Li 7 La 3 Zr 2 O 12, Nanotechnology, vol.24, issue.42, p.424005, 2013.

I. Kokal, M. Somer, P. H. Notten, and H. T. Hintzen, Sol-gel synthesis and lithium ion conductivity of Li7La3Zr2O12 with garnet-related type structure, Solid State Ionics, vol.185, issue.1, pp.42-46, 2011.

Y. Jin and P. J. Mcginn, Al-doped Li7La3Zr2O12 synthesized by a polymerized complex method, J. Power Sources, vol.196, issue.20, pp.8683-8687, 2011.

S. Teng, J. Tan, and A. Tiwari, Recent developments in garnet based solid state electrolytes for thin film batteries, Curr. Opin. Solid State Mater. Sci, vol.18, issue.1, pp.29-38, 2014.

Y. Jin and P. J. Mcginn, Li7La3Zr2O12 electrolyte stability in air and fabrication of a Li/Li7La3Zr 2O12/Cu0.1V2O5 solid-state battery, J. Power Sources, vol.239, pp.326-331, 2013.

X. Han, Negating interfacial impedance in garnet-based solid-state Li metal batteries, Nat. Mater, vol.1, 2016.

J. Wolfenstine, E. Rangasamy, J. L. Allen, and J. Sakamoto, High conductivity of dense tetragonal Li7La3Zr2O12, J. Power Sources, vol.208, pp.193-196, 2012.

K. Kim, Cubic phase behavior and lithium ion conductivity of Li7La3Zr2O12 prepared by co-precipitation synthesis for all-solid batteries, J. Ind. Eng. Chem, vol.36, pp.1-5, 2016.

F. Langer, J. Glenneberg, I. Bardenhagen, and R. Kun, Synthesis of single phase cubic Al-substituted Li7La3Zr2O12 by solid state lithiation of mixed hydroxides, J. Alloys Compd, vol.645, pp.64-69, 2015.

H. Imagawa, S. Ohta, Y. Kihira, and T. Asaoka, Garnet-type Li6.75La3Zr1.75Nb0.25O12 synthesized by coprecipitation method and its lithium ion conductivity, Solid State Ionics, vol.262, pp.4-7, 2013.

R. Djenadic, Nebulized spray pyrolysis of Al-doped Li7La3Zr2O12 solid electrolyte for battery applications, Solid State Ionics, vol.263, pp.49-56, 2014.

M. Botros, R. Djenadic, O. Clemens, M. Möller, and H. Hahn, Field assisted sintering of fine-grained Li7?3xLa3Zr2AlxO12 solid electrolyte and the influence of the microstructure on the electrochemical performance, J. Power Sources, vol.309, pp.108-115, 2016.

B. Xu, Multistep sintering to synthesize fast lithium garnets, J. Power Sources, vol.302, pp.291-297, 2016.

Y. Chen, E. Rangasamy, C. R. Cruz, C. Liang, and K. An, A study of suppressed formation of low-conductivity phases in doped Li7La3Zr2O12 garnets by in situ neutron diffraction, J. Mater. Chem. A, vol.3, issue.45, pp.22868-22876, 2015.

G. Larraz, A. Orera, and M. L. Sanjuán, Cubic phases of garnet-type Li7La3Zr2O12: the role of hydration, J. Mater. Chem. A, vol.1, issue.37, p.11419, 2013.

M. Huang, Effect of sintering temperature on structure and ionic conductivity of Li7?xLa3Zr2O12?0.5x (x=0.5~0.7) ceramics, pp.41-45, 2011.

Y. Li, Z. Wang, C. Li, Y. Cao, and X. Guo, Densification and ionic-conduction improvement of lithium garnet solid electrolytes by flowing oxygen sintering, J. Power Sources, vol.248, pp.642-646, 2014.

K. Tadanaga, R. Takano, T. Ichinose, S. Mori, A. Hayashi et al., Low temperature synthesis of highly ion conductive Li7La3Zr2O12-Li3BO3composites, Electrochem. commun, vol.33, issue.3, pp.51-54, 2013.

I. N. David, T. Thompson, J. Wolfenstine, J. L. Allen, and J. Sakamoto, Microstructure and li-ion conductivity of hot-pressed cubic Li7la3Zr2O12, J. Am. Ceram. Soc, vol.98, issue.4, pp.1209-1214, 2015.

Y. Zhang, F. Chen, R. Tu, Q. Shen, and L. Zhang, Field assisted sintering of dense Al-substituted cubic phase Li7La3Zr2O12 solid electrolytes, J. Power Sources, vol.268, pp.960-964, 2014.

S. W. Baek, J. M. Lee, T. Y. Kim, M. S. Song, and Y. Park, Garnet related lithium ion conductor processed by spark plasma sintering for all solid state batteries, J. Power Sources, vol.249, pp.197-206, 2014.

J. F. Wu, Gallium-doped Li7La3Zr2O12garnet-type electrolytes with high lithium-ion conductivity, ACS Appl. Mater. Interfaces, vol.9, issue.2, pp.1542-1552, 2017.

J. F. Wu, W. K. Pang, V. K. Peterson, L. Wei, and X. Guo, Garnet-Type Fast Li-Ion Conductors with High Ionic Conductivities for All-Solid-State Batteries, ACS Appl. Mater. Interfaces, vol.9, issue.14, pp.12461-12468, 2017.

L. Buannic, Dual Substitution Strategy to Enhance Li+ Ionic Conductivity in Li7La3Zr2O12 Solid Electrolyte, Chem. Mater, vol.29, issue.4, pp.1769-1778, 2017.

C. L. Tsai, Li7La3Zr2O12 Interface Modification for Li Dendrite Prevention, ACS Appl. Mater. Interfaces, vol.8, issue.16, pp.10617-10626, 2016.

Y. Zhu, First principles study on electrochemical and chemical stability of solid electrolyte-electrode interfaces in all-solid-state Li-ion batteries, J. Mater. Chem. A, vol.4, issue.9, pp.3253-3266, 2016.

F. Han, Y. Zhu, X. He, Y. Mo, and C. Wang, Electrochemical Stability of Li10GeP2S12 and Li7La3Zr2O12 Solid Electrolytes, Adv. Energy Mater, pp.1-9, 2016.

C. Monroe and J. Newman, The Impact of Elastic Deformation on Deposition Kinetics at Lithium/Polymer Interfaces, J. Electrochem. Soc, vol.152, issue.2, p.396, 2005.

S. Yu, Elastic Properties of the Solid Electrolyte Li 7 La 3 Zr 2 O 12 (LLZO), Chem. Mater, vol.28, issue.1, pp.197-206, 2016.

S. Ohta, T. Kobayashi, and T. Asaoka, High lithium ionic conductivity in the garnettype oxide Li7?X La3(Zr2?X, NbX)O12 (X = 0-2), J. Power Sources, vol.196, issue.6, pp.3342-3345, 2011.

S. Kumazaki, High lithium ion conductive Li7La3Zr2O12 by inclusion of both Al and Si, Electrochem. commun, vol.13, issue.5, pp.509-512, 2011.

T. Thompson, Electrochemical Window of the Li-Ion Solid Electrolyte Li7La3Zr2O12, ACS Energy Lett, vol.2, issue.2, pp.462-468, 2017.

B. Liu, Garnet Solid Electrolyte Protected Li-Metal Batteries, ACS Appl. Mater. Interfaces, vol.9, issue.22, pp.18809-18815, 2017.

B. Liu, 3D lithium metal anodes hosted in asymmetric garnet frameworks toward high energy density batteries, Energy Storage Mater, vol.14, pp.376-382, 2018.

M. Finsterbusch, T. Danner, C. L. Tsai, S. Uhlenbruck, A. Latz et al., High Capacity Garnet-Based All-Solid-State Lithium Batteries: Fabrication and 3D-Microstructure Resolved Modeling, ACS Appl. Mater. Interfaces, vol.10, issue.26, pp.22329-22339, 2018.

F. Han, Interphase Engineering Enabled All-Ceramic Lithium Battery, Joule, vol.2, issue.3, pp.497-508, 2018.

, Références Bibliographiques du chapitre, vol.2

R. Murugan, V. Thangadurai, and W. Weppner, Fast lithium ion conduction in garnettype Li(7)La(3)Zr(2)O(12), Angew. Chem. Int. Ed. Engl, vol.46, issue.41, pp.7778-7781, 2007.

C. A. Geiger, Crystal chemistry and stability of 'Li7La3Zr2O12' garnet: A fast lithium-ion conductor, Inorg. Chem, vol.50, issue.3, pp.1089-1097, 2011.

H. Buschmann, Structure and dynamics of the fast lithium ion conductor 'Li7La3Zr2O12, Phys. Chem. Chem. Phys, vol.13, issue.43, p.19378, 2011.

F. Tietz, T. Wegener, M. T. Gerhards, M. Giarola, and G. Mariotto, Synthesis and Raman micro-spectroscopy investigation of Li7La3Zr2O12, Solid State Ionics, vol.230, issue.C, pp.77-82, 2013.

A. Dumon, M. Huang, Y. Shen, and C. Nan, High Li ion conductivity in strontium doped Li 7 La 3 Zr 2 O 12 garnet, Solid State Ionics, vol.243, pp.36-41, 2013.

E. Rangasamy, J. Wolfenstine, and J. Sakamoto, The role of Al and Li concentration on the formation of cubic garnet solid electrolyte of nominal composition Li 7La 3Zr 2O 12, Solid State Ionics, vol.206, pp.28-32, 2012.

J. F. Wu, W. K. Pang, V. K. Peterson, L. Wei, and X. Guo, Garnet-Type Fast Li-Ion Conductors with High Ionic Conductivities for All-Solid-State Batteries, ACS Appl. Mater. Interfaces, vol.9, issue.14, pp.12461-12468, 2017.

D. Rettenwander, Structural and Electrochemical Consequences of Al and Ga Cosubstitution in Li 7 La 3 Zr 2 O 12 Solid Electrolytes, Chem. Mater, vol.28, issue.7, pp.2384-2392, 2016.

P. Fleming, R. A. Farrell, J. D. Holmes, and M. A. Morris, The rapid formation of La(OH)3from La2O3powders on exposureto water vapor, J. Am. Ceram. Soc, vol.93, issue.4, pp.1187-1194, 2010.

Y. Tong, Y. Wang, Z. Yu, X. Wang, X. Yang et al., Preparation and characterization of pyrochlore La2Zr2O7 nanocrystals by stearic acid method, Mater. Lett, vol.62, issue.6-7, pp.889-891, 2008.

Y. Suzuki, Transparent cubic garnet-type solid electrolyte of Al2O3-doped Li7La3Zr2O12, Solid State Ionics, vol.278, pp.172-176, 2015.

J. L. Le-bail and H. Duroy, Ab-initio structure determination of LiSbWO6 by X-ray powder diffraction, Mater. Res. Bull, vol.23, issue.3, pp.447-452, 1988.

Z. Hu, H. Liu, H. Ruan, R. Hu, Y. Su et al., High Li-ion conductivity of Aldoped Li7La3Zr2O12 synthesized by solid-state reaction, Ceram. Int, pp.1-5, 2016.

C. Deviannapoorani, S. Ramakumar, N. Janani, and R. Murugan, Synthesis of lithium garnets from La2Zr2O7pyrochlore, Solid State Ionics, vol.283, pp.123-130, 2015.

R. Bjørk, V. Tikare, H. L. Frandsen, and N. Pryds, The effect of particle size distributions on the microstructural evolution during sintering, J. Am. Ceram. Soc, vol.96, issue.1, pp.103-110, 2013.

N. Randrianantoandro, A. M. Mercier, M. Hervieu, and J. M. Grenèche, Direct phase transformation from hematite to maghemite during high energy ball milling, Mater. Lett, vol.47, issue.3, pp.150-158, 2001.

Y. Murase and E. Kato, Phase Transformation of Zirconia by Ball-Milling, J. Am. Ceram. Soc, vol.62, issue.9, pp.527-527, 1979.

W. Gu, M. Ezbiri, R. Prasada-rao, M. Avdeev, and S. Adams, Effects of penta-and trivalent dopants on structure and conductivity of Li7La3Zr2O12, Solid State Ionics, vol.274, pp.100-105, 2015.

X. Tong, V. Thangadurai, and E. D. Wachsman, Highly conductive Li garnets by a multielement doping strategy, Inorg. Chem, vol.54, issue.7, pp.3600-3607, 2015.

M. Huang, Effect of sintering temperature on structure and ionic conductivity of Li7?xLa3Zr2O12?0.5x (x=0.5~0.7) ceramics, pp.41-45, 2011.

L. Cheng, The origin of high electrolyte-electrode interfacial resistances in lithium cells containing garnet type solid electrolytes, Phys. Chem. Chem. Phys, vol.16, pp.18294-18300, 2014.

R. Shin, Sintering behavior of garnet-type Li 7 La 3 Zr 2 O 12 -Li 3 BO 3 composite solid electrolytes for all-solid-state lithium batteries, Solid State Ionics, vol.301, issue.21, pp.10-14, 2017.

L. Cheng, Effect of surface microstructure on electrochemical performance of garnet solid electrolytes, ACS Appl. Mater. Interfaces, vol.7, issue.3, pp.2073-2081, 2015.

I. N. David, T. Thompson, J. Wolfenstine, J. L. Allen, and J. Sakamoto, Microstructure and li-ion conductivity of hot-pressed cubic Li7la3Zr2O12, J. Am. Ceram. Soc, vol.98, issue.4, pp.1209-1214, 2015.

Y. Kim, H. Jo, J. L. Allen, H. Choe, J. Wolfenstine et al., The Effect of Relative Density on the Mechanical Properties of Hot-Pressed Cubic Li 7 la 3 Zr 2 O 12, J. Am. Ceram. Soc, vol.99, issue.4, pp.1367-1374, 2016.

A. Sharafi, Impact of air exposure and surface chemistry on Li-Li 7 La 3 Zr 2 O 12 interfacial resistance, J. Mater. Chem. A, vol.5, issue.26, pp.13475-13487, 2017.

G. Larraz, A. Orera, and M. L. Sanjuán, Cubic phases of garnet-type Li7La3Zr2O12: the role of hydration, J. Mater. Chem. A, vol.1, issue.37, p.11419, 2013.

K. Hofstetter, A. J. Samson, S. Narayanan, and V. Thangadurai, Present understanding of the stability of Li-stuffed garnets with moisture, carbon dioxide, and metallic lithium, J. Power Sources, vol.390, pp.297-312, 2018.

N. C. Rosero-navarro, T. Yamashita, A. Miura, M. Higuchi, and K. Tadanaga, Effect of Sintering Additives on Relative Density and Li-ion Conductivity of Nb-Doped Li7La3ZrO12Solid Electrolyte, J. Am. Ceram. Soc, vol.100, issue.1, pp.276-285, 2017.

L. Cheng, The origin of high electrolyte-electrode interfacial resistances in lithium cells containing garnet type solid electrolytes, Phys. Chem. Chem. Phys, vol.16, pp.18294-18300, 2014.

M. Wang and J. Sakamoto, Correlating the interface resistance and surface adhesion of the Li metal-solid electrolyte interface, J. Power Sources, vol.377, pp.7-11, 2017.

A. Sharafi, Impact of air exposure and surface chemistry on Li-Li 7 La 3 Zr 2 O 12 interfacial resistance, J. Mater. Chem. A, vol.5, issue.26, pp.13475-13487, 2017.

F. Aguesse, Investigating the dendritic growth during full cell cycling of garnet electrolyte in direct contact with Li metal, ACS Appl. Mater. Interfaces, 2017.

A. Sharafi, H. M. Meyer, J. Nanda, J. Wolfenstine, and J. Sakamoto, Characterizing the Li-Li7La3Zr2O12 interface stability and kinetics as a function of temperature and current density, J. Power Sources, vol.302, pp.135-139, 2016.

E. J. Cheng, A. Sharafi, and J. Sakamoto, Intergranular Li metal propagation through polycrystalline Li6.25Al0.25La3Zr2O12 ceramic electrolyte, Electrochim. Acta, vol.223, pp.85-91, 2017.

Y. Kim, Electrochemical Stability of Li6.5La3Zr1.5M0.5O12 (M = Nb or Ta) against Metallic Lithium, vol.4, pp.1-7, 2016.

H. Buschmann, S. Berendts, B. Mogwitz, and J. Janek, Lithium metal electrode kinetics and ionic conductivity of the solid lithium ion conductors 'Li7La3Zr2O12' and Li7-xLa3Zr2-xTaxO12 with garnet-type structur, J. Power Sources, vol.206, pp.236-244, 2012.

F. Yonemoto, A. Nishimura, M. Motoyama, and N. Tsuchimine, Temperature effects on cycling stability of Li plating / stripping on Ta-doped Li7La3Zr2O12, J. Power Sources, vol.343, pp.207-215, 2017.

A. Sharafi, Surface Chemistry Mechanism of Ultra-Low Interfacial Resistance in the Solid-State Electrolyte Li7La3Zr2O12, Chem. Mater, vol.29, issue.18, pp.7961-7968, 2017.

J. T. Irvine, D. C. Sinclair, and A. R. West, Electroceramics: Characterization by Impedance Spectroscopy, Adv. Mater, vol.2, issue.3, pp.132-138, 1990.

J. F. Wu, W. K. Pang, V. K. Peterson, L. Wei, and X. Guo, Garnet-Type Fast Li-Ion Conductors with High Ionic Conductivities for All-Solid-State Batteries, ACS Appl. Mater. Interfaces, vol.9, issue.14, pp.12461-12468, 2017.

H. Buschmann, Structure and dynamics of the fast lithium ion conductor 'Li7La3Zr2O12, Phys. Chem. Chem. Phys, vol.13, issue.43, p.19378, 2011.

R. Schmidt, Impedance Spectroscopy of Electroceramics, 1987.

S. Ramakumar, C. Deviannapoorani, L. Dhivya, L. S. Shankar, and R. Murugan, Lithium garnets: synthesis, structure, Li+ conductivity, Li+ dynamics and applications, Prog. Mater. Sci, vol.88, pp.325-411, 2017.

D. Edwards, D. , J. Hwang, J. Ford, S. et al., correctionsExperimental limitations in impedance spectroscopy:Part V. Apparatus contributions and, Solid State Ionics, vol.99, issue.1-2, pp.85-93, 1997.

R. Chen, W. Qu, X. Guo, L. Li, and F. Wu, The pursuit of solid-state electrolytes for lithium batteries: from comprehensive insight to emerging horizons, Mater. Horiz, vol.3, issue.6, pp.487-516, 2016.

W. Luo, Transition from Superlithiophobicity to Superlithiophilicity of Garnet Solid-State Electrolyte, J. Am. Chem. Soc, vol.138, issue.37, pp.12258-12262, 2016.

X. Han, Negating interfacial impedance in garnet-based solid-state Li metal batteries, Nat. Mater, vol.1, 2016.

C. L. Tsai, Li7La3Zr2O12 Interface Modification for Li Dendrite Prevention, ACS Appl. Mater. Interfaces, vol.8, issue.16, pp.10617-10626, 2016.

W. Luo, Reducing Interfacial Resistance between Garnet-Structured Solid-State Electrolyte and Li-Metal Anode by a Germanium Layer, Adv. Mater, vol.29, issue.22, pp.1-7, 2017.

K. K. Fu, Toward garnet electrolyte-based Li metal batteries: An ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface, Sci. Adv, vol.3, issue.4, pp.1-12, 2017.

B. Liu, Garnet Solid Electrolyte Protected Li-Metal Batteries, ACS Appl. Mater. Interfaces, vol.9, issue.22, pp.18809-18815, 2017.

R. Basappa, T. Ito, T. Morimura, R. Bekarevich, K. Mitsuishi et al., Grain boundary modification to suppress lithium penetration through garnettype solid electrolyte, J. Power Sources, vol.363, pp.145-152, 2017.

, Pour rappel, le terme « demi-cellule » désigne ici le bloc comprenant une couche d'électrolyte solide (LLZO) et une couche de cathode composite

L. , essayer de densifier en une seule étape cette demi-cellule avec les ajustements de protocole qui ont été fait précédemment

, Les conditions pour chaque tentative seront ainsi les suivantes : ? Atmosphère : argon ? Pression constante appliquée : 126 MPa ? Rampe de température en montée : 250°C/min ? Palier : 800°C pendant 20 minutes

, Bien que très épaisse, elle permettra à la demi-cellule d'avoir la tenue mécanique nécessaire afin d'éviter au maximum sa rupture durant le protocole de CUC et lors de son extraction de la matrice, vol.50, p.50

. Llzo/lco)-sera-déposée-dans-le-moule-sur-le-llzo-pré-compacté, , vol.20, p.100

, Celui-ci sera soigneusement étalé sur toute la surface avec une spatule puis avec une légère pression/rotation d'un piston en inox. Pour finir, un élément protecteur sera mis ou non au-dessus de la couche de composite mais avec dans tous les cas

, Image 21 -Demi-cellule (LCO+LLZO / LLZO) contenant 20 mg de composite à différentes étapes d'abrasion : -340 µm (a), -360 µm (b)

, La quantité et donc l'épaisseur de la couche composite est trop faible pour pouvoir être atteinte par abrasion lorsqu'une couche de LLZO est densifiée par-dessus

, Malheureusement, cette technique est la seule permettant d'éviter la réduction du LCO

W. G. Zeier and J. Janek, A solid future for battery development, Nat. Energy, vol.1, p.16141, 2016.

D. Liu, Spinel materials for high-voltage cathodes in Li-ion batteries, RSC Adv, vol.4, issue.1, pp.154-167, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00983250

N. Nitta, F. Wu, J. T. Lee, and G. Yushin, Li-ion battery materials: Present and future, Mater. Today, vol.18, issue.5, pp.252-264, 2015.

Y. Wang and W. Lai, Phase transition in lithium garnet oxide ionic conductors Li7La3Zr2O12: The role of Ta substitution and H2O/CO2 exposure, J. Power Sources, vol.275, pp.612-620, 2015.

M. Wang and J. Sakamoto, Correlating the interface resistance and surface adhesion of the Li metal-solid electrolyte interface, J. Power Sources, vol.377, pp.7-11, 2017.

G. Larraz, A. Orera, and M. L. Sanjuán, Cubic phases of garnet-type Li7La3Zr2O12: the role of hydration, J. Mater. Chem. A, vol.1, issue.37, p.11419, 2013.

C. Deviannapoorani, S. Ramakumar, N. Janani, and R. Murugan, Synthesis of lithium garnets from La2Zr2O7pyrochlore, Solid State Ionics, vol.283, pp.123-130, 2015.

E. Yi, W. Wang, J. Kieffer, and R. M. Laine, Key parameters governing the densification of cubic-Li7La3Zr2O12 Li+ conductors, J. Power Sources, vol.352, pp.156-164, 2017.

G. E. Spriggs, 13.5 Properties of diamond and cubic boron nitride, Powder Metallurgy Data. Refractory, Hard and Intermetallic Materials, pp.118-139

S. Meseguer, Development of blue ceramic dyes from cobalt phosphates, Ceram. Int, vol.34, issue.6, pp.1121-1130, 2001.

J. A. Badenes, Colour analysis of some cobalt-based blue pigments, J. Eur. Ceram. Soc, vol.21, issue.8, pp.1121-1130, 2001.

A. G. Vendilo, N. E. Kovaleva, V. I. Chistov, and V. M. Retivov, Potassium cobaltinitrite, Russ. J. Inorg. Chem, vol.56, issue.4, pp.501-505, 2011.

X. Han, Negating interfacial impedance in garnet-based solid-state Li metal batteries, Nat. Mater, vol.1, 2016.

C. L. Tsai, Li7La3Zr2O12 Interface Modification for Li Dendrite Prevention, ACS Appl. Mater. Interfaces, vol.8, issue.16, pp.10617-10626, 2016.

K. Schroder, Mechanisms of Photonic Curing TM : Processing High Temperature Films on Low Temperature Substrates, vol.2, pp.220-223, 2011.

W. Liu, Enhancing ionic conductivity in composite polymer electrolytes with wellaligned ceramic nanowires, Nat. Energy, vol.2, issue.5, p.17035, 2017.

K. Fu, Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries, Proc. Natl. Acad. Sci, vol.113, issue.26, pp.7094-7099, 2016.

, 400 tr/min, 6h, changement de direction toutes les 5 min avec 2,5 min de pause, Broyage à billes du précipité avec LiNO3 : ? Configuration: broyage centrifuge (axe de rotation unique

?. Média-de-broyage, zircone yttriée (ZrO2) , bol de broyage de 250 mL, billes de 10 mm en ZrO2, ratio volumique bille / poudre = 6

, Broyage en voie liquide avec iPrOH

, Calcination ? Configuration: four à moufle et creuset en MgO ? Conditions: sous air, 900°C pendant 6h avec une rampe en montée de 2°C/min et en descente de 5°C/min la diffusion, ou dispersion angulaire

. Le, lorsqu'une particule est éclairée par une onde plane monochromatique -de type source LASER -, elle perturbe le trajet

, L'expérience consiste à mesurer l'intensité lumineuse diffusée en fonction de l'angle polaire. Les caractéristiques d'intensité, ou indicatrice de diffusion, varient de manière importante avec le paramètre de taille de la particule

, Le granulomètre est composé d'un émetteur LASER, d'un récepteur composé de capteurs angulaires et d'un espace entre les deux, où l'échantillon va circuler à travers une cellule. Les poudres sont dispersées dans de l'éthanol. Les agglomérats sont cassés en activant la sonde à ultrason pendant 3 minutes. La suspension circule devant le faisceau LASER à grande vitesse ce qui permet la mesure sur un grand nombre de points. Typiquement, l'appareil moyenne 20000 distributions de tailles de particules sur un échantillon, Les mesures par granulométrie LASER ont été réalisées grâce à un granulomètre LASER MALVERN (Mastersizer S modèle MSS) présenté sur l'Image, vol.22

A. Kleitz and D. Boulaud, Granulométrie des particules en mouvement et des aérosols, 1995.