L. Antanaviciute, F. Fernàndez-fernàndez, J. Jansen, E. Banchi, and K. M. Evans, Development of a dense SNP-based linkage map of an apple rootstock progeny using the Malus Infinium whole genome genotyping array, BMC Genomics, vol.13, p.203, 2012.

D. R. Bentley, Whole-genome re-sequencing. Current opinion in genetics & development, vol.16, pp.545-552, 2006.

L. Brewer and P. Alspach, Resistance to scab caused by Venturia pirina in interspecific pear (Pyrus spp.) hybrids, New Zealand Journal of Crop and Horticultural Science, vol.37, pp.211-218, 2009.

L. Brewer, P. Alspach, and V. Bus, Fruit and leaf incidence of pear scab (Venturia pirina Aderh.) in mixed European and Asian pear progenies, Acta Horticulturae, vol.671, pp.595-600, 2005.

R. L. Bell, Host resistance to pear psylla of breeding program selections and cultivars, HortScience, vol.48, pp.143-145, 2013.

R. L. Bell, Additional East European Pyrus germplasm with resistance to pear psylla nymphal feeding, HortScience, vol.27, pp.412-413, 1992.

R. L. Bell, Inheritance of resistance to pear psylla nymphal feeding in pear (Pyrus communis L.) of European origin, HortScience, vol.48, pp.425-427, 2013.

R. L. Bell, Evaluation of Pyrus germplasm for resistance to the pear psylla, Acta Horticulturae, vol.161, pp.234-237, 1984.

R. L. Bell and L. C. Stuart, Resistance in Eastern European Pyrus germplasm to pear psylla nymphal feeding, HortScience, vol.25, pp.789-791, 1990.

S. Berrada, T. X. Nguyen, and J. Lemoine, Thirteen pear species and cultivars evaluated for resistance to Cacopsylla pyri (Homoptera : Psyllidae), Environ Entomolgy, vol.24, pp.1604-1607, 1995.

L. Bouvier, M. Bourcy, and M. Boulay, European pear cultivar resistance to bio-pests: scab (Venturia pirina) and psylla (Cacopsylla pyri), Acta Horticulturae, vol.909, pp.459-470, 2011.

R. Buès, L. Boudinhon, and J. F. Toubon, Resistance of pear psylla (Cacopsylla pyri L.; Hom., Psyllidae) to deltamethrin and synergism with piperonyl butoxide, J Appl Entomol, vol.127, pp.305-312, 2003.

V. Bus, H. Bassett, and D. Bowatte, Genome mapping of an apple scab, a powdery mildew and a woolly apple aphid resistance gene from open-pollinated Mildew Immune Selection, Tree Genet Genomes, vol.6, pp.477-487, 2010.

V. Bus, D. Chagné, and H. Bassett, Genome mapping of three major resistance genes to woolly apple aphid (Eriosoma lanigerum Hausm, Tree Genet Genomes, vol.4, pp.223-236, 2008.

B. A. Butt, L. C. Stuart, and R. L. Bell, Feeding behavior of pear psylla (Homoptra: Psyllidae) nymphs on susceptible and resistant Pyrus germplasm, J Econ Entomolgy, vol.81, pp.1394-1397, 1988.

F. Calenge, D. Drouet, and C. Denancé, Identification of a major QTL together with several minor additive or epistatic QTLs for resistance to fire blight in apple in two related progenies, Theor Appl Genet, vol.111, pp.346-354, 2002.

D. Chagné, R. N. Crowhurst, and M. Pindo, The draft genome sequence of European pear (Pyrus communis L, Bartlett'). PLoS One, 2014.

G. A. Churchill and R. W. Doerge, Empirical threshold values for quantitative trait mapping, Genetics, vol.138, pp.963-71, 1994.

S. Civolani, The past and present of pear protection against the pear psylla, Cacopsylla pyri L. Insectic. -Pest Eng. Dr. Farzana Perveen, pp.385-408, 2012.

S. Civolani, G. Grandi, and M. Chicca, Probing behaviour of Cacopsylla pyri on a resistant pear selection, J Appl Entomol, vol.137, pp.365-375, 2013.

S. Civolani, R. Peretto, and L. Caroli, Preliminary resistance screening on abamectin in pear psylla (Hemiptera: Psyllidae) in Northern Italy, J Econ Entomol, vol.100, pp.1637-1641, 2007.

B. Collard, M. Jahufer, J. B. Brouwer, and E. Pang, An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: The basic concepts, Euphytica, vol.142, pp.169-196, 2005.

C. Durel, C. Denancé, and M. N. Brisset, Two distinct major QTL for resistance to fire blight co-localize on linkage group 12 in apple genotypes 'Evereste' and Malus floribunda clone 821, Genome, vol.52, pp.139-147, 2009.

K. M. Evans, C. L. Govan, and F. Fernández-fernández, A new gene for resistance to Dysaphis pyri in pear and identification of flanking microsatellite markers, Genome, vol.51, pp.1026-1057, 2008.

B. Feenstra, I. M. Skovgaard, and K. W. Broman, Mapping quantitative trait loci by an extension of the Haley-Knott regression method using estimating equations, Genetics, vol.173, pp.2269-82, 2006.

C. S. Haley and S. A. Knott, A simple regression method for mapping quantitative trait loci in line crosses using flanking markers, Heredity (Edinb), vol.69, pp.315-339, 1992.

F. H. Harries and E. C. Burts, Insecticide resistance in the pear psylla, J Econ Entomol, vol.58, pp.172-173, 1965.

M. K. Harris and R. C. Lamb, Resistance to the pear psylla in pears with Pyrus ussuriensis lineage, J Am Soc Hortic Sci, vol.98, pp.378-381, 1973.

L. S. Hesler and C. I. Tharp, Antibiosis and antixenosis to Rhopalosiphum padi among triticale accessions, Euphytica, vol.143, pp.153-160, 2005.

I. D. Hodkinson, Life cycle variation and adaptation in jumping plant lice (Insecta: Hemiptera: Psylloidea): a global synthesis, J Nat Hist, vol.43, pp.65-179, 2009.

R. C. Jansen, Interval mapping of multiple quantitative trait loci, Genetics, vol.135, pp.205-211, 1993.

R. C. Jansen and P. Stam, High resolution of quantitative traits into multiple loci via interval mapping, Genetics, vol.136, pp.1447-1455, 1994.

E. T. Kapatos and E. T. Stratopoulou, Duration times of the immature stages of Cacopsylla pyri L. (Hom., Psyllidae), estimated under field conditions, and their relationship to ambient temperature, J Appl Entomol, vol.123, pp.185-99, 1999.

Y. Lespinasse, M. Chevalier, and C. Durel, Pear breeding for scab and psylla resistance, Acta Horticulturae, vol.800, pp.475-482, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01601176

S. Montanari, M. Saeed, and M. Knäbel, Identification of Pyrus Single Nucleotide Polymorphisms (SNPs) and evaluation for genetic mapping in European pear and interspecific Pyrus hybrids, PLoS One, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01209941

E. Pasqualini, S. Civolani, and S. Musacchi, Cacopsylla pyri behaviour on new pear selections for host resistance programs, Bull Insectology, vol.59, pp.27-37, 2006.

G. J. Puterka, Intraspecific variation in pear psylla (Psyllidae: Homoptera) nymphal survival and development on resistant and susceptible pear, Environ Entomol, vol.26, pp.552-557, 1997.

P. Robert, P. Guérif, J. Lemoine, L. Lézec, and M. , Criblage de génotypes de Pyrus vis-à-vis de la résistance au psylle du poirier Cacopsylla pyri (L.), Chaiers Agric, vol.13, pp.349-354, 2004.

P. Robert and T. Raimbault, Resistance of some Pyrus communis cultivars and Pyrus hybrids to the pear psylla Cacopsylla pyri (Homoptera, Psyllidae), Acta Horticulturae, vol.671, pp.571-575, 2004.

A. C. Bell and T. G. Ranney, Resistance to fire blight among flowering pears and quince, HortScience, vol.40, pp.413-415, 2005.

K. Bokszczanin, L. Dondini, and A. A. Przybyla, First report on the presence of fire blight resistance in linkage group 11 of Pyrus ussuriensis Maxim, J Appl Genet, vol.50, pp.99-104, 2009.

W. G. Bonn and T. Van-der-zwet, Distribution and economic importance of fire blight. Fire blight Dis. its causative agent, <i>Erwinia amylovora<i/>, pp.37-53, 2000.

G. Broggini, T. Wöhner, and J. Fahrentrapp, Engineering fire blight resistance into the apple cultivar 'Gala' using the FB_MR5 CC-NBS-LRR resistance gene of Malus x robusta 5, Plant Biotechnol J 1-6, 2014.

V. Bus, E. Rikkerink, and W. E. Van-de-weg, The Vh2 and Vh4 scab resistance genes in two differential hosts derived from Russian apple R12740-7A map to the same linkage group of apple, Mol Breed, vol.15, pp.103-116, 2005.

F. Calenge, D. Drouet, and C. Denancé, Identification of a major QTL together with several minor additive or epistatic QTLs for resistance to fire, 2005.

J. Celton, D. Chagné, and S. D. Tustin, Update on comparative genome mapping between Malus and Pyrus, Theor Appl Genet, vol.111, p.182, 2009.

J. Celton, D. S. Tustin, D. Chagné, and S. E. Gardiner, Construction of a dense genetic linkage map for apple rootstocks using SSRs developed from Malus ESTs and Pyrus genomic sequences, 2009.

, Application of the High-Resolution Melting technique for gene mapping and SNP detection in plants, Tree Genet Genomes, vol.5, pp.151-159, 2015.

D. Chagné, R. N. Crowhurst, and M. Pindo, The draft genome sequence of European pear (Pyrus communis L, Bartlett'). PLoS One, 2014.

, Identification and Mapping of Genomic Regions Controlling Fire Blight and Psylla Resistance and Hybrid Necrosis in Pear 174

G. A. Churchill and R. W. Doerge, Empirical threshold values for quantitative trait mapping, Genetics, vol.138, pp.963-71, 1994.

L. Dondini, L. Pierantoni, and F. Gaiotti, Identifying QTLs for fire-blight resistance via a European pear (Pyrus communis L.) genetic linkage map, Mol Breed, vol.14, pp.407-418, 2004.

C. Durel, C. Denancé, and M. N. Brisset, Two distinct major QTL for resistance to fire blight co-localize on linkage group 12 in apple genotypes 'Evereste' and Malus floribunda clone 821, Genome, vol.52, pp.139-147, 2009.

C. Durel, P. Guérif, A. Belouin, L. Lezec, and M. , Estimation of fire blight resistance heritability in the French pear breeding program using a pedigree-based approach, Acta Hortic, vol.663, pp.251-256, 2004.

O. Emeriewen, K. Richter, and A. Kilian, Identification of a major quantitative trait locus for resistance to fire blight in the wild apple species Malus fusca, Mol Breed, vol.34, pp.407-419, 2014.

, EPPO (1977) Data sheets on quarantine pests: Erwinia amylovora, pp.1-6

J. Fahrentrapp, G. Broggini, and M. Kellerhals, A candidate gene for fire blight resistance in Malus x robusta 5 is coding for a CC-NBS-LRR, Tree Genet Genomes, vol.9, pp.237-251, 2013.

M. Foulongne, T. Pascal, F. Pfeiffer, and J. Kervella, QTLs for powdery mildew resistance in peach x Prunus davidiana crosses: consistency across generations and environments, Mol Breed, vol.12, pp.33-50, 2003.

S. E. Gardiner, J. L. Norelli, and N. De-silva, Putative resistance gene markers associated with quantitative trait loci for fire blight resistance in Malus 'Robusta 5' accessions, BMC Genet, vol.13, p.25, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01209931

K. Gasic and C. Peace, First peach SNP mini-arrays developed and tested, 2013.

L. Gianfranceschi, N. Seglias, and R. Tarchini, Simple sequence repeats for the genetic analysis of apple, Theor Appl Genet, vol.96, pp.1069-1076, 1998.

R. C. Jansen, Interval mapping of multiple quantitative trait loci, Genetics, vol.135, pp.205-211, 1993.

R. C. Jansen and P. Stam, High resolution of quantitative traits into multiple loci via interval mapping, Genetics, vol.136, pp.1447-1455, 1994.

M. A. Khan, B. Duffy, C. Gessler, and A. Patocchi, QTL mapping of fire blight resistance in apple, Mol Breed, vol.17, pp.299-306, 2006.

M. A. Khan, C. Durel, and B. Duffy, Development of molecular markers linked to the 'Fiesta' linkage group 7 major QTL for fire blight resistance and their application for markerassisted selection, Genome, vol.50, pp.568-577, 2007.

M. A. Khan, Y. Zhao, and S. S. Korban, Identification of genetic loci associated with fire blight resistance in Malus through combined use of QTL and association mapping, Physiol Plant, vol.148, pp.344-353, 2013.

E. S. Lander and D. Botstein, Mapping mendelian factors underlying quantitative traits using RFLP linkage maps, Genetics, vol.121, pp.185-99, 1989.

L. Roux, P. , C. D. Duffy, and B. , Redefinition of the map position and validation of a major quantitative trait locus for fire blight resistance of the pear cultivar 'Harrow Sweet' (Pyrus communis L.), Plant Breed, vol.131, pp.656-664, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01209920

L. Roux, P. Khan, M. A. Broggini, and G. , Mapping of quantitative trait loci for fire blight resistance in the apple cultivars 'Florina' and 'Nova Easygro', Genome, vol.53, pp.710-722, 2010.

Y. Lespinasse and H. S. Aldwinckle, Breeding for resistance to fire blight. In: Vanneste JL (ed) Fire Blight Dis. its Causative Agent, Erwinia amylovora, pp.253-273, 2000.

R. Liebhard, L. Gianfranceschi, and B. Koller, Development and characterisation of 140 new microsatellites in apple, Malus x domestica Borkh.). Mol Breed, vol.10, pp.217-241, 2002.

H. P. Maas-geesteranus, J. Heyting, and . Winslow, The value of topleaf inoculation to demonstrate genetic resistance in Pomoideae species to Erwina amylovora, Acta Hortic, vol.117, pp.75-82, 1981.

M. Malnoy, S. Martens, and J. L. Norelli, Fire blight: applied genomic insights of the pathogen and host, Annu Rev Phytopathol, vol.50, pp.475-494, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01053122

S. Montanari, M. Saeed, and M. Knäbel, Identification of Pyrus Single Nucleotide Polymorphisms (SNPs) and evaluation for genetic mapping in European pear and interspecific Pyrus hybrids, PLoS One, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01209941

C. Nishitani, S. Terakami, and Y. Sawamura, Development of novel EST-SSR markers derived from Japanese pear (Pyrus pyrifolia), Breed Sci, vol.59, pp.391-400, 2009.

J. L. Norelli, A. L. Jones, and H. S. Aldwinckle, Fire blight management in the twenty-first century: using new technologies that enhance host resistance in apple, Plant Dis, vol.87, pp.756-765, 2003.

W. S. Oetting, H. K. Lee, and D. J. Flanders, Linkage analysis with multiplexed short tandem repeat polymorphisms using infrared fluorescence and M13 tailed primers, Genomics, vol.30, pp.450-458, 1995.

A. Patocchi, A. Frei, J. E. Frey, and M. Kellerhals, Towards improvement of marker assisted selection of apple scab reisistant cultivars: Venturia inaequalis virulence surveys and standardization of molecular marker alleles associated with resistance genes, Mol Breed, vol.24, pp.337-347, 2009.

J. Paulin and W. Burrill, Agrimed research program. Commission of the European Communities, Bruxelles Peace C, Bassil N (2012) Routine DNA testing. RosBREED's Community Breeders, Applied research in Europe (1978-88), pp.1-3, 1990.

A. Peil, V. Bus, and K. Geider, Improvement of fire blight resistance in apple and pear, Int J Plant Breed, vol.3, pp.1-27, 2009.

A. Peil, H. Flachowsky, and M. Hanke, Inoculation of Malus x robusta 5 progeny with a strain breaking resistance to fire blight reveals a minor QTL on LG5, Acta Hortic, vol.896, pp.357-362, 2011.

L. Perchepied, C. Dogimont, M. Pitrat, T. Kroj, and M. Tronchet, Strain-specific and recessive QTLs involved in the control of partial resistance to Fusarium oxysporum f. sp. melonis race 1.2 in a recombinant inbred line population of melon, Theor Appl Genet, vol.111, pp.65-74, 2005.

R. References-alcázar, A. García, J. E. Parker, and M. Reymond, Incremental steps toward incompatibility revealed by Arabidopsis epistatic interactions modulating salicylic acid pathway activation, PNAS, vol.106, pp.334-343, 2009.

F. H. Alston, Dwarfing and lethal genes in apple progenies, Euphytica, vol.25, pp.505-514, 1976.

R. L. Bell, Acta Hortic. 290, pp.657-700, 1991.

J. Bergelson, M. Kreitman, E. A. Stahl, and D. Tian, Evolutionary dynamics of plant R-genes, Science, vol.292, pp.2281-2286, 2001.

K. Bomblies, Too much of a good thing? Hybrid necrosis as a by-product of plant immune system diversification, Botany, vol.87, pp.1013-1022, 2009.

K. Bomblies, J. Lempe, and P. Epple, Autoimmune response as a mechanism for a Dobzhansky-Muller-type incompatibility syndrome in plants, PLoS Biol, vol.5, p.236, 2007.

K. Bomblies and D. Weigel, Hybrid necrosis: autoimmunity as a potential gene-flow barrier in plant species, Nat Rev Genet, vol.8, pp.382-93, 2007.

L. Bouvier, M. Bourcy, and M. Boulay, A new pear scab resistance gene Rvp1 from the European pear cultivar 'Navara' maps in a genomic region syntenic to an apple scab resistance gene cluster on linkage group 2, Tree Genet Genomes, vol.8, pp.493-498, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01209884

V. Bus, E. Rikkerink, and V. Caffier, Revision of the nomenclature of the differential host-pathogen interactions of Venturia inaequalis and Malus, Annu Rev Phytopathol, vol.49, pp.391-413, 2011.

V. Bus, E. Rikkerink, and W. E. Van-de-weg, The Vh2 and Vh4 scab resistance genes in two differential hosts derived from Russian apple R12740-7A map to the same linkage group of apple, Mol Breed, vol.15, pp.103-116, 2005.

F. Calenge, A. Faure, and M. Goerre, Quantitative Trait Loci (QTL) analysis reveals both broad-spectrum and isolate-specific QTL for scab resistance in an apple progeny challenged with eight isolates of Venturia inaequalis, Phytopathology, vol.94, pp.370-379, 2004.

J. Celton, D. S. Tustin, D. Chagné, and S. E. Gardiner, Construction of a dense genetic linkage map for apple rootstocks using SSRs developed from Malus ESTs and Pyrus genomic sequences, 2009.

D. Chagné, R. N. Crowhurst, and M. Pindo, The draft genome sequence of European pear (Pyrus communis L, Tree Genet Genomes, vol.5, pp.93-107, 2014.

P. J. Conner, S. K. Brown, and N. F. Weeden, Randomly amplified polymorphic DNA-based genetic linkage maps of three apple cultivars, J Am Soc Hortic Sci, vol.122, pp.350-359, 1997.

J. Crosby, J. Janick, and P. Pecknold, Breeding apples for scab resistance: 1945-1990, vol.46, pp.145-166, 1992.

J. L. Dangl, R. A. Dietrich, and M. H. Richberg, Death don't have no mercy: cell death programs in plant-microbe interactions, Plant Cell, vol.8, pp.1793-1807, 1996.

L. Decourtye, Etude de quelques caractères à contrôle génétique simple chez le pommier (Malus sp.) et le poirier, Les Ann l'Amelioration des Plantes, vol.17, pp.243-266, 1967.

, Identification and Mapping of Genomic Regions Controlling Fire Blight and Psylla Resistance and Hybrid Necrosis in Pear 219

L. Dondini, L. Pierantoni, and F. Gaiotti, Identifying QTLs for fire-blight resistance via a European pear (Pyrus communis L.) genetic linkage map, Mol Breed, vol.14, pp.407-418, 2004.

F. Dunemann, J. Egerer, F. Fernández, S. Padmarasu, and N. ?urbanovski, A major resistance gene from Russian apple 'Antonovka' conferring field immunity against apple scab is closely linked to the Vf locus, Characterisation of the virescent locus controlling a recessive phenotype in apple rootstocks, vol.6, pp.373-383, 2010.

Z. S. Gao and W. E. Van-de-weg, The Vf gene for scab resistance in apple is linked to sub-lethal genes, Euphytica, vol.151, pp.123-132, 2006.

L. Gianfranceschi, N. Seglias, and R. Tarchini, Simple sequence repeats for the genetic analysis of apple, Theor Appl Genet, vol.96, pp.1069-1076, 1998.

A. J. Greenberg, J. R. Moran, J. A. Coyne, and C. I. Wu, Ecological adaptation during incipient speciation revealed by precise gene replacement, Science (80-), vol.302, pp.1754-1757, 2003.

B. Guitton, J. Kelner, and R. Velasco, Genetic control of biennial bearing in apple, J Exp Bot, vol.63, pp.131-149, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01267776

S. Heuer and K. M. Miézan, Assessing hybrid sterility in Oryza glaberrima x O. sativa hybrid progenies by PCR marker analysis and crossing with wide compatibility varieties, Theor Appl Genet, vol.107, pp.902-909, 2003.

L. Hollingshead, A lethal factor in Crepis effective only in an interspecific hybrid, Genetics, vol.15, pp.114-140, 1930.

K. Ichitani, Y. Takemoto, and K. Iiyama, Chromosomal location of HCA1 and HCA2, hybrid chlorosis genes in rice, Int J Plant Genomics, vol.2012, pp.1-9, 2012.

H. Iketani, K. Abe, and T. Yamamoto, Mapping of disease-related genes in Japanese pear using a molecular linkage map with RAPD markers, Breed Sci, vol.51, pp.179-184, 2001.

E. Inoue, F. Sakuma, and M. Kasumi, Effect of high-temperature on suppression of the lethality exhibited in the intergeneric hybrid between Japanese pear (Pyrus pyrifolia Nakai) and apple (Malus x domestica Borkh.), Sci Hortic (Amsterdam), vol.98, pp.40-42, 2003.

J. Jones and J. L. Dangl, The plant immune system, Nature, vol.444, pp.323-332, 2006.

K. Kenis and J. Keulemans, Genetic linkage maps of two apple cultivars (Malus x domestica Borkh.) based on AFLP and microsatellite markers, Mol Breed, vol.15, pp.205-219, 2005.

J. Krüger, C. M. Thomas, and C. Golstein, A tomato cysteine protease required for Cf-2-dependent disease resistance and suppression of autonecrosis, Science (80-), vol.296, pp.744-751, 2002.

L. Roux, P. , C. D. Duffy, and B. , Redefinition of the map position and validation of a major quantitative trait locus for fire blight resistance of the pear cultivar 'Harrow Sweet, Malus x domestica Borkh.). Mol Breed, vol.131, pp.217-241, 2002.
URL : https://hal.archives-ouvertes.fr/hal-01209920

, Identification and Mapping of Genomic Regions Controlling Fire Blight and Psylla Resistance and Hybrid Necrosis in Pear 220

R. Liebhard, B. Koller, L. Gianfranceschi, and C. Gessler, Creating a saturated reference map for the apple (Malus x domestica Borkh.) genome, Theor Appl Genet, vol.106, pp.1497-508, 2003.

C. Maliepaard, F. H. Alston, and G. Van-arkel, Aligning male and female linkage maps of apple (Malus pumila Mill.) using multi-allelic markers, Theor Appl Genet, vol.97, pp.60-73, 1998.

A. N. Mishra, K. Kaushal, and S. R. Yadav, A leaf rust resistance gene, different from Lr34, associated with leaf tip necrosis in wheat, Plant Breed, vol.124, pp.517-519, 2005.

N. Mizuno, N. Hosogi, P. Park, and S. Takumi, Hypersensitive response-like reaction is associated with hybrid necrosis in interspecific crosses between tetraploid wheat and Aegilops tauschii Coss, PLoS One, vol.5, 2010.

S. Montanari, M. Saeed, and M. Knäbel, Identification of Pyrus Single Nucleotide Polymorphisms (SNPs) and evaluation for genetic mapping in European pear and interspecific Pyrus hybrids, PLoS One, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01209941

J. W. Morrison, Dwarfs, semi-lethals and lethals in wheat, Euphytica, vol.6, pp.213-223, 1957.

H. A. Orr, Dobzhansky, Bateson, and the genetics of speciation, Genetics, vol.144, pp.1331-1335, 1996.

H. A. Orr, The population genetics of speciation: the evolution of hybrid incompatibilites, Genetics, vol.139, pp.1805-1813, 1995.

L. Pierantoni, K. Cho, and I. Shin, Characterisation and transferability of apple SSRs to two European pear F1 populations, Theor Appl Genet, vol.109, pp.1519-1543, 2004.

L. H. Rieseberg and B. K. Blackman, Speciation genes in plants, Ann Bot, vol.106, pp.439-55, 2010.

L. H. Rieseberg, S. A. Church, and C. L. Morjan, Integration of populations and differentiation of species, New Phytol, vol.161, pp.59-69, 2003.

S. Rozen and H. Skaletsky, Primer3 on the WWW for general users and for biologist programmers, Methods Mol Biol, vol.132, pp.365-386, 1999.

D. J. Sargent, T. M. Davis, and K. R. Tobutt, A genetic linkage map of microsatellite, genespecific and morphological markers in diploid Fragaria, Theor Appl Genet, vol.109, pp.1385-1391, 2004.

I. Shimura, K. Seike, and T. Shishikura, Intergeneric hybridization between Japanese pear (Pyrus serotina Rehd.) and apple (Malus pumila Mill.), Japanese J Breed, vol.30, pp.170-180, 1980.

E. Silfverberg-dilworth, C. L. Matasci, and W. E. Van-de-weg, Microsatellite markers spanning the apple (Malus x domestica Borkh.) genome, Tree Genet Genomes, vol.2, pp.202-224, 2006.

L. Song, W. Guo, and T. Zhang, Interaction of novel Dobzhansky-Muller type genes for the induction of hybrid lethality between Gossypium hirsutum and G. barbadense cv, vol.4, 2009.

, Theor Appl Genet, vol.119, pp.33-41

J. Tahir, M. Watanabe, and H. Jing, Activation of R-mediated innate immunity and disease susceptibility is affected by mutations in a cytosolic O-acetylserine (thiol) lyase in Arabidopsis, Plant J, vol.73, 2013.

F. Takken, M. Albrecht, and W. Tameling, Resistance proteins: molecular switches of plant defence, Curr Opin Plant Biol, vol.9, pp.383-390, 2006.

S. Tartarini, RAPD markers linked to the Vf gene for scab resistance in apple, Theor Appl Genet, vol.92, pp.803-810, 1996.

, I used the SSR-based consensus map of 'Bartlett' and 'La France' built by Celton et al. (2009) to show the location of all the resistance loci listed above, using common SSR and SNP markers. However, some of the genetic maps used to detect these resistance loci did not have any common marker with the map of Celton et al. (2009); therefore, the inference of the loci position might be slightly shifted and the confidence intervals larger than the original (Figure 6.2). Co-localization of loci for the resistance to at least two different biotic stresses were, 2002.

L. Roux, 2012) and 'Moonglow' (this thesis) colocalize with one QTL mapped to PEAR2, specific for the P35.2 isolate of V

. Pierantoni, detected on the same hybrid, colocalizes with the major gene Rvp1 (Bouvier et al. 2011b); a third locus, the Rvn2 resistance gene to V. nashicola (Cho et al. 2009), is located at the bottom part of LG2; finally, a QTL for the resistance to brown spot was mapped to LG2 in MRB, but its position is not yet published (De Franceschi et al. 2013; Dondini 2013). A QTL for resistance to V. pirina was mapped to LG3 of 'Abbe Fétel, 2007.

, ) and to P34.1 isolate of V. pirina in PEAR2 (Won et al. 2014) co-locate on LG5. QTLs for resistance to V. pirina on 'Abbé Fétel' (Pierantoni et al. 2007) and PEAR1 (Won et al. 2014) on LG7 co-locate with a QTL for fire blight resistance in PEAR3 (this thesis); another QTL for V. pirina was mapped up-stream to these loci in PEAR2, 2014.

. Bokszczanin, identified a QTL for fire blight resistance on LG11 of 'Doyenne du Comice', without reporting its positon. QTLs for the resistance to C. pyri in 'Moonglow' and fire blight in PEAR3, 2009.

R. Aggarwal, S. Subramanyam, and C. Zhao, Avirulence effector discovery in a plant galling and plant parasitic arthropod, the Hessian fly (Mayetiola destructor), PLoS One, 2014.

G. N. Agrios, Plant Pathology, Fifth, 2005.

L. Albar, M. Lorieux, and N. Ahmadi, Genetic basis and mapping of the resistance to rice yellow mottle virus. II. Evidence of a complementary epistasis between two QTLs, Theor Appl Genet, vol.97, pp.1145-1154, 1998.

R. Alcázar, A. García, J. E. Parker, and M. Reymond, Incremental steps toward incompatibility revealed by Arabidopsis epistatic interactions modulating salicylic acid pathway activation, PNAS, vol.106, pp.334-343, 2009.

F. H. Alston, Dwarfing and lethal genes in apple progenies, Euphytica, vol.25, pp.505-514, 1976.

J. R. Andersen and T. Lübberstedt, Functional markers in plants, Trends Plant Sci, vol.8, pp.554-560, 2003.

L. Antanaviciute, F. Fernández-fernández, and J. Jansen, Development of a dense SNPbased linkage map of an apple rootstock progeny using the Malus Infinium whole genome genotyping array, BMC Genomics, vol.13, p.203, 2012.

K. Arumuganathan and E. D. Earle, Nuclear DNA content of some important plant species, Plant Mol Biol Report, vol.9, pp.208-218, 1991.

H. S. Atamian, R. Chaudhary, and V. Dal-cin, In planta expression or delivery of potato aphid Macrosiphum euphorbiae effectors Me10 and Me23 enhances aphid fecundity, Mol plant-microbe Interact, vol.26, pp.67-74, 2013.

, Identification and Mapping of Genomic Regions Controlling Fire Blight and Psylla Resistance and Hybrid Necrosis in Pear 257

I. T. Baldwin, R. Halitschke, and A. Paschold, Volatile signaling in plant-plant interactions: "talking trees" in the genomics era, Science (80-), vol.311, pp.812-815, 2006.

P. Barba, E. M. Takacs, and K. Hyma, Application of genotyping-by-sequencing in crosses of heterozygous grapevines: tools for map construction and marker-trait association tsting, Mol Microbiol, vol.4, pp.777-786, 1990.

H. Bassett, M. Malone, and S. Ward, Marker assisted selection in an apple rootstock family, III International Symposium on Molecular Markers in Horticulture. Riva del Garda, 2013.

N. Bassil, T. M. Davis, and H. Zhang, Development and preliminary evaluation of a 90 K Axiom® SNP array for the allo-octoploid cultivated strawberry Fragaria × ananassa, BMC Genomics, vol.16, pp.1-30, 2015.

H. Bastiaanse, H. Bassett, and C. Kirk, Scab resistance in "Geneva" apple is conditioned by a resistance gene cluster with complex genetic control, Mol Plant Pathol, 2015.

A. C. Bell and T. G. Ranney, Resistance to fire blight among flowering pears and quince, HortScience, vol.40, pp.413-415, 2005.

R. L. Bell, Host resistance to pear psylla of breeding program selections and cultivars, HortScience, vol.48, pp.143-145, 2013.

R. L. Bell, Additional East European Pyrus germplasm with resistance to pear psylla nymphal feeding, HortScience, vol.27, pp.412-413, 1992.

, Identification and Mapping of Genomic Regions Controlling Fire Blight and Psylla Resistance and Hybrid Necrosis in Pear 258

R. L. Bell, Evaluation of Pyrus germplasm for resistance to the pear psylla, Acta Hortic, vol.161, pp.234-237, 1984.

R. L. Bell, Inheritance of resistance to pear psylla nymphal feeding in pear (Pyrus communis L.) of European origin, HortScience, vol.48, pp.425-427, 2013.

R. L. Bell, In: Acta Horticulturae 290, pp.657-700, 1991.

R. L. Bell and L. C. Stuart, Resistance in Eastern European Pyrus germplasm to pear psylla nymphal feeding, HortScience, vol.25, pp.789-791, 1990.

D. R. Bentley, Whole-genome re-sequencing, Curr Opin Genet Dev, vol.16, pp.545-52, 2006.

J. Bergelson, M. Kreitman, E. A. Stahl, and D. Tian, Evolutionary dynamics of plant R-genes, Science, vol.292, pp.2281-2286, 2001.

S. Berrada, T. X. Nguyen, and J. Lemoine, Thirteen pear species and cultivars evaluated for resistance to Cacopsylla pyri (Homoptera: Psyllidae), Environ Entomolgy, vol.24, pp.1604-1607, 1995.

L. Bianco, A. Cestaro, and D. J. Sargent, Development and validation of a 20K single nucleotide polymorphism (SNP) whole genome genotyping array for apple (Malus x domestica Borkh), PLoS One, vol.9, 2014.

P. Birch, A. P. Rehmany, and L. Pritchard, Trafficking arms: oomycete effectors enter host plant cells, Trends Microbiol, vol.14, pp.8-11, 2006.

S. R. Bisgrove, M. T. Simonich, and N. M. Smith, A disease resistance gene in Arabidopsis with specificity for two different pathogen avirulence genes, Plant Cell, vol.6, pp.927-933, 1994.

, Identification and Mapping of Genomic Regions Controlling Fire Blight and Psylla Resistance and Hybrid Necrosis in Pear 259

A. J. Bogdanove, Disease-specific genes of Erwinia amylovora: keys to understanding pathogenesis and potential targets for disease control. In: Fire Blight: the disease and its causative agent, Erwinia amylovora, pp.163-177, 2000.

K. L. Bokszczanin, L. Dondini, and A. A. Przybyla, First report on the presence of fire blight resistance in linkage group 11 of Pyrus ussuriensis Maxim, J Appl Genet, vol.50, pp.99-104, 2009.

K. L. Bokszczanin, A. A. Przybyla, L. Dondini, and A. Palucha, QTLs for fire blight (Erwinia amylovora) resistance in Pyrus ussuriensis, Acta Hortic, vol.896, pp.371-374, 2011.

K. Bomblies, Too much of a good thing? Hybrid necrosis as a by-product of plant immune system diversification, Botany, vol.87, pp.1013-1022, 2009.

K. Bomblies, J. Lempe, and P. Epple, Autoimmune response as a mechanism for a Dobzhansky-Muller-type incompatibility syndrome in plants, PLoS Biol, vol.5, p.236, 2007.

K. Bomblies and D. Weigel, Hybrid necrosis: autoimmunity as a potential gene-flow barrier in plant species, Nat Rev Genet, vol.8, pp.382-93, 2007.

W. G. Bonn and T. Van-der-zwet, Distribution and economic importance of fire blight, Fire blight: the disease and its causative agent, pp.37-53, 2000.

L. Bouvier, M. Bourcy, and M. Boulay, European pear cultivar resistance to bio-pests: scab (Venturia pirina) and psylla (Cacopsylla pyri), Acta Hortic, vol.909, pp.459-470, 2011.

L. Bouvier, M. Bourcy, and M. Boulay, A new pear scab resistance gene Rvp1 from the European pear cultivar "Navara" maps in a genomic region syntenic to an apple scab resistance gene cluster on linkage group 2, Tree Genet Genomes, vol.8, pp.53-60, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01209884

, Identification and Mapping of Genomic Regions Controlling Fire Blight and Psylla Resistance and Hybrid Necrosis in Pear 260

J. L. Brewbaker, Pollen cytology and self-incompatibility systems in plants, J Hered, vol.48, pp.271-277, 1957.

L. R. Brewer, P. Alspach, and V. Bus, Fruit and leaf incidence of pear scab (Venturia pirina Aderh.) in mixed European and Asian pear progenies, Acta Horticulturae 671, pp.595-600, 2005.

L. R. Brewer and P. A. Alspach, Resistance to scab caused by Venturia pirina in interspecific pear (Pyrus spp.) hybrids, New Zeal J Crop Hortic Sci, vol.37, pp.211-218, 2009.

L. R. Brewer, P. A. Alspach, and A. G. White, Variation in the susceptibility of pear seedlings to damage by the larvae of the sawfly (Caliroa cerasi), Acta Horticulturae 596, pp.571-574, 2002.

U. Brodny, R. R. Nelson, and L. V. Gregory, The residual and interactive expressions of "defeated" wheat stem rust resistance genes, Phytopathology, vol.76, p.546, 1986.

C. Broekgaarden, L. Snoeren-t-a, M. Dicke, and B. Vosman, Exploiting natural variation to identify insect-resistance genes, Plant Biotechnol J, vol.9, pp.819-825, 2011.

G. Broggini, T. Wöhner, and J. Fahrentrapp, Engineering fire blight resistance into the apple cultivar "Gala" using the FB_MR5 CC-NBS-LRR resistance gene of Malus × robusta, 2014.

, Plant Biotechnol J 1-6

R. Brueggeman, N. Rostoks, and D. Kudrna, The barley stem rust-resistance gene Rpg1 is a novel disease-resistance gene with homology to receptor kinases, PNAS, vol.99, pp.9328-9333, 2002.

, Identification and Mapping of Genomic Regions Controlling Fire Blight and Psylla Resistance and Hybrid Necrosis in Pear 261

H. Brun, A. M. Chèvre, and B. Fitt, Quantitative resistance increases the durability of qualitative resistance to Leptosphaeria maculans in Brassica napus, New Phytol, vol.185, pp.285-299, 2010.

R. Buès, L. Boudinhon, and J. F. Toubon, Resistance of pear psylla (Cacopsylla pyri L.; Hom., Psyllidae) to deltamethrin and synergism with piperonyl butoxide, J Appl Entomol, vol.127, pp.305-312, 2003.

V. Bus, H. Bassett, and D. Bowatte, Genome mapping of an apple scab, a powdery mildew and a woolly apple aphid resistance gene from open-pollinated Mildew Immune Selection, Tree Genet Genomes, vol.6, pp.477-487, 2010.

V. Bus, L. R. Brewer, and C. Morgan, Observations on scab resistance in interspecific pear seedling families, Acta Horticulturae 976, pp.493-498, 2013.

V. Bus, D. Chagné, and H. Bassett, Genome mapping of three major resistance genes to woolly apple aphid (Eriosoma lanigerum Hausm, Tree Genet Genomes, vol.4, pp.223-236, 2008.

V. Bus, E. Rikkerink, and V. Caffier, Revision of the nomenclature of the differential host-pathogen interactions of Venturia inaequalis and Malus, Annu Rev Phytopathol, vol.49, pp.391-413, 2011.

V. Bus, E. Rikkerink, and W. E. Van-de-weg, The Vh2 and Vh4 scab resistance genes in two differential hosts derived from Russian apple R12740-7A map to the same linkage group of apple, Mol Breed, vol.15, pp.103-116, 2005.

B. A. Butt, L. C. Stuart, and R. L. Bell, Feeding behavior of pear psylla (Homoptra: Psyllidae) nymphs on susceptible and resistant Pyrus germplasm, J Econ Entomolgy, vol.81, pp.1394-1397, 1988.

, Identification and Mapping of Genomic Regions Controlling Fire Blight and Psylla Resistance and Hybrid Necrosis in Pear 262

V. Caffier, P. Lasserre-zuber, and G. M. , Erosion of quantitative host resistance in the apple × Venturia inaequalis pathosystem, Infect Genet Evol, vol.27, pp.481-489, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01210000

F. Calenge, D. Drouet, and C. Denancé, Identification of a major QTL together with several minor additive or epistatic QTLs for resistance to fire blight in apple in two related progenies, Theor Appl Genet, vol.111, pp.128-163, 2005.

F. Calenge, A. Faure, and M. Goerre, Quantitative Trait Loci (QTL) analysis reveals both broad-spectrum and isolate-specific QTL for scab resistance in an apple progeny challenged with eight isolates of Venturia inaequalis, Phytopathology, vol.94, pp.370-379, 2004.

M. Calus, Genomic breeding value prediction: methods and procedures, Animal, vol.4, pp.157-164, 2010.

C. S. Carlson, J. D. Smith, and I. B. Stanaway, Direct detection of null alleles in SNP genotyping data, Hum Mol Genet, vol.15, pp.1931-1938, 2006.

L. Carraro, N. Loi, and P. Ermacora, The "life cycle" of pear decline phytoplasma in the vector Cacopsylla pyri, J Plant Pathol, vol.83, pp.87-90, 2001.

J. Celton, D. Chagné, and S. D. Tustin, Update on comparative genome mapping between Malus and Pyrus, BMC Res Notes, vol.2, p.182, 2009.

J. M. Celton, S. Gaillard, and M. Bruneau, Widespread anti-sense transcription in apple is correlated with siRNA production and indicates a large potential for transcriptional and/or post-transcriptional control, New Phytol, vol.203, pp.287-299, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01209978

J. Celton, D. S. Tustin, D. Chagné, and S. E. Gardiner, Construction of a dense genetic linkage map for apple rootstocks using SSRs developed from Malus ESTs and Pyrus genomic sequences, Tree Genet Genomes, vol.5, pp.93-107, 2009.

, Identification and Mapping of Genomic Regions Controlling Fire Blight and Psylla Resistance and Hybrid Necrosis in Pear 263

V. Cevik and G. King, High-resolution genetic analysis of the Sd-1 aphid resistance locus in Malus spp, Theor Appl Genet, vol.105, pp.346-354, 2002.

D. Chagné, Application of the High-Resolution Melting technique for gene mapping and SNP detection in plants, pp.151-159, 2015.

D. Chagné, R. N. Crowhurst, and M. Pindo, The draft genome sequence of European pear (Pyrus communis L, Bartlett"). PLoS One, 2014.

D. Chagné, R. N. Crowhurst, and M. Troggio, Genome-wide SNP detection, validation, and development of an 8K SNP array for apple, PLoS One, vol.7, p.31745, 2012.

H. Chen, Y. Song, and L. Li, Construction of a high-density Simple Sequence Repeat consensus genetic map for pear (Pyrus spp.), Plant Mol Biol Report, 2014.

D. Chinchilla, Z. Bauer, and M. Regenass, The Arabidopsis receptor kinase FLS2 binds flg22 and determines the specificity of flagellin perception, Plant Cell, vol.18, pp.465-476, 2006.

K. Cho, I. Shin, and K. T. Kim, Development of AFLP and CAPS markers linked to the scab resistance gene, Rvn2, in an inter-specific hybrid pear (Pyrus spp.), J Hortic Sci Biotechnol, vol.84, pp.619-624, 2009.

G. A. Churchill and R. W. Doerge, Empirical threshold values for quantitative trait mapping, Genetics, vol.138, pp.963-71, 1994.

S. Civolani, The past and present of pear protection against the pear psylla, Cacopsylla pyri L. In: Insecticides -Pest Engineering. Dr. Farzana Perveen, pp.385-408, 2012.

, Identification and Mapping of Genomic Regions Controlling Fire Blight and Psylla Resistance and Hybrid Necrosis in Pear 264

S. Civolani, L. Dondini, S. Musacchi, . Italy, S. Civolani et al., Characterization of resistance in pear genotypes to pear psylla Cacopsylla pyri, Future IPM in Europe. Riva del Garda, vol.137, pp.365-375, 2013.

S. Civolani, R. Peretto, and L. Caroli, Preliminary resistance screening on abamectin in pear psylla (Hemiptera: Psyllidae) in Northern Italy, J Econ Entomol, vol.100, pp.1637-1641, 2007.

T. J. Close, S. I. Wanamaker, and R. A. Caldo, A new resource for cereal genomics: 22K barley GeneChip comes of age, Plant Physiol, vol.134, pp.960-968, 2004.

B. Collard, M. Jahufer, J. B. Brouwer, and E. Pang, An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: The basic concepts, Euphytica, vol.142, pp.169-196, 2005.

B. Collard and D. J. Mackill, Marker-assisted selection: an approach for precision plant breeding in the twenty-first century, Philos Trans R Soc Lond B Biol Sci, vol.363, pp.557-572, 2008.

P. J. Conner, S. K. Brown, and N. F. Weeden, Randomly amplified polymorphic DNA-based genetic linkage maps of three apple cultivars, J Am Soc Hortic Sci, vol.122, pp.350-359, 1997.

F. Costa, W. E. Weg, and S. Stella, Map position and functional allelic diversity of MdExp7, a new putative expansin gene associated with fruit softening in apple (Malus × domestica Borkh.) and pear (Pyrus communis), Tree Genet Genomes, vol.4, pp.575-586, 2008.

M. B. Crane and D. Lewis, Genetical studies in pears -III. Incompatibility and sterility, J Genet, vol.43, pp.31-43, 1942.

, Identification and Mapping of Genomic Regions Controlling Fire Blight and Psylla Resistance and Hybrid Necrosis in Pear 265

J. Crosby, J. Janick, and P. Pecknold, Breeding apples for scab resistance, pp.1945-1990, 1992.

, Fruit Var J, vol.46, pp.145-166

J. L. Dangl, R. A. Dietrich, and M. H. Richberg, Death don't have no mercy: cell death programs in plant-microbe interactions, Plant Cell, vol.8, pp.1793-1807, 1996.

J. L. Dangl and J. D. Jones, Plant pathogens and integrated defence responses to infection, Nature, vol.411, pp.826-833, 2001.

P. De-franceschi, A. Ciriani, and M. Collina, Identification of QTLs for brown spot resistance in pear, III International Symposium on Molecular Markers in Horticulture, 2013.

R. Del-garda, D. Italy, P. Wit, and M. Joosten, Avirulence and resistance genes in the Cladosporium fulvum-tomato interaction, 1999.

L. Decourtye, Etude de quelques caractères à contrôle génétique simple chez le pommier (Malus sp.) et le poirier, Les Ann l'Amelioration des Plantes, vol.17, pp.243-266, 1967.

J. P. Demuth and M. W. Hahn, The life and death of gene families, BioEssays, vol.31, pp.29-39, 2009.

N. Denancé, A. Sánchez-vallet, D. Goffner, and A. Molina, Disease resistance or growth: the role of plant hormones in balancing immune responses and fitness costs, Front Plant Sci, vol.4, pp.1-12, 2013.

K. J. Denby, P. Kumar, and D. J. Kliebenstein, Identification of Botrytis cinerea susceptibility loci in Arabidopsis thaliana, Plant J, vol.38, pp.473-486, 2004.

C. H. Deng, E. Hilario, and P. Datson, Identification and Mapping of Genomic Regions Controlling Fire Blight and Psylla Resistance and, Plant and Animal Genome XXII, vol.266, 2014.

L. Deslandes, J. Olivier, and F. Theulieres, Resistance to Ralstonia solanacearum in Arabidopsis thaliana is conferred by the recessive RRS1-R gene, a member of a novel family of resistance genes, PNAS, vol.99, pp.2404-2409, 2002.

L. Deslandes and S. Rivas, The plant cell nucleus: a true arena for the fight between plants and pathogens, Plant Signal Behav, vol.6, pp.42-48, 2011.

C. Djian-caporalino, A. Palloix, and A. Fazari, Pyramiding, alternating or mixing: comparative performances of deployment strategies of nematode resistance genes to promote plant resistance efficiency and durability, BMC Plant Biol, vol.14, p.53, 2014.

P. N. Dodds, M. Rafiqi, and P. Gan, Effectors of biotrophic fungi and oomycetes: pathogenicity factors and triggers of host resistance, New Phytol, vol.183, pp.993-1000, 2009.

P. N. Dodds and J. P. Rathjen, Plant immunity: towards an integrated view of plant-pathogen interactions, Nat Rev Genet, vol.11, pp.539-548, 2010.

C. Dogimont, V. Chovelon, and S. Tual, Molecular diversity at the Vat/Pm-W resistance locus in melon, pp.219-228, 2008.

L. Dondini, . Italy, L. Dondini, L. Pierantoni, and V. Ancarani, The inheritance of the red colour character in European pear (Pyrus communis) and its map position in the mutated cultivar, III International Symposium on Molecular Markers in Horticulture. Riva del Garda, vol.127, pp.524-526, 2008.

L. Dondini, L. Pierantoni, and F. Gaiotti, Identifying QTLs for fire-blight resistance via a European pear (Pyrus communis L.) genetic linkage map, Mol Breed, vol.14, pp.407-418, 2004.

, Identification and Mapping of Genomic Regions Controlling Fire Blight and Psylla Resistance and Hybrid Necrosis in Pear 267

J. J. Doyle and J. L. Doyle, A rapid DNA isolation procedure for small quantities of fresh leaf tissue, Phytochem Bull, vol.19, pp.11-15, 1987.

F. Dunemann and J. Egerer, A major resistance gene from Russian apple "Antonovka" conferring field immunity against apple scab is closely linked to the Vf locus, Tree Genet Genomes, vol.6, pp.627-633, 2010.

F. M. Dunning, W. Sun, and K. L. Jansen, Identification and mutational analysis of Arabidopsis FLS2 leucine-rich repeat domain residues that contribute to flagellin perception, Plant Cell, vol.19, pp.3297-3313, 2007.

C. Durel, C. Denancé, and M. N. Brisset, Two distinct major QTL for resistance to fire blight co-localize on linkage group 12 in apple genotypes "Evereste" and Malus floribunda clone 821, Genome, vol.52, pp.139-147, 2009.

C. Durel, P. Guérif, A. Belouin, L. Lezec, and M. , Estimation of fire blight resistance heritability in the French pear breeding program using a pedigree-based approach, Acta Hortic, vol.663, pp.251-256, 2004.

S. L. Dwivedi, J. H. Crouch, and D. J. Mackill, The molecularization of public sector crop breeding: progress, problems, and prospects, Adv Agron, vol.95, pp.95003-95011, 2007.

R. J. Elshire, J. C. Glaubitz, and Q. Sun, A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species, PLoS One, vol.6, p.19379, 2011.

. Elzinga-d-a, M. Vos, . De, and G. Jander, Suppression of plant defenses by a Myzus persicae (green peach aphid) salivary effector protein, Mol plant-Microbe Interact, vol.27, pp.747-756, 2014.

O. Emeriewen, K. Richter, and A. Kilian, Identification of a major quantitative trait locus for resistance to fire blight in the wild apple species Malus fusca, Mol Breed, vol.34, pp.407-419, 2014.

, Identification and Mapping of Genomic Regions Controlling Fire Blight and Psylla Resistance and Hybrid Necrosis in Pear 268

, EPPO (1977) Data sheets on quarantine pests: Erwinia amylovora, pp.1-6

K. M. Evans, C. L. Govan, and F. Fernández-fernández, A new gene for resistance to Dysaphis pyri in pear and identification of flanking microsatellite markers, Genome, vol.51, pp.1026-1057, 2008.

R. C. Evans and C. S. Campbell, The origin of the apple subfamily (Maloideae, 2002.

, Rosaceae) is clarified by DNA sequence data from duplicated GBSSI genes, Am J Bot, vol.89, pp.1478-1484

J. Fahrentrapp, G. Broggini, and M. Kellerhals, A candidate gene for fire blight resistance in Malus × robusta 5 is coding for a CC-NBS-LRR, Tree Genet Genomes, vol.9, pp.237-251, 2013.

L. Fan, M. Zhang, and Q. Liu, Transferability of newly developed Pear SSR markers to other Rosaceae species, Plant Mol Biol Report, 2013.

S. Fawcett-j-a,-maere and Y. Van-de-peer, Plants with double genomes might have had a better chance to survive the Cretaceous-Tertiary extinction event, PNAS, vol.106, pp.5737-5742, 2009.

B. Feenstra, I. M. Skovgaard, and K. W. Broman, Mapping quantitative trait loci by an extension of the Haley-Knott regression method using estimating equations, Genetics, vol.173, pp.2269-82, 2006.

F. Fernández-fernández, S. Padmarasu, and N. ?urbanovski, Characterisation of the virescent locus controlling a recessive phenotype in apple rootstocks (Malus pumila Mill, 2013.

, Mol Breed, vol.33, pp.373-383

C. Fideghelli, Botanica -Origine ed evoluzione. In: Il pero. Script, Art servizi editoriali Spa, pp.1-17, 2007.

, Identification and Mapping of Genomic Regions Controlling Fire Blight and Psylla Resistance and Hybrid Necrosis in Pear 269

H. H. Flor, Genetics of pathogenicity in Melampsora lini, J Agric Res, vol.73, pp.337-57, 1946.

H. H. Flor, Current status of the gene-for-gene concept, Annu Rev Phytopathol, vol.9, pp.275-296, 1971.

M. Foulongne, T. Pascal, F. Pfeiffer, and J. Kervella, QTLs for powdery mildew resistance in peach x Prunus davidiana crosses: consistency across generations and environments, Mol Breed, vol.12, pp.33-50, 2003.

J. Fürstenberg-hägg, M. Zagrobelny, and S. Bak, Plant defense against insect herbivores, 2013.

S. Gandon and Y. Michalakis, Evolution of parasite virulence against qualitative or quantitative host resistance, Proc R Soc London B, vol.267, pp.985-990, 2000.

Z. S. Gao and W. E. Van-de-weg, The Vf gene for scab resistance in apple is linked to sub-lethal genes, Euphytica, vol.151, pp.123-132, 2006.

S. E. Gardiner, J. L. Norelli, and N. De-silva, Putative resistance gene markers associated with quantitative trait loci for fire blight resistance in Malus "Robusta 5" accessions, BMC Genet, vol.13, p.25, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01209931

K. M. Gardner, P. J. Brown, and T. F. Cooke, Fast and cost-effective genetic mapping in apple using next-generation sequencing, G3 Genes, vol.4, pp.1681-1688, 2014.

K. Gasic and C. Peace, First peach SNP mini-arrays developed and tested, 2013.

W. Gassmann and S. Bhattacharjee, Effector-triggered immunity signaling: from gene-for-gene pathways to protein-protein interaction networks, Mol Plant-Microbe Interact, vol.25, pp.862-868, 2012.

J. A. Gatehouse, Plant resistance towards insect herbivores: a dynamic interaction, New Phytol, vol.156, pp.145-169, 2002.

, Identification and Mapping of Genomic Regions Controlling Fire Blight and Psylla Resistance and Hybrid Necrosis in Pear 270

K. Geider, Exopolysaccharides of Erwinia amylovora: structure, biosynthesis, regulation, role in pathogenicity of amylovoran and levan. In: Fire Blight: the disease and its causative agent, Erwinia amylovora, p.117, 2000.

L. Gianfranceschi, N. Seglias, and R. Tarchini, Simple sequence repeats for the genetic analysis of apple, Theor Appl Genet, vol.96, pp.1069-1076, 1998.

S. Gimenez-ibanez, D. R. Hann, and V. Ntoukakis, AvrPtoB targets the LysM receptor kinase CERK1 to promote bacterial virulence on plants, Curr Biol, vol.19, pp.423-429, 2009.

J. Glazebrook, Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens, Annu Rev Phytopathol, vol.43, pp.205-227, 2005.

L. Gómez-gómez and T. Boller, FlS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis, Mol Cell, vol.5, pp.80265-80273, 2000.

M. R. Grant, L. Godiard, and E. Straube, Structure of the Arabidopsis RPM1 gene enabling dual specificity disease resistance, Science (80-), vol.269, pp.843-846, 1995.

D. Grattapaglia, O. B. Silva-junior, and M. Kirst, High-throughput SNP genotyping in the highly heterozygous genome of Eucalyptus: assay success, polymorphism and transferability across species, BMC Plant Biol, vol.11, p.65, 2011.

A. J. Greenberg, J. R. Moran, J. A. Coyne, and C. I. Wu, Ecological adaptation during incipient speciation revealed by precise gene replacement, Science (80-), vol.302, pp.1754-1757, 2003.

B. Guitton, J. Kelner, and R. Velasco, Genetic control of biennial bearing in apple, J Exp Bot, vol.63, pp.131-149, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01267776

, Identification and Mapping of Genomic Regions Controlling Fire Blight and Psylla Resistance and Hybrid Necrosis in Pear 271

M. A. Gururani, J. Venkatesh, and C. P. Upadhyaya, Plant disease resistance genes: Current status and future directions, Physiol Mol Plant Pathol, vol.78, pp.51-65, 2012.

C. S. Haley and S. A. Knott, A simple regression method for mapping quantitative trait loci in line crosses using flanking markers, Heredity (Edinb), vol.69, pp.315-339, 1992.

K. E. Hammond-kosack and J. Jones, Plant disease resistance genes, Annu Rev Plant Physiol Plant Mol Biol, vol.48, pp.575-607, 1997.

M. L. Hand, N. Cogan, and J. W. Forster, Genome-wide SNP identification in multiple morphotypes of allohexaploid tall fescue (Festuca arundinacea Schreb), BMC Genomics, vol.13, p.219, 2012.

F. H. Harries and E. C. Burts, Insecticide resistance in the pear psylla, J Econ Entomol, vol.58, pp.172-173, 1965.

M. K. Harris and R. C. Lamb, Resistance to the pear psylla in pears with Pyrus ussuriensis lineage, J Am Soc Hortic Sci, vol.98, pp.378-381, 1973.

U. P. Hedrick, G. H. Howe, and O. M. Taylor, The pears of New York., 29th Annua, 1921.

M. Heil, S. Bueno, and J. C. , Within-plant signaling by volatiles leads to induction and priming of an indirect plant defense in nature, PNAS, vol.104, pp.5467-5472, 2007.

L. S. Hesler and C. I. Tharp, Antibiosis and antixenosis to Rhopalosiphum padi among triticale accessions, Euphytica, vol.143, pp.153-160, 2005.

, Identification and Mapping of Genomic Regions Controlling Fire Blight and Psylla Resistance and Hybrid Necrosis in Pear 272

S. Heuer and K. M. Miézan, Assessing hybrid sterility in Oryza glaberrima × O. sativa hybrid progenies by PCR marker analysis and crossing with wide compatibility varieties, Theor Appl Genet, vol.107, pp.902-909, 2003.

I. D. Hodkinson, Life cycle variation and adaptation in jumping plant lice (Insecta: Hemiptera: Psylloidea): a global synthesis, J Nat Hist, vol.43, pp.65-179, 2009.

L. Hollingshead, A lethal factor in Crepis effective only in an interspecific hybrid, Genetics, vol.15, pp.114-140, 1930.

F. Hospital, Challenges for effective marker-assisted selection in plants, Genetica, vol.136, pp.303-310, 2009.

G. A. Howe and G. Jander, Plant immunity to insect herbivores, Annu Rev Plant Biol, vol.59, pp.41-66, 2008.

X. Huang and A. Madan, CAP3: A DNA sequence assembly program, Genome Res, vol.9, pp.868-77, 1999.

D. L. Hyten, S. B. Cannon, and Q. Song, High-throughput SNP discovery through deep resequencing of a reduced representation library to anchor and orient scaffolds in the soybean whole genome sequence, BMC Genomics, vol.11, p.38, 2010.

D. L. Hyten, Q. Song, and I. Choi, High-throughput genotyping with the GoldenGate assay in the complex genome of soybean, Theor Appl Genet, vol.116, pp.945-52, 2008.

K. Ichitani, Y. Takemoto, and K. Iiyama, Chromosomal location of HCA1 and HCA2, hybrid chlorosis genes in rice, Int J Plant Genomics, vol.2012, pp.1-9, 2012.

H. Iketani, K. Abe, and T. Yamamoto, Mapping of disease-related genes in Japanese pear using a molecular linkage map with RAPD markers, Breed Sci, vol.51, pp.179-184, 2001.

, Identification and Mapping of Genomic Regions Controlling Fire Blight and Psylla Resistance and Hybrid Necrosis in Pear 273

P. K. Ingvarsson and N. R. Street, Association genetics of complex traits in plants, New Phytol, vol.189, pp.909-922, 2011.

E. Inoue, F. Sakuma, and M. Kasumi, Effect of high-temperature on suppression of the lethality exhibited in the intergeneric hybrid between Japanese pear (Pyrus pyrifolia Nakai) and apple (Malus×domestica Borkh.), Sci Hortic (Amsterdam), vol.98, pp.385-396, 2003.

H. Ishii and H. Yanase, Venturia nashicola, the scab fungus of Japanese and Chinese pears: a species distinct from V. pirina, Mycol Res, vol.104, pp.755-759, 2000.

T. Ishimizu, K. Inoue, and M. Shimonaka, PCR-based method for identifying the Sgenotypes of Japanese pear cultivars, Theor Appl Genet, vol.98, pp.961-967, 1999.

T. Ishimizu, T. Shinkawa, F. Sakiyama, and S. Norioka, Primary structural features of rosaceous S-RNases associated with gametophytic self-incompatibility, Plant Mol Biol, vol.37, pp.931-941, 1998.

J. E. Jackson, Pyrodwarf, a clonal rootstock for high density pear orchards, Biology of apples and pears, pp.169-177, 1998.

O. Jaillon, J. Aury, and B. Noel, The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla, Nature, vol.449, pp.463-470, 2007.
URL : https://hal.archives-ouvertes.fr/inria-00180136

M. Jänsch, G. Broggini, and J. Weger, Identification of SNPs linked to eight apple disease resistance loci, 2015.

R. C. Jansen, Interval mapping of multiple quantitative trait loci, Genetics, vol.135, pp.205-211, 1993.

, Identification and Mapping of Genomic Regions Controlling Fire Blight and Psylla Resistance and Hybrid Necrosis in Pear 274

R. C. Jansen and P. Stam, High resolution of quantitative traits into multiple loci via interval mapping, Genetics, vol.136, pp.1447-1455, 1994.

M. Jaouannet, P. A. Rodriguez, and P. Thorpe, Plant immunity in plant-aphid interactions, Front Plant Sci, vol.5, pp.1-10, 2014.

P. J. Jensen, G. Fazio, and N. Altman, Mapping in an apple (Malus x domestica) F1 segregating population based on physical clustering of differentially expressed genes, BMC Genomics, 2014.

G. S. Johal and S. P. Briggs, Reductase activity encoded by the HM1 disease resistance gene in maize, Science (80-), vol.258, pp.985-987, 1992.

K. B. Johnson, V. O. Stockwell, and J. L. Vanneste, Biological control of fire blight. In: Fire Blight: the disease and its causative agent, Erwinia amylovora, pp.319-337, 2000.

J. Jones and J. L. Dangl, The plant immune system, Nature, vol.444, pp.323-332, 2006.

E. T. Kapatos and E. T. Stratopoulou, Duration times of the immature stages of Cacopsylla pyri L. (Hom., Psyllidae), estimated under field conditions, and their relationship to ambient temperature, J Appl Entomol, vol.123, pp.555-559, 1999.

L. M. Kawchuk, J. Hachey, and D. R. Lynch, Tomato Ve disease resistance genes encode cell surface-like receptors, PNAS, vol.98, pp.6511-6515, 2001.

M. Kellerhals, L. Franck, and I. O. Baumgartner, Breeding for fire blight resistance in apple, 2011.

, Acta Hortic, vol.896, pp.385-389

K. Kenis and J. Keulemans, Genetic linkage maps of two apple cultivars (Malus x domestica Borkh.) based on AFLP and microsatellite markers, Mol Breed, vol.15, pp.205-219, 2005.

, Identification and Mapping of Genomic Regions Controlling Fire Blight and Psylla Resistance and Hybrid Necrosis in Pear 275

A. Kessler and I. T. Baldwin, Plant responses to insect herbivory: the emerging molecular analysis, Annu Rev Plant Biol, vol.53, pp.299-328, 2002.

M. A. Khan, B. Duffy, C. Gessler, and A. Patocchi, QTL mapping of fire blight resistance in apple, Mol Breed, vol.17, pp.299-306, 2006.

M. A. Khan, C. Durel, and B. Duffy, Development of molecular markers linked to the "Fiesta" linkage group 7 major QTL for fire blight resistance and their application for marker-assisted selection, Genome, vol.50, pp.568-577, 2007.

M. A. Khan, Y. Han, and Y. F. Zhao, A multi-population consensus genetic map reveals inconsistent marker order among maps likely attributed to structural variations in the apple genome, PLoS One, 2012.

M. A. Khan, Y. Han, Y. F. Zhao, and S. S. Korban, A high-throughput apple SNP genotyping platform using the GoldenGate TM assay, Gene, vol.494, pp.196-201, 2012.

M. A. Khan, Y. Zhao, and S. S. Korban, Identification of genetic loci associated with fire blight resistance in Malus through combined use of QTL and association mapping, Physiol Plant, vol.148, pp.344-353, 2013.

J. F. Kim and S. Beer, hrp genes and harpins of Erwinia amylovora: a decade of discovery. In: Fire Blight: the disease and its causative agent, Erwinia amylovora, p.141, 2000.

S. H. Kim, S. Kwon, . Il, and D. Saha, Resistance to the Pseudomonas syringae effector HopA1 is governed by the TIR-NBS-LRR protein RPS6 and is enhanced by mutations in SRFR1, Plant Physiol, vol.150, pp.1723-1732, 2009.

Y. J. Kim, N. C. Lin, and G. B. Martin, Two distinct Pseudomonas effector proteins interact with the Pto kinase and activate plant immunity, Cell, vol.109, pp.743-745, 2002.

, Identification and Mapping of Genomic Regions Controlling Fire Blight and Psylla Resistance and Hybrid Necrosis in Pear 276

D. J. Kliebenstein, H. C. Rowe, and K. J. Denby, Secondary metabolites influence, 2005.

, Arabidopsis/Botrytis interactions: variation in host production and pathogen sensitivity

, Plant J, vol.44, pp.25-36

M. Kogan, Integrated Pest Management: historical perspectives and contemporary developments, Annu Rev Entomol, vol.43, pp.243-270, 1998.

S. G. Krattinger, E. S. Lagudah, and W. Spielmeyer, A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat, Science, vol.323, pp.1360-1363, 2009.

J. Krüger, C. M. Thomas, and C. Golstein, A tomato cysteine protease required for Cf-2-dependent disease resistance and suppression of autonecrosis, Science (80-), vol.296, pp.744-751, 2002.

S. Kumar, M. C. Bink, .. M. Volz, and R. K. , Towards genomic selection in apple (Malus × domestica Borkh.) breeding programmes: Prospects, challenges and strategies, Tree Genet Genomes, vol.8, pp.1-14, 2012.

S. Kumar, D. Chagné, M. C. Bink, and M. , Genomic selection for fruit quality traits in apple (Malus x domestica Borkh.). PLoS One, 2012.

B. N. Kunkel and D. M. Brooks, Cross talk between signaling pathways in pathogen defense, Curr Opin Plant Biol, vol.5, pp.325-331, 2002.

R. Lande and R. Thompson, Efficiency of marker-assisted selection in the improvement of quantitative traits, Genetics, vol.124, pp.743-756, 1990.

E. Lander and L. Kruglyak, Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results, Nat Genet, vol.11, pp.241-247, 1995.

, Identification and Mapping of Genomic Regions Controlling Fire Blight and Psylla Resistance and Hybrid Necrosis in Pear 277

E. S. Lander and D. Botstein, Mapping mendelian factors underlying quantitative traits using RFLP linkage maps, Genetics, vol.121, pp.185-99, 1989.

G. J. Lawrence, E. J. Finnegan, M. Ayliffe, and J. G. Ellis, The L6 gene for flax rust resistance is related to the Arabidopsis bacterial resistance gene RPS2 and the tobacco viral resistance gene N, Plant Cell, vol.7, pp.1195-1206, 1995.

L. Roux, P. , C. D. Duffy, and B. , Redefinition of the map position and validation of a major quantitative trait locus for fire blight resistance of the pear cultivar, Pyrus communis L.). Plant Breed, vol.131, pp.656-664, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01209920

L. Roux, P. Khan, M. A. Broggini, and G. , Mapping of quantitative trait loci for fire blight resistance in the apple cultivars" Florina" and "Nova Easygro, Genome, vol.53, pp.710-722, 2010.

D. Leister, Tandem and segmental gene duplication and recombination in the evolution of plant disease resistance genes, Trends Genet, vol.20, pp.116-122, 2004.

Y. Lespinasse and H. S. Aldwinckle, Breeding for resistance to fire blight. In: Vanneste JL (ed) Fire Blight: The Disease and its Causative Agent, Erwinia amylovora, pp.253-273, 2000.

Y. Lespinasse, M. Chevalier, and C. Durel, Pear breeding for scab and psylla resistance, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01601176

, Acta Hortic, vol.800, pp.475-482

F. Li, D. Pignatta, and C. Bendix, MicroRNA regulation of plant innate immune receptors, PNAS, vol.109, pp.1790-1795, 2012.

,

R. Li, Y. Li, and X. Fang, SNP detection for massively parallel whole-genome resequencing, Genome Res, vol.19, pp.1124-1156, 2009.

, Identification and Mapping of Genomic Regions Controlling Fire Blight and Psylla Resistance and Hybrid Necrosis in Pear 278

Z. K. Li, L. J. Luo, and H. W. Mei, A "defeated" rice resistance gene acts as a QTL against a virulent strain of Xanthomonas oryzae pv. oryzae, Mol Gen Genet, vol.261, pp.58-63, 1999.

R. Liebhard, L. Gianfranceschi, and B. Koller, Development and characterisation of 140 new microsatellites in apple, Malus x domestica Borkh.). Mol Breed, vol.10, pp.217-241, 2002.

R. Liebhard, B. Koller, L. Gianfranceschi, and C. Gessler, Creating a saturated reference map for the apple (Malus x domestica Borkh.) genome, Theor Appl Genet, vol.106, pp.1497-508, 2003.

Y. Liu, Z. He, R. Appels, and X. Xia, Functional markers in wheat: current status and future prospects, Theor Appl Genet, vol.125, pp.1-10, 2012.

M. Lu, H. Tang, and X. Chen, Comparative genome mapping between apple and pear by apple mapped SSR markers, Am J Agric Environ Sci, vol.9, pp.303-309, 2010.

R. Luderer, D. Kock, M. Dees, and R. , Functional analysis of cysteine residues of ECP elicitor proteins of the fungal tomato pathogen Cladosporium fulvum, Mol Plant Pathol, vol.3, pp.91-95, 2002.

H. P. Maas-geesteranus, J. Heyting, and . Winslow, The value of topleaf inoculation to demonstrate genetic resistance in Pomoideae species to Erwina amylovora, Acta Hortic, vol.117, pp.75-82, 1981.

C. Maliepaard, F. H. Alston, and G. Van-arkel, Aligning male and female linkage maps of apple (Malus pumila Mill.) using multi-allelic markers, Theor Appl Genet, vol.97, pp.60-73, 1998.

M. Malnoy, S. Martens, and J. L. Norelli, Fire blight: applied genomic insights of the pathogen and host, Annu Rev Phytopathol, vol.50, pp.475-494, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01053122

, Identification and Mapping of Genomic Regions Controlling Fire Blight and Psylla Resistance and Hybrid Necrosis in Pear 279

P. M. Manosalva, R. M. Davidson, and B. Liu, A germin-like protein gene family functions as a complex quantitative trait locus conferring broad-spectrum disease resistance in rice, Plant Physiol, vol.149, pp.286-296, 2009.

G. B. Martin, A. J. Bogdanove, and G. Sessa, Understanding the functions of plant disease resistance proteins, Annu Rev Plant Biol, vol.54, pp.23-61, 2003.

G. B. Martin, S. H. Brommonschenkel, and J. Chunwongse, Map-based cloning of a protein kinase gene conferring disease resistance in tomato, Science (80-), vol.262, pp.1432-1436, 1993.

L. K. Matukumalli, C. T. Lawley, and R. D. Schnabel, Development and characterization of a high density SNP genotyping assay for cattle, PLoS One, vol.4, p.5350, 2009.

J. M. Mcdowell and J. L. Dangl, Signal transduction in the plant innate immune response, Trends Biochem Sci, vol.25, pp.79-82, 2000.

S. E. Mcgregor, Insect Pollination Of Cultivated Crop Plants, Agricultural Research Service, 1976.

M. Melotto, W. Underwood, and J. Koczan, Plant stomata function in innate immunity against bacterial invasion, Cell, vol.126, pp.969-980, 2006.

T. Meuwissen, Genomic selection: marker assisted selection on a genome wide scale, J Anim Breed Genet, vol.124, pp.321-322, 2007.

T. Meuwissen, B. J. Hayes, and M. E. Goddard, Prediction of total genetic value using genomewide dense marker maps, Genetics, vol.157, p.11290733, 2001.

B. C. Meyers, S. Kaushik, and R. S. Nandety, Evolving disease resistance genes, Curr Opin Plant Biol, vol.8, pp.129-134, 2005.

, Identification and Mapping of Genomic Regions Controlling Fire Blight and Psylla Resistance and Hybrid Necrosis in Pear 280

D. Micheletti, M. Troggio, and A. Zharkikh, Genetic diversity of the genus Malus and implications for linkage mapping with SNPs, Tree Genet Genomes, vol.7, pp.857-868, 2011.

R. W. Michelmore and B. C. Meyers, Clusters of resistance genes in plants evolve by divergent selection and a birth-and-death process, Genome Res, vol.8, 1998.

E. Miedes, R. Vanholme, W. Boerjan, and A. Molina, The role of the cell wall in plant immunity, Front Plant Sci, 2014.

A. N. Mishra, K. Kaushal, and S. R. Yadav, A leaf rust resistance gene, different from Lr34, associated with leaf tip necrosis in wheat, Plant Breed, vol.124, pp.517-519, 2005.

T. Mitchell-olds, Selection on QTL and complex traits in complex environments, Mol Ecol, vol.22, pp.3427-3429, 2013.

N. Mizuno, N. Hosogi, P. Park, and S. Takumi, Hypersensitive response-like reaction is associated with hybrid necrosis in interspecific crosses between tetraploid wheat and Aegilops tauschii Coss, PLoS One, vol.5, 2010.

M. T. Momol and H. S. Aldwinckle, Genetic diversity and host range of Erwinia amylovora. In: Fire Blight: the disease and its causative agent, Erwinia amylovora, pp.55-72, 2000.

S. Montanari, M. Saeed, and M. Knäbel, Identification of Pyrus Single Nucleotide Polymorphisms (SNPs) and evaluation for genetic mapping in European pear and interspecific Pyrus hybrids, PLoS One, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01209941

J. Montarry, E. Cartier, and M. Jacquemond, Virus adaptation to quantitative plant resistance: erosion or breakdown?, J Evol Biol, vol.25, pp.2242-2252, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01208594

, Identification and Mapping of Genomic Regions Controlling Fire Blight and Psylla Resistance and Hybrid Necrosis in Pear 281

J. Morel and J. L. Dangl, The hypersensitive response and the induction of cell death in plants, Cell Death Differ, vol.4, pp.671-683, 1997.

J. W. Morrison, Dwarfs, semi-lethals and lethals in wheat, Euphytica, vol.6, pp.213-223, 1957.

C. C. Mundt, Use of multiline cultivars and cultivar mixtures for disease management, Annu Rev Phytopathol, vol.40, pp.381-410, 2002.

C. C. Mundt, Durable resistance: A key to sustainable management of pathogens and pests, Infect Genet Evol, vol.27, pp.446-455, 2014.

H. Muranty, J. V. Bastien, and C. , Potential for marker-assisted selection for forest tree breeding: lessons from 20 years of MAS in crops, Tree Genet Genomes, vol.10, pp.1491-1510, 2014.

S. Musacchi, Coltivazione -Tecnica colturale. In: Il pero. Script, Art servizi editoriali Spa, pp.92-137, 2007.

M. Muthamilarasan and M. Prasad, Plant innate immunity: an updated insight into defense mechanism, J Biosci, vol.38, pp.433-449, 2013.

S. Myles, Improving fruit and wine: what does genomics have to offer?, Trends Genet, vol.29, pp.190-196, 2013.

M. Newman, T. Sundelin, J. T. Nielsen, and G. Erbs, MAMP (microbe-associated molecular pattern) triggered immunity in plants, Front Plant Sci, vol.4, pp.1-14, 2013.

R. E. Niks and T. C. Marcel, Nonhost and basal resistance: how to explain specificity, New Phytol, vol.182, pp.817-828, 2009.

C. Nishitani, S. Terakami, and Y. Sawamura, Development of novel EST-SSR markers derived from Japanese pear (Pyrus pyrifolia), Breed Sci, vol.59, pp.391-400, 2009.

, Identification and Mapping of Genomic Regions Controlling Fire Blight and Psylla Resistance and Hybrid Necrosis in Pear 282

G. Nombela, V. M. Williamson, and M. Muñiz, The root-knot nematode resistance gene Mi-1.2 of tomato is responsible for resistance against the whitefly Bemisia tabaci, Mol plant-microbe Interact, vol.16, pp.645-649, 2003.

J. L. Norelli and H. S. Aldwinckle, Differential susceptibility of Malus spp. cultivars robusta 5, novole and ottawa 523 to Erwinia amylovora, Plant Dis, vol.70, pp.1017-1019, 1986.

J. L. Norelli, A. L. Jones, and H. S. Aldwinckle, Fire blight management in the twenty-first century: using new technologies that enhance host resistance in apple, Plant Dis, vol.87, pp.756-765, 2003.

W. S. Oetting, H. K. Lee, and D. J. Flanders, Linkage analysis with multiplexed short tandem repeat polymorphisms using infrared fluorescence and M13 tailed primers, Genomics, vol.30, pp.450-458, 1995.

K. Okada, N. Tonaka, and Y. Moriya, Deletion of a 236 kb region around S 4-RNase in a stylar-part mutant S 4sm-haplotype of Japanese pear, Plant Mol Biol, vol.66, pp.389-400, 2008.

K. Okada, N. Tonaka, and T. Takasaki, Selection of self-compatible trees by S4sm-haplotype specific markers in Japanese pear, Acta Hortic, vol.800, pp.401-407, 2008.

P. Ollitrault, J. Terol, and A. Garcia-lor, SNP mining in C. clementina BAC end sequences; transferability in the Citrus genus (Rutaceae), phylogenetic inferences and perspectives for genetic mapping, BMC Genomics, vol.13, p.13, 2012.

H. A. Orr, Dobzhansky, Bateson, and the genetics of speciation, Genetics, vol.144, pp.1331-1335, 1996.

H. A. Orr, The population genetics of speciation: the evolution of hybrid incompatibilites, Genetics, vol.139, pp.1805-1813, 1995.

, Identification and Mapping of Genomic Regions Controlling Fire Blight and Psylla Resistance and Hybrid Necrosis in Pear 283

A. Palloix, V. Ayme, and B. Moury, Durability of plant major resistance genes to pathogens depends on the genetic background, experimental evidence and consequences for breeding strategies, New Phytol, vol.183, pp.190-199, 2009.

L. Parisi and Y. Lespinasse, Pathogenicity of Venturia inaequalis strains of race 6 on apple clones (Malus sp.), Plant Dis, vol.80, pp.1179-83, 1996.

J. E. Parker, M. J. Coleman, and V. Szabò, The Arabidopsis downy mildew resistance gene RPP5 shares similarity to the toll and interleukin-1 receptors with N and L6, Plant Cell, vol.9, pp.879-894, 1997.

J. E. Parlevliet and J. C. Zadoks, The integrated concept of disease resistance; a new view including horizontal and vertical resistance in plants, Euphytica, vol.26, pp.5-21, 1977.

E. Pasqualini, S. Civolani, and S. Musacchi, Cacopsylla pyri behaviour on new pear selections for host resistance programs, Bull Insectology, vol.59, pp.27-37, 2006.

A. Patocchi, A. Frei, J. E. Frey, and M. Kellerhals, Towards improvement of marker assisted selection of apple scab reisistant cultivars: Venturia inaequalis virulence surveys and standardization of molecular marker alleles associated with resistance genes, Mol Breed, vol.24, pp.337-347, 2009.

J. Paulin and W. Burrill, Fire blight of Pomoideae (Erwinia amylovora, Applied research in Europe (1978-88), 1990.

J. P. Paulin and R. Samson, Le feu bacterien en France. II. Caracteres des souches d'Erwinia amylovora (Burril) Winslow et al., 1920, isolees du foyer franco-belge, Ann Phytopathol, vol.5, pp.389-397, 1973.

C. Peace and N. Bassil, Routine DNA testing. RosBREED's Community Breeders, pp.1-3, 2012.

, Identification and Mapping of Genomic Regions Controlling Fire Blight and Psylla Resistance and Hybrid Necrosis in Pear 284

C. Peace, N. Bassil, and D. Main, Development and evaluation of a genome-wide 6K SNP array for diploid sweet cherry and tetraploid sour cherry, PLoS One, vol.7, p.48305, 2012.

W. L. Pedersen and S. Leath, Pyramiding major genes for resistance to maintain residual effects, Annu Rev Phytopathol, vol.26, pp.369-378, 1988.

A. Peil, V. Bus, and K. Geider, Improvement of fire blight resistance in apple and pear, Int J Plant Breed, vol.3, pp.1-27, 2009.

A. Peil, H. Flachowsky, and M. Hanke, Inoculation of Malus × robusta 5 progeny with a strain breaking resistance to fire blight reveals a minor QTL on LG5, Acta Hortic, vol.896, pp.357-362, 2011.

A. Peil, T. Garcia-libreros, and K. Richter, Strong evidence for a fire blight resistance gene of Malus robusta located on linkage group 3, Plant Breed, vol.126, pp.470-475, 2007.

M. Perazzolli, G. Malacarne, and A. Baldo, Characterization of resistance gene analogues (RGAs) in apple (Malus x domestica Borkh.) and their evolutionary history of the Rosaceae family, PLoS One, 2014.

L. Perchepied, C. Dogimont, and M. Pitrat, Strain-specific and recessive QTLs involved in the control of partial resistance to Fusarium oxysporum f. sp. melonis race 1.2 in a recombinant inbred line population of melon, Theor Appl Genet, vol.111, pp.65-74, 2005.

L. Perchepied, T. Kroj, and M. Tronchet, Natural variation in partial resistance to Pseudomonas syringae is controlled by two major QTLs in Arabidopsis thaliana, PLoS One, 2006.

, Identification and Mapping of Genomic Regions Controlling Fire Blight and Psylla Resistance and Hybrid Necrosis in Pear 285

S. Perumalsamy, M. Bharani, and M. Sudha, Functional marker-assisted selection for bacterial leaf blight resistance genes in rice, Oryza sativa L.). Plant Breed, vol.129, pp.400-406, 2010.

L. Pierantoni, K. Cho, and I. Shin, Characterisation and transferability of apple SSRs to two European pear F1 populations, Theor Appl Genet, vol.109, pp.1519-1543, 2004.

L. Pierantoni, L. Dondini, and K. Cho, Pear scab resistance QTLs via a European pear (Pyrus communis) linkage map, Tree Genet Genomes, vol.3, pp.311-317, 2007.

J. Poland, J. Endelman, and J. Dawson, Genomic selection in wheat breeding using genotyping-by-sequencing, Plant Genome, vol.5, pp.103-113, 2012.

J. A. Poland, P. J. Balint-kurti, and R. J. Wisser, Shades of gray: the world of quantitative disease resistance, Trends Plant Sci, vol.14, pp.21-29, 2009.

J. Postman, D. Kim, and N. Bassil, OH x F paternity perplexes pear producers, J Am Pomol Soc, vol.67, pp.157-167, 2013.

D. Potter, T. Eriksson, and R. C. Evans, Phylogeny and classification of Rosaceae, Plant Syst Evol, vol.266, pp.5-43, 2007.

P. G. Psallidas, J. Tsiantos, and J. L. Vanneste, Chemical control of fire blight. In: Fire Blight: the disease and its causative agent, Erwinia amylovora, pp.199-234, 2000.

G. J. Puterka, Intraspecific variation in pear psylla (Psyllidae: Homoptera) nymphal survival and development on resistant and susceptible pear, Environ Entomol, vol.26, pp.552-557, 1997.

H. A. Quamme, Resistance to naturally and artificially induced fire blight in the Harrow pear collection, Can Plant Dis Surv, vol.57, pp.9-12, 1977.

, Identification and Mapping of Genomic Regions Controlling Fire Blight and Psylla Resistance and Hybrid Necrosis in Pear 286

H. A. Quamme, V. Dirks, and T. Van-der-zwet, Relationship of fire blight resistance of young pear seedlings inoculated in the greenhouse to mature seedling trees naturally infected in the field, Plant Dis Report, vol.8, pp.660-664, 1976.

M. Quinet, S. Kelecom, O. Raspé, and A. L. Jacquemart, S-genotype characterization of 13 North Western European pear (Pyrus communis) cultivars, Sci Hortic (Amsterdam), vol.165, pp.1-4, 2014.

J. M. Ribaut, C. Jiang, and D. Hoisington, Simulation experiments on efficiencies of gene introgression by backcrossing, Crop Sci, vol.42, pp.557-565, 2002.

K. M. Rice and P. Holmans, Allowing for genotyping error in analysis of unmatched casecontrol studies, Ann Hum Genet, vol.67, pp.165-74, 2003.

L. H. Rieseberg and B. K. Blackman, Speciation genes in plants, Ann Bot, vol.106, pp.439-55, 2010.

L. H. Rieseberg, S. A. Church, and C. L. Morjan, Integration of populations and differentiation of species, New Phytol, vol.161, pp.59-69, 2003.

P. Robert, P. Guérif, J. Lemoine, L. Lézec, and M. , Criblage de génotypes de Pyrus vis-à-vis de la résistance au psylle du poirier Cacopsylla pyri (L.), Chaiers Agric, vol.13, pp.349-354, 2004.

P. Robert and T. Raimbault, Resistance of some Pyrus communis cultivars and Pyrus hybrids to the pear psylla Cacopsylla pyri (Homoptera, Psyllidae), Acta Hortic, vol.671, pp.571-575, 2004.

A. Robert-seilaniantz, M. Grant, and J. Jones, Hormone crosstalk inpPlant disease and defense: more than just JASMONATE-SALICYLATE antagonism, Annu Rev Phytopathol, vol.49, pp.317-343, 2011.

P. Roche, F. H. Alston, and C. Maliepaard, RFLP and RAPD markers linked to the rosy leaf curling aphid resistance gene (Sd1) in apple, Theor Appl Genet, vol.94, pp.528-533, 1997.

, Identification and Mapping of Genomic Regions Controlling Fire Blight and Psylla Resistance and Hybrid Necrosis in Pear 287

P. C. Ronald, J. M. Salmeron, F. M. Carland, and B. J. Staskawicz, The cloned avirulence gene avrPto induces disease resistance in tomato cultivars containing the Pto resistance gene, J Bacteriol, vol.174, pp.1604-1611, 1992.

M. Rossi, F. L. Goggin, and S. B. Milligan, The nematode resistance gene Mi of tomato confers resistance against the potato aphid, PNAS, vol.95, pp.9750-9754, 1998.

H. Rovenich, J. C. Boshoven, and B. Thomma, Filamentous pathogen effector functions: of pathogens, hosts and microbiomes, Curr Opin Plant Biol, vol.20, pp.96-103, 2014.

S. Rozen and H. Skaletsky, Primer3 on the WWW for general users and for biologist programmers, Methods Mol Biol, vol.132, pp.365-386, 1999.

S. Ru, D. Main, K. Evans, and C. Peace, Current applications, challenges, and perspectives of marker-assisted seedling selection in Rosaceae tree fruit breeding, Tree Genet Genomes, 2015.

J. M. Salmeron, G. E. Oldroyd, and C. M. Rommens, Tomato Prf is a member of the leucinerich repeat class of plant disease resistance genes and lies embedded within the Pto kinase gene cluster, Cell, vol.86, pp.123-133, 1996.

F. Salvianti, P. P. Bettini, and E. Giordani, Identification by suppression subtractive hybridization of genes expressed in pear (Pyrus spp.) upon infestation with Cacopsylla pyri (Homoptera: Psyllidae), J Plant Physiol, vol.165, pp.1808-1824, 2008.

J. Sanzol and M. Herrero, Identification of self-incompatibility alleles in pear cultivars (Pyrus communis L.), Euphytica, vol.128, pp.325-331, 2002.

D. J. Sargent, T. M. Davis, and K. R. Tobutt, A genetic linkage map of microsatellite, genespecific and morphological markers in diploid Fragaria, Theor Appl Genet, vol.109, pp.1385-1391, 2004.

, Identification and Mapping of Genomic Regions Controlling Fire Blight and Psylla Resistance and Hybrid Necrosis in Pear 288

S. Sato, S. Tabata, and H. Hirakawa, The tomato genome sequence provides insights into fleshy fruit evolution, Nature, vol.485, pp.635-676, 2012.

Y. Sawamura, T. Saito, and N. Takada, Identification of parentage of Japanese pear "Hosui, J Japanese Soc Hortic Sci, vol.73, pp.511-518, 2004.

S. J. Sawcer, M. Maranian, and S. Singlehurst, Enhancing linkage analysis of complex disorders: an evaluation of high-density genotyping, Hum Mol Genet, vol.13, pp.1943-1952, 2004.

L. Schaub, B. Graf, and A. Butturini, Phenological model of pear psylla Cacopsylla pyri, 2005.

, Entomol Exp Appl, vol.117, pp.105-111

P. S. Schnable, D. Ware, and R. S. Fulton, The B73 maize genome: complexity, diversity, and dynamics, Science (80-), vol.326, pp.1112-1117, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00751527

E. Seemüller, B. Schneider, and B. Jarausch, (eds) Virus and Virus-like Diseases of Pome and Stone Fruits, p.428, 2011.

S. M. Segonne, M. Bruneau, and J. Celton, Multiscale investigation of mealiness in apple: an atypical role for a pectin methylesterase during fruit maturation, BMC Plant Biol, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01210007

S. Sen and G. A. Churchill, A statistical framework for quantitative trait mapping, Genetics, vol.159, pp.371-87, 2001.

L. Shaltiel-harpaz, V. Soroker, and R. Kedoshim, Two pear accessions evaluated for susceptibility to pear psylla Cacopsylla bidens (?ulc) in Israel, Pest Manag Sci, vol.70, pp.234-243, 2014.

, Identification and Mapping of Genomic Regions Controlling Fire Blight and Psylla Resistance and Hybrid Necrosis in Pear 289

G. Shaner and R. E. Finney, The effect of nitrogen fertilization on the expression of slowmildewing reistance in Knox Wheat, Phytopathology, vol.67, pp.1051-56, 1977.

I. Shimura, K. Seike, and T. Shishikura, Intergeneric hybridization between Japanese pear (Pyrus serotina Rehd.) and apple (Malus pumila Mill.), Japanese J Breed, vol.30, pp.170-180, 1980.

P. V. Shivaprasad, H. Chen, and K. Patel, A microRNA superfamily regulates Nucleotide Binding Site-Leucine-Rich Repeats and other mRNAs, Plant Cell, vol.24, pp.859-874, 2012.

E. Silfverberg-dilworth, C. L. Matasci, and W. E. Van-de-weg, Microsatellite markers spanning the apple (Malus x domestica Borkh.) genome, Tree Genet Genomes, vol.2, pp.202-224, 2006.

T. Smits, F. Rezzonico, and T. Kamber, Complete genome sequence of the fire blight pathogen Erwinia amylovora CFBP 1430 and comparison to other Erwinia spp, Mol plantmicrobe Interact, vol.23, pp.384-393, 2010.

L. Song, W. Guo, and T. Zhang, Interaction of novel Dobzhansky-Muller type genes for the induction of hybrid lethality between Gossypium hirsutum and G. barbadense cv. Coastland R4-4, Theor Appl Genet, vol.119, pp.33-41, 2009.

W. Song, G. Wang, and L. Chen, A receptor kinase-like protein encoded by the rice disease resitance gene, vol.270, pp.1804-1806, 1995.

Y. Song, L. Fan, and H. Chen, Identifying genetic diversity and a preliminary core collection of Pyrus pyrifolia cultivars by a genome-wide set of SSR markers, Sci Hortic (Amsterdam), vol.167, pp.5-16, 2014.

S. Stael, P. Kmiecik, and P. Willems, Plant innate immunity -sunny side up?, Trends Plant Sci, vol.1228, pp.1-9, 2014.

, Identification and Mapping of Genomic Regions Controlling Fire Blight and Psylla Resistance and Hybrid Necrosis in Pear 290

F. Stanica, Behaviour of four over grafted Chinese pear varieties (Pyrus serotina) in Bucuresti area, Acta Hortic, vol.596, pp.405-409, 2002.

M. Staudt, B. Jackson, and H. El-aouni, Volatile organic compound emissions induced by the aphid Myzus persicae differ among resistant and susceptible peach cultivars and a wild relative, Tree Physiol, vol.30, pp.1320-1334, 2010.

F. J. Steemers and K. L. Gunderson, Whole genome genotyping technologies on the BeadArray platform, Biotechnol J, vol.2, pp.41-50, 2007.

P. W. Steiner and J. L. Vanneste, Integrated orchard and nursery management for the control of fire blight. In: Fire Blight: the disease and its causative agent, Erwinia amylovora, pp.339-358, 2000.

R. B. Stevens, S. Stoeckli, K. Mody, and S. Dorn, Aphis pomi (Hemiptera: Aphididae) population development, shoot characteristics, and antibiosis resistance in different apple genotypes, J Econ Entomol, vol.101, pp.1341-1349, 1960.

S. Stoeckli, K. Mody, and C. Gessler, QTL analysis for aphid resistance and growth traits in apple, Tree Genet Genomes, vol.4, pp.833-847, 2008.

S. Stoeckli, K. Mody, and C. Gessler, Quantitative trait locus mapping of resistance in apple to Cydia pomonella and Lyonetia clerkella and of two selected fruit traits, Ann Appl Biol, vol.154, pp.377-387, 2009.

P. Stothard, J. Choi, and U. Basu, Whole genome resequencing of Black Angus and Holstein cattle for SNP and CNV discovery, BMC Genomics, vol.12, p.559, 2011.

, Identification and Mapping of Genomic Regions Controlling Fire Blight and Psylla Resistance and Hybrid Necrosis in Pear 291

J. Stuart, Insect effectors and gene-for-gene interactions with host plants, Curr Opin Insect Sci, vol.9, pp.1-6, 2015.

J. Tahir, M. Watanabe, and H. Jing, Activation of R-mediated innate immunity and disease susceptibility is affected by mutations in a cytosolic O-acetylserine (thiol) lyase in, 2013.

. Arabidopsis, Plant J, vol.73

F. Takken, M. Albrecht, and W. Tameling, Resistance proteins: molecular switches of plant defence, Curr Opin Plant Biol, vol.9, pp.383-390, 2006.

S. Tartarini, RAPD markers linked to the Vf gene for scab resistance in apple, Theor Appl Genet, vol.92, pp.803-810, 1996.

S. Tartarini, S. Sansavini, and B. A. Vinatzer, Efficiency of markers assisted selection (MAS) for the Vf scab resistance gene, Eucarpia symposium on Fruit Breeding and Genetics, pp.549-552, 2000.

R. K. Taylor, C. Ranatunga, V. Bus, and P. A. Alspach, Host-pathogen interactions of Erwinia amylovora on apple and pear in New Zealand, Acta Hortic, vol.590, pp.363-367, 2002.

S. Teixeira and G. Bernasconi, High prevalence of multiple paternity within fruits in natural populations of Silene latifolia, as revealed by microsatellite DNA analysis, Mol Ecol, vol.16, pp.4370-4379, 2007.

Y. Teng, K. Tanabe, F. Tamura, and A. Itai, Genetic relationships of Pyrus species and cultivars native to East Asia revealed by randomly amplified polymorphic DNA markers, J Am Soc Hortic Sci, vol.127, pp.262-270, 2002.

S. Terakami, Y. Adachi, and H. Iketani, Genetic mapping of genes for susceptibility to black spot disease in Japanese pears, Genome, vol.50, pp.735-741, 2007.

, Identification and Mapping of Genomic Regions Controlling Fire Blight and Psylla Resistance and Hybrid Necrosis in Pear 292

S. Terakami, C. Nishitani, and T. Yamamoto, Development of SNP markers for marker-assisted selection in pear, Acta Horticulturae 976, pp.463-470, 2013.

S. Terakami, M. Shoda, and Y. Adachi, Genetic mapping of the pear scab resistance gene Vnk of Japanese pear cultivar "Kinchaku, Theor Appl Genet, vol.113, pp.743-52, 2006.

H. C. Thode, Epidemiology of Fire Blight 2. In: Fire Blight: the disease and its causative agent, Erwinia amylovora, p.9, 2000.

D. Tilman, C. Balzer, J. Hill, and B. L. Befort, Global food demand and the sustainable intensification of agriculture, PNAS, vol.108, pp.20260-20264, 2011.

M. Troggio, G. Malacarne, and G. Coppola, A dense single-nucleotide polymorphismbased genetic linkage map of grapevine (Vitis vinifera L.) anchoring Pinot Noir bacterial artificial chromosome contigs, Genetics, vol.176, pp.2637-50, 2007.

J. Valkonen and K. N. Watanabe, Autonomous cell death, temperature sensitivity and the genetic control associated with resistance to cucumber mosaic virus (CMV) in diploid potatoes (Solanum spp, Theor Appl Genet, vol.99, pp.996-1005, 1999.

J. Van-der-plank, T. Zwet, W. A. Oitto, and M. N. Westwood, Variability in degree of fire blight resistance within and between Pyrus species, interspecific hybrids, and seedling progenies, Euphytica, vol.23, pp.295-304, 1963.

, Identification and Mapping of Genomic Regions Controlling Fire Blight and Psylla Resistance and Hybrid Necrosis in Pear 293

S. Van-nocker and S. E. Gardiner, Breeding better cultivars, faster: applications of new technologies for the rapid deployment of superior horticultural tree crops, Hortic Res, vol.1, p.14022, 2014.

J. W. Van-ooijen, Software for the calculation of genetic linkage maps in experimental populations, vol.4, 2006.

J. W. Van-ooijen, MapQTL 5, Software for the mapping of quantitative trait loci in experimental population, Kyazma B.V, 2004.

M. C. Van-verk, R. Hickman, C. Pieterse, and S. Van-wees, RNA-Seq: revelation of the messengers, Trends Plant Sci, vol.18, pp.175-179, 2013.

J. L. Vanneste, Fire blight: the disease and its causative agent, Erwinia amylovora, 2000.

N. I. Vavilov, The origin, variation, immunity and breeding of cultivated plants, Chronica Botanica Company, 1951.

R. Velasco, A. Zharkikh, and J. Affourtit, The genome of the domesticated apple (Malus × domestica Borkh.), Nat Genet, vol.42, pp.833-842, 2010.

R. Velasco, A. Zharkikh, and M. Troggio, A high quality draft consensus sequence of the genome of a heterozygous grapevine variety, PLoS One, vol.2, p.1326, 2007.

I. Verde, A. G. Abbott, and S. Scalabrin, The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution, 2013.

, Nat Genet, vol.45, pp.487-94

, Identification and Mapping of Genomic Regions Controlling Fire Blight and Psylla Resistance and Hybrid Necrosis in Pear 294

I. Verde, N. Bassil, and S. Scalabrin, Development and evaluation of a 9K SNP array for peach by internationally coordinated SNP detection and validation in breeding germplasm, 2012.

, PLoS One, vol.7, p.35668

E. Vergne, X. Grand, and E. Ballini, Preformed expression of defense is a hallmark of partial resistance to rice blast fungal pathogen Magnaporthe oryzae, BMC Plant Biol, vol.10, p.206, 2010.

S. Vezzulli, D. Micheletti, and S. Riaz, A SNP transferability survey within the genus Vitis, BMC Plant Biol, vol.8, p.128, 2008.

B. A. Vinatzer, A. Patocchi, and S. Tartarini, Isolation of two microsatellite markers from BAC clones of the Vf scab resistance region and molecular characterization of scab-resistant accessions in Malus germplasm, Plant Breed, vol.123, pp.321-326, 2004.

I. Vogt, T. Wohner, and K. Richter, Gene-for-gene relationship in the host-pathogen system Malus x robusta 5-Erwinia amylovora, New Phytol, vol.197, pp.1262-1275, 2013.

R. E. Voorrips, MapChart: software for the graphical presentation of linkage maps and QTLs, J. Hered, vol.93, pp.77-78, 2002.

K. Vrancken, M. Holtappels, and H. Schoofs, Pathogenicity and infection strategies of the fire blight pathogen Erwinia amylovora in Rosaceae: state of the art, Microbiology, vol.159, pp.823-855, 2013.

L. Wang and J. Wu, The essential role of jasmonic acid in plant-herbivore interactions -using the wild tobacco Nicotiana attenuata as a model, J Genet Genomics, vol.40, pp.597-606, 2013.

Y. Wang, Genetic resources of deciduous fruit and nut crops in China, 2002.

, Identification and Mapping of Genomic Regions Controlling Fire Blight and Psylla Resistance and Hybrid Necrosis in Pear 295

Z. Wang, M. Gerstein, and M. Snyder, RNA-Seq: a revolutionary tool for transcriptomics, Nat Rev Genet, vol.10, pp.57-63, 2009.

E. Ward, S. Uknes, and S. Williams, Coordinate gene activity in response to agents that induce Systemic Acquired Resistance, Plant Cell, vol.3, pp.1085-1094, 1991.

. Ward-j-a, J. Bhangoo, and F. Fernández-fernández, Saturated linkage map construction in Rubus idaeus using genotyping by sequencing and genome-independent imputation, BMC Genomics, 2013.

A. D. Webster, A brief review of pear rootstock development, Acta Hortic, vol.475, pp.135-141, 1998.

A. Weiberg, M. Wang, M. Bellinger, and H. Jin, Small RNAs: a new paradigm in plant-microbe interactions, Annu Rev Phytopathol, vol.52, pp.495-516, 2014.

A. Weiberg, M. Wang, and F. Lin, Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways, Science (80-), vol.342, pp.118-141, 2013.

P. H. Westigard, M. N. Westwood, and P. B. Lombard, Host preference and resistance of Pyrus species to the pear psylla, Psylla pyricola Foerster, J Am Soc Hortic Sci, vol.95, pp.34-40, 1970.

V. M. Whitaker, K. Zuzek, and S. C. Hokanson, Resistance of 12 rose genotypes to 14 isolates of Diplocarpon rosae Wolf (rose blackspot) collected from eastern North America, Plant Breed, vol.126, pp.83-88, 2007.

A. G. White and L. R. Brewer, The New Zealand pear breeding project, VIII International Symposium on Pear, pp.239-242, 2002.

S. Whitham, S. P. Dinesh-kumar, and D. Choi, The product of the Tobacco Mosaic Virus resistance gene N: similarity to Toll and the Interleukin-1 receptor, Cell, vol.78, pp.1101-1115, 1994.

, Identification and Mapping of Genomic Regions Controlling Fire Blight and Psylla Resistance and Hybrid Necrosis in Pear 296

R. J. Wisser, P. J. Balint-kurti, and R. J. Nelson, The genetic architecture of disease resistance in maize: a synthesis of published studies, Phytopathology, vol.96, pp.120-129, 2006.

R. J. Wisser, J. M. Kolkman, and M. E. Patzoldt, Multivariate analysis of maize disease resistances suggests a pleiotropic genetic basis and implicates a GST gene, PNAS, vol.108, pp.7339-7344, 2011.

R. J. Wisser, Q. Sun, and S. H. Hulbert, Identification and characterization of regions of the rice genome associated with broad-spectrum, quantitative disease resistance, Genetics, vol.169, pp.2277-2293, 2005.

K. Won, H. Bastiaanse, and Y. K. Kim, Genetic mapping of polygenic scab (Venturia pirina) resistance in an interspecific pear family, Mol Breed, vol.34, pp.2179-2189, 2014.

J. Wu, Z. Wang, and Z. Shi, The genome of the pear (Pyrus bretschneideri Rehd.), Genome Res, vol.23, pp.396-408, 2013.

T. Würschum, Mapping QTL for agronomic traits in breeding populations, Theor Appl Genet, vol.125, pp.201-211, 2012.

T. Xiang, N. Zong, and Y. Zou, Pseudomonas syringae effector AvrPto blocks innate immunity by targeting receptor kinases, Curr Biol, vol.18, pp.74-80, 2008.

S. Xiao, S. Ellwood, and O. Calis, Broad-spectrum mildew resistance in Arabidopsis thaliana mediated by RPW8, Science (80-), vol.291, pp.118-120, 2001.

X. Xu, X. Liu, and S. Ge, Resequencing 50 accessions of cultivated and wild rice yields markers for identifying agronomically important genes, Nat Biotechnol, vol.30, pp.105-116, 2012.

, Identification and Mapping of Genomic Regions Controlling Fire Blight and Psylla Resistance and Hybrid Necrosis in Pear 297

X. Xu, S. Pan, and S. Cheng, Genome sequence and analysis of the tuber crop potato, Nature, vol.475, pp.189-95, 2011.

T. Yamamoto and E. Chevreau, Pear Genomics, Genetics and genomics of Rosaceae, pp.163-186, 2009.

T. Yamamoto, T. Kimura, and T. Saito, Genetic linkage maps of Japanese and European pears aligned to the apple consensus map, Acta Hortic, vol.663, pp.51-56, 2004.

T. Yamamoto, T. Kimura, and Y. Sawamura, Simple sequence repeats for genetic analysis in pear, Euphytica, vol.124, pp.129-137, 2002.

T. Yamamoto, T. Kimura, and M. Shoda, Genetic linkage maps constructed by using an interspecific cross between Japanese and European pears, Theor Appl Genet, vol.106, pp.9-18, 2002.

T. Yamamoto, T. Kimura, and M. Shoda, Development of microsatellite markers in the Japanese pear (Pyrus pyrifolia Nakai), Mol Ecol Notes, vol.2, pp.14-16, 2002.

T. Yamamoto, T. Kimura, and S. Terakami, Integrated reference genetic linkage maps of pear based on SSR and AFLP markers, Breed Sci, vol.57, pp.321-329, 2007.

T. Yamamoto, S. Terakami, and T. Kimura, Reference genetic linkage maps of European and Japanese pears, Acta Hortic, vol.814, pp.599-602, 2009.

M. Zhang, L. Fan, and Q. Liu, A novel set of EST-derived SSR markers for pear and crossspecies transferability in Rosaceae, Plant Mol Biol Report, vol.32, pp.290-302, 2014.

Y. Zhao, M. Gowda, and W. Liu, Accuracy of genomic selection in European maize elite breeding populations, Theor Appl Genet, vol.124, pp.769-776, 2012.

, Identification and Mapping of Genomic Regions Controlling Fire Blight and Psylla Resistance and Hybrid Necrosis in Pear 298

X. Zheng, D. Cai, and D. Potter, Phylogeny and evolutionary histories of Pyrus L. revealed by phylogenetic trees and networks based on data from multiple DNA sequences, Mol Phylogenet Evol, vol.80, pp.54-65, 2014.

Z. Zheng, S. A. Qamar, Z. Chen, and T. Mengiste, Arabidopsis WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens, Plant J, vol.48, pp.592-605, 2006.

Y. Zhong, H. Yin, and D. J. Sargent, Species-specific duplications driving the recent expansion of NBS-LRR genes in five Rosaceae species, BMC Genomics, vol.16, pp.1-16, 2015.

H. Zhu, L. Gilchrist, and P. Hayes, Does function follow form? Principal QTLs for Fusarium head blight (FHB) resistance are coincident with QTLs for inflorescence traits and plant height in a doubled-haploid population of barley, Theor Appl Genet, vol.99, pp.1221-1232, 1999.

R. H. Zimmerman, Juvenility and flowering in woody plants: a review, HortScience, vol.7, pp.447-455, 1972.

, Identification and Mapping of Genomic Regions Controlling Fire Blight and Psylla Resistance and Hybrid Necrosis in Pear 299

, Annexes Annex 1: List of Simple Sequence Repeats (SSR) markers tested in PEAR3 x 'Moonglow' population during the construction of the parental genetic maps

, Annex 2: Genetic map of PEAR3 and 'Moonglow' based on Single Nucleotide polymorphism (SNP) and Simple Sequence Repeat (SSR) markers

, Poster presented at the 57th Italian Society of Agricultural Genetics (SIGA), Annex, vol.3, p.308, 2013.

, Quantitative trait loci (QTLs) detected for pear psylla resistsance in PEAR3 x 'Moonglow' population 309, Annex, vol.4

, Quantitative trait loci (QTLs) detected for fire blight resistsance in PEAR3 x 'Moonglow' population, vol.5, p.311

, High Resolution Melting (HRM) markers designed from the flanking regions of Single Nucleotide Polymorphisms (SNPs) showing distorted segregations in the PEAR3 x 'Moonglow' non-necrotic progeny 313, Annex, vol.6

, High Resolution Melting (HRM) markers designed from NB-LRR genes annotated to linkage groups (LGs), vol.7

, Microsatellite (SSR) markers selected to reduce the interval of the regions linked to hybrid necrosis in the PEAR3 x 'Moonglow, Annex, vol.8, p.317

, Genetic map of PEAR3 and 'Moonglow' including all the markers used and the location of all the loci detected in this project, Annex, vol.9, 20483.

, Genetic map of PEAR3 and 'Moonglow' including all the markers used and the location of all the loci detected in this project, Annex, vol.9

, simple sequence repeats (SSRs) in red and high resolution melting (HRM) in green. Quantitative trait loci (QTLs) for pear psylla resistance are in pink (squared colored bars represents QTLs under the significance threshold) and QTLs for fire blight resistance are in blue. The regions linked to hybrid necrosis are marked in yellow, Markers single nucleotide polymorphism (SNP) are in black