A. Acharya, A model of crystal plasticity based on the theory of continuously distributed dislocations, J. Mech. Phys. Solids, vol.49, pp.761-784, 2001.

R. Armstrong, The plastic deformation of polycrystalline aggregates, Philos. Mag. 7.73, p.45, 1962.

R. W. Armstrong, Engineering science aspects of the Hall-Petch relation, Acta Mech, vol.225, pp.1619-6937, 2014.

M. Ashby, The Deformation of Plastically Non-homogeneous Materials, Philos. Mag. Pp, pp.399-424, 1970.

X. Baillin, Dislocation transmission through ? = 9 symmetrical tilt boundaries in silicon and germanium, Philos. Mag. A, vol.55, issue.2, pp.143-164, 1987.

W. Baldwin, Yield strength of metals as a function of grain size, Acta Metall. 6.2, pp.90136-90142, 1958.

V. Bata and E. Pereloma, An alternative physical explanation of the Hall-Petch relation, vol.52, pp.657-665, 2004.

J. J. Bean, Atomic structure and electronic properties of MgO grain boundaries in tunnelling magnetoresistive devices, Sci. Rep. January, pp.1-9, 2017.

D. Benson, H. Fu, and M. Meyers, On the effect of grain size on yield stress: Extension into nanocrystalline domain, vol.319, pp.854-861, 2001.

S. Berbenni, M. Favier, and . Berveiller, Impact of the grain size distribution on the yield stress of heterogeneous materials, Int. J. Plast, vol.23, issue.1, pp.749-6419, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00128377

H. Bhadeshia and R. Honeycombe, Steels: Microstructure and Properties, 2006.

V. Borovikov, M. I. Mendelev, and A. King, Effects of solutes on dislocation nucleation from grain boundaries, Int. J. Plast, vol.90, pp.749-6419, 2017.

O. Bouaziz, C. Allain, and . Scott, Effect of grain and twin boundaries on the hardening mechanisms of twinning-induced plasticity steels, Scr. Mater. 58, vol.6, pp.1359-6462, 2008.

W. Bragg, A Theory of the Strength of Metals, Nature, vol.149, p.511, 1942.

R. Bullough and B. Bilby, Continuous Distributions of Dislocations: Surface Dislocations and the Crystallography of Martensitic Transformations, Proc, 1956.

, Phys. Soc. Sect. B 69, vol.12, pp.1276-1286

N. Burbery, Dislocation dynamics in polycrystals with atomistic-informed mechanisms of dislocation -grain boundary interactions, J. Micromechanics Mol. Phys, p.1750003, 2017.

F. Caballero, Complementary use of transmission electron microscopy and atom probe tomography for the examination of plastic accommodation in nanocrystalline bainitic steels, Acta Mater. 59, vol.15, pp.1359-6454, 2011.

M. Calcagnotto, Orientation gradients and geometrically necessary dislocations in ultrafine grained dual-phase steels studied by 2D and 3D EBSD, Mater. Sci. Eng. A, vol.527, pp.2738-2746, 2010.

K. S. Cheong, E. P. Busso, and A. Arsenlis, A study of microstructural length scale effects on the behaviour of FCC polycrystals using strain gradient concepts, Int. J. Plast, vol.21, pp.1797-1814, 2005.

K. Cheong, E. P. Shen, and . Busso, Discrete dislocation density modelling of single phase FCC polycrystal aggregates, Acta Mater. 52, vol.19, p.13596454, 2004.

K. Chia, K. Jung, and H. Conrad, Dislocation density model for the effect of grain size on the flow stress of a Ti-15.2 at, 2005.

, , vol.409, pp.32-38

T. Christman, Grain boundary strengthening exponent in conventional and ultrafine microstructures, In: Scr. Metall. Mater. 28, vol.12, pp.1495-1500, 1993.

H. Conrad, Effect of grain size on the lower yield and flow stress of iron and steel, Acta Met. 11.1, pp.90134-90136, 1963.

H. Conrad and G. Schoeck, Cottrell locking and the flow stress in iron, Acta Met. 8.11, p.791, 1960.

H. Conrad, Grain-size dependence of the flow stress of Cu from millimeters to nanometers, In: Metall. Mater. Trans. A, vol.35, pp.2681-2695, 2004.

Z. Cordero, B. Knight, and C. Schuh, Six decades of the Hall-Petch effect -a survey of grain-size strengthening studies on pure metals, Int. Mater. Rev. 61, vol.8, p.17432804, 2016.

A. H. Cottrell, Theory of dislocations, Prog. Met. Phys, vol.4, pp.205-264, 1953.

G. Daveau, Interaction dislocations -joints de grains en déformation plastique monotone : étude expérimentale et modélisations numériques, 2012.

, Comportement et endommagement en fatigue oligocyclique d'un acier inoxydable austénitique 304L en fonction de l'environnement (vide , air, p.300, 2011.

?. ,

M. Et-d'aérotechique--poitiers,

L. Delannay and M. R. Barnett, Modelling the combined effect of grain size and grain shape on plastic anisotropy of metals, Int. J. Plast, pp.70-84, 2012.

C. Déprés, Modélisation physique des stades précurseurs de l'endommagement en fatigue de l'acier inoxydable austénitique 316L, 2005.

B. Devincre, L. P. Hoc, and . Kubin, Dislocation mean free paths and strain hardening of crystals, pp.1095-9203, 2008.

B. Devincre, L. Kubin, and T. Hoc, Physical analyses of crystal plasticity by DD simulations, Scr. Mater. 54, vol.5, pp.741-746, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00019068

B. Devincre, Modeling crystal plasticity with dislocation dynamcis simulations : the «MICROMEGAS» code, pp.81-100, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01830722

M. Dewald and W. Curtin, Multiscale modelling of dislocation/grainboundary interactions: I. Edge dislocations impinging on ?11 (1 1 3) tilt boundary in Al, In: Model. Simul. Mater. Sci. Eng. 15.1, S193. issn, pp.965-0393, 2007.

B. Diawara, Caractérisation quantitative de la microstructure de l'acier 16MND5 des cuves de réacteurs nucléaires à eau pressurisée, 2011.

D. J. Dunstan and A. J. Bushby, Grain size dependence of the strength of metals: The Hall-Petch effect does not scale as the inverse square root of grain size, Int. J. Plast, vol.53, pp.56-65, 2014.

. El-awady and A. Jaafar, Unravelling the physics of size-dependent dislocationmediated plasticity, Nat. Commun, vol.6, p.20411723, 2014.

C. English and J. Hyde, 4.05 -Radiation Damage of Reactor Pressure Vessel Steels, Compr. Nucl. Mater. Ed. by Rudy J M Konings, pp.151-180, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00889504

H. Fan, Orientation influence on grain size effects in ultrafinegrained magnesium, Scr. Mater, vol.97, pp.25-28, 2015.

X. Feaugas and H. Haddou, Grain-size effects on tensile behavior of nickel and AISI 316L stainless steel, In: Metall. Mater. Trans. A, vol.34, pp.1543-1940, 2003.

P. Feltham and J. Meakin, On the mechanism of work hardening in facecentred cubic metals, with special reference to polycrystalline copper, 1957.

A. J. Mag and . Theor, Exp. Appl. Phys, vol.2, pp.31-8086

A. Foreman, The bowing of a dislocation segment, Philos. Mag. A J, 1967.

. Theor and . Exp, Appl. Phys. 15, vol.137, pp.1011-1021

P. Franciosi, A. Berveiller, and . Zaoui, Latent hardening in copper and aluminium single crystals, Acta Metall. 28.3, pp.90162-90167, 1980.

F. Frank and W. Read, Multiplication Processes for Slow Moving Dislocations, Phys. Rev, vol.79, pp.722-723, 1950.

C. Fressengeas, L. Taupin, and . Capolungo, An elasto-plastic theory of dislocation and disclination fields, Int. J. Solids Struct, vol.48, pp.3499-3509, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01501431

C. Fressengeas, Tangential continuity of elastic/plastic curvature and strain at interfaces, Int. J. Solids Struct, vol.49, pp.2660-2667, 2012.

C. Fressengeas, Mechanics of Dislocation Fields, 2017.

F. Garner, The microstructural origins of yield strength changes in aisi 316 during fission or fusion irradiation, J. Nucl. Mater, vol.104, pp.22-3115, 1981.

H. Haddou, Influence de la taille de grain et de l'énergie de défaut d'empilement sur l'état de contraintes internes développé au cours de la déformation plastique en traction simple et en fatigue oligocyclique (alliages C.F.C.) Présentée". PhD thesis, 2003.

E. O. Hall, The Deformation and Ageing of Mild Steel: III Discussion of Results", In: Proc. Phys. Soc., Sect. B, vol.64, p.747, 1951.

M. Hamid, Modeling and Characterization of Grain Boundaries and Slip Transmission in Dislocation Density-Based Crystal Plasticity, Crystals 7, p.152, 2017.

B. Hansen, C. Bronkhorst, and M. Ortiz, Dislocation subgrain structures and modeling the plastic hardening of metallic single crystals, 2010.

. Sci and . Eng, , vol.18, pp.965-0393

N. Hansen and B. Ralph, The strain and grain size dependence of the flow stress of copper". In: Acta Metall. 30.2, pp.411-417, 1982.

N. Hansen, Hall-petch relation and boundary strengthening, Scr. Mater. 51.8 SPEC. ISS. Pp, pp.801-806, 2004.

S. Haouala, J. Segurado, and J. Llorca, An analysis of the influence of grain size on the strength of FCC polycrystals by means of computational homogenization, Acta Mater, vol.148, p.13596454, 2018.

S. H. He, On the correlation among dislocation density, lath thickness and yield stress of bainite, Acta Mater, vol.135, p.13596454, 2017.

S. He, Acta Materialia Evolution of dislocation density in bainitic steel : Modeling and experiments, Acta Mater, vol.149, pp.46-56, 2018.

W. He, W. Ma, and W. Pantleon, Microstructure of individual grains in coldrolled aluminium from orientation inhomogeneities resolved by electron backscattering diffraction, Mater. Sci. Eng. A, vol.494, issue.1-2, pp.21-27, 2008.

A. Hingwe and K. Subramanian, Deformation of duplex crystals and twophase bicrystals of alpha-beta brass, J. Mater. Sci, vol.10, pp.183-188, 1975.

J. Hirth, The influence of grain boundaries on mechanical properties, In: Metall. Trans. 3, vol.12, pp.1543-1916, 1972.

J. Hirth and . Lothe, Theory of Dislocations, p.9780894646171, 1982.

X. Hu, Bauschinger Effect and Back Stress in Gradient Cu-Ge Alloy, In: Metall. Mater. Trans. A, vol.48, pp.3943-3950, 2017.

G. Hughes, Hall-petch strengthening for the microhardness of twelve nanometer grain diameter electrodeposited nickel, In: Scr. Metall, vol.20, issue.1, pp.36-9748, 1986.

M. Jiang, B. Devincre, and G. Monnet, Effects of the grain size and shape on the flow stress: A dislocation dynamics study, Int. J. Plast, vol.113, pp.749-6419, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02075676

J. Kacher, G. Liu, and I. Robertson, Visualization of grain boundary/dislocation interactions using tomographic reconstructions, Scr. Mater. 64, vol.7, pp.1359-6462, 2011.

J. Kacher, Dislocation interactions with grain boundaries, 2014.

. Opin, Solid State Mater. Sci. 18.4, pp.1359-0286

U. F. Kocks, The relation between polycrystal deformation and single-crystal deformation, Met. Mater. Trans. 1, vol.5, p.1121, 1970.

U. Kocks and H. Mecking, Physics and phenomenology of strain hardening: the FCC case, Prog. Mater. Sci, vol.48, issue.3, pp.171-273, 2003.

U. F. Kocks, C. N. Tomé, and H. R. Wenk, Texture and Anisotropy: Preferred Orientations in Polycrystals and Their Effect on Materials Properties, 2000.

E. Kröner, On the physical reality of torque stresses in continuum mechanics, Int. J. Eng. Sci. 1, vol.2, issue.63, pp.90037-90042, 1963.

L. Kubin, B. Devincre, and T. Hoc, Modeling dislocation storage rates and mean free paths in face-centered cubic crystals, Acta Mater. 56, vol.20, p.13596454, 2008.

K. Kumar, S. Van-swygenhoven, and . Suresh, Mechanical behavior of nanocrystalline metals and alloys, pp.5743-5774, 2003.

. Lasalmonie and . Strudel, Influence of grain size on the mechanical behaviour of some high strength materials, J. Mater. Sci, vol.21, pp.1837-1852, 1986.

T. Lee, H. I-m-robertson, and . Birnbaum, TEM in situ deformation study of the interaction of lattice dislocations with grain boundaries in metals, 1990.

M. , , pp.131-153

S. Lefebvre, T. Devincre, and . Hoc, Yield stress strengthening in ultrafinegrained metals : A two-dimensional simulation of dislocation dynamics, J. Mech. Phys. Solids, vol.55, pp.788-802, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00276782

J. Lemaitre and J. Chaboche, Mechanics of Solid Materials, 1994.

J. Li, Petch relation and grain boundary sources, Trans. Am. Inst. Met. Eng. Pp, pp.227-239, 1963.

J. C. Li, Some elastic properties of an edge dislocation wall, Acta Metall. 8.8, pp.563-574, 1960.

J. C. Li and C. D. Needham, Some elastic properties of a screw dislocation wall, J. Appl. Phys. 31, vol.8, 1960.

N. Li, Quantification of dislocation nucleation stress in TiN through highresolution in situ indentation experiments and first principles calculations, Sci. Rep. May, pp.1-8, 2015.

Y. Li, D. Bushby, and . Dunstan, The Hall-Petch effect as a manifestation of the general size effect, Proc. R. Soc. A Math. Phys. Eng. Sci, 2016.

Y. Li, A. J. Bushby, and D. J. Dunstan, Factors determining the magnitude of grain-size strengthening in polycrystalline metals, Materialia. issn, p.25891529, 2018.

M. Libert, Etudes expérimentale et numérique de l ' effet des mécan-ismes de plasticité sur la rupture fragile par clivage dans les aciers faiblement alliés, 2007.

R. Madec, L. Devincre, and . Kubin, From dislocation junctions to forest hardening, Phys. Rev. Lett, vol.89, pp.31-9007, 2002.

J. Mathieu, Analyse et modélisation micromécanique du comportement et de la rupture fragile de l'acier 16MND5 : prise en compte des hétérogénéités microstructurales, 2006.

. Medina-almazan, Études expérimentale et numérique de l'effet du mercure sur le comportement mécanique des aciers 316L et T91, 2008.

M. Meyers and . Ashworth, A model for the effect of grain size on the yield stress of metals, Philos. Mag. A, vol.46, pp.737-759, 1982.

M. A. Meyers, A. Mishra, and D. J. Benson, Mechanical properties of nanocrystalline materials, Prog. Mater. Sci, vol.51, pp.427-556, 2006.

M. A. Meyers, . Umberto-r-andrade, and . Chokshi, The effect of grain size on the high-strain, high-strain-rate behavior of copper, 1995.

, Trans. A, vol.26, issue.11, pp.2881-2893

V. Mohles, Simulations of dislocation glide in overaged precipitation-hardened crystals, Philos. Mag. A, vol.81, pp.971-990, 2001.

G. Monnet, B. Naamane, and . Devincre, Orowan strengthening at low temperatures in bcc materials studied by dislocation dynamics simulations, Acta Mater. 59, vol.2, pp.1359-6454, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01830663

G. Monnet, Acta Materialia Multiscale modeling of precipitation hardening : Application to the Fe -Cr alloys, Acta Mater, vol.95, pp.1359-6454, 2015.

, Multiscale modeling of irradiation hardening : Application to important nuclear materials, New insights into radiation hardening in face-centered cubic alloys, vol.100, pp.22-3115, 2015.

G. Monnet, L. Vincent, and B. Devincre, Dislocation-dynamics based crystal plasticity law for the low-and high-temperature deformation regimes of bcc crystal, Acta Mater. 61, vol.16, pp.1359-6454, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01830634

S. Morris and J. Biner, A two-dimensional discrete dislocation simulation of the effect of grain size on strengthening behaviour, 2002.

. Sci and . Eng, , vol.6, pp.965-0393

T. Mura, General theory of eigenstrains, Micromechanics of defects in solids, 1987.

S. Naamane, B. Monnet, and . Devincre, Low temperature deformation in iron studied with dislocation dynamics simulations, Int. J. Plast, vol.26, issue.1, pp.749-6419, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01830726

S. Naamane, Etude de la déformation plastique de la ferrite à basse température : simulations de dynamique des dislocations, 2008.

A. Navarro and E. Rios, An alternative model of the blocking of dislocations at grain boundaries, Philos. Mag. A, vol.57, issue.1, pp.37-42, 1988.

J. Nye, Some geometrical relations in dislocated crystals, In: Acta Metall. 1, vol.2, issue.53, pp.90054-90060, 1953.

G. Odette and G. Lucas, Recent progress in understanding reactor pressure vessel steel embrittlement, Radiat. Eff. Defects Solids, vol.144, pp.189-231, 1998.

T. Ohashi, M. Kawamukai, and H. Zbib, A multiscale approach for modeling scale-dependent yield stress in polycrystalline metals, Int. J. Plast. 23, vol.5, pp.749-6419, 2007.

T. Ohashi, X-ray microdiffraction and strain gradient crystal plasticity studies of geometrically necessary dislocations near a Ni bicrystal grain boundary, Int. J. Plast. 25, vol.5, pp.920-941, 2009.

I. Ovid'ko, R. Sheinerman, and . Valiev, ScienceDirect Dislocation emission from deformation-distorted grain boundaries in ultrafine-grained materials, Scr. Mater, vol.76, pp.45-48, 2014.

T. A. Parthasarathy, Contribution to size effect of yield strength from the stochastics of dislocation source lengths in finite samples, Scr. Mater, vol.56, p.13596462, 2007.

A. Pécheur and . Le, Fatigue thermique d'un acier inoxydable austénitique : influence de l ' état de surface par une approche multi-échelles, 2008.

É. Pechkovskii, Limit of elasticity and strain hardening of molybdenum, niobium, and iron, vol.21, pp.338-344, 1989.

N. Petch, The Cleavage Strength of Polycrystals, J. Iron Steel Inst. 174, vol.1, p.25, 1953.

J. Pipard, A new mean field micromechanical approach to capture grain size effects, Comput. Mater. Sci, vol.45, issue.3, pp.604-610, 2009.

,

H. Poulsen, Lattice rotations of individual bulk grains: Part I: 3D Xray characterization, Acta Mater. 51, vol.13, issue.03, pp.206-210, 2003.

S. Quek and . Sin, Polycrystal deformation in a discrete dislocation dynamics framework, Acta Mater, vol.75, p.13596454, 2014.

S. Queyreau, Etude des mécanismes d'écrouissage sous irradiation de la ferrite par simulations de dynamique de dislocations, 2008.

. Queyreau, G. Sylvain, B. Monnet, and . Devincre, Orowan strengthening and forest hardening superposition examined by dislocation dynamics simulations, Acta Mater. 58, vol.25, p.13596454, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01830724

D. Raabe, Grain-scale micromechanics of polycrystal surfaces during plastic straining, Acta Mater. 51, vol.6, pp.557-565, 2003.

R. Velayarce and J. , Influence of single and multiple slip conditions and temperature on the size effect in micro bending, Acta Mater, vol.154, p.13596454, 2018.

F. Roters, Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: Theory, experiments, applications, Acta Mater, vol.58, pp.1359-6454, 2010.

G. Saada, On hardening due to the recombination of dislocations, In: Acta Met. 8, vol.12, issue.60, pp.90150-90154, 1960.

G. Saada and E. Bouchaud, Dislocation walls, Acta Met. Mater. 41.7, pp.2173-2178, 1993.

M. Sachtleber, Z. Zhao, and D. Raabe, Experimental investigation of plastic grain interaction, Mater. Sci. Eng. A, vol.336, issue.1-2, pp.81-87, 2002.

C. Sansal, . De, L. Benoit-devincre, and . Kubin, Grain Size Strengthening in Microcrystalline Copper: A Three-Dimensional Dislocation Dynamics Simulation, vol.423, pp.25-32, 2009.

P. Schall, Visualizing dislocation nucleation by indenting colloidal crystals, p.14764687, 2006.

J. Schwartz, Approche non locale en plasticité cristalline : application à l'étude du comportement mécanique de l'acier AISI 316LN en fatigue oligocyclique, 2011.

S. Sekfali, Influence de la microstructure sur le comportement local dans les aciers 16MND5, 2004.
URL : https://hal.archives-ouvertes.fr/tel-00419622

L. E. Shan-le-wang and . Murr, Effect of Prestrain and Stacking-Fault Energy on the Application of the Hall-Petch Relation in Fcc Metals and Alloys, In: Metallography, vol.13, pp.203-224, 1980.

Z. Shen, R. H. Wagoner, and W. Clark, Dislocation pile-up and grain boundary interactions in 304 stainless stee, Scr. Metall. 20.c, pp.921-926, 1986.

Z. Shen, R. Wagoner, and W. Clark, Dislocation and grain boundary interactions in metals, In: Acta Met. 36, vol.12, pp.3231-3242, 1988.

Q. Shi, Experimental and numerical studies on the micromechanical crystal plasticity behavior of an RPV steel, 2018.
URL : https://hal.archives-ouvertes.fr/tel-01783642

C. W. Sinclair, W. J. Poole, and Y. Bréchet, A model for the grain size dependent work hardening of copper, Scr. Mater. 55, vol.8, p.13596462, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00140262

E. Smith and P. J. Worthington, The effect of orientation on the grain size dependence of the yield strength of metals, Philos. Mag. 9, vol.98, pp.211-216, 1964.

D. E. Spearot, D. Michael, and . Sangid, Insights on slip transmission at grain boundaries from atomistic simulations, Curr. Opin. Solid State Mater, 2014.

. Sci, , vol.18, pp.1359-0286

M. Stricker, On slip transmission and grain boundary yielding, Meccanica 51, vol.2, pp.271-278, 2016.

A. P. Sutton and R. W. Balluffi, Interfaces in Crystalline Materials, pp.978-0199211067, 1995.

C. Tasan, An Overview of Dual-Phase Steels: Advances in MicrostructureOriented Processing and Micromechanically Guided Design, Annu. Rev. Mater, 2015.

, , pp.391-431

A. Thompson and W. Backofen, Production and mechanical behavior of very fine-grained copper, Met. Trans, vol.2, pp.2004-2005, 1971.

A. W. Thompson, I. Michael, W. Baskes, and . Flanagan, The dependence of polycrystal work hardening on grain size, Acta Metall. 21.7, pp.1017-1028, 1973.

N. Tsuchida, Effect of ferrite grain size on tensile deformation behavior of a ferrite-cementite low carbon steel, Mater. Sci. Eng. A, vol.488, issue.1-2, pp.446-452, 2008.

P. Van-houtte, On the equivalence of the relaxed Taylor theory and the BishopHill theory for partially constrained plastic deformation of crystals, 1982.

. Eng, , vol.55, pp.90085-90089

J. Wang, C. Beyerlein, and . Tomé, Reactions of lattice dislocations with grain boundaries in Mg: Implications on the micro scale from atomic-scale calculations, Int. J. Plast, vol.56, pp.749-6419, 2014.

L. Wang, Experimental characterization and crystal plasticity modeling of heterogeneous deformation in polycrystalline ?-Ti, In: Metall. Mater. Trans. A Phys. Metall. Mater. Sci, vol.42, issue.3, p.10735623, 2011.

G. Winther, Lattice rotations of individual bulk grains Part II: correlation with initial orientation and model comparison, Acta Mater. 52, vol.10, pp.1359-6454, 2004.

Y. Xiang and J. Vlassak, Bauschinger effect in thin metal films, 2005.

. Mater, , vol.53, pp.177-182

Z. Yanushkevich, Acta Materialia Hall-Petch relationship for austenitic stainless steels processed by large strain warm rolling, Acta Mater, vol.136, pp.1359-6454, 2017.

R. Yellakara, Z. Nikhil, and . Wang, A three-dimensional dislocation dynamics study of the effects of grain size and shape on strengthening behavior of fcc Cu, Comput. Mater. Sci, vol.87, p.9270256, 2014.

N. Yoshinaga, Deep Drawability of Electro-deposited Pure Iron Having an Extremely Sharp &lsaquo, 2008.

/. Texture, ISIJ Int, vol.48, pp.667-670

L. Zhang, C. Lu, and K. Tieu, A review on atomistic simulation of grain boundary behaviors in face-centered cubic metals, Comput. Mater. Sci, vol.118, p.9270256, 2016.

X. Zhang, Internal length scale and grain boundary yield strength in gradient models of polycrystal plasticity: How do they relate to the dislocation microstructure?, In: J. Mater. Res, vol.29, p.20445326, 2014.

. Zhou, I. J. Caizhi, R. Beyerlein, and . Lesar, Plastic deformation mechanisms of fcc single crystals at small scales, Acta Mater. 59, vol.20, p.13596454, 2011.

C. Zhou and R. Lesar, Dislocation dynamics simulations of plasticity in polycrystalline thin films, Int. J. Plast, pp.185-201, 2012.

S. Zinkle, P. Maziasz, and R. Stoller, Dose dependence of the microstructural evolution in neutron-irradiated austenitic stainless steel, J. Nucl. Mater. 206, vol.2, issue.93, p.90128, 1993.