R. Libé, Adrenocortical carcinoma (ACC): diagnosis, prognosis, and treatment. Front, Cell Dev. Biol, vol.3, p.45, 2015.

G. Assié, E. Letouzé, M. Fassnacht, A. Jouinot, W. Luscap et al., Integrated genomic characterization of adrenocortical carcinoma, Nat. Genet, 2014.

C. Drelon, EZH2 is overexpressed in adrenocortical carcinoma and is associated with disease progression, Hum. Mol. Genet, vol.25, issue.13, pp.2789-2800, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02108050

B. C. Figueiredo, Penetrance of adrenocortical tumours associated with the germline TP53 R337H mutation, J. Med. Genet, vol.43, issue.1, pp.91-96, 2006.

R. C. Ribeiro, An inherited p53 mutation that contributes in a tissuespecific manner to pediatric adrenal cortical carcinoma, Proc. Natl. Acad. Sci. U

S. A. , , vol.98, pp.9330-9335, 2001.

S. Sbiera, High diagnostic and prognostic value of steroidogenic factor-1 expression in adrenal tumors, J. Clin. Endocrinol. Metab, vol.95, issue.10, pp.161-171, 2010.

K. L. Parker and B. P. Schimmer, Steroidogenic factor 1: a key determinant of endocrine development and function, Endocr. Rev, vol.18, issue.3, pp.361-377, 1997.

M. Q. Almeida, Steroidogenic Factor 1 Overexpression and Gene Amplification Are More Frequent in Adrenocortical Tumors from Children than from Adults, J. Clin. Endocrinol. Metab, vol.95, issue.3, pp.1458-1462

E. Duregon, M. Volante, J. Giorcelli, M. Terzolo, E. Lalli et al., Diagnostic and prognostic role of steroidogenic factor 1 in adrenocortical carcinoma: a validation study focusing on clinical and pathologic correlates, Hum. Pathol, vol.44, issue.5, pp.822-828, 2013.

M. Doghman, J. Cazareth, D. Douguet, F. Madoux, P. Hodder et al., Inhibition of Adrenocortical Carcinoma Cell Proliferation by Steroidogenic Factor-1 Inverse Agonists, J. Clin. Endocrinol. Metab, vol.94, issue.6, pp.2178-2183, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00417317

A. C. Kim, In search of adrenocortical stem and progenitor cells, Endocr. Rev, vol.30, pp.241-263, 2009.

C. Drelon, A. Berthon, M. Mathieu, A. Martinez, and P. Val, Adrenal cortex tissue homeostasis and zonation: a WNT perspective, Mol. Cell. Endocrinol, vol.408, pp.156-164, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02108055

P. King, A. Paul, and E. Laufer, Shh signalling regulates adrenocortical development and identifies progenitors of steroidogenic lineages, Proc. Natl Acad. Sci. USA, vol.106, pp.21185-21190, 2009.

B. D. Freedman, Adrenocortical zonation results from lineage conversion of differentiated zona glomerulosa cells, Dev. Cell, vol.26, pp.666-673, 2013.

S. Benhamouche, Apc tumour suppressor gene is the 'zonation-keeper' of mouse liver, Dev Cell, vol.10, pp.759-770, 2006.

A. Berthon, Constitutive {beta}-catenin activation induces adrenal hyperplasia and promotes adrenal cancer development, Hum. Mol. Genet, vol.19, pp.1561-1576, 2010.

A. Berthon, WNT/b-catenin signalling is activated in aldosteroneproducing adenomas and controls aldosterone production, Hum. Mol. Genet, vol.23, pp.889-905, 2014.

R. J. Gorrigan, L. Guasti, P. King, A. J. Clark, and L. F. Chan, Localisation of the melanocortin-2-receptor and its accessory proteins in the developing and adult adrenal gland, J. Mol. Endocrinol, vol.46, pp.227-232, 2011.

D. Chida, Melanocortin 2 receptor is required for adrenal gland development, steroidogenesis, and neonatal gluconeogenesis, Proc. Natl Acad. Sci. USA, vol.104, pp.18205-18210, 2007.

E. M. Walczak, Wnt-signalling inhibits adrenal steroidogenesis by cell-autonomous and non-cell-autonomous mechanisms, Mol. Endocrinol, vol.28, pp.1471-1486, 2014.

C. Aigueperse, SF-1 (steroidogenic factor-1), C/EBPbeta (CCAAT/enhancer binding protein), and ubiquitous transcription factors NF1 (nuclear factor 1) and Sp1 (selective promoter factor 1) are required for regulation of the mouse aldose reductase-like gene (AKR1B7) expression in adrenocortical cells, Mol. Endocrinol, vol.15, pp.93-111, 2001.

R. Dasgupta and E. Fuchs, Multiple roles for activated LEF/TCF transcription complexes during hair follicle development and differentiation, Development, vol.126, pp.4557-4568, 1999.

L. S. Kirschner, A mouse model for the Carney complex tumour syndrome develops neoplasia in cyclic AMP-responsive tissues, Cancer Res, vol.65, pp.4506-4514, 2005.

N. C. Bingham, S. Verma-kurvari, L. F. Parada, and K. L. Parker, Development of a steroidogenic factor 1/Cre transgenic mouse line, Genesis, vol.44, pp.419-424, 2006.

M. D. Muzumdar, B. Tasic, K. Miyamichi, L. Li, and L. Luo, A global double-fluorescent Cre reporter mouse, Genesis, vol.45, pp.593-605, 2007.

I. Sahut-barnola, Cushing's syndrome and foetal features resurgence in adrenal cortex-specific Prkar1a knockout mice, PLoS Genet, vol.6, p.1000980, 2010.

X. Fang, Phosphorylation and inactivation of glycogen synthase kinase 3 by protein kinase A, Proc. Natl Acad. Sci. USA, vol.97, pp.11960-11965, 2000.

S. Taurin, N. Sandbo, Y. Qin, D. Browning, and N. O. Dulin, Phosphorylation of beta-catenin by cyclic AMP-dependent protein kinase, J. Biol. Chem, vol.281, pp.9971-9976, 2006.

S. Hino, C. Tanji, K. I. Nakayama, and A. Kikuchi, Phosphorylation of beta-catenin by cyclic AMP-dependent protein kinase stabilizes beta-catenin through inhibition of its ubiquitination, Mol. Cell. Biol, vol.25, pp.9063-9072, 2005.

M. Zhang, Protein kinase A activation enhances b-catenin transcriptional activity through nuclear localization to PML bodies, PLoS ONE, vol.9, p.109523, 2014.

K. Hughes, E. Nikolakaki, S. E. Plyte, N. F. Totty, and J. R. Woodgett, Modulation of the glycogen synthase kinase-3 family by tyrosine phosphorylation, EMBO J, vol.12, pp.803-808, 1993.

A. Railo, Genomic response to Wnt signalling is highly context-dependent-evidence from DNA microarray and chromatin immunoprecipitation screens of Wnt/TCF targets, Exp. Cell Res, vol.315, pp.2690-2704, 2009.

B. Koo, Tumour suppressor RNF43 is a stem-cell E3 ligase that induces endocytosis of Wnt receptors, Nature, vol.488, pp.665-669, 2012.

R. Jin, The metastasis suppressor NDRG1 modulates the phosphorylation and nuclear translocation of b-catenin through mechanisms involving FRAT1 and PAK4, J. Cell Sci, vol.127, pp.3116-3130, 2014.

C. Mosimann, G. Hausmann, and K. Basler, Parafibromin/Hyrax activates Wnt/ Wg target gene transcription by direct association with beta-catenin/Armadillo, Cell, vol.125, pp.327-341, 2006.

R. G. James, Bruton's tyrosine kinase revealed as a negative regulator of Wnt-beta-catenin signalling, Sci. Signal, vol.2, p.25, 2009.

M. Heikkila, Wnt-4 deficiency alters mouse adrenal cortex function, reducing aldosterone production, Endocrinology, vol.143, pp.4358-4365, 2002.

M. Chen and P. J. Hornsby, Adenovirus-delivered DKK3/WNT4 and steroidogenesis in primary cultures of adrenocortical cells, Horm. Metab. Res, vol.38, pp.549-555, 2006.

J. Shan, T. Jokela, H. Peltoketo, and S. Vainio, Generation of an allele to inactivate Wnt4 gene function conditionally in the mouse, Genesis, vol.47, pp.782-788, 2009.

N. Harada, Intestinal polyposis in mice with a dominant stable mutation of the beta-catenin gene, EMBO J, vol.18, pp.5931-5942, 1999.

C. J. Huang, C. Liu, and H. H. Yao, Investigating the role of adrenal cortex in organization and differentiation of the adrenal medulla in mice, Mol. Cell. Endocrinol, vol.361, pp.165-171, 2012.

D. G. Romero, Disabled-2 is expressed in adrenal zona glomerulosa and is involved in aldosterone secretion, Endocrinology, vol.148, pp.2644-2652, 2007.

S. Zheng, Comprehensive pan-genomic characterization of adrenocortical carcinoma, Cancer Cell, vol.29, pp.723-736, 2016.

V. Vidal, The adrenal capsule is a signalling centre controlling cell renewal and zonation through Rspo3, Genes Dev, vol.30, pp.1389-1394, 2016.

Y. Huang, H. Roelink, and G. S. Mcknight, Protein kinase A deficiency causes axially localized neural tube defects in mice, J. Biol. Chem, vol.277, pp.19889-19896, 2002.

N. Communications-|-doi-;-tadjine and M. , Detection of somatic beta-catenin mutations in primary pigmented nodular adrenocortical disease, Clin. Endocrinol. (Oxf), vol.69, pp.367-373, 2008.

M. Q. Almeida, Activation of cyclic AMP signalling leads to different pathway alterations in lesions of the adrenal cortex caused by germline PRKAR1A defects versus those due to somatic GNAS mutations, J. Clin. Endocrinol. Metab, vol.97, pp.687-693, 2012.

S. Gaujoux, Wnt/beta-catenin and 3',5'-cyclic adenosine 5'-monophosphate/protein kinase A signalling pathways alterations and somatic beta-catenin gene mutations in the progression of adrenocortical tumours, J. Clin. Endocrinol. Metab, vol.93, pp.4135-4140, 2008.

M. F. Azevedo and C. A. Stratakis, The transcriptome that mediates increased cAMP signalling in PRKAR1A defects and other settings, Endocr. Pract, vol.17, pp.2-7, 2011.

A. Horvath, Serial analysis of gene expression in adrenocortical hyperplasia caused by a germline PRKAR1A mutation, J. Clin. Endocrinol. Metab, vol.91, pp.584-596, 2006.

C. Drelon, Analysis of the role of Igf2 in adrenal tumour development in transgenic mouse models, PLoS ONE, vol.7, p.44171, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02108062

M. Reincke, Deletion of the adrenocorticotropin receptor gene in human adrenocortical tumours: implications for tumorigenesis, J. Clin. Endocrinol. Metab, vol.82, pp.3054-3058, 1997.

R. Iglesias-bartolome, Inactivation of a Gas-PKA tumour suppressor pathway in skin stem cells initiates basal-cell carcinogenesis, Nat. Cell Biol, vol.17, pp.793-803, 2015.

F. Tissier, Mutations of beta-catenin in adrenocortical tumours: activation of the Wnt signalling pathway is a frequent event in both benign and malignant adrenocortical tumours, Cancer Res, vol.65, pp.7622-7627, 2005.

C. Wu, RSPO2-LGR5 signalling has tumour-suppressive activity in colorectal cancer, Nat. Commun, vol.5, p.3149, 2014.

H. Suzuki, Epigenetic inactivation of SFRP genes allows constitutive WNT signalling in colorectal cancer, Nat. Genet, vol.36, pp.417-422, 2004.

A. Takahashi, SHP2 tyrosine phosphatase converts parafibromin/Cdc73 from a tumour suppressor to an oncogenic driver, Mol. Cell, vol.43, pp.45-56, 2011.

R. H. Newman, Construction of human activity-based phosphorylation networks, Mol. Syst. Biol, vol.9, p.655, 2013.

S. Lambert-langlais, A transgenic mouse line with specific Cre recombinase expression in the adrenal cortex, Mol. Cell. Endocrinol, vol.300, pp.197-204, 2009.

B. S. Skålhegg, Mutation of the Calpha subunit of PKA leads to growth retardation and sperm dysfunction, Mol. Endocrinol, vol.16, pp.630-639, 2002.

T. Else, A. C. Kim, A. Sabolch, V. M. Raymond, A. Kandathil et al., Adrenocortical carcinoma, Endocr. Rev, vol.35, pp.282-326, 2014.

A. Berthon, A. Martinez, J. Bertherat, and P. Val, Wnt/ b-catenin signalling in adrenal physiology and tumour development, Mol. Cell. Endocrinol, vol.351, pp.87-95, 2011.

L. Drougat, H. Omeiri, L. Lefè-vre, and B. Ragazzon, Novel insights into the genetics and pathophysiology of adrenocortical tumors, Front. Endocrinol, vol.6, p.96, 2015.
URL : https://hal.archives-ouvertes.fr/inserm-01247515

A. Berthon, I. Sahut-barnola, S. Lambert-langlais, C. De-joussineau, C. Damon-soubeyrand et al., Constitutive {beta}-catenin activation induces adrenal hyperplasia and promotes adrenal cancer development, Hum. Mol. Genet, vol.19, pp.1561-1576, 2010.

C. Drelon, A. Berthon, B. Ragazzon, F. Tissier, R. Bandiera et al., Analysis of the role of Igf2 in adrenal tumour development in transgenic mouse models, PLoS One, vol.7, p.44171, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02108062

J. H. Heaton, M. A. Wood, A. C. Kim, L. O. Lima, F. M. Barlaskar et al., Progression to adrenocortical tumorigenesis in mice and humans through insulin-like growth factor 2 and b-catenin, Am. J. Pathol, vol.181, pp.1017-1033, 2012.

M. Fassnacht, A. Berruti, E. Baudin, M. J. Demeure, J. Gilbert et al., Linsitinib (OSI-906) versus placebo for patients with locally advanced or metastatic adrenocortical carcinoma: a double-blind, randomised, phase 3 study, Lancet Oncol, vol.16, pp.426-435, 2015.

P. Igaz, I. Igaz, Z. Nagy, G. Ny-ir}-o, P. M. Szab-o et al., MicroRNAs in adrenal tumors: relevance for pathogenesis, diagnosis, and therapy, Cell. Mol. Life Sci. CMLS, vol.72, pp.417-428, 2015.

R. A. Varier and H. T. Timmers, Histone lysine methylation and demethylation pathways in cancer, Biochim. Biophys. Acta, vol.1815, pp.75-89, 2011.

R. Cao and Y. Zhang, The functions of E(Z)/EZH2-mediated methylation of lysine 27 in histone H3, Curr. Opin. Genet. Dev, vol.14, pp.155-164, 2004.

S. Varambally, S. M. Dhanasekaran, M. Zhou, T. R. Barrette, C. Kumar-sinha et al., The polycomb group protein EZH2 is involved in progression of prostate cancer, Nature, vol.419, pp.624-629, 2002.

C. G. Kleer, Q. Cao, S. Varambally, R. Shen, I. Ota et al., EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells, Proc. Natl. Acad. Sci. U S A, vol.100, pp.11606-11611, 2003.

G. Deb, A. K. Singh, and S. Gupta, EZH2: Not EZHY (Easy) to Deal, Mol. Cancer Res, 2014.

A. De-reynies, G. Assie, D. S. Rickman, F. Tissier, L. Groussin et al., Gene expression profiling reveals a new classification of adrenocortical tumors and identifies molecular predictors of malignancy and survival, J. Clin. Oncol, vol.27, pp.1108-1115, 2009.

M. T. Mccabe, A. P. Graves, G. Ganji, E. Diaz, W. S. Halsey et al., Mutation of A677 in histone methyltransferase EZH2 in human B-cell lymphoma promotes hypertrimethylation of histone H3 on lysine 27 (H3K27), Proc. Natl. Acad. Sci. U S A, vol.109, pp.2989-2994, 2012.

R. D. Morin, N. A. Johnson, T. M. Severson, A. J. Mungall, J. An et al., Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B-cell lymphomas of germinal-center origin, Nat. Genet, vol.42, pp.181-185, 2010.

G. Assié, E. Letouzé, M. Fassnacht, A. Jouinot, W. Luscap et al., Integrated genomic characterization of adrenocortical carcinoma, Nat. Genet, vol.46, pp.607-612, 2014.

X. Tang, M. Milyavsky, I. Shats, N. Erez, N. Goldfinger et al., Activated p53 suppresses the histone methyltransferase EZH2 gene, Oncogene, vol.23, pp.5759-5769, 2004.

A. P. Bracken, D. Pasini, M. Capra, E. Prosperini, E. Colli et al., EZH2 is downstream of the pRB-E2F pathway, essential for proliferation and amplified in cancer, Embo J, vol.22, pp.5323-5335, 2003.

F. A. Dick and S. M. Rubin, Molecular mechanisms underlying RB protein function, Nat. Rev. Mol. Cell Biol, vol.14, pp.297-306, 2013.

D. K. Dimova and N. J. Dyson, The E2F transcriptional network: old acquaintances with new faces, Oncogene, vol.24, pp.2810-2826, 2005.

T. Lammens, J. Li, G. Leone, and L. De-veylder, Atypical E2Fs: new players in the E2F transcription factor family, Trends Cell Biol, vol.19, pp.111-118, 2009.

T. B. Miranda, C. C. Cortez, C. B. Yoo, G. Liang, M. Abe et al., DZNep is a global histone methylation inhibitor that reactivates developmental genes not silenced by DNA methylation, Mol. Cancer Ther, vol.8, pp.1579-1588, 2009.

T. Wang and W. E. Rainey, Human adrenocortical carcinoma cell lines, Mol. Cell. Endocrinol, vol.351, pp.58-65, 2012.

J. C. Ip, T. C. Pang, A. R. Glover, P. Soon, J. T. Zhao et al., Immunohistochemical validation of overexpressed genes identified by global expression microarrays in adrenocortical carcinoma reveals potential predictive and prognostic biomarkers, Oncologist, vol.20, pp.247-256, 2015.

M. T. Mccabe, H. M. Ott, G. Ganji, S. Korenchuk, C. Thompson et al., EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations, Nature, pp.10-1038, 2012.

S. K. Knutson, S. Kawano, Y. Minoshima, N. M. Warholic, K. C. Huang et al., Selective inhibition of EZH2 by EPZ-6438 Leads to potent antitumor activity in EZH2-mutant non-hodgkin lymphoma, Mol. Cancer Ther, vol.13, pp.842-854, 2014.

S. R. Lee, Y. G. Roh, S. K. Kim, J. S. Lee, S. Y. Seol et al., Activation of EZH2 and SUZ12 regulated by E2F1 predicts the disease progression and aggressive characteristics of bladder cancer, Clin. Cancer Res, vol.21, pp.5391-5403, 2015.

T. Liu, L. Hou, and Y. Huang, EZH2-specific microRNA-98 inhibits human ovarian cancer stem cell proliferation via regulating the pRb-E2F pathway, Tumour Biol, vol.35, pp.7239-7247, 2014.

M. Leseva, K. E. Santostefano, A. L. Rosenbluth, T. Hamazaki, and N. Terada, E2f6-mediated repression of the meiotic Stag3 and Smc1b genes during early embryonic development requires Ezh2 and not the de novo methyltransferase Dnmt3b, Epigenetics, vol.8, pp.873-884, 2013.

Z. L. Wu, S. S. Zheng, Z. M. Li, Y. Y. Qiao, M. Y. Aau et al., Polycomb protein EZH2 regulates E2F1-dependent apoptosis through epigenetically modulating Bim expression, Cell Death Differ, vol.17, pp.801-810, 2010.

H. Xu, K. Xu, H. H. He, C. Zang, C. H. Chen et al., Integrative Analysis Reveals the Transcriptional Collaboration between EZH2 and E2F1 in the Regulation of Cancer-Related Gene Expression, Mol. Cancer Res, vol.14, pp.163-172, 2016.

C. A. Kurtyka, L. Chen, and W. D. Cress, E2F inhibition synergizes with paclitaxel in lung cancer cell lines, PloS One, vol.9, p.96357, 2014.

H. Z. Chen, S. Y. Tsai, and G. Leone, Emerging roles of E2Fs in cancer: an exit from cell cycle control, Nat. Rev. Cancer, vol.9, pp.785-797, 2009.

A. J. Pommier, J. Dufour, G. Alves, E. Viennois, H. De-boussac et al., Liver x receptors protect from development of prostatic intra-epithelial neoplasia in mice, PLoS Genet, vol.9, p.1003483, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01934521

G. Deb, V. S. Thakur, and S. Gupta, Multifaceted role of EZH2 in breast and prostate tumorigenesis: epigenetics and beyond, Epigenetics, vol.8, pp.464-476, 2013.

K. Xu, Z. J. Wu, A. C. Groner, H. H. He, C. Cai et al., EZH2 oncogenic activity in castration-resistant prostate cancer cells is Polycomb-independent, Science, vol.338, pp.1465-1469, 2012.

E. Kim, M. Kim, D. H. Woo, Y. Shin, J. Shin et al., Phosphorylation of EZH2 activates STAT3 signaling via STAT3 methylation and promotes tumorigenicity of glioblastoma stem-like cells, Cancer Cell, vol.23, pp.839-852, 2013.

F. Tissier, C. Cavard, L. Groussin, K. Perlemoine, G. Fumey et al., Mutations of beta-catenin in adrenocortical tumors: activation of the Wnt signaling pathway is a frequent event in both benign and malignant adrenocortical tumors, Cancer Res, vol.65, pp.7622-7627, 2005.

J. Svedlund, E. Barazeghi, P. Stå-lberg, P. Hellman, G. Bjö-rklund et al., The histone methyltransferase EZH2, an oncogene common to benign and malignant parathyroid tumors, Endocr. Relat. Cancer, vol.21, pp.231-239, 2014.

H. Y. Jung, S. Jun, M. Lee, H. C. Kim, X. Wang et al., PAF and EZH2 induce Wnt/b-catenin signaling hyperactivation, Mol. Cell, vol.52, pp.193-205, 2013.

A. S. Cheng, S. S. Lau, Y. Chen, Y. Kondo, M. S. Li et al., , p.2, 2011.

, Cancer Res, vol.71, pp.4028-4039

H. Lu, J. Sun, F. Wang, L. Feng, Y. Ma et al., Enhancer of zeste homolog 2 activates wnt signaling through downregulating CXXC finger protein 4, Cell Death Dis, vol.4, p.776, 2013.

L. Wang, Q. Jin, J. E. Lee, I. Su, and K. Ge, Histone H3K27 methyltransferase Ezh2 represses Wnt genes to facilitate adipogenesis, Proc. Natl. Acad. Sci. U S A, vol.107, pp.7317-7322, 2010.

A. P. Bracken, N. Dietrich, D. Pasini, K. H. Hansen, and K. Helin, Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions, Genes Dev, vol.20, pp.1123-1136, 2006.

X. Li, M. E. Gonzalez, K. Toy, T. Filzen, S. D. Merajver et al., Targeted overexpression of EZH2 in the mammary gland disrupts ductal morphogenesis and causes epithelial hyperplasia, Am. J. Pathol, vol.175, pp.1246-1254, 2009.

A. Herrera-merchan, L. Arranz, J. M. Ligos, A. De-molina, O. Dominguez et al., Ectopic expression of the histone methyltransferase Ezh2 in haematopoietic stem cells causes myeloproliferative disease, Nat. Commun, vol.3, p.623, 2012.

L. Ding, C. Erdmann, A. M. Chinnaiyan, S. D. Merajver, and C. G. Kleer, Identification of EZH2 as a molecular marker for a precancerous state in morphologically normal breast tissues, Cancer Res, vol.66, pp.4095-4099, 2006.

O. Barreau, A. De-reynies, H. Wilmot-roussel, M. Guillaudbataille, C. Auzan et al., Clinical and pathophysiological implications of chromosomal alterations in adrenocortical tumors: an integrated genomic approach, J. Clin. Endocrinol. Metab, vol.97, pp.301-311, 2012.

A. Berthon, C. Drelon, B. Ragazzon, S. Boulkroun, F. Tissier et al., WNT/b-catenin signalling is activated in aldosterone-producing adenomas and controls aldosterone production, Hum. Mol. Genet, vol.23, pp.889-905, 2014.

A. Subramanian, P. Tamayo, V. K. Mootha, S. Mukherjee, B. L. Ebert et al., Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles, Proc. Natl. Acad. Sci. U S A, vol.102, pp.15545-15550, 2005.

, Human Molecular Genetics, vol.25, issue.13, 2016.

, WNT! pathway! in! the! adrenal! cortex.! We! thus! evaluated! the! effect! of! Ezh2! ablation! on!

, !To! confirm! alteration! of! PKA! signalling! pathway! activity,! we! measured! PKA! activity! on! whole!adrenal!extracts.!Interestingly,!analysis!of!PKA!activity!on!whole!adrenal!extracts! showed! a! significant! decrease! in! basal! activity! in! KO! adrenals,! although! it! was! still! as! sensitive! to! cAMP! induction! as! in! wildAtype! (Fig! 4D), PACREB!accumulation!measured!by!westernAblot!on!wholeAadrenal!extracts!(Fig!4C)

, ! RTqPCR! analyses! did! not! show! any! alteration! in! the! expression! of! Mc2r! or! of! its! cofactor! Mrap! that! are! essential! to! mediate! PKA! response! to! ACTH! (Fig! S2A), PKA! pathway! activity! was! situated! upstream! of! catalytic! activity.! However

, ! Altogether,! these! data! suggested!that!EZH2!was!required!to!mount!an!optimal!response!to!PKA!in!the!adrenal! cortex! by! inhibiting! expression! of! negative! PKA! regulators,! in! particular! phosphodiesterases.! Consistent! with! this! idea,! analysis! of! publically! available! ChIP! sequencing! data! showed! enrichment! of! EZH2/H3K27me3! on! a! number! of! phosphodiesterases! regulatory! regions! in!14! different! cell! types! (Fig! S2B).! To! test! this! possibility! in! the! adrenal, ! we! evaluated! enrichment! for! H3K27me3! and! EZH2! on! the! promoters! of! Prkar1b,! Pde1b,! Pde3a! and! Pde7b! in! wildAtype! and! Ezh2! KO! adrenals

, ! This! pattern! was! further! restricted! at! 1! month! and! very! few! cells! at! the! periphery! of! the! cortex! EZH2!activity!during!embryonic!development.!To!evaluate!this,!we!analysed!adrenal! differentiation! phenotype! at! E18.5,! when! differentiation! of! zonae! glomerulosa! and! fasciculata! becomes! evident.! Indeed,! in! wildAtype! adrenals,! we! observed! a! clear! separation! of! the! expression! domains! of! DAB2! (zG)! and! AKR1B7! (zF)! (Fig! 4I,! a), showed! high! levels! of! expression! throughout! the! adrenal! gland! at! E15.5! (Fig! 4H,! a),! which! progressively! restricted! to! cortical! periphery! by! E18.5! (Fig! 4H,! b)

, !Altogether,!these!data!strongly! suggest!that!EZH2!programs!adrenal!cortex!cells!for!optimal!response!to!PKA!signalling! during! embryonic! development.! However,! although! adrenal! cortex! cell! renewal! is! a! relatively! slow! process! (12! weeks! in! female! mice, This!was!also!associated!with!decreased!expression!of!Cyp11b1!and!Akr1b7!in!RTqPCR! (Fig!4J)!and!significant!upAregulation!of!Pde1b!(Fig!4K)

, ! analysis!of!EZH2!expression!together!with!DAB2!and!AKR1B7,!showed!that!the!few!cells! that! expressed! Ezh2! in! the! adult! adrenal! were! localised! within! zG,! at! the! boundary! between! zG! and! zF! or! within! outer! zF! (Fig! 4L).! ! This! localisation! suggested! that! EZH2! may! be! reAexpressed, H3K27me3!maintenance!during!cell!divisions!associated!with!this!process.!Interestingly

, This! idea! was! further! confirmed! by! coAlocalisation! of! EZH2! with! Ki67! staining! in! the! outer!cortex!(Fig!4M).!Altogether,!our!data!show!that!EZH2

, Renewal! of! the! adrenal! cortex! is! highly! coordinated! with! zonal! cell! differentiation! to!

!. Ko!, ! Consistent! with! this,! H&E! staining! showed! massive! expansion! of! fibroblasticAlike! cells,! characteristic! of! the! capsular!and!subAcapsular!adrenal!compartment!where!progenitors!reside!in!the!wildA type!adrenal!(Fig!5B,!b!vs!a).!Abnormal!expansion!of!the!progenitor!compartment!was! further! suggested! by! a! large!, compared! with! wildAtype! adrenals! (Fig! 5A)

!. Ezh2!ablation!(fig, ). !. 5b, !. Wt1, !. Gli1!-or, and . Gata4, ! can! be! recruited! to! meet! supraphysiological! demand! (6,! 18,! 19).! Interestingly,! analysis! of! microAarray! data! showed! upAregulation! of! Gata4,! Wt1! and! Gli1,' suggesting! that! supraphysiological! progenitors! may! be! accumulating! in! Ezh2! KO! adrenals! (Fig! 5C).! To! evaluate! this! hypothesis

, ! strongly! suggested! SHHAindependent! accumulation! of! GLI1Apositive! cells.! IHC! for!WT1!showed!very!weak!expression!in!the!adrenal!capsule,!as!previously!described!in! wildAtype! mice! (18).! In! contrast,! a! large! number! of! the! fibroblasticAlike! cells! that! accumulated!in!Ezh2!KO!adrenals!expressed!high!levels!of!WT1!(Fig!5D,!eAf),!which!was! associated! with! a! sevenAfold! increase! in! WT1! transcript! accumulation! (Fig! 5F).! Forced! induction!of!WT1!in!the!adrenal!cortex!has!been!shown!to!result!in!increased!expression! of! GATA4,! through! direct! WT1! binding! on' Gata4! regulatory! regions! (18).! Consistent! with! this! idea,! whereas! GATA4! was! virtually! absent! from! wildAtype! adrenals,! it! was! strongly! expressed! in! fibroblasticAlike! cells! following! Ezh2! ablation! (Fig! 5D,! gAh).! This! was! also! associated! with! an! eightAfold! increase!, RNAScope!in!situ!hybridisation!(ISH)!and!RTqPCR.!As!expected!Shh!was!detected!within! zG! in! wildAtype! adrenals! (Fig! 5D,! a).RTqPCR!(Fig!5E).!!The!normal!accumulation!of!both!Shh!and!Ptch1!(a!target!of!SHH)! (Fig! 5E)

!. Deregulation!of!wt1!, expression!in!the!adrenal!has!been!shown!to!result!in! aberrant!gonadalAlike!differentiation.!Consistent!with!this,!RTqPCR!analyses!showed!upA regulation! of! Pdgfra,! Foxl2! and! Lhr,! characteristic! of! gonadal! differentiation! (Fig! 5H

, Altogether,! these! data! showed! that! Ezh2! ablation! resulted! in! the! accumulation! of! cells!

, been! shown! to! accumulate! in! the! adrenal! cortex! of! mice! following! castration! (18,! 19

. Although!sf1, Cre!is!also!active!in!the!gonad,!Sf1:Cre,Ezh2'Fl

, !d!vs!c)!within!Ezh2!KO!adrenals!at!this! stage.!By!E18.5,!GATA4'positive!cells!were!detected!throughout!the!cortex!(Fig!6A,!f!vs! e),! which! was! correlated! with! upAregulation! of! Gata4! mRNA! accumulation! in! RTqPCR! (Fig! 6B).! A! small! number! of! WT1Apositive! cells! also! appeared! at! the! periphery! of! the! gland! (Fig! 6A,! h! vs! g),! even! though! Wt1! mRNA! accumulation! was! unaltered! (Fig! 6B), !(Fig!6B),!IHC!analyses!showed!abnormal!accumulation! of!GATA4!(Fig!6A,!b!vs!a)!but!not!WT1!(Fig!6A

!. Gata4!, positive! cells! in! response! to! Ezh2' ablation.! We! first! evaluated! the! possibility! that! this! may! be! the! result! of

, !Furthermore,!even!though! some! GATA4+! cells! displayed! Ki67! expression,! most! of! them! were! Ki67Anegative! (Fig! expression! of! both! factors! in! Ezh2! KO! adrenals! may! rely! on! a! direct! role! of! EZH2! on! their! expression.! Consistent! with! this! idea,! ChIP! qPCR! analyses! showed! enrichment!of!H3K27me3!and!EZH2!on!the!regulatory!regions!of!both!GATA4!and!WT1! and! a! significant! decrease! in! enrichment! in! Ezh2! KO! adrenals! (Fig! 6F).! This! indicated! that! EZH2/PRC2! was! directly! involved! in! repressing! Gata4! and! Wt1! expression! in! the! adrenal! cortex.! However,! whether! EZH2! exerted! this! activity! in! capsular! or! steroidogenic!cells!was!unclear, WT1+! progenitor! cells! that! reside! in! the! capsule! of! wildAtype! adrenals.! IHC! analyses! showed! that! there! was! no! overall! increase! in! the! number! of! Ki67+! cortical! cells! following!Ezh2!ablation,!both!in!IHC!and!RTqPCR!(Fig!6CAD)

, EZH2!expression!was!low!(embryonic!development,!Fig!S4A)!or!absent!(adult!adrenal

, !the! vast! majority! expressed! GFP,! indicating! that! although! they! were! SF1Anegative,! they! 16! derived! from! the! steroidogenic! lineage! (Fig! 6H).! Analysis! of! serial! sections! stained! for! WT1,!SF1!and!GFP!also!showed!that!WT1Apositive!cells,!despite!being!SF1Anegative!were! largely!derived!from!the!steroidogenic!lineage!(Fig!S4B).!!Altogether,!these!data!strongly! suggest! that! the! large! majority! of! GATA4! and! WT1Apositive! fibroblasticAlike! cells! that! accumulate! in! Ezh2! KO! adrenals! originate! from! dedifferentiation! of! engaged! steroidogenic!cells, fibroblasticAlike! GATA4Apositive! cells! in! Ezh2! KO! adrenals.! Interestingly,! most! of! these! cells!did!not!express!any!detectable!level!of!endogenous!SF1!expression.!However

, GATA4Apositive! fibroblasticAlike! cells! were! also! present! at! the! periphery! of! the! cortex,! even! though! all! spindleAshaped! cells! did! not! express! GATA4! (Fig! 6I).! ! Consistent! with! their! counterparts! in! Ezh2! KO! adrenals

, ! others! have! identified! the! molecular! signals! involved! in! zonal! differentiation,! the! mechanisms!involved!in!maintaining!global!steroidogenic!differentiation!during!adrenal! cortex!renewal!and!cell!migration!have!remained!elusive, vol.20

, ! which! synthesizes! aldosterone! and! zona! fasciculata! (zF)! in! the! inner! cortex,! which! synthesizes! corticosterone! in! rodents! and! cortisol! in! humans.! ! Our! data! show! that! Ezh2! ablation! is! associated! with! a! strong! reduction! in! zF! differentiation,! which! results! in! primary! glucocorticoid! insufficiency,! !PKA!signalling!in!the!inner!cortex!(7,!11,!21).!Interestingly,!EZH2!has! been! shown! to! directly! inhibit! WNT! signalling! in! intestinal! stem! cells! to! prevent! their! differentiation! (22)! and! in! mesenchymal! stem! cells! to! allow! their! adipogenic! differentiation! (23).! Analysis! of! WNT! pathway! status! by! microarrays! and!, Adrenal! cortex! zonal! differentiation! is! characterised! by! establishment! of! zona! glomerulosa! (zG)! in! the! outer! cortex

, ! the! capacity! to! respond! to! the! reninAangiotensin! system! in! order! to! maintain! aldosterone!homeostasis.!Indeed,!our!RTqPCR!analyses!showed!decreased!expression!of!

!. !-rtqpcr, the! result! of! decreased! PKA! signalling! pathway! activity! in! response! to! Ezh2! ablation.! Indeed,! our! combination! of! microarrays

, embryonic!development,!when!EZH2!is!expressed!in!all!adrenal!steroidogenic!cells!and!

, ! dividing! cells! in! the! adult! gland! through! temporary! reAexpression! of! EZH2.! To! our! knowledge

. Pka!, ! a! set! of! 14! different! cell! types,! including! cancer! cell! lines,! but! also!

, Decreased!PKA!activity!in!the!adrenal,!resulting!from!mutations!of!the!genes!encoding!

, ACTH!receptor!MC2R!or!its!accessory!protein!MRAP,!is!associated!with!isolated!familial! glucocorticoid! deficiency! (FGD),! a! potentially! fatal! condition! if! left! untreated! (26,! 27

, These! mutations! only! account! for! about! 45%! of! FGD! patients.! NGS! analyses! have! identified! other! alterations! such! as! mutations! in! NNT! (28),! TXNRD2! (29),! GPX1! and!

!. Lhr! and !. Pdgfr, ! However,! for! about! 25%! of! FGD! cases! there! is! still! no! They! can! also! contribute,! albeit! at! low! frequency,! to! adrenal! cortex! replenishment! in! the! adult! (6,! 9,! 18,! 19,! 33)! and! can! be! mobilised! upon! gonadectomy,! giving! rise! to! adrenal! neoplasia! (34,! 35)! presenting! characteristics! of! adrenogonadal! cells! such! as! GATA4, replication! and! chromosome! stability! (31)! and! gain! of! function! mutations! of! the! cell! cycle! inhibitor! CDKN1C! (32)

, ! even! though! GLI1Apositive! cells! may! contribute! to! their! appearance!(19).!Here,!we!show!that!Ezh2!ablation!results!in!the!dramatic!accumulation! of!spindleAshaped!GATA4,!WT1,!GLI1!positive!and!SF1Anegative!cells!in!the!subcapsular! region! of! 2! monthAold! adrenals.! Although! we! cannot! rule! out! a! direct! contribution! of! in!response!to!Ezh2'ablation,!our!experiments!suggest!a!different!scenario:!1)!EZH2! is! expressed! at! very! low! levels! in! the! capsule! and! is! not!, /GLI1! positive! cells,! the! origin! of! spindleAshaped! cells! in! the! ageing! adrenal! cortex! is! not! as! clear

, positive! steroidogenic! cells! in! response! to! Ezh2! ablation.! Although! dedifferentiation! of!

, E18.5! respectively.! This! suggests! that! other! repressive! factors! may! be!

!. Ezh2 and !. Ko!-adrenals, ! of! multiple! differentiation! programmes! (40).! This! function! is! maintained! in! adult! hematopoietic! stem! cells! (41),! myoblasts! (42,! 43)! and! neural! stem! cells, vol.45

, ! In! marked! contrast,! our! data! show! that! EZH2! is! mostly! expressed! in! differentiated! adrenal! cortex! cells.! Its! ablation! in! these! cells! results! in! their! dedifferentiation! towards! a! progenitorAlike! state! and! is! also! associated! with! a! decreased! capacity! to! respond! to! differentiation! signals! such! as! ACTH/cAMP/PKA! signalling.! This! emphasizes! the! multiple! and! sometimes! contradictory! functions! of! EZH2!, dedifferentiation! of! astrocytes! toward! neural! stem! cells! (46)

, Ezh2!Fl/Fl!mice!were!obtained!from!the!MMRRC!repository!(strain!#015499_UNC)!and! were! initially! generated! by! Dr! Tarakhovsky! (13).! Sf1:Cre! mice! were! generated! by!

!. Bingham, ! mTmG! mice! were! generated! by! Muzumdar! et! al.! (14).! Unless! otherwise! stated,! all! data! on! adult! mice! were! generated! on! tissues! from! 2! monthAold! females.!For!embryonic!analyses

. Edta!-1mm, ! pH! 9.0;! or! Vector! Unmasking! Solution! (H3300,! Vector! Laboratories),! depending!on!the!primary!antibody!and/or!combinations!of!antibodies!to!be!used

, CYP11B2,! unmasking! with! TrisAEDTA! was! followed! by! 5! min! incubation! in! 10%! SDS

, After! blocking! for! 1h,! slides! were! incubated! overnight! at! room! temperature,! with! primary!antibodies!at!the!indicated!concentrations!(Table!S1).!Primary!antibodies!were! detected! with! appropriate! polymers! (ImmPress! Polymer! Detection! Kit,! Vector! Laboratories).! PolymerAcoupled! HRP! activity! was! then! detected! with! either! Vectastain!

, ! All! immunohistochemical! analyses! were! conducted! on! an! automated! processor! (Intavis! InSitu! Pro! VSi)! to! ensure! homogeneity! and! reproducibility! of! detections, ! Images! were! acquired! with! a! Zeiss! Axioplan! 2,! Zeiss! ! probes! for! Shh! (#314361)! and! Gli1! (#311001)! with! the! RNAScope! 2.5HD! detection! reagentARed! system! (#322360,! Adanced! Cell!

, ! We! selected! datasets! for! which! .fastq,! peaks.bed! and! input!data!were!available!for!download, ! "H3K27me3"! and! "ChIP"! on! the! Gene! Expression! Omnibus! (GEO)! database!

, )! on! the! hg38! Human! reference! genome.! Output! files! were! converted! to! .bam! format! using! SAMtools! (version! 1.3.1).! ChIP! enrichment! for! each! of! the!marks!was!determined!using!MACS2!

, ! To! detect! potential! target! genes,! peaks! were! annotated! using! the!, TxDb.Hsapiens.UCSC

, KO! littermates! were! analyzed! using! Affymetrix! Mouse! Gene! 2.0! ST! Arrays! (Raw! and! processed!data!are!deposited!on!NCBI!GEO!platform).!Gene!expression!was!normalised! by!RMA!

!. Wt, Genes! with! adjusted! p! value! (FDR)! <0.1! and! Abs(Log! 2! fold! change)! >! 1.0!

. Prc2_cheng_hses_huh7 and . Cheng!, !They!represent!genes!with!binding!of!EZH2,!SUZ12!and!H3K27me3!in!both!

, PLC5!and!mouse!ES!cells!(PRC2_CHENG_PLC5_mmES),!in!both!PLC5!and!human!ES!cells!

, ! PRC2_LEE! represents! genes! with! binding! of! SUZ12,! EED! and! H3K27me3! in! human! ES! cells! and! was! extracted! from! Lee! et! al.! (49

, PRC2_VELICHTUNA_hsES_CB_K27_EZH2! represents! genes! with! binding! of! EZH2! and!

, H3K27me3!in!both!human!ES!cells!and!germinal!center!B!cells!and!was!extracted!from!

!. Velichtuna,

!. Plasma!-corticosterone!-(ar!-ea8100, !. Ldn)!-and!-aldosterone!-(canaalda450, and . Diagnostics, Biochem!Canada)!concentrations!were!determined!using!commercially!available!ELISA! kits,! following! manufacturer's! instructions.! Renin! activity! rate! in! plasma! was! determined! using! a! Fluorimetric! Sensolyte! 520! Mouse! Renin! Assay! Kit!

!. Acth, !. Lh!, and . Fsh!,

!. Rt, !. M1701, and . Promega, !2!mM!dNTPs!and!20!units!RNAsin!(N2615,!

. !. Pcr, !. Pcr!-reactions!-were!-conducted!-with, !. Sybr!-qpcr!-premix!-ex!-taq, !. Ii!-tli!-rnase, +. H+!-(takrr820w et al., ! Primer! pairs! are! listed! in! Table! S4.! For! each! experiment! and! primer! pairs,! efficiency! of! PCR! reactions! was! evaluated! by! amplification! of! serial! dilutions!of!a!mix!of!cDNAs.!Relative!gene!expression!was!obtained!by!the'##Ct'method! with! normalization! to! average! expression! of! three! housekeeping! genes,! 36b4

, PKA! activity! was! measured! using! PKA! Kinase! Activity! Assay! Kit! (ab139435,! Abcam

!. H3k27me3, !. Ezh2!chromatin!immunoprecipitation, and !. , ChIP)!were!performed!using!the! iDeal! ChIPAseq! kit! for! histones! (Diagenode)! according! to! manufacturer's! instructions, ! using! the! following! antibodies:! C15410195! (rabbit! polyclonal,! Diagenode)! for!

!. H3k27me3, !. C15410039!-(rabbit!-polyclonal, !. Diagenode)!-for, and !. E. Briefly, ! 20! to! 35! mg!of!tissue!from!2!monthAold!female!WT!and!Ezh2!KO!mice!(pools!of!6!adrenals!from!3! mice,!in!triplicate)!were!first!grinded!using!a!dounce!homogenizer!and!then!crossAlinked! with!1%!formaldehyde!for!10!min.!CrossAlinking!was!stopped!by!adding!glycine!(125mM! final)! for! 5! min! at! room! temperature

, Minimal!sample!size!was!set!at!n=5!allowing!for!detection!of!40%!increases/decreases! with!"=0.05,!1A!=80%,!$=0.3!and!mean!of!control!group=1

!. D&apos;agostino!-&amp;!-pearson, ! Statistical! analysis! of! normally! distributed! data! was! performed! by! twoAtailed!

, The! authors! declare! that! all! data! supporting! the! findings! of! this! study! are! available!

A. We, !. Khirredine!ouchen, !. Sandrine!plantade, !. , !. Philippe et al., Mazuel!for!animal! care,!Anipath!Clermont!for!anatomopathological!analyses

!. Dumont!-(plateforme, !. Genomic, !. Inserm, !. U1016acnrs!-umr8104auniversité, and . Paris,

. Descartes, for!microarray!analyses.!This!work!was!funded!through!institutional!support! from!Centre!National!de!la!Recherche!Scientifique,!Institut!National!de!la!Santé!et!de!la

!. Recherche!médicale, !. Université, . Clermont!auvergne, and !. La!ligue!contre!le!cancer,

). Puy!-de!-dôme!-committees, !. Fondation, . Arc, !. Société!-française!-d&apos;endocrinologie, M. M. et al., !The!funders!had!no!role!in!study!design,! data!collection!and!analysis

. !!-yates!r, Adrenocortical!development,!maintenance,!and!disease, !Curr' Top'Dev'Biol!, vol.106, pp.239-312, 2013.

!. Vinson and !. Gp!, ! Functional! Zonation! of! the! Adult! Mammalian! Adrenal! Cortex, ! Front'Neurosci!, vol.10, p.238, 2016.

!. !!-drelon, PKA!inhibits!WNT!signalling!in!adrenal!cortex!zonation!and! prevents!malignant!tumour!development, !Nat'Commun!, vol.7, p.12751, 2016.

!. Dörner, !. Cochran, !. Rs, !. Heikinheimo, !. Wilson et al., Adrenocortical!zonation,!renewal,!and!remodeling, vol.6, p.27, 2015.

!. !!-freedman and . Bd, Adrenocortical! zonation! results! from! lineage! conversion!of!differentiated!zona!glomerulosa!cells, Dev'Cell!, vol.26, issue.6, pp.666-673, 2013.

!. Paul and !. Laufer!e!, Shh!signaling!regulates!adrenocortical!development! and! identifies! progenitors! of! steroidogenic! lineages.! Proc' Natl' Acad' Sci' U' A!, vol.106, pp.21185-21190, 2009.

!. Vidal and !. , The! adrenal! capsule! is! a! signaling! center! controlling! cell! renewal!and!zonation!through!Rspo3, !Genes'Dev!, vol.30, issue.12, pp.1389-1394, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02108049

!. Parker, !. Kl, !. Morohashi, and !. Ki!, ! Developmental! links! between! the! fetal! and! adult! adrenal! cortex! revealed! by! lineage! tracing, ! Mol' Cell' Biol!, vol.28, issue.23, pp.7030-7040, 2008.

!. Wood and !. Ma, Fetal! adrenal! capsular! cells! serve! as! progenitor! cells! for! steroidogenic! and! stromal! adrenocortical! cell! lineages! in! M.! musculus.! Dev'Camb, Engl!, vol.140, issue.22, pp.4522-4532, 2013.

. !!-margueron!r,!reinberg!d!, The!Polycomb!complex!PRC2!and!its!mark!in!life, ! Nature!, vol.469, issue.7330, pp.343-349, 2011.

!. !!-drelon, ! EZH2! is! overexpressed! in! adrenocortical! carcinoma! and! is! associated!with!disease!progression, !Hum'Mol'Genet!, vol.25, issue.13, pp.2789-2800, 2016.

!. Bingham, !. Nc, !. Vermaakurvari, !. Parada, . Lf et al., Development! of! a! steroidogenic!factor!1/Cre!transgenic!mouse!line, !Genesis!, vol.44, issue.9, pp.419-443, 2006.

!. Su and !. Iah, ! Ezh2! controls! B! cell! development! through! histone! H3! methylation!and!Igh!rearrangement, !Nat'Immunol!, vol.4, issue.2, pp.124-131, 2003.

!. !!-muzumdar, . Md, !. Tasic, !. Miyamichi, !. Li et al., A!global!doubleAfluorescent! Cre!reporter!mouse, vol.45, pp.593-605, 2000.

!. , !(2012)!EZH2!oncogenic!activity!in!castrationAresistant!prostate!cancer! cells!is!PolycombAindependent, !Science!, vol.338, issue.6113, pp.1465-1469

!. , Transcriptome! analysis! reveals! differentially! expressed! transcripts! in! rat! adrenal! zona! glomerulosa! and! zona! fasciculata, ! Endocrinology!, vol.153, issue.4, pp.1755-1763, 2012.

!. , PKA! signaling! drives! reticularis! differentiation! and! sexually!dimorphic!adrenal!cortex!renewal, 2018.

!. Bandiera!r, !(2013)!WT1!maintains!adrenalAgonadal!primordium!identity!and! marks! a! population! of! AGPAlike! progenitors! within! the! adrenal! gland, Dev' Cell!, vol.27, issue.1, pp.5-18

!. , GLI1(+)!progenitor!cells!in!the!adrenal!capsule!of!the!adult! mouse! give! rise! to! heterotopic! gonadalAlike! tissue, ! Mol' Cell' Endocrinol, 2016.

!. !!-drelon, !. Berthon, !. Mathieu, !. Martinez, and . Val!-p!, Adrenal! cortex! tissue! homeostasis!and!zonation:!A!WNT!perspective, !Mol'Cell'Endocrinol!, vol.408, pp.156-164, 2015.

!. !!-walczak and . Em, WntASignaling!Inhibits!Adrenal!Steroidogenesis!by!CellA Autonomous! and! NonACellAAutonomous! Mechanisms.! Mol' Endocrinol' Baltim' Md:me20141060.! 30!, 2014.

!. !!-koppens and . Maj, ! Deletion! of! Polycomb! Repressive! Complex! 2! From! Mouse!Intestine!Causes!Loss!of!Stem!Cells, !Gastroenterology!, vol.151, issue.4, 2016.

!. Jin, !. Lee, !. Jae, . Su!-i!-ahsi, and . Ge!-k!, Histone! H3K27! methyltransferase! Ezh2! represses! Wnt! genes! to! facilitate! adipogenesis, ! Proc' Natl' Acad' Sci' U' S' A!, vol.107, issue.16, pp.7317-7322, 2010.

!. !!-berthon, ! Constitutive! {beta}Acatenin! activation! induces! adrenal! hyperplasia! and! promotes! adrenal! cancer! development, ! Hum' Mol' Genet!, vol.19, issue.8, pp.1561-1576, 2010.

!. !!-berthon, ! WNT/?Acatenin! signalling! is! activated! in! aldosteroneA producing! adenomas! and! controls! aldosterone! production, ! Hum' Mol' Genet!, vol.23, issue.4, pp.889-905, 2014.

!. !!-flück and . Ce!, MECHANISMS! IN! ENDOCRINOLOGY:! Update! on! pathogenesis! of! primary!adrenal!insufficiency:!beyond!steroid!enzyme!deficiency!and!autoimmune! adrenal!destruction.!, Eur'J'Endocrinol!, vol.177, issue.3, pp.99-111, 2017.

!. , Familial! glucocorticoid! deficiency:! New! genes! and! mechanisms, vol.371, pp.195-200, 2013.

!. , ! (2012)! Mutations! in! NNT! encoding! nicotinamide! nucleotide! transhydrogenase! cause! familial! glucocorticoid! deficiency, ! Nat' Genet!, vol.44, issue.7, pp.740-742

!. , Thioredoxin! reductase! 2! (TXNRD2)! mutation! associated! with!familial!glucocorticoid!deficiency!(FGD), J'Clin'Endocrinol'Metab, 2014.

!. !!-chan, . Lf, !. Campbell, . Dc, !. Novoselova et al., WholeA Exome!Sequencing!in!the!Differential!Diagnosis!of!Primary!Adrenal!Insufficiency!in! Children.!Front'Endocrinol!6, 2015.

!. Hughes and !. Cr, !(2012)!MCM4!mutation!causes!adrenal!failure,!short!stature,!and! natural!killer!cell!deficiency!in!humans, !J'Clin'Invest!, vol.122, issue.3, pp.814-820

!. , !(2012)!Mutations!in!the!PCNAAbinding!domain!of!CDKN1C!cause! IMAGe!syndrome, !Nat'Genet!, vol.44, issue.7, pp.788-92

!. Huang, !. Cc, !. Miyagawa, !. Matsumaru, !. Parker et al., ! Progenitor! cell! expansion! and! organ! size! of! mouse! adrenal! is! regulated! by! sonic! hedgehog, ! Endocrinology!, vol.151, issue.3, pp.1119-1147, 2010.

!. , GonadectomyAinduced! adrenocortical! neoplasia! in! the! domestic! ferret! (mustela! putorius! furo)! and! laboratory! mouse, Vet' Pathol!, vol.43, issue.2, pp.97-117, 2006.

!. , ! (2012)! GATA4! is! a! critical! regulator! of! gonadectomyAinduced! adrenocortical!tumorigenesis!in!mice, !Endocrinology!, vol.153, issue.6, pp.2599-2611

!. !!-frith, . Ch, !. Highman, !. Burger, !. Sheldon et al., !Spontaneous!lesions!in!virgin! and!retired!breeder!BALB/c!and!C57BL/6!mice, !Lab'Anim'Sci!, vol.33, issue.3, pp.273-286, 1983.

!. Naylor, !. Mukaratirwa, and !. Bradley!a!, Adrenal!Gland!Background! Findings! in! CDA1! (Crl:CDA1(ICR)BR)! Mice! from! 104Aweek! Carcinogenicity! Studies, vol.43, pp.816-824, 2015.

!. Bae and !. Wk, The!methyltransferases!enhancer!of!zeste!homolog!(EZH)!1! and! EZH2! control! hepatocyte! homeostasis! and! regeneration.! FASEB'J'Off'Publ'Fed, Am'Soc'Exp'Biol!, vol.29, issue.5, pp.1653-1662, 2015.

!. !!-he, Polycomb!repressive!complex!2!regulates!normal!development! of!the!mouse!heart, !Circ'Res!, vol.110, issue.3, pp.406-415, 2012.

!. !!-collinson, ! Deletion! of! the! PolycombAGroup! Protein! EZH2! Leads! to! Compromised!SelfARenewal!and!Differentiation!Defects!in!, Human!Embryonic!Stem! Cells.!Cell'Rep!, vol.17, issue.10, pp.2700-2714, 2016.

!. !!-de!haan and !. Gerrits!a!, Epigenetic!control!of!hematopoietic!stem!cell!aging!the! case!of!Ezh2, !Ann'N'Y'Acad'Sci!, vol.1106, pp.233-239, 2007.

!. Di!padova, !. Micales, !. Lyons, !. Ge, !. Sartorelli et al., The!Polycomb!Ezh2! methyltransferase! regulates! muscle! gene! expression! and! skeletal! muscle! differentiation, !Genes'Dev!, vol.18, issue.21, pp.2627-2638, 2004.

!. Brancaccio, !. Agnese, !. Puri, !. Pl, and !. Palacios!-d!, Praja1! E3! ubiquitin!ligase!promotes!skeletal!myogenesis!through!degradation!of!EZH2!upon! p38?!activation, !Nat'Commun!, vol.8, p.13956, 2017.

!. Pereira and !. Jd, !(2010)!Ezh2,!the!histone!methyltransferase!of!PRC2,!regulates!the! balance! between! selfArenewal! and! differentiation! in! the! cerebral! cortex, ! Proc'Natl' Acad'Sci'U'S'A!, vol.107, issue.36, pp.15957-15962

!. , ! Differentiation! of! neural! stem! cells! into! oligodendrocytes:! involvement! of! the! polycomb! group! protein! Ezh2, ! Stem' Cells' Dayt' Ohio!, vol.26, issue.11, pp.2875-2883, 2008.

!. Boddeke, !. E. , !. Copray, and !. S!, Ezh2! expression! in! astrocytes! induces! their! dedifferentiation!toward!neural!stem!cells, !Cell'Reprogramming!, vol.13, issue.1, pp.1-6, 2011.

!. !!-subramanian, ! Gene! set! enrichment! analysis:! a! knowledgeAbased! approach! for! interpreting! genomeAwide! expression! profiles, ! Proc'Natl'Acad'Sci'U'S' A!, vol.102, issue.43, pp.15545-15550, 2005.

!. Cheng and !. Asl, EZH2Amediated!concordant!repression!of!Wnt!antagonists! promotes! ?AcateninAdependent! hepatocarcinogenesis, ! Cancer' Res!, vol.71, issue.11, pp.4028-4039, 2011.

!. !!-lee and . Ti, Control! of! developmental! regulators! by! Polycomb! in! human! embryonic!stem!cells, ! ! misplaced! DAB2Apositive! cells.! Scalebars:! 50µm! JF! RTqPCR! analysis! of! accumulation! of! mRNAs! encoding! steroidogenic! enzymes! (Cyp11b1,! Cyp21,! Hsd3b1,! Cyp11b2),! zoneA specific!markers!(Akr1b7,!Dab2)!and!Angiotensin!II!receptors!(At1a,!At1b, vol.125, pp.301-313, 2006.

, !CF!RTqPCR!analysis!of!accumulation!of!mRNAs!encoding!canonical!WNT! target!genes!in!2!monthAold!wildAtype!and!Ezh2!KO!adrenals.!Bars!represent!the!mean! expression! in! 7! animals! per! group! ±! SEM.! Ns,! not! significant,! **! p! <0.01.! DF! Immunohistochemical!detection!of!the!canonical!WNT!target!gene!LEF1!in!2!monthAold! wildAtype!and!Ezh2!KO!adrenals.!zF:!zona!fasciculata,!zG:!zona!glomerulosa,!Ca:!capsule.! Scalebars:!50µm.! Figure+4.+EZH2+programs+the+capacity+of+adrenal+steroidogenic+cells+to+respond+to+ PKA+ signalling.+ AF+ Gene! Set! Enrichment! Analysis! (GSEA)! of! microAarray! gene! expression! data,! using! curated! steroidogenesis! and! cholesterol! synthesis! (mevalonate! pathway)! genes! lists.! BF+ Immunohistochemical! detection! of! PanAPKA! substrates! (aAb)! and!phosphorylated!CREB!protein!together!with!GFP!(cells!of!the!steroidogenic!lineage,! cAd)!in!2!monthAold!wildAtype!and!Ezh2!KO!adrenals.!CF!WesternAblot!analysis!of!PACREB! accumulation! in! seven! 2! monthAold! wildAtype! and! Ezh2! KO! adrenals.! Graph! shows! quantification!of!PACREB!over!CREB!signal.!DF!ELISA!quantification!of!basal!and!, expression! data,! using! a! curated! WNT! pathway! regulators! and! targets! gene! list!(3).! BF! Heatmap!representing!the!median!centred!expression!of!significantly!deregulated!WNT! regulators! and! target! genes! (FDR! <0.1)! in! 2! monthAold! Ezh2! KO! compared! with! wildA type!adrenals

, ! 1! month! and! 6! months! wildA type! adrenals.! Ca:! capsule,! Co:! cortex, ! zF:! zona! fasciculata.! IF! CoAimmunostaining! for! DAB2! (zG)! and! AKR1b7! (zF)! in! E18.5! wildAtype! ! and! Ezh2! KO! adrenals.! White! arrowheads! show! cell! staining! for! both! DAB2! and! AKR1B7

. Jfk!-rtqpcr, !Scalebars:!50!µm.! Figure+ 5.+ Ezh2+ ablation+ is+ associated+ with+ accumulation+ of+ cells+ with+ characteristics+ of+ adrenal+ progenitors.+ AF+ Gene! Set! Enrichment! Analysis! (GSEA)! of! microAarray!gene!expression!data,!using!a!curated!list!of!adrenal!progenitorsAassociated! genes.!BF!haematoxylinAeosin!staining!(aAb)!and!immunohistochemical!detection!of!the!, analysis! of! accumulation! of! mRNAs! encoding! zonal! differentiation! markers! (K)! and! PKA! signalling! inhibitors! (L)! in! 2! monthAold! wildAtype! and! Ezh2! KO! adrenals.! Bars! represent! the! mean! expression! in! 7! animals! per! group! ±! SEM.! LF! CoAimmunostaining! for! EZH2,! DAB2! (zG)! and! AKR1B7! (zF)! in! a! 2! monthAold! wild! type! adrenal.! M:! medulla.! Arrowheads! show! EZH2Apositive! cells.! MF! CoA immunostaining! for! EZH2! and! Ki67! in! a! 2! monthAold! wild! type! adrenal.! Arrowheads! show!cells!staining!for!both!EZH2!and!Ki67.!Stars!show!cells!only!staining!for!EZH2.!ns

, ! Ca:! capsule,! zG:! sona! glomerulosa,! zF:! zona! fasciculata! DF! RNAscope! in! situ! hybridisation! showing! expression! of! Shh! (homeostatic! progenitors,! aAb)! and! Gli1! (supraphysiological! progenitors,! cAd)! and! immunohistochemistry! for! WT1! (eAf)! and! GATA4!(gAh)!in!2!monthAold!wildAtype!and!Ezh2!KO!adrenals.!EFFF!RTqPCR!analysis!of! accumulation!of!mRNAs!encoding!key!actors!in!Hedgehog!pathway!(E)!and!markers!of! supraphysiological!progenitors!(F)!in!2!monthAold!wildAtype!and!Ezh2!KO!adrenals, Heatmap! representing! the! median! centred! expression! of! significantly! deregulated! progenitorsAassociated!genes!(FDR!<0.1)!in!2!monthAold!Ezh2!KO!compared!with!wildA type! adrenals

!. Wt1!, !. Gata4!in!a!2!monthaold!ezh2, . Ko!adrenal, and . Ca, !capsule,!zG:!zona!glomerulosa,! zF:!zona!fasciculata.!HF!RTqPCR!analysis!of!accumulation!of!mRNAs!encoding!markers!of! gonadalAlike! differentiation! in! 2! monthAold! wildAtype! and! Ezh2! KO! adrenals.! Bars! represent! the! mean! expression! in! 7! animals! per! group! ±! SEM

!. , !. Ezh2, !. Ko!-(b,d,f,f)!-embryos, and . Ca, ! capsule,! Ad:! adrenal,! Kid:! kidney.! BF! RTqPCR! analysis! of! accumulation! of! mRNAs! encoding! Wt1! and! Gata4! in! E14.5! and! E18.5! wildAtype! and! Ezh2! KO! adrenals

, Bars! represent! the! mean! expression! in! 14! (E14.5)! and! 6! (E18.5)! animals! per! group! ±! SEM.!CF+Immunohistochemical!analysis!of!Ki67!expression!in!2!monthAold!wildAtype!and!

!. Ezh2, !. Ko!-adrenals.!-m:!-medulla, and . Co, ! cortex.! DF! Number! of! cortical! Ki67Apositive! cells! in!

!. Ezh2, . Ko!-adrenals, and . Ca, ! capsule,! Co:! cortex.! FF+ Chromatin! immunoprecipitation!(ChIP)!of!H3K27me3!and!EZH2!on!the!regulatory!regions!of!Gata4! and!Wt1!in!2!monthAold!wildAtype!and!Ezh2!KO!adrenals.!Enrichments!were!normalised!

!. , !. Ezh2, and !. Ko!, ! M:! medulla.! HF! CoAimmunostaining! of! SF1! (actual! steroidogenic!cells),!GATA4!and!GFP!(cells!of!the!steroidogenic!lineage)!in!2!monthAold! wildAtype!(a,!bearing!Sf1:Cre!and!the!mTmG!reporter)!and!Ezh2!KO!(b)!

!. If!-coaimmunostaining!-of!-sf1!-;-!-gata4!, !. Gfp!-;-!e, !. , !. , and !. , cells! of! the!steroidogenic!lineage)!in!a!12!monthAold!wildAtype!adrenal!(bearing!Sf1:Cre!and!the! mTmG! reporter).! Right! panels! show! different! overlays! of! the! region! delineated! by! the! dashed!rectangle!to!the!left.!Scalebars!in!A

, Figure+ S1+ related+ to+ Figure+ 1.+ AF+ Immunohistochemical! detection! of! H3K27me3! together! with! GFP! expressed! from! the! mTmG! locus,! following! Sf1:CreAmediated! recombination,! in! 2! monthAold! wildAtype! (a,! Sf1:Cre,mTmG,Ezh2' +/+)! and! Ezh2! KO! female! adrenals! (b,! Sf1:Cre,mTmG,Ezh2' Fl/Fl).! Ca:! capsule,! Co:! cortex

, the!ACTH!receptor!Mc2r!and!the!accessory!protein'Mrap!in!2!monthAold!wildAtype!and!

!. Ezh2 and . Ko!adrenals, ! cGMP! (grey)! or! both! (green).! HeLa:! Human! cervix! cancer,! LNCaP! Abl:! Human! castration! resistant! prostate! cancer! lymph! node! metastasis! cells, ! K562:! Human! CML,! ProES:! Human! primary! fetal! liver! proerythroblasts,! DND41:! Human! T! cell! leukaemia,! h1_hesc:! Human! embryonic! stem! cells,! hepG2:! Human! hepatocellular! carcinoma,! EC:! Human! primary! epithelial! cell,! HSMM:! Human! skeletal! muscle! myoblast,! HUVEC:! Human! umbilical! vein! endothelial! cells,! NHA:! normal! Human! astrocyte! cells,! NHDFAAd:! adult! Human! dermal! fibroblasts,! NHEK:! Human! dermal! keratinocyte,! NHLF:! Human! lung! fibroblast.! CF+ !Ezh2!KO!testes!and!ovaries.! BF+Plasma!LH!

, Figure+ S4+ related+ to+ Figure+ 6.! AF! CoAimmunostaining! of! EZH2! and! GFP! (cells! of! the! steroidogenic! lineage)! in! E14.5! (AAb),! E18.5(cAd)! and! 14dpp! (eAf)! wildAtype!

!. Ezh2 and ;. Ko!-(b,d,f)!-adrenals, ! White! arrowheads! show! EZH2Apositive! capsular! cells.! Ca:! capsule,! Co:! cortex, ! BF! CoAimmunostaining! of! WT1! and! GFP! (aAb,! cells! of! the! ! steroidogenic!lineage)!and!WT1!and!SF1!(cAd)!in!2!monthAold!wildAtype

. Ko!-(b,

O. Abdel-wahab, A. Pardanani, J. Patel, M. Wadleigh, T. Lasho et al., Concomitant analysis of EZH2 and ASXL1 mutations in myelofibrosis, chronic myelomonocytic leukemia and blast-phase myeloproliferative neoplasms, Leukemia, vol.25, pp.1200-1202, 2011.

H. Aberle, A. Bauer, J. Stappert, A. Kispert, and R. Kemler, betacatenin is a target for the ubiquitin-proteasome pathway, EMBO J, vol.16, pp.3797-3804, 1997.

J. C. Achermann, M. Ito, M. Ito, P. C. Hindmarsh, J. et al., A mutation in the gene encoding steroidogenic factor-1 causes XY sex reversal and adrenal failure in humans, Nat. Genet, vol.22, pp.125-126, 1999.

J. C. Achermann, G. Ozisik, M. Ito, U. A. Orun, K. Harmanci et al., Gonadal determination and adrenal development are regulated by the orphan nuclear receptor steroidogenic factor-1, in a dosedependent manner, J. Clin. Endocrinol. Metab, vol.87, pp.1829-1833, 2002.

S. L. Acton, P. E. Scherer, H. F. Lodish, and M. Krieger, Expression cloning of SR-BI, a CD36-related class B scavenger receptor, J. Biol. Chem, vol.269, pp.21003-21009, 1994.

G. Aguilera, HPA axis responsiveness to stress: implications for healthy aging, Exp. Gerontol, vol.46, pp.90-95, 2011.

R. Ahlgren, G. Suske, M. R. Waterman, and J. Lund, Role of Sp1 in cAMP-dependent transcriptional regulation of the bovine CYP11A gene, J. Biol, 1999.

, Chem, vol.274, pp.19422-19428

S. Ai, Y. Peng, C. Li, F. Gu, X. Yu et al., EED orchestration of heart maturation through interaction with HDACs is H3K27me3-independent, 2017.

T. Åkerström, R. Maharjan, H. Sven-willenberg, K. Cupisti, J. Ip et al., , 2016.

, Activating mutations in CTNNB1 in aldosterone producing adenomas, Sci. Rep, vol.6, 19546.

N. M. Albiger, D. Regazzo, B. Rubin, A. M. Ferrara, S. Rizzati et al., A multicenter experience on the prevalence of ARMC5 mutations in patients with primary bilateral macronodular adrenal hyperplasia: from genetic characterization to clinical phenotype, Endocrine, vol.55, pp.959-968, 2017.

A. A. Alekseyenko, A. A. Gorchakov, P. V. Kharchenko, and M. I. Kuroda, Reciprocal interactions of human C10orf12 and C17orf96 with PRC2 revealed by BioTAP-XL cross-linking and affinity purification, Proc. Natl. Acad. Sci. U. S. A, vol.111, pp.2488-2493, 2014.

B. Allolio and M. Fassnacht, Clinical review: Adrenocortical carcinoma: clinical update, J. Clin. Endocrinol. Metab, vol.91, pp.2027-2037, 2006.

M. Q. Almeida and C. A. Stratakis, Carney complex and other conditions associated with micronodular adrenal hyperplasias, Best Pract. Res. Clin, 2010.

, Endocrinol. Metab, vol.24, pp.907-914

F. Alpy and C. Tomasetto, START ships lipids across interorganelle space, Biochimie, vol.96, pp.85-95, 2014.

A. Al-salameh, R. Cohen, and R. Desailloud, Overview of the genetic determinants of primary aldosteronism, Appl. Clin. Genet, vol.7, pp.67-79, 2014.

S. R. Antonini, V. Baldacchino, J. Tremblay, P. Hamet, and A. Lacroix, Expression of ACTH receptor pathway genes in glucose-dependent insulinotrophic peptide (GIP)-dependent Cushing's syndrome, Clin. Endocrinol. (Oxf.), vol.64, pp.29-36, 2006.

S. Antonysamy, B. Condon, Z. Druzina, J. B. Bonanno, T. Gheyi et al., Structural Context of Disease-Associated Mutations and Putative Mechanism of Autoinhibition Revealed by X-Ray Crystallographic Analysis of the EZH2-SET Domain, PLOS ONE, vol.8, p.84147, 2013.

F. Arakane, S. R. King, Y. Du, C. B. Kallen, L. P. Walsh et al., Phosphorylation of steroidogenic acute regulatory protein (StAR) modulates its steroidogenic activity, J. Biol. Chem, vol.272, pp.32656-32662, 1997.

A. Castro, M. Mciver, B. Valderrabano, and P. , A thyrotropinsecreting pituitary adenoma treated with radiosurgery: Long-term outcomes, 2018.

, Endocrinol. Diabetes Nutr, vol.65, pp.237-238

M. B. Ardehali, A. Anselmo, J. C. Cochrane, S. Kundu, R. I. Sadreyev et al., Polycomb Repressive Complex 2 Methylates Elongin A to Regulate Transcription, Mol. Cell, vol.68, pp.872-884, 2017.

G. Assié, M. Guillaud-bataille, B. Ragazzon, X. Bertagna, J. Bertherat et al., The pathophysiology, diagnosis and prognosis of adrenocortical tumors revisited by transcriptome analyses, Trends Endocrinol, 2010.

, Metab. TEM, vol.21, pp.325-334

G. Assie, T. J. Giordano, and J. Bertherat, Gene expression profiling in adrenocortical neoplasia, Mol. Cell. Endocrinol, vol.351, pp.111-117, 2012.

G. Assié, R. Libé, S. Espiard, M. Rizk-rabin, A. Guimier et al., ARMC5 mutations in macronodular adrenal hyperplasia with Cushing's syndrome, N. Engl. J. Med, vol.369, pp.2105-2114, 2013.

G. Assié, E. Letouzé, M. Fassnacht, A. Jouinot, W. Luscap et al., , 2014.

, Integrated genomic characterization of adrenocortical carcinoma, Nat. Genet, vol.46, pp.607-612

S. L. Au, .. Wong, C. Lee, J. M. , .. Wong et al., , 2013.

R. J. Auchus, T. C. Lee, and W. L. Miller, Cytochrome b5 augments the 17,20-lyase activity of human P450c17 without direct electron transfer, J. Biol, 1998.

, Chem, vol.273, pp.3158-3165

P. S. Babu, D. L. Bavers, F. Beuschlein, S. Shah, B. Jeffs et al., Interaction between Dax-1 and steroidogenic factor-1 in vivo, 2002.

, Endocrinology, vol.143, pp.665-673

W. K. Bae, K. Kang, J. H. Yu, K. H. Yoo, V. M. Factor et al., The methyltransferases enhancer of zeste homolog (EZH) 1 and EZH2 control hepatocyte homeostasis and regeneration, FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol, vol.29, pp.1653-1662, 2015.

C. Ballaré, M. Lange, A. Lapinaite, G. M. Martin, L. Morey et al., Phf19 links methylated Lys36 of histone H3 to regulation of Polycomb activity, Nat. Struct. Mol. Biol, vol.19, pp.1257-1265, 2012.

R. Bandiera, V. P. Vidal, F. J. Motamedi, M. Clarkson, I. Sahut-barnola et al., WT1 maintains adrenal-gonadal primordium identity and marks a population of AGPlike progenitors within the adrenal gland, Dev. Cell, vol.27, pp.5-18, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00875587

R. Banerjee, N. Russo, M. Liu, E. Van-tubergen, and N. J. Silva, , 2012.

, Rap1 and its regulatory proteins: the tumor suppressor, oncogene, tumor suppressor gene axis in head and neck cancer, Small GTPases, vol.3, pp.192-197

N. Barker, S. Tan, and H. Clevers, Lgr proteins in epithelial stem cell biology, Dev. Camb. Engl, vol.140, pp.2484-2494, 2013.

F. M. Barlaskar, A. C. Spalding, J. H. Heaton, R. Kuick, A. C. Kim et al., Preclinical targeting of the type I insulin-like growth factor receptor in adrenocortical carcinoma, J. Clin. Endocrinol. Metab, vol.94, pp.204-212, 2009.

O. Barreau, G. Assié, H. Wilmot-roussel, B. Ragazzon, C. Baudry et al., Identification of a CpG island methylator phenotype in adrenocortical carcinomas, J. Clin. Endocrinol. Metab, vol.98, pp.174-184, 2013.

P. Q. Barrett, W. B. Bollag, C. M. Isales, R. T. Mccarthy, and H. Rasmussen, Role of calcium in angiotensin II-mediated aldosterone secretion, Endocr. Rev, vol.10, pp.496-518, 1989.

M. H. Bassett, P. C. White, and W. E. Rainey, The regulation of aldosterone synthase expression, Mol. Cell. Endocrinol, vol.217, pp.67-74, 2004.

M. Batisse-lignier, I. Sahut-barnola, F. Tissier, T. Dumontet, M. Mathieu et al., P53/Rb inhibition induces metastatic adrenocortical carcinomas in a preclinical transgenic model, Oncogene, vol.36, pp.4445-4456, 2017.

E. Baudin, E. Board, and G. Roussy, , 2015.

, Adrenocortical carcinoma. Endocrinol. Metab. Clin. North Am, vol.44, pp.411-434

L. Beke, M. Nuytten, A. Van-eynde, M. Beullens, and M. Bollen, The gene encoding the prostatic tumor suppressor PSP94 is a target for repression by the Polycomb group protein EZH2, Oncogene, vol.26, pp.4590-4595, 2007.

R. Bellantone, A. Ferrante, M. Boscherini, C. P. Lombardi, P. Crucitti et al., Role of reoperation in recurrence of adrenal cortical carcinoma: results from 188 cases collected in the Italian National Registry for Adrenal Cortical Carcinoma, Surgery, vol.122, pp.1212-1218, 1997.

S. Benini, B. Perbal, D. Zambelli, M. P. Colombo, M. C. Manara et al., In Ewing's sarcoma CCN3(NOV) inhibits proliferation while promoting migration and invasion of the same cell type, Oncogene, vol.24, pp.4349-4361, 2005.

D. Bergman, M. Halje, M. Nordin, and W. Engström, Insulin-like growth factor 2 in development and disease: a mini-review, Gerontology, vol.59, pp.240-249, 2013.

M. Beringer, P. Pisano, V. Di-carlo, E. Blanco, P. Chammas et al., EPOP Functionally Links Elongin and Polycomb in Pluripotent Stem Cells, Mol. Cell, vol.64, pp.645-658, 2016.

J. A. Bernal, R. Luna, A. Espina, I. Lázaro, F. Ramos-morales et al., Human securin interacts with p53 and modulates p53-mediated transcriptional activity and apoptosis, Nat. Genet, vol.32, pp.306-311, 2002.

A. Berruti, M. Terzolo, A. Pia, A. Angeli, and L. Dogliotti, Mitotane associated with etoposide, doxorubicin, and cisplatin in the treatment of advanced adrenocortical carcinoma. Italian Group for the Study of Adrenal Cancer, Cancer, vol.83, pp.2194-2200, 1998.

A. Berruti, A. Ferrero, P. Sperone, F. Daffara, G. Reimondo et al., Emerging drugs for adrenocortical carcinoma, Expert Opin. Emerg. Drugs, vol.13, pp.497-509, 2008.

N. Berteaux, S. Lottin, D. Monté, S. Pinte, B. Quatannens et al., H19 mRNA-like noncoding RNA promotes breast cancer cell proliferation through positive control by E2F1, J. Biol. Chem, vol.280, pp.29625-29636, 2005.

A. Berthon, I. Sahut-barnola, S. Lambert-langlais, C. De-joussineau, C. Damonsoubeyrand et al., Constitutive ?-catenin activation induces adrenal hyperplasia and promotes adrenal cancer development, Hum. Mol. Genet, vol.19, pp.1561-1576, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01922138

A. Berthon, C. Drelon, B. Ragazzon, S. Boulkroun, F. Tissier et al., , 2014.

, WNT/?-catenin signalling is activated in aldosterone-producing adenomas and controls aldosterone production, Hum. Mol. Genet, vol.23, pp.889-905

A. Berthon, F. R. Faucz, S. Espiard, L. Drougat, J. Bertherat et al., Age-dependent effects of Armc5 haploinsufficiency on adrenocortical function, Hum. Mol. Genet, vol.26, pp.3495-3507, 2017.

F. Beuschlein, S. Boulkroun, A. Osswald, T. Wieland, H. N. Nielsen et al., , 2013.

, Somatic mutations in ATP1A1 and ATP2B3 lead to aldosterone-producing adenomas and secondary hypertension, Nat. Genet, vol.45, pp.444-445

F. Beuschlein, M. Fassnacht, G. Assié, D. Calebiro, C. A. Stratakis et al., Constitutive Activation of PKA Catalytic Subunit in Adrenal Cushing's Syndrome, N. Engl. J, 2014.

. Med, , vol.370, pp.1019-1028

F. Beuschlein, J. Weigel, W. Saeger, M. Kroiss, V. Wild et al., Major prognostic role of Ki67 in localized adrenocortical carcinoma after complete resection, J. Clin, 2015.

. Endocrinol and . Metab, , vol.100, pp.841-849

K. Y. Bilimoria, W. T. Shen, D. Elaraj, D. J. Bentrem, D. J. Winchester et al., Adrenocortical carcinoma in the United States: treatment utilization and prognostic factors, Cancer, vol.113, pp.3130-3136, 2008.

S. Biliya and L. A. Bulla, Genomic imprinting: the influence of differential methylation in the two sexes, Exp. Biol. Med. Maywood NJ, vol.235, pp.139-147, 2010.

A. Bird, Perceptions of epigenetics, 2007.

M. L. Bland, R. C. Fowkes, and H. A. Ingraham, Differential requirement for steroidogenic factor-1 gene dosage in adrenal development versus endocrine function, Mol. Endocrinol. Baltim. Md, vol.18, pp.941-952, 2004.

K. Bloch, The biological synthesis of cholesterol, Science, vol.150, pp.19-28, 1965.

A. E. Bochem, A. G. Holleboom, J. A. Romijn, M. Hoekstra, G. M. Dallinga-thie et al., High density lipoprotein as a source of cholesterol for adrenal steroidogenesis: a study in individuals with low plasma HDL-C, J. Lipid Res, vol.54, pp.1698-1704, 2013.

G. W. Boland, M. A. Blake, P. F. Hahn, and W. W. Mayo-smith, Incidental adrenal lesions: principles, techniques, and algorithms for imaging characterization, Radiology, vol.249, pp.756-775, 2008.

C. E. Bond, D. M. Mckeone, M. Kalimutho, M. L. Bettington, S. Pearson et al., RNF43 and ZNRF3 are commonly altered in serrated pathway colorectal tumorigenesis, Oncotarget, vol.7, pp.70589-70600, 2016.

S. Bonnet, S. Gaujoux, P. Launay, C. Baudry, I. Chokri et al., Wnt/?-catenin pathway activation in adrenocortical adenomas is frequently due to somatic CTNNB1-activating mutations, which are associated with larger and nonsecreting tumors: a study in cortisol-secreting and -nonsecreting tumors, 2011.

, Clin. Endocrinol. Metab, vol.96, pp.419-426

F. Bonnet-serrano and J. Bertherat, Genetics of tumors of the adrenal cortex, Endocr. Relat. Cancer, vol.25, pp.131-152, 2018.

S. R. Bornstein, M. Ehrhart-bornstein, H. Usadel, M. Böckmann, and W. A. Scherbaum, Morphological evidence for a close interaction of chromaffin cells with cortical cells within the adrenal gland, Cell Tissue Res, vol.265, pp.1-9, 1991.

S. R. Bornstein, J. A. Gonzalez-hernandez, M. Ehrhart-bornstein, G. Adler, and W. A. Scherbaum, Intimate contact of chromaffin and cortical cells within the human adrenal gland forms the cellular basis for important intraadrenal interactions, J. Clin. Endocrinol. Metab, vol.78, pp.225-232, 1994.

S. R. Bornstein, T. Tajima, G. Eisenhofer, A. Haidan, and G. Aguilera, , 1999.

, Adrenomedullary function is severely impaired in 21-hydroxylase-deficient mice

, FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol, vol.13, pp.1185-1194

H. S. Bose, T. Sugawara, J. F. Strauss, and W. L. Miller, The pathophysiology and genetics of congenital lipoid adrenal hyperplasia, and International Congenital Lipoid Adrenal Hyperplasia Consortium, vol.335, pp.1870-1878, 1996.

M. Bose, R. M. Whittal, W. L. Miller, and H. S. Bose, Steroidogenic activity of StAR requires contact with mitochondrial VDAC1 and phosphate carrier protein, J. Biol. Chem, vol.283, pp.8837-8845, 2008.

G. Bougeard, R. Sesboüé, S. Baert-desurmont, S. Vasseur, C. Martin et al., Molecular basis of the Li-Fraumeni syndrome: an update from the French LFS families, J. Med. Genet, vol.45, pp.535-538, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00698382

S. Boulkroun, F. Beuschlein, G. Rossi, J. Golib-dzib, E. Fischer et al., , 2012.

, Prevalence, clinical, and molecular correlates of KCNJ5 mutations in primary aldosteronism, Hypertens. Dallas Tex, vol.59, pp.592-598, 1979.

I. Bourdeau, S. Oble, F. Magne, I. Lévesque, K. Y. Cáceres-gorriti et al., ARMC5 mutations in a large French-Canadian family with cortisol-secreting ?-adrenergic/vasopressin responsive bilateral macronodular adrenal hyperplasia, 2016.

, Eur. J. Endocrinol, vol.174, pp.85-96

A. P. Bracken, D. Pasini, M. Capra, E. Prosperini, E. Colli et al., EZH2 is downstream of the pRB-E2F pathway, essential for proliferation and amplified in cancer, EMBO J, vol.22, pp.5323-5335, 2003.

A. P. Bracken, N. Dietrich, D. Pasini, K. H. Hansen, and K. Helin, , 2006.

, Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions, Genes Dev, vol.20, pp.1123-1136

G. L. Brien, G. Gambero, D. J. O&apos;connell, E. Jerman, S. A. Turner et al., Polycomb PHF19 binds H3K36me3 and recruits PRC2 and demethylase NO66 to embryonic stem cell genes during differentiation, Nat. Struct. Mol. Biol, vol.19, pp.1273-1281, 2012.

S. Britsch, L. Li, S. Kirchhoff, F. Theuring, V. Brinkmann et al., The ErbB2 and ErbB3 receptors and their ligand, neuregulin-1, are essential for development of the sympathetic nervous system, 1998.

, Genes Dev, vol.12, pp.1825-1836

M. S. Brown and J. L. Goldstein, A receptor-mediated pathway for cholesterol homeostasis, Science, vol.232, pp.34-47, 1986.

J. L. Brown, D. Mucci, M. Whiteley, M. L. Dirksen, and J. A. Kassis, The Drosophila Polycomb group gene pleiohomeotic encodes a DNA binding protein with homology to the transcription factor YY1, Mol. Cell, vol.1, pp.1057-1064, 1998.

L. Cai, S. B. Rothbart, R. Lu, B. Xu, W. Chen et al., An H3K36 methylation-engaging Tudor motif of polycomb-like proteins mediates PRC2 complex targeting, Mol. Cell, vol.49, pp.571-582, 2013.

R. Cao and Y. Zhang, The functions of E(Z)/EZH2-mediated methylation of lysine 27 in histone H3, Curr. Opin. Genet. Dev, vol.14, pp.155-164, 2004.

R. Cao, H. Wang, J. He, H. Erdjument-bromage, P. Tempst et al., Role of hPHF1 in H3K27 methylation and Hox gene silencing, Mol. Cell, 2008.

, Biol, vol.28, pp.1862-1872

Y. Cao, M. He, Z. Gao, Y. Peng, Y. Li et al., Activating hotspot L205R mutation in PRKACA and adrenal, 2014.

, Cushing's syndrome, Science, vol.344, pp.913-917

C. Cardoso, C. Mignon, G. Hetet, B. Grandchamps, M. Fontes et al., The human EZH2 gene: genomic organisation and revised mapping in 7q35 within the critical region for malignant myeloid disorders, Eur. J. Hum, 2000.
URL : https://hal.archives-ouvertes.fr/hal-02088008

, Genet. EJHG, vol.8, pp.174-180

F. N. Carelli, G. Sharma, and J. Ahringer, Broad Chromatin Domains: An Important Facet of Genome Regulation, BioEssays, vol.39, p.1700124

G. Caretti, M. Di-padova, B. Micales, G. E. Lyons, and V. Sartorelli, The Polycomb Ezh2 methyltransferase regulates muscle gene expression and skeletal muscle differentiation, Genes Dev, vol.18, pp.2627-2638, 2004.

K. M. Caron, S. C. Soo, W. C. Wetsel, D. M. Stocco, B. J. Clark et al., Targeted disruption of the mouse gene encoding steroidogenic acute regulatory protein provides insights into congenital lipoid adrenal hyperplasia, 1997.

, Proc. Natl. Acad. Sci. U. S. A, vol.94, pp.11540-11545

M. Casanova, T. Preissner, A. Cerase, R. Poot, D. Yamada et al., Polycomblike 2 facilitates the recruitment of PRC2 Polycomb group complexes to the inactive X chromosome and to target loci in embryonic stem cells, Dev. Camb. Engl, vol.138, pp.1471-1482, 2011.

T. Cha, B. P. Zhou, W. Xia, Y. Wu, C. Yang et al., Akt-mediated phosphorylation of EZH2 suppresses methylation of lysine 27 in histone H3, Science, vol.310, pp.306-310, 2005.

O. Chabre, R. Libé, G. Assie, O. Barreau, J. Bertherat et al., Serum miR-483-5p and miR-195 are predictive of recurrence risk in adrenocortical cancer patients, Endocr. Relat. Cancer, vol.20, pp.579-594, 2013.

R. F. Chanderbhan, A. T. Kharroubi, B. J. Noland, T. J. Scallen, and G. V. Vahouny, Sterol carrier protein2: further evidence for its role in adrenal steroidogenesis, Endocr. Res, vol.12, pp.351-370, 1986.

C. Chang, J. Yang, W. Xia, C. Chen, X. Xie et al., , 2011.

W. Chao, D. &apos;amore, and P. A. , IGF2: epigenetic regulation and role in development and disease, Cytokine Growth Factor Rev, vol.19, pp.111-120, 2008.

A. Chapman, J. Durand, L. Ouadi, and I. Bourdeau, Identification of genetic alterations of AXIN2 gene in adrenocortical tumors, J. Clin. Endocrinol, 2011.

. Metab, , vol.96, pp.1477-1481

I. Charalampopoulos, E. Dermitzaki, L. Vardouli, C. Tsatsanis, C. Stournaras et al., Dehydroepiandrosterone sulfate and allopregnanolone directly stimulate catecholamine production via induction of tyrosine hydroxylase and secretion by affecting actin polymerization, Endocrinology, vol.146, pp.3309-3318, 2005.

C. Chen and L. F. Lau, Functions and Mechanisms of Action of CCN Matricellular Proteins, Int. J. Biochem. Cell Biol, vol.41, pp.771-783, 2009.

P. Chen, H. Cheng, and C. Tang, CCN3 promotes prostate cancer bone metastasis by modulating the tumor-bone microenvironment through RANKL-dependent pathway, Carcinogenesis, vol.34, pp.1669-1679, 2013.

S. Chen, L. R. Bohrer, A. N. Rai, Y. Pan, L. Gan et al., Cyclin-dependent kinases regulate epigenetic gene silencing through phosphorylation of EZH2, Nat. Cell Biol, vol.12, pp.1108-1114, 2010.

M. Choi, U. I. Scholl, P. Yue, P. Björklund, B. Zhao et al., K+ channel mutations in adrenal aldosterone-producing adenomas and hereditary hypertension, Science, vol.331, pp.768-772, 2011.

J. A. Chong, J. Tapia-ramírez, S. Kim, J. J. Toledo-aral, Y. Zheng et al., REST: a mammalian silencer protein that restricts sodium channel gene expression to neurons, Cell, vol.80, pp.949-957, 1995.

R. Chou, Y. Yu, and M. Hung, The roles of EZH2 in cell lineage commitment, Am. J. Transl. Res, vol.3, pp.243-250, 2011.

K. Chung, N. Qin, A. Androutsellis-theotokis, S. R. Bornstein, and M. Ehrhartbornstein, Effects of dehydroepiandrosterone on proliferation and differentiation of chromaffin progenitor cells, Mol. Cell. Endocrinol, vol.336, pp.141-148, 2011.

B. J. Clark, The mammalian START domain protein family in lipid transport in health and disease, J. Endocrinol, vol.212, pp.257-275, 2012.

A. J. Clark and A. Weber, Molecular insights into inherited ACTH resistance syndromes, Trends Endocrinol. Metab. TEM, vol.5, pp.209-214, 1994.

A. J. Clark, A. Grossman, and L. Mcloughlin, Familial glucocorticoid deficiency associated with point mutation in the adrenocorticotropin receptor, The Lancet, vol.341, pp.461-462, 1993.

D. R. Clemmons, Insulin-like growth factor binding proteins and their role in controlling IGF actions, Cytokine Growth Factor Rev, vol.8, pp.45-62, 1997.

R. E. Collins, M. Tachibana, H. Tamaru, K. M. Smith, D. Jia et al., In Vitro and in Vivo Analyses of a Phe/Tyr Switch Controlling Product Specificity of Histone Lysine Methyltransferases, J. Biol. Chem, vol.280, pp.5563-5570, 2005.

A. Collinson, A. J. Collier, N. P. Morgan, A. R. Sienerth, T. Chandra et al., Deletion of the Polycomb-Group Protein EZH2 Leads to Compromised Self-Renewal and Differentiation Defects in Human Embryonic Stem Cells, Cell Rep, vol.17, pp.2700-2714, 2016.

I. Comet, E. M. Riising, B. Leblanc, and K. Helin, Maintaining cell identity: PRC2-mediated regulation of transcription and cancer, Nat. Rev. Cancer, vol.16, pp.803-810, 2016.

R. A. Copeland, M. E. Solomon, and V. M. Richon, Protein methyltransferases as a target class for drug discovery, Nat. Rev. Drug Discov, vol.8, pp.724-732, 2009.

J. Couture, L. M. Dirk, J. S. Brunzelle, R. L. Houtz, and R. C. Trievel, Structural origins for the product specificity of SET domain protein methyltransferases, Proc. Natl. Acad. Sci. U. S. A, vol.105, pp.20659-20664, 2008.

B. Czermin, R. Melfi, D. Mccabe, V. Seitz, A. Imhof et al., , 2002.

, Drosophila Enhancer of Zeste/ESC Complexes Have a Histone H3

, Methyltransferase Activity that Marks Chromosomal Polycomb Sites. Cell, vol.111, pp.185-196

H. Daidoh, H. Morita, T. Mune, M. Murayama, J. Hanafusa et al., Responses of plasma adrenocortical steroids to low dose ACTH in normal subjects, Clin. Endocrinol. (Oxf.), vol.43, pp.311-315, 1995.

G. De-haan and A. Gerrits, Epigenetic control of hematopoietic stem cell aging the case of Ezh2, Ann. N. Y. Acad. Sci, vol.1106, pp.233-239, 2007.

D. De-stefani, A. Bononi, A. Romagnoli, A. Messina, V. De-pinto et al., VDAC1 selectively transfers apoptotic Ca2+ signals to mitochondria, Cell Death Differ, vol.19, pp.267-273, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00655644

G. Deb, V. S. Thakur, and S. Gupta, Multifaceted role of EZH2 in breast and prostate tumorigenesis: epigenetics and beyond, Epigenetics, vol.8, pp.464-476, 2013.

M. J. Demeure, K. E. Coan, C. S. Grant, R. A. Komorowski, E. Stephan et al., , 2013.

, Adrenocortical Cancer is Associated with Poor Survival and Represents a Potential Therapeutic Target. Surgery, vol.154, pp.1405-1416

M. J. Demeure, K. E. Coan, C. S. Grant, R. A. Komorowski, E. Stephan et al., PTTG1 overexpression in adrenocortical cancer is associated with poor survival and represents a potential therapeutic target, Surgery, vol.154, pp.1405-1416, 2013.

E. Diaz, C. A. Machutta, S. Chen, Y. Jiang, C. Nixon et al., Development and validation of reagents and assays for EZH2 peptide and nucleosome high-throughput screens, 2012.

, J. Biomol. Screen, vol.17, pp.1279-1292

A. Dierks, U. D. Lichtenauer, S. Sackmann, A. Spyroglou, I. Shapiro et al., Identification of adrenal genes regulated in a potassium-dependent manner, 2010.

, Mol. Endocrinol, vol.45, pp.193-206

N. Dietrich, M. Lerdrup, E. Landt, S. Agrawal-singh, M. Bak et al., REST-Mediated Recruitment of Polycomb Repressor Complexes in Mammalian Cells, PLoS Genet, vol.8, 2012.

E. L. Digiammarino, A. S. Lee, C. Cadwell, W. Zhang, B. Bothner et al., A novel mechanism of tumorigenesis involving pH-dependent destabilization of a mutant p53 tetramer, 2002.

, Nat. Struct. Biol, vol.9, pp.12-16

M. Doghman, M. Arhatte, H. Thibout, G. Rodrigues, J. De-moura et al., Nephroblastoma overexpressed/cysteine-rich protein 61/connective tissue growth factor/nephroblastoma overexpressed gene-3 (NOV/CCN3), a selective adrenocortical cell proapoptotic factor, is down-regulated in childhood adrenocortical tumors, J. Clin. Endocrinol. Metab, vol.92, pp.3253-3260, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00172065

M. Doghman, T. Karpova, G. A. Rodrigues, M. Arhatte, J. De-moura et al., Increased steroidogenic factor-1 dosage triggers adrenocortical cell proliferation and cancer, Mol. Endocrinol. Baltim. Md, vol.21, pp.2968-2987, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00172059

M. Doghman, M. Arhatte, H. Thibout, G. Rodrigues, J. De-moura et al., Nephroblastoma overexpressed/cysteine-rich protein 61/connective tissue growth factor/nephroblastoma overexpressed gene-3 (NOV/CCN3), a selective adrenocortical cell proapoptotic factor, is down-regulated in childhood adrenocortical tumors, J Clin Endocrinol Metab, vol.92, pp.3253-3260, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00172065

M. Doghman, F. Madoux, P. Hodder, and E. Lalli, Identification and characterization of steroidogenic factor-1 inverse agonists, Methods Enzymol, vol.485, pp.3-23, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00731014

M. Doghman, A. El-wakil, B. Cardinaud, E. Thomas, J. Wang et al., , 2010.

M. Doghman, B. C. Figueiredo, M. Volante, M. Papotti, and E. Lalli, , 2013.

, Integrative analysis of SF-1 transcription factor dosage impact on genome-wide binding and gene expression regulation, Nucleic Acids Res, vol.41, pp.8896-8907

M. Doghman-bouguerra and E. Lalli, The ER-mitochondria couple: In life and death from steroidogenesis to tumorigenesis, Mol. Cell. Endocrinol, vol.441, pp.176-184, 2017.

A. J. Doupe, S. C. Landis, and P. H. Patterson, Environmental influences in the development of neural crest derivatives: glucocorticoids, growth factors, and chromaffin cell plasticity, J. Neurosci. Off. J. Soc. Neurosci, vol.5, pp.2119-2142, 1985.

C. Drelon, A. Berthon, B. Ragazzon, F. Tissier, R. Bandiera et al., Analysis of the role of Igf2 in adrenal tumour development in transgenic mouse models, PloS One, vol.7, p.44171, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02108062

C. Drelon, A. Berthon, I. Sahut-barnola, M. Mathieu, T. Dumontet et al., PKA inhibits WNT signalling in adrenal cortex zonation and prevents malignant tumour development, Nat. Commun, vol.7, p.12751, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02108042

C. Drelon, A. Berthon, M. Mathieu, B. Ragazzon, R. Kuick et al., EZH2 is overexpressed in adrenocortical carcinoma and is associated with disease progression, Hum. Mol. Genet, vol.25, pp.2789-2800, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02108050

T. Dumontet, I. Sahut-barnola, A. Septier, N. Montanier, I. Plotton et al., PKA signaling drives reticularis differentiation and sexually dimorphic adrenal cortex renewal, JCI Insight, vol.3, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02108037

E. Duregon, M. Volante, J. Giorcelli, M. Terzolo, E. Lalli et al., Diagnostic and prognostic role of steroidogenic factor 1 in adrenocortical carcinoma: a validation study focusing on clinical and pathologic correlates, 2013.

. Pathol, , vol.44, pp.822-828

M. S. Duxbury, H. Ito, M. J. Zinner, S. W. Ashley, and E. E. Whang, RNA interference targeting the M2 subunit of ribonucleotide reductase enhances pancreatic adenocarcinoma chemosensitivity to gemcitabine, Oncogene, vol.23, pp.1539-1548, 2004.

M. Ehrhart-bornstein, M. Breidert, P. Guadanucci, W. Wozniak, J. Bociansobkowska et al., , pp.17-125, 1997.

, Hydroxylase and chromogranin A in 6th week human fetal adrenals. Horm

, Metab. Res. Horm. Stoffwechselforschung Horm. Metab, vol.29, pp.30-32

M. Ehrhart-bornstein, J. P. Hinson, S. R. Bornstein, W. A. Scherbaum, and G. P. Vinson, Intraadrenal interactions in the regulation of adrenocortical steroidogenesis, Endocr. Rev, vol.19, pp.101-143, 1998.

T. Else, A. C. Kim, A. Sabolch, V. M. Raymond, A. Kandathil et al., Adrenocortical carcinoma, Endocr. Rev, vol.35, pp.282-326, 2014.

S. Erhardt, I. Su, R. Schneider, S. Barton, A. J. Bannister et al., development. Dev. Camb. Engl, vol.130, pp.4235-4248, 2003.

S. Eriksson and D. W. Martin, Ribonucleotide reductase in cultured mouse lymphoma cells. Cell cycle-dependent variation in the activity of subunit protein M2, J. Biol. Chem, vol.256, pp.9436-9440, 1981.

T. Escajadillo and M. Sewer, AKAP13 coordinates cAMP signaling and glucocorticoid production in H295R human adrenocortical cells (612.2), FASEB J, vol.28, issue.2, p.612, 2014.

S. Espiard, L. Drougat, R. Libé, G. Assié, K. Perlemoine et al., ARMC5 Mutations in a Large Cohort of Primary Macronodular Adrenal Hyperplasia: Clinical and Functional Consequences, J. Clin. Endocrinol. Metab, vol.100, pp.926-935, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01813998

M. J. Evinger, A. C. Towle, D. H. Park, P. Lee, and T. H. Joh, , 1992.

, Glucocorticoids stimulate transcription of the rat phenylethanolamine Nmethyltransferase (PNMT) gene in vivo and in vitro, Cell. Mol. Neurobiol, vol.12, pp.193-215

R. M. Fagugli and C. Taglioni, Changes in the Perceived Epidemiology of Primary Hyperaldosteronism, 2011.

T. Fan, S. Jiang, N. Chung, A. Alikhan, C. Ni et al.,

, EZH2-dependent suppression of a cellular senescence phenotype in melanoma cells by inhibition of p21/CDKN1A expression, Mol. Cancer Res. MCR, vol.9, pp.418-429

Z. Fang, C. Gong, H. Liu, X. Zhang, L. Mei et al., E2F1 promote the aggressiveness of human colorectal cancer by activating the ribonucleotide reductase small subunit M2. Biochem, 2015.

, Biophys. Res. Commun, vol.464, pp.407-415

A. M. Faria and M. Q. Almeida, Differences in the molecular mechanisms of adrenocortical tumorigenesis between children and adults, Mol. Cell, 2012.

. Endocrinol, , vol.351, pp.52-57

J. J. Farrell, J. Moughan, J. L. Wong, W. F. Regine, P. Schaefer et al., Precision Medicine and Pancreatic Cancer: A Gemcitabine Pathway Approach, Pancreas, vol.45, pp.1485-1493, 2016.

M. Fassnacht, A. , and B. , Clinical management of adrenocortical carcinoma, Best Pract. Res. Clin. Endocrinol. Metab, vol.23, pp.273-289, 2009.

M. Fassnacht, R. Libé, M. Kroiss, A. , and B. , Adrenocortical carcinoma: a clinician's update, Nat. Rev. Endocrinol, vol.7, pp.323-335, 2011.

M. Fassnacht, M. Terzolo, B. Allolio, E. Baudin, H. Haak et al., Combination chemotherapy in advanced adrenocortical carcinoma, N. Engl. J. Med, vol.366, pp.2189-2197, 2012.

M. Fassnacht, M. Kroiss, A. , and B. , Update in adrenocortical carcinoma, J. Clin. Endocrinol. Metab, vol.98, pp.4551-4564, 2013.

. Fatchiyah, M. Zubair, Y. Shima, S. Oka, S. Ishihara et al., Differential gene dosage effects of Ad4BP/SF-1 on target tissue development, Biochem. Biophys. Res. Commun, vol.341, pp.1036-1045, 2006.

A. P. Fay, A. Elfiky, G. H. Teló, R. R. Mckay, M. Kaymakcalan et al., Adrenocortical Carcinoma: The Management of Metastatic Disease, Crit. Rev. Oncol. Hematol, vol.92, pp.123-132, 2014.

A. P. Feinberg, R. Ohlsson, and S. Henikoff, The epigenetic progenitor origin of human cancer, Nat. Rev. Genet, vol.7, pp.21-33, 2006.

B. Ferraz-de-souza, F. Martin, D. Mallet, R. E. Hudson-davies, P. Cogram et al., , 2009.

, Asp-rich C-terminal domain, 2, and pre-B-cell leukemia transcription factor 1 in human adrenal development and disease, CBP/p300-interacting transactivator, with Glu, vol.94, pp.678-683

B. C. Figueiredo, R. Sandrini, G. P. Zambetti, R. M. Pereira, C. Cheng et al., , 2006.

, Penetrance of adrenocortical tumours associated with the germline TP53 R337H mutation, J. Med. Genet, vol.43, pp.91-96

W. Flemming, , 1882.

A. L. Fonseca, J. Kugelberg, L. F. Starker, U. Scholl, M. Choi et al., , 2012.

, Comprehensive DNA methylation analysis of benign and malignant adrenocortical tumors, Genes. Chromosomes Cancer, vol.51, pp.949-960

C. E. Ford, C. Henry, E. Llamosas, A. Djordjevic, and N. Hacker, Wnt signalling in gynaecological cancers: A future target for personalised medicine?, Gynecol. Oncol, vol.140, pp.345-351, 2016.

L. H. Fossom, C. R. Sterling, and A. W. Tank, Regulation of tyrosine hydroxylase gene transcription rate and tyrosine hydroxylase mRNA stability by cyclic AMP and glucocorticoid, Mol. Pharmacol, vol.42, pp.898-908, 1992.

F. De-fraipont, M. El-atifi, N. Cherradi, G. Le-moigne, G. Defaye et al., Gene expression profiling of human adrenocortical tumors using complementary deoxyribonucleic Acid microarrays identifies several candidate genes as markers of malignancy, J. Clin. Endocrinol. Metab, vol.90, pp.1819-1829, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00343768

A. Frangini, M. Sjöberg, M. Roman-trufero, G. Dharmalingam, V. Haberle et al., The Aurora B Kinase and the Polycomb Protein Ring1B Combine to Regulate Active Promoters in Quiescent Lymphocytes, Mol. Cell, vol.51, pp.647-661, 2013.

M. Fukunaga-kalabis, G. Martinez, S. M. Telson, Z. Liu, K. Balint et al., Downregulation of CCN3 expression as a potential mechanism for melanoma progression, Oncogene, vol.27, pp.2552-2560, 2008.

L. Fülöp, A. Rajki, D. Katona, G. Szanda, and A. Spät, , 2013.

, Extramitochondrial OPA1 and adrenocortical function, Mol. Cell. Endocrinol, vol.381, pp.70-79

L. Gagliardi, C. Hotu, G. Casey, W. J. Braund, K. Ling et al., Familial vasopressinsensitive ACTH-independent macronodular adrenal hyperplasia (VPs-AIMAH): clinical studies of three kindreds, Clin. Endocrinol. (Oxf.), vol.70, pp.883-891, 2009.

Z. Gao, J. Zhang, R. Bonasio, F. Strino, A. Sawai et al., PCGF homologs, CBX proteins, and RYBP define functionally distinct PRC1 family complexes, Mol. Cell, vol.45, pp.344-356, 2012.

Z. Gao, S. Suppola, J. Liu, P. Heikkilä, J. Jänne et al., Association of H19 promoter methylation with the expression of H19 and IGF-II genes in adrenocortical tumors, J. Clin. Endocrinol. Metab, vol.87, pp.1170-1176, 2002.

B. Gatta-cherifi, O. Chabre, A. Murat, P. Niccoli, C. Cardot-bauters et al., Adrenal involvement in MEN1, 2012.

, Tumeurs Endocrines database, Eur. J. Endocrinol, vol.166, pp.269-279

S. Gaujoux, S. Grabar, M. Fassnacht, B. Ragazzon, P. Launay et al., ?-catenin activation is associated with specific clinical and pathologic characteristics and a poor outcome in adrenocortical carcinoma, Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res, vol.17, pp.328-336, 2011.

A. Germano, I. Rapa, M. Volante, N. Lo-buono, S. Carturan et al., Cytotoxic activity of gemcitabine, alone or in combination with mitotane, in adrenocortical carcinoma cell lines, Mol. Cell, 2014.

. Endocrinol, , vol.382, pp.1-7

A. Germano, I. Rapa, M. Volante, S. De-francia, C. Migliore et al., RRM1 modulates mitotane activity in adrenal cancer cells interfering with its metabolization, Mol. Cell. Endocrinol, vol.401, pp.105-110, 2015.

C. Gicquel, M. L. Raffin-sanson, V. Gaston, X. Bertagna, P. F. Plouin et al., Structural and functional abnormalities at 11p15 are associated with the malignant phenotype in sporadic adrenocortical tumors: study on a series of 82 tumors, J. Clin, 1997.

. Endocrinol and . Metab, , vol.82, pp.2559-2565

C. Gicquel, X. Bertagna, V. Gaston, J. Coste, A. Louvel et al., , 2001.

T. J. Giordano, D. G. Thomas, R. Kuick, M. Lizyness, D. E. Misek et al., Distinct transcriptional profiles of adrenocortical tumors uncovered by DNA microarray analysis, Am. J. Pathol, vol.162, pp.521-531, 2003.

R. I. Glazer, K. D. Hartman, M. C. Knode, M. M. Richard, P. K. Chiang et al., 3-Deazaneplanocin: A new and potent inhibitor of S-adenosylhomocysteine hydrolase and its effects on human promyelocytic leukemia cell line HL-60, Biochem. Biophys. Res. Commun, vol.135, pp.688-694, 1986.

A. R. Glover, J. T. Zhao, A. J. Gill, J. Weiss, N. Mugridge et al., MicroRNA-7 as a tumor suppressor and novel therapeutic for adrenocortical carcinoma, Oncotarget, vol.6, pp.36675-36688, 2015.

G. Goh, U. I. Scholl, J. M. Healy, M. Choi, M. L. Prasad et al., , 2014.

, Nat. Genet, vol.46, pp.613-617

M. E. Gonzalez, H. M. Moore, X. Li, K. A. Toy, W. Huang et al., EZH2 expands breast stem cells through activation of NOTCH1 signaling, Proc. Natl. Acad. Sci. U. S. A, vol.111, pp.3098-3103, 2014.

R. Goodman, D. Edgar, H. Thoenen, W. Wechsler, and H. Herschman, , 1978.

, Glucocorticoid induction of tyrosine hydroxylase in a continous cell line of rat pheochromocytoma, J. Cell Biol, vol.78, pp.1-7

N. J. Grant, R. Hepp, W. Krause, D. Aunis, P. Oehme et al., Differential expression of SNAP-25 isoforms and SNAP-23 in the adrenal gland, 1999.

, J. Neurochem, vol.72, pp.363-372

V. K. Grolmusz, K. Karászi, T. Micsik, E. A. Tóth, K. Mészáros et al., Cell cycle dependent RRM2 may serve as proliferation marker and pharmaceutical target in adrenocortical cancer, Am. J. Cancer Res, vol.6, pp.2041-2053, 2016.

L. Groussin, L. S. Kirschner, C. Vincent-dejean, K. Perlemoine, E. Jullian et al., Molecular analysis of the cyclic AMP-dependent protein kinase A (PKA) regulatory subunit 1A (PRKAR1A) gene in patients with Carney complex and primary pigmented nodular adrenocortical disease (PPNAD) reveals novel mutations and clues for pathophysiology: augmented PKA signaling is associated with adrenal tumorigenesis in PPNAD, Am. J. Hum. Genet, vol.71, pp.1433-1442, 2002.

F. Guaraldi and R. Salvatori, Cushing syndrome: maybe not so uncommon of an endocrine disease, J. Am. Board Fam. Med. JABFM, vol.25, pp.199-208, 2012.

E. Guccione, C. Bassi, F. Casadio, F. Martinato, M. Cesaroni et al., Methylation of histone H3R2 by PRMT6 and H3K4 by an MLL complex are mutually exclusive, Nature, vol.449, pp.933-937, 2007.

M. Guillaud-bataille, B. Ragazzon, A. De-reyniès, C. Chevalier, I. Francillard et al., , 2014.

, IGF2 promotes growth of adrenocortical carcinoma cells, but its overexpression does not modify phenotypic and molecular features of adrenocortical carcinoma

, PloS One, vol.9, 103744.

A. Guimier, B. Ragazzon, G. Assié, F. Tissier, B. Dousset et al., AXIN genetic analysis in adrenocortical carcinomas updated, 2013.

, J. Endocrinol. Invest, vol.36, pp.1000-1003

M. Gunawan, N. Venkatesan, J. T. Loh, J. F. Wong, H. Berger et al., The methyltransferase Ezh2 controls cell adhesion and migration through direct methylation of the extranuclear regulatory protein talin, Nat. Immunol, vol.16, pp.505-516, 2015.

N. Gupta, H. Wang, T. L. Mcleod, C. C. Naus, S. Kyurkchiev et al., Inhibition of glioma cell growth and tumorigenic potential by CCN3 (NOV), Mol. Pathol. MP, vol.54, pp.293-299, 2001.

R. A. Gupta, N. Shah, K. C. Wang, J. Kim, H. M. Horlings et al., Long non-coding RNA HOTAIR 130 reprograms chromatin state to promote cancer metastasis, Nature, vol.464, pp.1071-1076, 2010.

J. T. Gwynne and B. Hess, The role of high density lipoproteins in rat adrenal cholesterol metabolism and steroidogenesis, J. Biol. Chem, vol.255, pp.10875-10883, 1980.

A. Haidan, S. R. Bornstein, A. Glasow, K. Uhlmann, C. Lübke et al., Basal steroidogenic activity of adrenocortical cells is increased 10-fold by coculture with chromaffin cells, Endocrinology, vol.139, pp.772-780, 1998.

E. Half, D. Bercovich, and P. Rozen, , 2009.

, Orphanet J. Rare Dis, vol.4, p.22

Z. Han, X. Xing, M. Hu, Y. Zhang, P. Liu et al., Structural Basis of EZH2 Recognition by EED, Structure, vol.15, pp.1306-1315, 2007.

H. Hao, Y. Xie, Y. Zhang, O. Charlat, E. Oster et al., ZNRF3 promotes Wnt receptor turnover in an R-spondin-sensitive manner, Nature, vol.485, pp.195-200, 2012.

R. E. Harlan, Regulation of neuropeptide gene expression by steroid hormones, Mol. Neurobiol, vol.2, pp.183-200, 1988.

T. Hasegawa, L. Zhao, K. M. Caron, G. Majdic, T. Suzuki et al., Developmental roles of the steroidogenic acute regulatory protein (StAR) as revealed by StAR knockout mice, Mol. Endocrinol. Baltim. Md, vol.14, pp.1462-1471, 2000.

A. B. Hassan, Keys to the Hidden Treasures of the Mannose 6, 2003.

, Phosphate/Insulin-Like Growth Factor 2 Receptor, Am. J. Pathol, vol.162, pp.3-6

O. Hatano, A. Takakusu, M. Nomura, and K. Morohashi, Identical origin of adrenal cortex and gonad revealed by expression profiles of Ad4BP/SF-1, 1996.

, Genes Cells Devoted Mol. Cell. Mech, vol.1, pp.663-671

N. G. Hattangady, L. O. Olala, W. B. Bollag, and W. E. Rainey, Acute and chronic regulation of aldosterone production, Mol. Cell. Endocrinol, vol.350, pp.151-162, 2012.

S. Hauri, F. Comoglio, M. Seimiya, M. Gerstung, T. Glatter et al., A high density map for navigating the human Polycomb complexome, 2016.

A. He, X. Shen, Q. Ma, J. Cao, A. Von-gise et al., PRC2 directly methylates GATA4 and represses its transcriptional activity, Genes Dev, vol.26, pp.37-42, 2012.

Y. He, S. Selvaraju, M. L. Curtin, C. G. Jakob, H. Zhu et al., The EED protein-131 protein interaction inhibitor A-395 inactivates the PRC2 complex, Nat. Chem, 2017.

, Biol, vol.13, pp.389-395

J. H. Heaton, M. A. Wood, A. C. Kim, L. O. Lima, F. M. Barlaskar et al., Progression to Adrenocortical Tumorigenesis in Mice and Humans through Insulin-Like Growth Factor 2 and ?-Catenin, Am. J. Pathol, vol.181, pp.1017-1033, 2012.

J. E. Henning, T. Deutschbein, B. Altieri, S. Steinhauer, S. Kircher et al., GemcitabineBased Chemotherapy in Adrenocortical Carcinoma: A Multicenter Study of Efficacy and Predictive Factors, J. Clin. Endocrinol. Metab, vol.102, pp.4323-4332, 2017.

I. G. Hermsen, M. Fassnacht, M. Terzolo, S. Houterman, J. Den-hartigh et al., Plasma concentrations of o,p'DDD, o,p'DDA, and o,p'DDE as predictors of tumor response to mitotane in adrenocortical carcinoma: results of a retrospective ENS@T multicenter study, J. Clin. Endocrinol. Metab, vol.96, pp.1844-1851, 2011.

A. Herrera-merchan, L. Arranz, J. M. Ligos, A. De-molina, O. Dominguez et al., Ectopic expression of the histone methyltransferase Ezh2 in haematopoietic stem cells causes myeloproliferative disease, Nat. Commun, vol.3, p.623, 2012.

S. Hescot, A. Slama, A. Lombès, A. Paci, H. Remy et al., Mitotane alters mitochondrial respiratory chain activity by inducing cytochrome c oxidase defect in human adrenocortical cells, Endocr. Relat. Cancer, vol.20, pp.371-381, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-00817795

S. Hescot, L. Amazit, M. Lhomme, S. Travers, A. Dubow et al., Identifying mitotaneinduced mitochondria-associated membranes dysfunctions: metabolomic and lipidomic approaches, Oncotarget, vol.8, pp.109924-109940, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-01568757

K. Hibi, H. Nakamura, A. Hirai, Y. Fujikake, Y. Kasai et al., Loss of H19 imprinting in esophageal cancer, Cancer Res, vol.56, pp.480-482, 1996.

M. Higashijima, H. Nawata, K. Kato, and H. Ibayashi, Studies on Lipoprotein and Adrenal Steroidogenesis: I. Roles of Low Density Lipoproteinand High Density Lipoprotein-Cholesterol in Steroid Production in Cultured Human Adrenocortical Cells, Endocrinol. Jpn, vol.34, pp.635-645, 1987.

M. Hoekstra, I. Meurs, M. Koenders, R. Out, R. B. Hildebrand et al., Absence of HDL cholesteryl ester uptake in mice via SR-BI impairs an adequate adrenal glucocorticoid-mediated stress response to fasting, J. Lipid Res, vol.49, pp.738-745, 2008.

M. Hoekstra, D. Ye, R. B. Hildebrand, Y. Zhao, B. Lammers et al., Scavenger receptor class B type I-mediated uptake of serum cholesterol is essential for optimal adrenal glucocorticoid production, J. Lipid Res, vol.50, pp.1039-1046, 2009.

M. Hoekstra, S. J. Korporaal, R. J. Van-der-sluis, V. Hirsch-reinshagen, A. E. Bochem et al., LCAT deficiency in mice is associated with a diminished adrenal glucocorticoid function, J. Lipid Res, vol.54, pp.358-364, 2013.

J. Hofland, L. J. Hofland, P. M. Van-koetsveld, J. Steenbergen, W. W. De-herder et al.,

J. W. Groot, ACTH-independent macronodular adrenocortical hyperplasia reveals prevalent aberrant in vivo and in vitro responses to hormonal stimuli and coupling of arginine-vasopressin type 1a receptor to, p.11, 2013.

, Orphanet J. Rare Dis, vol.8, p.142

D. Holoch and R. Margueron, Mechanisms Regulating PRC2 Recruitment and Enzymatic Activity, Trends Biochem. Sci, vol.42, pp.531-542, 2017.

J. C. Holthuis and T. P. Levine, Lipid traffic: floppy drives and a superhighway, Nat. Rev. Mol. Cell Biol, vol.6, pp.209-220, 2005.

S. Honda, K. Morohashi, M. Nomura, H. Takeya, M. Kitajima et al.,

, J. Biol. Chem, vol.268, pp.7494-7502

Y. Hu, L. Lao, J. Mao, W. Jin, H. Luo et al., Armc5 deletion causes developmental defects and compromises T-cell immune responses, Nat. Commun, vol.8, p.13834, 2017.
URL : https://hal.archives-ouvertes.fr/pasteur-01534656

S. Huang, M. Litt, and G. Felsenfeld, Methylation of histone H4 by arginine methyltransferase PRMT1 is essential in vivo for many subsequent histone modifications, Genes Dev, vol.19, pp.1885-1893, 2005.

J. Hunkapiller, Y. Shen, A. Diaz, G. Cagney, D. Mccleary et al., Polycomb-like 3 promotes polycomb repressive complex 2 binding to CpG islands and embryonic stem cell self-renewal, PLoS Genet, vol.8, p.1002576, 2012.

Y. Ikeda, W. H. Shen, H. A. Ingraham, and K. L. Parker, Developmental expression of mouse steroidogenic factor-1, an essential regulator of the steroid hydroxylases, Mol. Endocrinol. Baltim. Md, vol.8, pp.654-662, 1994.

D. R. Illingworth, T. A. Kenny, and E. S. Orwoll, Adrenal function in heterozygous and homozygous hypobetalipoproteinemia, J. Clin. Endocrinol, 1982.

. Metab, , vol.54, pp.27-33

A. Nowak, C. Alfieri, C. Stirnimann, V. Rybin, F. Baudin et al., Chromatin-modifying Complex Component Nurf55/p55 Associates with Histones H3 and H4 and Polycomb Repressive Complex 2 Subunit Su(z)12 through Partially Overlapping Binding Sites, J. Biol, 2011.

, Chem, vol.286, pp.23388-23396

J. J. Jacobs and M. Van-lohuizen, Polycomb repression: from cellular memory to cellular proliferation and cancer, Biochim. Biophys. Acta, vol.1602, pp.151-161, 2002.

M. Jasi?ska, J. Owczarek, and D. Orszulak-michalak, Statins: a new insight into their mechanisms of action and consequent pleiotropic effects, 2007.

, Pharmacol. Rep. PR, vol.59, pp.483-499

T. Jenuwein, A. , and C. D. , Translating the histone code, Science, vol.293, pp.1074-1080, 2001.

W. Jiang, G. Jimenez, N. J. Wells, T. J. Hope, G. M. Wahl et al., PRC1: a human mitotic spindle-associated CDK substrate protein required for cytokinesis, Mol. Cell, vol.2, pp.877-885, 1998.

L. Jiao and X. Liu, Structural basis of histone H3K27 trimethylation by an active polycomb repressive complex 2, Science, vol.350, p.4383, 2015.

P. Jin, M. U. Janjua, Q. Zhang, C. Dong, Y. Yang et al., , 2018.

, Extensive ARMC5 genetic variance in primary bilateral macronodular adrenal hyperplasia that started with exophthalmos: a case report, J. Med. Case Reports, vol.12, p.13

K. Johnson, L. Liu, N. Majdzadeh, C. Chavez, P. C. Chin et al., Inhibition of neuronal apoptosis by the cyclin-dependent kinase inhibitor GW8510: identification of 3, 2005.

, J. Neurochem, vol.93, pp.538-548

A. Jouinot, G. Assie, R. Libe, M. Fassnacht, T. Papathomas et al., DNA Methylation Is an Independent Prognostic Marker of Survival in Adrenocortical Cancer, J. Clin, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02049555

. Endocrinol and . Metab, , vol.102, pp.923-932

C. C. Juhlin, G. Goh, J. M. Healy, A. L. Fonseca, U. I. Scholl et al., Wholeexome sequencing characterizes the landscape of somatic mutations and copy number alterations in adrenocortical carcinoma, J. Clin. Endocrinol. Metab, vol.100, pp.493-502, 2015.

A. A. Kandutsch and A. E. Russell, Preputial gland tumor sterols. 3. A metabolic pathway from lanosterol to cholesterol, J. Biol. Chem, vol.235, pp.2256-2261, 1960.

D. S. Keeney, C. M. Jenkins, and M. R. Waterman, Developmentally regulated expression of adrenal 17 alpha-hydroxylase cytochrome P450 in the mouse embryo, Endocrinology, vol.136, pp.4872-4879, 1995.

T. M. Kerkhofs, M. H. Ettaieb, I. G. Hermsen, and H. R. Haak, , 2015.

, Developing treatment for adrenocortical carcinoma, Endocr. Relat. Cancer, vol.22, pp.325-338

C. S. Ketel, E. F. Andersen, M. L. Vargas, J. Suh, S. Strome et al., Subunit contributions to histone methyltransferase activities of fly and worm polycomb group complexes, Mol. Cell. Biol, vol.25, pp.6857-6868, 2005.

A. M. Khalil, M. Guttman, M. Huarte, M. Garber, A. Raj et al., , 2009.

, Many human large intergenic noncoding RNAs associate with chromatinmodifying complexes and affect gene expression, Proc. Natl. Acad. Sci. U. S. A, vol.106, pp.11667-11672

J. C. Kiefer, Epigenetics in development, Dev. Dyn. Off. Publ. Am. Assoc, 2007.

. Anat, , vol.236, pp.1144-1156

A. C. Kim, A. L. Reuter, M. Zubair, T. Else, K. Serecky et al., Targeted disruption of betacatenin in Sf1-expressing cells impairs development and maintenance of the adrenal cortex, Dev. Camb. Engl, vol.135, pp.2593-2602, 2008.

E. Kim, M. Kim, D. Woo, Y. Shin, J. Shin et al., Phosphorylation of EZH2 activates STAT3 signaling via STAT3 methylation and promotes tumorigenicity of glioblastoma stem-like cells, Cancer Cell, vol.23, pp.839-852, 2013.

E. Kim, J. O. Ilagan, Y. Liang, G. M. Daubner, S. Lee et al., SRSF2 Mutations Contribute to Myelodysplasia by Mutant-Specific Effects on Exon Recognition, vol.27, pp.617-630, 2015.

W. Kim, G. H. Bird, T. Neff, G. Guo, M. A. Kerenyi et al., Targeted disruption of the EZH2-EED complex inhibits EZH2-dependent cancer, Nat. Chem. Biol, vol.9, pp.643-650, 2013.

L. S. Kirschner, F. Sandrini, J. Monbo, J. P. Lin, J. A. Carney et al., Genetic heterogeneity and spectrum of mutations of the, p.1, 2000.

, gene in patients with the carney complex. Hum. Mol. Genet, vol.9, pp.3037-3046

K. Klauke, V. Radulovi?, M. Broekhuis, E. Weersing, E. Zwart et al., Polycomb Cbx family members mediate the balance between haematopoietic stem cell self-renewal and differentiation, Nat. Cell Biol, vol.15, pp.353-362, 2013.

C. G. Kleer, Q. Cao, S. Varambally, R. Shen, I. Ota et al., EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells, Proc. Natl. Acad. Sci. U. S. A, vol.100, pp.11606-11611, 2003.

T. Klymenko, B. Papp, W. Fischle, T. Köcher, M. Schelder et al., A Polycomb group protein complex with sequence-specific DNA-binding and selective methyl-lysine-binding activities, 2006.

, Genes Dev, vol.20, pp.1110-1122

S. K. Knutson, T. J. Wigle, N. M. Warholic, C. J. Sneeringer, C. J. Allain et al., A selective inhibitor of EZH2 blocks H3K27 methylation and kills mutant lymphoma cells, 2012.

, Nat. Chem. Biol, vol.8, pp.890-896

S. K. Knutson, N. M. Warholic, T. J. Wigle, C. R. Klaus, C. J. Allain et al., , 2013.

, Durable tumor regression in genetically altered malignant rhabdoid tumors by inhibition of methyltransferase EZH2, Proc. Natl. Acad. Sci. U. S. A, vol.110, pp.7922-7927

R. Kogo, T. Shimamura, K. Mimori, K. Kawahara, S. Imoto et al., Long noncoding RNA HOTAIR regulates polycomb-dependent chromatin modification and is associated with poor prognosis in colorectal cancers, Cancer Res, vol.71, pp.6320-6326, 2011.

C. Köhler and C. B. Villar, Programming of gene expression by Polycomb group proteins, Trends Cell Biol, vol.18, pp.236-243, 2008.

A. Kohlmaier, F. Savarese, M. Lachner, J. Martens, T. Jenuwein et al., A chromosomal memory triggered by Xist regulates histone methylation in X inactivation, PLoS Biol, vol.2, p.171, 2004.

K. D. Konze, A. Ma, F. Li, D. Barsyte-lovejoy, T. Parton et al., An orally bioavailable chemical probe of the Lysine Methyltransferases EZH2 and EZH1, 2013.

, Biol, vol.8, pp.1324-1334

S. Korpaisarn, O. Trachoo, B. Panthan, R. Aroonroch, R. Suvikapakornkul et al., A Novel PRKAR1A Mutation Identified in a Patient with Isolated Primary Pigmented Nodular Adrenocortical Disease, Case Rep. Oncol, vol.10, pp.769-776, 2017.

T. Kouzarides, Chromatin modifications and their function, Cell, vol.128, pp.693-705, 2007.

F. B. Kraemer, W. Shen, S. Patel, J. Osuga, S. Ishibashi et al., The LDL receptor is not necessary for acute adrenal steroidogenesis in mouse adrenocortical cells, Am. J. Physiol. Endocrinol. Metab, vol.292, pp.408-412, 2007.

M. Kretz and G. Meister, RNA binding of PRC2: promiscuous or well ordered?, Mol. Cell, vol.55, pp.157-158, 2014.

K. Kretzschmar and H. Clevers, Wnt/?-catenin signaling in adult mammalian epithelial stem cells, Dev. Biol, vol.428, pp.273-282, 2017.

M. Ku, R. P. Koche, E. Rheinbay, E. M. Mendenhall, M. Endoh et al., Genomewide analysis of PRC1 and PRC2 occupancy identifies two classes of bivalent domains, 2008.

, PLoS Genet, vol.4, p.1000242

M. Kulis and M. Esteller, DNA methylation and cancer, Adv. Genet, vol.70, pp.27-56, 2010.

A. Kulshrestha and S. Suman, Common module analysis reveals prospective targets and mechanisms of pediatric adrenocortical adenoma and carcinoma, Oncol. Lett, vol.15, pp.3267-3272, 2018.

A. Kuzmichev, T. Jenuwein, P. Tempst, and D. Reinberg, Different EZH2-containing complexes target methylation of histone H1 or nucleosomal histone H3, Mol. Cell, vol.14, pp.183-193, 2004.

A. Lacroix, ACTH-independent macronodular adrenal hyperplasia, Best Pract. Res. Clin. Endocrinol. Metab, vol.23, pp.245-259, 2009.

A. Lacroix, P. Hamet, and J. M. Boutin, Leuprolide acetate therapy in luteinizing hormone--dependent Cushing's syndrome, N. Engl. J. Med, vol.341, pp.1577-1581, 1999.

A. Lacroix, I. Bourdeau, A. Lampron, T. L. Mazzuco, J. Tremblay et al., Aberrant G-protein coupled receptor expression in relation to adrenocortical overfunction, Clin. Endocrinol. (Oxf.), vol.73, pp.1-15, 2010.

A. Lacroix, R. A. Feelders, C. A. Stratakis, and L. K. Nieman, Cushing's syndrome, Lancet Lond. Engl, vol.386, pp.913-927, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01904330

D. S. Lala, D. A. Rice, and K. L. Parker, Steroidogenic factor I, a key regulator of steroidogenic enzyme expression, is the mouse homolog of fushi tarazu-factor I, Mol. Endocrinol. Baltim. Md, vol.6, pp.1249-1258, 1992.

E. Lalli and B. C. Figueiredo, Pediatric adrenocortical tumors: what they can tell us on adrenal development and comparison with adult adrenal tumors, Front. Endocrinol, vol.6, p.23, 2015.

S. Lambert-langlais, J. Pointud, A. Lefrançois-martinez, F. Volat, M. Manin et al., Aldo Keto Reductase 1B7 and Prostaglandin F2? Are Regulators of Adrenal Endocrine Functions, PLoS ONE, vol.4, 2009.

F. Lan and Y. Shi, Epigenetic regulation: methylation of histone and non-histone proteins, Sci. China C Life Sci, vol.52, pp.311-322, 2009.

D. Landeira, S. Sauer, R. Poot, M. Dvorkina, L. Mazzarella et al., Jarid2 is a PRC2 component in embryonic stem cells required for multi-lineage 137 differentiation and recruitment of PRC1 and RNA Polymerase II to developmental regulators, Nat. Cell Biol, vol.12, pp.618-624, 2010.

M. Laplante and D. M. Sabatini, mTOR signaling in growth control and disease, Cell, vol.149, pp.274-293, 2012.

A. C. Latronico and G. P. Chrousos, Extensive personal experience: adrenocortical tumors, J. Clin. Endocrinol. Metab, vol.82, pp.1317-1324, 1997.

A. C. Latronico, E. M. Pinto, S. Domenice, M. C. Fragoso, R. M. Martin et al., An inherited mutation outside the highly conserved DNA-binding domain of the p53 tumor suppressor protein in children and adults with sporadic adrenocortical tumors, 2001.

S. K. Lau and L. M. Weiss, The Weiss system for evaluating adrenocortical neoplasms: 25 years later, Hum. Pathol, vol.40, pp.757-768, 2009.

W. Lau, . De, W. C. Peng, P. Gros, and H. Clevers, The Rspondin/Lgr5/Rnf43 module: regulator of Wnt signal strength, Genes Dev, vol.28, pp.305-316, 2014.

J. T. Lee and W. Gu, The multiple levels of regulation by p53 ubiquitination, Cell Death Differ, vol.17, pp.86-92, 2010.

J. M. Lee, J. S. Lee, H. Kim, K. Kim, H. Park et al., Mol. Cell, vol.48, pp.572-586, 2012.

S. Lee, R. Hwang, J. Lee, Y. Rhee, D. J. Kim et al., Ectopic expression of vasopressin V1b and V2 receptors in the adrenal glands of familial ACTH-independent macronodular adrenal hyperplasia, 2005.

. Endocrinol, , vol.63, pp.625-630

H. Lefebvre, V. Contesse, C. Delarue, J. Kuhn, and H. Vaudry, The 5-HT<Subscript>4</Subscript> Receptor in the Adrenal Gland, 5-HT4 Receptors in the Brain and Periphery, pp.195-211, 1998.

T. P. Lehmann, T. Wrzesi?ski, and P. P. Jagodzi?ski, The effect of mitotane on viability, steroidogenesis and gene expression in NCI-H295R, 2013.

, adrenocortical cells. Mol. Med. Rep, vol.7, pp.893-900

S. Lejon, S. Y. Thong, A. Murthy, S. Alqarni, N. V. Murzina et al., Insights into Association of the NuRD Complex with FOG-1 from the Crystal Structure of an RbAp48·FOG-1 Complex, J. Biol, 2011.

, Chem, vol.286, pp.1196-1203

A. M. Lerario, A. Moraitis, and G. D. Hammer, Genetics and epigenetics of adrenocortical tumors, Mol. Cell. Endocrinol, vol.386, pp.67-84, 2014.

S. Lev, Non-vesicular lipid transport by lipid-transfer proteins and beyond, Nat. Rev. Mol. Cell Biol, vol.11, pp.739-750, 2010.

S. S. Levine, I. F. King, and R. E. Kingston, Division of labor in polycomb group repression, Trends Biochem. Sci, vol.29, pp.478-485, 2004.

C. S. Lewis, C. Voelkel-johnson, and C. D. Smith, Suppression of c-Myc and RRM2 expression in pancreatic cancer cells by the sphingosine kinase-2 inhibitor ABC294640, Oncotarget, vol.7, pp.60181-60192, 2016.

C. Li, J. Zheng, S. Chen, B. Huang, G. Li et al., RRM2 promotes the progression of human glioblastoma, J. Cell. Physiol, vol.233, pp.6759-6767, 2018.

G. Li, R. Margueron, M. Ku, P. Chambon, B. E. Bernstein et al., Jarid2 and PRC2, partners in regulating gene expression, Genes Dev, vol.24, pp.368-380, 2010.

H. Li, B. Degenhardt, D. Tobin, Z. X. Yao, K. Tasken et al., Identification, localization, and function in steroidogenesis of PAP7: a peripheral-type benzodiazepine receptor-and PKA (RIalpha)-associated protein, 2001.

, Mol. Endocrinol. Baltim. Md, vol.15, pp.2211-2228

J. Li, J. Pang, Y. Liu, J. Zhang, C. Zhang et al., Suppression of RRM2 inhibits cell proliferation, causes cell cycle arrest and promotes the apoptosis of human neuroblastoma cells and in human neuroblastoma RRM2 is suppressed following chemotherapy, Oncol. Rep, vol.40, pp.355-360, 2018.

X. Li, M. E. Gonzalez, K. Toy, T. Filzen, S. D. Merajver et al., , 2009.

, Targeted overexpression of EZH2 in the mammary gland disrupts ductal morphogenesis and causes epithelial hyperplasia, Am. J. Pathol, vol.175, pp.1246-1254

R. Libé, Adrenocortical carcinoma (ACC): diagnosis, prognosis, and treatment. Front, Cell Dev. Biol, vol.3, 2015.

R. Libè, L. Groussin, F. Tissier, C. Elie, F. René-corail et al., Somatic TP53 mutations are relatively rare among adrenocortical cancers with the frequent 17p13 loss of heterozygosity, Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res, vol.13, pp.844-850, 2007.

R. Libé, A. Fratticci, J. Coste, F. Tissier, A. Horvath et al., , 2008.

1. Phosphodiesterase, PDE11A) and Genetic Predisposition to Adrenocortical Tumors, Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res, vol.14, pp.4016-4024

R. Libé, J. Coste, L. Guignat, F. Tissier, H. Lefebvre et al., Aberrant cortisol regulations in bilateral macronodular adrenal hyperplasia: a frequent finding in 139 a prospective study of 32 patients with overt or subclinical Cushing's syndrome, 2010.

, Eur. J. Endocrinol, vol.163, pp.129-138

C. G. Lin, S. Leu, N. Chen, C. M. Tebeau, S. Lin et al., CCN3 (NOV) is a novel angiogenic regulator of the CCN protein family, J. Biol. Chem, vol.278, pp.24200-24208, 2003.

Y. Lin, X. Hou, W. Shen, R. Hanssen, V. K. Khor et al., SNARE-Mediated Cholesterol Movement to Mitochondria Supports Steroidogenesis in Rodent Cells, Mol. Endocrinol. Baltim, 2016.

, Md, vol.30, pp.234-247

M. Litt, Y. Qiu, and S. Huang, Histone arginine methylations: their roles in chromatin dynamics and transcriptional regulation, Biosci. Rep, vol.29, pp.131-141, 2009.

J. Liu, P. Heikkilä, Q. H. Meng, A. I. Kahri, M. J. Tikkanen et al., Expression of low and high density lipoprotein receptor genes in human adrenals, Eur. J. Endocrinol, vol.142, pp.677-682, 2000.

L. Liu, J. Wang, J. Fan, Y. Rao, F. Liu et al., , 2016.

, Nicotine Suppressed Fetal Adrenal StAR Expression via YY1 Mediated-Histone Deacetylation Modification Mechanism, Int. J. Mol. Sci, vol.17

D. L. Loriaux, Diagnosis and Differential Diagnosis of Cushing's Syndrome, N. Engl. J. Med, vol.377, p.3, 2017.

C. F. Lotfi and H. A. Armelin, c-Fos protein is a mediator in mitogenic response to ACTH, Endocr. Res, vol.24, pp.421-424, 1998.

E. Louiset, C. Duparc, J. Young, S. Renouf, M. Tetsi-nomigni et al., Intraadrenal corticotropin in bilateral macronodular adrenal hyperplasia, N. Engl. J. Med, vol.369, pp.2115-2125, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01908272

C. Lu, H. D. Han, L. S. Mangala, R. Ali-fehmi, C. S. Newton et al., Regulation of tumor angiogenesis by EZH2, Cancer Cell, vol.18, pp.185-197, 2010.

K. Luger, Dynamic nucleosomes, Chromosome Res. Int. J. Mol. Supramol, 2006.

, Evol. Asp. Chromosome Biol, vol.14, pp.5-16

K. Luger, A. W. Mäder, R. K. Richmond, D. F. Sargent, R. et al., , 1997.

X. Luo, Y. Ikeda, and K. L. Parker, A cell-specific nuclear receptor is essential for adrenal and gonadal development and sexual differentiation, Cell, vol.77, pp.481-490, 1994.

Y. Ma, P. Zhang, F. Wang, J. Yang, Z. Yang et al., The relationship between early embryo development and tumourigenesis, J. Cell. Mol, 2010.

. Med, , vol.14, pp.2697-2701

B. T. Macdonald, K. Tamai, and X. He, Wnt/beta-catenin signaling: components, mechanisms, and diseases, Dev. Cell, vol.17, pp.9-26, 2009.

S. Maenner, M. Blaud, L. Fouillen, A. Savoye, V. Marchand et al., 2-D Structure of the A Region of Xist RNA and Its Implication for PRC2 Association, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01715217

, PLOS Biol, vol.8, 1000276.

P. L. Mai, A. F. Best, J. A. Peters, R. M. Decastro, P. P. Khincha et al., Risks of first and subsequent cancers among TP53 mutation carriers in the National Cancer Institute Li-Fraumeni syndrome cohort, Cancer, vol.122, pp.3673-3681, 2016.

D. Malkin, F. P. Li, L. C. Strong, J. F. Fraumeni, C. E. Nelson et al., Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms, Science, vol.250, pp.1233-1238, 1990.

M. Clair, J. Soydaner-azeloglu, R. Lee, K. E. Taylor, L. Livanos et al., EZH2 couples pancreatic regeneration to neoplastic progression, Genes Dev, vol.26, pp.439-444, 2012.

P. R. Manna, M. T. Dyson, and D. M. Stocco, Regulation of the steroidogenic acute regulatory protein gene expression: present and future perspectives, Mol. Hum. Reprod, vol.15, pp.321-333, 2009.

G. Mansmann, J. Lau, E. Balk, M. Rothberg, Y. Miyachi et al., The clinically inapparent adrenal mass: update in diagnosis and management, Endocr. Rev, vol.25, pp.309-340, 2004.

R. Margueron and D. Reinberg, The Polycomb complex PRC2 and its mark in life, Nature, vol.469, pp.343-349, 2011.

R. Margueron, G. Li, K. Sarma, A. Blais, J. Zavadil et al., Ezh1 and Ezh2 maintain repressive chromatin through different mechanisms, Mol. Cell, vol.32, pp.503-518, 2008.

R. Margueron, N. Justin, K. Ohno, M. L. Sharpe, J. Son et al., Role of the polycomb protein EED in the propagation of repressive histone marks, Nature, vol.461, pp.762-767, 2009.

C. Martin and Y. Zhang, The diverse functions of histone lysine methylation, Nat. Rev. Mol. Cell Biol, vol.6, pp.838-849, 2005.

G. Martin, A. Pilon, C. Albert, M. Valle, W. Hum et al., Comparison of expression and regulation of the high-density lipoprotein receptor SR-BI and the low-density lipoprotein receptor in human adrenocortical carcinoma NCI-H295 cells, Eur. J. Biochem. FEBS, vol.261, pp.481-491, 1999.

C. Martinerie, C. Gicquel, A. Louvel, M. Laurent, P. N. Schofield et al., Altered expression of novH is associated with human adrenocortical tumorigenesis, J. Clin. Endocrinol. Metab, vol.86, pp.3929-3940, 2001.

M. A. Martínez-balbás, T. Tsukiyama, D. Gdula, and C. Wu, , 1998.

, Drosophila NURF-55, a WD repeat protein involved in histone metabolism, Proc

, Natl. Acad. Sci. U. S. A, vol.95, pp.132-137

M. A. Martínez-balbás, T. Tsukiyama, D. Gdula, and C. Wu, , 1998.

, Drosophila NURF-55, a WD repeat protein involved in histone metabolism, Proc

, Natl. Acad. Sci. U. S. A, vol.95, pp.132-137

G. E. Mattos, J. F. Jacysyn, G. P. Amarante-mendes, and C. F. Lotfi, Comparative effect of FGF2, synthetic peptides 1-28 N-POMC and ACTH on proliferation in rat adrenal cell primary cultures, Cell Tissue Res, vol.345, pp.343-356, 2011.

M. T. Mccabe, H. M. Ott, G. Ganji, S. Korenchuk, C. Thompson et al., EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations, Nature, vol.492, pp.108-112, 2012.

P. E. Mcewan, G. P. Vinson, and C. J. Kenyon, Control of adrenal cell proliferation by AT1 receptors in response to angiotensin II and low-sodium diet, 1999.

, Am. J. Physiol.-Endocrinol. Metab, vol.276, pp.303-309

G. S. Mcknight, C. H. Clegg, M. D. Uhler, J. C. Chrivia, G. G. Cadd et al., Analysis of the cAMP-Dependent Protein Kinase System Using Molecular Genetic Approaches, Proceedings of the 1987 Laurentian Hormone Conference, pp.307-335, 1988.

R. K. Meier and B. J. Clark, Angiotensin II-Dependent Transcriptional Activation of Human Steroidogenic Acute Regulatory Protein Gene by a 25-kDa cAMP-Responsive Element Modulator Protein Isoform and Yin Yang 1, Endocrinology, vol.153, pp.1256-1268, 2012.

R. I. Menzies, X. Zhao, L. J. Mullins, J. J. Mullins, C. Cairns et al., Transcription controls growth, cell kinetics and cholesterol supply to sustain ACTH responses, Endocr. Connect, vol.6, pp.446-457, 2017.

D. P. Merke and S. R. Bornstein, Congenital adrenal hyperplasia, The Lancet, vol.365, pp.2125-2136, 2005.

S. Mesiano and R. B. Jaffe, Developmental and functional biology of the primate fetal adrenal cortex, Endocr. Rev, vol.18, pp.378-403, 1997.

S. Mesiano, S. H. Mellon, and R. B. Jaffe, Mitogenic action, regulation, and localization of insulin-like growth factors in the human fetal adrenal gland, 1993.

, J. Clin. Endocrinol. Metab, vol.76, pp.968-976

O. Mete, H. Gucer, M. Kefeli, A. , and S. L. , Diagnostic and Prognostic Biomarkers of Adrenal Cortical Carcinoma, Am. J. Surg. Pathol, vol.42, pp.201-213, 2018.

L. A. Metherell, J. P. Chapple, S. Cooray, A. David, C. Becker et al., Mutations in MRAP, encoding a new interacting partner of the ACTH receptor, cause familial glucocorticoid deficiency type 2, Nat. Genet, vol.37, pp.166-170, 2005.

E. Michalkiewicz, R. Sandrini, B. Figueiredo, E. C. Miranda, E. Caran et al., Clinical and outcome characteristics of children with adrenocortical tumors: a report from the International Pediatric Adrenocortical Tumor Registry, J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol, vol.22, pp.838-845, 2004.

A. Midzak, P. , and V. , Binding domain-driven intracellular trafficking of sterols for synthesis of steroid hormones, bile acids and oxysterols, Traffic Cph. Den, vol.15, pp.895-914, 2014.

W. L. Miller, Minireview: regulation of steroidogenesis by electron transfer, Endocrinology, vol.146, pp.2544-2550, 2005.

W. L. Miller and H. S. Bose, Early steps in steroidogenesis: intracellular cholesterol trafficking, J. Lipid Res, vol.52, pp.2111-2135, 2011.

J. Min, Q. Feng, Z. Li, Y. Zhang, and R. Xu, Structure of the catalytic domain of human DOT1L, a non-SET domain nucleosomal histone methyltransferase, Cell, vol.112, pp.711-723, 2003.

J. Min, A. Zaslavsky, G. Fedele, S. K. Mclaughlin, E. E. Reczek et al., An oncogene-tumor suppressor cascade drives metastatic prostate cancer by coordinately activating Ras and nuclear factor-kappaB, Nat. Med, vol.16, pp.286-294, 2010.

T. B. Miranda, C. C. Cortez, C. B. Yoo, G. Liang, M. Abe et al., DZNep is a global histone methylation inhibitor that reactivates developmental genes not silenced by DNA methylation, Mol. Cancer Ther, vol.8, pp.1579-1588, 2009.

N. Miyamura, T. Taguchi, Y. Murata, K. Taketa, S. Iwashita et al., Inherited 143 adrenocorticotropin-independent macronodular adrenal hyperplasia with abnormal cortisol secretion by vasopressin and catecholamines: detection of the aberrant hormone receptors on adrenal gland, Endocrine, vol.19, pp.319-326, 2002.

N. D. Montgomery, D. Yee, A. Chen, S. Kalantry, S. J. Chamberlain et al., The murine polycomb group protein Eed is required for global histone H3 lysine-27 methylation, Curr. Biol. CB, vol.15, pp.942-947, 2005.

A. W. Moore, A. Schedl, L. Mcinnes, M. Doyle, J. Hecksher-sorensen et al., YAC transgenic analysis reveals Wilms' tumour 1 gene activity in the proliferating coelomic epithelium, developing diaphragm and limb, 1998.

, Mech. Dev, vol.79, pp.169-184

R. D. Morin, N. A. Johnson, T. M. Severson, A. J. Mungall, J. An et al., Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B-cell lymphomas of germinal-center origin, Nat. Genet, vol.42, pp.181-185, 2010.

K. Morohaku, S. H. Pelton, D. J. Daugherty, W. R. Butler, W. Deng et al., Translocator protein/peripheral benzodiazepine receptor is not required for steroid hormone biosynthesis, Endocrinology, vol.155, pp.89-97, 2014.

K. Morohashi, S. Honda, Y. Inomata, H. Handa, and T. Omura, A common trans-acting factor, Ad4-binding protein, to the promoters of steroidogenic P-450s, J. Biol. Chem, vol.267, pp.17913-17919, 1992.

K. Morohashi, U. M. Zanger, S. Honda, M. Hara, M. R. Waterman et al., Activation of CYP11A and CYP11B gene promoters by the steroidogenic cell-specific transcription factor, Ad4BP. Mol. Endocrinol. Baltim, 1993.

, Md, vol.7, pp.1196-1204

J. Müller and J. A. Kassis, Polycomb response elements and targeting of Polycomb group proteins in Drosophila, Curr. Opin. Genet. Dev, vol.16, pp.476-484, 2006.

J. Müller, C. M. Hart, N. J. Francis, M. L. Vargas, A. Sengupta et al., Histone methyltransferase activity of a Drosophila Polycomb group repressor complex, Cell, vol.111, pp.197-208, 2002.

C. A. Musselman, N. Avvakumov, R. Watanabe, C. G. Abraham, M. Lalonde et al., Molecular basis for H3K36me3 recognition by the Tudor domain of PHF1, Nat. Struct. Mol, 2012.

, Biol, vol.19, pp.1266-1272

M. D. Muzumdar, B. Tasic, K. Miyamichi, L. Li, and L. Luo, A global double-fluorescent Cre reporter mouse, Genes. N. Y. N, vol.45, pp.593-605, 2000.

X. Nan, E. O. Potma, and X. S. Xie, Nonperturbative chemical imaging of organelle transport in living cells with coherent anti-stokes Raman scattering microscopy, Biophys. J, vol.91, pp.728-735, 2006.

M. Nekrasov, B. Wild, and J. Müller, Nucleosome binding and histone methyltransferase activity of Drosophila PRC2, EMBO Rep, vol.6, pp.348-353, 2005.

M. Nekrasov, T. Klymenko, S. Fraterman, B. Papp, K. Oktaba et al., Pcl-PRC2 is needed to generate high levels of H3-K27 trimethylation at Polycomb target genes, EMBO J, vol.26, pp.4078-4088, 2007.

S. S. Ng, W. W. Yue, U. Oppermann, and R. J. Klose, Dynamic protein methylation in chromatin biology, Cell. Mol. Life Sci. CMLS, vol.66, pp.407-422, 2009.

C. Niehrs, The complex world of WNT receptor signalling, Nat. Rev. Mol, 2012.

, Cell Biol, vol.13, pp.767-779

D. Nikoleishvili, G. Koberidze, M. Kutateladze, G. Zumbadze, and A. Mariamidze, BILATERAL ADRENOCORTICAL CARCINOMA: CASE REPORT AND REVIEW OF LITERATURE, Georgian Med. News, pp.19-24, 2018.

G. Nikoloski, S. M. Langemeijer, R. P. Kuiper, R. Knops, M. Massop et al., Somatic mutations of the histone methyltransferase gene EZH2 in myelodysplastic syndromes, Nat. Genet, vol.42, pp.665-667, 2010.

T. V. Novoselova, D. Jackson, D. C. Campbell, A. J. Clark, C. et al., Melanocortin receptor accessory proteins in adrenal gland physiology and beyond, J. Endocrinol, vol.217, pp.1-11, 2013.

G. G. Nussdorfer, Paracrine control of adrenal cortical function by medullary chromaffin cells, Pharmacol. Rev, vol.48, pp.495-530, 1996.

A. L. Olins and D. E. Olins, Spheroid chromatin units (v bodies), Science, vol.183, pp.330-332, 1974.

A. O&apos;loghlen, A. M. Muðoz-cabello, A. Gaspar-maia, H. Wu, A. Banito et al., , 2012.

, MicroRNA regulation of Cbx7 mediates a switch of Polycomb orthologs during ESC differentiation, Cell Stem Cell, vol.10, pp.33-46

D. M. Özata, S. Caramuta, D. Velázquez-fernández, P. Akçakaya, H. Xie et al., The role of microRNA deregulation in the pathogenesis of adrenocortical carcinoma, 2011.

, Endocr. Relat. Cancer, vol.18, pp.643-655

A. R. Öze?, N. Pulliam, M. G. Ertosun, Ö. Y?lmaz, J. Tang et al., Protein kinase A-mediated phosphorylation regulates STAT3 activation and oncogenic EZH2 activity, 2018.

, Oncogene, vol.37, pp.3589-3600

H. Paatela, F. Wang, V. Vihma, H. Savolainen-peltonen, T. S. Mikkola et al., , 2016.

, Steroid sulfatase activity in subcutaneous and visceral adipose tissue: a comparison between pre-and postmenopausal women, Eur. J. Endocrinol, vol.174, pp.167-175

D. Pasini, A. P. Bracken, M. R. Jensen, E. L. Denchi, and K. Helin, Suz12 is essential for mouse development and for EZH2 histone methyltransferase activity, EMBO J, vol.23, pp.4061-4071, 2004.

D. Pasini, K. H. Hansen, J. Christensen, K. Agger, P. A. Cloos et al., Coordinated regulation of transcriptional repression by the RBP2 H3K4 demethylase and Polycomb-Repressive Complex 2, Genes Dev, vol.22, pp.1345-1355, 2008.

D. Pasini, P. A. Cloos, J. Walfridsson, L. Olsson, J. Bukowski et al., JARID2 regulates binding of the Polycomb repressive complex 2 to target genes in ES cells, Nature, vol.464, pp.306-310, 2010.

E. Pasmant, A. Sabbagh, J. Masliah-planchon, N. Ortonne, I. Laurendeau et al., Role of noncoding RNA ANRIL in genesis of plexiform neurofibromas in neurofibromatosis type 1, J. Natl. Cancer Inst, vol.103, pp.1713-1722, 2011.

D. Patel, M. Boufraqech, M. Jain, L. Zhang, M. He et al., MiR-34a and miR-483-5p are candidate serum biomarkers for adrenocortical tumors, Surgery, vol.154, pp.1224-1228, 2013.

E. E. Patterson, A. K. Holloway, J. Weng, T. Fojo, and E. Kebebew, , vol.117, pp.1630-1639, 2011.

L. Pei, Identification of c-myc as a down-stream target for pituitary tumor-transforming gene, J. Biol. Chem, vol.276, pp.8484-8491, 2001.

G. Pelletier, Expression of steroidogenic enzymes and sex-steroid receptors in human prostate, Best Pract. Res. Clin. Endocrinol. Metab, vol.22, pp.223-228, 2008.

H. Pemberton, E. Anderton, H. Patel, S. Brookes, H. Chandler et al., , 2014.

, Genome-wide co-localization of Polycomb orthologs and their effects on gene expression in human fibroblasts, Genome Biol, vol.15, p.23

J. C. Peng, A. Valouev, T. Swigut, J. Zhang, Y. Zhao et al., Jarid2/Jumonji coordinates control of PRC2 enzymatic activity and target gene occupancy in pluripotent cells, Cell, vol.139, pp.1290-1302, 2009.

B. Perbal, CCN proteins: multifunctional signalling regulators, Lancet Lond. Engl, vol.363, pp.62-64, 2004.

B. Perbal, M. Zuntini, D. Zambelli, M. Serra, M. Sciandra et al., Prognostic value of CCN3 in osteosarcoma, Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res, vol.14, pp.701-709, 2008.

J. D. Pereira, S. N. Sansom, J. Smith, M. Dobenecker, A. Tarakhovsky et al., Ezh2, the histone methyltransferase of PRC2, regulates the balance between self-renewal and differentiation in the cerebral cortex, Proc, 2010.

, Natl. Acad. Sci. U. S. A, vol.107, pp.15957-15962

S. S. Pereira, T. Morais, M. M. Costa, M. P. Monteiro, and D. Pignatelli, , 2013.

M. A. Pianovski, E. M. Maluf, D. S. De-carvalho, R. C. Ribeiro, C. Rodriguezgalindo et al., Mortality rate of adrenocortical tumors in children under 15 years of age in Curitiba, Brazil. Pediatr. Blood Cancer, vol.47, pp.56-60, 2006.

D. Pignatelli, J. Ferreira, P. Vendeira, M. C. Magalhães, and G. P. Vinson, Proliferation of capsular stem cells induced by ACTH in the rat adrenal cortex, Endocr. Res, vol.28, pp.683-691, 2002.

E. M. Pinto, X. Chen, J. Easton, D. Finkelstein, Z. Liu et al., Genomic landscape of pediatric adrenocortical tumors, Nat. Commun, vol.6, p.6302, 2015.

G. Poli, D. Guasti, E. Rapizzi, R. Fucci, L. Canu et al., Morphofunctional effects of mitotane on mitochondria in human adrenocortical cancer cells, Endocr. Relat. Cancer, vol.20, pp.537-550, 2013.

M. Portoso, R. Ragazzini, ?. Bren?i?, A. Moiani, A. Michaud et al., PRC2 is dispensable for HOTAIR-mediated transcriptional repression, EMBO J, vol.36, pp.981-994, 2017.

W. A. Prinz, Lipid trafficking sans Vesicles: where, why, how?, Cell, vol.143, pp.870-874, 2010.

W. Qi, H. Chan, L. Teng, L. Li, S. Chuai et al., Selective inhibition of Ezh2 by a small molecule inhibitor blocks tumor cells proliferation, Proc. Natl. Acad. Sci. U. S. A, vol.109, pp.21360-21365, 2012.

W. Qi, K. Zhao, J. Gu, Y. Huang, Y. Wang et al., An allosteric PRC2 inhibitor targeting the H3K27me3 binding pocket of EED, Nat. Chem. Biol, vol.13, pp.381-388, 2017.

W. Qiu, Z. Yang, Y. Fan, and Q. Zheng, ZNRF3 is downregulated in papillary thyroid carcinoma and suppresses the proliferation and invasion of 147 papillary thyroid cancer cells, Tumour Biol. J. Int. Soc. Oncodevelopmental Biol, 2016.

. Med, , vol.37, pp.12665-12672

Y. Qu, D. Lu, H. Jiang, X. Chi, and H. Zhang, EZH2 is required for mouse oocyte meiotic maturation by interacting with and stabilizing spindle assembly checkpoint protein BubRI, Nucleic Acids Res, vol.44, pp.7659-7672, 2016.

F. M. Raaphorst, F. J. Van-kemenade, T. Blokzijl, E. Fieret, K. M. Hamer et al., Coexpression of BMI-1 and EZH2 polycomb group genes in Reed-Sternberg cells of Hodgkin's disease, Am. J. Pathol, vol.157, pp.709-715, 2000.

T. D. Raedt, E. Beert, E. Pasmant, A. Luscan, H. Brems et al., PRC2 loss amplifies Ras-driven transcription and confers sensitivity to BRD4-based therapies, Nature, vol.514, pp.247-251, 2014.

B. Ragazzon, A. Lefrançois-martinez, P. Val, I. Sahut-barnola, C. Tournaire et al., Adrenocorticotropin-dependent changes in SF-1/DAX-1 ratio targeted tumorigenesis, Endocrinology, vol.147, pp.1805-1818, 2006.

B. Ragazzon, R. Libé, S. Gaujoux, G. Assié, A. Fratticci et al., Transcriptome analysis reveals that p53 and {beta}-catenin alterations occur in a group of aggressive adrenocortical cancers, Cancer Res, vol.70, pp.8276-8281, 2010.

B. Ragazzon, G. Assié, and J. Bertherat, Transcriptome analysis of adrenocortical cancers: from molecular classification to the identification of new treatments, Endocr. Relat. Cancer, vol.18, pp.15-27, 2011.

B. Ragazzon, R. Libé, G. Assié, F. Tissier, O. Barreau et al., Massarray screening of frequent mutations in cancers reveals RB1 alterations in aggressive adrenocortical carcinomas, Eur. J. Endocrinol, vol.170, pp.385-391, 2014.

W. E. Rainey and Y. Nakamura, Regulation of the Adrenal Androgen Biosynthesis, J. Steroid Biochem. Mol. Biol, vol.108, pp.281-286, 2008.

W. E. Rainey, J. W. Shay, and J. I. Mason, ACTH induction of 3-hydroxy-3-methylglutaryl coenzyme A reductase, cholesterol biosynthesis, and steroidogenesis in primary cultures of bovine adrenocortical cells, J. Biol. Chem, vol.261, pp.7322-7326, 1986.

S. Rea, F. Eisenhaber, D. O&apos;carroll, B. D. Strahl, Z. W. Sun et al., Regulation of 148 chromatin structure by site-specific histone H3 methyltransferases, Nature, vol.406, pp.593-599, 2000.

D. Reines, J. W. Conaway, and R. C. Conaway, The RNA polymerase II general elongation factors, Trends Biochem. Sci, vol.21, pp.351-355, 1996.

A. De-reyniès, G. Assié, D. S. Rickman, F. Tissier, L. Groussin et al., Gene expression profiling reveals a new classification of adrenocortical tumors and identifies molecular predictors of malignancy and survival, J. Clin. Oncol. Off. J. Am. Soc, 2009.

, Clin. Oncol, vol.27, pp.1108-1115

E. J. Richards, Inherited epigenetic variation--revisiting soft inheritance, 2006.

, Nat. Rev. Genet, vol.7, pp.395-401

V. M. Richon, D. Johnston, C. J. Sneeringer, L. Jin, C. R. Majer et al., Chemogenetic analysis of human protein methyltransferases, Chem. Biol. Drug Des, vol.78, pp.199-210, 2011.

T. Riley, E. Sontag, P. Chen, and A. Levine, Transcriptional control of human p53-regulated genes, Nat. Rev. Mol. Cell Biol, vol.9, pp.402-412, 2008.

L. Ringrose and R. Paro, Epigenetic regulation of cellular memory by the Polycomb and Trithorax group proteins, Annu. Rev. Genet, vol.38, pp.413-443, 2004.

J. L. Rinn, M. Kertesz, J. K. Wang, S. L. Squazzo, X. Xu et al., Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs, Cell, vol.129, pp.1311-1323, 2007.

C. L. Ronchi, S. Sbiera, E. Leich, K. Henzel, A. Rosenwald et al., Single nucleotide polymorphism array profiling of adrenocortical tumors--evidence for an adenoma carcinoma sequence?, PloS One, vol.8, p.73959, 2013.

R. Rosati, F. Cerrato, M. Doghman, M. A. Pianovski, G. A. Parise et al., High frequency of loss of heterozygosity at 11p15 and IGF2 overexpression are not related to clinical outcome in childhood adrenocortical tumors positive for the R337H TP53 mutation, Cancer Genet. Cytogenet, vol.186, pp.19-24, 2008.

R. L. Rosenfield, Hirsutism and the variable response of the pilosebaceous unit to androgen, J. Investig. Dermatol. Symp. Proc, vol.10, pp.205-208, 2005.

S. E. Ross, N. Hemati, K. A. Longo, C. N. Bennett, P. C. Lucas et al., Inhibition of adipogenesis by Wnt signaling, Science, vol.289, pp.950-953, 2000.

C. Ruggiero, M. Doghman-bouguerra, S. Sbiera, I. Sbiera, M. Parsons et al., , 2017.

, Dosage-dependent regulation of VAV2 expression by steroidogenic factor-1 drives adrenocortical carcinoma cell invasion, Sci. Signal, vol.10

Y. Sadovsky, P. A. Crawford, K. G. Woodson, J. A. Polish, M. A. Clements et al., Mice deficient in the orphan receptor steroidogenic factor 1 lack adrenal glands and gonads but express P450 side-chain-cleavage enzyme in the placenta and have normal embryonic serum levels of corticosteroids, Proc. Natl. Acad. Sci. U. S. A, vol.92, pp.10939-10943, 1995.

A. A. Sahasrabuddhe, X. Chen, F. Chung, T. Velusamy, M. S. Lim et al., Oncogenic Y641 mutations in EZH2 prevent, 2015.

, Jak2/?-TrCP-mediated degradation, Oncogene, vol.34, pp.445-454

I. Sahut-barnola, C. De-joussineau, P. Val, S. Lambert-langlais, C. Damon et al., Cushing's syndrome and fetal features resurgence in adrenal cortexspecific Prkar1a knockout mice, PLoS Genet, vol.6, p.1000980, 2010.

A. A. Samani, S. Yakar, D. Leroith, and P. Brodt, The role of the IGF system in cancer growth and metastasis: overview and recent insights, Endocr. Rev, vol.28, pp.20-47, 2007.

O. R. Saramäki, T. L. Tammela, P. M. Martikainen, R. L. Vessella, and T. Visakorpi, The gene for polycomb group protein enhancer of zeste homolog 2 (EZH2) is amplified in late-stage prostate cancer, Genes. Chromosomes Cancer, vol.45, pp.639-645, 2006.

Y. Sato, S. Maekawa, R. Ishii, M. Sanada, T. Morikawa et al., Recurrent somatic mutations underlie corticotropin-independent Cushing's syndrome, Science, vol.344, pp.917-920, 2014.

S. Sbiera, E. Leich, G. Liebisch, I. Sbiera, A. Schirbel et al., Mitotane Inhibits Sterol-O-Acyl Transferase 1 Triggering Lipid-Mediated Endoplasmic Reticulum Stress and Apoptosis in Adrenocortical Carcinoma Cells, Endocrinology, vol.156, pp.3895-3908, 2015.

J. C. Scheuermann, A. G. De-ayala-alonso, K. Oktaba, N. Ly-hartig, R. K. Mcginty et al., Histone H2A deubiquitinase activity of the Polycomb repressive complex PR-DUB, Nature, vol.465, pp.243-247, 2010.

F. W. Schmitges, A. B. Prusty, M. Faty, A. Stützer, G. M. Lingaraju et al., Histone methylation by PRC2 is inhibited by active chromatin marks, Mol. Cell, vol.42, pp.330-341, 2011.

K. J. Schmitz, J. Helwig, S. Bertram, S. Y. Sheu, A. C. Suttorp et al., Differential 150 expression of microRNA-675, microRNA-139-3p and microRNA-335 in benign and malignant adrenocortical tumours, J. Clin. Pathol, vol.64, pp.529-535, 2011.

C. J. Schoenherr, A. , and D. J. , The neuron-restrictive silencer factor (NRSF): a coordinate repressor of multiple neuron-specific genes, Science, vol.267, pp.1360-1363, 1995.

B. Schuettengruber, D. Chourrout, M. Vervoort, B. Leblanc, and G. Cavalli, Genome regulation by polycomb and trithorax proteins, Cell, vol.128, pp.735-745, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00133797

Y. B. Schwartz and V. Pirrotta, Polycomb complexes and epigenetic states, Curr. Opin. Cell Biol, vol.20, pp.266-273, 2008.

Z. Shao, F. Raible, R. Mollaaghababa, J. R. Guyon, C. T. Wu et al., Stabilization of chromatin structure by PRC1, a Polycomb complex, Cell, vol.98, pp.37-46, 1999.

X. Shen, Y. Liu, Y. Hsu, Y. Fujiwara, J. Kim et al., EZH1 mediates methylation on histone H3 lysine 27 and complements EZH2 in maintaining stem cell identity and executing pluripotency, 2008.

, Mol. Cell, vol.32, pp.491-502

F. Sher, R. Rössler, N. Brouwer, V. Balasubramaniyan, E. Boddeke et al., Differentiation of neural stem cells into oligodendrocytes: involvement of the polycomb group protein Ezh2, Stem Cells Dayt. Ohio, vol.26, pp.2875-2883, 2008.

B. Shi, J. Liang, X. Yang, Y. Wang, Y. Zhao et al., Integration of estrogen and Wnt signaling circuits by the polycomb group protein EZH2 in breast cancer cells, Mol. Cell. Biol, vol.27, pp.5105-5119, 2007.

Y. J. Shin and J. Kim, The role of EZH2 in the regulation of the activity of matrix metalloproteinases in prostate cancer cells, PloS One, vol.7, p.30393, 2012.

F. Sicard, M. Ehrhart-bornstein, D. Corbeil, S. Sperber, A. W. Krug et al., Age-dependent regulation of chromaffin cell proliferation by growth factors, dehydroepiandrosterone (DHEA), and DHEA sulfate, Proc. Natl. Acad. Sci, 2007.

, A, vol.104, 2007.

M. Sierzega, R. Pach, P. Kulig, J. Legutko, and J. Kulig, Prognostic Implications of Expression Profiling for Gemcitabine-Related Genes (hENT1, dCK, RRM1, RRM2) in Patients With Resectable Pancreatic Adenocarcinoma Receiving Adjuvant Chemotherapy, Pancreas, vol.46, pp.684-689, 2017.

J. A. Simon and R. E. Kingston, Mechanisms of polycomb gene silencing: knowns and unknowns, Nat. Rev. Mol. Cell Biol, vol.10, pp.697-708, 2009.

J. A. Simon and C. A. Lange, Roles of the EZH2 histone methyltransferase in cancer epigenetics, Mutat. Res, vol.647, pp.21-29, 2008.

C. Simon, J. Chagraoui, J. Krosl, P. Gendron, B. Wilhelm et al., A key role for EZH2 and associated genes in mouse and human adult T-cell acute leukemia, 2012.

, Genes Dev, vol.26, pp.651-656

W. C. Sin, J. F. Bechberger, W. J. Rushlow, and C. C. Naus, Dosedependent differential upregulation of CCN1/Cyr61 and CCN3/NOV by the gap junction protein Connexin43 in glioma cells, J. Cell. Biochem, vol.103, pp.1772-1782, 2008.

V. E. Smith, J. A. Franklyn, and C. J. Mccabe, Pituitary tumortransforming gene and its binding factor in endocrine cancer, Expert Rev. Mol, 2010.

. Med, , vol.12, p.38

C. J. Sneeringer, M. P. Scott, K. W. Kuntz, S. K. Knutson, R. M. Pollock et al., Coordinated activities of wild-type plus mutant EZH2 drive tumor-associated hypertrimethylation of lysine 27 on histone H3, 2010.

, H3K27) in human B-cell lymphomas, Proc. Natl. Acad. Sci. U. S. A, vol.107, pp.20980-20985

R. E. Soccio and J. L. Breslow, StAR-related lipid transfer (START) proteins: mediators of intracellular lipid metabolism, J. Biol. Chem, vol.278, pp.22183-22186, 2003.

S. H. Soderling and J. A. Beavo, Regulation of cAMP and cGMP signaling: new phosphodiesterases and new functions, Curr. Opin. Cell Biol, vol.12, pp.174-179, 2000.

J. Son, S. S. Shen, R. Margueron, and D. Reinberg, Nucleosome-binding activities within JARID2 and EZH1 regulate the function of PRC2 on chromatin, 2013.

, Genes Dev, vol.27, pp.2663-2677

J. Song, J. D. Garlick, and R. E. Kingston, Structural basis of histone H4 recognition by p55, Genes Dev, vol.22, pp.1313-1318, 2008.

Q. Song, Y. Xu, C. Yang, Z. Chen, C. Jia et al., miR-483-5p promotes invasion and metastasis of lung adenocarcinoma by targeting RhoGDI1 and ALCAM, Cancer Res, vol.74, pp.3031-3042, 2014.

P. S. Soon, R. Libe, D. E. Benn, A. Gill, J. Shaw et al., Loss of heterozygosity of 17p13, with possible involvement of ACADVL and ALOX15B, in the pathogenesis of adrenocortical tumors, Ann. Surg, vol.247, pp.157-164, 2008.

P. S. Soon, L. J. Tacon, A. J. Gill, C. P. Bambach, M. S. Sywak et al., miR-195 152 and miR-483-5p Identified as Predictors of Poor Prognosis in Adrenocortical Cancer, Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res, vol.15, pp.7684-7692, 2009.

A. Spät and L. Hunyady, Control of aldosterone secretion: a model for convergence in cellular signaling pathways, Physiol. Rev, vol.84, pp.489-539, 2004.

L. Srinivasan, X. Pan, and M. L. Atchison, Transient requirements of YY1 expression for PcG transcriptional repression and phenotypic rescue, J. Cell, 2005.

, Biochem, vol.96, pp.689-699

M. Steegmaier, V. Oorschot, J. Klumperman, and R. H. Scheller, , 2000.

, Syntaxin 17 is abundant in steroidogenic cells and implicated in smooth endoplasmic reticulum membrane dynamics, Mol. Biol. Cell, vol.11, pp.2719-2731

C. Steenblock, M. F. Rubin-de-celis, A. Androutsellis-theotokis, M. Sue, L. F. Delgadillo-silva et al., Adrenal cortical and chromaffin stem cells: Is there a common progeny related to stress adaptation?, Mol. Cell. Endocrinol, vol.441, pp.156-163, 2017.

D. M. Stocco, StAR protein and the regulation of steroid hormone biosynthesis, Annu. Rev. Physiol, vol.63, pp.193-213, 2001.

K. Storbeck, A. C. Swart, P. Goosen, and P. Swart, Cytochrome b5: novel roles in steroidogenesis, Mol. Cell. Endocrinol, vol.371, pp.87-99, 2013.

B. D. Strahl, A. , and C. D. , The language of covalent histone modifications, Nature, vol.403, pp.41-45, 2000.

C. A. Stratakis, Genetics of Peutz-Jeghers syndrome, Carney complex and other familial lentiginoses, Horm. Res, vol.54, pp.334-343, 2000.

I. Su, M. Dobenecker, E. Dickinson, M. Oser, A. Basavaraj et al., , 2005.

, Polycomb group protein ezh2 controls actin polymerization and cell signaling, Cell, vol.121, pp.425-436

T. C. Südhof and J. E. Rothman, Membrane Fusion: Grappling with SNARE and SM Proteins, vol.323, pp.474-477, 2009.

T. Sugawara, M. Kiriakidou, J. M. Mcallister, J. A. Holt, F. Arakane et al., Regulation of expression of the steroidogenic acute regulatory protein (StAR) gene: a central role for steroidogenic factor 1, Steroids, vol.62, pp.5-9, 1997.

R. K. Sunahara, C. W. Dessauer, and A. G. Gilman, Complexity and diversity of mammalian adenylyl cyclases, Annu. Rev. Pharmacol. Toxicol, vol.36, pp.461-480, 1996.

S. Suzuki, I. Tatsuno, E. Oohara, A. Nakayama, E. Komai et al., GERMLINE DELETION OF ARMC5 IN FAMILIAL PRIMARY MACRONODULAR ADRENAL HYPERPLASIA, 2015.

. Endocrinol, , vol.21, pp.1152-1160

S. Swarnakar, R. E. Temel, M. A. Connelly, S. Azhar, and D. L. Williams, , 1999.

, Scavenger Receptor Class B, Type I, Mediates Selective Uptake of Low Density Lipoprotein Cholesteryl Ester, J. Biol. Chem, vol.274, pp.29733-29739

D. R. Szabó, M. Luconi, P. M. Szabó, M. Tóth, N. Szücs et al., Analysis of circulating microRNAs in adrenocortical tumors, Lab. Investig. J. Tech. Methods Pathol, vol.94, pp.331-339, 2014.

J. Tan, X. Yang, L. Zhuang, X. Jiang, W. Chen et al., Pharmacologic disruption of Polycombrepressive complex 2-mediated gene repression selectively induces apoptosis in cancer cells, Genes Dev, vol.21, pp.1050-1063, 2007.

J. Tan, Y. Yan, X. Wang, Y. Jiang, and H. E. Xu, EZH2: biology, disease, and structure-based drug discovery, Acta Pharmacol. Sin, vol.35, pp.161-174, 2014.

H. Tanaka, H. Arakawa, T. Yamaguchi, K. Shiraishi, S. Fukuda et al., Nakamura YA ribonucleotide reductase gene involved in a p53-dependent cell-cycle checkpoint for DNA damage, Nature, vol.404, pp.42-49, 2000.

S. Tanaka, S. Miyagi, G. Sashida, T. Chiba, J. Yuan et al., Ezh2 augments leukemogenicity by reinforcing differentiation blockage in acute myeloid leukemia, Blood, vol.120, pp.1107-1117, 2012.

X. Tang, M. Milyavsky, I. Shats, N. Erez, N. Goldfinger et al., , 2004.

K. Taskén and E. M. Aandahl, Localized effects of cAMP mediated by distinct routes of protein kinase A, Physiol. Rev, vol.84, pp.137-167, 2004.

M. K. Tee, Q. Dong, and W. L. Miller, Pathways leading to phosphorylation of p450c17 and to the posttranslational regulation of androgen biosynthesis, Endocrinology, vol.149, pp.2667-2677, 2008.

M. Terzolo, A. Angeli, M. Fassnacht, F. Daffara, L. Tauchmanova et al., , 2007.

, Adjuvant mitotane treatment for adrenocortical carcinoma, N. Engl. J. Med, vol.356, pp.2372-2380

S. G. Tevosian, E. Jiménez, H. M. Hatch, T. Jiang, D. A. Morse et al., Adrenal Development in Mice Requires, vol.4, p.6, 2015.

, Transcription Factors. Endocrinology, vol.156, pp.2503-2517

A. Tirosh, F. Hannah-shmouni, C. Lyssikatos, E. Belyavskaya, M. Zilbermint et al., Obesity and the diagnostic accuracy for primary aldosteronism, J. Clin. Hypertens. Greenwich Conn, vol.19, pp.790-797, 2017.

F. Tissier, A. Louvel, S. Grabar, A. Hagnéré, J. Bertherat et al., , 2004.

, J. Endocrinol, vol.150, pp.809-817

F. Tissier, C. Cavard, L. Groussin, K. Perlemoine, G. Fumey et al., Mutations of beta-catenin in adrenocortical tumors: activation of the Wnt signaling pathway is a frequent event in both benign and malignant adrenocortical tumors, Cancer Res, vol.65, pp.7622-7627, 2005.

I. E. Tóth, K. S. Szalay, D. Szabó, and J. Pill, Effect of a cholesterol synthesis inhibitor (BM 15.766) in the presence and absence of HDL on corticosteroidogenesis of isolated zona glomerulosa and fasciculata cells, 1990.

, Steroid Biochem. Mol. Biol, vol.37, pp.687-691

A. D. Truax, M. Thakkar, and S. F. Greer, Dysregulated recruitment of the histone methyltransferase EZH2 to the class II transactivator (CIITA) promoter IV in breast cancer cells, PloS One, vol.7, p.36013, 2012.

L. N. Tu, K. Morohaku, P. R. Manna, S. H. Pelton, W. R. Butler et al., Peripheral benzodiazepine receptor/translocator protein global knock-out mice are viable with no effects on steroid hormone biosynthesis, 2014.

, J. Biol. Chem, vol.289, pp.27444-27454

S. Tu, G. Yuan, and Z. Shao, The PRC2-binding long non-coding RNAs in human and mouse genomes are associated with predictive sequence features, Sci. Rep, vol.7, p.41669, 2017.

A. K. Upadhyay and X. Cheng, Dynamics of Histone Lysine Methylation: Structures of Methyl Writers and Eraser, Prog. Drug Res. Fortschritte Arzneimittelforschung Progres Rech. Pharm, vol.67, pp.107-124, 2011.

G. V. Vahouny, R. Chanderbhan, B. J. Noland, D. Irwin, P. Dennis et al., Sterol carrier protein2. Identification of adrenal sterol carrier protein2 and site of action for mitochondrial cholesterol utilization, 1983.

, J. Biol. Chem, vol.258, pp.11731-11737

C. R. Vakoc, M. M. Sachdeva, H. Wang, and G. A. Blobel, Profile of histone lysine methylation across transcribed mammalian chromatin, Mol. Cell, 2006.

, Biol, vol.26, pp.9185-9195

P. Val, A. Lefrançois-martinez, G. Veyssière, and A. Martinez, SF-1 a key player in the development and differentiation of steroidogenic tissues, 2003.

P. Val, J. Martinez-barbera, and A. Swain, Adrenal development is initiated by Cited2 and Wt1 through modulation of Sf-1 dosage, Dev. Camb. Engl, vol.134, pp.2349-2358, 2007.

J. Vandamme, P. Völkel, C. Rosnoblet, P. Le-faou, and P. Angrand, , 2011.

, Interaction proteomics analysis of polycomb proteins defines distinct PRC1 complexes in mammalian cells, Mol. Cell. Proteomics MCP, vol.10

S. Varambally, S. M. Dhanasekaran, M. Zhou, T. R. Barrette, C. Kumar-sinha et al., , 2002.

, The polycomb group protein EZH2 is involved in progression of prostate cancer, Nature, vol.419, pp.624-629

N. Venkatesan, J. F. Wong, K. P. Tan, H. H. Chung, Y. H. Yau et al., , 2018.

D. Vezzosi, D. Cartier, C. Régnier, P. Otal, A. Bennet et al., Familial adrenocorticotropin-independent macronodular adrenal hyperplasia with aberrant serotonin and vasopressin adrenal receptors, Eur. J. Endocrinol, vol.156, pp.21-31, 2007.

D. Vezzosi, J. Bertherat, and L. Groussin, Pathogenesis of benign adrenocortical tumors, Best Pract. Res. Clin. Endocrinol. Metab, vol.24, pp.893-905, 2010.

D. Vezzosi, R. Libé, C. Baudry, M. Rizk-rabin, A. Horvath et al., , 2012.

1. Phosphodiesterase, PDE11A) gene defects in patients with acth-independent macronodular adrenal hyperplasia (AIMAH): functional variants may contribute to genetic susceptibility of bilateral adrenal tumors, J. Clin. Endocrinol. Metab, vol.97, pp.2063-2069

V. Vidal, S. Sacco, A. S. Rocha, F. Da-silva, C. Panzolini et al., The adrenal capsule is a signaling center controlling cell renewal and zonation through Rspo3, Genes Dev, vol.30, pp.1389-1394, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02108049

E. Viré, C. Brenner, R. Deplus, L. Blanchon, M. Fraga et al., The Polycomb group protein EZH2 directly controls DNA methylation, Nature, vol.439, pp.871-874, 2006.

J. Van-der-vlag and A. P. Otte, Transcriptional repression mediated by the human polycomb-group protein EED involves histone deacetylation, 1999.

. Genet, , vol.23, pp.474-478

M. Volante, M. Terzolo, M. Fassnacht, I. Rapa, A. Germano et al., Ribonucleotide reductase large subunit (RRM1) gene expression may predict efficacy of adjuvant mitotane in adrenocortical cancer, Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res, vol.18, pp.3452-3461, 2012.

C. H. Waddington, Canalization of Development and the Inheritance of Acquired Characters, Nature, vol.150, pp.563-565, 1942.

E. M. Walczak and G. D. Hammer, Regulation of the adrenocortical stem cell niche: implications for disease, Nat. Rev. Endocrinol, vol.11, pp.14-28, 2015.

E. Walker, W. Y. Chang, J. Hunkapiller, G. Cagney, K. Garcha et al., Polycomb-like 2 associates with PRC2 and regulates transcriptional networks during mouse embryonic stem cell self-renewal and differentiation, Cell Stem Cell, vol.6, pp.153-166, 2010.

D. H. Wang and Y. Du, Distinct mechanisms of upregulation of type 1A angiotensin II receptor gene expression in kidney and adrenal gland, 1995.

D. Tex, , vol.26, pp.1134-1137, 1979.

H. Wang, L. Wang, H. Erdjument-bromage, M. Vidal, P. Tempst et al., Role of histone H2A ubiquitination in Polycomb silencing, Nature, vol.431, pp.873-878, 2004.

L. Wang, Q. Jin, J. Lee, I. Su, and K. Ge, Histone H3K27 methyltransferase Ezh2 represses Wnt genes to facilitate adipogenesis, Proc, 2010.

, Natl. Acad. Sci. U. S. A, vol.107, pp.7317-7322

N. Wang, Y. Li, and J. Zhou, Downregulation of ribonucleotide reductase subunits M2 induces apoptosis and G1 arrest of cervical cancer cells, Oncol. Lett, vol.15, pp.3719-3725, 2018.

Z. Wang, D. E. Schones, and K. Zhao, Characterization of human epigenomes, Curr. Opin. Genet. Dev, vol.19, pp.127-134, 2009.

M. Wassef and R. Margueron, The Multiple Facets of PRC2 Alterations in Cancers, J. Mol. Biol, 2016.

M. Wassef, V. Rodilla, A. Teissandier, B. Zeitouni, N. Gruel et al., Impaired PRC2 activity promotes transcriptional instability and favors breast tumorigenesis, 2015.

, Genes Dev, vol.29, pp.2547-2562

J. D. Wasserman, A. Novokmet, C. Eichler-jonsson, R. C. Ribeiro, C. Rodriguezgalindo et al., Prevalence and functional 157 consequence of TP53 mutations in pediatric adrenocortical carcinoma: a children's oncology group study, J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol, vol.33, pp.602-609, 2015.

H. Watari, F. Arakane, C. Moog-lutz, C. B. Kallen, C. Tomasetto et al., MLN64 contains a domain with homology to the steroidogenic acute regulatory protein (StAR) that stimulates steroidogenesis, Proc. Natl. Acad. Sci. U. S. A, vol.94, pp.8462-8467, 1997.

M. M. Weber, C. Fottner, P. Schmidt, K. M. Brodowski, K. Gittner et al., Postnatal overexpression of insulin-like growth factor II in transgenic mice is associated with adrenocortical hyperplasia and enhanced steroidogenesis, Endocrinology, vol.140, pp.1537-1543, 1999.

I. Weigand, C. L. Ronchi, M. Rizk-rabin, G. D. Dalmazi, V. Wild et al., Differential expression of the protein kinase A subunits in normal adrenal glands and adrenocortical adenomas, Sci. Rep, vol.7, p.49, 2017.

J. K. Wiencke, S. Zheng, Z. Morrison, and R. Yeh, , pp.2412-2421, 200827.

F. Wilkin, N. Gagné, J. Paquette, L. L. Oligny, and C. Deal, Pediatric adrenocortical tumors: molecular events leading to insulin-like growth factor II gene overexpression, J. Clin. Endocrinol. Metab, vol.85, pp.2048-2056, 2000.

W. Wong and J. D. Scott, AKAP signalling complexes: focal points in space and time, Nat. Rev. Mol. Cell Biol, vol.5, pp.959-970, 2004.

D. L. Wong, A. Lesage, B. Siddall, and J. W. Funder, Glucocorticoid regulation of phenylethanolamine N-methyltransferase in vivo, FASEB J. Off, 1992.

, Publ. Fed. Am. Soc. Exp. Biol, vol.6, pp.3310-3315

C. J. Woo, P. V. Kharchenko, L. Daheron, P. J. Park, and R. E. Kingston, A region of the human HOXD cluster that confers polycomb-group responsiveness, Cell, vol.140, pp.99-110, 2010.

M. A. Wood, A. Acharya, I. Finco, J. M. Swonger, M. J. Elston et al., Fetal adrenal capsular cells serve as progenitor cells for steroidogenic and stromal adrenocortical cell, 2013.

, Camb. Engl, vol.140, pp.4522-4532

S. C. Wu and Y. Zhang, Cyclin-dependent kinase 1 (CDK1)-mediated phosphorylation of enhancer of zeste 2 (Ezh2) regulates its stability, J. Biol, 2011.

, Chem, vol.286, pp.28511-28519

H. Wu, H. Zeng, A. Dong, F. Li, H. He et al., Structure of the catalytic domain of EZH2, 2013.

L. Wu, C. Runkle, H. Jin, J. Yu, J. Li et al., CCN3/NOV gene expression in human prostate cancer is directly suppressed by the androgen receptor, Oncogene, vol.33, pp.504-513, 2014.

H. Xi, Y. Yu, Y. Fu, J. Foley, A. Halees et al., Analysis of overrepresented motifs in human core promoters reveals dual regulatory roles of YY1, Genome Res, vol.17, pp.798-806, 2007.

B. Xiao, J. R. Wilson, and S. J. Gamblin, SET domains and histone methylation, Curr. Opin. Struct. Biol, vol.13, pp.699-705, 2003.

H. Xu, K. Xu, H. H. He, C. Zang, C. Chen et al., Integrative Analysis Reveals the Transcriptional Collaboration between EZH2 and E2F1 in the Regulation of Cancer-Related Gene Expression, Mol. Cancer Res. MCR, vol.14, pp.163-172, 2016.

K. Xu, Z. J. Wu, A. C. Groner, H. H. He, C. Cai et al., EZH2 oncogenic activity in castration-resistant prostate cancer cells is Polycomb-independent, Science, vol.338, pp.1465-1469, 2012.

M. Yamagishi and K. Uchimaru, Targeting EZH2 in cancer therapy, 2017.

, Curr. Opin. Oncol, vol.29, pp.375-381

K. Yamamoto, M. Sonoda, J. Inokuchi, S. Shirasawa, and T. Sasazuki, , 2004.

, Polycomb group suppressor of zeste 12 links heterochromatin protein 1alpha and enhancer of zeste 2, J. Biol. Chem, vol.279, pp.401-406

J. Yan, B. Li, B. Lin, P. T. Lee, T. Chung et al., EZH2 phosphorylation by JAK3 mediates a switch to noncanonical function in natural killer/T-cell lymphoma, Blood, vol.128, pp.948-958, 2016.

D. B. Yap, J. Chu, T. Berg, M. Schapira, S. G. Cheng et al., Somatic mutations at EZH2 Y641 act dominantly through a mechanism of selectively altered PRC2 catalytic activity, to increase H3K27 trimethylation, Blood, vol.117, pp.2451-2459, 2011.

H. Yoshimura, Y. Matsuda, M. Yamamoto, S. Kamiya, and T. Ishiwata, Expression and role of long non-coding RNA H19 in carcinogenesis, Front. Biosci. Landmark Ed, vol.23, pp.614-625, 2018.

H. Yu, M. Ma, J. Yan, L. Xu, J. Yu et al., Identification of coexistence of BRAF V600E mutation and EZH2 gain specifically in melanoma as a promising target for combination therapy, 2017.

, Transl. Med, vol.15, p.243

L. Yu, J. Zhang, X. Guo, X. Chen, Z. He et al., ARMC5 mutations in familial and sporadic primary bilateral macronodular adrenal hyperplasia, 2018.

, PloS One, vol.13, 191602.

B. M. Zee, R. S. Levin, B. Xu, G. Leroy, N. S. Wingreen et al., In vivo residue-specific histone methylation dynamics, J. Biol. Chem, vol.285, pp.3341-3350, 2010.

M. Zemke, K. Draganova, A. Klug, A. Schöler, L. Zurkirchen et al., Loss of Ezh2 promotes a midbrain-to-forebrain identity switch by direct gene derepression and Wnt-dependent regulation, BMC Biol, vol.13, p.103, 2015.

Y. Zhang and D. Reinberg, Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails, Genes Dev, vol.15, pp.2343-2360, 2001.

H. Zhang, X. Liu, C. D. Warden, Y. Huang, S. Loera et al., Prognostic and therapeutic significance of ribonucleotide reductase small subunit M2 in estrogen-negative breast cancers, 2014.

, BMC Cancer, vol.14, p.664

T. Zhang, C. Zhao, L. Luo, J. Xiang, Q. Sun et al., The clinical and prognostic significance of CCN3 expression in patients with cervical cancer, Adv. Clin. Exp. Med. Off. Organ Wroclaw Med. Univ, vol.22, pp.839-845, 2013.

J. Zhao, B. K. Sun, J. A. Erwin, J. Song, and J. T. Lee, , 2008.

S. Zheng, A. D. Cherniack, N. Dewal, R. A. Moffitt, L. Danilova et al., , 2016.

, Comprehensive Pan-Genomic Characterization of Adrenocortical Carcinoma, Cancer Cell, vol.29, pp.723-736

S. Zheng, X. Wang, Y. Weng, X. Jin, J. Ji et al., , 2018.

, Mol. Ther. Nucleic Acids, vol.12, pp.805-816

C. Zhou, K. Wawrowsky, S. Bannykh, S. Gutman, and S. Melmed, E2F1 induces pituitary tumor transforming gene (PTTG1) expression in human pituitary tumors, Mol. Endocrinol. Baltim. Md, vol.23, pp.2000-2012, 2009.

L. Zhou, K. Sun, Y. Zhao, S. Zhang, X. Wang et al., Linc-YY1 promotes myogenic differentiation and muscle regeneration through an interaction with the transcription factor YY1, 2015.

, Commun, vol.6

X. Zhu and L. Birnbaumer, G protein subunits and the stimulation of phospholipase C by Gs-and Gi-coupled receptors: Lack of receptor selectivity of Galpha(16) and evidence for a synergic interaction between Gbeta gamma and the alpha subunit of a receptor activated G protein, Proc. Natl. Acad. Sci. U. S. A, vol.93, pp.2827-2831, 1996.

C. G. Ziegler, F. Sicard, P. Lattke, S. R. Bornstein, M. Ehrhart-bornstein et al., Dehydroepiandrosterone induces a neuroendocrine phenotype in nerve growth factor-stimulated chromaffin pheochromocytoma PC12 cells, Endocrinology, vol.149, pp.320-328, 2008.

R. D. Zipser, P. F. Speckart, P. K. Zia, W. A. Edmiston, F. Y. Lau et al., The effect of ACTH and cortisol on aldosterone and cortisol clearance and distribution in plasma and whole blood, J. Clin. Endocrinol. Metab, vol.43, pp.1101-1109, 1976.

A. Zsippai, D. R. Szabó, Z. Tömböl, P. M. Szabó, K. Eder et al., Effects of mitotane on gene expression in the adrenocortical cell line NCI-H295R: a microarray study, Pharmacogenomics, vol.13, pp.1351-1361, 2012.