M. E. Mann, R. S. Bradley, and M. K. Hughes, Northern hemisphere temperatures during the past millennium: Inferences, uncertainties, and limitations, vol.26, pp.759-762, 1999.

, Milankovich cycles and CO2

T. R. Stocker, The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Summary for Policymakers, 2013.

«. Nrel and . Nrel,

, Spectre Solaire AM1, vol.5

G. A. Chamberlain, « Organic solar cells: A review, Sol. Cells, vol.8, issue.1, pp.47-83, 1983.

M. Dvorak, S. Wei, and Z. Wu, « Origin of the Variation of Exciton Binding Energy in Semiconductors, Phys. Rev. Lett, vol.110, issue.1, 2013.

M. Knupfer, « Exciton binding energies in organic semiconductors, Appl. Phys. A, vol.77, issue.5, pp.623-626, 2003.

J. Brebels, J. V. Manca, L. Lutsen, D. Vanderzande, and W. Maes, High dielectric constant conjugated materials for organic photovoltaics, J. Mater. Chem. A, vol.5, pp.24037-24050, 2017.

F. Etzold, « Ultrafast Exciton Dissociation Followed by Nongeminate Charge Recombination in PCDTBT:PCBM Photovoltaic Blends, J. Am. Chem. Soc, vol.133, pp.9469-9479, 2011.

I. A. Howard, R. Mauer, M. Meister, and F. Laquai, « Effect of morphology on ultrafast free carrier generation in polythiophene: fullerene organic solar cells, J. Am. Chem. Soc, vol.132, pp.14866-14876, 2010.

P. Peumans, A. Yakimov, and S. R. Forrest, « Small molecular weight organic thin-film photodetectors and solar cells, J. Appl. Phys, vol.93, issue.7, pp.3693-3723, 2003.

O. V. Mikhnenko, H. Azimi, M. Scharber, M. Morana, P. W. Blom et al., Exciton diffusion length in narrow bandgap polymers, vol.5, p.6960, 2012.

C. W. Tang, Multilayer organic photovoltaic elements, p.1979

C. W. Tang and . Two, Appl. Phys. Lett, vol.48, issue.2, pp.183-185, 1986.

G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions, Science, vol.270, pp.1789-1791, 1995.

H. W. Kroto, J. R. Health, S. C. O'brien, R. F. Curl, R. E. Smalley et al., Nature, vol.318, issue.14, pp.162-163, 1985.

N. S. Sariciftci, Semiconducting polymer-buckminsterfullerene heterojunctions: Diodes, photodiodes, and photovoltaic cells, vol.62, pp.585-587, 1993.

N. S. Sariciftci, L. Smilowitz, A. J. Heeger, and F. Wudl, Semiconducting polymers (as donors) and buckminsterfullerene (as acceptor): photoinduced electron transfer and heterojunction devices, Synth. Met, vol.59, issue.3, pp.333-352, 1993.

N. S. Sariciftci, L. Smilowitz, A. J. Heeger, and F. Wudl, Science, vol.258, pp.1474-1476, 1992.

J. C. Hummelen, B. W. Knight, F. Lepeq, F. Wudl, J. Yao et al., « Preparation and characterization of fulleroid and methanofullerene derivatives, J. Org. Chem, vol.60, issue.3, pp.532-538, 1995.

N. J. Van-der-kaap and L. J. Koster, « Charge carrier thermalization in organic diodes, Sci. Rep, vol.6, issue.1, 2016.

T. Kirchartz and U. Rau, « What Makes a Good Solar Cell?, Adv. Energy Mater, vol.8, p.1703385, 2018.

J. Merten, J. M. Asensi, C. Voz, A. V. Shah, R. Platz et al., « Improved equivalent circuit and analytical model for amorphous silicon solar cells and modules, IEEE Trans. Electron Devices, vol.45, issue.2, pp.423-429, 1998.

L. G. Gerling, « Straightforward determination of the effective mobility-lifetime product of small molecule organic solar cells, pp.1-4, 2015.

C. Longeaud, A. Allah, J. Schmidt, M. E. Yaakoubi, S. Berson et al., « Determination of diffusion lengths in organic semiconductors: Correlation with solar cell performances, Org. Electron, vol.31, pp.253-257, 2016.

I. Hwang, D. Moses, and A. J. Heeger, « Photoinduced Carrier Generation in P3HT/PCBM Bulk Heterojunction Materials, J. Phys. Chem. C, vol.112, issue.11, pp.4350-4354, 2008.

A. Zusan, B. Gieseking, M. Zerson, V. Dyakonov, R. Magerle et al., « The Effect of Diiodooctane on the Charge Carrier Generation in Organic Solar Cells Based on the Copolymer PBDTTT-C », Sci. Rep, vol.5, issue.1, 2015.

Y. Liang, « For the Bright Future-Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4% », Adv. Mater, vol.22, pp.135-138, 2010.

M. Langevin, « Recombinaison et diffusion des ions gazeux, J Phys Theor Appl, vol.4, issue.1, pp.322-333, 1905.

V. M. Le-corre, A. R. Chatri, N. Y. Doumon, and L. J. Koster, « Charge Carrier Extraction in Organic Solar Cells Governed by Steady-State Mobilities, Adv. Energy Mater, vol.7, p.1701138, 2017.

B. Ebenhoch, S. A. Thomson, K. Genevi?ius, G. Ju?ka, and I. D. Samuel, « Charge carrier mobility of the organic photovoltaic materials PTB7 and PC71BM and its influence on device performance, Org. Electron, vol.22, pp.62-68, 2015.

S. Torabi, « Strategy for Enhancing the Dielectric Constant of Organic Semiconductors Without Sacrificing Charge Carrier Mobility and Solubility, Adv. Funct. Mater, vol.25, issue.1, pp.150-157, 2015.

A. J. Wagenpfahl, « Numerical simulations on limitations and optimization strategies of organic solar cells, p.129, 2013.

A. Pivrikas, « Langevin recombination and space-charge-perturbed current transients in regiorandom poly(3-hexylthiophene), Phys. Rev. B, vol.71, p.12, 2005.

L. J. Koster, V. D. Mihailetchi, and P. W. Blom, « Bimolecular recombination in polymer/fullerene bulk heterojunction solar cells, Appl. Phys. Lett, vol.88, issue.5, p.52104, 2006.

W. Tress, A. Petrich, M. Hummert, M. Hein, K. Leo et al., « Imbalanced mobilities causing S-shaped IV curves in planar heterojunction organic solar cells, Appl. Phys. Lett, vol.98, issue.6, p.63301, 2011.

S. Shoaee, M. Stolterfoht, and D. Neher, « The Role of Mobility on Charge Generation, Recombination, and Extraction in Polymer-Based Solar Cells, Adv. Energy Mater, vol.8, p.1703355, 2018.

A. Spies, M. List, T. Sarkar, and U. Würfel, « On the Impact of Contact Selectivity and Charge Transport on the Open-Circuit Voltage of Organic Solar Cells, Adv. Energy Mater, vol.7, issue.5, p.1601750, 2017.

A. Wagenpfahl, D. Rauh, M. Binder, C. Deibel, and V. Dyakonov, « S-shaped currentvoltage characteristics of organic solar devices, Phys. Rev. B, vol.82, issue.11

W. Shockley and W. T. Read, Statistics of the recombinations of holes and electrons, vol.87, p.835, 1952.

M. M. Mandoc, F. B. Kooistra, J. C. Hummelen, B. De, P. W. Boer et al., « Effect of traps on the performance of bulk heterojunction organic solar cells », Appl. Phys. Lett, vol.91, p.263505, 2007.

R. A. Street, M. Schoendorf, A. Roy, and J. H. Lee, « Interface state recombination in organic solar cells, Phys. Rev. B, vol.81, p.20, 2010.

W. Shockley and H. J. Queisser, « Detailed Balance Limit of Efficiency of p-n Junction Solar Cells, J. Appl. Phys, vol.32, issue.3, pp.510-519, 1961.

T. Kirchartz, P. Kaienburg, and D. Baran, « Figures of Merit Guiding Research on Organic Solar Cells, J. Phys. Chem. C, vol.122, issue.11, pp.5829-5843, 2018.

X. Song, « Controlling Blend Morphology for Ultrahigh Current Density in Nonfullerene Acceptor-Based Organic Solar Cells, ACS Energy Lett, vol.3, issue.3, pp.669-676, 2018.

W. Zhao, « Molecular Optimization Enables over 13% Efficiency in Organic Solar Cells, J. Am. Chem. Soc, vol.139, pp.7148-7151, 2017.

D. Baran, « Robust nonfullerene solar cells approaching unity external quantum efficiency enabled by suppression of geminate recombination, Nat. Commun, vol.9, issue.1, 2018.

W. Li, L. Ye, S. Li, H. Yao, H. Ade et al., « A High-Efficiency Organic Solar Cell Enabled by the Strong Intramolecular Electron Push-Pull Effect of the Nonfullerene Acceptor, Adv. Mater, vol.30, p.1707170, 2018.

S. Li, « A Wide Band Gap Polymer with a Deep Highest Occupied Molecular Orbital Level Enables 14.2% Efficiency in Polymer Solar Cells, J. Am. Chem. Soc, 2018.

M. A. Green, « Accurate expressions for solar cell fill factors including series and shunt resistances, Appl. Phys. Lett, vol.108, issue.8, p.81111, 2016.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, « Solar cell efficiency tables (version 46): Solar cell efficiency tables (version 46), Prog. Photovolt. Res. Appl, vol.23, issue.7, pp.805-812, 2015.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, « Solar cell efficiency tables (version 47): Solar cell efficiency tables, Prog. Photovolt. Res. Appl, vol.24, issue.1, pp.3-11, 2016.

K. Tvingstedt and C. Deibel, « Temperature Dependence of Ideality Factors in Organic Solar Cells and the Relation to Radiative Efficiency, Adv. Energy Mater, vol.6, issue.9, p.1502230, 2016.

L. J. Koster, V. D. Mihailetchi, R. Ramaker, and P. W. Blom, « Light intensity dependence of open-circuit voltage of polymer:fullerene solar cells, Appl. Phys. Lett, vol.86, p.123509, 2005.

T. Kirchartz, F. Deledalle, P. S. Tuladhar, J. R. Durrant, and J. Nelson, « On the Differences between Dark and Light Ideality Factor in Polymer:Fullerene Solar Cells, J. Phys. Chem. Lett, vol.4, issue.14, pp.2371-2376, 2013.

S. Wheeler, F. Deledalle, N. Tokmoldin, T. Kirchartz, J. Nelson et al., « Influence of Surface Recombination on Charge-Carrier Kinetics in Organic Bulk Heterojunction Solar Cells with Nickel Oxide Interlayers, Phys. Rev. Appl, vol.4, issue.2, 2015.

S. R. Cowan, W. L. Leong, N. Banerji, G. Dennler, and A. J. Heeger, « Identifying a Threshold Impurity Level for Organic Solar Cells: Enhanced First-Order Recombination Via Well-Defined PC84BM Traps in Organic Bulk Heterojunction Solar Cells, Adv. Funct. Mater, vol.21, pp.3083-3092, 2011.

V. Bharti, A. Sharma, V. Gupta, G. D. Sharma, and E. S. Chand, « Improved hole mobility and suppressed trap density in polymer-polymer dual donor based highly efficient organic solar cells », Appl. Phys. Lett, vol.108, issue.7, p.73505, 2016.

W. J. Potscavage, S. Yoo, and B. Kippelen, « Origin of the open-circuit voltage in multilayer heterojunction organic solar cells, Appl. Phys. Lett, vol.93, 2008.

W. J. Potscavage, A. Sharma, and B. Kippelen, « Critical Interfaces in Organic Solar Cells and Their Influence on the Open-Circuit Voltage », Acc. Chem. Res, vol.42, issue.11, pp.1758-1767, 2009.

N. C. Giebink, G. P. Wiederrecht, M. R. Wasielewski, and S. R. Forrest, « Ideal diode equation for organic heterojunctions. I. Derivation and application, Phys. Rev. B, vol.82, 2010.

M. D. Perez, C. Borek, S. R. Forrest, and M. E. Thompson, Molecular and Morphological Influences on the Open Circuit Voltages of Organic Photovoltaic Devices, J. Am. Chem. Soc, vol.131, pp.9281-9286, 2009.

R. Steim, « Organic photovoltaics for low light applications, Sol. Energy Mater. Sol. Cells, vol.95, pp.3256-3261, 2011.

S. Dongaonkar, K. Y. , D. Wang, M. Frei, S. Mahapatra et al., « On the Nature of Shunt Leakage in Amorphous Silicon p-i-n Solar Cells, IEEE Electron Device Lett, 2010.

S. Dongaonkar, « Universality of non-Ohmic shunt leakage in thin-film solar cells, J. Appl. Phys, vol.108, p.124509

S. Choi, W. J. Potscavage, and B. Kippelen, « Area-scaling of organic solar cells, J. Appl. Phys, vol.106, issue.5, p.54507, 2009.

J. D. Servaites, S. Yeganeh, T. J. Marks, and M. A. Ratner, « Efficiency Enhancement in Organic Photovoltaic Cells: Consequences of Optimizing Series Resistance, Adv. Funct. Mater, vol.20, issue.1, pp.97-104, 2010.

M. Python, « Relation between substrate surface morphology and microcrystalline silicon solar cell performance, J. Non-Cryst. Solids, vol.354, pp.2258-2262, 2008.

A. K. Kyaw, « Intensity Dependence of Current-Voltage Characteristics and Recombination in High-Efficiency Solution-Processed Small-Molecule Solar Cells, ACS Nano, vol.7, issue.5, pp.4569-4577, 2013.

S. S. Hegedus and . Current, Voltage Analysis of a-Si and a-SiGe Solar Cells Including Voltage-dependent Photocurrent Collection, Prog. Photovolt. Res. Appl, vol.5, issue.3, pp.151-168, 1997.

S. Hegedus, D. Desai, and C. Thompson, « Voltage dependent photocurrent collection in CdTe/CdS solar cells, Prog. Photovolt. Res. Appl, vol.15, issue.7, pp.587-602, 2007.

M. Song, « Charging Characteristics of Lithium Ion Battery Using Semi-Solar Modules of Polymer:Fullerene Solar Cells, vol.10, p.1886, 2017.

A. Bauer, J. Hanisch, and E. E. Ahlswede, « An Effective Single Solar Cell Equivalent Circuit Model for Two or More Solar Cells Connected in Series, IEEE J. Photovolt, vol.4, issue.1, pp.340-347, 2014.

M. W. Rowell and M. D. Mcgehee, « Transparent electrode requirements for thin film solar cell modules, Energy Env. Sci, vol.4, issue.1, pp.131-134, 2011.

M. Seeland and H. Hoppe, « Comparison of distributed vs. lumped series resistance modeling of thin-film solar cells and modules: Influence on the geometry-dependent efficiency: Series resistance modeling of thin-film solar cells and modules, Phys. Status Solidi A, vol.212, issue.9, 1991.

M. A. Green, « General solar cell curve factors including the effects of ideality factor, temperature and series resistance, Solid-State Electron, vol.20, issue.3, pp.265-266, 1977.

M. A. Green, « Solar cell fill factors: General graph and empirical expressions, SolidState Electron, vol.24, issue.8, pp.788-789, 1981.

M. A. Green, « Accuracy of analytical expressions for solar cell fill factors, Sol. Cells, vol.7, issue.3, pp.337-340, 1982.

C. Voz, « Analysis of the dynamic short-circuit resistance in organic bulkheterojunction solar cells: relation to the charge carrier collection efficiency, Org. Electron, vol.14, issue.6, pp.1643-1648, 2013.

G. Vannier, H. Zara, and P. Voarino, « LED illumination: A new way to characterize cells and modules at low and medium concentration, pp.152-155, 2013.

D. Baran, « Qualitative Analysis of Bulk-Heterojunction Solar Cells without Device Fabrication: An Elegant and Contactless Method, J. Am. Chem. Soc, vol.136, pp.10949-10955, 2014.

M. A. Faist, « Competition between the Charge Transfer State and the Singlet States of Donor or Acceptor Limiting the Efficiency in Polymer:Fullerene Solar Cells, J. Am. Chem. Soc, vol.134, issue.1, pp.685-692

K. Tvingstedt, K. Vandewal, A. Gadisa, F. Zhang, J. Manca et al., « Electroluminescence from Charge Transfer States in Polymer Solar Cells, J. Am. Chem. Soc, vol.131, pp.11819-11824, 2009.

M. Seeland, R. Rösch, and H. Hoppe, « Luminescence imaging of polymer solar cells: Visualization of progressing degradation, J. Appl. Phys, vol.109, issue.6, p.64513, 2011.

T. Fuyuki, H. Kondo, T. Yamazaki, Y. Takahashi, and Y. Uraoka, « Photographic surveying of minority carrier diffusion length in polycrystalline silicon solar cells by electroluminescence, Appl. Phys. Lett, vol.86, p.262108, 2005.

T. Fuyuki, H. Kondo, Y. Kaji, A. Ogane, and Y. Takahashi, Analytic findings in the electroluminescence characterization of crystalline silicon solar cells, J. Appl. Phys, vol.101, issue.2, p.23711, 2007.

U. Rau, « Reciprocity relation between photovoltaic quantum efficiency and electroluminescent emission of solar cells, Phys. Rev. B, vol.76, issue.8, 2007.

T. Trupke, E. Pink, R. A. Bardos, and M. D. Abbott, « Spatially resolved series resistance of silicon solar cells obtained from luminescence imaging, Appl. Phys. Lett, vol.90, issue.9, p.93506, 2007.

J. Haunschild, M. Glatthaar, M. Kasemann, S. Rein, and E. R. Weber, « Fast series resistance imaging for silicon solar cells using electroluminescence, Phys. Status Solidi RRL -Rapid Res. Lett, vol.3, pp.227-229, 2009.

O. Breitenstein, A. Khanna, Y. Augarten, J. Bauer, J. Wagner et al., « Quantitative evaluation of electroluminescence images of solar cells, Phys. Status Solidi RRL -Rapid Res. Lett, vol.4, issue.2, pp.7-9, 2010.

M. Seeland, C. Kästner, and H. Hoppe, « Quantitative evaluation of inhomogeneous device operation in thin film solar cells by luminescence imaging, Appl. Phys. Lett, vol.107, issue.7, p.73302, 2015.

U. Hoyer, Electroluminescence imaging of organic photovoltaic modules, vol.97, p.233303

R. Rösch, F. C. Krebs, D. M. Tanenbaum, and H. Hoppe, « Quality control of roll-to-roll processed polymer solar modules by complementary imaging methods, Sol. Energy Mater. Sol. Cells, vol.97, pp.176-180

W. R. Mateker and M. D. Mcgehee, « Progress in Understanding Degradation Mechanisms and Improving Stability in Organic Photovoltaics, Adv. Mater, vol.29, issue.10, p.1603940, 2017.

T. Heumueller, « Morphological and electrical control of fullerene dimerization determines organic photovoltaic stability, Energy Environ. Sci, vol.9, issue.1, pp.247-256, 2016.

A. Distler, « The Effect of PCBM Dimerization on the Performance of Bulk Heterojunction Solar Cells, Adv. Energy Mater, vol.4, p.1300693, 2014.

L. Yan, « External load-dependent degradation of P3HT: PC 61 BM solar cells: behavior, mechanism, and method of suppression, J. Mater. Chem. A, vol.5, pp.10010-10020, 2017.

A. Distler, « The Role of Fullerenes in the Photo-degradation of Organic Solar Cells, p.118, 2015.

C. H. Peters, « The Mechanism of Burn-in Loss in a High Efficiency Polymer Solar Cell, Adv. Mater, vol.24, issue.5, pp.663-668

T. Heumueller, « Reducing burn-in voltage loss in polymer solar cells by increasing the polymer crystallinity, Energy Env. Sci, vol.7, issue.9, pp.2974-2980, 2014.

T. Heumueller, « Disorder-Induced Open-Circuit Voltage Losses in Organic Solar Cells During Photoinduced Burn-In », Adv. Energy Mater, vol.5, p.1500111, 2015.

M. O. Reese, « Photoinduced Degradation of Polymer and Polymer-Fullerene Active Layers: Experiment and Theory, Adv. Funct. Mater, vol.20, pp.3476-3483, 2010.

H. K. Lee, The role of fullerenes in the environmental stability of polymer:fullerene solar cells, vol.11, pp.417-428, 2018.

A. Perthué, « New insights into polymer solar cells stability: The crucial role of PCBM oxidation, J. Mater. Res, vol.33, issue.13, pp.1868-1878, 2018.

M. Schaer, F. Nüesch, D. Berner, W. Leo, and L. Zuppiroli, « Water Vapor and Oxygen Degradation Mechanisms in Organic Light Emitting Diodes, Adv. Funct. Mater, vol.11, issue.2, pp.116-121, 2001.

M. J. Tan, S. Zhong, J. Li, Z. Chen, and E. W. Chen, « Air-Stable Efficient Inverted Polymer Solar Cells Using Solution-Processed Nanocrystalline ZnO Interfacial Layer, ACS Appl. Mater. Interfaces, vol.5, issue.11, pp.4696-4701, 2013.

M. Jørgensen, K. Norrman, and F. C. Krebs, « Stability/degradation of polymer solar cells, Sol. Energy Mater. Sol. Cells, vol.92, issue.7, pp.686-714, 2008.

B. Lechêne, J. Leroy, O. Tosoni, R. De-bettignies, and E. G. Perrier, « Origin of the S-Shape upon Aging in Standard Organic Solar Cells with Zinc Oxide as Transport Layer, J. Phys. Chem. C, vol.118, pp.20132-20136, 2014.

C. Tan, H. C. Wong, Z. Li, D. G. Bucknall, J. R. Durrant et al., « Synergetic enhancement of organic solar cell thermal stability by wire bar coating and light processing, J. Mater. Chem. C, vol.3, pp.9551-9558, 2015.

S. B. Sapkota, A. Spies, B. Zimmermann, I. Dürr, and U. Würfel, « Promising long-term stability of encapsulated ITO-free bulk-heterojunction organic solar cells under different aging conditions, Sol. Energy Mater. Sol. Cells, vol.130, pp.144-150, 2014.

F. Yan, J. Noble, J. Peltola, S. Wicks, and S. Balasubramanian, « Semitransparent OPV modules pass environmental chamber test requirements, Sol. Energy Mater. Sol. Cells, vol.114, pp.214-218, 2013.

M. T. Lloyd, « Impact of contact evolution on the shelf life of organic solar cells, J. Mater. Chem, vol.19, p.7638, 2009.

M. Jørgensen, K. Norrman, S. A. Gevorgyan, T. Tromholt, B. Andreasen et al., Stability of Polymer Solar Cells, vol.24, pp.580-612

D. Chalal, R. Garuz, D. Benachour, J. Bouclé, and B. Ratier, « Influence of an electrode self-protective architecture on the stability of inverted polymer solar cells based on P3HT:PCBM with an active area of 2cm2, Synth. Met, vol.212, pp.161-166, 2016.

A. Norme and . E927, , 2015.

, ImageJ

R. Rösch, « Investigation of the degradation mechanisms of a variety of organic photovoltaic devices by combination of imaging techniques-the ISOS-3 interlaboratory collaboration, Energy Environ. Sci, vol.5, p.6521, 2012.

S. Lun, S. Wang, G. Yang, and T. Guo, « A new explicit double-diode modeling method based on Lambert W-function for photovoltaic arrays, Sol. Energy, vol.116, pp.69-82, 2015.

I. Newton, « The method of fluxions and infinite series : with its application to the geometry of curve-lines

S. Dongaonkar, « Universal statistics of parasitic shunt formation in solar cells, and its implications for cell to module efficiency gap, Energy Environ. Sci, vol.6, issue.3, p.782, 2013.

L. J. Koster, V. D. Mihailetchi, H. Xie, and P. W. Blom, « Origin of the light intensity dependence of the short-circuit current of polymer/fullerene solar cells », Appl. Phys. Lett, vol.87, p.203502, 2005.

B. P. Rand, D. P. Burk, and S. R. Forrest, « Offset energies at organic semiconductor heterojunctions and their influence on the open-circuit voltage of thin-film solar cells, Phys. Rev. B, vol.75, issue.11, 2007.

J. Merten, J. Coignus, G. Razongles, and D. Munoz, « Novel Equivalent Circuit for Heterojunction Cells and Diagnostic Method Based on Variable Illumination Measurements, Eur. Photovolt. Sol. Energy Conf. Exhib, p.27

J. M. Asensi, J. Merten, C. Voz, and J. Andreu, « Analysis of the role of mobility-lifetime products in the performance of amorphous silicon p-i-n solar cells, J. Appl. Phys, vol.85, issue.5, pp.2939-2951, 1999.

X. Che, Y. Li, Y. Qu, and S. R. Forrest, « High fabrication yield organic tandem photovoltaics combining vacuum-and solution-processed subcells with 15% efficiency, Nat. Energy, vol.3, issue.5, pp.422-427, 2018.

C. J. Brabec, « Tracing photoinduced electron transfer process in conjugated polymer/fullerene bulk heterojunctions in real time, Chem. Phys. Lett, vol.340, pp.232-236, 2001.

A. A. Bakulin, J. C. Hummelen, M. S. Pshenichnikov, and P. H. Van-loosdrecht, Ultrafast Hole-Transfer Dynamics in Polymer/PCBM Bulk Heterojunctions, vol.20, pp.1653-1660, 2010.

Y. Zhou, « Observation of a Charge Transfer State in Low-Bandgap Polymer/Fullerene Blend Systems by Photoluminescence and Electroluminescence Studies, Adv. Funct. Mater, vol.19, pp.3293-3299, 2009.

M. A. Loi, S. Toffanin, M. Muccini, M. Forster, U. Scherf et al., « Charge Transfer Excitons in Bulk Heterojunctions of a Polyfluorene Copolymer and a Fullerene Derivative, Adv. Funct. Mater, vol.17, issue.13, pp.2111-2116, 2007.

K. Tvingstedt, K. Vandewal, F. Zhang, and O. Inganäs, « On the Dissociation Efficiency of Charge Transfer Excitons and Frenkel Excitons in Organic Solar Cells: A Luminescence Quenching Study, J. Phys. Chem. C, vol.114, pp.21824-21832, 2010.

A. Manor, E. A. Katz, T. Tromholt, and F. C. Krebs, « Electrical and Photo-Induced Degradation of ZnO Layers in Organic Photovoltaics, Adv. Energy Mater, vol.1, issue.5, pp.836-843, 2011.

F. Verbakel, S. C. Meskers, and R. A. Janssen, « Electronic memory effects in diodes from a zinc oxide nanoparticle-polystyrene hybrid material, Appl. Phys. Lett, vol.89, issue.10, p.102103, 2006.

M. R. Lilliedal, A. J. Medford, M. V. Madsen, K. Norrman, and F. C. Krebs, « The effect of post-processing treatments on inflection points in current-voltage curves of roll-to-roll processed polymer photovoltaics, Sol. Energy Mater. Sol. Cells, vol.94, 2010.

Q. H. Li, T. Gao, Y. G. Wang, and T. H. Wang, Adsorption and desorption of oxygen probed from ZnO nanowire films by photocurrent measurements, Appl. Phys. Lett, vol.86, p.123117, 2005.

M. C. Scharber, « Charge transfer excitons in low band gap polymer based solar cells and the role of processing additives, Energy Environ. Sci, vol.4, p.5077, 2011.

C. Bracher, The effect of residual palladium catalyst on the performance and stability of PCDTBT:PC70BM organic solar cells, vol.27, pp.266-273

D. Baran, « Reduced voltage losses yield 10% efficient fullerene free organic solar cells with >1 V open circuit voltages, Energy Environ. Sci, vol.9, pp.3783-3793, 2016.

W. T. Hadmojo, S. Y. Nam, T. J. Shin, S. C. Yoon, S. Jang et al., « Geometrically controlled organic small molecule acceptors for efficient fullerene-free organic photovoltaic devices, J. Mater. Chem. A, vol.4, pp.12308-12318, 2016.

Z. Zhang, « Energy-level modulation of non-fullerene acceptors to achieve highefficiency polymer solar cells at a diminished energy offset, J. Mater. Chem. A, vol.5, pp.9649-9654, 2017.

Y. Zhang, H. Yip, O. Acton, S. K. Hau, F. Huang et al., Simple and Effective Way of Achieving Highly Efficient and Thermally Stable Bulk-Heterojunction Polymer Solar Cells Using Amorphous Fullerene Derivatives as Electron Acceptor, Chem. Mater, vol.21, issue.13, pp.2598-2600, 2009.

H. H. Ramanitra, « Increased thermal stabilization of polymer photovoltaic cells with oligomeric PCBM, J. Mater. Chem. C, vol.4, pp.8121-8129, 2016.

B. Gholamkhass and S. Holdcroft, « Toward Stabilization of Domains in Polymer Bulk Heterojunction Films, Chem. Mater, vol.22, pp.5371-5376, 2010.

Y. Cheng, C. Hsieh, P. Li, and C. Hsu, « Morphological Stabilization by In Situ Polymerization of Fullerene Derivatives Leading to Efficient, Thermally Stable Organic Photovoltaics, Adv. Funct. Mater, vol.21, issue.9, pp.1723-1732, 2011.

T. Kim, R. Younts, W. Lee, S. Lee, K. Gundogdu et al., « Impact of the photoinduced degradation of electron acceptors on the photophysics, charge transport and device performance of all-polymer and fullerene-polymer solar cells, J Mater Chem A, vol.5, pp.22170-22179, 2017.

D. Fluhr, « Aluminum Electrode Insulation Dynamics via Interface Oxidation by Reactant Diffusion in Organic Layers, Phys. Status Solidi A, vol.215, issue.23, p.1800474, 2018.

K. Feron, T. J. Nagle, L. J. Rozanski, B. B. Gong, and C. J. Fell, « Spatially resolved photocurrent measurements of organic solar cells: Tracking water ingress at edges and pinholes, Sol. Energy Mater. Sol. Cells, vol.109, pp.169-177, 2013.

S. Hideki, J. L. Edwin, A. G. Macdiarmid, H. K. Chiang, and A. J. Heeger, Synthesis of Electrically Conducting Organic Polymers : Halogen Derivatives of Polyacetylene, p.3, 1977.

J. E. Carlé, « Overcoming the Scaling Lag for Polymer Solar Cells, 2017.

B. Roth, « Improving the Operational Stability of PBDTTTz-4 Polymer Solar Cells Modules by Electrode Modification: Improving the Operational Stability of PBDTTTz-4 », Adv. Eng. Mater, vol.18, issue.4, pp.511-517, 2016.

B. Roth, « The Critical Choice of PEDOT:PSS Additives for Long Term Stability of Roll-to-Roll Processed OPVs, Adv. Energy Mater, vol.5, issue.9, p.1401912, 2015.

G. A. Dos-reis and . Benatto, « Roll-to-roll printed silver nanowires for increased stability of flexible ITO-free organic solar cell modules, Nanoscale, vol.8, issue.1, pp.318-326, 2016.

T. M. Tran, « Quantitative evaluation method for electroluminescence images of a-Si:H thin-film solar modules: Quantitative evaluation method for electroluminescence images of a-Si:H thin-film solar modules, Phys. Status Solidi RRL -Rapid Res. Lett, vol.7, issue.9, pp.627-630, 2013.

A. Gerber, Advanced large area characterization of thin-film solar modules by electroluminescence and thermography imaging techniques, Sol. Energy Mater. Sol. Cells, vol.135, pp.35-42, 2015.

R. M. Corless, G. H. Gonnet, D. E. Hare, D. J. Jeffrey, and D. E. Knuth, On the LambertW function, vol.5, pp.329-359, 1996.

J. Lambert, « Observationes variae in mathesin puram, Acta Helveticae Phys.-Math.-Anat.-Bot.-Medica, vol.3, pp.128-168, 1758.

L. Euler, De serie Lambertina Plurimisque eius insignibus proprietatibus, Acta Acad Sci. Petropol, vol.2, pp.29-51, 1783.

K. Roberts and «. , Robust Approximation to a Lambert-Type Function », ArXiv150401964 Math, avr, 2015.

K. Roberts and S. R. Valluri, On Calculating the Current-Voltage Characteristic of MultiDiode Models for Organic Solar Cells, p.22

E. L. Défauts, défauts PL sur les modules Imagerie EL à 5.00 V des modules après 1650 heures Surface

, Légende Défauts PL bords Défauts EL centre Défauts PL centre Surface Emission EL

, I) B9 (ref) j) B10