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1

Introduction

1.1 Prologue

1.1.1 De l’aimant à la boussole

En 77 après J.-C., Pline l’Ancien tente de réunir les connaissances et cultures de son

temps et publie une encyclopédie de trente-sept volumes, Naturalis Historia. Dans le livre

trente-six, Pline l’Ancien nous relate l’histoire d’un berger Grec du nom de Magnès qui,

faisant paître ses troupeaux sur le mont Ida, ressentit que les clous de ses semelles étaient

attirés par de la roche. Depuis lors, les phénomènes d’aimantations relèvent de ce qu’on

appelle le magnétisme. Cette encyclopédie resta longtemps une référence dans de nombreux

domaines et influença grandement les scientifiques du moyen-âge. C’est d’ailleurs à cette

époque que l’on retrouve les premières traces de l’utilisation la plus connue du magnétisme :

la boussole. La première utilisation de la boussole en tant qu’instrument d’orientation date

du xie siècle, sous la dynastie des Song (960-1279), en Chine. On retrouve cependant des

systèmes tels que présentés figure 1.1 dès la dynastie des Han (206 av. J.-C. à 220 apr.

J.-C.), même si l’utilisation de tels dispositifs pour l’orientation est difficile à prouver et

reste débattue par les historiens.

Figure 1.1 – Cuillère métallique pointant vers le Sud, découverte en Chine et datant de la dynastie
des Han, à gauche. À droite, la boussole (marinette) du début du xiiie siècle en Europe.

En Europe, les premières références à une boussole, aussi appelée marinette, sont

9



10 1.1. Prologue

attribués aux moines Alexander Neckam, de l’abbaye de St Alban (1197) et Guiot de

Provins, de l’abbaye de Cluny (1202), apportant la preuve de son utilisation pour la

navigation (à droite figure 1.1). C’est cependant Pierre de Maricourt qui, dans son traité sur

les propriétés des aimants Epistola de magnete, perfectionne le principe de la boussole. Il

s’agit véritablement du premier texte scientifique relatif au magnétisme, dans lequel Pierre

de Maricourt y décrit les propriétés d’attraction et de répulsion des pôles des aimants,

ainsi que le fait qu’en cassant un aimant en deux morceaux nous obtenons nécessairement

deux autres aimants, avec chacun deux pôles magnétiques. Ainsi, même s’il ne l’exprime

pas directement, Pierre de Maricourt formula également l’hypothèse de non existence d’un

monopôle magnétique.

1.1.2 Premières observations

Depuis lors, la boussole permit aux marins du monde entier de se repérer dans l’espace, en

sachant toujours où se trouve le pôle Nord, ou plus exactement le pôle géomagnétique Nord.

Cette précision, découverte au milieu du xve siècle, est cruciale pour les marins puisque ceux-

ci remarquèrent que la boussole, selon l’endroit où l’on se trouve, ne s’oriente pas exactement

vers le pôle géographique Nord. L’angle ainsi formée entre les pôles géomagnétiques et

géographiques est appelé déclinaison magnétique. La déclinaison magnétique est l’un des

sujet d’étude de William Gilbert dans un livre intitulé De Magnete, à gauche figure 1.2,

paru en 1600. Dans ce travail, considéré par certains comme l’un des premiers ouvrages

scientifiques modernes, William Gilbert alors médecin de la reine, décrit le champ magnétique

terrestre et en offre une vision similaire à celle que nous avons à l’heure actuelle qu’il appelle

terrella, visible à droite figure 1.2. Cette terrella résulte d’expériences menées à l’aide d’une

magnétite sphérique, assimilée à la Terre, ainsi que d’aiguilles de Fer. Elle met notamment

en évidence une autre propriété importante du champ magnétique terrestre, découverte par

Robert Norman (The Newe Attractive, 1581), l’inclinaison magnétique : l’angle entre une

aiguille aimantée et le plan horizontal.

1.1.3 Premières théories

De par ses observations et ses expériences, William Gilbert écrit :

"Magnus magnet ipse est globus terrestris"

– W. Gilbert, 1600

Ainsi au début du xviie siècle, au vu des similarités entre le champ magnétique terrestre

et une magnétite sphérique, le champ magnétique terrestre est perçu et assimilé à celui d’un

aimant situé au centre de la Terre. Cette théorie, bien qu’élégante, est cependant remise en
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Figure 1.2 – À gauche, couverture de De Magnete, de William Gilbert, paru en 1600. Et à droite,
le modèle de Terre comme un gigantesque aimant, la « Terrella » de William Gilbert.

cause trente-quatre ans plus tard par le mathématicien Anglais Henri Gellibrand. Basé sur

plusieurs décennies de mesures, ce dernier mit en évidence la variabilité de la déclinaison

magnétique au cours du temps. Cette variation, qualifiée de « séculaire », est contradictoire

avec l’idée d’un aimant fixe proposé par Gilbert et donna suite à différentes théories. La plus

célèbre fut développée par Edmund Halley en 1692, connu pour avoir calculé la périodicité

de la comète qui porte son nom. Dans son article « On the cause of the change in the

variation of the magnetic needle, with a hypothesis of the structure of the internal parts

of the Earth », publié dans la revue scientifique Philosophical transactions of the Royal

Society of London, Edmund Halley réunit tout d’abord toutes les mesures de déclinaison

magnétique disponibles à l’époque. De ces données, il observe qu’en de nombreux endroits

sur Terre la déclinaison magnétique est de plus en plus vers l’ouest au cours du temps. Il

décrit ainsi pour la première fois une des caractéristiques principale de la variation séculaire

du champ magnétique terrestre : la dérive géomagnétique vers l’ouest (voir carte figure 1.3).

Pour l’expliquer, Edmund Halley formule une théorie basée sur des sphères concentriques,

séparées par du vide, portant chacune une partie du champ magnétique terrestre et qui

serait en rotation différentielle (schéma figure 1.3). Dans son modèle le plus simple, à deux

sphères, cette théorie implique une dérive vers l’ouest de la déclinaison magnétique.

1.1.4 Intérieur de la Terre

La théorie d’Edmund Halley vise à expliquer les variations observées du champ magné-

tiques terrestre mais il propose également une idée de la structure interne de la Terre. Parmi

les plus illustres théories, on notera celle d’Aristote, qui décrit une Terre fixe, au centre de

l’univers, composée des quatre éléments : air, terre, eau et feu. Cette vision restera d’ailleurs

jusqu’à ce que Copernic, en 1543, prouve que la Terre, à l’image des autres planètes, tourne

autour du Soleil. René Descartes, en 1644, décrit une Terre composée d’une croûte rocheuse

reposant sur une mer intérieure, ce qui permettait selon lui d’expliquer les différents reliefs

de la surface terrestre. Un siècle plus tard, à l’image d’Athanaisus Kircher (« Mundus
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Figure 1.3 – À gauche, une carte de la dérive de la déclinaison magnétique de E. Halley. À droite,
un schéma extrait de Halley (1692) illustrant la théorie des sphères magnétique concentriques en
rotation différentielle.

subterraneus » , 1665), Georges Louis Buffon imagine la Terre comme un ancien morceau

de Soleil, expulsé par le passage d’une comète, refroidi et à présent homogène (« Théorie de

la Terre », 1749). Les premières réponses à de telles questions furent obtenues suite aux

progrès de la tomographie sismique. Cette branche de la sismologie étudie la trajectoire

et la vitesses des ondes sismiques qui se propagent à l’intérieur de la Terre à la suite d’un

séisme. La vitesse des ondes sismique étant proportionnelle à la composition des matériaux,

la température et la pression, l’étude de la propagation de ces ondes permet donc en théorie

d’obtenir la composition de l’intérieur de la Terre. C’est Edouard Roche qui, s’inspirant de

la structure des météorites, proposa le premier modèle différencié de l’intérieur de la Terre.

Ce modèle, publié en 1881, décrit ainsi la Terre comme composée de deux couches : une

partie rocheuse et un noyau central composé essentiellement de Fer. Il fut ensuite appuyé

par les travaux du chercheur Allemand Emil Wiechert, qui proposa un modèle semblable

en 1897. Quelques années plus tard, Richard Dixon Oldham (1906) observe les premières

ondes sismiques ayant traversées le noyau de la Terre, prouvant de ce fait son existence. En

1912, Beno Gutenberg détermina la profondeur à laquelle est situé le noyau, soit à 2 900

kilomètres sous la surface. La nature liquide de ce noyau est mise en évidence par Harold

Jeffreys en 1926. Enfin, c’est Inge Lehman, chercheuse Danoise, en 1936, qui découvrit la

présence du noyau interne, solide, également appelé la graine.

La Terre est aujourd’hui représentée, dans son modèle le plus simple, comme une

sphère de 6 370 kilomètres de rayon et composée de quatre couches (voir figure 1.4). La

première est la croûte, qui représente une épaisseur moyenne de trente kilomètres aux

niveaux des continents (composition granitique) et de dix kilomètres pour les océans

(composition basaltique). La seconde couche, bien plus conséquente, est appelée le manteau.

Elle représente environ 2800 kilomètres d’épaisseur et est principalement composée de

péridotite. Le noyau est quant à lui composé essentiellement de Fer (85%), de Nickel (10%)
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Figure 1.5 – Simulations numériques de Glatzmaier and Roberts (1995) à gauche, et Aubert
et al. (2013) à droite.

haut sous l’effet de la force d’Archimède. A l’intérieur du noyau fluide, cette convection

dite thermique est naturellement engendrée par la différence de températures entre la

frontière noyau-manteau et la frontière graine-noyau externe (voir figure 1.4). Cependant,

le moteur principal (∼ 80%) des mouvements de convection est d’origine chimique. Le

refroidissement lent et global de l’intérieur de la Terre, et ce depuis sa création, entraine en

effet la cristallisation progressive de la graine. Cette cristallisation, qui de surcroit dégage

de la chaleur, concerne uniquement le Fer et le Nickel, ce qui provoque nécessairement une

importante émission des éléments légers constituants le noyau, à la surface de la graine. La

combinaison des effets thermiques et chimiques entraine ainsi une convection turbulente

du Fer liquide dans le noyau externe. Le Fer étant un matériel conducteur d’électricité ces

mouvements produisent des courants électriques par interaction avec le champ magnétique,

qui à l’heure tour amplifient le champ magnétique : c’est la géodynamo.

1.1.6 Simulations numériques

L’un des outils actuels pour étudier la géodynamo est de résoudre les équations de la

MHD (magnétohydrodynamique) à l’aide de super-ordinateurs et ainsi tenter de reproduire

le champ magnétique terrestre en simulant les possibles écoulements du fer liquide dans le

noyau. La première simulation numérique reproduisant les principales caractéristiques du

champ magnétique terrestre de façon auto-entretenue fut réalisée par Gary Glatzmaier et

Paul Roberts en 1995. La figure 1.5 (à gauche), qui est un état de la simulation numérique à

un instant donné, montre alors la complexité des lignes de champ magnétiques à l’intérieur

du noyau, ainsi que la forme du champ magnétique de grande échelle qui en résulte

(Glatzmaier and Roberts, 1995). Outre le progrès majeur concernant la modélisation du

champ magnétique terrestre, Gary Glatzmaier et Paul Roberts remarquèrent que dans

leur simulation la graine était en rotation différentielle vers l’Est par rapport au manteau
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d’environ 2̊ par an (Glatzmaier and Roberts, 1996). Ce phénomène, directement lié à

l’intensité du champ magnétique et aux mouvement du fer liquide, est appelé super-rotation

de la graine. Cette observation dans les simulations numériques donna suite à de nombreuses

études sismiques tentant de mesurer cette possible rotation différentielle de la graine, dont

une la même année par Song and Richards (1996). Cependant, il est à l’heure actuelle

encore difficile d’obtenir des informations aussi précises sur la dynamique d’un object situé

au centre de la Terre, et cette propriété de la Terre interne reste mal contrainte.

1.1.7 Progrès et objectif de la thèse

À droite de la figure 1.5 est représenté le résultat d’une autre simulation numérique de la

géodynamo, qui pour la première fois réussi à reproduire les caractéristiques principales de

la dérive vers l’ouest du champ magnétique terrestre (Aubert et al., 2013). Etant observée

depuis les premières mesures du champ magnétique terrestre et représentant la majeure

partie de sa variation séculaire, la reproduction de la dérive géomagnétique vers l’ouest dans

les simulations numériques est effectivement un progrès majeur pour le géomagnétisme. Pour

arriver à ce résultat, cette simulation numérique considère les différents couples qui relient le

manteau, le noyau fluide et la graine, et modélise une croissance hétérogène de cette dernière.

Ces considérations ont pour conséquence de produire un écoulement principalement vers

l’ouest, proche de la frontière noyau-manteau, et de localiser cet écoulement sous la zone

Atlantique, correspondant aux valeurs de dérive vers l’ouest du champ magnétique mesurées

en surface.

L’objectif de cette thèse est d’utiliser ces simulations numériques récentes reproduisant

les caractéristiques fondamentales du champ magnétique terrestre, telles qu’observées depuis

quatre siècles, afin de pouvoir contraindre la super-rotation de la graine. Pour cela, il est tout

d’abord nécessaire de formuler et de valider dans les simulations numériques des modèles

des couples qui relient et gouvernent la rotation du manteau, du noyau fluide et de la graine.

Une fois ces modèles établis, ils permettent de faire le lien entre la dérive géomagnétique

vers l’ouest et la super-rotation de la graine.
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1.2 Earth’s core structure and dynamics

1.2.1 Internal structure of the Earth

The first geodynamo theories developed after the substantial progress of seismology in

providing insights on the Earth’s core. In 1897, Emil Wiechert first suggested the existence

of a metallic core. A few years later, Oldham (1906) first detected the presence of the core

and Gutenberg (1913) determined the depth of the core-mantle boundary (CMB) as being

close to 2900 km. The distinction between the outer and inner core is however attributable

to the works of Jeffreys (1926), who showed the liquid state of the core, and Lehmann

(1936) who discovered the solid inner core. These pioneering works gave rise to numerous

seismological studies of the Earth’s interior, comprising P and S waves travel times as

well as normal modes, that were later exploited by Dziewonski and Anderson (1981) to

develop the Preliminary Reference Earth Model (PREM). As being a 1D model, the main

assumption of the PREM model is that the Earth is radially homogeneous. It establishes

the velocity of P and S waves and the density of Earth’s materials as a function of depth.

The original figure of the PREM model is displayed in figure 1.6. It exhibits the liquid state

of the outer core by the non-propagation of the S waves from the CMB to the inner core

boundary (ICB). The density jump at the CMB clearly points the difference in composition

between the mantle (silicates) and the core (metallic), while the density jump at the ICB

reflects the phase transition of iron from liquid to solid. Though the PREM model defines

the variation of density with depth inside the Earth, it does not determine the composition

of the materials. The metallic composition of the core was inferred by Birch (1952) as being

a Fe-Ni alloy, by compressional experiments on alkali metals. Birch (1952) also suggested

the presence of lighter elements within the outer core, while the inner core should be mostly

crystallized iron. The solid state of the inner core was later confirmed by Jacobs (1953)

who showed that, given the temperatures and pressures inside the core, there should be a

phase transition of iron from liquid to solid close to the inner core boundary.

In order to assess the exact composition of the core, it is however necessary to refer

to geochemical arguments. The main idea behind these arguments is to suppose that the

Earth is a differentiated meteorite, so that its bulk composition should ressemble that

of meteoritic materials. Then, mostly by using ratios between major and trace elements,

and considering the lithophile or siderophile character of the elements, it is possible to

infer the composition of the silicate Earth (crust and mantle) and the core. However, with

this approach, the presumed compositions are naturally sensitive to both the choice of

meteoritic parent body and the considered model of Earth’s formation. Table 1.1 exposes

two well-known models, the first one was developed by Allègre et al. (1995) and is based

on carbonaceous chondrites, while the second one is based on enstatite chondrites (Javoy

et al., 2010).
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Figure 1.6: PREM model from Dziewonski and Anderson (1981), variation of the density ρ (in
blue), and the velocities of P and S waves (red and black), as functions of depth.

Composition of the core in wt%
Elements Allègre et al. (1995) Javoy et al. (2010)
Fe 79.39 ± 2.00 85.50 ± 1.14
Ni 4.87 ± 0.30 5.35 ± 0.80
Si 7.35 6.64 ± 0.51
O 4.10 ± 0.50 1.99 ± 0.46
S 2.30 ± 0.20 -
Cr 7.8 × 10−3 0.55 ± 0.05
Co 2.5 × 10−3 0.25 ± 0.03

Table 1.1: Composition of the core in weight percent (wt%) in Iron (Fe), Nickel (Ni), Silicium
(Si), Oxygen (O), Sulfur (S), Chrome (Cr) and Cobalt (Co), from Allègre et al. (1995) and Javoy
et al. (2010).

1.2.2 Dynamics of the core

The geodynamo theory began with the idea of Larmor (1919) concerning the magnetic

field of the Sun. He proposed that the Sun’s magnetic field is produced by the motion of

electrically conducting plasma, producting electric currents that would in turn increase and

maintain the preexisting magnetic field. He named this mechanism a self-excited dynamo,

and assumed that, if the Earth’s core is fluid, then this mechanism "would account for

magnetic change, sudden or gradual, on the earth...". This idea was further refined by

Elsasser (1946a) who developed a model for the Earth’s dynamo, capable of maintaining



18 1.3. Earth’s magnetic field

a large-scale magnetic field, and explaining its secular variation (Elsasser, 1946b). This

model, based on the balance between the Coriolis and Lorentz forces, was further improved

in the first kinematic dynamo model of Bullard and Gellman (1954), consisting in finding

velocity fields of electrically conducting fluids that are able to produce and maintain

large-scale field. However, prescribing a velocity field and obtaining a large-scale magnetic

field is only one part of the problem, which global answer lies in the MHD equations

(Magnetohydrodynamics), the conservation of mass, momentum and energy, defining the

overall dynamics of the core.

The dynamics of the core is mainly driven by convection. As the whole Earth since

its formation, the core is loosing heat at the rate that is controlled by the core-mantle

boundary heat flux, thus inducing a secular cooling that can promote convection. However,

this secular cooling a also a source of buoyancy forces, through the freezing of the inner

core. Indeed, Braginsky (1963) concluded that the density jump at the ICB (see figure 1.6)

is not only due to contraction on freezing, but also reflects the fact that the cristallisation

mostly involves iron. The freezing of iron at the ICB is this a source of chemical buoyancy,

by the release of light elements, and thermal buoyancy, through the latent heat release of

the phase change of iron. Note that such a driving force may only account for the last

hundreds of millions of years since the inner core is assumed to be 1 billion year of age

(Labrosse et al., 2001) or even less Labrosse (2015), while Tarduno et al. (2015) found

that the Earth had a magnetic field 4.2 billions years ago. Still, as the viscosity of iron at

the core conditions is close to that of water at the surface (Poirier, 1988), the buoyancy

release at the ICB is the source of highly turbulent convection in the fluid outer core. This

convection is organized in columnar structures, as anticipated by Roberts (1968) and Busse

(1970) and experimentally showed by Carrigan and Busse (1983). This particular flow

arrangement into Taylor columns is a direct consequence of the Proudman-Taylor theorem,

that predicts geostrophic flows (invariant along the axis of rotation) in the case where the

Coriolis force dominantes the force balance of the system. These mainly helical flows are

able to produce strong poloidal magnetic field through alpha-effect, as described by Parker

(1955). The resulting magnetic field of such a configuration is mainly dipolar, as observed

for the Earth’s field.

1.3 Earth’s magnetic field

The large-scale magnetic field may be associated to a dipole field which intensity (F) is

around 30 000 nT 1 close to the equator and 60 000 nT at higher latitudes. The magnetic

field vector, B can be described on the orthgonal basis (ex, ey, ez) by B(X, Y, Z), with ex

pointing towards the geographic North, ey towards the East and ez downward. However,

it is often defined by its intensity F =
√

X2 + Y 2 + Z2 and two angles like B(F, D, I). The

first one is the declination D, the angle between the geographic North and the geomagnetic

1. for nanoTesla, 1 nT = 10−9 T.
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Figure 1.7: Cartesian coordinates system used to describe the magnetic field vector B. H is
the projection of B in the horizontal plane, pointing towards the magnetic North pole. D is the
magnetic declination, the angle between the geographic and the magnetic North (between the ex

component of B and H). I is the magnetic inclination, the angle between the horizontal plane
and the magnetic field vector B.

North in the horizontal plane, while the second is the inclinaison I, the angle between the

horizontal plane and the downward component of the magnetic field. The geometry and

the relations between the different components are displayed in figure 1.7.

1.3.1 Geomagnetic observations

"Only here I must take leave to recommend to all masters of ships that they

use they utmost diligence to make, or procure to be made, observations of these

variations in all parts of the world..."

– Halley (1692)

In order to understand the Earth’s magnetic field, we now have about four centuries

of observations. These observations comprise the declination measurements made by

mariners since the discovery that the geographic and magnetic north poles of the Earth do

not perfectly coincide, in the middle of the 17th century. These observations offer a wide

coverage of the Earth, but are mainly concentrated in trade routes (see figure 1.8). The more

accurate data on the magnetic field are obtained in geomagnetic observatories. The very first

geomagnetic observatory was located in the garden of the Paris observatory, dedicated to

Astronomy. Its construction was ordered by François Arago in 1823 who measured the three

components of the magnetic field vector: declination, inclination and intensity. However,

rigorous measurements of the magnetic field intensity were firstly obtained by Carl Friedrich
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Figure 1.8: Global distribution of all declination measurements found in the Archives Nationales

document. Red dots represent observations made by ships in the Service Hydrographique; blue
dots represent the other French naval measurements. Note in particular the coverage in the Pacific
and along South American shores. From Jackson et al. (2003).

Gauss in the city of Göttingen in 1833, trough the development of new instrumentation and

an electrostatic and electromagnetic unit system. Nowadays, a great part of the magnetic

observatories in the world (over 108) form the INTERMAGNET 2 network, a non-exclusive

programme of magnetic data exchange. Finally, although a relatively wide coverage may

be obtained by boarding magnetometers in ships or planes, the preferred way to gather

global observations on the Earth’s magnetic field requires satellites. The history of magnetic

satellites began with the POGO and OGO satellites, between 1965 and 1971, that provided

a global coverage the magnetic field intensity. Then Magsat (1989-1980), which was the

first equipped with a vector magnetometer, helped to determine the three components of

the vector field. Since then, several satellite missions brought more and more informations

on the Earth’s field: Ørsted, (1999-present), CHAMP (2000-2010) and SAC-C (2001-2004).

The most recent satellite mission, called Swarm (see Friis-Christensen et al., 2006), was

launched in November 2013 and is composed of three satellites, one in polar orbit around

510 km of altitude and a tandem of satellite in polar orbit around 450 km of altitude. This

configuration was designed in order to acquire very accurate data on the intensity and the

components of the magnetic field vector, in addition to bring informations on the different

sources of magnetic field close to the Earth’s surface.

2. See www.intermagnet.org for more informations
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in the direction of the main field. As the rock cools down, the orientation and the intensity

of the main field are then partly trapped in the rock, in a process called thermal remanent

magnetization. The second source is a magnetic field induced by the interaction between the

main field and electric currents coming from the core or from external sources. Among the

external currents are those produced by the oceanic tides, that also represent a small source

of magnetic field (a few nT). Indeed, as a flow of an electrically conducting fluid, the ocean

lunar semidiurnal tides, referred as M2, are also a source of magnetic field (Tyler et al.,

2003). Besides, the electric currents produced by this particular oceanic circulation may

be useful to infer the electrical conductivity of lithosphere and mantle materials (Schnepf

et al., 2015; Grayver et al., 2016).

1.3.3 Magnetic field models

As mentioned above, the external sources of magnetic field represent mostly short

period signal in the temporal variation of the magnetic field. Moreover, as their intensity

is small compared to the main field, geomagnetic studies on the main field assume that

they are negligible. Considering the weak electrical conductivity of the rocks composing

the lithosphere and the mantle, it is also conceivable to assume that current flows have no

substantial influence on the main field observed at the Earth’s surface. In such a situation,

the magnetic field B at the Earth’s surface can be described by a potential field like

B = −∇V, (1.1)

where V is the geopotential that must satisfy Laplace equation

∆V = 0. (1.2)

For a perfectly insulating mantle, the solution can be expressed using a spherical harmonic

(SH) decomposition (see e.g. Langel, 1987) and holds from the radius of the core (ro) to the

Earth’s surface (r=a),

V (r, θ, φ) = a
∞∑

ℓ=1

ℓ∑

m=0

(
a

r

)ℓ+1

[gm
ℓ cos mφ + hm

ℓ sin mφ] Pm
ℓ cos θ, (1.3)

with gm
ℓ and hm

ℓ the Gauss coefficients, expressed in the same units as the magnetic field, ℓ

and m the degree and the order of the spherical harmonic expansion and Pm
ℓ the Schmidt

quasi-normalized associated Legendre functions. In such a representation (see figure 1.11),

the degree ℓ = 1 represents the dipole (axial for m = 0 and equatorial for m = 1) and higher

degrees are associated with the quadrupole (ℓ = 2) and the octupole (ℓ = 3). Spherical

harmonics for which m = 0 are called zonal, while harmonics ℓ = m are referred to as

sectorial. This description thus offers the spatial distribution of the magnetic field, which is
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Figure 1.10: Mauersberger–Lowes spectrum of magnetic intensity of the xCHAOS model (Olsen
and Mandea, 2008), from Roberts and King (2013). Hollow symbols stand for the spectrum at
the surface (r = a) while solid ones stand for the spectrum at the CMB (r = ro).

also analyzed in term of power spectrum like

Rℓ(r) = (ℓ + 1)
(

a

r

)2ℓ+4 ℓ∑

m=0

[
(gm

ℓ )2 + (hm
ℓ )2

]
, (1.4)

that defines the power of the magnetic field contained in each degree ℓ of the spherical

harmonic expansion. At the Earth’s surface, the graphic representations of Rℓ = f(ℓ)

is referred to as a Mauersberger-Lowes power spectrum (Lowes, 1974). They generally

exhibit a substantial increase in the power spectra for SH degrees greater than 13, visible in

figure 1.10 that indicates the influence of the crustal magnetic field over the spectrum of the

main field. The crust thus acts as a "magnetic curtain" (Roberts and King, 2013) that hides

the higher SH components of the main field at the surface. Consequently, geomagnetic field

models may only recover the core field up to degree 13.

These models are built by solving the complex inverse problem of finding the Gauss

coefficients that best fit the available data (see e.g. Bloxham et al., 1989; Parker, 1994).

The most widely used models are the International Geomagnetic Reference Field (IGRF)

models, which up-to-date version is IGRF-12 (Thébault et al., 2015). This model was

adopted in December 2014 by Association of Geomagnetism and Aeronomy (IAGA) and

represents a weighted average of candidate models computed by several geomagnetic groups

in the world (see Thébault et al. (2015) for an exhaustive list). In addition to updating the

last version (IGRF-11, Finlay et al. (2010)), it models the main magnetic field of 2015 and

offers a prediction for epoch 2015-2020. The prediction of the IGRF-12 model for year 2017

is displayed in figures 1.12 and 1.13, in terms of magnetic field (declination, inclination and
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Figure 1.11: Geometrical representation of the spherical harmonic expansion (real part) from
degree ℓ = 1 to ℓ = 4. The axial dipole is visible on the top left side (ℓ = 1, m = 0) while the axial
dipole is on the right (ℓ = 1, m = 1). Harmonics with m = 0 are called zonal, sectorial for ℓ = m
and tesseral in every other cases.
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intensity, from top to bottom) and its annual rate of change, respectively.

The secular variation of the geomagnetic field is however best seen in time-dependent

models of the magnetic field at core-mantle boundary. The first models of Cain et al. (1965)

and Cain et al. (1967), GSFC(4/64) and GSFC(12/62), used a Taylor series expansion to

describe the time variation of the Gauss coefficients, but this method is only adequate for

relatively short time spans (see also Langel et al., 1982). The next generation of models

thus used Legendre (Bloxham, 1987) or Chebyshev (Bloxham et al., 1989) polynomials

and introduced regularization processes, while most recent models use B-spline functions

(Bloxham and Jackson, 1992; Jackson et al., 2000) or a combination (Olsen et al., 2006).

These models often propose an inversion of the core-flow close to the CMB (see e.g. Bloxham

and Jackson, 1991), in which case it is necessary to rely on on two major assumption. The

first is the frozen flux hypothesis, also referred to as Alfvén’s theorem, and assumed that as

the electrical conductivity of iron is high, the magnetic field field lines move as frozen into

it. The second hypothesis relies on the fact that the Coriolis force should be dominant in

the force balance of the Earth’s core. Equating the Coriolis to pressure forces leads to an

invariance of the flows along the rotation axis, commonly termed geostrophic. Please note

that though a prior information must be introduced to recover a core flow model, due to

the non-uniqueness of the solution (Backus, 1968), one may also rely on the "steady-flow" or

even "toroidal flow" assumptions. With the advent of the satellite era, the secular variation

of the Earth’s magnetic field is much more constrained (see e.g. the GRIMM Lesur et al.

(2008, 2010) and CHAOS Olsen et al. (2006, 2009, 2010) series of models). However, in

order to study the geomagnetic field in historical records, we will often rely on the gufm1

model (Jackson et al., 2000). It reassembles the evolution of the Earth’s magnetic field

at the core-mantle boundary between 1590 and 1990, by combining the data of mariners,

geomagnetic observatories and satellites data (see Jackson et al., 2003, for complementary

information on the dataset). From a technical standpoint, the gufm1 expands the epochs

modeled by ufm1 (1690-1840) and ufm2 (1840-1990) of Bloxham and Jackson (1992) and

improves the resolution of the magnetic field.

1.4 The geomagnetic westward drift

"In all the other examples, the needle has gradually moved towards the West"

– E. Halley, 1692

The geomagnetic westward drift was first described by Halley (1692) as a westward

variation of the Earth’s magnetic field over time. This observation, including worldwide

measurements since the beginning of the 17th century, is still the most apparent feature of
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Figure 1.12: Maps of magnetic field of year 2017 of the IGRF-12 model (Thébault et al., 2015).
On top, the magnetic declination D with an isocontour spacing of 5̊ . On the middle, the magnetic
inclination I with an isocontour spacing of 20̊ . The greed line is the zero declination/inclination
line. At the bottom, a map of the magnetic intensity F in nanotesla (nT).
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Figure 1.13: Maps of the annual rate of change of magnetic field of year 2017 of the IGRF-12
model (Thébault et al., 2015). On top, the magnetic declination D with an isocontour spacing of
0.1̊ /yr. On the middle, the magnetic inclination I with an isocontour spacing of 0.1̊ /yr. At the
bottom, a map of the annual rate of change of the magnetic intensity F in nanotesla (nT/yr).
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the Earth’s magnetic field secular variation. Later on, Bauer (1895) provided one of the

first measures of this variation by studying the drift of the agonic lines (zero declination

lines of the magnetic field), and found a mean westward drift rate of 0.22̊ yr−1 in London.

The geomagnetic westward drift was again quantified later with the work of Bullard et al.

(1950) and Vestine and Kahle (1968), and estimated as ∼ 0.2̊ yr−1, respectively between

1907-1945 and 1910-1965. Both authors distinguished the westward drift of the non dipole

field (∼ 0.2̊ yr−1) and that of main field (∼ 0.3̊ yr−1), and inferred that this drift is the

direct result of fluid motion close the core-mantle boundary. More precisely, Bullard et al.

(1950) assumed that the outer part of the fluid core (about 200 km beneath the CMB)

should rotate less rapidly than the inner part, resulting in a westward motion relative to

the mantle. These works, confirmed by Nagata (1962) and Yukutake (1962), settled the

westward drift as a fluctuating but continuous feature of the secular variation of the Earth’s

field, with an average of 0.2̊ yr−1 for the last centuries.

Figure 1.14: Time-longitude diagrams of the non axisymmetric part of the magnetic field at the
equator (left) and at 40̊ South of latitude, from Finlay and Jackson (2003).

The common point of the earliest models cited in section 1.3.3 is that the secular

variation, and thus the geomagnetic westward drift, of the field is more intense in the

Atlantic hemisphere, and especially close to the equator. This dependence of the drift was

further determined by Jault et al. (1988), who inverted the azimuthal core flow below the

CMB from the magnetic data. The interpretation is given within the framework of the

torsional oscillations theory developed by Braginsky (1970): the motion of rigid cylinders

aligned with the rotation axis. These are actually Alfvèn waves, as the shear produced by a

differential rotation between two cylinders results in a restoring Lorentz torque.

The best description of the geomagnetic westward drift over historical records is probably

that of Finlay and Jackson (2003). This descriptions is based on the non axisymmetric

part of the radial field that vary on timescale smaller than 400 years, referred to as the

residual field, from the gufm1 model of Jackson et al. (2000). The evolution of the residual
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recognized as fundamental for the geodynamo action. With a toroidal magnetic field of

10mT and a dipole field of 0.5 mT close to the inner core boundary, Gubbins (1981) obtained

an electromagnetic torque of 1019 N.m acting on the inner core, that is balanced by an

electromagnetic torque of large-scale field on average. The steady state response of the

inner core is and eastward rotation of 0.2̊ yr−1 , which may be accompanied by decadal

oscillations.

Since then, the preferred mechanism to entrain the inner core into eastward differential

rotation is an electromagnetic torque at the ICB, which requires a strong radial field and

eastward motion of the fluid close to the ICB to be effective. Surprisingly, this was observed

in the pioneering 3-D numerical simulation of the geodynamo of Glatzmaier and Roberts

(1995) and described in a following study (Glatzmaier and Roberts, 1996). Indeed, early

geodynamo simulations consistently exhibit an eastward rotation of the inner core of 2̊

to 3̊ yr−1, associated with a specific flow pattern commonly named "polar vortices" (see

figure 1.20). In the tangent cylinder 3, the buoyancy forces generated by the release of light

elements produce a large-scale flow that is prograde (eastward) and toward the rotation axis

close to the ICB, and becomes progressively retrograde (wesward) and outward the rotation

axis when approaching the CMB. These large scale flows are responsible for the shear of

the poloidal magnetic field lines that produce a strong toroidal field inside the tangent

cylinder. They are nonetheless well represented by the balance of the Coriolis, Buoyancy

and pressures forces : the thermal wind balance. The presence of this large-scale flow is

supported by experiments on rotating fluids (Aurnou et al., 2003) and is consistent with

the presence of anti-cyclonic flow in polar regions inverted from geomagnetic observations

(Olson and Aurnou, 1999; Hulot et al., 2002), though the lack of data may leads to poorly

resolved areas (Eymin and Hulot, 2005). It is also supported by numerical simulations of the

geodynamo, which often exhibit this flow pattern spontaneously (Aubert, 2005; Sreenivasan

and Jones, 2006).

Hence, numerical simulations featuring this flow and considering the inner core as

electrically conducting do yield a prograde rotation of the inner core. This differential

rotation operates at a weighted average of the angular velocity of the fluid close to the

ICB, as firstly observed by Glatzmaier and Roberts (1996). Indeed, the electromagnetic

torque at the ICB the result of different contributions. This mechanism was investigated

by Aurnou et al. (1996) in simplified models of the flows in the tangent cylinder. The

azimuthal velocity profile extracted from the thermal wind balance is shown to produce a

toroidal magnetic field from the shear of the imposed poloidal field that is added to the

toroidal field produced by the velocity jump at the inner core boundary. As a consequence,

the inner core, of radius ri, is found to lag the fluid at the ICB of ri/4D ≈ 14% of angular

velocity, with D the thickness of the fluid outer core. In addition, as the azimuthal velocity

of a thermal wind is mostly governed by the temperature gradient (also valid for chemical

convection), it is possible to retrieve the average inner core differential rotation by guessing

3. an imaginary cylinder aligned with the rotation axis and tangent to the inner core
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the latter parameter. For relatively small temperature gradient across the tangent cylinder

(5 × 10−4 K and 1.3 × 10−3 K), and in the context of his simplified model, Aurnou et al.

(1996) found inner core rotation of 1.1̊ yr−1 and 3̊ yr−1 corresponding to toroidal fields of

24 mT and 66 mT close to the ICB. This concept was further improved in a subsequent

study (Aurnou et al., 1998) considering three core flow models, inside and outside the

tangent cylinder. The thermal wind flow inside the tangent cylinder are consistently found

to generate an eastward inner core rotation on the order of 1̊ yr−1, while a global westward

motion of the fluid outer core outside the tangent cylinder only trigger a retrograde rotation

0.013̊ yr−1.

Another driving mechanism, though still based on the Lorentz force, is to relate the

time-dependent inner core differential rotation to the presence of torsional oscillations in the

core (Braginsky, 1970). Indeed, the oscillations of rigid cylinders in the core should exert

a Lorentz force on the tangent cylinder, and thus on the inner core (Mound and Buffett,

2003). This was investigated in geomagnetic observations by Zatman (2003), who inferred

that the inner core had endured an eastward rotation of 0.1̊ yr−1 between 1970 and 1990.

Braking

The suggestions that the inner core is rotating eastward at an angular velocity greater

than 1̊ yr−1 were questioned by Buffett (1996b) and the introduction of a presumed

gravitational coupling between the inner core and the mantle, that was not considered

in early numerical simulations. This gravitational coupling is the result of non-axially

symmetric density anomalies in the mantle, that deform the surface of constant potential

inside the core. The main feature of these anomalies is the flattening of the Earth at the

equator is, for example, responsible for a deviation of the isopotential lines of gravity of a

hundred meters close to the ICB (Forte and Peltier, 1991). Such anomalies are expected to

influence the density structure of the inner core, which in return is necessarily locked to

the mantle. Then, if an electromagnetic torque acts on the inner core, the gravitational

coupling is a restoring torque that forces the inner core to remain aligned with the mantle

(see figure 1.16).

The only way to conciliate both the inner core differential rotation and the gravitational

coupling exerted on the latter is to assume that the inner core is able to undergo viscous

deformations as it rotates (Buffett, 1997). This scenario is compatible with inner core

angular velocities on the order of 1̊ yr−1 if its bulk viscosity is less than 3 × 1016 Pa.s

or if the deformation only concerned a layer of a hundred meters at the top of the inner

core, having a viscosity lower than 2 × 1014 Pa.s. In that case, the inner core is able to

undergo both steady and fluctuating rotation, while deforming to remain align with the

mantle. Another envisioned scenario is that the viscosity of the inner core is greater than

1.5 × 1020 Pa.s, but the latter includes a complete locking of the inner core in the case

where the rotation had ever slow down. Numerical simulations of the geodynamo including

such a mechanism thus report much lower rotation rates of inner core, relative to the



32 1.5. Inner core super-rotation

Figure 1.16: Equatorial view of the inner core (IC), outer core (OC), mantle (M) system. (a) The
inner core (deformed) is at equilibrium with the mantle (M). (b) The inner core is misaligned with
the mantle, resulting in a gravitational torque proportional to the misalignment angle, the strength
of density anomalies in the mantle and the inner core viscosity. From (Mound and Buffett, 2003).

mantle. Buffett and Glatzmaier (2000) found a steady rotation rate of 0.02̊ yr−1, using

hyperdiffusivity to solve the dynamics of the outer core (as Glatzmaier and Roberts (1995))

and free-slip mechanical boundary conditions at the ICB, Aubert and Dumberry (2011)

reported a steady rotation of a few degrees per millions years, with a standard treatment

of viscosity and no-slip boundary conditions at the ICB. However, both authors do not

exclude a time-dependent inner core differential rotation, which may be on the order of

0.1̊ yr−1.

Observational constraints

The main constraint on the differential rotation of the inner core is the observed

variations of the length of day (LOD, see e.g. Gross, 2007, for a review). The consideration

of a gravitational coupling between the inner core and the mantle was besides invoked

in order to explain the decadal variations of the LOD (Buffett, 1996a). Indeed, if the

inner core experiences a given gravitational torque, then the mantle necessarily experiences

the exact opposite torque. Therefore, the rotation of the inner core is bounded by the

observation of LOD variations. As an example, the 6-yrs oscillation period of the LOD was

first attributed to mantle-inner core gravitational (MICG) modes that arises from the non

hydrostatic shape of the Earth (Mound and Buffett, 2006). However this conclusion, as well

as any inference on the rotation of the inner core from dynamical models, is highly sensitive

to the chosen values of the inner core viscosity and the intensity of density anomalies in
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Figure 1.17: Phase diagram of Fe from Tateno et al. (2010) on the left, and structure of the
body-centered cubic (bcc), face-centered cubic (fcc) and hexagonal close-packed (hcp) phases, on
the right.

the mantle, which are both deep Earth parameters poorly constrained. Also, the LOD

variations are sensitive to direct coupling between the core and the mantle such that, at

the time, the favored scenario to explain the 6-yrs oscillations on the LOD signal is the

presence of fast torsional oscillations (Gillet et al., 2010) (with electromagnetic coupling

between the core and the mantle).

1.5.2 Seismological evidence

The seismological evidences of a differential rotation of the inner core relative to the

mantle are based on two properties of the inner core: its anisotropy and its lateral variations

(or tilt in the anisotropy). The anisotropy of the inner core was first measured by Poupinet

et al. (1983), who observed that PKIKP 4 waves propagating North-South arrived two

seconds before PKIKP waves propagating in the equatorial plane, though the interpretations

involved faster regions around the inner core poles or an inner core eccentricity. The link

between the inner core anisotropy and the difference in travel time between equatorial and

polar path of P waves was demonstrated by Morelli et al. (1986) with body waves, and

Woodhouse et al. (1986) with normal modes. The magnitude of this anisotropy was later

confirmed to be around 3% by Creager (1992) and Tromp (1993).

The anisotropy of the inner core is a direct consequence of pressure/temperature

dependence of iron mineralogy, presented in figure 1.17. At standard temperature and

pressure (STP), the stable phase of iron is the body-centered cubic phase (bcc), an

arrangement that changes to a stable faced-centered cubic phase (fcc) as the temperature

4. P waves that travel across the mantle (P), the outer core (K), the inner core (I) and continuing across
the outer core(K) and the mantle (P).
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increases. At high pressure, the stable phase is a hexagonal close-packed form (hcp) which

interesting property is the ratio (c/a) between the cylindrical axis of symmetry (c-axis)

and the axis perpendicular to it (a-axis). The first ab initio computations favored the

hcp phase of pure iron at the conditions of the core (Vočadlo et al., 2000), though the

other phases (notably the bcc phase) may be stable considering the presence of lighter

elements impurities , such are Sulphur of Silicon (Vočadlo et al., 2003; Belonoshko et al.,

2003). This was later confirmed with diamond anvil cell experiments that were able to

reach the extreme conditions of the core, and establish the stability of the hcp phase for

pure iron, iron-nickel alloy and iron with silicon impurities (Tateno et al., 2010, 2012; Sakai

et al., 2011). These high-pressure high-temperature also confirmed that, at the inner core

conditions, the ratio c/a of hcp iron is smaller (c/a=1.602 for Tateno et al. (2010)) than the

ideal value of c/a=1.6229, as inferred by Stixrude and Cohen (1995). This ensures that the

c-axis of hcp iron at core conditions is the "fast" axis for wave propagation, so that an inner

core composed of hcp iron aligned with the rotation axis perfectly explain the discrepancy

between the arrival times of the equatorial and polar paths of PKIKP waves observed by

Poupinet et al. (1983), though the mechanism of preferred alignment is still debated.

The early reports of the inner core super-rotation of Song and Richards (1996) were

based on differential travel time between PKP(BC) 5 and PKIKP waves, which is explained

by the inner core anisotropy and its tilt from the rotation axis inferred by other seismological

studies (Shearer and Toy, 1991; Creager, 1992; Su and Dziewonski, 1995). This differential

travel time is found to change over time and is interpreted as a rotation of the inner core

relative to the mantle of 1.1̊ yr−1 by Song and Richards (1996) and 3̊ yr−1 by Su et al.

(1996) for the second half of the century. This view was later questioned by the observations

of hemispherical variations in the structure of the inner core (Tanaka and Hamaguchi,

1997), that better explained body waves propagations data than a tilt in the inner core

anisotropy (Irving and Deuss, 2011), and normal studies reporting westward (Sharrock and

Woodhouse, 1998) or smaller eastward rotation of 0 ± 0.2̊ yr−1 (Laske and Masters, 1999)

and 1.13 ± 0.11̊ yr−1 (Laske and Masters, 2003).

Measurements of differential travel times of PKIKP and PKP(BC) waves are also subject

to strong mantle and D” heterogeneities, noise, and source localization, that challenge

the early reports of the inner core super-rotation. Thus, improvements were made by the

next generation of seismological studies, concerning the quality of data and the earthquake

selections. These studies generally interpret the difference in travel time between earthquake

doublets 6 or pair-events as the differential rotation of hemispherical anomalies of the inner

core. Zhang et al. (2005) thus reported eastward rotations rates between 0.3̊ yr−1 and

0.5̊ yr−1, in agreement with Song and Poupinet (2007), while others studies rather suggest

a zero average rotation (Souriau and Poupinet, 2000) or at least smaller than 0.2̊ yr−1

(Poupinet et al., 2000). In addition, Mäkinen and Deuss (2011) computed two different

5. P waves that travel across the outer core, close to the inner core.
6. Two Earthquakes that happened at two different dates, at the same place and with the same focal

mechanism.
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Figure 1.18: Inferred inner core rotation rates relative to the mantle from Dynamical studies (red
squares), normal modes studies (blue diamonds) and body waves studies (black rounds), inspired
by Deuss (2014).

rotations rates from two closely spaced stations in Alaska and thus precluded any differential

rotation of the inner core, relative to the mantle.

Although we can observe a global consensus throughout the years that tends to diminish

the early estimates of the inner core super-rotation of Song and Richards (1996) and Su

and Dziewonski (1995) to a few tenth of degree per years, the seismological evidences are

various (see figure 1.18). One way to reconcile theses different observations is to consider

that they reflect the fluctuations of the differential rotation of the inner core over time.

This was explored by Tkalčić et al. (2013) who reported and average super-rotation of the

inner core between 0.25̊ yr−1 and 0.48̊ yr−1 from 1961 to 2007, accompanied by decadal

oscillations of about 1̊ yr−1.

1.6 Objectives of this work

1.6.1 Coupled-Earth dynamo

Substantial progress in geodynamo simulations were brought by Aubert et al. (2013) and

the development of the Coupled-Earth (CE) Dynamo model. This model is able to generate

an Earth-like magnetic field, in the sense of Christensen et al. (2010), and reproduces the

main feature of its secular variation as observed in historical records: the geomagnetic

westward drift. The inner core is considered as electrically conducting and the mechanical

boundary condition at the ICB is no-slip while the mantle is considered as insulating, with

free-slip boundary condition at the CMB. Both mantle and inner core are free to axially
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rotate, though there is no direct coupling between the mantle and the outer core. The only

torque exerted on the mantle arises due to gravitational coupling with the inner core, which

submitted to the influence of electromagnetic, viscous and gravitational torques. As the

mantle only experiences a gravitational torque, the latter necessarily vanish in the long-term,

in order to ensure the conservation of angular momentum. In such a configuration, the

inner core is forced to remain aligned with the mantle on time average, and the resulting

large-scale outer core flow consists in a westward gyre close to the CMB (see also Aubert,

2013). This quasi-geostrophic gyre, the existence of which was inferred from core flow

inversions (Pais and Jault, 2008; Gillet et al., 2009), generates a shear that is sufficient

to concentrate the azimuthal magnetic field lines close to the CMB, in equatorial regions.

This mechanism thus produces a steady geomagnetic westward drift of 14 km yr−1, close to

the observed westward drift in historical records (17 km yr−1, Finlay and Jackson, 2003),

with the appropriate latitudinal dependence (see figure 1.19).

Finally, the localization of the drift in the Atlantic hemisphere is achieved by implement-

ing a heterogenous inner core growth. A heterogenous inner core growth was first modeled

by Aubert et al. (2008) in order to explain the hemispherical seismic anomalies at the top of

the inner core (Tanaka and Hamaguchi, 1997; Niu and Wen, 2001), as the freezing rate of

iron is supposed to influence its degree of anisotropy through texturing during solidification

(Bergman et al., 2003, 2005). Regions with lower freezing rates should then correspond

to more anisotropic regions. In Aubert et al. (2008) the differential growth of the inner

core is induced by lateral variations in the CMB heat flux inferred by seismological studies

(McNamara and Zhong, 2005; der Hilst et al., 2007). This top-down forcing promotes faster

freezing rate in the eastern hemisphere of the inner core, resulting in a large-scale thermal

wind circulation in the core through the release of light elements during freezing. In Aubert

et al. (2013), the heterogenous inner core growth is directly implemented as a boundary

condition at the ICB and dominates the thermal mantle-induced effects. As a consequence,

the equatorial gyre is distorted into an asymmetric path that is closer to the ICB where the

release of light element is more intense. This region of the inner core corresponds to that

below Indonesia, which necessarily bring the gyre to reach the CMB below the Atlantic.

Though it is not in agreement with an inner core translation, as proposed by Monnereau

et al. (2010) to explain the hemispheric anomalies of the inner core’s anisotropy, this scenario

offers combined evidences to both seismological observations and the localization of the

geomagnetic westward drift in the Atlantic hemisphere (see figure 1.19).

1.6.2 Direct core-mantle coupling

The work of Aubert et al. (2013) notably underlines the importance of angular momentum

conservation arguments for the dynamics of the inner/outer core-mantle system. However,

it neglects the potential influence of a direct coupling between the fluid outer core and

the mantle. This coupling may be of different nature, which is besides a long standing

debate, but a constraint on its magnitude can be obtained through the observation of the
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Figure 1.19: Profiles of 400-years time averages radial secular variation energy, as a function of
latitude (top) and longitude (bottom), for a standard dynamo model (blue dots), the CE dynamo
model (black line) and the gufm1 model (red line) (Jackson et al., 2000). Outputs of numerical
simulations are filtered at spherical harmonic degree and order 8, and shaded areas correspond to
the standard deviation. From Aubert et al. (2013).
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LOD variations (see Gross, 2001, 2007). The general agreement thus stipulates that the

candidate torque acting on the mantle to explain the LOD variation must be of the order

of 1018 N m.

Viscous Torque

A viscous torque may arise from the friction between the fluid outer and the mantle, in

which case the latter should be dragged in the direction of the subsurface flows. However,

the viscous torque is directly proportional to the fluid’s kinematic viscosity, which is

around 10−6 m2s for the outer core (Poirier, 1988; de Wijs et al., 1998; Terasaki et al.,

2006). Assuming typical core flow velocities of a few millimeters per seconds then lead

to a viscous torque on the order of 1015 N m, which three orders of magnitude than the

required torque. In numerical simulations, as the calculations of small-scale turbulence is

numerically demanding, such low viscosity values are not attainable yet. Thus, the viscosity

of the fluid is over-estimated by several orders magnitude, an so is the viscous torque. To

render the fact that the viscous torque should, in theory, be not sufficient to explain the

LOD variations, we will impose stress-free boundary conditions at both ICB and CMB.

Topographic Torque

It was first suggested by Hide (1969) that the LOD variations may be explained by

topographic torque acting on the mantle, arising from pressure forces of the fluid outer

core flows on non axisymmetric bumps of the CMB. This torque, and its estimate, is thus

proportional to core flows close to the CMB and the CMB topography (see e.g. Roberts,

1988; Buffett, 1998; Jault and Mouël, 1989). In the framework of torsional oscillations

in the core inferred from geomagnetic field models of (Jault et al., 1988) and considering

CMB bumps on the order of five kilometers suggested by Morelli and Dziewonski (1987),

Jault and Le Mouël (1991) found a topographic torque on the order of 1019 N m. On

the other hand, dynamical estimates of this torque in 3-D models of the geodynamo of

Kuang and Chao (2001) showed that the amplitude of the CMB topography should be

greater than three kilometers for the torque to be effective, which contrast with recent

estimates of peak-to-peak amplitudes of one kilometers by Tanaka (2010). We thus follow

the conclusion of Roberts and Aurnou (2012) that there is no clear evidence that the

topographic torque may explain the LOD variations so far, though the opposite may also

be true, and exclude the possible effects of CMB topography on the conservation of the

mantle angular momentum.

Electromagnetic Torque

In the case where the mantle is not perfectly insulating, electric currents flowing from

the core may induce an electromagnetic torque on the mantle. This mechanism was first

proposed by Bullard et al. (1950) as a link between the geomagnetic westward drift and
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the variations of the LOD. Later, Rochester (1960) demonstrated that the electromagnetic

torque may be of the right order of magnitude if the mantle has an electrical conductivity of

102 S m−1 in the 2 000 km above the CMB, corresponding to a conductance of 2.108 S. This

value is still considered as a limiting factor to explain the LOD variations by electromagnetic

coupling and was confirmed by Stix and Roberts (1984), who studied the fluctuations of this

torque over time. The existence an electromagnetic torque at the CMB is only constrained

by the presence of an electrically conducting layer at the base of the mantle. The electrical

conductivity of the mantle is often inferred by modeling the induced magnetic field in the

mantle from external sources, as performed by Civet et al. (2015) with one year of Swarm

data. The electrical conductivity is found to increase from 10−3 S m−1 at 400 km below the

surface, to ≃ 4 S m−1 at 2 000 km depth, which is not sufficient to reach the 108 S value of

mantle conductance. Morever the solution generally looses accuracy as a function of depth,

so that the conductivity of the lowermost mantle is still poorly constrained. However, a

highly conducting lower mantle is in agreement with several high-pressure/high-temperature

mineral experiments. The lower mantle may indeed be composed of a thick (200-300 km)

layer of post-perovskite (Murakami et al., 2004) of high conductivity (Ohta et al., 2008), or

even a thin layer of metallic FeO having the same electrical conductivity as the Earth’s

core (Ohta et al., 2012, 2014). The latter assumption is favored by dynamical models, as

necessary to explain the out-phase component of the forced nutation of the Earth (Buffett,

1992; Buffett et al., 2002). Further constraints on the electrical conductivity of the lower

mantle may finally reside in the observation and the analysis of geomagnetic jerks: abrupt

changes in the secular variation (or secular acceleration) of the magnetic field from internal

origins (see e.g. Bloxham et al., 2002). The very observation of the geomagnetic jerks

indeed place a upper bound on the lower mantle conductances being lower than 2.5 × 109 S

(Alexandrescu et al., 1999; Dumberry, 2007). Recently, the identification of intradecadal

variations in the LOD (Holme and De Viron, 2013) and their link with geomagnetic jerks

also suggested a conducting layer of thickness lower than 50 km, thus encouraging the

highly conducting/thin layer assumption.

In view of these arguments, we will therefore consider in the following that the direct

coupling between the mantle and the fluid outer is of electromagnetic origin, and neglect

any other source of coupling at the core-mantle boundary.

1.6.3 PhD work

This PhD work is based on the Coupled-Earth dynamo model developed by Aubert et al.

(2013) and described in section 1.6.1, in which we add an electromagnetic torque coupling

the mantle and the outer core flow close to the core-mantle boundary and remove viscous

torques at ICB. Though there are alternative theories to explain the westward drift such as

magnetic winds (Livermore et al., 2013) or magnetic Rossby waves (Hori et al., 2015), this

self-consistent convective model offers a complete description of the main features of the

geomagnetic secular variation. The objective is to obtain better constraints on the inner
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core super-rotation than those inferred by seismological studies. Our approach consists in

expressing the link between the well-known geomagnetic westward drift and the inner core

super-rotation. This link may be obtained by the conservation of the angular momentum

of the mantle/outer core/inner core system, and the formulation of dynamical expressions

of the electromagnetic torques. These expressions are validated in numerical simulations of

the geodynamo, the set-up of which is summurized in figure 1.20.

The manuscript is organized as follows. Chapter 2 summarizes the model used in

this PhD work, while its numerical implementation is displayed in chapter 3. Chapter 4

is a reproduction of EPSL paper (Pichon et al., 2016) which analyzes the long-term

rotational dynamics of the coupled system. The first approach of the fluctuating system

is the expression of time-dependent models of the electromagnetic torques at the fluid

core boundaries in chapter 5, which are validated in case-study numerical simulations in

chapter 6. From this analytical and numerical study follows an application to the amplitudes

of the time-dependent rotational dynamics of the system in geodynamo simulations in

chapter 7. Eventually, chapter 8 outlines the main conclusions of this work.
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2

Model

Abstract

This chapter establishes the equations governing convection of an incompressible, New-

tonian and electrically conducting fluid in a rotating spherical shell, under the Boussinesq

approximation. The induction equation is treated under the Magnetohydrodynamic (MHD)

approximation. Chemical and compositional convection in the outer core are described

through the formalism developed by Braginsky and Roberts (1995) while detailed treatement

of the Boussinesq and anelastic fluid approximations follows that of Anufriev et al. (2005),

complementary approaches that are neatly summarized in Jones (2015). Equations are

then displayed in their dimensionless form, from which follows a discussion that compares

convection in numerical geodynamo simulations to the Earth’s core regime.

Résumé

Ce chapitre expose les équations qui régissent la convection d’un fluide conducteur,

Newtonien et incompressible dans une coquille sphérique en rotation, soumis à l’approxima-

tion de Boussinesq. L’induction électromagnétique est traitée dans l’approximation de la

magnétohydrodynamique (MHD). Les aspects chimiques et thermiques de la convection

sont décrits en suivant le formalisme de Braginsky and Roberts (1995) et les détails des

approximations de Boussinesq et de fluide anelastique sont tirés de Anufriev et al. (2005).

Ces deux approches complémentaires sont d’ailleurs résumées par Jones (2015). Les équa-

tions sont ensuite présentées sous leur forme adimensionnée, donnant suite à une discussion

comparant les régimes convectifs des simulations numériques de la géodynamo.

43
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2.1 Geometry

The fluid outer core is modeled as a spherical shell of length D = ro − ri, with ri the

radius of the inner core and ro that of the fluid outer core. The system rotates at an

angular velocity Ω = Ω.ez, with ez the unitary vector parallel to the rotation axis. The

vector Ω is considered as invariant in space and over time. This set up thus ignores any

precession or nutation phenomena, as well as any variations in the length of day (LOD)

that do not originate in the core (see e.g. Gross, 2001, 2007). Fields are described with

spherical coordinates (r, θ, ϕ), with r the radius, θ the colatitude and ϕ the longitude and

(er, eθ, eϕ) the associated basis.

Core geometry
Notation Name Value Unit
ri Inner core radius 1.22 × 106 m
ro Outer core radius 3.48 × 106 m
D Outer core thickness 2.26 × 106 m
Ω Angular velocity of rotation 7.27 × 10−5 rad s−1

Table 2.1: Geometry of the Earth’s core from Dziewonski and Anderson (1981).

2.2 Conservation laws

The time rate of change of a scalar or vectorial quantity moving with an infinitesimal

fluid parcel is described by its material or "Lagrangian" derivative

Df

Dt
=

∂f

∂t
+ u · ∇f, (2.1)

with the velocity field u(ur, uθ, uϕ) in spherical coordinates. This continuity equation reflects

the fact that even is a steady flow (∂f/∂t = 0) the quantity f may suffer changes as it

moves with the flow.

2.2.1 Mass

The differential form of mass conservation, or continuity equation, is given by

∂ρ

∂t
+ ∇ · (ρu) = 0. (2.2)

Our model describes liquid iron in the fluid outer core as an incompressible fluid of density

ρ = ρ0. The density being independent in space and time,

Dρ

Dt
= 0, (2.3)
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this implies from equation (2.2) that the velocity field is solenoidal 1,

∇ · u = 0. (2.4)

2.2.2 Momentum

The momentum conservation of a fluid parcel is subject to surface stresses and volumetric

forces,

ρ
Du

Dt
= ∇ · Π + fb (2.5)

respectively embodied by the stress tensor Πij and the volumetric body force term fb. We

will assume that liquid iron is a Newtonian incompressible fluid, so that viscous stresses are

linearly proportional to the strain rate. In that case, the stress tensor can be written as

Πij = −pδij + 2µεij, (2.6)

where δij is the Kronecker delta symbol 2 and εij is the strain-rate tensor. This expression

also introduces the pressure p and the dynamic viscosity of the fluid µ, that will be considered

as a constant in the following. Inserting equation (2.5) into equation (2.6) then leads to

the incompressible Navier-Stokes equation

ρ
Du

Dt
= −∇p + ρν∇

2u + fb, (2.7)

where we have introduced the kinematic viscosity ν = µ/ρ. This equation also assumes

that the fluid is isotropic, i.e. its properties have no preferred direction, and is valid in a

Newtonian or inertial reference frame (fixed or moving straight uniformly). In the following,

we choose to place ourselves in the non-inertial rotating reference frame of constant angular

velocity Ω. The transition between reference frame of a given vector field v is performed by

v|I = v|Ω + Ω × r, (2.8)

where v|I is the vector in the inertial reference frame and v|Ω in the rotating frame, while

its rate of change is given by

Dv

Dt

∣∣∣∣∣
I

=
Dv

Dt

∣∣∣∣∣
Ω

+ Ω × v. (2.9)

1. divergence-free vector field.
2. δij = 1 if i = j and δij = 0 if i 6= j
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Hence, the Lagrangian derivative of u|I in the inertial frame is

Du|I
Dt

∣∣∣∣∣
I

=


 D

Dt

∣∣∣∣∣
Ω

+ Ω×


(

u|Ω + Ω × r
)

(2.10)

=
Du|Ω
Dt

∣∣∣∣∣
Ω

+ 2Ω × u|Ω + Ω × Ω × r. (2.11)

We may then express the momentum conservation equation in the rotating frame, getting

rid of the indices,

ρ
Du

Dt
= −2ρΩ × u − ρΩ × Ω × r − ∇P + ρν∇

2u + fv. (2.12)

The change of reference frame introduces two new terms. The first one (−2Ω × u) is the

Coriolis acceleration that is directed "on the right" of the velocity vector if the rotation

is counterclockwise, as for the Northern hemisphere of the Earth viewed from above the

North pole. The second one (−Ω × Ω × r) is named the centrifugal acceleration and is

directed radially outward. As the latter may also be expressed as a gradient, it is often

regrouped with the pressure gradient as

− ∇P = −∇p − ρΩ × Ω × r. (2.13)

2.2.3 Angular momentum

The angular momentum of the system is sensitive to two electromagnetic torques at the

fluid core boundaries, ΓICB and ΓCMB. These torques represent the action of the Lorentz

force (see Eq. 2.50) exerted on the inner core and the mantle, so that the general expression

of an axial electromagnetic torque ΓEM on a given electrically conducting volume V is

ΓEM = ez ·
∫

V
r × J × B dV. (2.14)

As demonstrated by Rochester (1962) with the use of Maxwell magnetic stress tensor, this

integral may be expressed by a surface integral for the product between the radial and

azimuthal component of the magnetic field. At the inner core boundary, this gives

ΓICB = − ri

µ0

∫

SICB

BrBϕ sin θ dS. (2.15)

with SICB the surface of the inner core boundary, and at the CMB we have

ΓCMB =
ro

µ0

∫

CMB
BrBϕ sin θ dS. (2.16)

with SCMB the surface of the core-mantle boundary. The mantle and the inner core

are linked by a gravitational torque ΓG (Buffett, 1996a,b). This restoring torque will
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tend to minimize the misalignment angle φ between inner core gravitationally induced

deformations and mantle density heterogeneities. The strength of this torque is given by

the magnitude of mantle heterogeneities, embodied by the gravitational coupling constant

Γ. The gravitational torque exerted by the mantle on the inner core is

ΓG = −φΓ (2.17)

while the temporal evolution of the misalignment angle is a function of the solid body

rotation of the inner core and the mantle, respectively Ωic and Ωm, and a viscous relaxation

time scale of the inner core τ like

dφ

dt
= Ωic − Ωm − φ

τ
. (2.18)

By considering the above mentioned electromagnetic torques and the gravitational

torque, the conservation of the angular momentum of the inner core, the mantle, and the

fluid outer core is displayed by the following system,

Ii
dΩic

dt
= ΓG + ΓICB,

Im
dΩm

dt
= −ΓG + ΓCMB,

d
dt

∫

Vf

ρ0 (r sin θ)2 ωfdV = −ΓICB − ΓCMB,

(2.19)

in which Ii and Im are the moments of inertia of the inner core and the outer, considered

as constants over time. Also, Vf denotes the fluid outer core volume and ωf the angular

velocity of rotation of a fluid parcel.

2.2.4 Energy

The conservation of energy is considered through the conservation of entropy S, an

extensive state function. In the general case, the heat transport equation is given by

ρT
DS

Dt
= ∇ · (kT ∇T ) + HT ρ (2.20)

with T the temperature, kT the thermal conductivity of the fluid and HT the rate of heat

release per unit mass, a given volumetric source term. As convection is supposed to be

mainly driven by the release of light element at the ICB, the conservation of energy must

also consider the composition equation, or transport equation, which is

Dξ

Dt
= ∇ ·

(
kξ∇ξ

)
+ Hξ, (2.21)
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where ξ is light elements concentration, kξ the mass diffusion coefficient and Hξ a volumetric

source term. Equations (2.20) and (2.21) described convection inside the core. However,

the core is believed to be close to an adiabatic and well-mixed state, for which convection

is driven by tiny fractions of density perturbation. Convection is therefore studied through

deviations of the thermodynamic variables from a reference state. Thermodynamic quantities

are then decomposed as

p = pa + p′, T = Ta + T ′, ρ = ρa + ρ′, ξ = ξa + ξ′, and S = Sa + S ′, (2.22)

where the suffix a denotes adiabatic quantitates and the apostrophe their associated

perturbations. The evolution of the perturbations over space and time is obtained by

first considering the state equation of the entropy, assuming that variations of entropy are

associated with variations in temperature, pressure and light element concentration like

dS =

(
∂S

∂T

)

p,ξ

dT +

(
∂S

∂p

)

T,ξ

dp +

(
∂S

∂ξ

)

p,T

dξ (2.23)

=
cp

T
dT − αT

ρ
dp +

hξ

T
dξ, . (2.24)

in which cp is the heat capacity at constant pressure and hξ the heat of reaction. Also, it is

necessary to establish the reference state: the gradients of pa, Ta and ρa inside the core.

The first simply express the hydrostatic pressure gradient like

dpa

dr
= −gρa. (2.25)

As the adiabatic well-mixed reference state implies that entropy and light element concen-

tration are constants (independent of position) inside the fluid outer core, we obtain the

adiabatic temperature gradient from equations (2.24) and (2.25), we have

dTa

dr
= −DiTa

D
, with Di =

gαT D

cp

, (2.26)

the dissipation parameter. Then, we obtain the adiabatic density gradient from the expres-

sion of the Grüneinsen parameter, γ =
(
ρ/T

) (
∂T/∂ρ

)
S,ξ, giving the relationship between

density and temperature variations at constant entropy and light element concentration.

This leads to
dρa

dr
= −−Diρa

γD
, (2.27)

Equations (2.25), (2.26) and (2.27) constitute the adiabatic well-mixed reference state.

They may be used to obtain the evolution of perturbations in entropy from equation (2.20)

like

ρaTa
DS ′

Dt
= Ta∇ ·

(
kT

cp

Ta∇S ′

)
+ ∇ · (kT ∇Ta) − ρaTa

∂Sa

∂t
+ ρaH, (2.28)
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and light elements perturbations from equation (2.21) like

∂ξ′

∂t
+ u · ∇ξ′ =

1
ρa

∇ ·
(
kξ∇ξ′

)
− ∂ξa

∂t
, (2.29)

where H is a source/sink term gathering viscous and ohmic dissipation and heat release by

radioctivity. These conservation equations will then be solved in the Boussinesq limit defined

as Di 7→ 0. Though according to Dziewonski and Anderson (1981) the Earth’s value of Di =

0.2−0.3, it is often argue that such a value is sufficiently small to study tiny perturbations of

thermodynamic quantities around the adiabat in the Boussinesq approximation. Moreover,

this greatly simplify the equations and their numerical implementation, and offers the

advantage of the comparison to laboratory experiments that are often in the Boussinesq

limit. This limit may be view as
cp

gαT

≫ D, (2.30)

where the term on the left hand-side corresponds to a characteristic length-scale of density

variations. The Boussinesq approximation then neglects the effects adiabatic gradients on

convection, the density variations in the momentum equation (except for the buoyancy

force term) as well as the effects of viscous and ohmic dissipation in the entropy budget.

Together with the anelastic liquid approximation (αT T ≪ 1) leading to entropy variations

being mostly induced by temperature variation (see Anufriev et al., 2005),

S ′ =
cp

Ta

T ′, (2.31)

this limit allows the formulation of equations (2.28) and (2.29) like

DT ′

Dt
= κT ∇

2T ′ + H∗, (2.32)

with

H∗ =
∇ · (kT ∇Ta)

ρacp

− Ta

cp

∂Sa

∂t
, (2.33)

and
∂ξ′

∂t
+ u · ∇ξ′ = kξ∇

2ξ′ − ∂ξa

∂t
. (2.34)

which are the Boussinesq form of the heat transport and light element transport equations,

with κT = kT /ρa the thermal diffusivity, and ρa = ρ0 a constant heraeafter. The first term of

H∗ (Eq. 2.33) represents the heat conducted down the adiabat, corresponding to a sink term,

while the second term embody the Earth’s secular cooling. As ∂S/∂t < 0, it corresponds to

a source term from the convection point of view. Because of the non-penetration condition

at the CMB, the similar term in equation (2.34), ∂ξ′/∂t is a volumetric sink term of light

elements that balances the release of light element at the ICB.
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2.2.5 Induction equation

The induction equation governs the evolution of the magnetic field B in an electrically

conducting fluid. It is obtained by a combination of the Maxwell’s equations displayed

below.

Maxwell-Gauss

The Maxwell-Gauss’s law relates the electric field E to the electric charge density ρs like

∇ · E =
ρs

ǫ0

, (2.35)

with ǫ0 is the permittivity of free space.

Maxwell-Faraday

The Maxwell-Faraday’s law indicates how an electric field can be induced by a variation

of a magnetic field,

∇ × E = −∂B

∂t
. (2.36)

Maxwell-Thomson

The Maxwell-Thomson’s or "Maxwell-Flux" law states the non-existence of point source

of magnetic field (magnetic monopole). The elementary object for the description of

magnetic field is thus the magnetic dipole, implying that the magnetic field is a solenoidal

field,

∇ · B = 0. (2.37)

Maxwell-Ampère

The Maxwell-Ampère’s law stipulates that a magnetic field may be induced by electric

currents J or temporal variations of electric fields as

∇ × B = µ0J + µ0ǫ0
∂E

∂t
. (2.38)

We will however use this law under the MHD approximation for which induction phenomenon

occur at velocity u much lower than the speed of light c (u ≪ c = 1/
√

µ0ǫ0), and neglect

displacement currents. The Maxwell-Ampère’s law is then reduces to

∇ × B = µ0J. (2.39)

Under this assumption, Ohm’s law in an electrically conducting fluid with velocity field u

is given by

J = σ (E + u × B) , (2.40)
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with σ the electrical conductivity of the fluid. Then, by inserting equation (2.40) into

equation (2.36) we have

∂B

∂t
= ∇ × (u × B) − ∇ × (η∇ × B) , (2.41)

in which η = 1/σµ0 is the magnetic diffusivity. In the following, we will consider that the

magnetic diffusivity of liquid iron is constant. Then, since the magnetic field is solenoidal

(Eq. 2.37), equation (2.42) may be written

∂B

∂t
= ∇ × (u × B) + η∇

2B. (2.42)

This induction equation reflects that the temporal variability of the magnetic field is

governed by the balance between advection (production of magnetic field through the term

u × B) and diffusion (term in ∇
2B), that is controlled by the fluid’s magnetic diffusivity η.

Properties of liquid iron at core conditions
Notation Name Value Unit
ρ0 Mean density 11 000 kg m−3

µ Dynamic viscosity 10−3 Pa s
ν Kinematic viscosity 10−6 m2s−1

κ Thermal diffusivity 5 × 10−6 m2 s−1

σ Electrical conductivity 1.5 × 106 S m−1

η Magnetic diffusivity 0.5 m2 s−1

Table 2.2: Properties of liquid iron at core conditions from Dziewonski and Anderson (1981),
Pozzo et al. (2012) and de Wijs et al. (1998).

2.2.6 Dimensioned system

In order to obtain the complete expression of the Navier-Stokes equation for our system

we now need to incorporate the different volumetric body forces that will act on the fluid.

Buoyancy force

Following Anufriev et al. (2005), the density perturbation ρ′ are induced by entropy,

pressure and composition perturbations like

ρ′ = S ′

(
∂ρ

∂S

)

p,ξ

+ p′

(
∂ρ

∂p

)

S,ξ

+ ξ′

(
∂ρ

∂ξ

)

p,S

, (2.43)

= −ρaαT Ta

cp

S ′ − p′

gρa

dρa

dr
− ρaαξξ

′ (2.44)
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with αξ the adiabatic compositional expansion coefficient. In the Boussinesq limit developed

in section 2.2.4, and using S ′ = cpT ′/Ta and ρa = ρ0, the density perturbations reduces to

ρ′ = −ρ0

(
αT T ′ + αξξ

′
)

(2.45)

Any perturbation p′ in the fluid outer core will produce a Buoyancy force fb on the fluid

parcel that is proportional to

fb = ρ′g, (2.46)

with g is the gravity acceleration. The gravity acceleration is supposed to vary linearly

with depth in the fluid outer core such that g = −g0r/ro, with g0 the gravity value at the

core-mantle boundary. To described both thermal and compositional effect of the buoyancy

force, we follow the formalism of Braginsky and Roberts (1995) and introduce the codensity

C. Here, the codensity is simplified to

C = ρ0

(
αT T ′ + βξ′

)
, (2.47)

considering that αξ = β/ρ0, with β the density difference between liquid iron and light

elements in the core. The system is then described by an effective thermochemical diffusivity

κ by assuming that turbulent convection in the core bring the temperature and light elements

field to the same diffusivity. The transport equation thus becomes

DC

Dt
= κ∇

2C + S ′

T/ξ, (2.48)

in which S ′

T/ξ represents the sources and sinks of codensity (Aubert et al., 2009), ensuring

the mass conservation in the core.

Lorentz force

Motions of an electrically conducting fluid embedded in a magnetic field B generates

electric currents that will oppose the change that induced them, according to Lenz’s law.

Such electric currents J may be related to the curl of the magnetic field by means of

Ampère’s law

µ0J = ∇ × B, (2.49)

with µ0 the permeability of free space. The induced magnetic field will exert a feedback on

the flow, named the Lorentz force fl that can be expressed as

fl = J × B =
1
µ0

∇ × B × B. (2.50)

Inserting the Buoyancy and Lorentz forces into the momentum equation (Eq. 2.12)

leads to the complete expression of the momentum conservation of liquid iron in the

outer core, which describes the motion of an electrically conducting fluid in a rotating
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spherical shell under the Boussinesq approximation. Though we kept the same notation, the

pressure gradient ∇P is now an "effective" pressure gradient arising from the introduction of

P = Pa +P ′ and the consideration that buoyancy forces associated to pressure perturbations

do not contribute. Equations (2.4), (2.12) with buoyancy fb and Lorentz forces fl, (2.48),

(2.37) and (2.42) form the basic system of MHD equations in the Boussinesq approximation,

that are numerically solved in geodynamo models. This system is resumed as

∇ · u = 0, (2.51)

∂u

∂t
+ u · ∇u + 2Ω × u = −∇P

ρ0

+ ν∇
2u + gC +

1
ρ0µ0

∇ × B × B, (2.52)

∂C

∂t
+ u · ∇C = κ∇

2C + S ′

T/ξ, (2.53)

∇ · B = 0, (2.54)

∂B

∂t
= ∇ × (u × B) + η∇

2B, (2.55)

in which we incorporated the codensity formalism developed in section 2.2.4.

2.2.7 Boundary conditions

The set of equations displayed in the above section 2.2.6 is subject to boundary conditions

on the velocity field, the magnetic field and codensity field.

Mechanical conditions

Though the relevant condition on the velocity field is that of no-slip u(ri, θ, ϕ) = u(ri, θ, ϕ) =

0 at both ICB and CMB, we adopt stress free boundary conditions at the fluid core

boundaries. This strongly mitigates the influence of viscosity, that is overestimated by

several order of magnitude (see section 2.3.4). The velocity field is still subject to a no

penetration condition at both ICB and CMB, the radial component of u is thus set to zero.

These conditions can be written

ur = 0, (2.56)

∂

∂r

(
uθ

r

)
= 0, (2.57)

∂

∂r

(
uϕ

r

)
= 0, (2.58)

at ICB (r = ri) and CMB (r = ro).

Magnetic conditions

As the inner core is considered as electrically conducting, the inner core boundary is not

a boundary for the magnetic field. This is also the case at the CMB due to the presence
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of an electrically conducting layer at the base of the mantle, of thickness ∆. Beyond this

layer, the mantle is considered as insulating, implying that the magnetic field is a potential

field. This can be written,

∀r ∈ [ro + ∆; ∞[ ,

B = −∇Φ, (2.59)

with,

∇
2Φ = 0. (2.60)

Thermochemical conditions

We adopt fixed-flux boundary conditions at both ICB and CMB. If not stipulate, the

mass anomaly flux is spatially homogeneous and constant over time at the ICB,

F =
∫

SICB

κ∇C · dS, (2.61)

and is set to zero at the CMB,

0 =
∫

SCMB

κ∇C · dS, (2.62)

with SCMB and SCMB the surface of the inner core boundary and the core mantle boundary,

respectively. In such a situation, the convection in entirely driven by the flux at the ICB,

while the mass conservation is ensured by a volumetric sink term of codensity which is

present in equation (2.32).

2.3 Dimensionless equations

In fluid dynamics, and more broadly in physics, it is convenient to deal with dimensionless

variables. The transition from dimensioned to dimensionless variables is performed through

an identification of the characteristic dimensions of the system. This technique leads to a

parametrization of the equations that is more appropriate for the numerical implementation

and identifies the force balances they involve. It is submitted to the Vaschy-Buckingham

theorem (or Buckingham π theorem) which states that an equation may be written in term

of p = n − k dimensionless parameters, with n the number of physical variables and k the

number of physical dimensions involved.

2.3.1 Viscous scaling

The classical viscous scaling adopts D2/ν as a characteristic time scale, with typical

length scale D, the thickness of the outer core. This leads to a characteristic velocity ν/D

and pressure ρνΩ, while the characteristic codensity is chosen as [C]. The scale of magnetic
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field is obtained by considering that the Elsasser number Λ, the ratio between Coriolis and

Lorentz forces is close to unity in the fluid outer core,

Λ =
σB2

ρ0Ω
≈ 1 (2.63)

so that a characteristic B scale is
(
ρ0Ω/σ

) 1
2 , or (µ0ηρ0Ω)

1
2 equivalently. In that case, the

set of dimensioned equations defined in section 2.2.6 may be expressed as

∇ · u = 0, (2.64)

E

(
∂u

∂t
+ u · ∇u

)
+ 2ez × u = −∇P + E∇

2u + Ra
r

ro

C +
1

Pm
∇ × B × B, (2.65)

∂C

∂t
+ u · ∇C =

1
Pr

∇
2C + S ′

T/ξ, (2.66)

∇ · B = 0, (2.67)

∂B

∂t
= ∇ × (u × B) +

1
Pm

∇
2B, (2.68)

in which we kept the same notation for the dimensionless quantities. This system is governed

by four dimensionless numbers, the Ekman number

E =
ν

ΩD2
(2.69)

that measures the relative importance between viscous and Coriolis forces, the Prandtl

number number

Pr =
ν

κ
, (2.70)

the ratio between viscous and thermochemical diffusivities, the magnetic Prandtl number

Pm =
ν

η
, (2.71)

the ratio between viscous and magnetic diffusivities, and the Rayleigh number,

Ra =
g0 [C] D

Ων
, (2.72)

that measures the vigor of convection in the fluid outer core. Though this is not our preferred

way to obtain the dimensionless system, this introduces the four basic dimensionless numbers

and exposes the equations as they are implemented in the PARODY-JA code (Dormy et al.,

1998; Aubert et al., 2008).

2.3.2 Diffusion-free scaling

This scaling is based on the inverse of the Earth’s angular velocity of rotation Ω−1

as a typical time scale. The thickness of the spherical shell is kept as typical length
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scale, dymamic pressure is rescaled with ρ0Ω2D2, the magnetic field as (σµ0)
1
2 ΩD and

the codensity with F/4πΩD3, with F the mass anomaly flux at the inner core boundary,

considered as spatially homogeneous and constant over time (Aubert et al., 2009). The

dimensionless system then become

∇ · u = 0, (2.73)

∂u

∂t
+ u · ∇u + 2ez × u = −∇P + E∇

2u + RaF
r

ro

C +
1

Pm
∇ × B × B, (2.74)

∂C

∂t
+ u · ∇C = Eκ∇

2C + S ′

T/ξ, (2.75)

∇ · B = 0, (2.76)

∂B

∂t
= ∇ × (u × B) + Eη∇

2B, (2.77)

in which we introduced the thermochemical Ekman number

Eκ =
E

Pr
=

κ

ΩD2
, (2.78)

in which we introduced the magnetic Ekman number

Eη =
E

Pm
=

η

ΩD2
, (2.79)

and the flux Rayleigh number

RaF =
g0F

ρΩ3D4
. (2.80)

This choice of characteristic dimensions was initiated by Christensen and Aubert (2006) in

order to derive scaling laws for the Earth’s core regime that do not depend on magnetic or

viscous diffusivities. Though it may be considered as our default choice of characteristic

dimensions in this work, our ambition is not to support, nor oppose, the arguments developed

in the study of Christensen and Aubert (2006). Indeed, it was at first more convenient to

work with the same dimensionless variables as in the reference model (Aubert et al., 2013)

and, we also consider this choice as more relevant to describe the long-term dynamics of

the core in terms of typical shears in Pichon et al. (2016).

2.3.3 Core regime

The core regime is characterized by the value of the dimensionless parameters exposed

in the previous section. From tables 2.1 and 2.2, we find that the Ekman number is of order

10−15, showing the dominance of the Coriolis force. The smallness of the thermochemical

and magnetic Prantdl number (Pr ≃ 0.1 and Pm ≃ 10−6) also suggest that the loss of

energy is mostly dominated by Ohmic dissipation. Typical Rayleigh number values may

be found in Gubbins (2001), for thermal and compositional convection, which are at least

106 times greater than the critical Rayleigh number for magnetoconvection, expressing the
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vigor of convection in the Earth’s core. The values of the above dimensionless parameters

are summurized in table 2.3, which also includes three additional parameters estimated

by core flow inversions. They are obtained by introducing a characteristic velocity in the

equation U , which is the root-mean-square velocity of outer core flow close to the CMB.

The first one is the Rossby number

Ro =
U

ΩD
, (2.81)

and expresses the relative importance between the Coriolis and inertial forces. Also, the

Reynolds number

Re =
UD

ν
, (2.82)

and the magnetic Reynolds number,

Rm =
UD

η
. (2.83)

measure the ratio between advection and viscous or Ohmic dissipation, respectively.

Core regime
Notation Name Expression Value
E Ekman ν/ΩD2 10−15

Pr Prandtl ν/κ 10−1

Pm Magnetic Prandtl ν/η 10−6

RaF Flux Rayleigh g0F/ρΩ3D4 10−12

Ro Rossby U/ΩD 10−6

Re Reynolds UD/ν 109

Rm Magnetic Reynolds UD/η 103

Table 2.3: Dimensionless parameters characterizing the fluid outer core flow.

2.3.4 Geodynamo simulation regime

Table 2.4 exposes the main input and output parameters of the Coupled-Earth (CE)

model of Aubert et al. (2013). This numerical simulation, and geodynamo simulation in

general, operate at Ekman numbers that are several orders of magnitude than the inferred

Ekman number of the Earth’s core, meaning that viscosity is largely overestimated. This

is however not a conscious choice, since the Ekman value is directly constrained by the

computing power available. Indeed, such a small Ekman value in the Earth’s core imply

that very small scale turbulence should be resolved, leading to massive computing costs.

This effect may also be seen in the Ekman layer: characteristic flow pattern observed close

to the boundaries in presence of rotation (see e.g. Dormy et al., 1998). As the thickness of

the Ekman layer scales as the square root of the Ekman number, such a layer in the core
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must have a thickness on the order of ten centimeters, implying a resolution requirement

that may not be reached yet.

Geodynamo simulations regime
Code E RaF Pr Pm Ro Re Rm NR Lmax

CE 3 × 10−5 2.7 × 10−5 1 2.5 10−2 377 943 160 133
CE/L 10−8 9 × 10−9 1 4.5 × 10−2 2.4 × 10−4 2.4 × 104 1082 624 133
S2 10−7 ≃ 10−8 1 0.1 5.1 × 10−4 5140 514 1280 1000

Table 2.4: Dimensionless input and output parameters of geodynamo simulations of the CE model
from Aubert et al. (2013), the reference model in this work. A comparison can be maybe with
two recent simulations, the model 0 CE/L simulation of Aubert et al. (2017) with the highest
radial resolution (NR) and the S2 simulation from Schaeffer et al. (2017).

However, as demonstrated in Introduction section 1.6.1, the CE model succeeds in

reproducing the main features of the magnetic secular variation. The natural question that

flow from this observation is then "why ?", given the gap between Earth’s parameters and

geodynamo simulations. The answer may lie in the capacity of geodynamo simulations to

reach Earth-like values of the magnetic Reynolds number (Eq. 2.83), and potentially the

right force balance to reproduce the large-scale dynamics of the Earth’s core, for which the

smallness of the Ekman number may have lower impacts. The Earth-likeness of geodynamo

simulations is therefore proved to be bounded by values of the magnetic Reynolds number

and magnetic Ekman number by Christensen et al. (2010). It is embodied by the parameter

χ2, a measurement of the match between the Earth’s magnetic field that from numerical

simulations in terms dipolarity, symmetry, zonality and flux concentration at the CMB.

Table 2.4 also displays the input and output parameters of two recent geodynamo

simulation. The first one is the model 0 CE/L simulation of Aubert et al. (2017), which

is a large-eddy simulation based on the CE model (Aubert et al., 2013). In order to

reach parameters values approaching the core values, Aubert et al. (2017) established a

unidimensional path between standard simulations and core conditions. Small Ekman values

are reached by using hyperdiffusivity, that suppresses small scale turbulence. However,

the large-scale flow is found to be unaffected and invariant along the path. Since this

path preserves the value of the magnetic Reynolds number, this result demonstrates that

standard geodynamo simulations are relevant to account for the large-scale dynamics of

the Earth’s core. This contrast with the results of Schaeffer et al. (2017), exposed for

the simulation S2 in table 2.4. This simulation represents the best attempt to reach the

core regime, notably in terms of Ekman number (no hyperdiffusivity was used) and is also

the more costly numerical simulation of the geodynamo at the time, involving 8192 cores.

The radial (NR) and lateral resolution (by the maximum degree of the spherical harmonic

expansion Lmax) are then one order of magnitude greater than the CE model. In many

aspects this simulation is the closest simulation to the Earth’s core, but is still considered

by the authors as not having reached the exact core regime.
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As a conclusion, though geodynamo simulations do not operate at the regime of the core,

they succeed in reproducing the large-scale dynamics and the main features of the magnetic

field, for which the smallness of the Ekman number is less crucial. They are limited by the

computational power available, and most recent dynamo simulation run at Ekman numbers

that are still seven orders of magnitude too high. If Moore’s law 3 continues to be verified

in the future, the computational power should hopefully no longer remain a limiting factor

in the next few decades.

3. An empirical law of Gordon Moore, who stated in 1965 that the number of transistors in integrated
circuits should double every two years (modified to 18 months), an exponential growth which may be
related to computational power.
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Numerical implementation

Abstract

This chapter presents the numerical implementation of this study. It displays the

Toroidal-Poloidal decomposition of the vector fields, the spherical harmonic expansion as

well as the radial and temporal schemes in section 3.1 as further developed in Dormy (1997).

Section 3.2 is dedicated to few improvements to the code in terms of boundary conditions

at the core-mantle boundary and the distinction between advective and diffusive ("leakage")

components of the electromagnetic torque acting on the mantle, as well as a time-dependent

integration of the gravitational torque between the inner core and the mantle.

Résumé

Ce chapitre résume tout d’abord l’implémentation numérique des équations présentées

dans le chapitre précédent, établie par Dormy (1997). Les champs vectoriels son décomposés

en scalaires poloïdaux et toroïdaux, eux-mêmes étendus sur la base des harmoniques

sphériques. Il décrit également le schéma d’integration radial en différences finies centrées

ainsi que le schéma temporel semi-implicite, Crank-Nicolson pour les termes de diffusion et

Adams-Bashforth pour les termes non-linéaires. La seconde partie présente les améliorations

apportées au code. L’implémentation exacte des conditions magnétiques à la frontière

noyau-manteau permet alors la décomposition du couple électromagnétique en ses parties

diffusive et advective. Le couplage gravitationnel entre le noyau et le manteau est également

implémenté pour mieux rendre compte des variations temporelles de la rotation de la graine,

autorisant alors l’étude des influences respectives des hétérogénéités de densité dans le

manteau et de la viscosité de la graine.

61
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3.1 Parody-JA Code

The Parody-JA code is a branching of the Parody code, developed by Emmanuel Dormy

and Julien Aubert to solve the MHD equations in a spherical rotating shell. The original

source code may be acquired upon request to Julien Aubert 1.

3.1.1 Toroidal-Poloidal decomposition

Any solenoidal 2 vector field V can be decomposed into poloidal and toroidal scalars,

respectively Vp and Vt, like

V = ∇ × ∇ × rVp + ∇ × rVt, (3.1)

with r = rer the radius vector . This decomposition is unique and allows the determination

of the three components of a given vector by two scalars. It is thus of major interest of the

numerical implementation of the solenoidal velocity u and magnetic field B in our system.

This decomposition, also referred to as "Mie decomposition", may be expressed as

V =




Vr

Vθ

Vϕ


 =




1
r

L2Vp

∂

∂θ

(
1
r

∂

∂r
(rVp)

)
+

1
sin θ

∂Vt

∂ϕ
1

sin θ

∂

∂ϕ

(
1
r

∂

∂r
(rVp)

)
− ∂Vt

∂θ




. (3.2)

Also, it is possible to demonstrated that the scalar product between the radius vector and

the vector V involves the Laplace-Beltrami operator L2 like,

V · r = L2Vp, (3.3)

while the same scalar product with the rotational of V is leads to,

(∇ × V) · r = L2Vt. (3.4)

The L2 operator, also named horizontal Laplacian, is defined as

L2 =
∂

∂r
r2 ∂

∂r
− r2

∇
2 (3.5)

= − 1
sin θ

∂

∂θ
sin θ

∂

∂θ
− 1

sin2 θ

∂2

∂ϕ2 , (3.6)

1. aubert@ipgp.fr
2. Divergence free field, ∇ · V = 0.
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and represents the lateral derivatives of the laplacian operator ∇
2. This decomposition

may be extended to non solenoidal fields, which is useful to compute the advection term

(u × B) which are not necessarily divergence free. In such a case, one may introduce a

spheroidal scalar Vs to replace the poloidal scalar in the decomposition (Eq. 3.2). For a

solenoidal field the relationship between the two is given by

Vs =
1
r

∂

∂r

(
rVp

)
. (3.7)

The introduction of this decomposition into the dimensionless system (2.65)-(2.68) presented

in the previous chapter leads, for example, to a decomposition of the induction equation

into two scalar equations like


 ∂

∂t
− ∇

2

Pm


L2Bp = r · (∇ × u × B) , (3.8)

and 
 ∂

∂t
− ∇

2

Pm


L2Bt = r · (∇ × (∇ × u × B)

)
, (3.9)

where Bp and Br are the poloidal and toroidal scalars, respectively.

3.1.2 Radial discretization

nr nr + 1nr − 1

F (nr − 1) F (nr) F (nr + 1)

h1 h2

The radial implementation is performed by a centered finite difference scheme, on an

irregular grid. The first radial derivative of a given function F at point nr is then evaluated

by

∂F (nr) =
h1

h1 + h2

(
F (nr + 1) − F (nr)

h2

)
+

h2

h1 + h2

(
F (nr) − F (nr − 1)

h1

)
, (3.10)

while the second radial derivative is evaluated by

∂2F (nr) =
h2F (nr − 1) − (h1 + h2) F (nr) + h1F (nr + 1)

h1h2 (h1 + h2) /2
. (3.11)

The irregularity of the grid is controlled by the ratio between the number of regular and

irregular intervals (Ratio1) and the ratio between the minimum and maximum interval

h (Ratio2). This irregularity is presented in figure 3.1, an expresses a refined mesh grid
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close to the fluid core boundaries as well as a constant mesh grid in the bulk of the outer

core. Due to irregularity, introducing terms in (h2 − h1) in Taylor’s development, it is not

0 50 100 150 200 250 300
0
0 50 100 150 200 250 300

0

nr

ri

ro

grid point

ra
d
iu
s

5× 10−3

10−2

h(nr)

= 240

NG = 100

NRRatio2 = 0.1
Ratio1 = 0.3

Figure 3.1: In blue, radius as a function of the grid point nr. In green, evolution of the interval h
between points. NG = 100 are used in the inner core and NR = 240 in the fluid outer core.

straightforward to determine the exact order of the radial scheme. However, this would

correspond to schemes that degenerates like h and h2, for equations (3.10) and (3.11), in

the case of a regular grid.

3.1.3 Spherical harmonics expansion

For a given vector V, its poloidal and toroidal scalars, Vp and Vt, are extended in

spherical harmonics like

Vt(r, θ, ϕ) =
Lmax∑

ℓ=0

ℓ∑

m=0

V
m

tℓ
(r)Y m

ℓ (θ, ϕ), (3.12)

Vp(r, θ, ϕ) =
Lmax∑

ℓ=0

ℓ∑

m=0

V
m

pℓ
(r)Y m

ℓ (θ, ϕ). (3.13)

where Y m
ℓ (θ, ϕ) is the orthonormalized spherical harmonic function of degree ℓ and order m

defined as

Y m
ℓ (θ, ϕ) = P m

ℓ (cos θ)eimϕ, (3.14)

with P m
ℓ the associated normalized Legendre polynomials. The transition between the

spatial (r, θ, ϕ) to the spectral (r, ℓ, m) domain is performed by the SHTns library, developed

by Schaeffer (2013). In such a representation, Lmax and Mmax are the maximum degree and
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order of the spherical harmonic expansion, corresponding to the lateral resolution of the

system. From the construction of the spherical harmonic function, the Laplacian-Beltrami

operator may be reduced to

L2V
m

pℓ
= ℓ (ℓ + 1) V

m

pℓ
, (3.15)

which greatly simplifies the computation of equations (3.8) and (3.9) like


 ∂

∂t
− ∇

2

Pm


B

m

pℓ
=

1
ℓ (ℓ + 1)

r · (∇ × u × B) , (3.16)

and 
 ∂

∂t
− ∇

2

Pm


B

m

tℓ
=

1
ℓ (ℓ + 1)

r · (∇ × (∇ × u × B)
)
. (3.17)

Terms on the right-hand side of equations (3.16) and (3.17) are non linear terms, that

are subject to specific treatment. They are calculated in the physical domain and then

transferred into the spectral domain.

3.1.4 Boundary conditions

Mechanical boundary conditions

The stress-free boundary conditions expressed in section 2.2.7 of the previous chapter

are transformed into conditions on the poloidal and toroidal scalars of the magnetic field,

respectively up and ut. At the ICB (r = ri) and CMB (r = ro), this may be written





up = 0,

∂2up

∂r2 = 0,

∂

∂r

(
ut

r

)
= 0,

(3.18)

Magnetic boundary conditions

The magnetic boundary conditions are directly controlled by the interface conditions on

the electrical E and magnetic B fields. Due to the existence of a thin conducting layer at

the base of the mantle, the outer core boundaries are transitions between two electrically

conducting media. In that case, the boundary conditions on the magnetic field involve

the continuity of the toroidal scalar Bt, as well as the continuity of the poloidal scalar

Bp and its first radial derivative ∂Bp/∂r. However, such a transition generally involves a

discontinuity in the first radial derivative of the toroidal field and a discontinuity on the

second radial derivative of the poloidal field. As said previously, the inner core boundary is

not a strict boundary for the magnetic field. The difference between ICB and CMB lies

in the fact that, contrary to the inner core, the thin conducting layer at the base of the

mantle is not physically implemented. This layer in then modeled by Neumann boundary
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conditions: conditions on the radial derivatives of Bp and Bt at the CMB. As boundary

conditions between insulating and conducting media are similar for the poloidal scalar of

the magnetic field, the condition that the magnetic field derives from a potential field leads

to, in r = ro + ∆,
∂B

m

pℓ

∂r
+

ℓ + 1
r

B
m

pℓ
= 0. (3.19)

Contrary to the poloidal scalar, the radial derivative of the toroidal scalar is discontinuous

at the interface between two conducting media. A condition on the latter may be obtained

by considering the conservation of the tangential electric field at the very same interface (see

e.g Holme (1998) and demonstration in Appendice A.1), and assuming the same magnetic

permeability on both sides of the boundary. This leads to

roηc
∂

∂r
(L2Bt)

∣∣∣∣∣
core

+ r · ∇H × (u × B)
∣∣
core = roηm

∂

∂r
(L2Bt)

∣∣∣∣∣
layer

, (3.20)

in which ηc and ηm are the magnetic diffusivity of the core and the mantle (conducting

part) and ∇H the horizontal gradient, or even

ηc

∂B
m

tℓ

∂r

∣∣∣∣∣∣
core

= ηm

∂B
m

tℓ

∂r

∣∣∣∣∣∣
layer

−
[
r · ∇H × (u × B)

]m
ℓ

roℓ (ℓ + 1)

∣∣∣∣∣
core

, (3.21)

when expanded on the spherical harmonic basis, where the Beltrami Laplacian operator of

a given radial function L2h(r) is equal to ℓ (ℓ + 1) h(r).

The radial derivative on the core side is found to equal the radial derivative on the

mantle side minus a non-linear advection term at the core-mantle boundary that is directly

calculated. A condition on the radial derivative on the core side thus needs an assumption

on the radial derivative in the mantle side. The main constraint on the mantle side is the

continuity of the toroidal magnetic field at both CMB and between the conducting and

insulating part of the mantle, at ro + ∆. The first condition is then

B
m

tℓ
(ro)
∣∣∣
core

= B
m

tℓ
(ro)
∣∣∣
layer

. (3.22)

However, as there are no current sources in the insulating part of the mantle, the continuity

of the toroidal field in ro + ∆ involves

B
m

tℓ
(ro + ∆) = 0. (3.23)

In the implementation of Parody-JA code, the radial derivative in the mantle is chosen as

to reach linearly the latter boundary condition (Eq. 3.23), so that

∂B
m

tℓ

∂r

∣∣∣∣∣∣
layer

= −B
m

tℓ
(ro)

∆
. (3.24)
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The boundary condition on the radial derivative of the toroidal field is then, in r = ro,

∂B
m

tℓ

∂r

∣∣∣∣∣∣
core

= −B
m

tℓ
(ro)

∆
− [r · ∇H × u × B]mℓ

ηcroℓ (ℓ + 1)

∣∣∣∣∣
core

. (3.25)

This implementation also considered that the electrical conductivity, and thus the magnetic

diffusivity, of the layer at the base of the mantle is the same as in the core (ηc = ηm). This,

and the simplification of the radial derivative of B
m

tℓ
on the mantle side, is supported by

the thin layer approximation that is further developed in section 3.2.

3.1.5 Time integration scheme

The time integration involves a semi-implicit Crank-Nicolson scheme for the diffusion

terms and an Adams-Bashforth for non linear terms. The first scheme is unconditionally

stable while the second, as an explicit scheme, is conditionally stable, meaning that a

particular attention is to be payed to the time step dt. Equations (3.16) and (3.17) may be

viewed, in the generic form, as equations of the type

∂

∂t
Af(t) = Bf(t) + g(t), (3.26)

where A and B can be laplacians or bi-laplacians, f(t) the function to integrate and g(t)

representing the non linear terms. For a constant time-steping, the discretization gives

Af(t + dt) − Af(t)
dt

≈ 1
2

Bf(t) +
1
2

Bf(t + dt) +
3
2

g(t) − 1
2

g(t − dt), (3.27)

or even (
A
dt

− 1
2

B
)

f(t + dt) ≈
(

A
dt

+
1
2

B
)

f(t) +
3
2

g(t) − 1
2

g(t − dt). (3.28)

3.2 Parody-GP Code

Solution of the diffusion of magnetic field into the mantle

We here establish the solution of a magnetic field diffusing into the electrically conducting

part of the mantle, a thin layer of thickness ∆ located on the mantle side of the CMB. In

this layer, the diffusion of B is governed by

∂B

∂t
+ ∇ × ηm (∇ × B) = 0, (3.29)

with ηm the magnetic diffusivity of the layer. Introducing at characteristic scale of magnetic

field B and a typical secular variation time scale τSV into equation (3.29) leads to the
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following the dimensional analysis,

1
τSV

B +
ηm

∆2
B = 0. (3.30)

Here, ∆2/ηm represents the time τ∆ needed for a magnetic field to diffuse from the CMB (ro)

to ro + ∆. This characteristic time can be estimated by considering that this layer should

have a conductance (∆σm) on the order of 108 S, in order for the electromagnetic torque

at the CMB to explain the variation of the length of day (LOD), with σm the electrically

conductivity of the layer. This time may be expressed as

τ∆ = µ0 (∆σm) ∆, (3.31)

in which case its estimates only depends on the thickness ∆ of the layer, that may be a

thin layer having the conductivity of the core or a thicker layer of rocks having a smaller

electrical conductivy, as identified in the introduction, section 1.6.2. For a thin conductive

layer of 100 m, we then find τ∆ = h, and for a thicker layer of 300 km we find that

τ∆ = 1.2 yrs. In the following, we will thus rely the assumption that the characteristic time

of the secular variation is much greater than the diffusion of the magnetic field through

electrically conducting part of the mantle. This assumption can be written

τSV ≫ τ∆. (3.32)

We will thus neglect the time derivative of B in equation (3.29) and the magnetic field in

the mantle is described by

∇ × ηm (∇ × B) = 0. (3.33)

Considering a uniform mantle conductivity (∂ηm/∂r = 0) this can be summurized as

ηm∇ × ∇ × B = 0, (3.34)

or even

∇(∇ · B) − ∇
2B = 0. (3.35)

As B is a solenoidal field, this is equivalent to solve the Laplace equation in the electrically

conducting part of the mantle.

∇
2B = 0. (3.36)

Using the poloidal-toroidal decomposition and the spherical harmonic expansion introduced

in sections 3.1.2 and 3.1.3, we find that the toroidal field obeys

∂2(rB
m

tℓ
)

∂r2
− ℓ (ℓ + 1)

(rB
m

tℓ
)

r2
= 0. (3.37)
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The final equation governing the diffusion of the toroidal magnetic field into the layer is

obtain by noticing that the numerical implementation actually computes the quantity rB
m

tℓ
.

We will then solve the above equation considering that B
m

tℓ
= rB

m

tℓ
, a simplification that is

convenient for the numerical implementation and facilitates the following developments.

We finally obtain
∂2B

m

tℓ

∂r2
− ℓ(ℓ + 1)

r2
B

m

tℓ
= 0. (3.38)

Thin layer approximation

The thin layer approximation was firstly exposed by Stewart et al. (1995) and further

studied by Holme (1998). It assumes that the magnetic field varies on horizontal scales

that are large compared to the layer’s thickness, and thus neglects the second term in

equation (3.38). This equation is then be written like

∂2B
m

tℓ

∂r2
= 0. (3.39)

Considering that the toroidal field must be zero in ro + ∆ leads to the following solution,

∀r ∈ [ro; ro + ∆],

B
m

tℓ
(r) = B

m

tℓ
(ro)

ro + ∆ − r

∆
, (3.40)

where B
m

tℓ
(ro) is the value of the toroidal scalar of the magnetic field at the core-mantle

boundary. This leads to the Neumann boundary condition implemented in the Parody-JA

code as expressed in section 3.1.4.

Implementation in Parody-GP

The Parody-GP code includes a treatment of the solution to equation (3.38) that gets

rid of the thin layer approximation. The general solution from B
m

tℓ
∼ rα is found to be of

the form

B
m

tℓ
(r) = C1r

−ℓ + C2r
ℓ+1, (3.41)

with C1 and C2 two constants to be determined. The solution is constrained by the same

boundary conditions: the value of the toroidal scalar at the CMB is B
m

tℓ
(ro) and is equal

zero in ro + ∆, B
m

tℓ
(ro + ∆) = 0. In ro + ∆ we have,

0 = C1(ro + ∆)−ℓ + C2(ro + ∆)ℓ+1, (3.42)

or even

C1 = −C2(ro + ∆)2ℓ+1, (3.43)
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so that

B
m

tℓ
= −C2(ro + ∆)2ℓ+1r−ℓ + C2r

ℓ+1, (3.44)

= C2


rℓ+1 − (ro + ∆)2ℓ+1

rℓ


 . (3.45)

At the CMB, in r = ro, we have

B
m

tℓ
(ro) = C2


rℓ+1

o − (ro + ∆)2ℓ+1

rℓ
o


 , (3.46)

leading to

C2 =
B

m

tℓ
(ro)(

rℓ+1
o − (ro+∆)2ℓ+1

rℓ
o

) . (3.47)

Introducing the expressions of C1 and C2 into solution (3.41) then gives

B
m

tℓ
(r) =

B
m

tℓ
(ro)(

rℓ+1
o − (ro+∆)2ℓ+1

rℓ
o

)


rℓ+1 − (ro + ∆)2ℓ+1

rℓ


 , (3.48)

and finally

B
m

tℓ
(r) = B

m

tℓ
(ro)

(
ro

r

)ℓ

r2ℓ+1 − (ro + ∆)2ℓ+1

r2ℓ+1
o − (ro + ∆)2ℓ+1


 . (3.49)

From equation (3.49) we can now express the radial derivative of the toroidal scalar for the

magnetic field at the mantle side of the CMB,

∂B
m

tℓ

∂r

∣∣∣∣∣∣
layer

=
B

m

tℓ
(ro)

ro


(ℓ + 1) r2ℓ+1

o − ℓ(ro + ∆)2ℓ+1

r2ℓ+1
o − (ro + ∆)2ℓ+1


 , (3.50)

that is to be integrated in the boundary condition on the toroidal field, in order to obtain

the expression of the radial derivative of the latter in the core side of the CMB. We then

obtain
∂B

m

tℓ

∂r

∣∣∣∣∣∣
core

=
ηm

ηc

B
m

tℓ
(ro)

ro

F (ℓ) − r · ∇H × u × B

ηcroℓ (ℓ + 1)

∣∣∣∣∣
core

, (3.51)

with

F (ℓ) =


(ℓ + 1) r2ℓ+1

o − ℓ(ro + ∆)2ℓ+1

r2ℓ+1
o − (ro + ∆)2ℓ+1


 . (3.52)

The function F (ℓ) is here expressed as having for only parameter the degree ℓ of the spherical

harmonic expansion since, for a given numerical simulation, the thickness of the conducting

layer is an input parameter. It though depends on ∆ as expressed by its Taylor’s expansion
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in the vicinity of small ∆,

F (ℓ) =
ro

∆
− ℓ, for ∆/ro 7→ 0. (3.53)

A comparison between the thin layer approximation solution (−ro/∆), the full solution

given by F (ℓ) and its Taylor’s expansion is presented in figure 3.2. This figure shows that
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Figure 3.2: In black, the thin layer approximation solution (−ro/∆) as implemented in JA-Parody.
The complete solution (Eq. 3.52) and its Taylor’s expansion (Eq. 3.53) are respectively in red
and black. Values of these solutions are given as a function of the dimensionless thickness of the
conducting layer (∆/D), and different degrees of the SH expansion. Black doted lines represent
two extreme scenarios of layer’s thickness.

the thin layer solution is not far from the complete solution for layer thickness smaller than

300 km. This thus demonstrates that this approximation may be sufficient to model the

diffusion of the magnetic field from the core into such a layer. The solution is however

affected by the increase of the spherical harmonic ℓ, in the range of possible layer thickness.

The Parody-GP code integrates the complete solution developed in this section. More-

over, in order to account for different scenarios of electrically conducting layers at the base

of the mantle, the original conductance input parameter is now splitted into two input

parameters: the thickness of the conducting layer ∆ and its electrical conductivity σm.
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3.2.1 Torque components

Poloidal torque

The electromagnetic torque acting on the mantle is often decomposed in poloidal and

toroidal components Rochester (1960, 1962); Stix and Roberts (1984); Holme (1998), that

are respectively generated by poloidal and toroidal induced currents in the mantle. For a

given electromagnetic torque ΓEM, this decomposition may be written

ΓCMB = ΓP + ΓT (3.54)

with ΓP and ΓP the poloidal and toroidal parts of the torque. Expressions of ΓP and ΓT

may be obtained by considering the volume integral of the Lorentz force induced by the

penetration of poloidal and toroidal induced currents (see e.g Stix and Roberts, 1984; Holme,

1998),

ΓP = − 1
µ0

∫

S

∂
(
∇

2Bp

)

∂ϕ
Brr dS, (3.55)

with Bs the solenoidal part of the magnetic field which may be related to the poloidal part

Bp like

Bs =
1
r

∂

∂r

(
rBp

)
. (3.56)

At the CMB, however, the boundary condition on the poloidal field is chosen as to match a

potential field, which has no associated currents. In such a situation, we necessarily have

∇
2Bp = 0, and consequently ΓP = 0. Our implementation thus only computes the toroidal

part of the electromagnetic torque acting on the mantle, which is often considered as several

orders of magnitude greater than the poloidal part.

Toroidal torque

Reconstructions of LOD variations induced by core-mantle electromagnetic coupling are

often based on the toroidal part of the torque ΓT. The expression of ΓT may be obtained

by introducing the toroidal part of azimuthal the magnetic field into the surface integral of

the total torque. Using the decomposition given by system (3.2), we then find that

ΓT =
ro

µ0

∫

SCMB

∂Bt

∂θ
Br sin θ dS, (3.57)

where Bt and Br are the values of the field at the core mantle boundary. As further

developed in section 3.2, the value of the toroidal magnetic field at the CMB (and its radial

derivative) is the combination of diffusion of toroidal field from the core and advection at the

CMB. Thus, the toroidal torque may be decomposed into the classically defined "leakage"

and "advective" torques. The advective torque acting on the mantle may be computed by

core-flow inversions, the value of the toroidal field at the CMB is then deduced from the

computation of advection term, that is proportional to the strength of the radial magnetic
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field and the inferred core flow. However, since the toroidal field does not penetrate the

insulating mantle, it is not observable at Earth’s surface. This method thus ignores the

toroidal field that diffuses from the core to the CMB, and so neglects the "leakage" torque.

Though it seems unlikely that the toroidal field from the core suffer decadal oscillations, this

torque is generally considered as irrelevant to explain the decadal LOD variations (Jault

and Le Mouël, 1991).

Implementation

Given the demonstration on boundary condition on the toroidal magnetic field developed

in section 3.2, we found that it would be of interest to have insights on the "leakage" torque

from our numerical simulations of the geodynamo. We thus decompose and retrieve the

advective and diffusive parts of the toroidal field at the core-mantle boundary, and computes

two different integrals that express the advective and the leakage torque on the mantle,

respectively ΓAD and ΓLEAK. Figure 3.3 exposes the results of both the advective and

leakage torque, as proportions of the time-averaged total torque 〈ΓCMB〉. In this typical

simulation, the leakage torque is found to represent only a few percents of the total torque,

with smaller variations around the mean (8 ± 3% of 〈ΓCMB〉 in this case).

0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6
−2.5

−2

−1.5

−1

−0.5

0

0.5

t/τν

Γ

⟨ΓCMB⟩

 

 
ΓAD

ΓLEAK

Figure 3.3: Leakage (ΓLEAK) and advective torque (ΓAD) divided by the mean total torque at the
core-mantle boundary 〈ΓCMB〉 as a function of the dimensionless viscous time.

3.2.2 Time-dependent gravitational torque

In our system, both mantle and inner core experience a gravitational torque ΓG, that

is proportional to mantle heterogeneities of density and inner core’s viscosity. Mantle

heterogeneities are embodied by a gravitational coupling constant Γ, which corresponds to
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the strength of the gravitational torque, while the inner core viscosity µic is represented by

a viscous relaxation time scale

τ ∝ µic

∆ρgicri

, (3.58)

in the case of a uniform inner core (Buffett, 1997), with ∆ρ the density jump and gic the

acceleration of gravity at the ICB. The gravitational torque exerted on the inner core is

given by

ΓG = −φΓ, (3.59)

where φ is the misalignment angle between mantle heterogeneities and inner core deforma-

tions. The evolution of φ over time thus is proportional to the angular velocities of the

inner core Ωic and the mantle Ωm like

dφ

dt
= Ωic − Ωm − φ

τ
. (3.60)

Long-term

The long-term implementation of the gravitational torque is based on the assumption

that
dφ

dt
≪ φ

τ
. (3.61)

This is strictly valid when only considering a steady-state of a constant inner core super-

rotation, and should still be relevant for decadal oscillations of the inner core differential

rotation inferred by Tkalčić et al. (2013) if the relaxation time scale of the inner core

does not exceed the decade. In the framework of this assumption, the misalignment angle

becomes

φ = (Ωic − Ωm) τ, (3.62)

and the expression of the gravitational torque exerted by the mantle on the inner core

reduces to

ΓG = − (Ωic − Ωm) τΓ. (3.63)

If the inner core is subject to both gravitational and electromagnetic torques, the conservation

of the inner core’s angular momentum, with a constant moment of inertia Ii is then

Ii
dΩic

dt
= ΓICB + ΓG, (3.64)

=
(
ΓICB − (Ωic − Ωm) τΓ

)
. (3.65)

In order to fit the discretization process we write

dΩic

dt
=

ΩicτΓ
Ii

+
1
Ii

(
ΓICB − (−Ωm)τΓ

)
. (3.66)
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Taking g(t) = ΓICB(t) + τΓΩm(t), and using the Adams-Bashforth time scheme introduced

in section 3.1.2, we then have

(
1
dt

+
τΓ
2Ii

)
Ωic(t + dt) =

(
1
dt

− τΓ
2Ii

)
Ωic(t) +

1
Ii

(
3
2

g(t) − 1
2

g(t − dt)

)
, (3.67)

and finally,

Ωic(t + dt) =


1 − dt τΓ

2Ii

1 + dt τΓ
2Ii


Ωic(t) +

dt

Ii

(
3
2

g(t) − 1
2

g(t − dt)

)
. (3.68)

The value of the inner core rotation at step t + dt is thus controlled by the strength of

gravitational coupling, the mantle rotation and the electromagnetic torque at time t and

t + dt. In this implementation, the magnitude of the gravitational coupling is embodied by

a single parameter τΓ.

Time-dependent

If we no longer rely on the long-term expression of gravitational torque, we have to solve

a set of equations 



dΩic

dt
= −φΓ

Ii

+
ΓICB

Ii

dφ

dt
= S − φ

τ

(3.69)

with S = Ωic−Ωm, the inner core super-rotation. Using gφ(t) = φ(t)Γ+ΓICB(t), discretization

of the first equation of system (3.69) is then

Ωic(t + dt) = Ωic(t) +
dt

Ii

(
3
2

gφ(t) − 1
2

gφ(t − dt)

)
, (3.70)

while the equation describing the misalignment angle becomes

φ(t + dt) =


1 − dt

2τ

1 + dt
2τ


φ(t) + dt ×

(
3
2

S(t) − 1
2

S(t − dt)

)
. (3.71)

The exact description of the gravitational torque acting on the core, that leads to equations

(3.70) and (3.71) in an explicit scheme, is implemented in the Parody-GP code. This provides

the advantages of a better characterization of fluctuations in the inner core differential

rotation with periodicities shorter than the decade. Moreover, this formalism offers a

decoupling of the two main parameters of the gravitational torque, τ and Γ, which are now

proposed as input parameters. It thus allows the study of a new parameter space, with an

inner core having a small viscosity that is subject to weak or strong mantle heterogeneities

anomalies, leading to small or high Γ values, for example.
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Long-term rotational dynamics

Résumé

Ce chapitre est une reproduction de l’article de recherche "Coupled dynamics of Earth’s

geomagnetic westward drift and inner core super-rotation" (G.Pichon, J.Aubert, A.Fournier)

publié dans Earth and Planetary Science Letters. Il présente une étude systématique du

comportement au long terme de la dérive géomagnétique vers l’ouest et de la super-rotation

de la graine, en tant que composants de la dynamique rotationnelle du noyau terrestre, à

partir de simulations numériques de la géodynamo. Ces simulations intègrent un couplage

gravitationnel entre le manteau et le noyau interne, ainsi que deux couples électromagnétiques

aux frontières du noyau fluide. Cette étude montre que l’amplitude de ces couples n’influence

pas le cisaillement global disponible dans le noyau fluide, dont la valeur est entièrement

déterminée par la vigueur de la convection. L’amplitude relative de ces couples gouverne

cependant la distribution de ce cisaillement entre la dérive géomagnétique vers l’ouest et

la super-rotation de la graine. La valeur estimée de ce cisaillement est remarquablement

proche de celle de la dérive géomagnétique vers l’ouest moyenne durant les 400 dernières

années, ce qui suggère que l’intégralité de ce cisaillement est consommée par cette dernière.

De ce fait, la super-rotation de la graine est nécessairement très proche, ou égale, à zéro

en moyenne. En supposant que la conductance du manteau est de l’ordre de 108 S, cette

conclusion permet alors de contraindre la viscosité de la graine comme étant supérieure à

2 × 1017 Pa.s.
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Abstract

The geomagnetic westward drift and the inner core differential rotation are two com-

ponents of the Earth’s core rotational dynamics. We present a systematic study of their

long-term relationship in convective numerical simulations of the geodynamo. All models

comprise gravitational coupling between the inner core and the mantle, in addition to

electromagnetic coupling at the inner core and core-mantle boundaries. We show that

the strength of these couplings has no influence on the global shear available in the fluid

shell, the amount of which is entirely governed by the vigor of convection. This shear is

distributed between the long-term westward drift and the long-term differential rotation of

the inner core, in proportions controlled by the relative magnitudes of the electromagnetic

and gravitational couplings. A present-day estimate of this available shear predicts a

magnitude of the westward drift close to that observed on average during the last 400 years,

which then implies a non-existent long-term inner core differential rotation. Assuming a

lower mantle conductance of order 108 S, this in turn sets a constraint on the minimum

stiffness of the inner core, the viscosity of which should be larger than 2 × 1017 Pa.s for the

westward drift to dominate.

4.1 Introduction

The geomagnetic westward drift and the inner core super-rotation are two apparently

distinct signatures of rotational dynamics in the Earth’s core. The understanding of their

behavior is of interest to several disciplines: geomagnetism, seismology, geodynamics and

geodesy. However, their possible relationship has so far received little attention.

One of the striking results of the pioneering geodynamo simulation of Glatzmaier and

Roberts (1996) was the observation of a differential rotation of the inner core respectively to

the mantle of about 2̊ per year. This was obtained by taking into account the electromagnetic

coupling between the electrically conducting fluid outer core and solid inner core. Since the

inner core is electrically conducting, it can indeed be permeated by a toroidal magnetic field

which creates an axial electromagnetic torque (Gubbins, 1981). This generally promotes

co-rotation between the inner core and the overlying fluid in the outer core, but local

induction effects at the inner core boundary (ICB) allow for a residual angular velocity
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jump (Aurnou et al., 1996), with the angular velocity difference at the ICB opposing the

shear in the outer core. The situation is hence similar to that occurring in an asynchronous

motor.

Initial numerical reports of the inner core differential rotation (Glatzmaier and Roberts,

1996) gave rise to numerous seismological studies. Using differential travel-time between

PKP(BC) and PKP(DF) waves, Song and Richards (1996) inferred a rotation rate of the

inner core of 1.1 ± 0.7̊ yr−1 in the eastward direction. Since then, many authors have

revised downwards the initial estimates to a maximum rotation rate of about 0.3̊ yr−1, for

instance by using temporal variations in seismic waves travel-time (Creager, 1997; Song,

2000). Using normal modes, Laske and Masters (1999) concluded there was an absence of

inner core super-rotation, and this is the accepted scenario at the present time (see Souriau

and Calvet, 2015, for a review). Therefore, the seismologically inferred super-rotation may

correspond to decadal fluctuations (Tkalčić et al., 2013) around an average zero differential

rotation, as initially suggested by Song and Poupinet (2007).

The geomagnetic westward drift is, in contrast, much better constrained. It was first

described by Halley (1692), as a westward drift of agonic lines of the Earth’s magnetic field

over time. It is nowadays well imaged over the last four centuries in models accounting for

data acquired by mariners, observatories and satellites, as the westward drift of magnetic flux

patches at the core surface (Jackson et al., 2000; Finlay and Jackson, 2003). Concentrated

at the equator in the Atlantic hemisphere, these patches have an average longitudinal

velocity of 17 kilometers per year over the epochs investigated by Finlay and Jackson (2003),

which corresponds to an angular velocity of 0.28̊ yr−1.

Since Roberts P and Scott (1965), it is admitted that this secular variation pattern

reflects advection by an underlying azimuthal flow below the core-mantle boundary (CMB).

At this point, it is thus natural to imagine that the westward drift and the inner core

super-rotation are the top and bottom signatures of a global radial shear in azimuthal

velocities. The dynamic origin of such a global shear may reside in core polar vortices.

These vortices result from the interaction between convective upwellings and Coriolis forces

inside the tangent cylinder (the imaginary cylinder aligned with the rotation axis and

circumscribing the inner core). They are cyclonic close to the ICB and anti-cyclonic when

approaching the CMB. These polar vortices are ubiquitous features in numerical geodynamo

simulations (e.g. Aubert, 2005; Sreenivasan and Jones, 2006), and appear to be in agreement

with flows estimated from the geomagnetic secular variation (Olson and Aurnou, 1999),

though they should be interpreted with caution as they are poorly resolved in polar regions

(Eymin and Hulot, 2005). Polar vortices can provide the shear that links the inner core

rotation and the westward drift, but the absolute velocities of these quantities in the frame

rotating with the Earth are ultimately determined by the state of coupling between the

inner core, the outer core and the mantle (Dumberry, 2007; Aubert et al., 2013).

The key ingredient here is the possibility of a gravitational torque, coupling the inner

core and the mantle (Buffett, 1996b). The mechanism involves density anomalies in the
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mantle (see Davies et al. (2014) for recent estimates) which deform the equipotential

gravity surfaces by about a hundred meters close to the ICB (Buffett, 1997). The shape

of the inner core adjusts to the gravity equipotential, in which case a slight misalignment

between the mantle and the inner core results in a strong restoring force. If the inner core

is allowed to viscously deform, though, then a super-rotation is still worth considering

while creating a moderate restoring force (Buffett, 1997). A second crucial component is

the coupling between the outer core and the mantle at the CMB.Moreover, the strength

of the gravitational torque also affects the average westward flow at the CMB (Buffett

and Glatzmaier, 2000), as a consequence of the balance between this remote torque and

a direct torque between the mantle and the fluid at the CMB. A primary candidate for

a such coupling is again electromagnetic forces (Buffett, 1992; Holme, 1998; Buffett and

Christensen, 2007). The basic idea is that there is an electrically conducting layer on

the mantle side of the CMB, which again can be permeated by toroidal magnetic fields

and hence can experience a magnetic torque (Rochester, 1960, 1962). Evidence for the

existence of this layer can be obtained by looking at the out-of-phase component of the

forced nutations of the Earth (Buffett, 1992; Buffett et al., 2002), which constrains the

conductance of this layer to be at least 108S. This is supported by recent mineral physics

experiments, inferring a thick post-perovskite layer (Murakami et al., 2004) of quite high

conductivity (Ohta et al., 2008) or a thin layer of metallic FeO with a conductivity close to

that of the core (Ohta et al., 2012).

From this discussion, it becomes obvious that the rotational state of the core is the result

of a complex combination of physical effects. For example, the angular velocity jump at the

ICB will be influenced by the strength of the gravitational torque exerted on the inner core

and the amount of westward drift will crucially be determined by the amplitude of magnetic

coupling at the CMB. We can however anticipate that the global amount of shear available

in the outer core will be insensitive to both effects described above, as it should only be

dictated by the strength of convection (Aubert, 2005). It thus appears timely to elaborate

numerical geodynamo models encompassing all these effects and derive the scaling laws

governing the long-term rotation components of Earth’s coupled core-mantle system. From

a practical standpoint, this is an incremental study adding the CMB magnetic coupling to

the coupled Earth dynamo system which neglected its impact (Aubert et al., 2013). From

a theoretical point of view, we rely on the theory developed by Dumberry (2007) in order

to derive the scaling laws. We frame our analysis within the thermal wind theory (Aurnou

et al., 2003; Aubert, 2005) to explain the geomagnetic westward drift. This theory is able to

reproduce several observations of the Earth’s magnetic field and its secular variation, such as

the equatorial field patch trains of normal polarity, their wave like patterns and their inferred

underlying core flows, all within a self-consistent convective model (see e.g. Aubert et al.,

2013). There are alternative theories to explain the geomagnetic westward drift : magnetic

winds (Livermore et al., 2013), magnetic Rossby waves (Hori et al., 2015) and mantle control

(Christensen and Olson, 2003); however, these have yet to give birth to dynamical models
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capable of generating spontaneously the salient features of the geomagnetic secular variation

we just recalled. We also restrict our analysis to electromagnetic and gravitational torques

only, and do not consider other sources of coupling between the mantle and the core, such

as the topographic torque, which remains poorly constrained (Roberts and Aurnou, 2012).

The key geophysical questions we have in mind are the following ones: are the inner core

super-rotation and the westward drift long-term features of the geodynamo? What is the

physical link between these two components of the rotational dynamics of the Earth? Under

what conditions does the coupled Earth dynamo model match the observed westward drift?

To address these questions, we dedicate the second section to the description of our physical

model, its numerical implementation, and a theoretical analysis of its long-term rotational

state. That theory is successfully tested against the outputs of numerical simulations in

section 4.3, and its geophysical implications are finally discussed in section 4.4.

4.2 Model

4.2.1 Conservation laws

We consider the flow of an electrically conducting, incompressible fluid of density ρ

and viscosity ν, driven by convection in a spherical shell of thickness D = ro − ri, where

ri is the inner core radius and ro is the core-mantle boundary radius. A set of spherical

coordinates is chosen as (r,θ,ϕ), with associate unit vectors (er,eθ,eϕ).The shell is rotating

at an angular velocity Ω about an axis ez, and its aspect ratio ri/ro = 0.35 is that of the

present-day Earth’s core. As the fluid is assumed to be incompressible, the continuity

equation describes the velocity field u as solenoidal,

∇ · u = 0. (4.1)

Thermochemical convection is modeled by the codensity C (Braginsky and Roberts, 1995)

in the Boussinesq approximation, such that

C = αT ρT ′ + ∆ρξ′, (4.2)

with αT the thermal expansion coefficient, T ′ the deviation of the temperature field about

the isentropic temperature, ∆ρ the density difference between light elements and pure iron

and ξ′ the light element mass fraction with respect to a well-mixed outer core. We assume

that thermal and chemical diffusity are both equal to κ, the codensity diffusivity, due to

turbulent mixing in the outer core. Thus, the codensity field C is given by a single transport

equation,

∂C

∂t
+ u · ∇C = κ∇

2C + ST/ξ, (4.3)

where ST/ξ is a volumetric correction term ensuring mass conservation (Aubert et al.,
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2009). To obtain the velocity u, codensity C and magnetic fields B we solve equations (4.1)

and (4.3) together with the electromagnetic induction equation in the magnetohydrodynamic

approximation and the Navier-Stokes equation accounting for the back reaction of the

solenoidal magnetic field on the flow:

∂B

∂t
= ∇ × (u × B) + η∇

2B, (4.4)

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇P − 2ρ (Ω × u) + ρν∇

2u +
1
µ0

(∇ × B) × B + gC, (4.5)

∇ · B = 0. (4.6)

This set of equations is solved in the planetary reference frame and gravitational acceleration

g is directed along er. The magnetic diffusivity of the fluid is defined as η and its magnetic

permeability as µ0.

We adopt stress-free conditions at both ICB and CMB, to mitigate the influence of

viscosity on the fluid outer core boundaries. The viscosity is the least realistic parameter

in numerical dynamo models, being overestimated by several orders of magnitude. This

condition can be written

ur

∣∣∣∣∣
r=ri,ro

= 0 (4.7)

and
∂

∂r

(
uθ

r

) ∣∣∣∣∣
r=ri,ro

=
∂

∂r

(
uϕ

r

) ∣∣∣∣∣
r=ri,ro

= 0. (4.8)

The mass anomaly flux F is spatially homogeneous and remains constant over time at the

inner core surface SICB and is taken as zero at the CMB so that

F =
∫

SICB

κ∇C · dS, and (4.9)

0 =
∫

SCMB

κ∇C · dS, (4.10)

with SCMB the core-mantle boundary surface. This simulates a situation where convection

is entirely bottom-driven, as would be the case if the CMB total heat flux were exactly

adiabatic. The inner core is modeled as a rigid body, free to rotate at an angular velocity

Ωic under the influence of magnetic and gravitational torques. We assume that the electrical

conductivities of the fluid and the solid parts of the core are equal, and we denote them

by σc. This greatly simplifies our model and appears a reasonable assumption in light of

mineral physics estimates (Pozzo et al., 2012; de Koker et al., 2012; Gomi et al., 2013). The

mantle is considered as conductive in a layer of thickness ∆ and conductivity σm directly

above the CMB. At radii greater than ro + ∆, the mantle is considered as insulating and

the magnetic field is a potential field.

The angular momentum evolution in both inner core and mantle is determined by the
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torque balance between electromagnetic and gravitational coupling

Im
dΩm

dt
= −ΓG + ΓCMB, (4.11)

Ii
dΩic

dt
= ΓG + ΓICB, (4.12)

with Im and Ii respectively the moments of inertia of the mantle and the inner core. For

the fluid outer core, the evolution of angular momentum can be written

d
dt

∫

V
ρ(r sin θ)2ωfdV = −ΓCMB − ΓICB, (4.13)

where V is the volume of the outer core and ωf the local rotation rate of fluid parcels.

The electromagnetic torques acting on the mantle and the inner core, respectively ΓCMB

and ΓICB, can be evaluated following the formalism developed by Rochester (1960, 1962).

The moment of the Lorentz force integrated over a given volume is thereby reduced to the

integral of the product of the radial and azimuthal magnetic field, Br and Bϕ, over the

surface of the core-mantle boundary for ΓCMB and the surface of the inner core for ΓICB.

The magnetic torques can then be written

ΓCMB = − ro

µ0

∫

SCMB

BrBϕ sin θdS, and (4.14)

ΓICB =
ri

µ0

∫

SICB

BrBϕ sin θdS, (4.15)

respectively. The restoring gravitational torque ΓG exerted on the inner core is proportional

to its misalignment angle φ relative to the mantle, and a gravitational coupling constant Γ

(Buffett, 1997; Dumberry, 2007) as

ΓG = −φΓ. (4.16)

At any given time, the evolution of this misalignment angle is governed by

dφ

dt
= Ωic − Ωm − φ

τ
, (4.17)

with Ωic and Ωm, respectively the solid-body rotation rates of the inner core and the mantle,

and τ the viscous relaxation time of the inner core. Our focus on the long-term behavior

of the geodynamo in this study allows us to adopt a simpler expression for φ. When the

fluctuations of φ occur on time scales longer than the inner core relaxation time this gives

dφ/dt ≪ φ/τ , and thus φ = (Ωic − Ωm) τ (Aubert and Dumberry, 2011). Introducing this

expression into (4.16) leads to

ΓG = − (Ωic − Ωm) τΓ. (4.18)
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4.2.2 Dimensionless equations and numerical implementation

Since our study relies on the rotational dynamics of the geodynamo we choose Ω−1,

the inverse of the planetary rotation rate, as the relevant timescale. The length scale is

D, the thickness of the fluid shell. Magnetic induction B is scaled by (ρµ0)
1/2 ΩD and the

non-hydrostatic pressure by ρΩ2D2, following the study of Christensen and Aubert (2006).

Finally, the codensity C is scaled with F/4πD3Ω (Aubert et al., 2009). For simplicity,

we adopt in the following sections the same notation for dimensionless variables as for

our previously defined dimensional variables. From herein, equations and results will be

presented in dimensionless form. Governing equations can then be written as

∂u

∂t
+ u · ∇u + ∇P + 2ez × u = E∇

2u + (∇ × B) × B +
r

ro

RaF C, (4.19)

∂C

∂t
+ u · ∇C = Eκ∇

2C + ST/ξ, (4.20)

∂B

∂t
− ∇ × (u × B) = Eη∇

2B. (4.21)

The four non-dimensional parameters are the Ekman number,

E =
ν

ΩD2
, (4.22)

the thermochemical Ekman number,

Eκ =
κ

ΩD2
, (4.23)

the magnetic Ekman number,

Eη =
η

ΩD2
, (4.24)

and the modified Rayleigh number,

RaF =
goF

4πρΩ3D4
, (4.25)

accounting for a fixed-flux boundary condition at the inner core surface, with go the

gravitational acceleration at the CMB. Values of the input parameters for the 45 models

considered in this study are summarized in tables 4.1 and 4.2.

In dimensionless form, equations (4.11) and (4.12) now become

Im
dΩm

dt
= ζ (Ωic − Ωm) +

ΓCMB

ρD5Ω2
, (4.26)

Ii
dΩic

dt
= −ζ (Ωic − Ωm) +

ΓICB

ρD5Ω2
, (4.27)
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with ΓCMB and ΓICB as defined by equations (4.14) and (4.15). This system includes

a new dimensionless parameter, ζ, representing the strength of the gravitational coupling

between the inner core and the mantle. As moments of inertia are scaled using ρD5 and

electromagnetic torques using ρD5Ω2, this gives

ζ =
τΓ

ρD5Ω
. (4.28)

Given our choice of characteristic scales, ζ is normalized by the fluid core angular momentum,

it thus compares the relative importance of gravitational coupling and core inertia.

Finally, it is important to mention one last dimensionless parameter that does not

directly appear in the equations but which enters the formulation of the CMB magnetic

boundary condition, namely the parameter

Σ =
∆σm

Dσc

. (4.29)

The parameter Σ compares the relative importance of mantle and core conductances. It

should be kept in mind that while values of ζ of O(1) are geophysically admissible, values of

Σ of the same order are clearly unrealistic such that in general Σ ≪ 1. The mantle is a poor

electrical conductor (see e.g. Civet et al., 2015, and references therein), at the exception

(already discussed in the introduction) of a thin layer above the CMB (Ohta et al., 2008,

2012) whose conductance may reach the value of 108 S inferred by Buffett (1992). This last

value is four orders of magnitude lower than the fluid core conductance. We can therefore

anticipate that the geophysically relevant range for Σ does not extend beyond 10−3. For

the sake of completeness, however, the range we shall consider in this study covers 7 orders

of magnitude, with Σ varying from 10−8 to 10−1.

We performed numerical 45 simulations of the system (4.19)-(4.29) using the PARODY-

JA numerical implementation (Dormy et al., 1998; Aubert et al., 2008), the latest version

of which uses the spectral transform library SHTns (Schaeffer, 2013). Tables 4.1 and 4.2

summarize the input and output parameters of the parameter space survey. Among the

outputs not yet defined, we mention here: AD/(AD+NAD), the relative axial dipole power

defined by Christensen et al. (2010), Lmax, the maximum degree and order of the spherical

harmonic decomposition in the horizontal directions, the number of grid points in the radial

direction NR, and the mean squared magnetic field respectively at ICB and CMB, B2
ri

and B2
ro

. Most dynamos exhibit a strong dipolar component, i.e AD/(AD + NAD) ≥ 0.6.

Since we are mainly interested in the long-term (time-average) behavior of the system,

simulations were time-integrated as to ensure convergence of time-averages for the values of

interest (see tables 4.1 and 4.2).



86
4
.2

.
M

o
d

e
l

RaF Σ ζ D Cf Cicb S B2
ri

B2
ro

AD
AD+NAD

NR Lmax

2.70 × 10−5 1.00 × 10−8 0.75 -5.30 ×10−3 0.01 5.02 × 10−3 2.76 × 10−6 4.40 × 10−4 1.01 × 10−5 0.66 120 85

2.70 × 10−5 1.00 × 10−7 0.75 -5.04 ×10−3 0.01 5.20 × 10−3 2.78 × 10−6 4.59 × 10−4 9.42 × 10−6 0.65 120 85

2.70 × 10−5 1.00 × 10−6 0.75 -5.49 ×10−3 0.01 4.75 × 10−3 2.77 × 10−6 4.65 × 10−4 1.04 × 10−5 0.67 120 85

2.70 × 10−5 1.00 × 10−5 0.75 -5.27 ×10−3 0.01 5.27 × 10−3 3.54 × 10−6 4.72 × 10−4 1.01 × 10−5 0.66 120 85

2.70 × 10−5 5.00 × 10−5 0.75 -4.36 ×10−3 0.01 5.76 × 10−3 5.75 × 10−6 4.62 × 10−4 9.75 × 10−6 0.65 120 85

2.70 × 10−5 1.00 × 10−4 0.75 -3.99 ×10−3 9.93 × 10−3 5.93 × 10−3 8.82 × 10−6 4.51 × 10−4 1.07 × 10−5 0.67 120 85

2.70 × 10−5 1.00 × 10−3 0.75 -1.50 ×10−3 9.41 × 10−3 7.89 × 10−3 1.97 × 10−5 4.75 × 10−4 1.39 × 10−5 0.63 120 85

2.70 × 10−5 5.00 × 10−3 0.75 -8.17 ×10−4 0.01 9.22 × 10−3 2.49 × 10−5 4.54 × 10−4 6.19 × 10−5 0.58 120 85

2.70 × 10−5 0.01 0.75 -7.58 ×10−4 0.01 0.01 2.29 × 10−5 3.95 × 10−4 1.21 × 10−4 0.50 120 85

2.70 × 10−5 0.05 0.75 -4.36 ×10−4 0.01 0.01 2.09 × 10−5 3.22 × 10−4 4.38 × 10−4 0.21 120 85

(D) 2.70 × 10−5 0.10 0.75 -2.10 ×10−4 0.01 0.01 1.75 × 10−5 3.08 × 10−4 5.64 × 10−4 0.05 120 85

2.70 × 10−5 1.00 × 10−4 0 1.23 × 10−3 0.01 4.22 × 10−3 7.40 × 10−3 4.66 × 10−4 1.03 × 10−5 0.67 120 85

2.70 × 10−5 1.00 × 10−4 3.00 × 10−4 -7.27 ×10−5 0.01 4.84 × 10−3 5.49 × 10−3 4.55 × 10−4 9.89 × 10−6 0.66 120 85

2.70 × 10−5 1.00 × 10−4 1.50 × 10−3 -2.02 ×10−3 0.01 5.57 × 10−3 2.75 × 10−3 4.84 × 10−4 1.05 × 10−5 0.66 120 85

2.70 × 10−5 1.00 × 10−4 3.00 × 10−3 -2.78 ×10−3 0.01 5.66 × 10−3 1.67 × 10−3 4.85 × 10−4 1.04 × 10−5 0.66 120 85

2.70 × 10−5 1.00 × 10−4 7.50 × 10−3 -3.31 ×10−3 0.01 5.96 × 10−3 7.45 × 10−4 4.60 × 10−4 1.02 × 10−5 0.66 120 85

2.70 × 10−5 1.00 × 10−4 0.02 -3.63 ×10−3 0.01 6.33 × 10−3 3.88 × 10−4 4.51 × 10−4 9.75 × 10−6 0.64 120 85

2.70 × 10−5 1.00 × 10−4 0.03 -3.62 ×10−3 0.01 6.19 × 10−3 1.93 × 10−4 4.53 × 10−4 9.70 × 10−6 0.65 120 85

2.70 × 10−5 1.00 × 10−4 0.05 -3.80 ×10−3 0.01 6.08 × 10−3 1.20 × 10−4 5.01 × 10−4 1.05 × 10−5 0.66 120 85

2.70 × 10−5 1.00 × 10−4 0.07 -3.77 ×10−3 9.87 × 10−3 6.01 × 10−3 8.23 × 10−5 4.57 × 10−4 1.02 × 10−5 0.65 120 85

2.70 × 10−5 1.00 × 10−4 0.15 -3.90 ×10−3 0.01 6.21 × 10−3 4.16 × 10−5 4.70 × 10−4 9.92 × 10−6 0.66 120 85

2.70 × 10−5 1.00 × 10−4 0.30 -3.89 ×10−3 0.01 6.29 × 10−3 2.06 × 10−5 4.20 × 10−4 9.92 × 10−6 0.65 120 85

2.70 × 10−5 1.00 × 10−4 0.45 -3.75 ×10−3 9.99 × 10−3 6.24 × 10−3 1.30 × 10−5 4.78 × 10−4 9.66 × 10−6 0.64 120 85

2.70 × 10−5 1.00 × 10−4 0.60 -3.91 ×10−3 0.01 6.34 × 10−3 1.03 × 10−5 4.35 × 10−4 9.90 × 10−6 0.65 120 85

9.00 × 10−6 1.00 × 10−4 3.00 × 10−3 -2.34 ×10−3 5.97 × 10−3 2.54 × 10−3 1.09 × 10−3 3.75 × 10−4 9.90 × 10−6 0.79 120 85

1.35 × 10−5 1.00 × 10−4 3.00 × 10−3 -2.63 ×10−3 7.72 × 10−3 3.79 × 10−3 1.29 × 10−3 4.13 × 10−4 1.03 × 10−5 0.74 120 85

1.80 × 10−5 1.00 × 10−4 3.00 × 10−3 -2.80 ×10−3 8.88 × 10−3 4.67 × 10−3 1.41 × 10−3 4.32 × 10−4 1.01 × 10−5 0.71 120 85

2.25 × 10−5 1.00 × 10−4 3.00 × 10−3 -2.75 ×10−3 9.58 × 10−3 5.31 × 10−3 1.52 × 10−3 4.55 × 10−4 1.03 × 10−5 0.68 120 85

(A) 2.70 × 10−5 1.00 × 10−4 0 -5.68 ×10−5 0.01 4.14 × 10−3 6.41 × 10−3 4.82 × 10−4 1.05 × 10−5 0.68 220 85

2.25 × 10−5 1.00 × 10−4 0 -1.55 ×10−4 9.95 × 10−3 3.91 × 10−3 5.88 × 10−3 4.79 × 10−4 1.08 × 10−5 0.71 220 85

1.80 × 10−5 1.00 × 10−4 0 -1.78 ×10−4 8.91 × 10−3 3.29 × 10−3 5.45 × 10−3 4.65 × 10−4 1.11 × 10−5 0.73 220 85

1.35 × 10−5 1.00 × 10−4 0 -2.10 ×10−4 7.67 × 10−3 2.77 × 10−3 4.69 × 10−3 4.36 × 10−4 1.09 × 10−5 0.76 220 85

9.00 × 10−6 1.00 × 10−4 0 -2.67 ×10−4 6.03 × 10−3 1.93 × 10−3 3.84 × 10−3 3.84 × 10−4 1.02 × 10−5 0.79 220 85

6.30 × 10−5 1.00 × 10−4 0 1.50 × 10−3 8.39 × 10−3 3.11 × 10−3 6.78 × 10−3 6.21 × 10−4 1.29 × 10−5 0.62 220 85

7.20 × 10−5 1.00 × 10−4 0 1.96 × 10−3 5.95 × 10−3 1.95 × 10−3 5.95 × 10−3 6.97 × 10−4 1.49 × 10−5 0.65 220 85

2.70 × 10−5 1.00 × 10−4 0.75 -4.14 ×10−3 0.01 6.22 × 10−3 7.45 × 10−6 4.57 × 10−4 9.69 × 10−6 0.65 140 85

2.70 × 10−5 1.00 × 10−4 0.75 -4.25 ×10−3 9.95 × 10−3 5.69 × 10−3 7.97 × 10−6 4.88 × 10−4 1.09 × 10−5 0.67 160 85

2.70 × 10−5 1.00 × 10−4 0.75 -4.33 ×10−3 0.01 5.78 × 10−3 7.22 × 10−6 4.76 × 10−4 1.03 × 10−5 0.67 180 85

2.70 × 10−5 1.00 × 10−4 0.75 -4.36 ×10−3 0.01 5.69 × 10−3 7.31 × 10−6 4.79 × 10−4 1.05 × 10−5 0.67 200 85

(C) 2.70 × 10−5 1.00 × 10−4 0.75 -4.40 ×10−3 0.01 5.94 × 10−3 6.91 × 10−6 4.76 × 10−4 1.03 × 10−5 0.66 220 85

2.70 × 10−5 1.00 × 10−4 0.75 -4.40 ×10−3 0.01 5.88 × 10−3 6.48 × 10−6 4.68 × 10−4 9.84 × 10−6 0.66 240 85

(B) 2.70 × 10−5 1.00 × 10−8 0.75 -5.92 ×10−3 0.01 4.72 × 10−3 4.93 × 10−7 4.59 × 10−4 9.70 × 10−6 0.67 220 85

Table 4.1: Parameters of the numerical simulations. All runs were performed with E = Eκ = 3 × 10−5 and Eη = 1.2 × 10−5. Labels A, B, C and D
correspond to numerical simulations displayed in figures 4.2 and 4.3.
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Eη RaF D Cf Cicb S B2
ri

B2
ro

AD
AD+NAD Lmax

4.00 × 10−6 3.00 × 10−6 2.06 × 10−5 3.50 × 10−3 1.72 × 10−3 1.80 × 10−3 2.34 × 10−4 7.07 × 10−6 0.70 133

6.67 × 10−6 9.00 × 10−6 -2.59 ×10−4 7.47 × 10−3 3.42 × 10−3 3.80 × 10−3 2.24 × 10−4 4.71 × 10−6 0.64 170

6.67 × 10−6 2.00 × 10−5 7.47 × 10−4 7.69 × 10−3 3.89 × 10−3 4.55 × 10−3 2.19 × 10−4 2.69 × 10−6 0.45 170

Table 4.2: Parameters of the numerical simulations with E = Eκ = 3 × 10−5. Simulations have
Σ = 1 × 10

−4, ζ = 0 and NR = 240.

4.2.3 Theoretical analysis of the long-term rotational state

Before inspecting the results of our set of 45 simulations, we dedicate this section to the

theoretical description of the long-term rotational dynamics of our system, the predictions

of which will be tested against numerical results in section 4.3. As shown in figure 4.1,

this long-term dynamics can be described using 4 rotation rates: Ωic, Ωm, Ωficb and Ωfcmb,

respectively the solid-body angular rotation rates of the inner core, the mantle, the fluid at

the ICB and the fluid at the CMB. Recall indeed that stress-free boundary conditions allow

for velocity jumps at the fluid outer core boundaries. At the ICB, this velocity jump is

denoted as

Cicb = 〈Ωficb − Ωic〉, (4.30)

the angle brackets 〈 〉 meaning time-average quantities. Similarly,

D = 〈Ωfcmb − Ωm〉, (4.31)

denotes the equivalent at the CMB, the long-term geomagnetic westward drift. In addition,

we define

S = 〈Ωic − Ωm〉, (4.32)

the long-term inner core super-rotation, and

Cf = 〈Ωficb − Ωfcmb〉, (4.33)

the long-term global convective shear linking the two boundaries. The formal link between

the four quantities is then

Cf = Cicb + S − D. (4.34)

To derive the link between the long-term geomagnetic westward drift D and the long-

term differential rotation of the inner core S, the intuitive first step is then to relate

the four components of the rotational dynamics expressed above to the strengths of the

electromagnetic and gravitational torques (Eqs. 4.14, 4.15, 4.18), and use the fact that these

torques should balance when considering the long-term conservation of angular momentum.

Therefore, we approximate the time-average electromagnetic torques, 〈ΓCMB〉 and 〈ΓICB〉,
using the theoretical approach developed by Dumberry (2007). At the CMB, this theory

relies on a thin layer approximation (Stewart et al., 1995; Holme, 1998) and the torque thus
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Figure 4.1: Rotational state of our system. Black arrowed lines define rotation rates: Ωm is the
angular velocity of the solid mantle, Ωfcmb (resp. Ωficb) is the rotation rate of the fluid outer core
in the vicinity of the CMB (resp. the ICB), and Ωic is the angular velocity of the solid inner
core. Dashed lines represent the various time-average shears: D is the long-term westward drift
(Eq. 4.31), S is the long-term inner core differential rotation (Eq. 4.32), Cf is the long-term shear
available in the fluid outer core (Eq. 4.33), and Cicb denotes the long-term shear at the ICB
(Eq. 4.30). Green lines indicate torques. ΓCMB (resp. ΓICB) is the electromagnetic torque at the
CMB (resp. the ICB), and ΓG is the gravitational torque exerted by the mantle on the inner core.
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results from a simple shear of the poloidal field by the westward drift. The torque is then

directly proportional to the lower mantle conductance ∆σm, to the mean squared magnetic

field at CMB
(
B2

ro

)
and to D. In dimensional form this leads to

〈ΓCMB〉 ≃ K1r
4
oB2

ro
∆σmD, (4.35)

with K1 a numerical constant to be determined (see section 4.3.3). In dimensionless form

this gives

〈ΓCMB〉 ≃ K1

Eη

r4
oB2

ro
ΣD. (4.36)

In contrast to the situation at the CMB, modeling the electromagnetic torque at the ICB is

more complex, in particular because the inner core is not a thin flat layer. Aurnou et al.

(1996, 1998) highlighted that the consequence of this thick-layer configuration is that the

azimuthal magnetic field initiating the torque is now made of two contributions: one due to

the local shear at the ICB, and the other due to the shear in the tangent cylinder, resulting

from the thermal wind balance. This idea was further explored by Dumberry (2007) through

an analytical solution, allowing an estimate of the ratio between these two contributions

from the shear at the ICB, Cicb, and in the fluid, Cf. This enables the formulation of the

following dimensional model of the electromagnetic torque acting on the inner core,

〈ΓICB〉 ≃ K2σcr
5
i B2

ri
(Cicb − αCf) . (4.37)

with α representing the relative amplitude between the two contributions and K2 another

numerical constant to be determined (see section 4.3.3). The dimensionless form of this

model is then

〈ΓICB〉 ≃ K2

Eη

r5
i B2

ri
(Cicb − αCf) . (4.38)

Equation (4.38) reflects that in a situation where there is no restoring torque to balance

〈ΓICB〉, so that 〈ΓICB〉 = 0, the local and remote contribution to the electromagnetic torque

cancel and

α =
Cicb

Cf

. (4.39)

Finally, the time-average dimensionless gravitational torque exerted on the inner core is

directly proportional to the long-term inner core super-rotation (Eq. 4.32),

〈ΓG〉 = −Sζ. (4.40)

Assuming that the laws described by equations (4.36) and (4.38) hold in numerical models of

the geodynamo (see section 4.3.3 below for a detailed analysis), the long-term conservation
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of the angular momentum of the mantle and inner core (Eqs. 4.26, 4.27) now become

0 = ζS +
K1

Eη

r4
oB2

ro
ΣD, and (4.41)

0 = −ζS +
K2

Eη

r5
i B2

ri
(Cicb − αCf) , respectively. (4.42)

Equation (4.41) can lead to a first statement of the inner core super-rotation. We have

S = − 1

ǫ1

D, with (4.43)

ǫ1 =
ζEη

K1r4
oB2

ro
Σ

. (4.44)

Another expression of S can be obtained using the ICB torque balance (4.42):

S =
1

ǫ2

(Cicb − αCf) , with (4.45)

ǫ2 =
ζEη

K2r5
i B2

ri

. (4.46)

The meaning of the two parameters ǫ1 and ǫ2 is the following: ǫ1 is the ratio between

the gravitational and the electromagnetic coupling strength exerted on the mantle, and ǫ2

describes the same ratio applied to the inner core. We re-express equations (4.43) and (4.45)

using the global convective shear Cf as a control parameter. Then, from the decomposition

of equation (4.34) we can express the westward drift and the inner core super-rotation as

D = −ǫ1 (1 − α) Cf

1 + ǫ1 + ǫ2

, and (4.47)

S =
(1 − α) Cf

1 + ǫ1 + ǫ2

. (4.48)

Finally, we can formulate the link between S and D through an equation describing the

repartition of the total shear of the system :

S − D = (1 − α) Cf
1 + ǫ1

1 + ǫ1 + ǫ2

. (4.49)

Recall that the validity of this model will be checked against numerical simulations in

section 4.3, where we will determine the values of the numerical constants K1, K2, and α.

4.2.4 Thermal wind scaling of the convective shear Cf

Equations (4.47-4.49) suggest that the strengths of both S and D are controlled by the

state of coupling (i.e ǫ1 and ǫ2), and by Cf, the mean shear in the fluid outer core. This

shear is a control parameter because it should only depend on the vigor of the convection,
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embodied by the Rayleigh number RaF (Eq. 4.25). This assumption stems from the thermal

wind balance between Coriolis, buoyancy and pressure forces. Considered inside the tangent

cylinder, this balance is thought to control the average inner core super-rotation (Aurnou

et al., 1996, 1998) and more generally the convective shear Cf. Taking
[
∇ × (4.5)

] · eϕ, the

thermal wind steady-state azimuthal velocity obeys

∂uϕ

∂z
=

g

2rρΩ

∂C

∂θ
, (4.50)

in dimensional form. Introducing a typical velocity U ≃ CfD, a typical advective co-density

perturbation can then be evaluated as C ≃ F/4πD2U . Dimensional analysis of equation

(4.50) then yields

C2
f ≃ 1

2θ

gF

4πρΩD4
. (4.51)

Using the tangent cylinder angle θ = 0.36 rad, this gives in dimensionless form

Cf ≃ 1.2 Ra
1
2
F , (4.52)

the classical thermal wind scaling (Aurnou et al., 2003; Aubert, 2005), the validity of which

will be examined in section 4.3.2.

4.3 Results

We analyze now the long-term rotational state of our set of 45 simulations (see tables

4.1 and 4.2), and in particular the influence of the two control parameters Σ and ζ. In order

to obtain a satisfying parameters survey and end-member cases, we first present the results

of numerical simulations with Σ varying from 10−8 to 10−1, corresponding to a mantle

conductance up to one order of magnitude below the core conductance, and simulations

with ζ varying from 0 to 0.75, this last value being sufficient to lock the whole system by

gravitational coupling (Aubert et al., 2013).

4.3.1 Typical long-term state of differential rotations

The purpose of this section is to examine the behavior of our system, in terms of the

intensity and geometry of both the field and flow. We first focus on four typical cases

presented in figure 4.2. Figure 4.2 (top-panel) shows the long-term patterns of the average

azimuthal velocities which shear the ambient meridional magnetic field lines to produce

the azimuthal field presented in figure 4.2 (bottom-panel). At both the ICB and the CMB,

this interaction is the source of electromagnetic torques. The long-term rotational state

(D, S, Cicb, Cf) corresponding to cases A, B, C and D presented in figure 4.2 is further

detailed in figure 4.3. In case A (Fig. 4.2), the gravitational coupling between the inner

core and the mantle is set to zero. Thus, the inner core is free to rotate and the inner core
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super-rotation is at its peak (see figure 4.3b). Moreover, the westward drift of fluid close to

the CMB is small. For the other cases B, C and D (Fig. 4.2), the gravitational coupling

is comparable to core inertia and the inner core rotation is braked such that, on average,

S is almost zero (see figure 4.3a). We can thus focus on the influence of the lower mantle

conductivity. Case B has a strong westward drift since the lower mantle conductance is

almost insignificant (Σ ≪ 1). As Σ is increased, the westward drift is significantly lowered

(case C), down to a point where the fluid close to the CMB is completely locked to the mantle

through electromagnetic coupling (case D). The increase of Σ also triggers an increase of

the shear close to the ICB, mostly occurring in the tangent cylinder. Finally, comparing

cases A and C, we can already envision a link between S and D. As a matter of fact, for

the same lower mantle conductance, a change in the mean differential rotation of the inner

core caused by a variation of the gravitational torque also induces a pronounced change in

the azimuthal velocity of the fluid close to the CMB. This is achieved while preserving the

thermal wind shear between the CMB and the ICB within the tangent cylinder (see shear

patterns in figure 4.2, top-panel, and the stability of Cf in figure 4.3a,b). The systematic

impact of the mantle conductance Σ and the gravitational coupling strength ζ is further

explored in figure 4.3. Figure 4.3a presents the results of the time-average characteristic

rotation rates of our system, in a situation where the inner core and the mantle are strongly

gravitationally coupled. In that case, the inner core is indeed completely locked to the

mantle, so that S is vanishingly small. At low values of mantle conductance, the fluid below

the CMB reaches its peak westward rotation rate (D is maximum), whereas the fluid close

to the ICB is rotating eastward (Cicb > 0). For increasing values of mantle conductance, the

strength of the electromagnetic coupling between the mantle and the fluid core increases

as well. This results in a decrease of D, as the fluid close to the CMB tends to be more

and more locked to the mantle, as observed already in figure 4.2. Remarkably, the shear Cf

in the whole fluid core is confirmed to be roughly constant, over a wide range of mantle

conductance. A decreasing D is thus accompanied by an increasing eastward rotation of

the fluid close to the ICB, and therefore a higher local shear Cicb, since the inner core

differential rotation rate S remains close to zero. Figure 4.3b displays the effects of the

strength of gravitational coupling between the mantle and the inner core, on the rotational

dynamics of the system. At low ζ, the inner core is free to rotate. It is therefore entrained

in a substantial eastward rotation by the fluid close to the ICB, through electromagnetic

coupling. As ζ is increased, the inner core rotation is progressively braked until a situation

of gravitational locking with the mantle, so that S almost vanishes (Fig. 4.3b). Just as

previously (Fig. 4.3a), the shear in the fluid Cf remains constant. As a consequence, the

increase of the shear at the ICB, triggered by the braking of the inner core super-rotation,

is balanced by an increase of the westward motion of the fluid close to the CMB. The key

observation in figures 4.2 and 4.3 is the stability of the global shear Cf available in the

fluid core. Consequently, any modification of a physical control parameter or directly of

fluid flow close to the CMB directly impacts the fluid close to the ICB and the inner core
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Figure 4.2: Meridional sections of the time and longitude-averaged azimuthal velocity Vϕ (top-
panel) and the azimuthal magnetic field Bϕ (bottom-panel) of the numerical simulations highlighted
in table 4.1 (rows A, B, C and D). Black lines represent the axisymetric poloidal magnetic field
lines. The WD acronym stands for Westward Drift.
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Figure 4.3: Time-average differential rotations Cicb, D, S and Cf (see Eqs. 4.30, 4.31, 4.32, 4.33) as
a function of the mantle conductance Σ (with ζ = 0.75) (a) and the gravitational coupling strength
ζ (with Σ = 10

−4) (b), in a set of numerical simulations where RaF = 3 × 10
4, E = 3 × 10

−5 and
Eη = 1.2 × 10

−5. Labels A,B,C and D refer to simulations of figure 4.2 (see also table 4.1).

axial rotation rate. This observation is thus crucial to formulate the link between S and D
(Eqs. 4.47-4.49), and their respective dependency on the global convective shear Cf.

4.3.2 Thermal wind scaling of Cf

We have seen that Cf is largely independent on the state of coupling at the boundaries.

The leading control of the convection vigor on Cf (Eq. 4.52) is now tested against our

numerical dataset in figure 4.4. Equation (4.52) is found to be valid at low values of RaF

with a prefactor rather close to the theoretical value of 1.2,

Cf = 2.01 Ra
1
2
F . (4.53)

The thermal wind scaling is expected to no longer hold at high values of RaF because

inertia starts to disrupt the force balance (see the two rightmost points in figure 4.4). In our

numerical simulations, this occurs rather quickly, due to the modest values of the Ekman

number, leading to high Rossby numbers, at which our simulations are calculated. Lower

Ekman numbers should presumably allow for more inertia before the thermal wind balance

is disrupted, thus extending the range of validity of equation (4.52).

4.3.3 Long-term electromagnetic torques

We next turn to the analysis of the CMB electromagnetic torque 〈ΓCMB〉. In figure 4.5,

we verify first that the linear relationship suggested by equation (4.36) is valid in the range
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Figure 4.4: Numerical verification of the thermal wind scaling for the available time-average
convective shear, Cf (see Eq. 4.52 and text for details), based on 38 simulations of our suite of
models (the remaining 7 are redundant and were used for benchmarking. See appendix 4.5.1).
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Figure 4.6: Numerical verification of the scaling law for the time average electromagnetic torque
at the CMB, 〈ΓCMB〉, (see Eq. 4.36 and text for details) for the 33 simulations where Σ < Σc.
Uncertainties as defined in Appendix 4.5.1.

0 < Σ < 3.07 × 10−4, with K1 = 2.3, determined by least-squares regression. For values

of Σ beyond Σc, we observe a saturation of the magnetic torque. This is due to the fact

that this torque, as defined by equation (4.36), is necessarily limited in a self-sustained,

power-limited dynamo where the magnetic field strength itself is bounded. For Σ > Σc

also, the saturation of the CMB magnetic torque then implies a decreasing amplitude for

the westward drift D. From here, we thus exclude these numerical simulations for which

Σ > Σc, as they also reflect unrealistic geophysical situations (see section 4.4). Equation

(4.36) is then further validated in figure 4.6, where we present the evolution of the magnetic

torque exerted on the mantle for a larger subset of numerical runs verifying Σ < Σc. Based

on the study of Holme (1998), the value of K1 estimated by Dumberry (2007) was 1.3.

Though our value of 2.3 is a bit higher, it is still of order one thus validating the theoretical

model of Dumberry (2007). For the electromagnetic torque at the ICB, 〈ΓICB〉, we seek

to prove the consistency of equation (4.38). This scaling law involves the parameter α,

representing the ratio between the local and remote contributions of the fluid on 〈ΓICB〉.
This parameter can be evaluated in numerical simulations where 〈ΓICB〉 must vanish on

average, i.e in simulations without gravitational coupling between the inner core and the

mantle, 〈ΓG〉 = 0. In figure 4.7 we find that α is roughly constant and evolves between 0.32

and 0.55, with an average at 0.4. This is slightly higher than the value 0.22 obtained by

Dumberry (2007), in an idealized configuration. Finally, in a situation where gravitational

coupling is present, we have seen (Fig. 4.3b) that Cicb increases while α and Cf remain
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Figure 4.7: Parameter dependence of the ratio α between local and remote shear influencing the
time average electromagnetic torque at the ICB, 〈ΓICB〉, as defined in equation (4.38), in the 10
simulations without gravitational coupling (see tables 4.1 and 4.2). The blue dashed-line marks
the value obtained by Dumberry (2007), the black line represents the mean of our 10 numerical
estimates.

stable. This should produce a linear trend in 〈ΓICB〉, which we indeed observe in figure 4.8.

Using a least-squares fitting, we obtain K2 = 1.1 × 10−3, much smaller than the O(1) value

of Dumberry (2007). We notice here the difference in behavior between a self-sustained

dynamo minimizing the magnetic interactions between field and flow (Aubert, 2005), and

a forced system where these interactions are maximum. This difference is best seen if

we compare the poloidal magnetic field lines of an idealized model (figures A1 and A2 in

Dumberry (2007)) with those in the tangent cylinder in figure 4.2. It is obvious that in the

latter case, the field lines have adjusted to the azimuthal flow contours in order to minimize

the interaction according to the Ferraro effect (Ferraro, 1937) while they are configured

for a maximum interaction in the former case. This feedback, leading to a small value of

K2, could not exist in the framework of Dumberry (2007) and explains the quantitative

differences in our results.

4.3.4 Link between S and D

Figure 4.9 shows the agreement of our theoretical laws (4.47) and (4.48) with numerical

simulations. The contours of the predicted westward drift and inner core super-rotation are

represented as functions of ǫ1 (Eq. 4.44) and ǫ2 (Eq. 4.46). We show here that the amount

of shear in the fluid core which is effectively shared between D and S is (1 − α) Cf. The

arrows on the bottom left corners of figures 4.9a and 4.9b point towards the numerical
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Figure 4.8: Numerical verification of the scaling law for the time average electromagnetic torque
at the ICB, 〈ΓICB〉, (see Eq. 4.38 and text for details) for the 33 simulations where Σ < Σc.
Uncertainties as defined in Appendix 4.5.1.

simulations with no gravitational coupling (ζ = 0), such that ǫ1 7→ 0 and ǫ2 7→ 0 . In

this situation, the whole effective shear available is located at the ICB, so that S is at its

peak and D equals zero. For strong values of both the gravitational coupling and mantle

conductance, ǫ1 7→ 0 and ǫ2 7→ ∞, bottom right corners, the shear is located at the ICB,

but the inner core is locked to the mantle. In that case, both S and D vanish. In order

to obtain a strong westward drift, the inner core must be gravitationally braked and the

mantle conductance must remain bounded (top left corners Fig.4.9a,b). Finally, these

figures underline two major conclusions on the behavior of the rotational dynamics of the

set of coupled Earth dynamos envisaged for this study. First, as the effective shear in the

fluid core is a constant, there is a clear link between the geomagnetic westward drift and

the inner core super-rotation. Second, the transition between the regimes of strong S /

vanishing D and strong D / vanishing S appears to be rather sharp, as it occurs over two

orders of magnitude of the control parameters ǫ1 and ǫ2. As a consequence, a reasonable

assumption is to consider that the available shear in the fluid core of the Earth is either

in the inner core super-rotation or in the westward drift, but not distributed among the

two. This also suggests that estimates of D and S for the Earth are likely to place tight

constraints on the values of ǫ1 and ǫ2, and consequently on the geophysical parameters

entering their definition (see the discussion below).
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Figure 4.9: Contours of the predicted westward drift D (a) and inner core super-rotation S (b)
determined from equations (4.47) and (4.48). Comparison with the magnitude of D and S (colored
circles) in our 27 numerical simulations with Σ < Σc and RaF = 2.7 × 10

−4 (see tables 4.1 and
4.2). Arrows point towards simulations with no gravitational coupling, i.e ζ = 0.

4.4 Discussion

Our suite of numerical simulations stresses the tight link between the inner core super-

rotation S and the geomagnetic westward drift D, as components of the long-term rotational

dynamics in the Earth’s core. While we rely on the theoretical approach of Dumberry (2007)

to understand our results, in particular in order to analyze the long-term electromagnetic

torques at work at the CMB and at the ICB, it is noteworthy that the extensive numerical

study we carried out sheds new light on several aspects of the long-term rotational dynamics

of the fluid outer core. First, we determined the phase diagrams for S and D (Fig. 4.9),

together with their dependency on the convective forcing (Eq. 4.49), through the convective

shear Cf which is distributed among these two quantities. In contrast, the geomagnetic

westward drift is considered as a given input in the study of Dumberry (2007). Second, the

fact that the models (Eqs. 4.36, 4.38) provide a satisfactory description of the electromagnetic

torques at the fluid outer core boundaries, while only involving spherical rotation rates,

needed a validation that we provide here. Finally, the very observation of the Ferraro effect

diminishing the value of K2 in equation (4.38) arises from a validation in self-consistent

numerical simulations of the geodynamo, and could not be expected in Dumberry (2007).

All these elements now give us confidence in applying our results to the Earth’s core. The

first quantity we wish to estimate is the convective shear Cf given by equation (4.53), which

we now present in the dimensional form,

Cf = 2.01 Ω Ra
1
2
F . (4.54)
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The flux Rayleigh number RaF defined in equation 4.25 may also be expressed as a function

of the convective dynamo power (Aubert et al., 2009) through

RaF =
1

γ

p

ρΩ3D2V
. (4.55)

Here V is the core volume and γ the conversion fraction (Eq. 18 in Aubert et al., 2009)

between power p and mass anomaly flux F . We use ρ = 11000 kg.m−3 and Ω = 7.29 ×
10−5 rad.s−1 and envision a situation where the geodynamo is entirely chemically-driven,

meaning a bottom-driven convection with γ = 0.33 (Aubert et al., 2009). The heat flux at

the core mantle boundary QCMB is assumed to match the adiabatic value of 15 TW (Pozzo

et al., 2012), so that the dynamo power is then p = ǫQCMB with ǫ = 0.2 being the combined

efficiency of chemical convection and latent heat release at the ICB. This finally yields

RaF = 2.5×10−12 and thus Cf = 0.42̊ yr−1. Using our mean value of α = 0.4 (Fig. 4.7) , we

show here that the available shear distributed into S and D is then (1 − α) Cf = 0.25̊ yr−1.

Remarkably, this is close to the mean value of the geomagnetic westward drift of 0.28̊ yr−1

in the Atlantic hemisphere over the last 400 years estimated by Finlay and Jackson (2003).

This strongly suggests that a significant part, if not the whole shear available is currently

in the geomagnetic westward drift, leaving the long-term inner core super-rotation close

to 0, as inferred by seismological studies (see e.g. Souriau and Calvet, 2015, for a recent

review of these). In order to have a second estimate of the proportion of the convective

shear available for S or D, we need to assess the values of ǫ1 and ǫ2 for the Earth. The

dimensional form of ǫ1 and ǫ2 provides an overview of the geophysical parameters we have

to take into account,

ǫ1 =
Γτ

K1B2
ro

∆σmr4
o

, (4.56)

ǫ2 =
Γτ

K2B2
ri
σcr5

i

. (4.57)

In our estimates, we use ri = 1220 km, ro = 3480 km, Bro = 0.4 mT, and the values of

K1 and K2 found in section 4.3.3 (K1 = 2.3, K2 = 1.1 × 10−3). Our simulations (Tables 4.1

and 4.2) for geophysically realistic values of the mantle conductance consistently exhibit

a ratio Bri/Bro ∼ 7; so we thus set the r.m.s magnetic field at the inner core boundary

to Bri = 2.8 mT, in agreement with inferences of the magnetic field strength inside the

core (Gillet et al., 2010). We also adopt the range 3 × 1019 N.m < Γ < 2 × 1020 N.m

proposed by Davies et al. (2014) for the parameter Γ, relative to the mantle heterogeneities

at the source of the gravitational torque. The core conductivity σc is set to 1.5 × 106 S.m−1

according to Pozzo et al. (2012). The major uncertainties to assess ǫ1 and ǫ2 then lie in

the lower mantle conductance, ∆σm, and the viscous deformation time of the inner core,

τ . Based on the observed out-of-phase component of the forced nutations of the Earth,

Buffett (1992) inferred a lower mantle conductance of 108S. This value is often considered
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as a minimum to ensure a sufficiently strong direct electromagnetic coupling to couple the

core and the mantle. Buffett (1992) proposed the existence of a thin layer at the base

of the mantle, about 200 meters thick, with the same conductivity as that of the core.

From a mineral physics point a view, this high conductive layer may be composed of FeO,

whose conductivity was estimated as close to σc by Ohta et al. (2012). Another way to

obtain a reasonably conducting lower mantle is to consider a thicker layer (200-300 km)

of (Mg,Fe)SiO3 post-perovskite, which may have an electrical conductivity greater than

102 S.m−1 (Ohta et al., 2008). This would lead to a conductance larger than 2 × 107 S. The

mantle conductance is also bound on the upper side by the observation of high frequencies in

the core magnetic signal, constraining ∆σm to be lower than 2.5 × 109 S (Dumberry, 2007).

We thus adopt a range of 2 × 107 S < ∆σm < 2.5 × 109 S. Note that this range mostly lies

below the limit value ΣcσcD = 109 S previously introduced in figure 4.5, meaning that our

scaling laws are valid. Finally, we constrain τ using the recent mineral physics experiments

of Gleason and Mao (2013) who reported an inner core viscosity range of 1015 − 1018 Pa.s,

corresponding to τ = 0.02 yr and τ = 20 yr (Buffett, 1997). Considering all uncertainties on

the geophysical parameters mentioned above, we obtain the following ranges of foreseeable

values for ǫ1 and ǫ2,

1.4 × 10−4 ≤ ǫ1 ≤ 1.1 × 102, (4.58)

5.4 × 10−4 ≤ ǫ2 ≤ 3.6. (4.59)

This indicates that our current knowledge of deep Earth physical parameters does not

strongly constrain the partitioning of (1 − α) Cf into S and D. However, for ∆σc of order

108 S, we may re-express our results in order to formulate a condition on the inner core

viscous relaxation time for dominant westward drift. With the previously used value of the

other geophysical parameters this gives ǫ1 ≈ ǫ2, and the condition for a dominant westward

drift according to figure 4.9 is then ǫ1 > 1 or ǫ2 > 1. This in turn yields τ > 4 yr, meaning

that the inner core must be moderately stiff, having a viscosity larger than 2 × 1017 Pa.s.

Note finally that in the case ǫ1 ≈ ǫ2, the magnitude of the shear that can be distributed

into S and D is (1 − α) Cf
1+ǫ1

1+2ǫ1
, meaning that only (1 − α) Cf/2 = 0.125̊ yr−1 is available

if τ > 4 yr (with ǫ1 = ǫ2 ≫ O(1)). The drift so available is axisymmetric. In order to

match the westward drift of 0.28̊ yr−1 at low latitude in the Atlantic hemisphere estimated

by Finlay and Jackson (2003) from historical records, an additional mechanism has to be

invoked that can increase the drift rate in the Atlantic hemisphere at the expense of its

Pacific counterpart. A geophysically sound possibility is that of heterogeneous buoyancy

fluxes at the CMB and ICB, as advocated by Aubert et al. (2013). A hemispherical

differential buoyancy release of spherical harmonic degree 1 and order 1 at the ICB can

indeed generate a concentration of the drift in the Atlantic hemisphere for several centuries,

leading to drift rates of about 0.23̊ yr−1 in this region, and a very weak drift in the Pacific

hemisphere. An alternative to this mechanism is that of slow magnetic waves riding on
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Figure 4.10: Total torque balance eM of statistically converged simulations as a function of the
number of radial grid points NR in the fluid shell.

top of the mean westward flow (see e.g. Hori et al., 2015). For the sake of consistency, the

waves so envisioned should then be able to account for the hemispherical dichotomy of the

westward drift deduced from historical records, while yielding drift rates of the order of

0.1̊ yr−1 to 0.2̊ yr−1 near the equator.

4.5 Appendix

4.5.1 Assessment of numerical uncertainties on torques

Each error bar pictured in figures 4.6 and 4.8 reflects the truncation error due to

the numerical approximation of the model. In order to make our systematic analysis

numerically tractable, we indeed had to use a moderate resolution (Tables 4.1 and 4.2).This

error manifests itself in the long-term magnitudes of the torques. An estimate of the

magnitude of this error is provided by the quantity

eM = ‖〈ΓCMB > + < ΓICB〉‖. (4.60)

The error eM should ideally vanish (Eq. 4.13) and indeed converges towards 0 at a rate

consistent with a second-order finite difference scheme in radius, when the radial resolution

NR is increased (see figure 4.10).
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4.5.2 Statistical convergence

Since our simulations are highly time-dependent, we analyze the cumulative mean M of

each datum x over time. The time-dependent cumulative mean is denoted by Mx(t). We

consider a simulation as statistically converged if the following criterion is met. At each

point in time t ≤ T (the total time of integration), Mx(t) is within 5% of Mx(T ). As an

example, figure 4.11 shows the statistical convergence of Cf in those 13 simulations that

were used to produce figure 4.3b (constant Σ, varying ζ). We observe in this case that it

takes on the order of 1000 turnover times to achieve statistical convergence for Cf. The

same order of magnitude of 1000 turnover times applies to other diagnostics.
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5

Time-dependent electromagnetic torques

Abstract

This chapter is dedicated to the formulation of time-dependent electromagnetic torque

models at the fluid core boundaries. To this end, section 5.1 is dedicated to solutions

describing the diffusion of a time-dependent perturbation in the azimuthal magnetic field

into the inner core, the fluid outer core and the electrically conducting part of the mantle.

These solutions allow the expression of the time-dependent azimuthal field at the fluid

core boundaries, developed in section 5.2, through the treatment of the conservation of the

tangential electric field at the inner core boundary (ICB) and the core-mantle boundary

(CMB). This work is based on a demonstration developed by Buffett (1992) and establishes

the expressions of two transfer functions between the velocity jumps at both ICB and CMB

and the perturbations of the magnetic field that they produce to finally enter the models of

the time-dependent electromagnetic torques in section 5.3.

Résumé

Ce chapitre est consacré à la formulation de modèles de couple électromagnétique

dépendant du temps aux limites du noyau fluide. A cet effet, la section 5.1 est dédiée

aux solutions décrivant la diffusion d’une perturbation dépendante du temps du champ

magnétique azimutal dans la graine, le noyau fluide et la partie conductrice du manteau.

Ces solutions permettent l’expression du champ azimutal aux limites du noyau fluide

(section 5.2) à travers le traitement de la conservation du champ électrique tangentiel à

l’ICB et à la CMB. Ce travail est basé sur une démonstration développée par Buffett (1992)

et établit les expressions de deux fonctions de transfert entre les sauts de vitesse et les

perturbations du champ magnétique qu’ils produisent aux frontières du noyau fluide. Ces

relations permettent alors de formuler des modèles de couple électromagnétique dépendants

du temps dans la section 5.3.

105
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5.1 Diffusion of a perturbation of the magnetic field

We next turn to the analysis of the time-dependent behavior of our coupled core-mantle-

inner core system. The first step toward the derivation of a time-dependent relationship

between the inner core differential rotation and the geomagnetic westward drift is to build

dynamical expressions of the electromagnetic torques at the fluid core boundaries. In the

long-term, we recall that these expressions are obtained by considering the balance between

the advection of the radial magnetic field Br by the azimuthal velocity uϕ and the diffusion

of the azimuthal field Bϕ produced into the inner core or a thin electrically conducting

layer at the base of the mantle. The expression of Bϕ obtained is then used to approximate

the electromagnetic torque exerted on the inner core

ΓICB =
ri

µ0

∫

SICB

BrBϕ sin θdS, (5.1)

with ri the radius and SICB the surface of the inner core, and the electromagnetic torque on

the mantle

ΓCMB = − ro

µ0

∫

SCMB

BrBϕ sin θdS. (5.2)

with ro the radius of the core and SCMB the surface of the core-mantle boundary. In a time-

dependent analysis, this long-term balance is disrupted by the presence of the time-varying

term ∂B/∂t; therefore the azimuthal magnetic field Bϕ that enters the electromagnetic

torque integrals can no longer be easily approximated, and requires a specific treatment.

5.1.1 General arguments

The demonstration developed below is based on a perturbation analysis where the

magnetic field B and the velocity field u are both decomposed into their main and perturbed

components according to

B = B0 + B1, and

u = u0 + u1.
(5.3)

The main magnetic field B0, with spherical coordinate components
(
B0

r , B0
θ , B0

ϕ

)
, and

velocity field u0

(
u0

r, u0
θ, u0

ϕ

)
are varying slowly over time and assumed as large scale, that

is to say with spacial variations of the order of the fluid outer core thickness D. Conversely,

the perturbations B1

(
Br, Bθ, Bϕ

)
and u1

(
0, 0, uϕ

)
, are smaller in magnitude, varying over

time on smaller spatial scales, that will be the subject of a following discussion. We thus

have

‖B0‖ ≫ ‖B1‖ , and

‖u0‖ ≫ ‖u1‖ ,
(5.4)
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a description can be achieved by, firstly, solving the evolution of this perturbation away

from the boundaries.

In the inner core, fluid outer core and the electrically conducting part of the mantle,

the magnetic field obeys the general induction equation,

∂B

∂t
= ∇ × (u × B) − ∇ × (η∇ × B) . (5.9)

Using the decomposition introduced by the system (5.3), and neglecting the second order

term
[
∇ × (u1 × B1)

]
we have

∂B0

∂t
+

∂B1

∂t
= ∇ × (u0 × B0) + ∇ × (u0 × B1) + ∇ × (u1 × B0)

− ∇ × (η∇ × B0) − ∇ × (η∇ × B1) . (5.10)

At this point, we aim at simplifying equation (5.10) in order to obtain a linearized induction

equation that will describe the evolution of the perturbed field B1. To do so, we first use

the fact that the main magnetic field B0 is slowly varying over time, so that

∂B0

∂t
≈ 0. (5.11)

This is in agreement with the balance between the advection and the diffusion of the main,

large-scale, magnetic field

∣∣∇ × (u0 × B0)
∣∣ ≃ ∣∣∇ × (η∇ × B0)

∣∣ . (5.12)

Equation (5.10) can then be written

∂B1

∂t
= ∇ × (u0 × B1) + ∇ × (u1 × B0) − ∇ × (η∇ × B1) , (5.13)

in which the advection terms can be developed like

∇ × (u0 × B1) = (∇ · B1) u0 − (∇ · u0) B1 + (B1 · ∇) u0 − (u0 · ∇) B1, (5.14)

and

∇ × (u1 × B0) = (∇ · B0) u1 − (∇ · u1) B0 + (B0 · ∇) u1 − (u1 · ∇) B0, (5.15)

respectively. As the main and perturbed fields are solenoidal fields,

∇ · B0 = 0, ∇ · B1 = 0, (5.16)

∇ · u0 = 0, ∇ · u1 = 0, (5.17)
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equation (5.13) becomes

∂B1

∂t
= (B1 · ∇) u0 − (u0 · ∇) B1 + (B0 · ∇) u1

− (u1 · ∇) B0 − ∇ × (η∇ × B1) . (5.18)

In order to obtain an analytical expression for the evolution of the perturbed field B1,

we now wish to extract the main source term from equation (5.18). To this end, we first

assume that the terms involving the gradients of the main velocity and magnetic fields

are small respective to the other source terms. Indeed, as u0 and B0 are considered as

large-scale fields in our analysis, their respective gradients should scale as D−1 and can thus

be neglected. One last argument lies in the fact that the major part of our work is based on

stress-free conditions for the velocity field at the fluid outer core boundaries, consistently

with the assumption that the radial gradient of u1 is the largest source term in equation

(5.18). These examinations on the different advective terms imply that

(B1 · ∇) u0, (u1 · ∇) B0 ≪ (u0 · ∇) B1 < (B0 · ∇) u1, (5.19)

The identified source term at both ICB and CMB can be pictured as two velocity jumps

(see Fig. 5.1), that will appear in the interface conditions of the magnetic and electric fields

in section 5.2. They are namely the differences between the angular velocity of the fluid

close to ICB and CMB, Ωficb and Ωfcmb, and the perturbations of solid body rotation of the

inner core Ωic and the mantle Ωm. The generation of the perturbed magnetic field B1 is

governed by the velocity jumps at either ICB or CMB, and the diffusion of this field into the

inner core, the fluid outer core and the electrically conducting part of the mantle. However,

away from the fluid core boundaries, the perturbed magnetic field B1 is no longer sensitive

to these velocity jumps, and will thus diffuse away into a layer of electrical conductivity σ,

magnetic diffusivity η and thickness ∆ according to

∂B1

∂t
= −∇ × (η∇ × B1) . (5.20)

We now intend to solve this diffusion equation into the different media pictured in figure5.1.

In order to investigate de frequency response of the perturbed field and of the electromagnetic

torques, this will be performed with a harmonic analysis. We thus look for analytic expression

of B̃1, the Fourier transform of B1 like,

B̃1(ω) =
1√
2π

∫ +∞

−∞

B1(t)e−iωtdt, (5.21)

where ω is the angular frequency. The azimuthal component of perturbed field, B̃ϕ, enters
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the Fourier transforms of the electromagnetic torques as

Γ̃1
ICB(ω) =

ri

µ0

∫

SICB

B0
r B̃ϕ(ω) sin θdS, (5.22)

and equivalently

Γ̃1
CMB(ω) = − ro

µ0

∫

SCMB

B0
r B̃ϕ(ω) sin θdS, (5.23)

which are defined as

Γ̃1
ICB(ω) =

1√
2π

∫ +∞

−∞

Γ1
ICB(t)e−iωtdt, (5.24)

and

Γ̃1
CMB(ω) =

1√
2π

∫ +∞

−∞

Γ1
CMB(t)e−iωtdt. (5.25)

The description of B̃1 will be performed using a poloidal/toroidal decomposition of the

perturbed magnetic field, that is expressed as

B̃1 = ∇ × ∇ ×
(
rB̃p

)
+ ∇ ×

(
rB̃t

)
, (5.26)

with r the radius vector. As the demonstration is focused on the evolution of B̃1, this

decomposition gets rid of the subscripts distinguishing the main and perturbed fields,

substantially facilitating the display of equations. In the following, as in the numerical

implementation, the poloidal and toroidal scalars are expanded in spherical harmonics like

B̃t(ω) =
Lmax∑

ℓ=0

ℓ∑

m=0

B̃
m

tℓ
(r, ω)Y m

ℓ (θ, ϕ), (5.27)

B̃p(ω) =
Lmax∑

ℓ=0

ℓ∑

m=0

B̃
m

pℓ
(r, ω)Y m

ℓ (θ, ϕ), (5.28)

where Y m
ℓ is a spherical harmonic function of order m and degree ℓ. For a given pair of

degree and order of the spherical harmonic expansion, equation (5.20) becomes a set of two

differential equations of order 2, describing the diffusion of the coefficients of expansion

of the poloidal and toroidal scalars, B̃
m

pℓ
(r, ω) and B̃

m

tℓ
(r, ω), into the electrically conducting

layer,

d2(rB̃
m

tℓ
)

dr2
+

1

η

dη

dr

d(rB̃
m

tℓ
)

dr
+

[
iω

η
− ℓ(ℓ + 1)

r2

]
(rB̃

m

tℓ
) = 0, (5.29)

d2(rB̃
m

pℓ
)

dr2
+

[
iω

η
− ℓ(ℓ + 1)

r2

]
(rB̃

m

pℓ
) = 0. (5.30)

Equations (5.29) and (5.30) form the basis of the following subsections, that are dedicated

to particular solutions of these equations in the conducting part of the mantle, the fluid

outer core and the inner core. This is a mandatory step, since the link between these
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Figure 5.3: Relative amplitude between horizontal and radial variations of the magnetic field as
function of the angular frequency of the signal ω normalized by the characteristic time of magnetic
diffusion in the core τη = D2/ηc, for r = ro the radius of the core, for different spherical harmonic
degree ℓ. Cases 5.3a and 5.3b stand for two possible electrical conductivity distributions in the
mantle, both leading to a lower mantle conductance of 108 S.

largest scales and periods lower than 385 years, but is no longer valid for large harmonic

degree, especially for period longer than the day (i.e. ωτη 7→ 7 × 108).

Within the framework where this assumption is strictly valid and a constant conductivity

profile, equations (5.29) and (5.30) picture no dependence on ℓ or m and respectively become

d2(rB̃
m

tℓ
)

dr2
+

iω

ηm

(rB̃
m

tℓ
) = 0, and (5.32)

d2(rB̃
m

pℓ
)

dr2
+

iω

ηm

(rB̃
m

pℓ
) = 0. (5.33)

both written as
d2X

dr2
+

2i

δ2
m

X = 0, with X = rB̃
m

tℓ
or X = rB̃

m

pℓ
, (5.34)

using the standard definition of a skin depth,

δm =

√
2ηm

ω
. (5.35)

Equation (5.34) is a homogeneous, second order, linear equation with a complex coefficient
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that has solutions of the type

X = Ae

(
1−i
δm

)
r

+ Be
−

(
1−i
δm

)
r
, (5.36)

with A and B two constants to be determined. Even though X describes the diffusion of

both the poloidal and toroidal part of the magnetic field into the layer, we show in section

5.2.1 that providing a particular solution for B̃
m

pℓ
is not mandatory. We thus focus on an

exact solution for the toroidal part, i.e. X = rB̃
m

tℓ
. The constants A and B can be defined

using the boundary conditions on the toroidal scalar of the magnetic field. The continuity

of toroidal magnetic field in ro, in the absence of surface currents in the system (see A.1),

provides the first boundary condition, in ro

X(ro) = X, (5.37)

with X the value of the toroidal scalar at the core mantle boundary. In ro + ∆ the toroidal

part of the magnetic field is also continuous. However, as the mantle is considered as

insulating beyond the electrically conducting layer, the field matches a potential field such

that B̃
m

tℓ
must be equal to zero on either sides of ro + ∆. This yields,

X(ro + ∆) = 0. (5.38)

Applying the boundary conditions to equation (5.36) (see demonstration A.2) eventually

leads to

X

X
(r > ro, ω) =

sinh
[(

1−i
δm

)
(ro + ∆ − r)

]

sinh
[(

1−i
δm

)
∆
] . (5.39)

Figure 5.4 shows the absolute value and the argument (phase lag) of the toroidal part

of the perturbation of the magnetic field diffusing into the electrically conducting part of

the lower mantle defined by equation (5.39). In the two cases the electrical conductivity

is constant, but the conductance is either embodied by a thin layer of 150 meters having

the conductivity of the core or a layer of 200 kilometers with σm = 5 × 102 S.m−1. In both

cases, the toroidal field decreases rapidly to satisfy the condition Bt(ro + ∆) = 0, and the

shorter the period of the signal, the faster the toroidal field decreases (Fig. 5.4). For the

very thin layer case (Fig. 5.4a & Fig. 5.4b), the solution loses the dependency on the signal

period if the period is greater than a few days. Indeed, the field decreases linearly from its

value in ro, to zero in ro + ∆ (Fig. 5.4a) while the phase lag approaches a vanishing constant

as the frequency is increased. For a thicker layer with a lower electrical conductivity, as

shown by figures 5.4c and 5.4d, the same behavior can be noticed for periods greater than a

few years. However, the perturbed magnetic field diffusing in such a layer is more sensitive

on signals having periods lower than six months. This will have several consequences for

the determination and the behavior of the perturbed magnetic field at the CMB, discussed
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Figure 5.4: Absolute value and the phase of solution (5.39) of the toroidal part of the magnetic field
diffusing into the electrically conducting part of the mantle, for two possible electrical conductivity
distributions in the mantle, both leading to a lower mantle conductance of 108 S, and for different
signal periods. The first case, figures (a) and (b), stands for a thin layer with ∆ = 150 m, having
the electrical conductivity of the core, σm = σc = 1.5 × 106 S.m−1, while the second case, figures
(c) and (d), pictures a thicker layer of ∆ = 200 km of post-perovskite with electrical conductivity
σm = 5 × 102 S.m−1.

in section 5.2.4.
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The second condition is anew on the value of the magnetic field at the CMB (r = ro), we

have

X(ro) = X = Ace

(
1−i
δc

)
ro

(5.43)

leading to

Ac = Xe
−

(
1−i
δc

)
ro

(5.44)

The association of the two boundary conditions (Eq. 5.42 & Eq. 5.44) gives the general

solution
X

X
(r < ro, ω) = e

(
1−i
δc

)
(r−ro)

, (5.45)

that we recall is valid for

X = rB̃
m

pℓ
, with X = roB̃

m

pℓ
(ro),

and

X = rB̃
m

tℓ
, with X = roB̃

m

tℓ
(ro).

At the ICB

At the inner core boundary, the first condition to determine Ac and Bc is, for

r − ro

δc

7→ +∞, X = 0, (5.46)

and necessarily implies that Ac = 0. Using the value of the magnetic field at the ICB

(r = ri), we have

X(ri) = X = Bce
−

(
1−i
δc

)
ri

, (5.47)

leading to

Bc = Xe

(
1−i
δc

)
ri

, (5.48)

The combination between the two boundary conditions gives the general solution

X

X
(r > ri, ω) = e

−

(
1−i
δc

)
(r−ri)

, (5.49)

that is valid for

X = rB̃
m

pℓ
, with X = riB̃

m

pℓ
(ri),

and

X = rB̃
m

tℓ
, with X = riB̃

m

tℓ
(ri).
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The solution of the diffusion of both poloidal and toroidal parts of B̃1 is then

X

X
(r < ri, ω) = e

(
1−i
δc

)
(r−ri)

, (5.53)

for

X = rB̃
m

pℓ
, with X = riB̃

m

pℓ
(ri), (5.54)

and

X = rB̃
m

tℓ
, with X = riB̃

m

tℓ
(ri). (5.55)

5.2 Interface conditions

5.2.1 General case

The previous section established the form of the perturbed field B̃1 that will diffuse

away from the fluid core boundaries as functions of their respective value at either ICB

or CMB. In order to obtain analytic expressions of perturbed field at ICB and CMB,

we henceforth have to link the solutions previously obtained. This can be achieved by

considering the general interface conditions on an electromagnetic field (namely E and B)

crossing a boundary between two media. At either ICB or CMB, the conservation of the

tangential part of the electric field E can be written

r × E
∣∣∣
core

= r × E
∣∣∣
ic/m

, (5.56)

the subscripts ic and m standing for the inner core and the mantle, respectively. This

equation can lead to a condition on the azimuthal magnetic field at the fluid core boundaries

through the consecutive use of Ohm’s law

E =
J

σc/m

− u × B, (5.57)

with σc/m the electrical conductivity of the core or the mantle, the inner core and the fluid

outer core having the same value, and Ampère’s law,

µ0J = ∇ × B. (5.58)

The conservation of the tangential electric field (Eq. 5.56) then becomes

ηcr × ∇ × B − r × u × B
∣∣∣
core

= ηc/mr × ∇ × B − r × u × B
∣∣∣
ic/m

. (5.59)

Applying this interface condition to the perturbation analysis developed in section 5.1.1

establish the direct relationship between the radial derivatives of the azimuthal magnetic
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field Bϕ on both sides of the fluid core boundaries, as a function of the velocity jump as

ηc
∂rB̃ϕ

∂r

∣∣∣∣∣∣

ri/ro

core

− ηc/m
∂rB̃ϕ

∂r

∣∣∣∣∣∣

ri/ro

ic/m

= r2
i/oB

0
r

(
Ωficb/fcmb − Ωic/m

)∣∣∣∣∣

ri/ro

ic/m

, (5.60)

with ri/o standing for the radius of the inner core ri or the core ro. Also, as we have

∂rB̃ϕ

∂r
= B̃ϕ + r

∂B̃ϕ

∂r
, (5.61)

and the continuity of the magnetic field at the interface,

B̃ϕ

∣∣∣
ri/ro

core
= B̃ϕ

∣∣∣
ri/ro

ic/m
, (5.62)

leads to a simplification of the discontinuity of the radial derivatives like

ηc
∂B̃ϕ

∂r

∣∣∣∣∣∣

ri/ro

core

− ηc/m
∂B̃ϕ

∂r

∣∣∣∣∣∣

ri/ro

ic/m

= ri/oB
0
r

(
Ωficb/fcmb − Ωic/m

)∣∣∣∣∣

ri/ro

ic/m

. (5.63)

This expression can be used to obtain the form of the azimuthal magnetic field at the fluid

core boundaries, considering the solutions of the toroidal and poloidal scalars of B̃1 provided

in section 5.1. To do so, we first express the radial derivative of B̃ϕ in the framework of the

poloidal/toroidal decomposition,

∂B̃ϕ

∂r
=

∂

∂r




1

sin θ

∂

∂φ


1

r

∂rB̃p

∂r


− ∂B̃t

∂θ


 . (5.64)

The left part of this equation involves a radial derivative of B̃p of second order, while

the right part only involves a first order derivative of B̃t. In appendix A.1 we establish

the continuity of poloidal field as well as its first and second radial derivatives across an

interface between two electrically conducting media. We demonstrate that the second radial

derivative of the poloidal field is continuous if, in our case,

∂B0
r uϕ

∂ϕ

∣∣∣∣∣∣

ri/ro

core

= 0. (5.65)

Even though this condition may be questionable in convective simulations of the geodynamo,

it remains strictly valid in our analytical case as the perturbed field can be described as the

result of the interaction between a mainly dipolar magnetic field B0 and an axisymmetric

velocity jump at the fluid core boundary. We can thus anticipate that the discontinuity of

the radial derivative of B̃ϕ is indeed only carried by the discontinuity in the radial derivative
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of the toroidal field Bt such that,

−ηc
∂2B̃p

∂r2

∣∣∣∣∣∣

ri/ro

core

+ ηic/m
∂2B̃p

∂r2

∣∣∣∣∣∣

ri/ro

ic/m

= 0,

−ηc
∂

∂r

∂B̃t

∂θ

∣∣∣∣∣∣

ri/ro

core

+ ηic/m
∂

∂r

∂B̃t

∂θ

∣∣∣∣∣∣

ri/ro

ic/m

= ri/oB
0
r

(
Ωficb/fcmb − Ωic/m

)∣∣∣∣∣

ri/ro

ic/m

.

(5.66)

In the following sections, we will therefore focus on the toroidal part of the radial derivative

of B̃ϕ.

5.2.2 Mantle-side

We here formalize the relationship between the radial derivatives of the toroidal field on

either sides of the CMB and the exact value at the CMB. In the case where the conductance

of the mantle is embodied by a thin layer of constant electrical conductivity, the diffusion

of the toroidal magnetic field is defined by equation (5.39). For each degree and order of

the spherical harmonic expansion we have

rB̃
m

tℓ
(r)
∣∣∣
mantle

= roB̃
m

tℓ
(ro)

sinh
[(

1−i
δm

)
(ro + ∆ − r)

]

sinh
[(

1−i
δm

)
∆
] , (5.67)

that can be introduced in equation (5.27) in order to obtain

B̃t

∣∣∣
mantle

= ro

sinh
[(

1−i
δm

)
(ro + ∆ − r)

]

sinh
[(

1−i
δm

)
∆
]

L,M∑

ℓ,m

B̃
m

tℓ
(ro)Y

m
ℓ (θ, ϕ), (5.68)

in which we reduced the summation over the degree and order of the spherical harmonic

expansion to
L,M∑
ℓ,m

, in order to lighten the notation. The consecutive latitudinal and radial

derivation (see A.2) gives, in r = ro,

∂

∂r

∂B̃t

∂θ

∣∣∣∣∣∣

ro

mantle

= −
(

1 − i

δm

)
ro coth



(

1 − i

δm

)
∆


× ∂

∂θ




L,M∑

ℓ,m

B̃
m

tℓ
(ro)Y

m
ℓ (θ, ϕ)


 . (5.69)

At the CMB, the value of the toroidal field is as defined by the boundary condition on the

solution of B̃
m

tℓ
,

∂B̃t

∂θ

∣∣∣∣∣∣

ro

mantle

= ro × ∂

∂θ




L,M∑

ℓ,m

B̃
m

tℓ
(ro)Y

m
ℓ (θ, ϕ)


 , (5.70)
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that naturally leads to

∂

∂r

∂B̃t

∂θ

∣∣∣∣∣∣

ro

mantle

= −
(

1 − i

δm

)
coth



(

1 − i

δm

)
∆


× ∂B̃t

∂θ

∣∣∣∣∣∣

ro

mantle

(5.71)

Keeping in mind the continuity of the poloidal field and its first and second radial derivatives,

this last equation means that

∂B̃ϕ

∂r

∣∣∣∣∣∣

ro

mantle

= −B̃ϕ ×
(

1 − i

δm

)
coth



(

1 − i

δm

)
∆



∣∣∣∣∣

ro

mantle

. (5.72)

This equation formulates the link between the azimuthal field at the CMB and its radial

derivative on the mantle side. In order to obtain a complete expression of B̃ϕ at the CMB

we now need to apply the same procedure on the fluid core side of the core-mantle boundary.

On the core side, we have

∂

∂r

∂B̃t

∂θ

∣∣∣∣∣∣

ro

core

=

(
1 − i

δc

)
ro × ∂

∂θ




L,M∑

ℓ,m

B̃
m

tℓ
(ro)Y

m
ℓ (θ, ϕ)


 , (5.73)

and thus, in r = ro

∂

∂r

∂B̃t

∂θ

∣∣∣∣∣∣

ro

core

=

(
1 − i

δc

)
ro × ∂

∂θ




L,M∑

ℓ,m

B̃
m

tℓ
(ro)Y

m
ℓ (θ, ϕ)


 . (5.74)

This expression also illustrates the link between the radial derivative of the azimuthal

magnetic field in the core and its value at the CMB, as

∂

∂r

∂B̃t

∂θ

∣∣∣∣∣∣

ro

core

=

(
1 − i

δc

)
× ∂Bt

∂θ

∣∣∣∣∣∣

ro

core

(5.75)

and ultimately,

∂B̃ϕ

∂r

∣∣∣∣∣∣

ro

core

= B̃ϕ ×
(

1 − i

δc

)∣∣∣∣∣

ro

core

. (5.76)

Introducing the two radial derivatives of the azimuthal field, equations (5.72) and (5.76),

into the conservation of the tangential electric field at the CMB (Eq. 5.59) gives

ηcB̃ϕ ×
(

1 − i

δc

)∣∣∣∣∣

ro

core

+ ηmB̃ϕ ×
(

1 − i

δm

)
coth



(

1 − i

δm

)
∆



∣∣∣∣∣

ro

mantle

= roB
0
r (Ωfcmb − Ωm) . (5.77)

Since the magnetic field is continuous across the interface,

B̃ϕ

∣∣∣
ro

core
= B̃ϕ

∣∣∣
ro

mantle
= B̃ϕ(ro), (5.78)
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the solution becomes

(1 − i)





ηc

δc

+
ηm

δm

coth



(

1 − i

δm

)
∆





 B̃ϕ(ro) = roB

0
r (Ωfcmb − Ωm) (5.79)

and finally,

B̃ϕ(ro) =

(
1 + i

2

)
roB

0
r (Ωfcmb − Ωm)

ηc

δc
+ ηm

δm
coth

[(
1−i
δm

)
∆
] . (5.80)

Equation (5.80) can also be expressed as,

B̃ϕ(ro) = Φm(δc, ηm, ∆)roB
0
r (Ωfcmb − Ωm) , (5.81)

with

Φm(δc, δm, ∆) =

(
1 + i

2

)


ηc

δc

+
ηm

δm

coth



(

1 − i

δm

)
∆







−1

, (5.82)

the transfer function between the velocity jump at the core-mantle boundary and the

azimuthal part of the perturbed magnetic field produced, in r = ro.

5.2.3 Inner core side

At the inner core boundary, the same demonstration can be developed considering the

solution for the diffusion of the toroidal field into the solid inner core,

B̃t

∣∣∣
inner core

= re

(
1−i
δc

)
(r−ri)

L,M∑

ℓ,m

B̃
m

tℓ
(ri)Y

m
ℓ (θ, ϕ), (5.83)

and in fluid outer core,

B̃t

∣∣∣
core

= re
−

(
1−i
δc

)
(r−ri)

L,M∑

ℓ,m

B̃
m

tℓ
(ri)Y

m
ℓ (θ, ϕ). (5.84)

Taking the latitudinal and radial derivative of equation (5.83) gives

∂

∂r

∂B̃t

∂θ

∣∣∣∣∣∣
inner core

= r

(
1 − i

δc

)
∂

∂θ




L,M∑

ℓ,m

B̃
m

tℓ
(ri)Y

m
ℓ (θ, ϕ)


 , (5.85)

that, at r = ri, is similar to

∂

∂r

∂B̃t

∂θ

∣∣∣∣∣∣

ri

inner core

= ri

(
1 − i

δc

)
∂

∂θ




L,M∑

ℓ,m

B̃
m

tℓ
(ri)Y

m
ℓ (θ, ϕ)


 . (5.86)
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In the fluid core we also have,

∂

∂r

∂B̃t

∂θ

∣∣∣∣∣∣
core

= −r

(
1 − i

δc

)
e

−

(
1−i
δc

)
(r−ri) ∂

∂θ




L,M∑

ℓ,m

B̃
m

tℓ
(ri)Y

m
ℓ (θ, ϕ)


 , (5.87)

which evaluation at the ICB gives

∂

∂r

∂B̃t

∂θ

∣∣∣∣∣∣

ri

core

= −ri

(
1 − i

δc

)
∂

∂θ




L,M∑

ℓ,m

B̃
m

tℓ
(ri)Y

m
ℓ (θ, ϕ)


 . (5.88)

Relating equations (5.86) and (5.88) to their respective values at the ICB leads to

∂

∂r

∂B̃t

∂θ

∣∣∣∣∣∣

ri

inner core

=

(
1 − i

δc

)
∂B̃t

∂θ

∣∣∣∣∣∣

ri

inner core

, (5.89)

and

∂

∂r

∂B̃t

∂θ

∣∣∣∣∣∣

ri

core

= −
(

1 − i

δc

)
∂B̃t

∂θ

∣∣∣∣∣∣

ri

core

. (5.90)

Keeping in mind the continuity of the second radial derivative of the poloidal field, we have

∂B̃ϕ

∂r

∣∣∣∣∣∣

ri

inner core

= B̃ϕ

(
1 − i

δc

)∣∣∣∣∣

ri

inner core

, (5.91)

and

∂B̃ϕ

∂r

∣∣∣∣∣∣

ri

core

= −B̃ϕ

(
1 − i

δc

)∣∣∣∣∣

ri

core

. (5.92)

Introducing these two radial derivatives into the conservation of the tangential electric field

at the ICB gives

B̃ϕηc

(
1 − i

δc

)∣∣∣∣∣

ri

core

+ B̃ϕηc

(
1 − i

δc

)∣∣∣∣∣

ri

inner core

= riB
0
r (Ωficb − Ωic) (5.93)

As the perturbed magnetic field B̃1 is continuous across the ICB,

B̃ϕ

∣∣∣
ri

core
= B̃ϕ

∣∣∣
ri

inner core
= B̃ϕ(ri), (5.94)

we have,

2ηc

(
1 − i

δc

)
B̃ϕ(ri) = riB

0
r (Ωficb − Ωic) , (5.95)

and ultimately,

B̃ϕ(ri) =

(
1 + i

4

)(
δc

ηc

)
riB

0
r (Ωficb − Ωic) . (5.96)
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Like at the core-mantle boundary, we can represent this solution defining a transfer function

Φic between the velocity jump at the inner core boundary and the azimuthal part of the

perturbed magnetic field produced as,

B̃ϕ(ri) = Φic(δc)riB
0
r (Ωficb − Ωic) , (5.97)

with

Φic(δc) =

(
1 + i

4

)
δc

ηc

. (5.98)

5.2.4 Discussion on the solutions of B̃ϕ at ICB and CMB

Figure 5.7 illustrates the phase lag between the velocity jumps at ICB and CMB and

the perturbed magnetic field produced, as expressed by equations (5.97) and (5.81). This

phase lag is determined by

arctan

(
Im (Φ)

Re (Φ)

)
, (5.99)

with Im (Φ) the imaginary part and Re (Φ) the real part of the transfer function between

the velocity jump and the perturbed azimuthal field at either ICB (Φic) or CMB (Φm).

At the inner core boundary, this phase lag is equal to π
4

though this value may no longer

be relevant for signal periods on the order of the magnetic diffusion timescale. Indeed, the

above demonstration is contingent upon

ωτη ≫ 1, (5.100)

which is a "high-frequency" approximation over geological timescales.

At the core-mantle boundary, the form of the transfer function Φm is mainly determined

by ∆, the thickness of the layer. For a very thin layer of 150 meters with the electrical

conductivity of the core (blue line figure 5.7), there is no phase lag between the velocity

jump and the perturbed magnetic field produced for ωτη < 5.7 × 106, that is for periods

higher than 4 months, to the left of figure 5.7. In this domain, the thickness of the layer ∆

is small compared to the skin depth δc, causing the hyperbolic cotangent term to tend to

infinity and the phase lag to be zero, since





ηc

δc

+
ηm

δm

coth



(

1 − i

δm

)
∆







−1

≈ (1 − i)
∆

ηm

. (5.101)

In this case, the transfer function at the CMB simply becomes a function of the thickness

and the magnetic diffusivity of the electrically conducting layer,

Φm(ω) =
∆

ηm

. (5.102)
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Figure 5.7: Phase lag between the velocity jump at the ICB and the CMB and the azimuthal part
of the perturbed magnetic field B̃1 at the ICB in black (Eq. 5.97), at the CMB in blue and red
(Eq. 5.81), for a thin layer of 150 meters and σm = 1.5 × 106 S.m−1 and a thicker layer of 200
kilometers and σm = 5 × 102 S.m−1, respectively. The vertical dashed-black lines correspond to
two limits below which the phase lag may be considered at negligible at the CMB. The left one
stands for the very thin layer case for which the phase lag is negligible for periods greater than 9
years. The right one represents the same limit of a thicker conducting laye for wich the phase lag
become significant for periods lower than 4 months.
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For signals with periods shorter than 4 months, the skin depth δm progressively approaches

the thickness of the layer, and as the period shortens the phase lag increases. For a

thicker layer (in red figure 5.7), the increase of the phase lag appears for ωτη > 2 × 105,

corresponding to periods shorter than 9 years. In that case, as the signal period is shorter

and shorter, the solution progressively recovers the limit defined at the ICB, where the skin

depth becomes shorter than the thickness of the layer (i.e. δm ≪ ∆) and the phase equal to
π
4
.

Figure 5.7 represents the limits of "secular variation domain", the interval in which

the phase lag between the velocity jumps at ICB and CMB and the perturbed magnetic

field are π
4

and zero, respectively. This domain is delimited by signal periods greater than

4 months, where the skin depth of the perturbed diffusing into the lower mantle δm is

significantly larger than the thickness of the layer (∆ = 150 m). Moreover, in that range of

signal periods, the transfer functions between the velocity jumps and the azimuthal field

can be simply expressed as functions of the angular frequency of the signal ω, the magnetic

diffusivities of the core and the conducting part of the mantle, ηc and ηm, and the thickness

of the conducting layer ∆. If the conductance of the lower mantle is embodied by a layer of

200 kilometers with an electrical conductivity σm = 1.5 × 102 S.m−1, the "secular variation

domain" is restricted to periods grater than 9 years.

5.3 Electromagnetic torque models

The previous sections provide the transfer functions between the velocity jumps at the

fluid core boundaries and the perturbation of the azimuthal magnetic field produced. In

order to describe the time-dependent electromagnetic torque at either ICB and CMB, the

next step is to introduce the expression of (5.81) and (5.97) into the perturbation of the

electromagnetic torque that we recall are defined as

Γ̃1
ICB(ω) =

ri

µ0

∫

SICB

B0
r B̃ϕ(ω) sin θdS, and (5.103)

Γ̃1
CMB(ω) = − ro

µ0

∫

SCMB

B0
r B̃ϕ(ω) sin θdS. (5.104)

At the core-mantle boundary, introducing the simple expression of Φm (Eq. 5.102) into

equation (5.81) leads to

B̃ϕ =
∆

ηm

B0
r ro (Ωfcmb − Ωm) , (5.105)

which may then be introduced into equation (5.104), leading to

Γ̃1
CMB(ω) = − ro

µ0

∫

SCMB

(
B0

r

)2 ∆

ηm

ro (Ωfcmb − Ωm) sin θdS, (5.106)

or even

Γ̃1
CMB(ω) = −r2

oσm∆ (Ωfcmb − Ωm)
∫

SCMB

(
B0

r

)2
sin θdS, (5.107)
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Finally, as the surface integral of the radial component of the main field corresponds to a

mean squared value of the radial field at the CMB, it will be simply noted like B2
ro

, and we

have

Γ̃1
CMB(ω) = −r4

oσm∆B2
ro

(Ωfcmb − Ωm) . (5.108)

The same analysis at the inner core boundary leads to

Γ̃1
ICB(ω) =

r4
i

µ0

B2
ri

Φic(δc) (Ωficb − Ωic) , (5.109)

in the general case and

Γ̃1
ICB(ω) =

r4
i

µ0

B2
ri

(
1 + i

4

)√
2

ηcω
(Ωficb − Ωic) , (5.110)

or even

Γ̃1
ICB(ω) =

(
1 + i

4

)
r4

i B2
ri

√
2σc

µ0ω
(Ωficb − Ωic) , (5.111)

for the "extended secular variation domain" defined in figure 5.7, that is to say for signal

periods between 3400 years and 4 months.

Equations (5.108) and (5.111) illustrated the time-dependent behavior of the electro-

magnetic torques at the fluid core boundaries. These expressions follow from a perturbation

analysis in which the perturbed azimuthal field that characterizes the electromagnetic

torques results from the shear of a mainly dipolar, slowly varying over time, magnetic field

by the velocity jumps at the fluid core boundaries. As these models shall constitute the

basis of the time-dependent rotational dynamics of the system, it is worth recalling which

assumptions they rest upon. Firstly, the perturbations analysis itself and the extraction

of the major source term of azimuthal field may be a source of uncertainties. Secondly,

in order to obtain a homogeneous second order equation to describe the diffusion of the

perturbed field away from the boundaries, we had to neglect the horizontal variations

compared to the radial ones. Section 5.1.2 highlights the fact that this assumption is highly

sensitive to the signal period and the thickness of the electrically conducting part of the

mantle. The situation is even more arguable for the solution in the inner core as r 7→ 0.

However, the models are built by linking the radial derivatives of the azimuthal field "at"

the fluid core boundaries, so this shall not be a major complication. Finally, we assumed

that the perturbation of the azimuthal field is mainly carried by the toroidal field. This

is strictly valid if the perturbation is induced by the shear of a mainly dipolar field by an

axisymmetric velocity jump, ensuring the continuity of the second radial derivative of the

poloidal part of the magnetic field.
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6

Elementary cases: validation of the

electromagnetic torque models

Abstract

This chapter is dedicated to the validation of the time-dependent electromagnetic torque

models acting on the mantle and the inner core as expressed in the previous chapter. This

validation is performed on simple case-study, that is to say in non-convective numerical

simulations in which the main magnetic field and velocity perturbations are imposed. We

performed and analyzed the results of 52 case-study simulations; 32 with an oscillating

solid body rotation in the outer core in order to focus on the influence of the velocity jumps

on the system, and 20 simulations with a shear flow in the fluid outer core to examine the

possible effects of a remote shear. For each core flow, we also consider the impact of a

gravitational coupling linking the inner core to the mantle. This provides a first approach to

the time-dependent behavior of the system and allows the verification of the electromagnetic

torque models under the assumptions formulated to obtain the expressions.

Résumé

Ce chapitre est consacré à la validation des modèles de couple électromagnétique

dépendants du temps agissant sur le manteau et le noyau interne développés dans le

chapitre précédent. Cette validation est effectuée sur des cas d’étude, c’est-à-dire dans

des simulations numériques non convectives dans lesquelles le champ magnétique et les

perturbations de vitesse sont imposés. Nous avons effectué et analysé les résultats de 52

simulations ; 32 avec une rotation solide oscillante dans le noyau externe afin de se concentrer

sur l’influence des sauts de vitesse, et 20 simulations avec un écoulement cisaillant dans

le noyau externe fluide pour examiner les possibles effets d’un cisaillement distant des

frontières. Pour chaque écoulement, nous considérons également l’impact d’un couplage

gravitationnel reliant le noyau interne au manteau. Ceci fournit une première approche du

comportement dépendant du temps du système et permet la validation des modèles de couple

électromagnétique dans le cadre des hypothèses formulées pour obtenir les expressions.
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6.1 System

The system studied consider two electromagnetic torques at the fluid core boundaries,

ΓICB and ΓCMB, and a gravitational torque, ΓG, that links the inner core and the mantle.

The conservation of the angular momentum of the inner core, the mantle, and the fluid

outer core is then

Ii
dΩic

dt
= ΓG + ΓICB,

Im
dΩm

dt
= −ΓG + ΓICB,

d

dt

∫

Vf

ωf ifdV = −ΓICB − ΓCMB,

(6.1)

with Ωic and Ωm the angular velocities and Ii and Im the moments of inertia of the inner

core and the mantle, Vf the volume of the outer core, and ωf and if respectively the angular

velocity and the moment of inertia of a fluid parcel in the fluid outer core. This set of

equation is naturally solved in the numerical implementation and defines the time-dependent

responses of the inner core and the mantle to the different torques. The consistency check

is then to predict the responses of the inner core and the mantle using the dynamical

electromagnetic torque models. To to so, we will impose a periodic azimuthal flow into the

fluid outer, that will interact with a static dipolar magnetic field of the form

Bp
0
1(ro ≥ r ≥ ri) = −Bi

5

16
√

3

(
6r2 − ror + 2

r3
i

r

)
, (6.2)

in the fluid outer core, and

Bp
0
1(r ≤ ri) =

r

ri

Bp
0
1(ri), (6.3)

in the inner core, with Bi a given amplitude of the poloidal field, as pictured by the black lines

in figure 6.1. Note that the form of this poloidal magnetic field is commonly used to start

convective simulations of the geodynamo, in accordance with the benchmark of Christensen

et al. (2001). The loops solving the temperature, the poloidal and toroidal velocity fields as

well as the poloidal magnetic field are muted, and we adopt stress-free boundary conditions

at both ICB and CMB. Hence, the case-study simulations only compute the azimuthal field

produced by the shear of a dipolar magnetic field by an imposed azimuthal velocity field.

As a consequence, the amplitude of the main dipolar magnetic field and strength of the

velocity perturbations should be the main control parameters. In that sense, we choose Ωoc,

the amplitude of the oscillating perturbation imposed to the outer core as a characteristic

dimension for the angular velocities of the system. The characteristic dimension of the

magnetic field is taken as Bdip, the strength of the dipole field at the core-mantle boundary;

leading to electromagnetic torques scaling like
D3Bdip

µ0
. The thickness of the fluid outer core

D is also the characteristic length-scale, ρ is the mean density of the core, ηc the magnetic

diffusivity, µ0 the permeability of free space and the dimension of the time is given by
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τη = D2/ηc. In order to lighten the notation, every variable and physical parameter will,

from now, be displayed as dimensionless, so that we have

Ω = Ω/Ωoc, ω = ω × τη, t = t/τη,

B = B/Bdip, ΓICB/CMB = ΓICB/CMB/
D3B2

dip

µ0
, ΓG = ΓG/ρη2

c D.
(6.4)

When using this characteristic dimensions, and for a given frequency of the velocity

perturbation, the system can be fully described by two dimensionless numbers. The first

one is

P =
η

ΩocD2
, (6.5)

and compares the amplitude of the perturbation relative to the magnetic diffusion time of

the core, and the second is the Lundquist number,

Lu =
DBdip

ηc
√

µ0ρ
, (6.6)

that compares the time for an Alfvén wave to travel from ICB to CMB, to the magnetic

diffusion time of the core τη. Indeed, the Lundquist number may also be written

Lu =
DVA

ηc

=
τη

tA

, (6.7)

with VA = Bdip/
√

µ0ρ, the Alfvén wave velocity and tA = D/VA, the time for an Alfvén

wave to cover a distance D. Please note that the Lundquist scaling of this system was

already anticipated by Gubbins (1981). Indeed, even though we do not literally treat the

problem of Alfvén waves in this chapter, the relevance of the Lundquist scaling lies in the

fact that the main driving/restoring force in our system is the Lorentz force, as it is the

case of the Alfvén waves.

6.2 Solid-body rotation

6.2.1 Case-study simulations

In order to study the responses of the inner core and the mantle to the velocity jumps

at the fluid core boundaries, the first series of case-study simulations pictures a periodic

solid-body rotation of the outer core, implemented as a toroidal velocity field of the form

Vt
1
1(r) = Ωoc sin (ωt)

r√
3

. (6.8)

In this particular situation, the outer core can be described by a moment of inertia Ioc and

an angular velocity of rotation Ωoc, as pictured in figure 6.1. This figure also shows the

form of the poloidal field implemented (Eq. 6.2), the responses of the inner core and the
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mantle (on the left) in term of angular velocities and the azimuthal field produced by the

velocity jumps at the fluid core boundaries (on the right).

Figure 6.1: Snapshots of a case-study simulation with an imposed solid-body rotation in the outer
core and a static poloidal magnetic field (black lines). On the left, the angular velocities of the
inner core Ωic, the fluid outer core Ωoc and the mantle Ωm. On the right, the azimuthal magnetic
field produced by the velocity jumps at ICB and CMB.

In this part, we performed a set of 32 numerical simulations with dimensionless frequen-

cies of periodic forcing f ranging from 1 to 10 000 with an amplitude Ωoc = 1 (Eq. 6.8).

Given our choice of characteristic dimensions, the amplitude of the dipole Bdip is also one,

P = 8.3 × 10−3 and the Lundquist number is Lu = 43. Each simulation pictures a transient

regime as illustrated by figure 6.2. Once the system reaches stationarity, we record the

amplitude and the possible phase-lag between the different angular velocities of the system

and the electromagnetic torques. Figure 6.2 presents an example of the evolution of the

angular velocity of the inner core (in black) triggered by a periodic solid-body forcing of

the outer core (in blue) with f = 200, without gravitational coupling between the inner

core and the mantle.

6.2.2 Without gravitational coupling

We here focus on the results of the 12 numerical case-study simulations without grav-

itational coupling linking the inner core to the mantle. In this particular setup, the

electromagnetic torques at ICB and CMB should balance in the long-term state. However,

this balance is not instantly fulfilled, essentially due to the difference between the moments

of inertia of the mantle and the inner core. Moreover, as the moment of inertia of the
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Figure 6.2: Inner core super-rotation S and shear at the ICB Cicb, for a periodic forcing with
frequency f = 200. The left part shows the transient regime while the zoomed right part illustrates
the monitoring of the amplitude and the phase-lag.

mantle is about a thousand times greater than the one of the inner core, an electromagnetic

torque at the CMB should be a thousand times larger than at the ICB in order to obtain

a consequent perturbation in the angular velocity of rotation of the mantle. Thus, when

we require a periodic solid-body rotation in the outer core, with the same amplitude for

each frequency, the shear at the CMB (Ωoc − Ωm) remains unchanged. Consequently, it is

ambitious to validate the model of the perturbed electromagnetic torque at the CMB with

this approach, and the analysis of the case-study simulations focuses on the scaling of the

electromagnetic torque acting on the inner core.

Figure 6.3 presents the results of the first series of numerical simulation, in terms of

the amplitude of the electromagnetic torque at the ICB (in black) and the amplitude of

the inner core response (in blue). For very low frequencies (periods close to the magnetic

diffusion time of the core τη), f 7→ 1, and equivalently, ω 7→ 2π, the inner core and the

outer core are rotating at the same angular frequency, i.e. Ωoc − Ωic = 0 over time. As

the frequency of the outer core rotation is increased, the co-rotation regime is disrupted.

Around angular frequencies of ω = 103, the amplitude of the electromagnetic torque at

the ICB reaches a peak, that coincides with a peak of the angular velocity of the inner

core. When the frequency is further increased, the rotation of the inner core decreases

(Ωoc − Ωic 7→ Ωoc), along with the amplitude of Γ̃1
ICB.
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Figure 6.3: Amplitude of the angular velocity jump at the ICB, Ωoc − Ωic, and amplitude of the
electromagnetic torque exerted on the inner core Γ̃1

ICB, as a function of the angular frequency ω of
the periodic forcing.

Figure 6.4 shows the agreement between the model of the perturbed electromagnetic

torque at the ICB developed in chapter 5 and the results obtained with a set of 12 numerical

simulations in which the outer core is solid-body rotating at a given frequency. Since the

lowest frequencies correspond to periods of the order of the magnetic diffusion time of the

core, the scaling of Γ̃1
ICB is realized with the complete expression of the transfer function

Φic between the velocity jump and the azimuthal field produced at the ICB. The linear

regression leads to a validation of the model like,

Γ̃1
ICB(ω) = K1 × Φ∗

icr
4
i B2

ri
(Ωoc − Ωic) /P , (6.9)

with

Φ∗

ic(δc) =

(
1 + i

4

)
δc, (6.10)

the dimensionless transfer function, and

K1 = 1.14. (6.11)

Here δc is the dimensionless skin depth, the scaling law may than be written

Γ̃1
ICB(ω) = K1 ×

(
1 + i

4

)√
2

ω
r4

i B2
ri

(Ωoc − Ωic) /P . (6.12)
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Figure 6.4: Scaling of the amplitude of the dimensionless electromagnetic torque exerted on the
inner core Γ̃1

ICB, with a set of 12 numerical simulation with an imposed solid-body rotation of
the outer with frequencies f ranging from 1 to 1 000. The expression of Φ∗

ic is given by equation
(6.10). The blue line represents the best fit, with a slope of 1.14.

6.2.3 With gravitational coupling

This section is dedicated to the analysis of the 20 simulations including a gravitational

coupling between the inner core and the mantle, with an imposed periodic solid-body

rotation in the outer core with frequency f ranging from 1 to 10 000. The dimensionless

gravitational torque ΓG is implemented like

ΓG = ζη (Ωic − Ωm) , (6.13)

in which the strength of the gravitational coupling is embodied by the dimensionless number

ζη =
τΓ

ρηcD3
, (6.14)
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with τ a characteristic time scale of the viscous deformations of the inner core and Γ a con-

stant that accounts for the mantle heterogeneities of density. The 20 case-study simulations

are separated into two series, 10 simulations with ζη = 2 × 104 and 10 simulations with

ζη = 1 × 102. Figure 6.5 and 6.6 respectively present the magnitude of the electromagnetic

torque and the shear at the ICB as a function of the angular frequency of the solid-body

rotation of the outer core, in black for the simulations with ζη = 2 × 104 and in red for the

simulations with ζη = 1 × 102. Figure 6.5 shows that, for a strong gravitational coupling
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Figure 6.5: Amplitude of the shear at the ICB as a function of the angular frequency ω of the
solid-body rotation imposed in the outer core. In black for the simulations with ζη = 2 × 104 and
in red for the simulations with ζη = 1 × 102.

(ζη = 2 × 104), the inner core is always locked to the mantle, so that Ωoc − Ωic ≈ Ωoc.

However, for lower gravitational coupling constant (ζη = 1 × 102), the frequency dependence

of the response of the inner core is still apparent. At low frequencies, i.e periods on the order

of the magnetic diffusive time of the core, the inner core is entrained by the outer core so

that the shear at the ICB is close to zero. Also, as the frequency increases, the inner core is

less and less sensitive to the outer core rotation and the velocity jump at the ICB increases,

a behavior at high frequencies that is similar to that noticed in absence of gravitational

coupling (Fig. 6.3). Figure 6.6 expresses that the amplitude of the electromagnetic torque

at the ICB decreases as the frequency of the outer core rotation increases to finally reach
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Figure 6.6: Amplitude of the electromagnetic torque at the ICB as a function of the angular
frequency ω of the solid-body rotation imposed in the outer core. In black for the simulations
with ζη = 2 × 104 and in red for the simulations with ζη = 1 × 102.

the same values as in the absence of gravitational coupling (Fig. 6.3). The influence of

the gravitational coupling on the electromagnetic torque is best seen in figure 6.7, that

pictures the scaling of the electromagnetic torque at the ICB with a gravitational coupling.

At low frequencies, corresponding to high values of the electromagnetic torque, both sets of

case-study simulations attain a threshold value illustrated by the horizontal black dashed-

lines. This reveals that, by limiting the inner core rotation, the gravitational torque also

restricts the amplitude of the electromagnetic torque, the threshold value being larger as

the coupling constant ζη is greater. Fortunately, this limit is only observed at very-low

frequencies, corresponding to periods higher than 30 000 years. The blue line in figure 6.7

represents the best-fit for Γ̃1
ICB when removing the very-low frequency simulations. As in

the absence of gravitational coupling, the scaling obeys

Γ̃1
ICB(ω) = K1 ×

(
1 + i

4

)√
2

ω
r4

i B2
ri

(Ωoc − Ωic) /P , (6.15)

with K1 = 1.14, suggesting that, for periods lower than 30000 years, the model of the

electromagnetic torque acting on the inner is appropriate to describes the system.
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Figure 6.7: Scaling of the dimensionless perturbed electromagnetic torque at the ICB Γ̃1
ICB, with

two sets of 10 numerical case-study simulations respectively with a gravitational coupling constant
ζη = 2×104, in black, and ζη = 1×102, in red. The outer core is solid-body rotating at frequencies
ranging from 1 to 10 000 and the expression of Φ∗

ic is given by equation (6.10). The blue line
represents the best fit, without the very-low frequency simulations (f < 10), with a slope of 1.14.

6.2.4 Expressions of S and D

We here want to establish the expressions of the inner core super-rotation S and the

geomagnetic westward drift D in the case of a solid-body rotation of the outer core. To

do so, we first re-write the conservation of angular momentum (6.1) in terms of Fourier

transforms. The conservation of the angular momentum of the inner core becomes

Ii
1√
2π

d

dt

∫ +∞

−∞

Ωic(ω)e−iωtdω =
1√
2π

∫ +∞

−∞

Γ̃1
ICB(ω)e−iωtdω (6.16)

τΓ
1√
2π

∫ +∞

−∞

(Ωic(ω) − Ωm(ω)) e−iωtdω,
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when using the same notation of the angular velocity of rotation in the frequency and time

domains. For each angular frequency, this can be reduced to the dimensionless expression,

− IiiωΩic = Lu2K1

(
1 + i

4

)√
2

ω
r4

i B2
ri

(Ωoc − Ωic) − ζη (Ωic − Ωm) , (6.17)

by adopting the previously validated model for the perturbed electromagnetic torque at the

ICB (Eq. 6.12). An analogous equation can be formulated for the dimensionned conservation

of the angular momentum of the solid mantle,

Im
1√
2π

d

dt

∫ +∞

−∞

Ωm(ω)e−iωtdω =
1√
2π

∫ +∞

−∞

Γ̃1
CMB(ω)e−iωtdω (6.18)

+ τΓ
1√
2π

∫ +∞

−∞

(Ωic(ω) − Ωm(ω)) e−iωtdω, (6.19)

that again, for each angular frequency, can be reduced to following dimensionless expression

− ImiωΩm = Lu2K2r
4
oB2

ro
Σ (Ωoc − Ωm) + ζη (Ωic − Ωm) (6.20)

using the dimensionless model for the perturbed electromagnetic torque at the CMB (see

chapter 5) and introducing the dimensionless conductance of the electrically conducting

layer at the base of the mantle

Σ =
σm∆

σcD
. (6.21)

As anticipated, our choice of the characteristic dimensions of the system introduces the

Lundquist number as control parameter for the angular conservation of the inner core and

the mantle, in equations (6.20) and (6.17). In addition, this set of equations now allows

the formulations of the angular velocities of the inner core and the mantle, Ωic and Ωm, as

functions of the imposed solid-body rotation of the outer core. Do to so, we first simplify

the notation of the set that becomes

−iωΩic =Ψ1 (Ωoc − Ωic) − Ψic (Ωic − Ωm) , (6.22)

−iωΩm =Ψ2 (Ωoc − Ωm) + Ψm (Ωic − Ωm) , (6.23)

with

Ψ1 =
K1( 1+i

4 )
√

2
ω

r4
i B2

ri
Lu2

Ii
, Ψic = ζη

Ii
,

Ψ2 =
K2r4

oB2
ro

ΣLu2

Im
, Ψm = ζη

Im
.

After a few demonstration steps (see A.3), the angular velocity of the mantle can be

described like

Ωm = Ωoc

(
Ψ2γc + ΨmΨ1

γcγm − ΨicΨm

)
. (6.24)
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with

γc = Ψ1 + Ψic − iω, and γm = Ψ2 + Ψm − iω, (6.25)

or in terms of the geomagnetic westward drift D = Ωoc − Ωm,

D = Ωoc

(
1 − Ψ2γc + ΨmΨ1

γcγm − ΨicΨm

)
. (6.26)

In addition, the angular velocity of rotation of the inner core follows

Ωic = Ωoc

(
Ψ1γm + ΨicΨ2

γcγm − ΨicΨm

)
, (6.27)

leading to a super-rotation of the inner core S = Ωic − Ωm of the form

S = Ωoc

(
Ψ1γm + ΨicΨ2 − Ψ2γc − ΨmΨ1

γcγm − ΨicΨm

)
. (6.28)

Figure 6.8 exposes the comparison between the results of the numerical case-study

simulations, in blue, and equation (6.28), in black, in terms of the amplitude of the inner

core super rotation S (top) and the phase lag (bottom) between S and the solid-body

rotation of the outer core Ωoc. The agreement between the numerical simulations and the

analytical expression is satisfying, especially at both low and high frequencies. At low

frequency, i.e. when the period of the forcing is much greater than the Alfvén time, the

inner core follows the fluid outer core: the inner core super-rotation equals the amplitude

of the perturbation with no lag between the two. At high frequencies, the period of the

forcing becomes small compared to the Alfvén time such that the inner core becomes less

and less sensitive to the azimuthal velocity perturbation, leading to a vanishing inner core

super-rotation. Between these two regimes, i.e when the period is of the order of the Alfvén

time, we can observe the transition with an offset between the model and the simulations.

In the dimensionless formalism, the period of the forcing is on the order of the Alfvén time

corresponds to ω ≃ 2πLu. Given our value of the Lundquist number, we obtain a transition

around ω ≃ 270, which actually coincides with the very begin of the transition in figure 6.8.

Pursuant to this reasoning, is it possible to anticipate this transition for Earth, or at least

of the solid-body rotation part of the earth core. Considering that the Lundquist number

of the Earth’s core is on the order of 104, the transition should then occur around forcing

periods of 30 years.

In the presence of the gravitational coupling between the inner core and the mantle,

as pictured by figure 6.9, this offset is still present. However, the mismatch between the

numerical results (dashed lines) and the analytical solutions (plain lines) is reduced by the

increase of the gravitational coupling constant ζη, that characterizes the strength of the

gravitational coupling.

In addition, figure 6.9 shows that the presence of gravitational coupling does not
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Figure 6.8: Amplitude (top) and phase-lag (bottom) of the inner core super rotation S = Ωic − Ωm

as a function of the angular frequency ω in absence of gravitational coupling. In blue, the
observation in the numerical simulations and in black the solution given by equation (6.28).

drastically affect the previously identified behavior of inner core super-rotation as a function

of the forcing frequency. Indeed, for ζη = 1 × 102 in red, we can still notice the two different

regimes, at the exception of a slightly smaller co-rotation at low frequency. This argument

is of course no longer valid for stronger gravitational coupling constant, in black, that

completely prevent any inner core differential rotation.

6.3 Shear in the fluid outer core

6.3.1 Shear flow

The previous section focuses on the scaling of the electromagnetic torque at the inner

core boundary initiated by the velocity jump between the angular rotation of the inner core

and the imposed solid-body rotation of the outer core. However, though this establishes the

first approach toward the scaling of the electromagnetic torque as a function of the velocity
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Figure 6.9: Amplitude (top) and phase-lag (bottom) of the inner core super rotation S = Ωic − Ωm

as a function of the angular frequency ω with a gravitational coupling, in black for ζη = 2 × 104

and in red for ζη = 1 × 102. The dashed lines are the observations in the numerical simulations
while the plain lines represent the solutions given by equation (6.28).

jump, it overlooks the influence of the shear in the fluid outer core. Indeed, Pichon et al.

(2016) proved that the expression of the long-term electromagnetic torque features a local

(velocity jump at the ICB) and a remote contribution from the shear in the fluid outer core,

namely Cf = Ωficb − Ωfcmb. Yet, imposing a solid-body rotation in the outer core is identical

to setting Cf = 0.

In order to investigate the influence of Cf on the electromagnetic torque acting on the

inner core, we performed a series of 20 numerical simulations in which we imposed a periodic

flow in the fluid core that bears no angular momentum. In other words, we chose to impose

a flow into the fluid outer core of the form

ωf (r) = a + b(r − ro), (6.29)
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that has to force the angular momentum of the fluid outer core to be zero,

∫

Vf

ωf ifdV = 0. (6.30)

We found that, in order to satisfy this constraint, the flow in the fluid outer should

correspond to

ωf (r) = a


1 + (r − ro)

6
(
r5

o − r5
i

)

r6
o − r5

i (5ri − 6ro)


 , (6.31)

with a the value of the angular velocity of the fluid at the core-mantle boundary (r = ro).

Figure 6.10 shows the form of the imposed shear flow in the fluid outer, along with the

poloidal magnetic field lines and the azimuthal magnetic field produced, on the right. The

snapshots are extracted from a case-study simulation with a frequency f = 10 of the

periodic forcing in the outer core, picturing a strong azimuthal magnetic field inside the

fluid outer core.

Figure 6.10: Snapshots of a case-study simulation with an imposed shear flow in the outer core
and a static poloidal field (black lines). On the left, the angular velocities of the inner core Ωic, the
mantle Ωm, and the fluid close to the ICB and CMB, Ωficb and Ωfcmb. On the right, the azimuthal
magnetic field produced by the velocity jumps at ICB and CMB.

Figure 6.11 presents the amplitudes of the shear, Ωficb − Ωic, and the electromagnetic

torque at the ICB, Γ̃1
ICB. As in the solid-body rotation experiments (see Fig. 6.3), the

amplitude of the perturbed electromagnetic torque at the ICB is low at the very low

frequencies. However, at those same very low frequencies the shear at the ICB is no longer

zero. In this frequency domain, we thus observe a strong shear at the ICB that does not lead

to a strong electromagnetic torque acting on the inner core, and consequently a vanishing
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inner core super rotation. This demonstrates that, for low frequencies, the inner core is non

longer sensitive to the azimuthal magnetic field produced by the velocity jumps at the ICB.

In other words, the azimuthal magnetic field produced by the remote shear in the body of

the outer core overcomes the local velocity jump effect.
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Figure 6.11: Shear at the ICB, Ωficb − Ωic and amplitude of the electromagnetic torque acting on
the inner core Γ̃1

ICB, as a function of the angular frequency ω of the periodic imposed shear flow
in the fluid outer core.

This change on the behavior can also be observed in figure 6.12, that exposes the phase

lag between the shear and the electromagnetic torque at the inner core boundary. At low

frequencies the phase lag is strong, leading to a strong lag between the torque and the inner

core angular rotation. However, as we increase the frequency of the periodic shear flow in

the fluid outer core, we recover a phase lag that tends to reach the π
4

value.

Finally, the influence of a shear in the fluid outer core is best seen in figure 6.13, that

compares the azimuthal field only produced by the velocity jumps in the solid-body rotation

case-study simulations (top) and the azimuthal field produced by a combination of the

velocity jumps and a shear in the fluid outer core (bottom). In the solid body-rotation

simulations, we observed that as the angular frequency of rotation of the outer core increases,

the inner core lag increases as well. This induces larger velocity jumps at the fluid core

boundaries and consequently a vigorous production of azimuthal magnetic field, notably

at the inner core boundary, that is visible on the snapshots on the top of figure 6.13.

The snapshots on the bottom of figure 6.13 are extracted from the shear flow case-study

simulations. At low frequency, they exhibit a strong azimuthal magnetic field in the body of

the fluid outer core, that do no reach the boundaries. However, as we increase the frequency
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Figure 6.12: Phase lag at the ICB as a function of the angular frequency ω of the periodic imposed
shear flow in the fluid outer core. In green, the previously identified limit value of π

4 .

of oscillations in the fluid outer core, the amplitude of the azimuthal field produced decreases.

More importantly, the azimuthal field produced is more and more located at the fluid core

boundaries.

These observations lead to a scaling of the electromagnetic torque that sets aside the

very low frequency case-study simulations, namely with frequencies f < 100. For frequencies

higher than 100, corresponding to periods lower than 3 000 years, the electromagnetic torque

can be scaled as in section 6.2. This scaling is displayed by figure 6.14 and again validates

the model of the electromagnetic torque acting on the inner core defined by equation (6.12).

This scaling also displays the agreement with 10 simulations that include gravitational

coupling (ζη = 2 × 104), picturing the same plateau value identified in the solid-body

rotation case-study simulations in section 6.2.3.

6.3.2 Expressions of S and D

We now wish to establish the expressions of inner core super rotation and the geomagnetic

westward drift as functions of the shear imposed in the fluid outer core. Following the

same steps as in section 6.2.4, and including the angular velocities of the fluid close to the

ICB and close to the CMB, respectively Ωficb and Ωfcmb, the conservation of the angular
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Azimuthal magnetic field Bϕ

Figure 6.13: Snapshots of the azimuthal magnetic field Bϕ in the fluid outer and in the inner
core, in the case study simulations with a forced outer core periodic solid-body rotation (on top)
and a forced shear flow in the fluid outer core (bottom), without gravitational coupling and for
frequencies of periodic forcing f = 1, f = 10, f = 50 and f = 200.

momentum of the system becomes

−iωΩic = Ψ1 (Ωficb − Ωic) − Ψic (Ωic − Ωm) ,

−iωΩm = Ψ2 (Ωfcmb − Ωm) + Ψm (Ωic − Ωm) ,

0 = −Ψ1Ii (Ωficb − Ωic) − Ψ2Im (Ωfcmb − Ωm) .

(6.32)

Solving this system (see A.3) leads to the formulation of the time-dependent expressions of

the inner core super rotation

S = Cf
Ψ1 − γf (Ψ1 − Ψ2)

Ψ1 + Ψic + Ψm − γf (Ψ1 − Ψ2) − iω
, (6.33)
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Figure 6.14: Scaling of the electromagnetic torque acting on the inner core Γ̃1
ICB in numerical

case-study simulations with a periodic shear flow imposed into the fluid outer core. Φ∗
ic is given by

equation (6.10). The blue line represents the best fit, without the very-low frequency simulations
(f < 100), with a slope of 1.14. Red points represents the 9 simulations without gravitational
coupling while the black cross are the 9 simulations with ζη = 2 × 104.

and the geomagnetic westward drift

D = −Cfγf

(
1 − Ψ1 − γf (Ψ1 − Ψ2)

Ψ1 + Ψic + Ψm − γf (Ψ1 − Ψ2) − iω

)
, (6.34)

as functions of the electromagnetic torques amplitudes embodied by Ψ1 and Ψ2, the moments

of inertia of the inner core Ii and the mantle Im and the angular frequency of the period

forcing ω imposed in the fluid outer core, with

γf =
Ψ1Ii

Ψ1Ii + Ψ2Im

. (6.35)

The agreement between the numerical results and the analytical form given by equa-

tion (6.33) is displayed in figure 6.15. This figure adds the results of 10 numerical simulations

with a strong gravitational coupling between the inner core and the mantle implemented

with ζη = 2 × 104, in black. With and without a gravitational coupling, the effect of the

shear inside the fluid outer core is apparent at low frequencies, leading to a significant

mismatch between the numerical results and the outcome of equation (6.33) on the left side
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of the diagrams. Notwithstanding the already identified mismatch around the transition

between the two regimes, the agreement is sufficient as the angular frequency of oscillation

increases in the fluid outer core, particularly regarding the phase lag between the inner core

super rotation and the shear in the fluid outer core, at the bottom of figure 6.15.

10
0

10
1

10
2

10
3

10
4

10
5

−0.5

0

0.5

1

1.5

ω

Shear flow Cf

Amplitude of S

 

 
ζη = 2 × 104

ζη = 2 × 104 (data)
ζη = 0
ζη = 0 (data)

10
0

10
1

10
2

10
3

10
4

10
5

ω

Phase lag between S and Cf

 

 

0

π

4

π

2

ζη = 2 × 104

ζη = 2 × 104 (data)
ζη = 0
ζη = 0 (data)

Figure 6.15: Amplitude (top) and phase-lag (bottom) of the inner core super rotation S = Ωic −Ωm

as a function of the angular frequency ω without gravitational coupling, in blue, and with
gravitational coupling, in black with ζη = 2 × 104. The dashed lines are the observations in the
numerical simulations while the plain lines represent the solutions given by equation (6.33).

6.4 Conclusion

The analysis of the case-study simulation put lights on important aspects of the time-

dependent electromagnetic torque acting on the inner core. First, the systematic study on

the solid-body rotation cases allowed the validations of the electromagnetic torque model
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at the ICB. We thus proved that our numerical set up is conformed with a time-dependent

torque that is produced by the shear of a dipolar field by the velocity jump at the ICB.

Second, we characterized the influence of a shear in the body of the fluid outer core, in

simulations picturing a shear flow that bears no angular momentum. As the impact of

the remote shear is only significant at periods close the characteristic magnetic diffusion

time of the core τη, we conclude that considering this global shear in a time-dependent

approach is irrelevant. Third, we analyzed the consequences of the presence of gravitational

coupling between the inner core and the mantle which induces a consequent deviation on the

scaling at low frequencies. Finally, we were able to attain the consistency check addressed

at the beginning of this section: to predict the time-dependent inner core super rotation

in case-study simulations with a main, static, dipolar magnetic field and two different

azimuthal oscillating flows imposed to the fluid outer core.
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7

Amplitude of rotational fluctuations in

geodynamo simulations

Abstract

This chapter presents an analysis of time-dependent inner core - outer core - mantle

system in numerical simulations of the geodynamo. We first compare the results of the

simulations with the two ideal cases developed in the previous chapter. For this, we use

the standard deviations of the four shears that characterize our system, as measures of

the decadal to secular fluctuations of the differential rotation of the inner core. These

oscillations seem mainly generated by a shear flow of the fluid core which does not carry,

or very little, angular momentum. In addition, we observe that the parameter that most

influences the rotation oscillations of the inner core is the intensity of the gravitational

torque between the inner core and the mantle. These observations make it possible to

constrain the amplitude of the decadal fluctuations of the differential rotation of the inner

core as being less than 0.04̊ yr−1, a value nearly two orders of magnitude lower than that

estimated by the seismological study conducted by Tkalčić et al. (2013).

Résumé

Ce chapitre est une première étape dans l’analyse des simulations numériques de la

géodynamo en terme de dépendance temporelle du système couplé graine - noyau externe -

manteau. Nous comparons ici les résultats des simulations aux deux cas idéaux développés

dans le chapitre précédent. Pour cela, nous utilisons les écarts-types des quatre cisaillements

qui caractérisent notre système, dans le but de contraindre l’amplitude des fluctuations de

la super-rotation de la graine. Ces oscillations semblent majoritairement engendrées par un

écoulement cisaillant du noyau fluide qui ne porte pas, ou très peu, de moment cinétique. De

plus, nous observons que le paramètre qui influence le plus les oscillations de rotation de la

graine est l’intensité du couple gravitationnel entre la graine et le manteau. Ces observations

permettent de contraindre à 0.04̊ an−1 l’amplitude des fluctuations décennales de la rotation

différentielle de la graine, une valeur près de deux ordres de grandeur inférieure à celle

estimée par l’étude sismologique menée par Tkalčić et al. (2013).

151
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7.1 Typical standard deviations

We here confront the time-dependent models developed in chapter 5 and tested against

simple case-study simulations in chapter 6 to full convective numerical simulations of the

geodynamo. To do so, we use the same simulations as in the long-term study of the coupled

system of chapter 4 (Pichon et al., 2016), and listed in table 7.1. However, characteristic

dimensions are the magnetic diffusion time scale of the core for the time, a typical angular

velocity for dynamic components and the magnitude of the dipole for magnetic quantities,

as adopted in the previous chapter. This first step toward the time-dependent analysis of

complex simulations is performed with the standard deviations of the rotational dynamics

components, which represents the mean amplitudes of the temporal fluctuations. Unless

specified, the following quantities thus refer to dimensionless standard deviations. In order

to base our analysis on already characterized parameters, the standard deviations of the

angular velocities and shears are dimensioned by the time-averaged global shear in the fluid

outer core 〈Cf〉 of each simulation. The electromagnetic torques scalings are then obtained

with the parameter

P =
η

〈Cf〉D2
, (7.1)

while the Lundquist number is defined as

Lu =
D〈Bdip〉
ηc

√
µ0ρ

, (7.2)

with 〈Bdip〉 the time-average value of the magnetic dipole field at the core-mantle boundary.

As in the long-term study, we first analyze the response of the system to changes of the

main control parameters. The first is the strength of the gravitational coupling embodied

by the parameter ζη and the second is the lower mantle conductance Σ, whose expressions

are respectively

ζη =
τΓ

ρηD3
, and Σ =

σm∆

σcD
. (7.3)

Figure 7.1 shows the standard deviations of the shear at the inner core boundary Cicb, the

shear in the fluid outer core Cf as well as those of the inner core super-rotation S and the

westward drift D as a function of the strength of the gravitational coupling between the

mantle and the inner core. The system appears dominated by fluctuations of Cf and Cicb,

while the amplitude of the westward drift fluctuations are nearly twice less. This figure

also exhibits the drastic decrease of the inner core super-rotation as the strength of the

gravitational coupling increases. As the time-averaged value of S is affected the same way,

this demonstrates that the strength of the gravitational coupling is a dominant parameter

that controls both the mean value and the amplitude of the fluctuations of the inner core

differential rotation. However, contrary to the long-term state of the system, the standard

deviations of the other three characteristic shears remains unaffected by changes of ζη.

Figure 7.2 displays the standard deviations of the system as a function of the mantle
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conductance Σ, in simulations with a strong gravitational coupling, ζη = 6.25 × 104, which

is equivalent to ζ = 0.75 in the dimensionless system developed for the long-term analysis

in chapter 4, a value which is known to inhibit any long-term differential rotation of the

inner core relative to the mantle. This value is shown to also strongly limit the amplitude of

the fluctuations of the inner core differential rotation, while the other characteristic shears

are weakly affected by changes on Σ. Figures 7.1 and 7.2 demonstrate that the main
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Figure 7.1: Standard deviations of D, Cf , Cicb and S as functions of the strength of gravitational
coupling ζη in a set of numerical simulations where Σ = 10

−4, RaF = 2.7 × 10
−5, E = 3 × 10

−5

and Eη = 1.2 × 10
−5, see table 7.1.

controlling factor of the inner core super-rotation is the strength of gravitational coupling,

whose increase bounds the amplitudes of the fluctuations of S to remarkably small values.

7.2 Electromagnetic torques

This section confronts the time-dependent electromagnetic torque models expressed and

tested in case-study simulations in the previous chapters to the outputs of the geodynamo

simulations. Figures 7.3 and 7.4 display the agreement between the observed electromagnetic

torques at respectively ICB and CMB and their respective models (black line), with slopes

obtained in chapter 6. Quantities ΓICB, ΓCMB, D and Cicb refer to standard deviations

while the Bri and Bro are the time-average r.m.s of the magnetic field at the inner core and
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Figure 7.2: Standard deviations of D, Cf , Cicb and S as functions of the mantle conductance Σ

in a set of numerical simulations where ζη = 6.25 × 10
4, RaF = 2.7 × 10

−5, E = 3 × 10
−5 and

Eη = 1.2 × 10
−5, see table 7.1.

core-mantle boundary, respectively. Also, as the seismically inferred oscillations of the inner

core differential rotations are decadal oscillations (Tkalčić et al., 2013), we use a 10 years

(i.e. ωτη = 1.9 × 105) period to estimate the electromagnetic torque at the ICB. Please note

that since the magnetic Reynolds number of most of our numerical simulations is similar to

that of the Earth’s core, similar results would be obtained if time were scaled according

to the secular variation time scale as done for instance in Lhuillier et al. (2011). In both

cases, simulations that depart from the order one scaling laws are simulations with low

gravitational coupling (ζη < 6 × 10−2) and/or Rayleigh numbers lower than the standard

Rayleigh number RaF = 2.7 × 10−5 used in the majority of the simulations. For this reason,

we do not present scaling laws of the electromagnetic torque but only comparisons to the

ideal cases. The departure between the above identified simulations and the model may

be understood in several ways. First, the fluctuations of the inner core rotation of highest

amplitude may be associated to very long period signals. In such a situation, the shear in

the fluid outer core may have an impact on the scaling of the electromagnetic torque at the

ICB, which is omitted here. However, it is difficult to estimate this impact since it may

depends on the signal frequency. Moreover, the impact of Cf in the long-term study was

obtained when 〈ΓICB〉 = 〈ΓG〉 = 0, a constraint that is no longer valid when considering the

amplitudes of the fluctuations. Second, the long-term expression of the gravitational torque
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Figure 7.3: Comparison of the strength of electromagnetic torque between the geodynamo
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The slope is 1.14, as estimated from case-study simulations in chapter 6.
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may not perfectly represent the system’s fluctuations for vanishing values of ζη. Third, the

already identified truncation errors (see section 4.5.1), affecting the torque balance and

found to vanish when the radial resolution of the simulation is increased, may also induce

similar errors in the standard deviations.

7.3 A first estimate

Although the previous section suggests that a scaling law for the standard deviations

of the system is not straightforward to obtain, it is still feasible to compare the numerical

results with the two ideal cases of chapter 6. In the first case, the fluid outer core is modeled

as an oscillating solid-body shell, so that the shear in the fluid outer core is zero. This

formulation has the advantage of simply describing the angular momentum of the fluid

outer core as IocΩoc, which may be retrieved by the monitoring of Ωic and Ωm and the

conservation of the angular momentum of the system. The second case is the opposite,

the fluid outer core is modeled as a shear flow which, at any given time, bears no angular

momentum. The shear in the fluid outer core is then maximum and the angular momentum

balance is between the inner core and the mantle. Figure 7.5 present the comparisons

between the inner core super-rotation S observed in the numerical simulations (in black)

and the two ideal situations of a solid-body (red) and a shear (green) flow in the fluid outer
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core, in terms of standard deviations. As we identified the strength of the gravitational

coupling as the main controlling factor, we thus display this comparison as a function of ζη.

Remarkably, the shear flows situation is very close to the observed S, while the solid-body

case is close to zero. This suggests that the amplitude of the decadal fluctuations of the

inner core super-rotation is mostly governed by flows that bears no angular momentum.

Then, though it is still difficult to obtain scaling laws, this similarity may be used to recover

an estimate of the amplitude of the time-dependent inner core super-rotation. To do so, we

refer to the discussion on the long-term state of the system developed in section 4.4. Given

the experimentally inferred values of the inner core viscosity (1015 − 1018 Pa s, Gleason and

Mao, 2013) and estimates of the strength of the gravitational coupling constant (Davies

et al., 2014), we find that

8.4 × 102 < ζη < 5.6 × 106, (7.4)

taking a mean density of the fluid outer core ρ = 11 000 kg m−3 and a magnetic diffusivity

based on the mineral physics experiments of Pozzo et al. (2012). In this range, we then

observe that the dimensionless value of the inner core super-rotation is consistently lower

than 0.05. Given our choice of characteristic dimensions, this reflects a situation where the

amplitudes of the fluctuations of the inner core super-rotation represents less than 8% of

the time-average global shear in the fluid outer core 〈Cf〉. Again referring to section 4.4,

this time-averaged shear embodies the vigor of convection and is found to scale as the

square root of the Rayleigh flux number RaF . A present-day estimate of this shear leads

to 〈Cf〉 = 0.42̊ yr−1, which in return constrains the decadal fluctuations of the inner core

differential rotation to be lower than 0.04̊ yr−1.
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Table 7.1: Parameters and outputs (standard deviations except for Bri and Bro) of the numerical simulations used in this chapter.
All runs were performed with E = Eκ = 3 × 10

−5 and Eη = 1.2 × 10
−5.
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Conclusions and perspectives

This work evidences the link between two salient features of the rotational dynamics of

the Earth. The first is the geomagnetic westward drift, the most documented component

of the secular variation of the Earth’s magnetic field. Four centuries of geomagnetic field

measurements indeed constrains the westward drift as being located close to the equator of

the Atlantic hemisphere, with an average velocity of 17 kilometers per year. The second is

the so-called inner core super-rotation, a differential rotation of the inner core relative to

the mantle, which is much less constrained at present.

In the long-term, the link between the two is embodied by the global, time-averaged,

shear in the fluid outer core. Remarkably, the amplitude of the latter is independent of the

state of coupling between the inner core, the fluid outer core and the mantle.It is however

proved to be a function of the vigor of convection in the fluid outer core, and therefore

scales with the Rayleigh number. A determined portion of this shear is available at the

inner core boundary and/or at the core-mantle boundary and its distribution is governed

by the relative amplitudes of the direct electromagnetic torques at the fluid core boundaries

and the gravitational torque between the inner core and the mantle. Given the many

uncertainties on deep Earth parameters, an estimate of the long-term coupling state of

the system is nevertheless not straightforward. Our first conclusion then lies in a present

day estimate of the global shear available in the fluid outer core, which is found to be

close to the mean westward drift velocity in the last four hundred years. Thus, the time

average state is dominated by the westward drift, which in turns prevails any long-term

differential rotation of the inner core, relative to the mantle. In the case where the lower

mantle conductance is of 108 S, the prefered long-term distribution of the shear toward the

core-mantle boundary and the westward drift then provides a constraint on the viscosity of

the inner core, which is necessarily larger than 2 × 1017 Pa s.

This work also provides the basis toward a full analysis of the time-dependent behavior

of the system. We committed ourselves to clearly demonstrate the expressions the time-

dependant electromagnetic torque at the fluid core boundaries and determine their validity

domain. These models were tested in case-study numerical simulations for which the time-
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dependent angular momentum balance of the system has a simple solution: a solid-body

rotation of the fluid outer core and a shear-flow carrying no angular momentum. From our

improved understanding of the time-dependent system follows a preliminary application

to fully-convective simulations of the geodynamo, leading to two main observations. First,

the amplitude of the oscillations of the inner core differential rotation is mainly impacted

by the strength of the gravitational torque that links it to the mantle. Second, as the

amplitude of the fluctuations as a function of the strength of the gravitational torque highly

resembles that predicted by the ideal shear flow case, the oscillations of the inner core

rotation should be mainly driven by flows that bears little or no angular momentum. Given

the range of possible values of the strength of gravitational coupling, we then found that

the amplitudes of the decadal oscillations of the inner core differential rotation should not

exceed 0.04̊ yr−1.

Although they are bounded to the limits of geodynamo simulations and dependent on

some poorly constrained deep Earth parameters, our conclusions highly contrast with the

most recent seismological study of Tkalčić et al. (2013) suggesting a time-average inner

core super-rotation of 0.25 − 0.48̊ yr−1 accompanied by decadal fluctuations on the order

of 1̊ yr−1. Instead, we propose that the inner core super-rotation is a vanishing feature of

the rotational dynamics of the long-term system, which may endure decadal fluctuations

around a zero mean on the order of a few hundredths of degree per year.

A natural perspective of this work is to not restrict the time-dependent analysis of the

system to its standard deviations. The complete application to the developed models and

simplified solutions should indeed include the frequency spectrum of each component of the

rotational dynamics of the system. The idea is then to reproduce the work of the long-term

study: propose a scaling of the electromagnetic torques and establish links between the

rotational components. This should in theory leads to a description of the oscillating system,

frequency by frequency, and ultimately constrain the amplitudes of the different harmonic

components of the inner core differential rotation.
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Appendices

A.1 Interface conditions

Interface conditions on E and B

σℓ

ηℓ
σc

rr0

∆

r0 +∆

ηc

CORE LAYER

Figure A.1

This part is dedicated to the formulation of the interface conditions on the magnetic

B (Br, Bθ, Bϕ) and the electric E (Er, Eθ, Eϕ) fields at the fluid core boundaries, considering

the existence of an electrically conducting layer, of thickness ∆ at the base of the mantle. In

order to analyze the crossing of a magnetic or electric field coming from the core, that will

diffuses into the inner core or into the conducting lower mantle, we generalize the situation

as depicted by figure A.1. We study the interface conditions on a field that comes from the

core, of electrical conductivity σc that will diffuse into a layer of thickness ∆, located in r0,

with electrical conductivity σℓ. Within this framework, the following interface conditions

hold at both ICB and CMB. These boundary conditions directly flow from the Maxwell’s

equations and express

1. The continuity of the radial magnetic field (Br),

r · B
∣∣∣
core

= r · B
∣∣∣
layer

, (A.1)
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with r the radial vector directed from the core toward the layer.

2. The discontinuity of the tangential magnetic field (Bθ, Bϕ),

r × B
∣∣∣
core

= r × B
∣∣∣
layer

− jsµ0, (A.2)

with js the surface current density between the core and the layer and µ0 the magnetic

permeability of free space.

3. The discontinuity of the radial electric field (Er),

r · E
∣∣∣
core

= r · E
∣∣∣
layer

− ρs

ǫ0

, (A.3)

with ρs the surface charge density and the ǫ0 the permittivity of free space.

4. The continuity of the tangential electric field (Eθ, Eϕ),

r × E
∣∣∣
core

= r × E
∣∣∣
layer

(A.4)

In the case where there are no surface charge density (ρs = 0) and no surface currents

(js = 0 ) between the two medium, these interface conditions simply express the

continuity of the radial and tangential components of both magnetic and electric

fields like

B
∣∣∣
core

= B
∣∣∣
layer

, (A.5)

and

E
∣∣∣
core

= E
∣∣∣
layer

. (A.6)

Interface Conditions on toroidal and poloidal scalars

As the vector fields are decomposed in toroidal and poloidal contributions, including

the numerical implementation, it is convenient to explicit the interface conditions in terms

of toroidal and poloidal scalars. We recall that the decomposition is

B = ∇ × ∇ ×
(
rBp

)
+ ∇ × (rBt), (A.7)
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such that the components of B, (Br, Bθ, Bϕ), can be expressed as





1

r
L2(Bp)

∂

∂θ

(
1

r

∂

∂r
(rBp)

)
+

1

sin θ

∂Bt

∂ϕ

1

sin θ

∂

∂ϕ

(
1

r

∂

∂r
(rBp)

)
− ∂Bt

∂θ

(A.8)

As demonstrated by Backus (1986), the same decomposition can also be written

B = −r∇2Bp + ∇

(
∂

∂r

(
rBp

))
− r × ∇Bt. (A.9)

the poloidal part of equation (A.7) being

∇ × ∇ × (rBp) = −r∆Bp + ∇

(
∂

∂r

(
rBp

))
, (A.10)

and the toroidal part

∇ × (rBt) = −r × ∇Bt. (A.11)

Continuity of toroidal field

The continuity of the magnetic field B across the interface necessarily involves the

continuity the orthogonal poloidal and toroidal parts of the decomposition, leading to

r × ∇Bt

∣∣∣
core

= r × ∇Bt

∣∣∣
layer

. (A.12)

This in turns can be written

1

sin θ

∂Bt

∂ϕ

∣∣∣∣∣
core

=
1

sin θ

∂Bt

∂ϕ

∣∣∣∣∣
layer

, (A.13)

and
∂Bt

∂θ

∣∣∣∣∣
core

=
∂Bt

∂θ

∣∣∣∣∣
layer

, (A.14)

proving the continuity of the toroidal magnetic field Bt across the boundary.

Continuity of poloidal field and its first radial derivative

The same argument can be used to analyze the continuity of the poloidal magnetic field.

We have


−r∇2Bp + ∇

(
∂

∂r

(
rBp

))



core

=


−r∆Bp + ∇

(
∂

∂r

(
rBp

))



layer

, (A.15)
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which can also be written


−r∇2Bp + ∇

(
∂

∂r

(
rBp

))



layer

core

= 0, (A.16)

in order to lighten the notation. If we decompose the laplacian (∇2) and the gradient (∇)

parts of the equation into their radial and horizontal components this gives


−r

(
1

r2

∂

∂r
(r2 Bp

∂r
) +

1

r2
L2Bp

)
+

1

r

∂

∂r

(
∂

∂r

(
rBp

))
r +

1

r
∇H

(
∂

∂r

(
rBp

))



layer

core

= 0,

(A.17)

with ∇H the horizontal gradient. This leads to


− 1

r2

(
L2Bp

)
r +

1

r
∇H

(
∂

∂r

(
rBp

))



layer

core

= 0. (A.18)

As the left and right parts of equation (A.18) are orthogonal, this can be separate into two

independent interface conditions. The left part involves that

L2Bp

∣∣∣
core

= L2Bp

∣∣∣
layer

, (A.19)

and proves the continuity of the poloidal part of the magnetic field across the boundary,

while the right part involves that

∇H

(
∂

∂r

(
rBp

))
∣∣∣∣∣∣
core

= ∇H

(
∂

∂r

(
rBp

))
∣∣∣∣∣∣
layer

, (A.20)

which is equivalent to
∂Bp

∂r

∣∣∣∣∣
core

=
∂Bp

∂r

∣∣∣∣∣
layer

, (A.21)

proving the continuity of the first radial derivative of the poloidal part of the magnetic field.

Discontinuity of the radial derivative of toroidal field

The discontinuity of the first radial derivative of the toroidal magnetic field comes from

the presence of an advective source term in Ohm’s law in a medium where the velocity field

is u, with components (ur, uθ, uϕ) in spherical coordinates. We start from the continuity of

the tangential electric field across the interface,

r × E
∣∣∣
core

= r × E
∣∣∣
layer

, (A.22)

using Ohm’s law

E =
J

σ
− u × B, (A.23)
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we have

r × J

σc

− r × u × B
∣∣∣
core

= r × J

σℓ

∣∣∣
layer

. (A.24)

Applying Ampère’s equation (µ0J = ∇ × B) this eventually gives

ηcr × ∇ × B − r × u × B
∣∣∣
core

= ηℓr × ∇ × B
∣∣∣
layer

, (A.25)

with ηc = 1/σcµ0 and ηℓ = 1/σℓµ0 the magnetic diffusivities of the core and the layer. As

demonstrated by Holme (1998), if we apply the operator ∇ · r× to equation (A.25), we

have

η∇ · r × r × ∇ × B = η∇ · (r(r · ∇ × B) − ∇ × B
)

(A.26)

for any vector V, there is

(A.27)
∇ · ∇ × V = 0 (A.28)

so that,

η∇ · r × r × ∇ × B =
η

r2

∂

∂r

(
r3r · ∇ × B

)
(A.29)

in r = r0,

= r0ηc
∂

∂r
(L2Bt) . (A.30)

Finally, as ∇ · r× ≡ −r · ∇×, the conservation of the tangential electric field across the

interface thus becomes

r0ηc
∂

∂r
(L2Bt) + r · ∇H × u × B

∣∣∣∣∣
core

= r0ηℓ
∂

∂r
(L2Bt)

∣∣∣∣∣
layer

, (A.31)

expressing the discontinuity of the first radial derivative of the toroidal magnetic field.

About the second radial derivative of the poloidal field

In order to obtain insights on the continuity of the second radial derivative of the

poloidal field coming from the core, we restart from the continuity of the electric field E,

E
∣∣∣
core

= E
∣∣∣
layer

. (A.32)

As in the previous section, we use alternatively Ohm’s and Ampère’s laws to obtain

ηc∇ × B − u × B
∣∣∣
core

= ηℓ∇ × B
∣∣∣
layer

, (A.33)

to which we apply the operator r · ∇×, giving

ηcr · ∇ × ∇ × B − r · ∇ × u × B
∣∣∣
core

= ηℓr · ∇ × ∇ × B
∣∣∣
layer

. (A.34)
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For any vector V, we have

∇ × ∇ × V = −∇ × ∇ ×
(
r∆Vp

)
+ ∇ × (r∆Vt) , (A.35)

as

r · ∇ × (r∆Vt) = 0, (A.36)

we have

r · ∇ × ∇ × V = −r · ∇ × ∇ ×
(
r∆Vp

)
(A.37)

Decomposing the vectorial laplacian of B, (∆B), into toroidal and poloidal components

like,

∆B = ∇ × ∇ ×
(
r∆Bp

)
+ ∇ × (r∆Bt) , (A.38)

leads to the conclusion that r · ∇ × ∇ × B is the radial component of this decomposition,

such that

r · ∇ × ∇ × B = −r ×
(

1

r
L2∆Bp

)
= −L2∆Bp. (A.39)

Eventually, the continuity of the electric field leads to

ηcL2∆Bp + r · ∇ × u × B
∣∣∣
core

= ηℓL2∆Bp

∣∣∣
layer

. (A.40)

Equation (A.40) provides information on the laplacian of the poloidal field, and thus on its

the second radial derivative, which can be continuous across the boundary if the condition

r · ∇ × u × B = 0, (A.41)

is achieved. In order to obtain further insights on this condition, we develop here this

vectorial product considering a non-penetration condition at the interface,

ur|r0
= 0 (A.42)

and under the assumption that the velocity field is mainly azimuthal, i.e. uθ ≪ uϕ, we then

have

u




0

0

uϕ


× B




Br

Bθ

Bϕ


 =




−Bθuϕ

Bruϕ

0


 , (A.43)

and taking the rotational of this product gives

∇




∂

∂r
1
r

∂

∂θ
1

r sin θ

∂

∂ϕ




× u × B =




1
r sin θ

∂Bruϕ

∂ϕ

− 1
r sin θ

∂Bθuϕ

∂ϕ
1

r sin θ

∂rBruϕ

∂r
+

1

r

∂Bθuϕ

∂θ




. (A.44)
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Ultimately, equation (A.40) can now be written

ηcL2∆Bp +
1

sin θ

∂Bruϕ

∂ϕ

∣∣∣∣∣
core

= ηℓL2∆Bp

∣∣∣
layer

, (A.45)

providing the requirement that,
1

sin θ

∂Bruϕ

∂ϕ
= 0 (A.46)

for the second radial derivative of the poloidal field to be continuous. In others words, we

have

ηc
∂2Bp

∂r2

∣∣∣∣∣∣
core

= ηℓ
∂2Bp

∂r2

∣∣∣∣∣∣
layer

, (A.47)

if both the radial magnetic field Br and the azimuthal velocity uϕ are invariant along the

azimuthal direction, which should be the case if the magnetic field mainly embodied by

the axial dipole and if the velocity field is essentially axisymmetric. This proves the strict

continuity of the second radial derivative of the poloidal part of the magnetic field if the

two media have the same magnetic diffusivity.

Outlines

To sum up, the continuity of the electrical field E and the magnetic field B imply

diffusing from the fluid core into the inner core or an electrically conducting layer, imply

the continuity of:

– the toroidal magnetic field Bt,

– the poloidal magnetic field Bp,

– the first radial derivative of the poloidal field
∂Bp

∂r
.

Moreover, we showed that the first radial derivative of the toroidal field was discontinuous,

because of the velocity jump between the core and the diffusing layer, i.e
∂Bt

∂r
is discontinuous.

A similar conclusion holds for the second radial derivative of the poloidal magnetic field,

that may be continuous across the boundary if the radial field Br and the azimuthal velocity

uϕ are constants along the azimuthal direction, as prescribed by equation (A.45).

A.2 Time-dependent Electromagnetic torques

Diffusion of a perturbation of the magnetic field

Mantle-side: Constant conductivity

The diffusion of the toroidal scalar of the magnetic field into the conducting part of the

mantle is described by

X = Ae

(
1−i
δm

)
r

+ Be
−

(
1−i
δm

)
r
, (A.48)
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which is subject to the following boundary conditions,

X(ro) =X, (A.49)

X(ro + ∆) =0. (A.50)

Applying the first boundary condition to equation (A.48) leads to

X = Ae

(
1−i
δm

)
ro

+ Be
−

(
1−i
δm

)
ro

, (A.51)

while condition (A.50) leads to

0 = Ae

(
1−i
δm

)
(ro+∆)

+ Be
−

(
1−i
δm

)
(ro+∆)

, (A.52)

such that

A = −Be
−2

(
1−i
δm

)
(ro+∆)

. (A.53)

Introducing this expression of A into (A.51) finally yields

X = −Be
−2

(
1−i
δm

)
(ro+∆) × e

(
1−i
δm

)
ro

+ Be
−

(
1−i
δm

)
ro

, (A.54)

X = −Be
−

(
1−i
δm

)
(ro+2∆)

+ Be
−

(
1−i
δm

)
ro

, (A.55)

X = Be
−

(
1−i
δm

)
ro


1 − e

−

(
1−i
δm

)
(2∆)


 , (A.56)

B = X
e

(
1−i
δm

)
ro


1 − e

−

(
1−i
δm

)
(2∆)




, (A.57)

and

A = −X
e

−

(
1−i
δm

)
(ro+2∆)


1 − e

−

(
1−i
δm

)
(2∆)




. (A.58)
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Eventually, equation (A.48) becomes, for X = rB̃
m

tℓ
and X = roB̃

m

tℓ
(ro),

X = −X
e

−

(
1−i
δm

)
(ro+2∆)


1 − e

−

(
1−i
δm

)
(2∆)




e

(
1−i
δm

)
r

+ X
e

(
1−i
δm

)
ro


1 − e

−

(
1−i
δm

)
(2∆)




e
−

(
1−i
δm

)
r
, (A.59)

X = −X
e

−

(
1−i
δm

)
(ro+2∆−r)


1 − e

−

(
1−i
δm

)
(2∆)




+ X
e

(
1−i
δm

)
(ro−r)


1 − e

−

(
1−i
δm

)
(2∆)




, (A.60)

X

X
=

e

(
1−i
δm

)
(ro−r) − e

−

(
1−i
δm

)
(ro+2∆−r)

1 − e
−

(
1−i
δm

)
(2∆)

. (A.61)

The solution (A.61) can be rewritten using the hyperbolic sine function defined as

sinh(x) =
ex − e−x

2
, (A.62)

leading to

X

X
(r > ro, ω) =

sinh
[(

1−i
δm

)
(ro + ∆ − r)

]

sinh
[(

1−i
δm

)
∆
] . (A.63)

Interface conditions

Mantle-side

Taking the latitudinal derivative of this expression gives

∂Bt

∂θ

∣∣∣∣∣
mantle

= roB̃
m

tℓ
(ro)

sinh
[(

1−i
δm

)
(ro + ∆ − r)

]

sinh
[(

1−i
δm

)
∆
] × ∂

∂θ




L,M∑

ℓ,m

Y m
ℓ (θ, ϕ)


 , (A.64)

so that

∂

∂r

∂Bt

∂θ

∣∣∣∣∣
mantle

= roB̃
m

tℓ
(ro)

∂

∂r




sinh
[(

1−i
δm

)
(ro + ∆ − r)

]

sinh
[(

1−i
δm

)
∆
]




× ∂

∂θ




L,M∑

ℓ,m

Y m
ℓ (θ, ϕ)


 , (A.65)
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and as sinh(x)′ = cosh(x), we have

∂

∂r

∂Bt

∂θ

∣∣∣∣∣
mantle

= −
(

1 − i

δm

)
roB̃

m

tℓ
(ro)

cosh
[(

1−i
δm

)
(ro + ∆ − r)

]

sinh
[(

1−i
δm

)
∆
]

× ∂

∂θ




L,M∑

ℓ,m

Y m
ℓ (θ, ϕ)


 .

The evaluation of this expression at the mantle side of the CMB, in r = ro, gives

∂

∂r

∂Bt

∂θ

∣∣∣∣∣

ro

mantle

= −
(

1 − i

δm

)
roB̃

m

tℓ
(ro)

cosh
[(

1−i
δm

)
∆
]

sinh
[(

1−i
δm

)
∆
] × ∂

∂θ




L,M∑

ℓ,m

Y m
ℓ (θ, ϕ)


 , (A.66)

in which appear a hyperbolic cotangent as

coth(x) =
cosh(x)

sinh(x)
. (A.67)
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A.3 Elementary Cases: Validation of the Electromag-

netic torque models

Solid-body rotation

The reduced system of the dimensionless conservation of the angular momentum of the

inner core and the mantle is

Ωic (Ψ1 + Ψic − iω) = Ψ1Ωoc + ΨicΩm, (A.68)

Ωm (Ψ2 + Ψm − iω) = Ψ2Ωoc + ΨmΩic. (A.69)

with

Ψ1 =
K1( 1+i

4 )
√

2
ω

r4
i B2

ri
Lu2

Ii
, Ψic = ζη

Ii
,

Ψ2 =
K2r4

oB2
ro

ΣLu2

Im
, Ψic = ζη

Im
.

This can be further simplified by introducing

γc = Ψ1 + Ψic − iω, and γm = Ψ2 + Ψm − iω, (A.70)

leading to

Ωicγc = Ψ1Ωoc + ΨicΩm, (A.71)

Ωmγm = Ψ2Ωoc + ΨmΩic. (A.72)

The angular velocity of the inner core may then be obtained like

Ωicγc = Ψ1Ωoc +
Ψic

γm

(Ψ2Ωoc − ΨmΩic) , (A.73)

Ωic (γcγm − ΨicΨm) = (Ψ1γm + ΨicΨ2) Ωoc, (A.74)

Ωic = Ωoc

(
Ψ1γm + ΨicΨ2

γcγm − ΨicΨm

)
. (A.75)
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And, introducing the last expression of Ωic into equation (A.72) gives

Ωmγm = Ψ2Ωoc + ΨmΩic (A.76)

Ωmγm = Ψ2Ωoc + ΨmΩoc

(
Ψ1γm + ΨicΨ2

γcγm − ΨicΨm

)
, (A.77)

Ωm =
Ωoc

γm

(
Ψ2 + Ψm × Ψ1γm + ΨicΨ2

γcγm − ΨicΨm

)
, (A.78)

Ωm =
Ωoc

γm

(
Ψ2γcγm − Ψ2ΨicΨm + ΨmΨ1γm + ΨmΨicΨ2

γcγm − ΨicΨm

)
, (A.79)

Ωm = Ωoc

(
Ψ2γc + ΨmΨ1

γcγm − ΨicΨm

)
. (A.80)

(A.81)

With the expression of Ωic and Ωm, we can now describe the inner core super-rotation

S = Ωic − Ωm = Ωoc

(
Ψ1γm + ΨicΨ2

γcγm − ΨicΨm

)
− Ωoc

(
Ψ2γc + ΨmΨ1

γcγm − ΨicΨm

)
, (A.82)

S = Ωoc

(
Ψ1γm + ΨicΨ2 − Ψ2γc − ΨmΨ1

γcγm − ΨicΨm

)
, (A.83)

and the geomagnetic westward drift,

D = Ωoc − Ωm = Ωoc − Ωoc

(
Ψ2γc + ΨmΨ1

γcγm − ΨicΨm

)
, (A.84)

D = Ωoc

(
1 − Ψ2γc + ΨmΨ1

γcγm − ΨicΨm

)
, (A.85)

when we impose a periodic solid-body rotation in the outer core, with angular frequency ω.

Shear in the fluid outer core

In the case of an imposed periodic shear flow in fluid outer core that bears no angular

momentum, the angular momentum conservation of the inner core, the mantle and the

fluid outer is described by

−iωΩic = Ψ1 (Ωficb − Ωic) − Ψic (Ωic − Ωm) ,

−iωΩm = Ψ2 (Ωfcmb − Ωm) + Ψm (Ωic − Ωm) ,

0 = −Ψ1Ii (Ωficb − Ωic) − Ψ2Im (Ωfcmb − Ωm) .

(A.86)

This can be transformed by using the expressions of the inner core super rotation S =

Ωic − Ωm, the geomagnetic westward drift D = Ωfcmb − Ωm and the global shear in the fluid
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outer core Cf = Ωficb − Ωfcmb,

−iωΩic =Ψ1 (Cf + D − S) − ΨicS, (A.87)

−iωΩm =Ψ2D + ΨmS, (A.88)

0 = − Ψ1Ii (Cf + D − S) − Ψ2ImD. (A.89)

The operation (A.87)-(A.88) leads to

−iωS =Ψ1 (Cf + D − S) − ΨicS − Ψ2D − ΨmS, (A.90)

S (Ψ1 + Ψic + Ψm − iω) =Ψ1Cf + D (Ψ1 − Ψ2) . (A.91)

while equation (A.89) is equivalent to

D = −γf (Cf − S) , (A.92)

with

γf =
Ψ1Ii

Ψ1Ii + Ψ2Im

. (A.93)

By introducing the expression of D (Eq.A.92) into equation (A.91) we obtain

S (Ψ1 + Ψic + Ψm − iω) = Ψ1Cf − γf (Cf − S) (Ψ1 − Ψ2) , (A.94)

and,

S (Ψ1 + Ψic + Ψm − γf (Ψ1 − Ψ2) − iω
)

= Cf

[
Ψ1 − γf (Ψ1 − Ψ2)

]
,

and ultimately,

S = Cf
Ψ1 − γf (Ψ1 − Ψ2)

Ψ1 + Ψic + Ψm − γf (Ψ1 − Ψ2) − iω
. (A.95)

This expression then leads to the formulation of the geomagnetic westward drift like

D = −Cfγf

(
1 − Ψ1 − γf (Ψ1 − Ψ2)

Ψ1 + Ψic + Ψm − γf (Ψ1 − Ψ2) − iω

)
. (A.96)
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Dynamique rotationnelle couplée de la dérive géomagnétique

vers l’ouest et de la super-rotation de la graine terrestre

Guillaume Pichon

Abstract

This PhD work focuses on the rotational dynamics of the coupled inner core - outer
core - mantle system. The conservation of the angular momentum our coupled Earth model
indeed involves two direct electromagnetic torques at the fluid core boundaries and a remote
gravitational torque between the inner core and the mantle. The rotational dynamics is
described by four typical shears and studied in convective numerical simulations of the
geodynamo which are able to reproduce the main characteristics of the geomagnetic field
and its secular variation. The latter is mainly embodied by the westward drift of magnetic
flux patches at the CMB, concentrated on the equator of the Atlantic hemisphere, and
is well documented for the last four centuries. We provide constrains on the inner core
differential rotation by expressing its link to the geomagnetic westward drift. This is
performed through the formulation and the validation of dynamical electromagnetic torque
models.In the long-term state, the global shear in the fluid outer core is distributed between
the westward drift and the differential rotation of the inner core, in proportions controlled
by the state of couplings. As a present day estimate of this shear is close to the observed
westward drift, we conclude there is no differential rotation of the inner core on time-average.
In the time-dependent state, we observed that the strength of gravitational coupling is
the dominant parameter. This places limit on the decadal fluctuations of the inner core
differential rotation, which should not exceed a few hundredths of degree per year.

Keywords : geodynamo, geomagnetism, wesward drift, inner core, super-rotation, cou-
plings, numerical simulations.

Résumé

Ce travail de thèse se concentre sur la dynamique rotationnelle du système couplé graine,
noyau externe et manteau. Notre modèle inclut en effet deux couples électromagnétiques
directs aux limites du noyau fluide et un couple gravitationnel à distance entre le noyau
interne et le manteau. La dynamique rotationnelle est décrite par quatre cisaillements
typiques et étudiés dans des simulations numériques de la géodynamo reproduisant les
principales caractéristiques du champ magnétique terrestre et de sa variation séculaire.
Celle-ci est principalement représentée par la dérive géomagnétique vers l’ouest de taches
de flux magnétique à la CMB, concentrée à l’équateur de l’hémisphère Atlantique, et bien
documentée pour les quatre derniers siècles. Nous fournissons des contraintes sur la rotation
différentielle du noyau interne en exprimant son lien avec la dérive géomagnétique vers
l’ouest. Ceci est réalisé par la formulation et la validation de modèles dynamiques de couples
électromagnétiques. Au long terme, le cisaillement global dans le noyau fluide est réparti
entre la dérive vers l’ouest et la rotation différentielle de la graine, dans des proportions
contrôlées par l’état des couplages. Puisqu’une estimation actuelle de ce cisaillement est
proche de la vitesse de la dérive géomagnétique vers l’ouest, nous concluons que la rotation
différentielle moyenne de la graine est proche de zéro. En ce qui concerne ses fluctuations,
l’intensité du couplage gravitationnel est le paramètre dominant. Cette observation place
alors une limite sur les fluctuations décennales de la rotation différentielle de la graine, qui
ne devraient pas excéder quelques centièmes de degré par an.

Mots clés : geodynamo, geomagnétisme, dérive vers l’ouest, noyau interne, super-
rotation, magnétohydrodynamique, couplage, simulations numériques.
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