Diamond unipolar devices : towards impact ionization coefficients extraction

Abstract : 97% of the published climate studies articles agree with the fact that recent global warming is entirely caused by human activities. The gases emitted to produce electrical energy plus other gases rejected by cars impact considerably on the atmosphere by greenhouse effect (without referring other factors). A solution to this problem is the development of components with lower power conduction losses and higher breakdown characteristics that could be used in nuclear power plants, high power commutation cells, hybrid (electric) cars and so on.The choice of the material to reach low power conduction losses and higher breakdown is of great importance. Nowadays, silicon-based devices control about 95% of all electronic components. Silicon carbide SiC and gallium nitride GaN are at present under research and development and start to be integrated into some electronic circuits. Other materials like Ga2O3, AlN or diamond are under research for power electronic application. The last ones are known as ultra wide bandgap materials and they seem to be the required solution to low power losses. Diamond is recognized as the ultimate material for the next next-generation of power devices owing to its exceptional physical properties such as high breakdown field (>10 MV/cm) to use the device for high power control, high carrier mobility (2000 cm^2/V.s for holes) for fast switching and high frequency devices, high saturation velocity, high thermal conductivity (22 W/cm.K) for a perfect heat dissipation and low dielectric constant. Theoretically, diamond is the best semiconducting material showing the best trade-off between on-resistance and breakdown voltage. Especially, due to the incomplete ionization of the dopant, it is even more efficient at high temperature. Various diamond Schottky barrier diodes (SBDs) with good forward and reverse performances (7.7 MV/cm) were reported. In addition to SBDs, switches diamond field effect transistors (FETs) were also investigated through metal-oxide-semiconductor FETs (MOSFETs) using either an H-terminated diamond surface with high current densities in on-state or an O-terminated one with high blocking characteristics. For the high blocking voltage devices, one needs to properly terminate the edge of the electrode at the surface in order to avoid premature breakdown of the devices due to electric field crowding at the borders. In that aim, edge termination (ET) techniques are used to push the limit of the devices and reach ideal features. The obvious task before any device fabrication if the simulation part that predicts the device optimization and expected characteristics. A good device prediction requires knowledge of the material parameters. Important parameters for device breakdown in the off-state are the impact ionization coefficients. At present, several ionization coefficients were reported for diamond, however, they were extracted by fitting non-optimized structures and hence there is a lack of accuracy.In this study, two edge terminations structures for Schottky barrier diodes called field plate (FP) oxide and floating field rings were investigated. Their effectiveness in surface field distribution via electron beam induced current (EBIC) analysis was observed. In addition, normally-on FETs were fabricated and characterized, a MESFET and a reverse blocking (RB)-MESFET. The FETs exhibited a high BV, up to 3 kV and a low on-resistance. The development of transistors is inseparable from the Schottky diode since both are required to fabricate commutation cells. And finally, impact ionization coefficients for electrons were measured using EBIC for a field >0.5 MV/cm in a defect-free region. The measured values are (in a Chynoweth form) an = 971 /cm and bn = 2.39x10^6 V/cm. These values are close to the experimentally measured coefficients reported in the literature.
Complete list of metadatas

https://tel.archives-ouvertes.fr/tel-02169656
Contributor : Abes Star <>
Submitted on : Monday, July 1, 2019 - 1:49:11 PM
Last modification on : Monday, July 8, 2019 - 9:04:52 AM

File

DRICHE_2018_diffusion.pdf
Version validated by the jury (STAR)

Identifiers

  • HAL Id : tel-02169656, version 1

Collections

STAR | UGA | CNRS | NEEL

Citation

Khaled Driche. Diamond unipolar devices : towards impact ionization coefficients extraction. Micro and nanotechnologies/Microelectronics. Université Grenoble Alpes; Université de Tsukuba, 2018. English. ⟨NNT : 2018GREAT115⟩. ⟨tel-02169656⟩

Share

Metrics

Record views

713

Files downloads

52