G. A. Olah, G. K. Prakash, and A. Goeppert, Anthropogenic chemical carbon cycle for a sustainable future, J. Am. Chem. Soc, vol.133, pp.12881-12898, 2011.

J. M. Gradt, Climat : la Banque mondiale prône la généralisation de la taxe carbone, 2018.

I. Marinescu and P. Professeure-d'économie-À-l'université-de, Climat : à quand la taxe carbone ? Libération, pp.3-5, 2018.

C. Song, CO2 Conversion and Utilization: An Overview. CO2 Convers, Util, vol.809, pp.1-2, 2002.

D. C. Miller, J. T. Litynski, L. A. Brickett, and B. D. Morreale, Toward transformational carbon capture systems, AIChE J, vol.62, pp.2-10, 2016.

, Where the Energy Goes: Gasoline Vehicles, vol.6

J. Deutch, Annual Energy Review, 1999.

E. Alper and O. Yuksel-orhan, CO 2 utilization: Developments in conversion processes, vol.3, pp.109-126, 2017.

H. Büttner, L. Longwitz, J. Steinbauer, C. Wulf, and T. Werner, Recent Developments in the Synthesis of Cyclic Carbonates from Epoxides and CO2, Top. Curr. Chem, vol.375, 2017.

I. Agency and . Energy, Tracking industrial energy efficiency and CO2 emissions

O. Krocher, R. A. Koppel, and A. Baiker, Novel homogeneous and heterogeneous catalysts for the synthesis of formic-acid derivatives from CO2, Chimia (Aarau), vol.51, pp.48-51, 1997.

A. Tlili, E. Blondiaux, X. Frogneux, and T. Cantat, Reductive functionalization of CO2with amines: An entry to formamide, formamidine and methylamine derivatives, Green Chem, vol.17, pp.157-168, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01187790

Q. Qian, J. Zhang, M. Cui, and B. Han, Synthesis of acetic acid via methanol hydrocarboxylation with CO2 and H2, Nat. Commun, vol.7, p.11481, 2016.

C. C. George and . Monoxide, Kirk-Othmer Encyclopedia of Chemical Technology, vol.1

M. W. Henry, On a Gaseous Compound of Carbonic Oxide and Chlorine, Philos. Trans. R. Soc. London, vol.102, pp.144-151, 1812.

T. , A. Ryan, C. Ryan, E. A. Seddon, and K. R. Seddon, Synthesis and formation of phosgene. 223-266 in Phosgene and Related Carbonyl Halides, vol.5, 1996.

O. Ruff, G. Miltschitzky, and C. Das-kohlenoxyfluorid, Zeitschrift f?r Anorg. und Allg. Chemie, vol.221, pp.154-158, 1934.

M. Wechsberg and G. H. Cady, Comparative Studies of the Catalytic Fluorination of Carbon Monoxide with Elementary Fluorine, J. Am. Chem. Soc, vol.91, pp.4432-4436, 1969.

T. , A. Ryan, C. Ryan, E. A. Seddon, and K. R. Seddon, Chapter 13, Carbonyl difluoride. 545-664 in Phosgene and Related Carbonyl Halides, 1996.

T. , A. Ryan, C. Ryan, E. A. Seddon, and K. R. Seddon, Phosgene and Related Carbonyl Halides, pp.665-677, 1996.

T. , A. Ryan, C. Ryan, E. A. Seddon, and K. R. Seddon, Chapter 15, Carbonyl diiodide, Phosgene and Related Carbonyl Halides, pp.679-683, 1996.

A. M. Bahmanpour, A. Hoadley, and A. Tanksale, Critical review and exergy analysis of formaldehyde production processes, Rev. Chem. Eng, vol.30, pp.583-604, 2014.

L. E. Heim, H. Konnerth, and M. H. Prechtl, Future perspectives for formaldehyde: Pathways for reductive synthesis and energy storage, Green Chem, vol.19, pp.2347-2355, 2017.

A. M. Bahmanpour, A. Hoadley, and A. Tanksale, Formaldehyde production via hydrogenation of carbon monoxide in the aqueous phase, Green Chem, vol.17, pp.3500-3507, 2015.

A. M. Bahmanpour, A. Hoadley, S. H. Mushrif, and A. Tanksale, Hydrogenation of Carbon Monoxide into Formaldehyde in Liquid Media, ACS Sustain. Chem. Eng, vol.4, pp.3970-3977, 2016.

M. Hidai, M. Orisaku, and Y. Uchida, Rhodium catalyzed carbonylation reactions of cyclipropanes

, Chem. Lett, vol.9, pp.753-754, 1980.

J. J. Eisch, A. M. Piotrowski, K. I. Han, C. Krüger, and Y. H. Tsay, Oxidative Addition of Nickel(0) Complexes to Carbon-Carbon Bonds in Biphenylene: Formation of Nickelole and 1,2-Dinickelecin Intermediates, Organometallics, vol.4, pp.224-231, 1985.

R. Yamaguchi, S. Tokita, Y. Takeda, and M. Kawanisi, Insertion of an ?-diketo group into a strained molecule via an acyltetracarbonylferracycle, J. Chem. Soc. Chem. Commun, pp.1285-1286, 1985.

G. Bernardinelli, Y. Jacquier, and D. D. Organique, 1,l-Bis(trimethylsily1)-1H-cyclopropa, Helv. Chim. Acta, vol.71, pp.1328-1330, 1988.

P. Müller, G. Bernardinelli, Y. Jacquier, and A. Ricca, Tricarbonyl-chromium complexes of benzannelated cycloproparenes, Helv. Chim. Acta, vol.72, pp.1618-1626, 1989.

T. Kurahashi and A. De-meijere, C-C bond activation by octacarbonyldicobalt: [3+1] Cocyclizations of methylenecyclopropanes with carbon monoxide, Angew. Chemie -Int. Ed, vol.44, pp.7881-7884, 2005.

F. Strain and P. G. Company, United states patent office, vol.2, 1951.

Y. Peres and I. Tkatchenko, Carbonylation of tertairy alkylhalides, synthesis of pivaloyl halides

, Tetrahedron Lett, vol.29, pp.4569-4572, 1988.

C. W. Theobald and C. H. , Method of making haloacetyl halides, p.2378048, 1945.

J. Tsuji, J. Kiji, and M. Morikawa, Organic syntheses by means of noble metal compounds III. Reaction of ? -allylpalladium chloride complex with carbon monoxide, Tetrahedron Lett, vol.4, pp.1811-1813, 1963.

D. Medema, R. Van-helden, and C. F. Kohll, Palladium-catalysed carbonylation of unsaturated compounds, Inorganica Chim. Acta, vol.3, pp.255-265, 1969.

W. T. Dent, R. Long, and G. H. Whitfield, The carbonylation of allylic chlorides, J. Chem. Soc, p.1588, 1964.

Y. G. Noskov and E. S. Petrov, Palladium-catalyzed carbonylation of chlorobenzene in the presence of lewis acids, React. Kinet. Catal. Lett, vol.64, pp.359-363, 1998.

B. J. Fisher and R. Eisenberg, Carbon-hydrogen bond activation using a bis(phosphine)iridium carbonyl hydride and the carbonylation of benzene, Organometallics, vol.2, pp.764-767, 1983.

A. J. Kunin and R. Eisenberg, Photochemical carbonylation of benzene by iridium(I) and rhodium(I) square-planar complexes, Organometallics, vol.7, pp.2124-2129, 1988.

E. M. Gordon and R. Eisenberg, The photochemical carbonylation of benzene, and hydrogenation Presence of Ruthenium Catalysts, J. Am. Chem. Soc, vol.100, pp.6238-6240, 1978.

Q. Mei, A new route to synthesize aryl acetates from carbonylation of aryl methyl ethers

, Sci. Adv, vol.1, issue.8, 2018.

R. F. Heck, The Reaction of Epoxides with Cobalt Hydrocarbonyl and Cobalt Tetracarbonyl Anion, J. Am. Chem. Soc, vol.85, pp.1460-1463, 1963.

R. Aumann, K. Fröhlich, and H. Ring, Lactones and Lactams by Light-Induced Reaction of 2-Vinyloxiranes and 2-Vinylaziridines with Pentacarbonyliron-Insertion of Carbon Monoxide into an Iron-Nitrogen ? Bond, Angew. Chemie Int. Ed. English, vol.13, pp.275-276, 1974.

R. Aumann, H. Ring, C. Krüger, and R. Goddard, Organische Synthesen mit Übergangsmetallkomplexen, 8. Untersuchungen zur Synthese ungesättigter ?-Lactone durch Cyclocarbonylierung von Vinyloxiranen mit Übergangsmetall-Komplexen, Chem. Ber, vol.112, pp.3644-3671, 1979.

G. D. Ley and V. , Formation of Lactones from Dienes oia Iron Carbonyl Complexes, J. Chem. Soc. Chem. Commun, vol.78, pp.581-582, 1977.

R. Aumann and H. Ring, Lactones by Carbonylation of Vinyloxiranes, Angew. Chemie Int. Ed. English, vol.16, pp.50-50, 1977.

I. Shimizu, T. Maruyama, T. Makuta, and A. Yamamoto, Palladium-catalyzed reactions of alkenyloxiranes with carbon monoxide, Tetrahedron Lett, vol.34, pp.2135-2138, 1993.

K. Kawato, H. Ohta, and Y. Kamiya, REACTION OF THE COMPOUND OF WITH CARBON MONOXIDE The of Reaction of Chemistry, Chem. Lett, vol.9, p.1549, 1980.

J. T. Lee, P. J. Thomas, and H. Alper, Synthesis of ?-Lactones by the Regioselective, Cobalt and Lewis Acid Catalyzed Carbonylation of Simple and Functionalized Epoxides, J. Org. Chem, vol.66, pp.5424-5426, 2001.

Y. D. Getzler, V. Mahadevan, E. B. Lobkovsky, and G. W. Coates, Synthesis of ?-Lactones: A Highly Active and Selective Catalyst for Epoxide Carbonylation, J. Am. Chem. Soc, vol.124, pp.1174-1175, 2002.

V. Mahadevan, Y. D. Getzler, and G. W. Coates, Lewis acid]+[Co(CO)4]-complexes: A versatile class of catalysts for carbonylative ring expansion of epoxides and aziridines

. Chemie--int and . Ed, , vol.41, pp.2781-2784, 2002.

J. A. Schmidt, E. B. Lobkovsky, and G. W. Coates, Chromium(III) Octaethylporphyrinato Tetracarbonylcobaltate: A Highly Active, Selective, and Versatile Catalyst for Epoxide Carbonylation, J. Am. Chem. Soc, vol.127, pp.11426-11435, 2005.

J. W. Kramer, E. B. Lobkovsky, and G. W. Coates, Practical ?-Lactone Synthesis: Epoxide Carbonylation at 1 atm, Org. Lett, vol.8, pp.3709-3712, 2006.

F. Molnar, G. Luinstra, M. Allmendinger, and B. Rieger, Multisite catalysis: a mechanistic study of beta-lactone synthesis from epoxides and CO--insights into a difficult case of homogeneous catalysis, Chemistry, vol.9, pp.1273-1280, 2003.

J. Meinwald, S. S. Labana, and M. S. Chadha, Peracid Reactions. III. 1 The Oxidation of Bicyclo [2.2.1]heptadiene 2, J. Am. Chem. Soc, vol.85, pp.582-585, 1963.

H. O. House, The Acid-catalyzed Rearrangement of the Stilbene Oxides, J. Am. Chem. Soc, vol.77, pp.3070-3075, 1955.

B. N. Blackett, J. M. Coxon, M. P. Hartshorn, and K. E. Richards, Stereoselectivity in the boron trifluoride catalyzed rearrangement of a 1,1-disubstituted ethylene oxide, J. Am. Chem. Soc, vol.92, pp.2574-2575, 1970.

K. Maruoka, T. Ooi, and H. Yamamoto, Migratory aptitude of alkyl substituents in the MABRpromoted epoxide rearrangement, Tetrahedron, vol.48, pp.3303-3312, 1992.

S. Kulasegaram and R. J. Kulawiec, Palladium-Catalyzed Isomerization of Aryl-Substituted Epoxides: A Selective Synthesis of Substituted Benzylic Aldehydes and Ketones, J. Org. Chem, vol.62, pp.6547-6561, 1997.

B. C. Ranu and U. Jana, Indium(III) chloride-promoted rearrangement of epoxides: A selective synthesis of substituted benzylic aldehydes and ketones, J. Org. Chem, vol.63, pp.8212-8216, 1998.

A. M. Anderson, J. M. Blazek, P. Garg, B. J. Payne, R. S. Mohan et al., III) oxide perchlorate promoted rearrangement of epoxides to aldehydes and ketones, Tetrahedron Lett, vol.41, pp.1527-1530, 2000.

K. A. Bhatia, K. J. Eash, N. M. Leonard, M. C. Oswald, and R. S. Mohan, A facile and efficient method for the rearrangement of aryl-substituted epoxides to aldehydes and ketones using bismuth triflate, Tetrahedron Lett, vol.42, pp.8129-8132, 2001.

K. Suda, T. Kikkawa, S. Nakajima, and T. Takanami, Highly Regio-and Stereoselective Rearrangement of Epoxides to Aldehydes Catalyzed by High-Valent Metalloporphyrin Complex, Cr(TPP)OTf, J. Am. Chem. Soc, vol.126, pp.9554-9555, 2004.

X. M. Deng, X. L. Sun, and Y. Tang, Highly regioselective rearrangement of 2-substituted vinylepoxides catalyzed by gallium(III) triflate, J. Org. Chem, vol.70, pp.6537-6540, 2005.

Z. M. Wang and . Rearrangement, Comprehensive Organic Name Reactions and Reagents, pp.1880-1882, 2010.

J. Herzberger, Polymerization of ethylene oxide, propylene oxide, and other alkylene oxides: Synthesis, novel polymer architectures, and bioconjugation, Chem. Rev, vol.116, pp.2170-2243, 2016.

T. L. Church, Y. D. Getzler, and G. W. Coates, The Mechanism of Epoxide Carbonylation by [Lewis Acid] + [Co(CO) 4 ] -Catalysts, J. Am. Chem. Soc, vol.128, pp.10125-10133, 2006.

Y. D. Getzler, V. Kundnani, E. B. Lobkovsky, and G. W. Coates, Catalytic Carbonylation of ?-Lactones to Succinic Anhydrides, J. Am. Chem. Soc, vol.126, pp.6842-6843, 2004.

M. Wang, . De, S. Calet, and H. Alper, Regiospecific Carbonylation and Ring Expansion of Thietanes and Oxetanes Catalyzed by Cobalt and/or Ruthenium Carbonyls, J. Org. Chem, vol.54, pp.20-21, 1989.

W. Reppe, H. Kröper, H. J. Pistor, O. Weissbarth, . Carbonylierung et al., Einwirkung von Kohlenoxyd und Wasser auf cyclische Äther, Justus Liebigs Ann. Chem, vol.582, pp.87-116, 1953.

G. Jenner, H. Kheradmand, and A. Kiennemann, Carbonylation du tetrahydrofuranne en presence de catalyseurs au rhodium. Synthese de lactones en C5, J. Organomet. Chem, vol.277, pp.427-435, 1984.

H. Alper, F. Urso, and D. J. Smith, Regiospecific Metal-Catalyzed Ring Expansion of Aziridines to ?-Lactams, J. Am. Chem. Soc, vol.105, pp.6737-6738, 1983.

S. Calet, F. Urso, and H. Alper, Enantiospecific and Stereospecific Rhodium(I)-Catalyzed Carbonylation and Ring Expansion of Aziridines. Asymmetric Synthesis of ?-Lactams and the Kinetic Resolution of Aziridines, J. Am. Chem. Soc, vol.111, pp.931-934, 1989.

D. Ardura, R. López, and T. L. Sordo, A theoretical study of rhodium(I) catalyzed carbonylative ring expansion of aziridines to ?-lactams: Crucial activation of the breaking C-N bond by hyperconjugation, J. Org. Chem, vol.71, pp.7315-7321, 2006.

H. Alper and N. Hamel, Regiospecific synthesis of ?-methylene-?-lactams by a homogeneous palladium catalyzed ring expansion-carbonylation reaction, Tetrahedron Lett, vol.28, pp.3237-3240, 1987.

W. Chamchaang and A. R. Pinhas, The conversion of an aziridine to a .beta.-lactam, J. Org. Chem, vol.55, pp.2943-2950, 1990.

M. E. Piotti and H. Alper, Inversion of Stereochemistry in the Co 2 ( CO ) 8 -Catalyzed Carbonylation of Aziridines to -Lactams, The First Synthesis of Highly Strained trans -Bicyclic

. Lactams, J. Am. Chem. Soc, vol.118, pp.111-116, 1996.

E. Mentasti, E. Pelizzetti, R. Rossetti, and P. L. Stanghellini, Redox reactions of metal carbonyls

, Inorganica Chim. Acta, vol.25, pp.7-14, 1977.

D. Wang, M. Alper, and H. , Regioselective Synthesis of Piperidinones by Metal Catalyzed Ring Expansion-Carbonylation Reactions. Remarkable Cobalt and/or Ruthenium Carbonyl Catalyzed Rearrangement and Cyclization Reactions, J. Am. Chem. Soc, vol.114, pp.7018-7024, 1992.

D. Roberto and H. Alper, Novel Synthesis of Pyrrolidinones by Cobalt Carbonyl Catalyzed Carbonylation of Azetidines. A New Ring-Expansion-Carbonylation Reaction of 2-Vinylazetidines to Tetrahydroazepinones, J. Am. Chem. Soc, vol.111, pp.7539-7543, 1989.

, Verfahren zur herstellung von hydroxyphenylessigsaureamiden, 1984.

S. I. Murahashi, Y. Imada, and K. Nishimura, Palladium-catalysed carbonylation of allylamines

, Chem. Soc. Chem. Commun, pp.1578-1579, 1988.

S. I. Murahashi, Y. Imada, and K. Nishimura, Palladium-catalyzed Carbonylation of Allylamines. Synthesis of ?,?-unsaturated amides by one-carbon homologation of Allylamines, Tetrahedron, vol.50, pp.453-464, 1991.

H. Yu, G. Zhang, Z. Liu, and H. Huang, Palladium-catalyzed carbonylation of allylamines via C-N bond activation leading to ?,?-unsaturated amides, vol.4, pp.64235-64237, 2014.

F. Strain, P. G. Company, . Dimethylformamide, and . Production, , pp.249-250, 1968.

H. E. Bellis, Dimethylacetamide from carbonylation of trimethylamine, pp.185823-185824, 1984.

J. Hong and . Jang-hwan, Two Carbonylations of Methyl Iodide and Trimethylamine to Acetic acid and N,N-Dimethylacetamide by Rhodium(I) Complex: Stability of Rhodium(I) Complex under Anhydrous Condition, Catalysts, vol.5, pp.1969-1982, 2015.

H. Mei, Palladium-catalyzed unstrained {C} (sp3)-{N} bond activation: the synthesis of {N}, {N}-dimethylacetamide by carbonylation of trimethylamine, Appl. Organomet. Chem, vol.27, pp.177-183, 2013.

Y. Lei, R. Zhang, and G. Li, Cobalt-Catalyzed Unstrained C-N Bond Activation : the Synthesis of Tertiary Amides by Carbonylation of Tertiary Amines, vol.1, pp.762-764, 2013.

Y. Lei, Promotion effects of Lewis acid/(CH3)4NI on [Co(CO)4]?-catalyzed C-N bond activation in the carbonylation of trimethylamine, Catalysis Communications, vol.38, 2013.

Y. Lei, Palladium-catalyzed carbonylation of quaternary ammonium halides to tertiary amides, Appl. Organomet. Chem, vol.28, pp.310-314, 2014.

J. Hong, Two Carbonylations of Methyl Iodide and Trimethylamine to Acetic acid and N,NDimethylacetamide by Rhodium(I) Complex: Stability of Rhodium(I) Complex under Anhydrous Condition, Catalysts, vol.5, pp.1969-1982, 2015.

T. Saegusa, S. Kobayashi, K. Hirota, and Y. Ito, Synthetic reaction by complex catalyst. II copper catalyzed carbonylation of amine, Tetrahedron Lett, vol.7, pp.6125-6129, 1966.

D. D. Lassau, Effet of various phosphines on selectivity in the carbonylation of amines

, Tetrahedron Lett, pp.2329-2330, 1969.

B. Dombek, Pentacarbonyliron-catalyzed carbonylation of amines to formamides, J. Catal, vol.48, pp.433-435, 1977.

W. E. Martin and M. F. , Carbonylation of amines and diamines catalyzed by nickel carbonyl

, J. Organomet. Chem, pp.393-397, 1981.

. Yasihiko-yoshida and S. I. Asano, Carbonylation of amines catalyzed by organozinc compound, Chem. Lett, pp.1073-1076, 1984.

Y. Tsuji, T. Ohsumi, T. Kondo, and Y. Watanabe, Dodecacarbonyltriruthenium catalysed carbonylation of amines and hydroamidation of olefins, J. Organomet. Chem, vol.309, pp.333-344, 1986.

G. Süss-fink, M. Langenbahn, and T. Jenke, Rutheniumcluster als Katalysatoren für die Carbonylierung von cyclischen Aminen, J. Organomet. Chem, vol.368, pp.103-109, 1989.

, Procédé de fabrication de formamides, pp.2343719-2343720, 1977.

W. C. Ramioulle, A process for the preparation of formamides, pp.2710725-2710726, 1977.

X. Li, N-Heterocyclic carbene catalyzed direct carbonylation of dimethylamine

, Commun, vol.47, pp.7860-7862, 2011.

W. Li and X. F. Wu, A Practical and General Base-Catalyzed Carbonylation of Amines for the Synthesis of N-Formamides. Chem. -A Eur, J, vol.21, pp.14943-14948, 2015.

H. Holmquist and J. Carnahan, Reactions of Carbon Monoxide with Thiols, Sulfides, and Disulfides, J. Org. Chem, vol.25, pp.2240-2242, 1960.

C. M. Crudden and H. Alper, Insertion of Carbon Monoxide into Allylic Carbon-Sulfur Bonds Catalyzed by Palladium and Ruthenium Complexes, J. Org. Chem, vol.60, pp.5579-5587, 1995.

K. Khumtaveeporn, H. Alper, and . Novel, Metal-Catalyzed Carbonylation of Acyclic Organic Compounds. The Regiospecific Carbonylation of N,S-Acetals, J. Org. Chem, vol.59, pp.1414-1417, 1994.

M. Furuya, Catalytic synthesis of thiobutyrolactones via CO insertion into the C -S bond of thietanes in the presence of a heterodinuclear organoplatinum -cobalt complex, pp.2046-2047, 2003.

J. R. Dunetz, J. Magano, and G. A. Weisenburger, Large-Scale Applications of Amide Coupling Reagents for the Synthesis of Pharmaceuticals, Org. Process Res. Dev, vol.20, pp.140-177, 2016.

C. O. Kinen, L. I. Rossi, and R. H. De-rossi, The development of an environmentally benign sulfideoxidation procedure and its assessment by green chemistry metrics, Green Chem, vol.11, pp.223-228, 2009.

J. S. Carey, D. Laffan, C. Thomson, and M. T. Williams, Analysis of the reactions used for the preparation of drug candidate molecules, Org. Biomol. Chem, vol.4, p.2337, 2006.

D. J. Constable, Key green chemistry research areas: A perspective from pharmaceutical manufacturers, Green Chem, vol.9, pp.411-420, 2007.

C. F. Barnard, Palladium-Catalyzed Carbonylation A Reaction Come of Age, Organometallics, vol.27, pp.5402-5422, 2008.

A. V. Reet, Process for preparing secondary amides byc arbonylation of a corresponding tertiary amine, 2010.

F. Akiyama, Arylation and alkylation of olefins by arylamines or hydrazines via the carbonnitrogen bond cleavage in the presence of palladium(II) salts, J. Org. Chem, vol.45, pp.2359-2361, 1980.

A. Roglans, A. Pla-quintana, and M. Moreno-mañas, Diazonium salts as substrates in palladiumcatalyzed cross-coupling reactions, Chem. Rev, vol.106, pp.4622-4643, 2006.

J. G. Taylor, A. V. Moro, and C. R. Correia, Evolution and synthetic applications of the HeckMatsuda reaction: The return of arenediazonium salts to prominence, European J. Org. Chem, pp.1403-1428, 2011.

F. X. Felpin, L. Nassar-hardy, F. Le-callonnec, and E. Fouquet, Recent advances in the HeckMatsuda reaction in heterocyclic chemistry, Tetrahedron, vol.67, pp.2815-2831, 2011.

R. Shi, Palladium/copper-catalyzed oxidative C-H alkenylation/N-dealkylative carbonylation of tertiary anilines, Angew. Chemie -Int. Ed, vol.52, pp.10582-10585, 2013.

Z. Ling, L. Yun, L. Liu, B. Wu, and X. Fu, Aerobic oxidative N-dealkylation of tertiary amines in aqueous solution catalyzed by rhodium porphyrins, Chem. Commun. (Camb), vol.49, pp.4214-4220, 2013.

Y. Zhou, Y. Xie, L. Yang, P. Xie, and H. Huang, Copper-catalyzed aerobic oxidative amination of arylboronic acid with aminal under base-free conditions, Tetrahedron Lett, vol.54, pp.2713-2716, 2013.

T. Fang, X. Gao, R. Tang, X. Zhang, and C. Deng, A novel Pd-catalyzed N -dealkylative carbonylation of tertiary aminetive carbonylation of tertiary amines for the preparation of amides, Chem. Commun, vol.50, pp.14775-14777, 2014.

B. Gao and H. Huang, Palladium-Catalyzed Hydroaminocarbonylation of Alkynes with Tertiary Amines via C ? N Bond Cleavage, pp.6260-6263, 2017.

H. Cheng, W. Hou, Z. Li, M. Liu, and B. Guan, The copper-catalyzed aerobic oxidative amidation of tertiary amines, Chem. Commun, vol.51, pp.17596-17599, 2015.

N. Piens and M. D'hooghe, Carbonylation of Aziridines as a Powerful Tool for the Synthesis of Functionalized ?-Lactams, European J. Org. Chem, pp.5943-5960, 2017.

E. Wenkert, A. Han, and C. Jenny, Nickel-induced conversion of carbon-nitrogen into carbon-carbon bonds. One-step transformations of aryl, quaternary ammonium salts into alkylarenes and biaryls, J. Chem. Soc., Chem. Commun, pp.975-976, 1988.

J. B. Bonanno, T. P. Henry, D. R. Neithamer, P. T. Wolczanski, and E. B. Lobkovsky, Arylamine C?N Bond Oxidative Addition to (silox)3Ta (silox = tBu3SiO, 1996.

T. Koreeda, T. Kochi, and F. Kakiuchi, Substituent Effects on Stoichiometric and Catalytic Cleavage of Carbon-Nitrogen Bonds in Aniline Derivatives by Ruthenium-Phosphine Complexes, Organometallics, vol.32, pp.682-690, 2013.

T. Koreeda, T. Kochi, and F. Kakiuchi, Cleavage of C?N Bonds in Aniline Derivatives on a Ruthenium Center and Its Relevance to Catalytic C?C Bond Formation, J. Am. Chem. Soc, vol.131, pp.7238-7239, 2009.

S. Ueno, N. Chatani, and F. Kakiuchi, Ruthenium-catalyzed carbon-carbon bond formation via the cleavage of an unreactive aryl carbon-nitrogen bond in aniline derivatives with organoboronates, J. Am. Chem. Soc, vol.129, pp.6098-6099, 2007.

T. M. Cameron, Unusual molybdenum mediated C-N bond activation, Chem. Commun, vol.114, pp.1224-1225, 2001.

M. Gandelman and D. Milstein, Homogeneously catalyzed, chelate assisted hydrogenolysis of an amine C-N bond, Chem. Commun, pp.1603-1604, 2000.

H. Mei, Palladium-catalyzed unstrained C (sp3)-N bond activation: the synthesis of N, Ndimethylacetamide by carbonylation of trimethylamine, Appl. Organomet. Chem, vol.27, pp.177-183, 2013.

Y. Lei, Promotion effects of Lewis acid/(CH3)4NI on [Co(CO)4] catalyzed C-N bond activation in the carbonylation of trimethylamine, Catal. Commun, vol.38, pp.45-49, 2013.

J. P. Collman, S. R. Winter, and R. G. Komoto, Selective syntheses of aliphatic carboxylic acids, esters, and amides using sodium tetracarbonylferrate(-II), J. Am. Chem. Soc, vol.95, pp.249-250, 1973.

R. E. Dessy, R. L. Pohl, R. B. King, . Vi, V. J. Vii et al., Organometallic Electrochemistry. VII. 1 The Nucleophilicities of Metallic and Metalloidal Anions Derived from Metals of Groups IV

, Chem. Soc, vol.88, pp.5121-5124, 1966.

S. B. Butts, Activation of Coordinated Carbon Monoxide toward Alkyl and Aryl Migration (CO Insertion) by Molecular Lewis Acids and X-ray Structure of the Reactive Intermediate Mn m r B r 2 ) C H 3 ) ( CO), J. Am. Chem. SOC, vol.102, pp.5093-5100, 1980.

J. P. Collman, J. N. Cawse, and J. I. Brauman, Role of ion pairing in reactions of metal carbonyl anions. I. Cation-assisted alkyl-acyl migratory insertions, J. Am. Chem. Soc, vol.94, pp.5905-5906, 1972.

T. Matsui and N. Tokura, Kinetics for Reversible Menschutkin Reactions. The Effects of Variations in Reactant Structures on the Sensitivity of the Reaction Rate to Solvent Variations, Bull. Chem

. Soc and . Jpn, , vol.43, pp.1751-1762, 1970.

C. E. Plec?nik, S. Liu, and S. G. Shore, Lanthanide?Transition-Metal Complexes: From Ion Pairs to Extended Arrays, Acc. Chem. Res, vol.36, pp.499-508, 2003.

H. Deng, S. Chun, P. Florian, P. J. Grandinetti, and S. G. Shore, Direct Lanthanide?Transition Metal Interactions: Synthesis of (NH3)2YbFe(CO)4 and Crystal Structures of {, vol.3, p.3

Y. , Inorg. Chem, vol.35, pp.3891-3896, 1996.

D. F. Tropsch and D. H. , Verfahren zur Gewinnung mehrgliedriger Paraffinkohlenwasserstoffe aus Kohlenoxyden und Wasserstoff auf katalytischem Wege, 1925.

M. E. Dry, The Fischer-Tropsch process, Catal. Today, vol.71, pp.227-241, 2002.

F. Arndt and B. Eistert, Ein Verfahren zur Überführung von Carbonsäuren in ihre höheren Homologen bzw. deren Derivate, Berichte der Dtsch. Chem. Gesellschaft (A B Ser, vol.68, pp.200-208, 1935.

J. F. Knifton, Syngas reactions III. Ruthenium catalyzed homologation of aliphatic carboxylic acids, J. Mol. Catal, vol.11, pp.91-106, 1981.

T. C. Co and P. O. Box, Synthesis Gas Homologation of Aliphatic Carboxylic Acids, pp.41-43, 1981.

G. Braca, Carbonylation and homologation of dimethyl ether in the presence of ruthenium catalysts, Ind. Eng. Chem. Prod. Res. Dev, vol.20, pp.115-122, 1981.

M. Röper and H. Loevenich, The Homologation of Methanol, pp.105-134, 1983.

P. Andrianary, G. Jenner, and A. Kiennemann, Synthese de precurseurs de l'ethanol par homologation du methanol.: I. Influences de la temperature et de la pression, J. Organomet. Chem, vol.252, pp.209-220, 1983.

G. Jenner and P. Andrianary, Reactions CO-H2 en phase liquide: synthese de l'acetaldehyde par homologation du methanol: II. Homologation en milieu chelatant, J. Mol. Catal, vol.24, pp.87-97, 1984.

M. J. Chen, H. M. Feder, and J. W. Rathke, Selective homologation of methanol catalyzed by transition metal complexes in methanol-amine solutions, J. Mol. Catal, vol.17, pp.331-337, 1982.

P. Roose, K. Eller, E. Henkes, R. Rossbacher, H. Höke et al., Aliphatic. in Ullmann's Encyclopedia of Industrial Chemistry 1-55, 2015.

D. Wei, A. Bruneau-voisine, D. A. Valyaev, N. Lugan, and J. Sortais, Manganese catalyzed reductive amination of aldehydes using hydrogen as a reductant, Chem. Commun, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01807069

F. Shi and X. Cui, Amine Synthesis by Hydroamination of Alkene and Diene, Catalytic Amination for N-Alkyl Amine Synthesis, pp.75-116, 2018.

F. Shi and X. Cui, Amine Synthesis by Catalytic Alcohol Amination, Catalytic Amination for N-Alkyl Amine Synthesis 1-58, 2018.

F. Shi and X. Cui, Amine Synthesis by Reductive Amination of CO 2. in Catalytic Amination for N-Alkyl Amine Synthesis, pp.139-147, 2018.

F. Shi and X. Cui, Amine Synthesis by Hydroaminomethylation, Catalytic Amination for N-Alkyl Amine Synthesis, pp.117-138, 2018.

P. Kalck and M. Urrutigoïty, Tandem Hydroaminomethylation Reaction to Synthesize Amines from Alkenes
URL : https://hal.archives-ouvertes.fr/hal-01949854

C. F. Barnard, Palladium-Catalyzed Carbonylation A Reaction Come of Age, Organometallics, vol.27, pp.5402-5422, 2008.

Y. Lei, Carbonylation of quaternary ammonium salts to tertiary amides using NaCo(CO)4 catalyst, J. Mol. Catal. A Chem, vol.381, pp.120-125, 2014.

H. Mei, Palladium-catalyzed unstrained C(sp3) -N bond activation: The synthesis of N,Ndimethylacetamide by carbonylation of trimethylamine, Appl. Organomet. Chem, vol.27, pp.177-183, 2013.

Y. Lei, Palladium-catalyzed carbonylation of quaternary ammonium halides to tertiary amides, Appl. Organomet. Chem, vol.28, pp.310-314, 2014.

Y. Lei, Promotion effects of Lewis acid/(CH3)4NI on [Co(CO)4] Ë?-catalyzed C-N bond activation in the carbonylation of trimethylamine, Catal. Commun, vol.38, pp.45-49, 2013.

Y. Lei, R. Zhang, and G. Li, Cobalt-Catalyzed Unstrained C-N Bond Activation : the Synthesis of Tertiary Amides by Carbonylation of Tertiary Amines, vol.1, pp.762-764, 2013.

J. R. Cabrero-antonino, E. Alberico, K. Junge, H. Junge, and M. Beller, Towards a general ruthenium-catalyzed hydrogenation of secondary and tertiary amides to amines, Chem. Sci, vol.7, pp.3432-3442, 2016.

M. L. Yuan, J. H. Xie, and Q. L. Zhou, Boron Lewis Acid Promoted Ruthenium-Catalyzed Hydrogenation of Amides: An Efficient Approach to Secondary Amines, ChemCatChem, vol.8, pp.3036-3040, 2016.

J. Coetzee, Homogeneous catalytic hydrogenation of amides to amines. Chem. -A Eur, J, vol.19, pp.11039-11050, 2013.

B. Li, J. Sortais, and C. Darcel, Amine synthesis via transition metal homogeneous catalysed hydrosilylation, RSC Adv, vol.6, pp.57603-57625, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01357397

N. L. Lampland, M. Hovey, D. Mukherjee, and A. D. Sadow, Magnesium-Catalyzed Mild Reduction of Tertiary and Secondary Amides to Amines, ACS Catal, vol.5, pp.4219-4226, 2015.

T. Lazarides, Making Hydrogen from Water Using a Homogeneous System Without Noble Metals, J. Am. Chem. Soc, vol.131, pp.9192-9194, 2009.

P. Du, K. Knowles, and R. Eisenberg, A Homogeneous System for the Photogeneration of Hydrogen from Water Based on a Platinum(II) Terpyridyl Acetylide Chromophore and a Molecular Cobalt Catalyst, J. Am. Chem. Soc, vol.130, pp.12576-12577, 2008.

E. Balaraman, B. Gnanaprakasam, L. J. Shimon, and D. Milstein, Direct hydrogenation of amides to alcohols and amines under mild conditions, J. Am. Chem. Soc, vol.132, pp.16756-16758, 2010.

M. Gandelman, D. Milstein, and V. Papa, Efficient and selective hydrogenation of amides to alcohols and amines using a well-defined manganese-PNN pincer complex, Chem. Commun, vol.8, pp.3576-3585, 2000.

M. Meuresch, S. Westhues, W. Leitner, and J. Klankermayer, Tailor-Made Ruthenium-Triphos Catalysts for the Selective Homogeneous Hydrogenation of Lactams, Angew. Chemie -Int. Ed, vol.55, pp.1392-1395, 2016.

M. L. Yuan, J. H. Xie, S. F. Zhu, and Q. L. Zhou, Deoxygenative Hydrogenation of Amides Catalyzed by a Well-Defined Iridium Pincer Complex, ACS Catal, vol.6, pp.3665-3669, 2016.

T. Dombray, C. Helleu, C. Darcel, and J. Sortais, Cobalt Carbonyl-Based Catalyst for Hydrosilylation of Carboxamides, Adv. Synth. Catal, vol.355, pp.3358-3362, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01089274

I. Wender, H. W. Sternberg, and M. Orchin, The Chemistry of Metal Carbonyls. I. New Concepts Applied to Carbonyls of Cobalt, J. Am. Chem. Soc, vol.74, pp.1216-1219, 1952.

Y. Nagai, . As, . Agents, and . Review, Org. Prep. Proced. Int, vol.12, pp.13-48, 1980.

S. B. Butts, Activation of Coordinated Carbon Monoxide toward Alkyl and Aryl Migration (CO Insertion) by Molecular Lewis Acids and X-ray Structure of the Reactive Intermediate M n m r B r 2 ) C H 3 ) ( CO), J. Am. Chem. SOC, vol.102, pp.5093-5100, 1980.

M. S. Wrighton, J. L. Graff, R. J. Kazlauskas, J. C. Mitchener, and C. L. Reichel, Photogeneration of reactive organometallic species, Pure Appl. Chem, vol.54, pp.161-176, 1982.

C. L. Reichel and M. S. Wrighton, Photochemistry of Cobalt Carbonyl Complexes Having a CobaltSilicon Bond and its Importance in Activation of Catalysis, Inorg. Chem, vol.19, pp.3858-3860, 1980.

U. Jayarathne, Y. Zhang, N. Hazari, and W. H. Bernskoetter, Selective Iron-Catalyzed Deaminative Hydrogenation of Amides, Organometallics, vol.36, pp.409-416, 2017.

P. R. Rablen, B. D. Mclarney, B. J. Karlow, and J. E. Schneider, How Alkyl Halide Structure A ff ects E2 and S, J. Org. Chem, vol.867, p.879, 2014.

Z. R. Wagner-robert, The case for Mars, 1997.

A. Börner and R. Franke, Hydroformylation Fundamentals, Processes, and Applications in Organic Synthesis, 2016.

K. Tominaga and Y. Sasaki, Ruthenium complex-catalyzed hydroformylation of alkenes with carbon dioxide, Catal. Commun, vol.1, pp.1-3, 2000.

K. I. Tominaga and Y. Sasaki, Ruthenium-catalyzed one-pot hydroformylation of alkenes using carbon dioxide as a reactant, J. Mol. Catal. A Chem, vol.220, pp.159-165, 2004.

G. Mignonac, Nouvelle méthode générale de préparation des amines à partir des aldéhydes ou des cétones, C. R. Hebd. Seances Acad. Sci, vol.172, pp.224-226, 1921.

L. Mark?o and J. Bakos, Homogeneous reductive amination with cobalt and rhodium carbonyls as catalysts, J. Organomet. Chem, vol.81, pp.411-414, 1974.

W. Reppe, H. Vetter, and V. I. Carbonylierung, Synthesen mit Metallcarbonylwasserstoffen, Justus Liebigs Ann. Chem, vol.582, pp.133-161, 1953.

V. K. Srivastava and P. Eilbracht, Ruthenium carbonyl-complex catalyzed hydroaminomethylation of olefins with carbon dioxide and amines, Catal. Commun, vol.10, pp.1791-1795, 2009.

R. W. Wegman, D. C. Busby, and J. B. Letts, Acetaldehyde Production by Reductive Carbonylation of Methanol, Methyl Ketals, and Methyl Esters. Ind. Chem. via C1 Process, vol.328, pp.125-135, 1987.

K. G. Moloy and R. W. Wegman, Rhodium-catalyzed reductive carbonylation of methanol, vol.8, pp.2883-2892, 1989.

Y. Tsuji, T. Ohsumi, T. Kondo, and Y. Watanabe, Dodecacarbonyltriruthenium catalysed carbonylation of amines and hydroamidation of olefins, J. Organomet. Chem, vol.309, pp.333-344, 1986.

P. J. Davidson, M. F. Lappert, and R. Pearce, Metal .sigma.-hydrocarbyls, MRn. Stoichiometry, structures, stabilities, and thermal decomposition pathways, Chem. Rev, vol.76, pp.219-242, 1976.
URL : https://hal.archives-ouvertes.fr/hal-01774196

T. W. Dekleva and D. Forster, The rhodium-catalyzed carbonylation of linear primary alcohols, J. Am. Chem. Soc, vol.107, pp.3565-3567, 1985.

A. C. Cope, N. A. Lebel, P. T. Moore, and W. R. Moore, Mechanism of the Hofmann Elimination Reaction: Evidence that an Ylide Intermediate is not Involved in Simple Compounds 1, J. Am. Chem. Soc, vol.83, pp.3861-3865, 1961.

B. D. Dombek, Hydrogenation of carbon monoxide by ruthenium complexes with iodide promoters: catalytic and mechanistic investigations, J. Organomet. Chem, vol.250, pp.467-483, 1983.

C. Hirosawa, N. Wakasa, and T. Fuchikami, Hydrogenation of amides by the use of bimetallic catalysts consisting of group 8 to 10, and group 6 or 7 metals, Tetrahedron Lett, vol.37, pp.6749-6752, 1996.

L. Wu, I. Fleischer, R. Jackstell, and M. Beller, Efficient and Regioselective Ruthenium-catalyzed Hydro-aminomethylation of Olefins, J. Am. Chem. Soc, vol.135, pp.3989-3996, 2013.

P. Gotico, Visible-Light-Driven Reduction of CO 2 to CO and Its Subsequent Valorization in Carbonylation Chemistry and 13 C Isotope Labeling, pp.1-6, 2018.

C. Costentin, M. Robert, J. Savéant, and A. Tatin, Efficient and selective molecular catalyst for the CO 2 -to-CO electrochemical conversion in water, Proc. Natl. Acad. Sci, vol.112, pp.6882-6886, 2015.

F. Zhang, L. Zhao, C. Xu, and Y. Chen, Theoretical {Revisit} of a {Fe}({CO})5-{Catalyzed} {Water}?{Gas} {Shift} {Reaction}, Inorg. Chem, vol.49, pp.3278-3281, 2010.

X. Rozanska and R. Vuilleumier, Mechanisms of the {Water}?{Gas}-{Shift} {Reaction} by {Iron} {Pentacarbonyl} in the {Gas} {Phase}, Inorg. Chem, vol.47, pp.8635-8640, 2008.

S. E. Barrows, Theoretical Study of the Gas-Phase Fe(CO)5 Catalyzed Water Gas Shift Reaction: A New Mechanism Proposed, Inorg. Chem, vol.43, pp.8236-8238, 2004.

H. Schulz, A. Görling, and W. Hieringer, Mechanisms of the Water-Gas Shift Reaction Catalyzed by Ruthenium Pentacarbonyl: A Density Functional Theory Study, Inorg. Chem, vol.52, pp.4786-4794, 2013.

K. Tominaga, Y. Sasaki, K. Hagihara, T. Watanabe, and M. Saito, Reverse Water-Gas Shift Reaction Catalyzed by Ruthenium Cluster Anions, Chem. Lett, vol.23, pp.1391-1394, 1994.

K. Tominaga, Y. Sasaki, T. Watanabe, and M. Saito, Homogeneous Hydrogenation of Carbon Dioxide to Methanol Catalyzed by Ruthenium Cluster Anions in the Presence of Halide Anions, Bull. Chem. Soc. Jpn, vol.68, pp.2837-2842, 1995.

K. Tominaga, Y. Sasaki, M. Kawai, T. Watanabe, and M. Saito, Ruthenium complex catalysed hydrogenation of carbon dioxide to carbon monoxide, methanol and methane, J. Chem. Soc. Chem. Commun, pp.629-631, 1993.

K. I. Tominaga and Y. Sasaki, Ruthenium complex-catalyzed hydroformylation of alkenes with carbon dioxide, Catal. Commun, vol.1, pp.1-3, 2000.

K. Tominaga and Y. Sasaki, Biphasic Hydroformylation of 1-Hexene with Carbon Dioxide Catalyzed by Ruthenium Complex in Ionic Liquids, Chem. Lett, vol.33, pp.14-15, 2004.

Q. Qian, Synthesis of ethanol via a reaction of dimethyl ether with CO2and H2, Green Chem, vol.20, pp.206-213, 2018.

J. Zhang, Synthesis of ethanol from paraformaldehyde, CO2and H2, Green Chem, vol.19, pp.4396-4401, 2017.

Q. Qian, Highly selective hydrogenation of CO<inf>2</inf> into C<inf>2+</inf> alcohols by homogeneous catalysis, Chem. Sci, vol.6, pp.5685-5689, 2015.

M. Cui, Bromide promoted hydrogenation of CO2to higher alcohols using Ru-Co homogeneous catalyst, Chem. Sci, vol.7, pp.5200-5205, 2016.

, Conclusion et perspective de la partie III

C. Dans-le, IV de ce manuscrit nous avons étudié la réaction d'homologation des amines. Figure 5 Réactions d'homologation des amines grâce à l'utilisation de CO

, Dans un premier temps, l'utilisation d'un complexe carbonyle de cobalt nous a permis d'homologuer une méthylamine (R2N-Me) en éthyleamine (R2N-Et) grâce à sa carbonylation en amide, puis à sa réduction par les hydrosilanes. Cette réaction d'homologation en deux étapes nous a permis d

, Dans un second temps, nous avons prouvé, après de nombreuses étapes d'optimisation, qu'il était

. Enfin, comme présenté dans la chapitre 3 de ce manuscrit, les complexes de fer carbonyle

F. , CO)5, Fe3(CO)12,?) permettent la carbonylation d'amines tertiaires et secondaires, et ce sous de

V. Partie and . Expérimentale,

. .. Partie-v--partie-experimentale,

. Partie-ii-:-reaction, . De, and . .. Des-amines,

. .. Partie-iii-:-reaction-d&apos;homologation,

. Synthèse-d&apos;alkylamine-À-partir-de and .. .. Co,

, Homologation d'amines grâce à l'utilisation d'un gaz de synthèse

. .. Bibliographie, Nmethylacetanilide: GC-MS traces: temps de rétention : 11.7 min, SM IE, vol.174, p.104

, 4b' 4cyano, acetanilide: GC-MS traces: temps de rétention : 12,3 min, SM IE (m/z): 118 (100), vol.43, p.75

, 3a' 4Fluoro Nmethylaniline: GC-MS traces: temps de rétention : 8,99 min, SM IE, p.125

, ) 3a'' 4Fluoro-aniline : GC-MS traces: temps de rétention : 8.3min, SM IE, vol.77, p.83

, ) 3b 4Fluoro Nmethylacetanilide: GC-MS traces: temps de rétention : 10.1 min, SM IE, vol.153, p.75

, Autres amines et amides 7a N-N-diethylaniline: GC-MS traces: temps de rétention : 9.7 min, SM IE, vol.100, p.120

N. , GC-MS traces: temps de rétention : 10.6 min, SM IE, p.106

, ) 9a' Tetrahydroisoquinoline : GC-MS traces : temps de rétention : 10.1 min, SM IE (m/z), vol.121, p.104

, 51 (15) 9a Nmethyltetrahydroisoquinoline : GC-MS traces temps de rétention : 10 min, SM IE (m/z) 146 (100), vol.133, p.129

. Acetyl-tetrahydroisoquinoline, GC-MS traces: temps de rétention : 12.1min, SM IE, p.175

, ) 10a Nmethylmorpholine : GC-MS traces: temps de rétention : 3.9 min, SM IE (m/z) 43 (100), vol.176, p.102

. Conditons, mol%), amine 0.98mmol, Nd(OTf)3 60mol%, CO (8bars), HI (0.35 eq, p.2

, Dans un tube RMN wildman l'amine (0,05 mmol) et MeI (0, vol.8

, En boîte à gants l'autoclave est chargé avec Na

, et CH3CN (6 ml). L'autoclave, après avoir été scellé

. °c, A la fin de la réaction, la solution est filtrée sur Célite avant d'être analysée GC-MS

, En boîte à gants l'autoclave est chargé avec, mmol), PhNeMe3I (1 mmol), p.3

, L'autoclave, après avoir été scellé, est purgé 4 fois avec 5 bar de CO et chauffé à 200

, °C sous 60 bar de CO pendant 15 h. La solution est filtrée sur Célite avant d'être analysée GC-MS. Les rendements ont été déterminés en utilisant une courbe de calibration externe de la GC-MS

, Identification des produits : Les amines 1a, 1c, 2c, 1d, 1e, 1f, 1g, 1h, ont été achetées chez Aldrich et injectées sur la GC-MS pour

, 1b, 3b, 3e, 3d, 3g, 5b et 7b, 9b ont été synthétisées selon les méthodes décrites dans la littérature et

. Le, 2-iodopropyle, 1-odobutyle, 2-iodobutyle, 1-iodo-2-méthylpropane, iodopentane, 1-iodo-3-methylbutane

. Ru3, Ru(acac)3, LiCl, Ph2NH, l'acétone ont été achetés chez Aldrich et ont été utilisés tels quels, vol.12

, Les ratios de pression CO/H 2 et CO 2 /H 2 ont été paramétré grâce à l'utilisation d'un contrôleur numérique. Réactions catalytiques : Carbonylation des amines tertiaires en autoclave: En boîte à gants le sceau en verre est chargé avec le catalyseur (6 mol%), l'amine (1 mmol

G. Méthode and . Classique, GC-MS conditions pour les analyses de la première réaction : température injecteur: 250 °C; gaz vecteur: hélium; Pression: 120.0 kPa; Vélocité linéaire: 52.9 cm/sec.; Température four : 40 °C (verrouillé 1 min.) to 50 °C at 2°C/min, après jusqu'à 200°C à 40°C/min puis à 280°C à 15 °C/min

, Température source d'ions: 200 °C, p.250

, 250 °C; gaz vecteur: hélium; Pression: 120.0 kPa; Vélocité linéaire: 52.9 cm/sec.; Température four : 40 °C (verrouillé 1 min.) to 150 °C at 55°C/min. De 150 °C jusqu'à 220°C à 4°C/min puis à 300°C à 55 °C/min (verrouillé 3 min), GC-MS conditions pour les analyses de tous les échantillons : température injecteur

, Température source d'ions: 200 °C, p.250

J. M. John, R. Loorthuraja, E. Antoniuk, and S. H. Bergens, Catalytic hydrogenation of functionalized amides under basic and neutral conditions, Catal. Sci. Technol, vol.5, pp.1181-1186, 2015.

J. T. Scanlon and D. E. Willis, Calculation of Flame Ionization Detector Relative Response Factors Using the Effective Carbon Number Concept, J. Chromatogr. Sci, vol.23, pp.333-340, 1985.

D. Hou, M. Wang, M. Chung, Y. Hsieh, and H. Gavin, Formation of 4,5,6,7-Tetrahydroisoindoles by Palladium-Catalyzed Hydride Reduction, J. Org. Chem, vol.72, pp.9231-9239, 2007.

M. Selva, A. Perosa, P. Tundo, S. Ambientali, and N. Selective, N -Dimethylation of Primary Aromatic Amines with Methyl Alkyl Carbonates in the Presence of Phosphonium Salts, pp.5770-5773, 2006.

J. Alcázar, Reproducibility Across Microwave Instruments: Preparation of a Set of 24

, Compounds on a Multiwell Plate under Temperature-Controlled Conditions, J. Comb. Chem, vol.7, pp.353-355, 2005.

J. Zheng, C. Darcel, and J. Sortais, Methylation of secondary amines with dialkyl carbonates and hydrosilanes catalysed by iron complexes, Chem. Commun, vol.50, pp.14229-14232, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01114594

L. Huang and J. Zhao, C60-Bodipy dyad triplet photosensitizers as organic photocatalysts for photocatalytic tandem oxidation, Chem. Commun, vol.49, p.3751, 2013.

J. Ja?wi?ski, Interaction of amines with rhodium(II) tetracarboxylates in solution: formation of nitrogenous stereogenic center, Tetrahedron: Asymmetry, vol.17, pp.2358-2365, 2006.

D. Qiu, Electrochromic and proton-induced phosphorescence properties of Pt( <scp>ii</scp> ) chlorides with arylamine functionalized cyclometalating ligands, J. Mater. Chem

, C, vol.1, pp.695-704, 2013.

F. E. Walter, J. Lyford, and . Iv, Preparation of sodium cobalt tetracarbonyl, Inorg. Chem, issue.9, pp.1932-1933, 1970.

J. A. Gladysz and T. W. , One-flask preparation of analytically pure dipotassium tetracarbonylferrate, J. Org. Chem, issue.11, pp.2279-2280, 1978.