H. D. Smyth, Atomic Energy for Military Purposes, Rev. Mod. Phys, vol.17, pp.351-471, 1945.

J. G. Hamilton, The metabolism of the fission products and the heaviest elements, Radiology, vol.43, pp.325-343, 1947.

R. Fink, Biological Studies With Polonium, Radium, and Plutonium, Natl. Nucl. Energy Serv. Div, vol.3, 1950.

E. Painter, Clinical physiology of dogs injected with plutonium, Nucl. Sci. Abstr, vol.1, p.18, 1948.

E. Fattal, N. Tsapis, and G. Phan, Novel drug delivery systems for actinides (uranium and plutonium) decontamination agents, Adv. Drug Deliv. Rev, vol.90, pp.40-54, 2015.

S. Services, Safe handling of radioactive luminous compound, Natl. Bur. Stand. handbook, 1941.

R. Wood, Decorporation Treatment --Medical Overview, Radiat. Prot. Dosimetry, vol.87, pp.51-57, 2000.

A. Portevin, The Scientific Background to Decorporation, Radiat. Prot. Dosimetry, vol.87, pp.11-17, 2000.

H. Henge-napoli, E. Ansoborlo, V. C. , and M. , Efficacy of ethane-1-hydroxy-1, 1-bisphosphonate (EHBP) for the decorporation of uranium after intramuscular contamination in rats, Int. J. Radiat. Biol, vol.75, pp.1473-1477, 1999.

F. Paquet, Efficacy of 3,4,3-LIHOPO for reducing neptunium retention in the rat after simulated wound contamination, Int. J. Radiat. Biol, vol.76, pp.113-120, 2000.

F. Paquet, V. Chazel, P. Houpert, R. A. Guilmette, and B. A. Muggenburg, Efficacy of 3,4,3-LI(1,2-HOPO) for decorporation of Pu, Am and U from rats injected intramuscularly with high-fired particles of MOX, Radiat. Prot. Dosimetry, vol.105, pp.521-526, 2003.

S. Abada, Phosphonated chelates for nuclear imaging, Org. Biomol. Chem, vol.12, pp.9601-9621, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01416407

S. Abada, Highly relaxing gadolinium based MRI contrast agents responsive to Mg2+ sensing, Chem. Commun, vol.48, p.4085, 2012.

A. D. Sherry, Characterization of Lanthanide(III) DOTP Complexes: Thermodynamics, Protonation, and Coordination to Alkali Metal Ions, Inorg. Chem, vol.35, pp.4604-4612, 1996.
URL : https://hal.archives-ouvertes.fr/hal-02080958

W. P. Cacheris, S. K. Nickle, and A. D. Sherry, Thermodynamic study of lanthanide complexes of 1,4,7-triazacyclononane-N,N',N&quot, vol.1, p.10

N. , N. N&quot, ;. , and N. Acid, Inorg. Chem, vol.26, pp.958-960, 1987.

É. Ansoborlo, Review of actinide decorporation with chelating agents, Comptes Rendus Chim, vol.10, pp.1010-1019, 2007.
URL : https://hal.archives-ouvertes.fr/cea-01273033

J. J. Katz and G. T. Seaborg, Actinide and Transactinide Elements. The Chemistry of the Actinide and Transactinide Elements 19. Nuclear and radiation accidents and incidents, 2002.

D. R. Woodwark, Electronic Structure of Actinyl Ions, 1980.

M. Kakihana, T. Nagumo, M. Okamoto, and H. Kakihana, Coordination structures for uranyl carboxylate complexes in aqueous solution studied by IR and carbon-13 NMR spectra, J. Phys. Chem, vol.91, pp.6128-6136, 1987.

A. Barkleit, Coordination of uranium(vi) with functional groups of bacterial lipopolysaccharide studied by EXAFS and FT-IR spectroscopy, Dalt. Trans, vol.40, p.9868, 2011.

B. Li, J. Raff, A. Barkleit, G. Bernhard, and H. Foerstendorf, Complexation of U(VI) with highly phosphorylated protein, phosvitin. A vibrational spectroscopic approach, J. Inorg. Biochem, vol.104, pp.718-725, 2010.

Y. Wang, Umbellate distortions of the uranyl coordination environment result in a stable and porous polycatenated framework that can effectively remove cesium from aqueous solutions, J. Am. Chem. Soc, vol.137, pp.6144-6147, 2015.

J. Neuefeind, L. Soderholm, and S. Skanthakumar, Experimental Coordination Environment of Uranyl(VI) in Aqueous Solution, J. Phys. Chem. A, vol.108, pp.2733-2739, 2004.

P. G. Allen, Diffraction Studies of Uranyl Carbonate Complexes in Near-Neutral Aqueous Solution

. 5h2o, Inorg. Chem, vol.34, pp.4797-4807, 1995.

J. T. Bell and R. E. Biggers, Absorption spectrum of the uranyl ion in perchlorate media III. Resolution of the ultraviolet band structure; some conclusions concerning the excited state of UO22+, J. Mol. Spectrosc, vol.25, pp.312-329, 1968.

R. Guillaumont, Update on the chemical thermodynamics of uranium, neptunium, plutonium, americium and technetium, Chemical Thermodynamics, vol.5, 2003.

P. G. Allen, J. J. Bucher, D. K. Shuh, N. M. Edelstein, and I. Craig, Coordination Chemistry of Trivalent Lanthanide and Actinide Ions in Dilute and Concentrated Chloride Solutions

P. &. Henderson and . Inorganic, , vol.367, 1982.

R. D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr. Sect. A, vol.32, pp.751-767, 1976.

J. L. Ryan-&-w and . Keder, Lanthanide/Actinide Chemistry, vol.71, 1967.

K. H. Johannesson, K. J. Stetzenbach, V. F. Hodge, and W. B. Lyons, Rare earth element complexation behavior in circumneutral pH groundwaters: Assessing the role of carbonate and phosphate ions, Earth Planet. Sci. Lett, vol.139, pp.305-319, 1996.

R. Boniforti, Lanthanides, uranium, and thorium as possible simulators of the behavior of transuranics in the aquatic environment, Sci. Total Environ, vol.64, pp.181-189, 1987.

B. Johansson and A. Rosengren, Interpolation scheme for the cohesive energies for the lanthanides and actinides, Phys. Rev. B, vol.11, pp.1367-1373, 1975.

J. Domingo, Effectiveness of chelation therapy with time after acute uranium intoxication, Fundam. Appl. Toxicol, vol.14, pp.88-95, 1990.

B. M. De-rey, H. E. Lanfranchi, and R. L. Cabrini, Percutaneous absorption of uranium compounds, Environ. Res, vol.30, pp.480-491, 1983.

A. E. Gorden, J. Xu, K. N. Raymond, and P. Durbin, Rational design of sequestering agents for plutonium and other actinides, Chem. Rev, vol.103, pp.4207-4282, 2003.

E. Ansoborlo, Actinide speciation in relation to biological processes, Biochimie, vol.88, pp.1605-1618, 2006.
URL : https://hal.archives-ouvertes.fr/hal-01930725

P. W. Durbin, 237Np: oxidation state in vivo and chelation by multidentate catecholate and hydroxypyridinonate ligands, Health Phys, vol.75, pp.34-50, 1998.

B. Ramounet, S. Matton, G. Grillon, and P. Fritsch, Early biokinetics of actinides after intravenous administration of soluble forms of Pu(IV), Np(IV) and Np(V), J. Alloys Compd, pp.103-105, 1998.

G. N. Taylor, R. D. Lloyd, and C. W. Mayst, Liver cancer induction by 239pu, 241am, and thorotrast in the grasshopper mouse, onychomys leukogaster, Health Phys, vol.64, pp.141-146, 1993.

D. M. Taylor, The biodistribution and toxicity of plutonium, americium and neptunium, Sci. Total Environ, vol.83, pp.217-225, 1989.

D. M. Taylor, The bioinorganic chemistry of actinides in blood, J. Alloys Compd. 271, vol.273, pp.6-10, 1998.

, WHO | The world health report 2004 -changing history, 2013.

L. Vicente-vicente, Nephrotoxicity of Uranium: Pathophysiological, Diagnostic and Therapeutic Perspectives, Toxicol. Sci, vol.118, pp.324-347, 2010.

J. D. Van-horn and H. Huang, Uranium(VI) bio-coordination chemistry from biochemical, solution and protein structural data, Coord. Chem. Rev, vol.250, pp.765-775, 2006.

P. W. Durbin, The Chemistry of the Actinide and Transactinide Elements, vol.5, pp.3339-3440, 2006.

J. R. Cooper, G. N. Stradling, H. Smith, and S. E. Ham, The Behaviour of Uranium-233 Oxide and Uranyl-233 Nitrate in Rats, Int. J. Radiat. Biol. Relat. Stud. Physics, Chem. Med, vol.41, pp.421-433, 1982.

C. Basset, Revision of the biodistribution of uranyl in serum: Is fetuin-A the major protein target?, Chem. Res. Toxicol, vol.26, pp.645-653, 2013.

D. M. Taylor, Some aspects of the comparative metabolism of plutonium and americium in rats, Health Phys, vol.8, pp.673-677, 1962.

D. &. Taylor, Long-term biological damage from plutonium-239 and americium-241 in rats, 1969.

B. Choi, Acute Toxicity of Arsenic in Rats and Mice, Pathology, vol.15, pp.323-334, 2003.

R. W. Leggett and T. C. Pellmar, The biokinetics of uranium migrating from embedded DU fragments, Journal of Environmental Radioactivity, vol.64, pp.205-225, 2003.

D. M. Taylor and S. K. Taylor, Environmental uranium and human health, Rev. Environ. Health, vol.12, pp.147-157, 1997.

A. M. Ubios, M. B. Guglielmotti, T. Steimetz, and R. L. Cabrini, Uranium inhibits bone formation in physiologic alveolar bone modeling and remodeling, Product: Documentation of the TLVs and BEIs with Other Worldwide Occupational Exposure Values CD-ROM * 2005, Network Version: ACGIH. Available at, vol.54, p.2, 1991.

P. Lestaevel, Changes in sleep-wake cycle after chronic exposure to uranium in rats, Neurotoxicol. Teratol, vol.27, p.2, 2005.
URL : https://hal.archives-ouvertes.fr/inserm-00407753

P. Durbin, Uranium · Plutonium Transplutonic Elements, pp.739-896, 1973.

C. W. Mays, R. D. Lloyd, G. N. Taylor, and M. E. Wrenn, Cancer incidence and lifespan vs. alphaparticle dose in beagles, Health Phys, vol.52, pp.617-641, 1987.

C. Mays, G. Taylor, and R. L. In, radiation effects studies & 1986, undefined. Toxicity ratios: their use and abuse in predicting the risk from induced cancer, p.64

J. C. Aub, R. D. Evans, D. M. Gallagher, and D. M. Tibbetts, An article contributed to an anniversary volume in honor of doctor Joseph Hersey Pratt: Effects of treatment on radium and calcium metabolism in the human body (Effects of treatment on radium and calcium metabolism in the human body*), Ann. Intern. Med, vol.11, pp.1443-1463, 1938.

C. Voegtlin and H. Hodge, Pharmacology and toxicology of uranium compounds, 1949.

P. W. Durbin, S. Lauriston, and . Taylor, Lecture: the quest for therapeutic actinide chelators, Health Phys, vol.95, pp.465-92, 2008.

J. Schubert, Treatment of plutonium poisoning by metal displacement, p.80, 1947.

R. Stone, Industrial medicine on the plutonium project: survey and collected papers, 1951.

, ICRP. Recommendations of the International Commission on Radiological Protection, vol.21, 1990.

, ICRP. Recommendations of the ICRP. ICRP Publication, vol.26, pp.2-3, 1977.

J. Schubert, Removal of Radioelements from the Mammalian Body, Annu. Rev. Nucl. Sci, vol.5, pp.369-412, 1955.

I. At, Effect of 2-acetylamino-1,3,4-thiadiazole-5-sulfonamide on the elimination of uranium from the organism and on the course of acute uranium poisoning, pp.678-687, 1968.

P. W. Durbin, B. Kullgren, J. Xu, and K. N. Raymond, New agents for in vivo chelation of uranium (VI): efficacy and toxicity in mice of multidentate catecholate and hydroxypyridinonate ligands, Health Phys, vol.72, pp.865-879, 1997.

P. W. Durbin, B. Kullgren, S. N. Ebbe, J. Xu, and K. N. Raymond, Chelating agents for uranium(VI): 2. Efficacy and toxicity of tetradentate catecholate and hydroxypyridinonate ligands in mice, Health Phys, vol.78, pp.511-521, 2000.

M. Sawicki, Bisphosphonate sequestering agents. Synthesis and preliminary evaluation for in vitro and in vivo uranium(VI) chelation, Eur. J. Med. Chem, vol.43, pp.2768-2777, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00687055

, Metal Chelation in Medicine, 2016.

L. Sillen, A. Martell, and J. Bjerrum, Stability constants of metal-ion complexes

A. Marteu and R. Smith, Critical Stability Constants, vol.3, 1977.

R. Smith and A. Martell, Critical stability constants, vol.5, 1982.

R. Smith and . Martell, second supplement, A. Stability constants, vol.6, 1989.

J. E. Gindler, Uranium · Plutonium Transplutonic Elements, pp.69-164, 1973.

E. Piskunov and . Ag-rykov, Investigation of complex formation with diethylenetriaminepentaacetic acid. IV. Neptunium (IV), Sov. Radiochem. Transl.), vol.14, 1972.

A. I. Moskvin, Correlation of the solubility products of actinide compounds with the properties of the metal ions and acid anions forming them, Sov. Radiochem, vol.13, pp.299-300, 1971.

F. Mompean, M. Illemassè-ne, and J. Perrone, Chemical thermodynamics of compounds and complexes of U, Np, Pu, Am, Tc, Se, Ni and Zr with selected organic ligands, 2005.

. Durbin, Development of decorporation agents for the actinides, 1998.

L. Bonin, Revisiting actinide-DTPA complexes in aqueous solution by CE-ICPMS and ab initio molecular dynamics ?, RSC Adv, vol.6, pp.62729-62741, 2016.

A. Catsch, Radioactive metal mobilization in medicine, 1964.

H. F. Medicine, The pharmacology of some useful chelating agents. JB Lippincott Co, Philadelphia 89, & 1960, undefined, vol.83, pp.301-305, 1953.

H. Foreman, The Use of Chelating Agents for Accelerating Excretion of Radioelements*, J. Am. Pharm. Assoc, vol.42, pp.629-632, 1953.

H. Foreman, Metal Binding in Medicine, 1960.

V. Volf, Treatment of incorporated transuranium elements, 1978.

B. D. Breitenstein and H. E. Palmer, Lifetime Follow-up of the 1976 americium accident victim, Radiat. Prot. Dosimetry, vol.26, pp.317-322, 1976.

R. A. Guilmette and B. A. Muggenburg, Reducing the Radiation Dose from Inhaled Americium-241

, Using Continuously Administered DTPA Therapy, Int. J. Radiat. Biol, vol.53, pp.261-271, 1988.

R. D. Lloyd, Removal of Pu and Am from Beagles and Mice by 3,4,3-LICAM(C) or 3,4,3-LICAM(S), Radiat. Res, vol.99, p.106, 1984.

R. D. Lloyd, S. S. Mcfarland, G. N. Taylor, J. L. Williams, and C. W. Mays, Decorporation of 241 Am in Beagles by DTPA, Radiat. Res, vol.62, p.97, 1975.

A. Catsch, A. Harmuth-hoene, F. Havlicek, and S. Carpy, Interaction Between Chelates and Endogenous Zinc, 1968.

F. W. Bruenger, G. Kuswik-rabiega, and S. C. Miller, Decorporation of aged americium deposits by oral administration of lipophilic polyamino carboxylic acids, J. Med. Chem, vol.35, pp.112-118, 1992.

K. N. Raymond and W. L. Smith, Actinide-specific sequestering agents and decontamination applications, Struct. Bond, vol.43, pp.159-186, 1981.

R. A. Guilmette, R. Hakimi, P. W. Durbin, J. Xu, and K. N. Raymond, Competitive binding of Pu and Am with bone mineral and novel chelating agents, Radiat. Prot. Dosimetry, vol.105, pp.527-561, 2003.

P. W. Durbin, 237Np: Oxidation state in vivo and chelation by multidentate catecholate and hydroxypyridinonate ligands, Health Phys, vol.75, pp.34-50, 1998.

P. W. Durbin, B. Kullgren, J. Xu, and K. N. Raymond, New agents for in vivo chelation of uranium(VI): Efficacy and toxicity in mice of multidentate catecholate and hydroxypyridinonate ligands, Health Phys, vol.72, pp.865-879, 1997.

M. H. Henge-napoli, European Communities Radiation Protection Programme. & European Late Effects Project Group. Decorporation of radionuclides from the human body : decorporation of the actinides, caesium and cobalt and a general medical overview, 2000.

F. L. Weitl, K. N. Raymond, W. L. Smith, T. R. Howard, N. et al., 3-dihydroxybenzoyl)tetraazacyclotetra-and -hexadecanes, J. Am. Chem. Soc, vol.1, issue.2, pp.1170-1172, 1978.

F. L. Weiti, K. N. Raymond, W. L. Smith, and T. R. Howard, Synthesis, structures, and thermodynamics of complexation of cobalt (III) and iron (III) tris complexes of several chelating hydroxypyridinones, J. Am. Chem. Soc, vol.24, pp.954-967, 1985.

W. Durbin, B. Kullgren, J. Xu, K. N. , and P. , Multidentate hydroxypyridinonate ligands for Pu(IV) chelation in vivo : comparative efficacy and toxicity in mouse

, Int. J. Radiat. Biol, vol.76, pp.199-214, 2000.

J. Xu, K. R. Chemistry, and .. , Uranyl Sequestering Agents: Correlation of Properties and Efficacy with Structure for UO22+ Complexes of Linear Tetradentate 1-Methyl-3-hydroxy-2(1H)-pyridinone Ligands, 1999.

J. Xu, S. J. Franklin, D. W. Whisenhunt, and K. N. Raymond, Gadolinium complex of tris[(3-hydroxy-1-methyl-2-oxo-1,2-didehydropyridine-4-carboxamido)ethyl]-amine: A New Class of gadolinium magnetic resonance relaxation agents, J. Am. Chem. Soc, vol.117, pp.7245-7246, 1995.

J. Xu, E. Radkov, M. Ziegler, and K. N. Raymond, Plutonium(IV) Sequestration: Structural and Thermodynamic Evaluation of the Extraordinarily Stable Cerium(IV) Hydroxypyridinonate Complexes 1, Inorg. Chem, vol.39, pp.4156-4164, 2000.

D. L. White, P. W. Durbin, N. Jeung, and K. N. Raymond, Specific sequestering agents for the actinides. 16. Synthesis and initial biological testing of polydentate oxohydroxypyridinecarboxylate ligands, J. Med. Chem, vol.31, pp.11-18, 1988.

P. W. Durbin, Octadentate hydroxypyridinonate (HOPO) ligands for plutonium (i.v.): pharmacokinetics and oral efficacy, Radiat. Prot. Dosimetry, vol.105, pp.503-511, 2003.

M. J. Kappel, H. Nitsche, and K. N. Raymond, Specific sequestering agents for the actinides. 11. Complexation of plutonium and americium by catecholate ligands, Inorg. Chem, vol.24, pp.605-611, 1985.

P. W. Durbin, Chelation of 238Pu(IV) in vivo by 3,4,3-LICAM(C): effects of ligand methylation and pH, Health Phys, vol.56, pp.839-55, 1989.

D. Zhu, M. Kappel, and K. R. Acta, chimica & 1988, undefined. Coordination chemistry of lanthanide catecholates

G. N. Stradling, Decorporation of actinides: A review of recent research, J. Alloys Compd, pp.72-77, 1998.

G. S. Dosimetry and . -r, protection & 1994, U. Recent progress in decorporation of plutonium, americium and thorium, Academic.Oup.Com

G. N. Stradling, Efficacies of LICAM(C) and DTPA for the Decorporation of Inhaled Transportable Forms of Plutonium and Americium from the Rat, Hum. Toxicol, vol.5, pp.77-84, 1986.

G. N. Stradling, The Efficacies of Pure LICAM(C) and DTPA on the Retention of Plutonium-238 and Americium-241 in Rats after Their Inhalation as Nitrate and Intravenous Injection as Citrate, Int. J. Radiat. Biol, vol.56, pp.503-514, 1989.

V. Volf and R. Wirth, Effective Chelation Therapy after Incorporation of Neptunium-239 in Rats, Int. J. Radiat. Biol. Relat. Stud. Physics, Chem. Med, vol.50, pp.955-959, 1986.

V. Volf, Chelation therapy of incorporated plutonium-238 and americium-241: Comparison of LICAM(c), DTPA and DFOA in rats, hamsters and mice, Int. J. Radiat. Biol, vol.49, pp.449-462, 1985.

C. Jacopin and *. , Investigation of the Interaction between 1-Hydroxyethane-1,1'-diphosphonic Acid (HEDP) and Uranium(VI), Inorg. Chem, vol.42, pp.5015-5022, 2003.

S. Marcin, Discovery of powerful uranyl ligands from efficient synthesis and screening. Chem. -A Eur, J, vol.11, pp.3689-3697, 2005.

X. Sun, In vivo behavior of copper-64-labeled methanephosphonate tetraaza macrocyclic ligands, JBIC J. Biol. Inorg. Chem, vol.8, pp.217-225, 2003.

Y. Guo, R. Ferdani, and C. J. Anderson, Preparation and Biological Evaluation of 64 Cu Labeled Tyr 3 -Octreotate Using a Phosphonic Acid-Based Cross-Bridged Macrocyclic Chelator, Bioconjug. Chem, vol.23, pp.1470-1477, 2012.

, Cu (II) complexation, 64 Cu-labeling and biological evaluation of cross-bridged cyclam chelators with phosphonate pendant arms, Synthesis

R. Gillet, A Bispidol Chelator with a Phosphonate Pendant Arm: Synthesis, Cu(II) Complexation, and64Cu Labeling, Inorg. Chem, vol.56, pp.11738-11752, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01617953

K. Nchimi-nono, Activated phosphonated trifunctional chelates for highly sensitive lanthanidebased FRET immunoassays applied to total prostate specific antigen detection, Org. Biomol. Chem, vol.11, pp.6493-501, 2013.

S. Abada, A. Lecointre, M. Elhabiri, and L. J. Charbonniè-re, Formation of very stable and selective Cu(II) complexes with a non-macrocyclic ligand: can basicity rival pre-organization?, Dalton Trans, vol.39, pp.9055-62, 2010.

L. Charbonniè-re, S. Mameri, P. Kadjane, C. Platas-iglesias, and R. Ziessel, Tuning the Coordination Sphere around Highly Luminescent Lanthanide Complexes, Inorg. Chem, vol.47, pp.3748-3762, 2008.

M. Elhabiri, Importance of outer-sphere and aggregation phenomena in the relaxation properties of phosphonated gadolinium complexes with potential applications as MRI contrast agents, Chemistry, vol.21, pp.6535-6546, 2015.

M. H. Heng-napoli, Progress and Trends in In Vivo Chelation of Uranium, Radiat. Prot. Dosimetry, vol.79, pp.449-452, 1998.

A. Ubios and E. Braun, Physics, R. C.-H. & 1994, U. Lethality due to uranium poisoning is prevented by ethane-1-hydroxy-1, 1-biphosphonate (EHBP)

H. Henge-napoli, E. Ansoborlo, V. C. , and M. , Efficacy of ethane-1-hydroxy-1, 1-bisphosphonate (EHBP) for the decorporation of uranium after intramuscular contamination in rats, Int. J. Radiat. Biol, vol.75, pp.1473-1477, 1999.

R. Racine, Study of the complexation mechanisms of neptunium in biological environment with a view to the development of an applicable therapeutics in the case of accidental incorporation, 2001.

Z. Xia and D. R. Storm, The role of calmodulin as a signal integrator for synaptic plasticity, Nature Reviews Neuroscience, vol.6, pp.267-276, 2005.

B. Weiss, W. Prozialeck, M. Cimino, M. Sellinger-barnette, and T. L. Wallace, Pharmacological Regulation of Calmodulin, Ann. N. Y. Acad. Sci, vol.356, pp.319-345, 1980.

S. J. Anthony-cahill, Molecular characterization of helix-loop-helix peptides, Science, vol.255, pp.979-136, 1992.

G. B. , Rockefeller Institute for Medical Research., H. A. & American Society for Biochemistry and Molecular Biology. The Journal of biological chemistry, Journal of Biological Chemistry, vol.111, 1935.

M. K. Al-shawi, D. Parsonage, and A. E. Senior, Thermodynamic Analyses of the Catalytic Pathway of FI-ATPase from Escherichia coli, J. Biol. Chem, vol.265, pp.4402-4410, 1990.

C. B. Klee, T. H. Crouch, P. G. Richman, and . Calmodulin, Annu. Rev. Biochem, vol.49, pp.489-515, 1980.

R. J. Williams, Calcium and calmodulin, Cell Calcium, vol.13, pp.355-362, 1992.

R. Means, S. Tash, and G. Chafouleas, Physiological Implications of the Presence, Distribution, and Regulation of Calmodulin in Eukaryotic Cells, Physiol. Rev, vol.62, pp.1-39, 1982.

C. B. Klee, T. C. Vanaman, and . Calmodulin, Adv. Protein Chem, vol.35, pp.213-321, 1982.

W. Y. Cheung, Calmodulin plays a pivotal role in cellular regulation, Science, vol.207, pp.19-27, 1980.

R. Pardoux, Modulating Uranium Binding Affinity in Engineered Calmodulin EF-Hand Peptides: Effect of Phosphorylation, PLoS One, vol.7, p.41922, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01402784

Y. Ye, H. W. Lee, W. Yang, S. Shealy, and J. J. Yang, Probing site-specific calmodulin calcium and lanthanide affinity by grafting, J. Am. Chem. Soc, vol.127, pp.3743-3750, 2005.

F. Lahrouch, Polyethyleneimine methylphosphonate: towards the design of a new class of macromolecular actinide chelating agents in the case of human exposition, Dalt. Trans, vol.46, pp.13869-13877, 2017.

S. Sauge-merle, Structural Analysis of Uranyl Complexation by the EF-Hand Motif of Calmodulin: Effect of Phosphorylation. Chem. -A Eur, J, vol.23, pp.15505-15517, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01794613

F. Brulfert, Structural Environment and Stability of the Complexes Formed between Calmodulin and Actinyl Ions, Inorg. Chem, vol.55, pp.2728-2736, 2016.
URL : https://hal.archives-ouvertes.fr/in2p3-01342305

O. Pible, C. Vidaud, S. Plantevin, and J. L. Pellequer, Qué mé neur, E. Predicting the disruption by UO2 2+ of a protein-ligand interaction, Protein Sci, vol.19, pp.2219-2230, 2010.

G. Montavon, C. Apostolidis, F. Bruchertseifer, U. Repinc, and A. Morgenstern, Spectroscopic study of the interaction of U(VI) with transferrin and albumin for speciation of U(VI) under blood serum conditions, J. Inorg. Biochem, vol.103, pp.1609-1616, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00450893

C. Y. Wang and L. Huang, Polyhistidine Mediates an Acid-Dependent Fusion of Negatively Charged Liposomes, Biochemistry, vol.23, pp.4409-4416, 1984.

O. Nemirovskiy, D. E. Giblin, and M. L. Gross, Electrospray ionization mass spectrometry and hydrogen/deuterium exchange for probing the interaction of calmodulin with calcium, J. Am. Soc. Mass Spectrom, vol.10, pp.711-718, 1999.

P. A. Seeger, Neutron Resonance Scattering Shows Specific Binding of Plutonium to the CalciumBinding Sites of the Protein Calmodulin and Yields Precise Distance Information, 1997.

O. Pible, C. Vidaud, S. Plantevin, and J. L. Pellequer, Qué mé neur, E. Predicting the disruption by UO22+ of a protein-ligand interaction, Protein Sci, vol.19, pp.2219-2230, 2010.

C. Vidaud, D. Bourgeois, and D. Meyer, Bone as target organ for metals: The case of f-elements, Chemical Research in Toxicology, vol.25, pp.1161-1175, 2012.

Y. Y. Song, Biological effects of rare earth protein complexes: influence of lanthanide ions Eu3+, Tb3+ on secondary structure of calmodulins, Biospectroscopy, vol.5, pp.371-378, 1999.

E. R. Caley, The Earliest Known Use of a Material Containing Uranium, Isis, vol.38, pp.190-193, 1948.

F. Dioury, C. Ferroud, A. Guy, and M. Port, Synthesis of an hexadentate tricyclic tetraazadiacetic ligand as precursor for MRI contrast enhancement agents, Tetrahedron, vol.65, pp.7573-7579, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01514590

J. Galezowska and E. Gumienna-kontecka, Phosphonates, their complexes and bio-applications: A spectrum of surprising diversity, Coord. Chem. Rev, vol.256, pp.105-124, 2012.

J. Ga?ezowska, N'-tetrakis(methylenephosphonic acid) towards lanthanide(III) ions. Dalton Trans, pp.4384-94, 2006.

A. D. Sherry, W. P. Cacheris, and K. T. Kuan, Stability constants for Gd3+ binding to model DTPAconjugates and DTPA-proteins: implications for their use as magnetic resonance contrast agents, Magn. Reson. Med, vol.8, pp.180-90, 1988.

F. Rojas-quijano, Lanthanide(III) complexes of tris(amide) PCTA derivatives as potential bimodal magnetic resonance and optical imaging agents, Chemistry, vol.15, pp.13188-13200, 2009.

H. Scheytza, O. Rademacher, and H. Reißig, Synthesis and Structures of Novel Pyridine-Bridged Phanes of 4,4?-Bipyridine, European J. Org. Chem, pp.2373-2381, 1999.

V. Bj?rnstad and K. Undheim, Cyclic Ketones in Spiroannulation, Synth. Commun, vol.39, pp.1793-1800, 2009.

H. Zhang, X. Wen, L. Gan, and Y. Peng, Highly Efficient Asymmetric Mannich Reaction of Dialkyl ?-Diazomethylphosphonates with N-Carbamoyl Imines Catalyzed by Chiral Brønsted Acids, Org. Lett, vol.14, pp.2126-2129, 2012.

A. Makhloufi, W. Frank, and C. Ganter, Diamino-and Mixed Amino-Amido-N-Heterocyclic Carbenes Based on Triazine Backbones, Organometallics, vol.31, 2001.

C. L. Aboussafy and D. L. Clive, A Dieckmann Cyclization Route to Piperazine-2,5-diones, J. Org. Chem, vol.77, pp.5125-5131, 2012.

B. Perlmutter-hayman, Cooperative Binding to Macromolecules. A Formal Approach, Acc. Chem. Res, vol.19, pp.90-96, 1986.

. Ischikawa, Structure and NMR behavior complex Co with aminophosphonate, 1997.

T. Ichikawa and K. Sawada, Protonation Behavior and Intramolecular Interactions of ?,?-Alkanediaminepolymethylenepolyphosphonates, Bulletin of the Chemical Society of Japan, vol.70, pp.829-835, 1997.

I. Union, IUPAC Technical Report ) Critical evaluation of stability constants of phosphonic acids, vol.73, pp.1641-1677, 2001.

I. Luke?, J. Kotek, P. Vojtí?ek, and P. Hermann, Complexes of tetraazacycles bearing methylphosphinic/phosphonic acid pendant arms with copper(II), zinc(II) and lanthanides(III). A comparison with their acetic acid analogues, Coord. Chem. Rev, pp.287-312, 2001.

L. Pellegatti, Pyridine-based lanthanide complexes: towards bimodal agents operating as near infrared luminescent and MRI reporters, Chem. Commun, p.6591, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00518202

G. V. Polyanchuk, L. M. Shkol'nikova, M. V. Rudomino, N. M. Dyatlova, and S. S. Makarevich, Xray diffraction structural analysis of organic complexone ligands, J. Struct. Chem, vol.26, pp.586-594, 1986.

M. Wozniak and G. Nowogrocki, Acidites et complexes des acides (alkyl-et aminoalkyl-) phosphoniques-IV Acides aminoalkylphosphoniques R1R2N(CH2)nCR3R4PO3H2, Talanta, vol.26, pp.1135-1141, 1979.

T. Kiss, E. Farkas, and H. Kozo?-wski, Complexes of aminophosphonates. II. Transition metal complexes of aminophosphonic acid analogues of aspartic acid and glutamic acid, Inorganica Chim. Acta, vol.155, pp.281-287, 1989.

K. P. Guerra, R. Delgado, L. M. Lima, and M. G. Drew, & Fé lix, V. Bis-and tris-(methylphosphonic) acid derivatives of a 14-membered tetraazamacrocycle containing pyridine: synthesis, protonation and complexation studies, Dalt. Trans, vol.0, pp.1812-1822, 2004.

L. Alderighi, Hyperquad simulation and speciation (HySS): A utility program for the investigation of equilibria involving soluble and partially soluble species, Coord. Chem. Rev, vol.184, pp.311-318, 1999.

P. Gans, A. Sabatini, and A. Vacca, Determination of equilibrium constants from spectrophometric data obtained from solutions of known pH: The program pHab, Annali di Chimica, vol.89, pp.45-49, 1999.

P. Gans, A. Sabatini, and A. Vacca, Investigation of equilibria in solution. Determination of equilibrium constants with the HYPERQUAD suite of programs, Talanta, vol.43, pp.1739-1753, 1996.

B. Drobot, Combining luminescence spectroscopy, parallel factor analysis and quantum chemistry to reveal metal speciation -a case study of uranyl( vi ) hydrolysis, Chem. Sci, vol.6, pp.964-972, 2015.

G. Bidoglio, I. Grenthe, and V. Eliet, Time-Resolved Laser-Induced Fluorescence of Uranium(VI) Hydroxo-Complexes at Different Temperatures, Appl. Spectrosc, vol.54, issue.1, pp.99-105, 2000.

V. Eliet, G. Bidoglio, N. Omenetto, L. Parma, and I. Grenthe, Characterisation of hydroxide complexes of uranium(VI) by time-resolved fluorescence spectroscopy, J. Chem. Soc. Faraday Trans, vol.91, p.2275, 1995.

C. Tondre, C. Moulin, I. Laszak, and V. Moulin, Time-Resolved Laser-Induced Fluorescence as a Unique Tool for Low-Level Uranium Speciation, Appl. Spectrosc, vol.52, pp.528-535, 1998.

C. Moulin, P. P. Decambox, V. Moulin, and J. G. Decaillon, Uranium Speciation in Solution by TimeResolved Laser-Induced Fluorescence, Anal. Chem. J. Complexation React. Aquat. Syst. Appl. Geochem. Acta Mikrochim. Acta, vol.67, pp.348-353, 1995.

P. L. Arnold, M. W. Mcmullon, J. Rieb, F. E. Kühn, and C. Bond,

. Angew, Chemie -Int, vol.54, pp.82-100, 2015.

J. T. Bell and R. E. Biggers, The absorption spectrum of the uranyl ion in perchlorate media: Part I. Mathematical resolution of the Overlapping band structure and studies of the environmental effects, J. Mol. Spectrosc, vol.18, pp.247-275, 1965.

A. Bakac and J. H. Espenson, Catalysis and Inhibition by Copper Ions, Inorg. Chem, vol.34, pp.1730-1735, 1995.

W. Wang, A. Bakac, and J. H. Espenson, Oxidation and Reduction Reactions of Hydroperoxo Cobalt Macrocycles, Inorg. Chem, vol.34, pp.4049-4056, 1995.

Y. Mao and A. Bakac, Photocatalytic Oxidation of Toluene to Benzaldehyde by Molecular Oxygen, J. Phys. Chem, vol.100, pp.4219-4223, 1996.

W. Wang, A. Bakac, and J. H. Espenson, Uranium(VI)-Catalyzed Photooxidation of Hydrocarbons with Molecular Oxygen, Inorg. Chem, vol.34, pp.6034-6039, 1995.

Y. Mao and A. Bakac, Photocatalytic Oxidation of Aromatic Hydrocarbons, Inorg. Chem, vol.35, pp.3925-3930, 1996.

D. M. King, Synthesis and structure of a terminal uranium nitride complex. Science (80-. ), vol.337, pp.717-720, 2012.

D. M. King, Isolation and characterization of a uranium(VI)-nitride triple bond, Nat. Chem, vol.5, pp.482-488, 2013.

L. S. Natrajan, Developments in the photophysics and photochemistry of actinide ions and their coordination compounds, Coordination Chemistry Reviews, vol.256, pp.1583-1603, 2012.

H. D. Burrows, T. J. Kemp, and T. J. Burrows, The Photochemistry of the Uranyl Ion, Chem. Soc. Rev, vol.3, pp.139-165, 1974.

M. S. Sidhu, R. J. Singh, P. Sarkaria, and S. S. Sandhu, Effect of aromatic molecules on the photochemical reduction of the uranyl ion with triphenylphosphine, J. Photochem. Photobiol. A Chem, vol.46, pp.221-226, 1989.

R. Matsushima, Mechanism of Quenching of the Uranyl Fluorescence by Organic Compounds, J. Am. Chem. Soc, vol.94, pp.6010-6016, 1972.

V. Balzani, F. Bouetta, and M. T. Gandolfi, Bimolecular Electron Transfer Reactions of the Excited States of Transition Metal Complexes, Org. Chem. Theory, vol.1, p.64, 1978.

Y. Yokoyama, M. Moriyasu, and S. Ikeda, Electron transfer mechanism in quenching of uranyl luminescence by halide ions, J. Inorg. Nucl. Chem, vol.38, pp.1329-1333, 1976.

H. D. Burrows and J. D. De-jesus, A flash photolytic study of the photo-oxidation of some inorganic anions by the uranyl ion, J. Photochem, vol.5, pp.265-275, 1976.

H. D. Burrows, S. J. Formosinho, G. M. Da, and C. F. Pinto, Quenching of the luminescent state of the uranyl ion by metal ions. Evidence for an electron transfer mechanism, J. Chem. Soc., Faraday Trans. 1, vol.72, pp.163-171, 1976.

G. I. Romanovskaya, L. S. Atabekyan, and A. K. Chibisov, Role of the complexation of uranyl ions in a photochemical electron-transfer reaction, Theor. Exp. Chem, vol.17, pp.221-225, 1981.

S. Sakuraba and R. Matsushima, Photochemical Reactions of Uranyl Ions with Organic Compounds. I. The Mechanism of the Uranyl Ion-Photosensitized Oxidation of Lactic Acid, Bull. Chem. Soc. Jpn, vol.43, pp.1950-1955, 1970.

D. Roundhill, Photochemistry and Photophysics of Metal Complexes, vol.303, 1994.

H. D. Burrows and T. J. Kemp, The Photochemistry of the Uranyl Ion, Chem. Soc. Rev, vol.3, pp.139-165, 1974.

D. P. Rehorek and . Systeme, XIV. über den Mechanismus der Photooxydation von Alkoholen mittels Uranylnitrat, Zeitschrift für Anorg. und Allg. Chemie, vol.443, pp.255-264, 1978.

Y. Mao and A. Bakac, Uranyl-sensitized photochemical oxidation of naphthalene by molecular oxygen. Role of electron transfer, J. Phys. Chem. A, vol.101, pp.7929-7933, 1997.

I. V. Khudyakov and A. L. Buchachenko, Unusual Uranium Isotope Effect Induced by Photolysis of Uranyl Salts in Micelles, Mendeleev Commun, vol.3, pp.135-136, 1993.

H. D. Burrows, The photochemical reaction between uranyl nitrate and azulene, J. Photochem. Photobiol. A Chem, vol.68, pp.279-287, 1992.

R. Billing, G. V. Zakharova, L. S. Atabekyan, and H. Hennig, Luminescence quenching of *[UO2F4]2? in aqueous solutions by anions, J. Photochem. Photobiol. A Chem, vol.59, pp.163-174, 1991.

H. D. Burrows, Electron transfer from halide ions to uranyl(2+) excited-state ions in aqueous solution: formation and decay of dihalide radical anions, Inorg. Chem, vol.29, pp.1549-1554, 1990.

A. L. Buchachenko and I. V. Khudyakov, The photochemistry of uranyl: spin selectivity and magnetic effects, Russ. Chem. Rev, vol.60, pp.555-567, 1991.

T. Rosenfeld-gruenwald and J. Rabani, Quantum yield and electron-transfer reaction of the lowest excited state of uranyl ion, J. Phys. Chem, vol.84, pp.2981-2985, 1980.

M. D. Marcantonatos, Dual luminescence of uranyl and self-quenching in aqueous acidic solution, Inorganica Chim. Acta, vol.26, pp.41-46, 1978.

G. I. Sergeeva, A. K. Chibisov, L. V. Levshin, and A. V. Karyakin, A flash photolysis study of photochemical reactions of uranyl ions, J. Photochem, vol.5, pp.253-264, 1976.

J. L. Ryan and C. K. Jørgensen, Electron transfer and 5f?6f transitions in uranium(iv), neptunium(iv), plutonium(iv) hexahalides, Mol. Phys, vol.7, pp.17-29, 1964.

J. K. Wan, E. A. Schuck, J. K. Foote, and J. N. , the Formation of Tributyliodoammonium Iodide I N the Uranyl Photosensitized Reaction With Tetrabutylammonium Iodide, J. Pet. Technol

, SAGE. Ind. Eng. Chern. M. v. Sta~kelb. H. R. MULLER. Z. Elektrochern, vol.4, pp.1734-1759, 1964.

D. Golub, H. Cohen, and D. Meyerstein, Kinetics and mechanism of single electron oxidations of the tervalent uranium ion, U3+(aq), by free radicals in aqueous solutions, J. Chem. Soc. Dalt. Trans, vol.0, pp.641-644, 1985.

H. Cohen, A. Slama-schwok, J. Rabani, R. J. Watts, and D. Meyerstein, Trication in Aqueous Solutions: A Pulse Radiolytic Study, J. Phys. Chem, vol.89, pp.2465-2467, 1985.

, Journal of inorganic and nuclear chemistry

P. Neta, R. E. Huie, and A. B. Ross, Rate Constants for Reactions of Inorganic Radicals in Aqueous Solution, J. Phys. Chem. Ref. Data, vol.17, pp.1027-1284, 1988.

C. Lierse, J. C. Sullivan, and K. H. Schmidt5, Contribution from the Rates of Oxidation of Selected Actinides by Cl2, Inorg. Chem, vol.26, pp.1408-1410, 1987.

G. Geipel, Some aspects of actinide speciation by laser-induced spectroscopy, Coord. Chem. Rev, vol.250, pp.844-854, 2006.

G. Bernhard, Uranyl(VI) carbonate complex formation: Validation of the Ca2UO2(CO3)3(aq.) species, Radiochim. Acta, vol.89, pp.511-518, 2001.

G. Bernhard, G. Geipel, V. Brendler, and H. Nitsche, Uranium speciation in waters of different uranium mining areas, J. Alloys Compd, pp.201-205, 1998.

M. I. Tejedor-tejedor and M. A. Anderson, Protonation of Phosphate on the Surface of Goethite As Studied by CIR-FTIR and Electrophoretic Mobility, Langmuir, vol.6, pp.602-611, 1990.

W. Jiang and *. , Elucidation of Functional Groups on Gram-Positive and Gram-Negative Bacterial Surfaces Using Infrared Spectroscopy, 2004.

J. G. Catalano and G. E. Brown, Analysis of uranyl-bearing phases by EXAFS spectroscopy: Interferences, multiple scattering, accuracy of structural parameters, and spectral differences, Am. Mineral, vol.89, pp.1004-1021, 2004.

H. A. Thompson, G. E. Brown, G. A. Parks, G. E. Brown, and G. A. Parks, XAFS spectroscopic study of uranyl coordination in solids and aqueous solution, Am. Mineral, vol.82, pp.483-496, 1997.

S. Sauge-merle, Structural Analysis of Uranyl Complexation by the EF-Hand Motif of Calmodulin: Effect of Phosphorylation. Chem. -A Eur, J, vol.23, pp.15505-15517, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01794613

M. L. Merroun, Complexation of uranium by cells and S-layer sheets of Bacillus sphaericus JG-A12, Appl. Environ. Microbiol, vol.71, pp.5532-5575, 2005.

E. Migianu-griffoni, Design and synthesis of new polyphosphorylated upper-rim modified calix[4]arenes as potential and selective chelating agents of uranyl ion, Tetrahedron, vol.65, pp.1517-1523, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00416636

O. Braun, C. Contino, E. Ansoborlo, and B. Pucci, Original articles Development of an in vitro test for screening of chelators of uranium, Analusis, vol.27, pp.65-68, 1999.

L. Wang, A biocompatible method of decorporation: Bisphosphonate-modified magnetite nanoparticles to remove uranyl ions from blood, J. Am. Chem. Soc, vol.128, pp.13358-13359, 2006.

A. Leydier, Sequestering agents for uranyl chelation: new calixarene ligands, Tetrahedron, vol.64, pp.11319-11324, 2008.

F. Brulfert, thesis Mécanisme d'interaction des actinides avec une protéine : la calmoduline, 2016.

F. Brulfert, Enzymatic activity of the CaM-PDE1 system upon addition of actinyl ions, J. Inorg. Biochem, vol.172, pp.46-54, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01561171

W. R. Harris, C. J. Carrano, and K. N. Raymond, Spectrophotometric determination of the protondependent stability constant of ferric enterobactin, J. Am. Chem. Soc, vol.101, pp.2213-2214, 1979.

P. Fitzsimmons and S. J. Acta, -I. chimica & 1996, undefined. Helical hexaazamacrocyclic ligands containing pyridyl and (+ or?)-trans-diaminocyclohexyl groups: effect of ligand constraints upon metal ion binding

A. Beeby, Non-radiative deactivation of the excited states of europium, terbium and ytterbium complexes by proximate energy-matched OH, NH and CH oscillators: an improved luminescence method for establishing solution hydration states, J. Chem. Soc. Perkin Trans, vol.2, issue.0, pp.493-504, 1999.

S. L. Suib, R. P. Zerger, G. D. Stucky, T. I. Morrison, and G. K. Shenoy, The coordination environment of Eu(III) ions in hydrated A and Y zeolites as determined by luminescence lifetime and EXAFS measurements, J. Chem. Phys, vol.80, pp.2203-2207, 1984.

S. Safi, Thermodynamic and Structural Investigation of Synthetic Actinide-Peptide Scaffolds, Inorg. Chem, vol.55, pp.877-886, 2016.
URL : https://hal.archives-ouvertes.fr/in2p3-01298558

W. Runde, C. Pelt, . Van, P. A. Compounds, and A. .-j.-of, undefined. Spectroscopic characterization of trivalent f-element, 2000.

L. Patiny and A. Borel, ChemCalc: A building block for tomorrow's chemical infrastructure, J. Chem. Inf. Model, vol.53, pp.1223-1228, 2013.

L. J. Boucher, Advanced Inorganic Chemistry

, J. Chem. Educ, vol.66, p.104, 1989.

R. G. Pearson, Hard and soft acids and bases, HSAB, part 1: Fundamental principles, J. Chem. Educ, vol.45, p.581, 1968.

R. G. Pearson, Hard and soft acids and bases, HSAB, part II: Underlying theories, J. Chem. Educ, vol.45, p.643, 1968.

P. Gans, Data fitting in the chemical sciences, 1992.

M. Quaranta, S. M. Borisov, and I. Klimant, Indicators for optical oxygen sensors, Bioanal. Rev, vol.4, pp.115-157, 2012.

J. Bünzli, The europium(III) ion as spectroscopic probe in bioinorganic chemistry, Inorganica Chim. Acta, vol.139, pp.219-222, 1987.

, Selon ces modes de contamination, la voie biologique des actinides sera diffé rente. Il existe quatre voies d'entré e principales et quatre voies d'excré tion des actinides dans l'organisme. Principales voies d'entré e : inhalation, ingestion, blessure et peau. Ce projet de thè se est une é tude pré liminaire sur les ligands polyaminophosphonates, une sé rie de ligands conç us pour les agents de contraste IRM et SPECT, pour ché later les actinides qui se dé posent dans les organes cibles afin d'augmenter leur excré tion. Ce travail de doctorat s'est concentré sur la synthè se de ligands polyaminophosphonates et sur l'é tude de la structure et de l'affinité de la forme complexe avec l'uranium(VI) et l'europium(III) comme analogue de l'amé ricium/curium(III). La sphè re de coordination de ces cations a é té observé e par spectroscopie UV-visible, TRLFS, FT-IR et EXAFS (Extended X-Ray Absorption Fine Structure). L'é tude d'affinité a é té ré alisé e par spectroscopie UV-visible et dans le cas des complexes europium, une mesure potentiomé trique a é té é galement ré alisé e. Enfin, la spectroscopie UV-visible et le TRLFS ont é té utilisé es pour tester d'une part la stabilité du complexe de ligand uranyle avec certains ions mé talliques dans des conditions biologiques et d'autre part pour ré vé ler l'interaction entre le systè me ternaire, ion uranyle/ligand/calmoduline. Ce projet s'est dé roulé comme suit : -Synthé tiser des ligands polyaminophosphonates capables de complexer l'uranium (VI) et l'europium (III) dans un milieu biologique, soulè vent des questions socié tales et environnementales en raison du risque de pollution et de contamination humaine. Par consé quent, la né cessité de comprendre les comportements des actinides chez l'homme est essentielle pour é lucider leurs mé canismes de toxicité . Dans ce cas, la demande d'agents thé rapeutiques ché lateurs de l'actinide est é galement urgente

, Les ligands organiques monophosphonates protoné s limitent l'affinité de complexation de l'uranyle à faible concentration. L'effet sté rique de deux groupes benzyle de L 3 pourrait limiter la liberté de coordination avec l'uranyle. Pour le complexe uranyle-ligand 1:1, les environnements de l'ion uranyle sont les mê mes pour les deux ligands, L 3 et L 4 . La coordination se compose de deux atomes d'oxygè ne provenant de groupes phosphonates monodenté s, d'un atome d'azote provenant du groupe pyridine et de deux atomes d'azote provenant des parties amine. A pH 7,4, les deux voies de dé gradation sont minimisé es par la mesure par le complexe uranylligand non-fluorescent. Pour les deux ligands, l'ion uranyle est directement complexé avec le ligand. Il n'y a qu'une seule espè ce dans toute l'é tude. Les ligands organiques phosphonates dé protoné s sont plus faciles à complexation avec l'ion uranyle. L'environnement de coordination du complexe uranyle-ligand peut ê tre le mê me selon la proprié té de non-fluorescence, L'é tude du complexe uranyle-L 4 se dé roule en deux é tapes à pH 3 : il s'agit principalement d'un partie poche

, Une comparaison a é té effectué e avec le 5-LICAMS et le 3,4,3-LI(1,2-HOPO), qui sont des ligands bien connus et qui pré sentent des capacité s d'é limination de l'uranyle in vivo. Les constantes de complexité sont 17 pour le 5-LICAMS et 16, Les constantes de complexation des ligands (Kconcd) sont 17,08 pour L 2 et 15,2 pour L 3 à pH 7,4, vol.87, p.2

, Eu(III) a é té utilisé comme analogue chimique pour effectuer les é tudes, Étude thermodynamique de l'europium avec des ligands polyaminophosphonates En raison de l'activité massique é levé e de l'Am/Cm(III), p.1

. Naclo4, En raison de l'hydrogè ne sur les parties amines, l'ion Eu(III) est complexé avec des groupes phosphonate de ligand à faible pH, tandis qu'à pH é levé , l'ion Eu(III) est situé dans la partie interne du ligand en raison de la diminution de la concentration en hydrogè ne, Une combinaison similaire du spectre d'absorption UV-Vis et de l'é tude TRLFS a é té ré alisé e