L. S. Shankman, KLF4-dependent phenotypic modulation of smooth muscle cells has a key role in atherosclerotic plaque pathogenesis, Nat. Med, vol.21, pp.628-637, 2015.

N. Defer, M. Best-belpomme, and J. Hanoune, Tissue specificity and physiological relevance of various isoforms of adenylyl cyclase, Am. J. Physiol. Renal Physiol, vol.279, pp.400-416, 2000.

R. K. Sunahara, C. W. Dessauer, and A. G. Gilman, Complexity and diversity of mammalian adenylyl cyclases, Annu. Rev. Pharmacol. Toxicol, vol.36, pp.461-480, 1996.

A. Marjamaki, Factors determining the specificity of signal transduction by guanine nucleotide-binding protein-coupled receptors. Integration of stimulatory and inhibitory input to the effector adenylyl cyclase, J. Biol. Chem, vol.272, pp.16466-16473, 1997.

J. G. Webb, P. W. Yates, Q. Yang, Y. V. Mukhin, and S. M. Lanier, Adenylyl cyclase isoforms and signal integration in models of vascular smooth muscle cells, Am. J. Physiol. Heart Circ. Physiol, vol.281, pp.1545-1552, 2001.

R. Gros, Adenylyl cyclase isoform-selective regulation of vascular smooth muscle proliferation and cytoskeletal reorganization, Circ. Res, vol.99, pp.845-852, 2006.

U. Yokoyama, Differential regulation of vascular tone and remodeling via stimulation of type 2 and type 6 adenylyl cyclases in the ductus arteriosus, Circ. Res, vol.106, pp.1882-1892, 2010.

N. Clément, M. Glorian, M. Raymondjean, M. Andréani, and I. Limon, PGE2 amplifies the effects of IL-1beta on vascular smooth muscle cell de-differentiation: a consequence of the versatility of PGE2 receptors 3 due to the emerging expression of adenylyl cyclase 8, J. Cell. Physiol, vol.208, pp.495-505, 2006.

Z. Keuylian, The Notch pathway attenuates interleukin 1? (IL1?)-mediated induction of adenylyl cyclase 8 (AC8) expression during vascular smooth muscle cell (VSMC) trans-differentiation, J. Biol. Chem, vol.287, pp.24978-24989, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01545434

R. S. Ostrom, Localization of adenylyl cyclase isoforms and G protein-coupled receptors in vascular smooth muscle cells: expression in caveolin-rich and noncaveolin domains, Mol. Pharmacol, vol.62, pp.983-992, 2002.

M. Gueguen, B. Vallin, M. Glorian, R. Blaise, and I. Limon, Adénylyl cyclases et transdifférenciation des cellules musculaires lisses vasculaires$: rôle dans le remodelage vasculaire pathologique, Biol. Aujourdhui, vol.210, pp.153-166, 2016.

M. Gueguen, Implication of adenylyl cyclase 8 in pathological smooth muscle cell migration occurring in rat and human vascular remodelling, J. Pathol, vol.221, pp.331-342, 2010.

J. S. Mckean, The cAMP-producing agonist beraprost inhibits human vascular smooth muscle cell migration via exchange protein directly activated by cAMP, Cardiovasc. Res, vol.107, pp.546-555, 2015.

R. C. Hewer, G. B. Sala-newby, Y. Wu, A. C. Newby, and M. Bond, PKA and Epac synergistically inhibit smooth muscle cell proliferation, J. Mol. Cell. Cardiol, vol.50, pp.87-98, 2011.

A. Chatterjee, The pro-resolving lipid mediator maresin 1 (MaR1) attenuates inflammatory signaling pathways in vascular smooth muscle and endothelial cells, PloS One, vol.9, p.113480, 2014.

C. Indolfi, 8-chloro-cAMP inhibits smooth muscle cell proliferation in vitro and neointima formation induced by balloon injury in vivo, J. Am. Coll. Cardiol, vol.36, pp.288-293, 2000.

C. Aalkjaer, A. M. Heagerty, K. K. Petersen, J. D. Swales, and M. J. Mulvany, Evidence for increased media thickness, increased neuronal amine uptake, and depressed excitation--contraction coupling in isolated resistance vessels from essential hypertensives, Circ. Res, vol.61, pp.181-186, 1987.

N. Ahuja, P. Kumar, and R. Bhatnagar, The adenylate cyclase toxins, Crit. Rev. Microbiol, vol.30, pp.187-196, 2004.

M. Aikawa, P. N. Sivam, M. Kuro-o, K. Kimura, K. Nakahara et al., Human smooth muscle myosin heavy chain isoforms as molecular markers for vascular development and atherosclerosis, Circ. Res, vol.73, pp.1000-1012, 1993.

A. A. Alousi, J. R. Jasper, P. A. Insel, and H. J. Motulsky, Stoichiometry of receptor-Gs-adenylate cyclase interactions, FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol, vol.5, pp.2300-2303, 1991.

F. A. Antoni, M. Palkovits, J. Simpson, S. M. Smith, A. L. Leitch et al.,

, Ca2+/calcineurin-inhibited adenylyl cyclase, highly abundant in forebrain regions, is important for learning and memory, J. Neurosci. Off. J. Soc. Neurosci, vol.18, pp.9650-9661

F. A. Antoni, U. K. Wiegand, J. Black, and J. Simpson, Cellular localisation of adenylyl cyclase: a postgenome perspective, Neurochem. Res, vol.31, pp.287-295, 2006.

V. Antonio, A. Brouillet, B. Janvier, C. Monne, G. Bereziat et al., Transcriptional regulation of the rat type IIA phospholipase A2 gene by cAMP and interleukin-1beta in vascular smooth muscle cells: interplay of the CCAAT/enhancer binding protein (C/EBP), nuclear factor-kappaB and Ets transcription factors, Biochem. J, vol.368, pp.415-424, 2002.

B. K. Atwood, J. Lopez, J. Wager-miller, K. Mackie, and A. Straiker, Expression of G protein-coupled receptors and related proteins in HEK293, AtT20, BV2, and N18 cell lines as revealed by microarray analysis, BMC Genomics, vol.12, p.14, 2011.

G. D. Aurbach, Polypeptide and amine hormone regulation of adenylate cyclase, Annu. Rev. Physiol, vol.44, pp.653-666, 1982.

T. Avidor-reiss, I. Nevo, D. Saya, M. Bayewitch, and Z. Vogel, Opiate-induced adenylyl cyclase superactivation is isozyme-specific, J. Biol. Chem, vol.272, pp.5040-5047, 1997.

L. J. Ayling, S. J. Briddon, M. L. Halls, G. R. Hammond, L. Vaca et al.,

, Adenylyl cyclase AC8 directly controls its micro-environment by recruiting the actin cytoskeleton in a cholesterol-rich milieu, J. Cell Sci, vol.125, pp.869-886

G. J. Babu, D. M. Warshaw, and M. Periasamy, Smooth muscle myosin heavy chain isoforms and their role in muscle physiology, Microsc. Res. Tech, vol.50, pp.532-540, 2000.

G. S. Baillie, S. J. Mackenzie, I. Mcphee, and M. D. Houslay, Sub-family selective actions in the ability of Erk2 MAP kinase to phosphorylate and regulate the activity of PDE4 cyclic AMP-specific phosphodiesterases, Br. J. Pharmacol, vol.131, pp.811-819, 2000.

H. A. Bakalyar and R. R. Reed, Identification of a specialized adenylyl cyclase that may mediate odorant detection, Science, vol.250, pp.1403-1406, 1990.

M. Bakehe, Système Cardiovasculaire I (Xlibris Corporation), 2013.

L. P. Baker, M. D. Nielsen, S. Impey, M. A. Metcalf, S. W. Poser et al., Stimulation of type 1 and type 8 Ca2+/calmodulin-sensitive adenylyl cyclases by the Gscoupled 5-hydroxytryptamine subtype 5-HT7A receptor, J. Biol. Chem, vol.273, pp.17469-17476, 1998.

A. Baragli, M. Grieco, P. Trieu, L. R. Villeneuve, and T. E. Hébert, Heterodimers of adenylyl cyclases 2 and 5 show enhanced functional responses in the presence of Galpha s, Cell. Signal, vol.20, pp.480-492, 2008.

A. L. Bauman, J. Soughayer, B. T. Nguyen, D. Willoughby, G. K. Carnegie et al., Dynamic regulation of cAMP synthesis through anchored PKA-adenylyl cyclase V/VI complexes, Mol. Cell, vol.23, pp.925-931, 2006.

P. K. Bautista-niño, M. Durik, A. H. Danser, R. De-vries, U. M. Musterd-bhaggoe et al., Phosphodiesterase 1 regulation is a key mechanism in vascular aging, Clin. Sci. Lond. Engl, vol.129, pp.1061-1075, 1979.

J. A. Beavo, Cyclic nucleotide phosphodiesterases: functional implications of multiple isoforms, Physiol. Rev, vol.75, pp.725-748, 1995.

M. A. Beazely and V. J. Watts, Regulatory properties of adenylate cyclases type 5 and 6: A progress report, Eur. J. Pharmacol, vol.535, pp.1-12, 2006.

M. A. Beazely, J. K. Alan, and V. J. Watts, Protein kinase C and epidermal growth factor stimulation of Raf1 potentiates adenylyl cyclase type 6 activation in intact cells, Mol. Pharmacol, vol.67, pp.250-259, 2005.

M. F. Beers, M. Zhao, Y. Tomer, S. J. Russo, P. Zhang et al., Disruption of N-linked glycosylation promotes proteasomal degradation of the human ATP-binding cassette transporter ABCA3, Am. J. Physiol. Lung Cell. Mol. Physiol, vol.305, pp.970-980, 2013.

N. Begum, S. Hockman, and V. C. Manganiello, Phosphodiesterase 3A (PDE3A) deletion suppresses proliferation of cultured murine vascular smooth muscle cells (VSMCs) via inhibition of mitogen-activated protein kinase (MAPK) signaling and alterations in critical cell cycle regulatory proteins, J. Biol. Chem, vol.286, pp.26238-26249, 2011.

B. A. Bernard, K. M. Yamada, and K. Olden, Carbohydrates selectively protect a specific domain of fibronectin against proteases, J. Biol. Chem, vol.257, pp.8549-8554, 1982.

B. Bhargava, G. Karthikeyan, A. S. Abizaid, and R. Mehran, New approaches to preventing restenosis, BMJ, vol.327, pp.274-279, 2003.

G. P. Bhide and K. J. Colley, Sialylation of N-glycans: mechanism, cellular compartmentalization and function, Histochem. Cell Biol, vol.147, pp.149-174, 2017.

E. Bibi, S. M. Stearns, and H. R. Kaback, The N-terminal 22 amino acid residues in the lactose permease of Escherichia coli are not obligatory for membrane insertion or transport activity, Proc. Natl. Acad. Sci. U. S. A, vol.89, pp.3180-3184, 1992.

M. Biel, X. Zong, M. Distler, E. Bosse, N. Klugbauer et al., , 1994.

, Another member of the cyclic nucleotide-gated channel family, expressed in testis, kidney, and heart, Proc. Natl. Acad. Sci. U. S. A, vol.91, pp.3505-3509

L. Birnbaumer, J. Abramowitz, and A. M. Brown, Receptor-effector coupling by G proteins, Biochim. Biophys. Acta, vol.1031, pp.163-224, 1990.

K. G. Birukov, N. Bardy, S. Lehoux, R. Merval, V. P. Shirinsky et al., Intraluminal pressure is essential for the maintenance of smooth muscle caldesmon and filamin content in aortic organ culture, Arterioscler. Thromb. Vasc. Biol, vol.18, pp.922-927, 1998.

J. M. Bisaillon, R. K. Motiani, J. C. Gonzalez-cobos, M. Potier, K. E. Halligan et al., Essential role for STIM1/Orai1-mediated calcium influx in PDGF-induced smooth muscle migration, Am. J. Physiol. Cell Physiol, vol.298, pp.993-1005, 2010.

D. J. Black, Q. Tran, and A. Persechini, Monitoring the total available calmodulin concentration in intact cells over the physiological range in free Ca2+, Cell Calcium, vol.35, pp.415-425, 2004.

A. Blanc, N. R. Pandey, and A. K. Srivastava, Synchronous activation of ERK 1/2, p38mapk and PKB/Akt signaling by H2O2 in vascular smooth muscle cells: potential involvement in vascular disease (review), Int. J. Mol. Med, vol.11, pp.229-234, 2003.

L. A. Blatter and W. G. Wier, Agonist-induced [Ca2+]i waves and Ca(2+)-induced Ca2+ release in mammalian vascular smooth muscle cells, Am. J. Physiol, vol.263, pp.576-586, 1992.

K. Blirando, R. Blaise, N. Gorodnaya, C. Rouxel, O. Meilhac et al., The stellate vascular smooth muscle cell phenotype is induced by IL-1? via the secretion of PGE2 and subsequent cAMPdependent protein kinase A activation, Biochim. Biophys. Acta, vol.1853, pp.3235-3247, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01217160

A. S. Bogard, P. Adris, and R. S. Ostrom, Adenylyl cyclase 2 selectively couples to E prostanoid type 2 receptors, whereas adenylyl cyclase 3 is not receptor-regulated in airway smooth muscle, J. Pharmacol. Exp. Ther, vol.342, pp.586-595, 2012.

M. Bogdanov, P. N. Heacock, and W. Dowhan, A polytopic membrane protein displays a reversible topology dependent on membrane lipid composition, EMBO J, vol.21, pp.2107-2116, 2002.

M. Bogdanov, J. Xie, P. Heacock, and W. Dowhan, To flip or not to flip: lipid-protein charge interactions are a determinant of final membrane protein topology, J. Cell Biol, vol.182, pp.925-935, 2008.

M. Bogdanov, W. Dowhan, and H. Vitrac, Lipids and topological rules governing membrane protein assembly, Biochim. Biophys. Acta, vol.1843, pp.1475-1488, 2014.

W. A. Boisvert, L. K. Curtiss, and R. A. Terkeltaub, Interleukin-8 and its receptor CXCR2 in atherosclerosis, Immunol. Res, vol.21, pp.129-137, 2000.

L. Boring, J. Gosling, M. Cleary, C. , and I. F. , Decreased lesion formation in CCR2-/-mice reveals a role for chemokines in the initiation of atherosclerosis, Nature, vol.394, pp.894-897, 1998.

P. Borst, C. De-wolf, and K. Van-de-wetering, Multidrug resistance-associated proteins 3, 4, and 5, Pflugers Arch, vol.453, pp.661-673, 2007.

J. L. Bos, Epac proteins: multi-purpose cAMP targets, Trends Biochem. Sci, vol.31, pp.680-686, 2006.

A. Bösel and T. Pfeuffer, Differential effects of ceramides upon adenylyl cyclase subtypes, FEBS Lett, vol.422, pp.209-212, 1998.

J. M. Bosher, P. Dufourcq, S. Sookhareea, and M. Labouesse, RNA interference can target pre-mRNA: consequences for gene expression in a Caenorhabditis elegans operon, Genetics, vol.153, pp.1245-1256, 1999.

K. Boström, K. E. Watson, S. Horn, C. Wortham, I. M. Herman et al., Bone morphogenetic protein expression in human atherosclerotic lesions, J. Clin. Invest, vol.91, pp.1800-1809, 1993.

C. S. Brand, H. J. Hocker, A. A. Gorfe, C. N. Cavasotto, and C. W. Dessauer, Isoform selectivity of adenylyl cyclase inhibitors: characterization of known and novel compounds, J. Pharmacol. Exp. Ther, vol.347, pp.265-275, 2013.

T. Braun and R. F. Dods, Development of a Mn-2+-sensitive, "soluble" adenylate cyclase in rat testis, Proc. Natl. Acad. Sci. U. S. A, vol.72, pp.1097-1101, 1975.

M. Breckler, M. Berthouze, A. Laurent, B. Crozatier, E. Morel et al., Rap-linked cAMP signaling Epac proteins: compartmentation, functioning and disease implications, Cell. Signal, vol.23, pp.1257-1266, 2011.
URL : https://hal.archives-ouvertes.fr/inserm-00615478

C. O. Brostrom, Y. C. Huang, B. M. Breckenridge, and D. J. Wolff, Identification of a calcium-binding protein as a calcium-dependent regulator of brain adenylate cyclase, Proc. Natl. Acad. Sci. U. S. A, vol.72, pp.64-68, 1975.

B. L. Brown, J. D. Albano, R. P. Ekins, and A. M. Sgherzi, A simple and sensitive saturation assay method for the measurement of adenosine 3':5'-cyclic monophosphate, Biochem. J, vol.121, pp.561-562, 1971.

B. Hummel, I. Reinartz, M. T. Kälble, S. Burhenne, H. Schwede et al., Dissociations in the effects of ?2-adrenergic receptor agonists on cAMP formation and superoxide production in human neutrophils: support for the concept of functional selectivity, PloS One, vol.8, p.64556, 2013.

L. L. Brunton and S. E. Mayer, Extrusion of cyclic AMP from pigeon erythrocytes, J. Biol. Chem, vol.254, pp.9714-9720, 1979.

M. M. Burnay, M. B. Vallotton, A. M. Capponi, and M. F. Rossier, Angiotensin II potentiates adrenocorticotrophic hormone-induced cAMP formation in bovine adrenal glomerulosa cells through a capacitative calcium influx, Biochem. J, vol.330, pp.21-27, 1998.

R. W. Butcher and E. W. Sutherland, Adenosine 3',5'-phosphate in biological materials. I. Purification and properties of cyclic 3',5'-nucleotide phosphodiesterase and use of this enzyme to characterize adenosine 3',5'-phosphate in human urine, J. Biol. Chem, vol.237, pp.1244-1250, 1962.

F. L. Bygrave and A. Benedetti, What is the concentration of calcium ions in the endoplasmic reticulum?, Cell Calcium, vol.19, pp.547-551, 1996.

Y. Cai, D. J. Nagel, Q. Zhou, K. D. Cygnar, H. Zhao et al., Role of cAMP-phosphodiesterase 1C signaling in regulating growth factor receptor stability, vascular smooth muscle cell growth, migration, and neointimal hyperplasia, Circ. Res, vol.116, pp.1120-1132, 2015.

K. K. Caldwell, C. L. Boyajian, and D. M. Cooper, The effects of Ca2+ and calmodulin on adenylyl cyclase activity in plasma membranes derived from neural and non-neural cells, Cell Calcium, vol.13, pp.107-121, 1992.

J. J. Cali, J. C. Zwaagstra, N. Mons, D. M. Cooper, and J. Krupinski, Type VIII adenylyl cyclase. A Ca2+/calmodulin-stimulated enzyme expressed in discrete regions of rat brain, J. Biol. Chem, vol.269, pp.12190-12195, 1994.

J. J. Cali, R. S. Parekh, and J. Krupinski, Splice variants of type VIII adenylyl cyclase. Differences in glycosylation and regulation by Ca2+/calmodulin, J. Biol. Chem, vol.271, pp.1089-1095, 1996.

E. Camenzind, P. G. Steg, and W. W. , Safety of drug-eluting stents: insights from meta analysis, 2006.

J. H. Campbell and G. R. Campbell, Cell biology of atherosclerosis, J. Hypertens. Suppl. Off. J. Int. Soc. Hypertens, vol.12, pp.129-132, 1994.

N. M. Caplice, T. J. Bunch, P. G. Stalboerger, S. Wang, D. Simper et al., Smooth muscle cells in human coronary atherosclerosis can originate from cells administered at marrow transplantation, Proc. Natl. Acad. Sci. U. S. A, vol.100, pp.4754-4759, 2003.

C. C. Chadwick, A. Saito, and S. Fleischer, Isolation and characterization of the inositol trisphosphate receptor from smooth muscle, Proc. Natl. Acad. Sci. U. S. A, vol.87, pp.2132-2136, 1990.

A. Chait, C. Y. Han, J. F. Oram, and J. W. Heinecke, Thematic review series: The immune system and atherogenesis. Lipoprotein-associated inflammatory proteins: markers or mediators of cardiovascular disease?, J. Lipid Res, vol.46, pp.389-403, 2005.

J. Chamley-campbell, G. R. Campbell, R. , and R. , The smooth muscle cell in culture, Physiol. Rev, vol.59, pp.1-61, 1979.

J. R. Chao, Y. G. Ni, C. A. Bolaños, Z. Rahman, R. J. Dileone et al., Characterization of the mouse adenylyl cyclase type VIII gene promoter: regulation by cAMP and CREB, Eur. J. Neurosci, vol.16, pp.1284-1294, 2002.

A. Chatterjee, A. Sharma, M. Chen, R. Toy, G. Mottola et al., The pro-resolving lipid mediator maresin 1 (MaR1) attenuates inflammatory signaling pathways in vascular smooth muscle and endothelial cells, PloS One, vol.9, 2014.

M. Chen and J. T. Zhang, Topogenesis of cystic fibrosis transmembrane conductance regulator (CFTR): regulation by the amino terminal transmembrane sequences, Biochemistry (Mosc.), vol.38, pp.5471-5477, 1999.

C. Chen, Y. J. Li, Y. Yeh, P. Lee, S. Usami et al., Synergistic roles of platelet-derived growth factor-BB and interleukin-1beta in phenotypic modulation of human aortic smooth muscle cells, Proc. Natl. Acad. Sci. U. S. A, vol.103, pp.2665-2670, 2006.

N. X. Chen, D. Duan, K. D. O'neill, and S. M. Moe, High glucose increases the expression of Cbfa1 and BMP-2 and enhances the calcification of vascular smooth muscle cells, Nephrol. Dial. Transplant. Off. Publ. Eur. Dial. Transpl. Assoc. -Eur. Ren. Assoc, vol.21, pp.3435-3442, 2006.

Y. Chen, A. Harry, J. Li, M. J. Smit, X. Bai et al., , 1997.

, Adenylyl cyclase 6 is selectively regulated by protein kinase A phosphorylation in a region involved in Galphas stimulation, Proc. Natl. Acad. Sci. U. S. A, vol.94, pp.14100-14104

Y. Chen, M. J. Cann, T. N. Litvin, V. Iourgenko, M. L. Sinclair et al., Soluble adenylyl cyclase as an evolutionarily conserved bicarbonate sensor, Science, vol.289, pp.625-628, 2000.

Z. S. Chen, K. Lee, and G. D. Kruh, Transport of cyclic nucleotides and estradiol 17-beta-D-glucuronide by multidrug resistance protein 4. Resistance to 6-mercaptopurine and 6-thioguanine, J. Biol. Chem, vol.276, pp.33747-33754, 2001.

M. Chen-goodspeed, A. N. Lukan, and C. W. Dessauer, Modeling of Galpha(s) and Galpha(i) regulation of human type V and VI adenylyl cyclase, J. Biol. Chem, vol.280, pp.1808-1816, 2005.

D. M. Chetkovich and J. D. Sweatt, nMDA receptor activation increases cyclic AMP in area CA1 of the hippocampus via calcium/calmodulin stimulation of adenylyl cyclase, J. Neurochem, vol.61, pp.1933-1942, 1993.

D. M. Chetkovich, R. Gray, D. Johnston, and J. D. Sweatt, N-methyl-D-aspartate receptor activation increases cAMP levels and voltage-gated Ca2+ channel activity in area CA1 of hippocampus, Proc. Natl. Acad. Sci. U. S. A, vol.88, pp.6467-6471, 1991.

R. Cheung, M. S. Erclik, M. , and J. , 1,25-dihydroxyvitamin D(3) stimulated protein kinase C phosphorylation of type VI adenylyl cyclase inhibits parathyroid hormone signal transduction in rat osteoblastic UMR 106-01 cells, J. Cell. Biochem, vol.94, pp.1017-1027, 2005.

H. Chi, E. Messas, R. A. Levine, D. T. Graves, and S. Amar, Interleukin-1 receptor signaling mediates atherosclerosis associated with bacterial exposure and/or a high-fat diet in a murine apolipoprotein E heterozygote model: pharmacotherapeutic implications, Circulation, vol.110, pp.1678-1685, 2004.

M. Chiono, R. Mahey, G. Tate, and D. M. Cooper, Capacitative Ca2+ entry exclusively inhibits cAMP synthesis in C6-2B glioma cells. Evidence that physiologically evoked Ca2+ entry regulates Ca(2+)-inhibitable adenylyl cyclase in non-excitable cells, J. Biol. Chem, vol.270, pp.1149-1155, 1995.

E. J. Choi, Z. Xia, and D. R. Storm, Stimulation of the type III olfactory adenylyl cyclase by calcium and calmodulin, Biochemistry (Mosc.), vol.31, pp.6492-6498, 1992.

Y. H. Choi, D. Ekholm, J. Krall, F. Ahmad, E. Degerman et al., Identification of a novel isoform of the cyclic-nucleotide phosphodiesterase PDE3A expressed in vascular smooth-muscle myocytes, Biochem. J, vol.353, pp.41-50, 2001.

T. Christen, M. L. Bochaton-piallat, P. Neuville, S. Rensen, M. Redard et al., , 1999.

, Cultured porcine coronary artery smooth muscle cells. A new model with advanced differentiation, Circ. Res, vol.85, pp.99-107

T. Christen, V. Verin, M. Bochaton-piallat, Y. Popowski, F. Ramaekers et al., Mechanisms of neointima formation and remodeling in the porcine coronary artery, Circulation, vol.103, pp.882-888, 2001.

N. Clément, M. Glorian, M. Raymondjean, M. Andréani, and I. Limon, PGE2 amplifies the effects of IL-1beta on vascular smooth muscle cell de-differentiation: a consequence of the versatility of PGE2 receptors 3 due to the emerging expression of adenylyl cyclase 8, J. Cell. Physiol, vol.208, pp.495-505, 2006.

R. G. Collins, R. Velji, N. V. Guevara, M. J. Hicks, L. Chan et al., P-Selectin or intercellular adhesion molecule (ICAM)-1 deficiency substantially protects against atherosclerosis in apolipoprotein E-deficient mice, J. Exp. Med, vol.191, pp.189-194, 2000.

M. Conti and J. Beavo, Biochemistry and physiology of cyclic nucleotide phosphodiesterases: essential components in cyclic nucleotide signaling, Annu. Rev. Biochem, vol.76, pp.481-511, 2007.

A. C. Conti, J. W. Maas, L. M. Muglia, B. A. Dave, S. K. Vogt et al., Distinct regional and subcellular localization of adenylyl cyclases type 1 and 8 in mouse brain, Neuroscience, vol.146, pp.713-729, 2007.

D. M. Cooper, Calcium-sensitive adenylyl cyclase/aequorin chimeras as sensitive probes for discrete modes of elevation of cytosolic calcium, Methods Enzymol, vol.345, pp.105-112, 2002.

D. M. Cooper, Regulation and organization of adenylyl cyclases and cAMP, Biochem. J, vol.375, pp.517-529, 2003.

D. M. Cooper and V. G. Tabbasum, Adenylate cyclase-centred microdomains, Biochem. J, vol.462, pp.199-213, 2014.

D. M. Cooper, M. J. Schell, P. Thorn, and R. F. Irvine, Regulation of adenylyl cyclase by membrane potential, J. Biol. Chem, vol.273, pp.27703-27707, 1998.

D. M. Cooper, J. W. Karpen, K. A. Fagan, and N. E. Mons, Ca(2+)-sensitive adenylyl cyclases, Adv. Second Messenger Phosphoprotein Res, vol.32, pp.23-51, 1998.

J. D. Corbin, K. , and S. L. , Characterization and regulation of heart adenosine 3':5'-monophosphatedependent protein kinase isozymes, J. Biol. Chem, vol.252, pp.910-918, 1977.

C. Couturier, A. Brouillet, C. Couriaud, K. Koumanov, G. Béréziat et al., Interleukin 1beta induces type II-secreted phospholipase A(2) gene in vascular smooth muscle cells by a nuclear factor kappaB and peroxisome proliferator-activated receptor-mediated process, J. Biol. Chem, vol.274, pp.23085-23093, 1999.

A. J. Crossthwaite, T. Seebacher, N. Masada, A. Ciruela, K. Dufraux et al., The cytosolic domains of Ca2+-sensitive adenylyl cyclases dictate their targeting to plasma membrane lipid rafts, J. Biol. Chem, vol.280, pp.6380-6391, 2005.

A. J. Crossthwaite, A. Ciruela, T. F. Rayner, and D. M. Cooper, A direct interaction between the N terminus of adenylyl cyclase AC8 and the catalytic subunit of protein phosphatase 2A, Mol. Pharmacol, vol.69, pp.608-617, 2006.

M. G. Cumbay and V. J. Watts, Novel regulatory properties of human type 9 adenylate cyclase, J. Pharmacol. Exp. Ther, vol.310, pp.108-115, 2004.

R. E. Dalbey and A. Kuhn, Evolutionarily related insertion pathways of bacterial, mitochondrial, and thylakoid membrane proteins, Annu. Rev. Cell Dev. Biol, vol.16, pp.51-87, 2000.

G. D. Dalton and W. L. Dewey, Protein kinase inhibitor peptide (PKI): a family of endogenous neuropeptides that modulate neuronal cAMP-dependent protein kinase function, Neuropeptides, vol.40, pp.23-34, 2006.

I. Darby, O. Skalli, and G. Gabbiani, Alpha-smooth muscle actin is transiently expressed by myofibroblasts during experimental wound healing, Lab. Investig. J. Tech. Methods Pathol, vol.63, pp.21-29, 1990.

G. E. Darling, S. J. Marx, A. M. Spiegel, G. D. Aurbach, and J. A. Norton, Prospective analysis of intraoperative and postoperative urinary cyclic adenosine 3',5'-monophosphate levels to predict outcome of patients undergoing reoperations for primary hyperparathyroidism, Surgery, vol.104, pp.1128-1136, 1988.

P. R. Davoren and E. W. Sutherland, THE EFFECT OF L-EPINEPHRINE AND OTHER AGENTS ON THE SYNTHESIS AND RELEASE OF ADENOSINE 3',5'-PHOSPHATE BY WHOLE PIGEON ERYTHROCYTES, J. Biol. Chem, vol.238, pp.3009-3015, 1963.

R. G. Deeley, C. Westlake, and S. P. Cole, Transmembrane transport of endo-and xenobiotics by mammalian ATP-binding cassette multidrug resistance proteins, Physiol. Rev, vol.86, pp.849-899, 2006.

N. Defer, O. Marinx, D. Stengel, A. Danisova, V. Iourgenko et al., Molecular cloning of the human type VIII adenylyl cyclase, FEBS Lett, vol.351, pp.109-113, 1994.

N. Defer, M. Best-belpomme, and J. Hanoune, Tissue specificity and physiological relevance of various isoforms of adenylyl cyclase, Am. J. Physiol. Renal Physiol, vol.279, pp.400-416, 2000.

J. Deguchi, T. Namba, H. Hamada, T. Nakaoka, J. Abe et al., Targeting endogenous platelet-derived growth factor B-chain by adenovirus-mediated gene transfer potently inhibits in vivo smooth muscle proliferation after arterial injury, Gene Ther, vol.6, pp.956-965, 1999.

S. Delbosc, M. Glorian, A. Le-port, G. Béréziat, M. Andréani et al., The benefit of docosahexanoic acid on the migration of vascular smooth muscle cells is partially dependent on Notch regulation of MMP-2/-9, Am. J. Pathol, vol.172, pp.1430-1440, 2008.

I. Delint-ramirez, D. Willoughby, G. R. Hammond, G. V. Hammond, L. J. Ayling et al., Palmitoylation targets AKAP79 protein to lipid rafts and promotes its regulation of calcium-sensitive adenylyl cyclase type 8, J. Biol. Chem, vol.286, pp.32962-32975, 2011.

D. Delmeire, D. Flamez, S. A. Hinke, J. J. Cali, D. Pipeleers et al., Type VIII adenylyl cyclase in rat beta cells: coincidence signal detector/generator for glucose and GLP-1, Diabetologia, vol.46, pp.1383-1393, 2003.

M. C. Deruiter, R. E. Poelmann, J. C. Vanmunsteren, V. Mironov, R. R. Markwald et al., Embryonic endothelial cells transdifferentiate into mesenchymal cells expressing smooth muscle actins in vivo and in vitro, Circ. Res, vol.80, pp.444-451, 1997.

C. W. Dessauer and A. G. Gilman, Purification and characterization of a soluble form of mammalian adenylyl cyclase, J. Biol. Chem, vol.271, pp.16967-16974, 1996.

C. W. Dessauer and A. G. Gilman, The catalytic mechanism of mammalian adenylyl cyclase. Equilibrium binding and kinetic analysis of P-site inhibition, J. Biol. Chem, vol.272, pp.27787-27795, 1997.

C. W. Dessauer, T. T. Scully, and A. G. Gilman, Interactions of forskolin and ATP with the cytosolic domains of mammalian adenylyl cyclase, J. Biol. Chem, vol.272, pp.22272-22277, 1997.

C. W. Dessauer, J. J. Tesmer, S. R. Sprang, and A. G. Gilman, Identification of a Gialpha binding site on type V adenylyl cyclase, J. Biol. Chem, vol.273, pp.25831-25839, 1998.

C. W. Dessauer, V. J. Watts, R. S. Ostrom, M. Conti, S. Dove et al., International Union of Basic and Clinical Pharmacology. CI. Structures and Small Molecule Modulators of Mammalian Adenylyl Cyclases, Pharmacol. Rev, vol.69, pp.93-139, 2017.

C. R. Dhore, J. P. Cleutjens, E. Lutgens, K. B. Cleutjens, P. P. Geusens et al., Differential expression of bone matrix regulatory proteins in human atherosclerotic plaques, Arterioscler. Thromb. Vasc. Biol, vol.21, 1998.

L. Diekmann, M. Behrendt, M. Amiri, and H. Y. Naim, Structural determinants for transport of lactase phlorizin-hydrolase in the early secretory pathway as a multi-domain membrane glycoprotein, Biochim. Biophys. Acta, vol.1861, pp.3119-3128, 2017.

C. Ding, E. D. Potter, W. Qiu, S. L. Coon, M. A. Levine et al., Cloning and widespread distribution of the rat rod-type cyclic nucleotide-gated cation channel, Am. J. Physiol, vol.272, pp.1335-1344, 1997.

Q. Ding, R. Gros, J. Chorazyczewski, S. S. Ferguson, and R. D. Feldman, Isoform-specific regulation of adenylyl cyclase function by disruption of membrane trafficking, Mol. Pharmacol, vol.67, pp.564-571, 2005.

D. P. Dirocco, Z. S. Scheiner, C. B. Sindreu, G. Chan, and D. R. Storm, A role for calmodulinstimulated adenylyl cyclases in cocaine sensitization, J. Neurosci. Off. J. Soc. Neurosci, vol.29, pp.2393-2403, 2009.

K. L. Dodge-kafka, J. Soughayer, G. C. Pare, C. Michel, J. J. Langeberg et al., The protein kinase A anchoring protein mAKAP coordinates two integrated cAMP effector pathways, Nature, vol.437, pp.574-578, 2005.

U. Dokphrom, E. Qualls-creekmore, Y. , and M. , Effects of alcohols on recombinant adenylyl cyclase type 7 expressed in bacteria, Alcohol. Clin. Exp. Res, vol.35, pp.1915-1922, 2011.

Z. M. Dong, S. M. Chapman, A. A. Brown, P. S. Frenette, R. O. Hynes et al., The combined role of P-and E-selectins in atherosclerosis, J. Clin. Invest, vol.102, pp.145-152, 1998.

B. J. Doore, M. M. Bashor, N. Spitzer, R. C. Mawe, and M. H. Saier, Regulation of adenosine 3'&:5'-monophosphate efflux from rat glioma cells in culture*, J. Biol. Chem, vol.250, pp.4371-4372, 1975.

J. S. Douglas, D. R. Holmes, D. J. Kereiakes, C. L. Grines, E. Block et al., Coronary stent restenosis in patients treated with cilostazol, Circulation, vol.112, pp.2826-2832, 2005.

K. L. Du, H. S. Ip, J. Li, M. Chen, F. Dandre et al., , 2003.

, Myocardin is a critical serum response factor cofactor in the transcriptional program regulating smooth muscle cell differentiation, Mol. Cell. Biol, vol.23, pp.2425-2437

J. L. Duband, M. Gimona, M. Scatena, S. Sartore, and J. V. Small, Calponin and SM 22 as differentiation markers of smooth muscle: spatiotemporal distribution during avian embryonic development, Differ. Res. Biol. Divers, vol.55, pp.1-11, 1993.

T. J. Eddinger and D. P. Meer, Myosin II isoforms in smooth muscle: heterogeneity and function, Am. J. Physiol. Cell Physiol, vol.293, pp.493-508, 2007.

R. Elhage, A. Maret, M. T. Pieraggi, J. C. Thiers, J. F. Arnal et al., Differential effects of interleukin-1 receptor antagonist and tumor necrosis factor binding protein on fatty-streak formation in apolipoprotein E-deficient mice, Circulation, vol.97, pp.242-244, 1998.

L. Ellgaard and A. Helenius, Quality control in the endoplasmic reticulum, Nat. Rev. Mol. Cell Biol, vol.4, pp.181-191, 2003.

A. C. Emery, X. Liu, W. Xu, M. V. Eiden, and L. E. Eiden, Cyclic Adenosine 3',5'-Monophosphate Elevation and Biological Signaling through a Secretin Family Gs-Coupled G Protein-Coupled Receptor Are Restricted to a Single Adenylate Cyclase Isoform, Mol. Pharmacol, vol.87, pp.928-935, 2015.

M. Erdorf and R. Seifert, Pharmacological characterization of adenylyl cyclase isoforms in rabbit kidney membranes, Naunyn. Schmiedebergs Arch. Pharmacol, vol.383, pp.357-372, 2011.

T. Evans, M. M. Smith, L. I. Tanner, and T. K. Harden, Muscarinic cholinergic receptors of two cell lines that regulate cyclic AMP metabolism by different molecular mechanisms, Mol. Pharmacol, vol.26, pp.395-404, 1984.

G. J. Van-eys, M. C. Völler, E. D. Timmer, X. H. Wehrens, J. V. Small et al., Smoothelin expression characteristics: development of a smooth muscle cell in vitro system and identification of a vascular variant, Cell Struct. Funct, vol.22, pp.65-72, 1997.

K. A. Fagan, R. Mahey, and D. M. Cooper, Functional co-localization of transfected Ca(2+)-stimulable adenylyl cyclases with capacitative Ca2+ entry sites, J. Biol. Chem, vol.271, pp.12438-12444, 1996.

K. A. Fagan, N. Mons, and D. M. Cooper, Dependence of the Ca2+-inhibitable adenylyl cyclase of C6-2B glioma cells on capacitative Ca2+ entry, J. Biol. Chem, vol.273, pp.9297-9305, 1998.

K. A. Fagan, R. A. Graf, S. Tolman, J. Schaack, and D. M. Cooper, Regulation of a Ca2+-sensitive adenylyl cyclase in an excitable cell. Role of voltage-gated versus capacitative Ca2+ entry, J. Biol. Chem, vol.275, pp.40187-40194, 2000.

K. A. Fagan, K. E. Smith, and D. M. Cooper, Regulation of the Ca2+-inhibitable adenylyl cyclase type VI by capacitative Ca2+ entry requires localization in cholesterol-rich domains, J. Biol. Chem, vol.275, pp.26530-26537, 2000.

G. Fager, G. Camejo, U. Olsson, G. Ostergren-lundén, F. Lustig et al., Binding of platelet-derived growth factor and low density lipoproteins to glycosaminoglycan species produced by human arterial smooth muscle cells, J. Cell. Physiol, vol.163, pp.380-392, 1995.

P. Fan, Z. Jiang, I. Diamond, and L. Yao, Up-regulation of AGS3 during morphine withdrawal promotes cAMP superactivation via adenylyl cyclase 5 and 7 in rat nucleus accumbens/striatal neurons, Mol. Pharmacol, vol.76, pp.526-533, 2009.

P. G. Feinstein, K. A. Schrader, H. A. Bakalyar, W. J. Tang, J. Krupinski et al., , 1991.

, Molecular cloning and characterization of a Ca2+/calmodulin-insensitive adenylyl cyclase from rat brain, Proc. Natl. Acad. Sci. U. S. A, vol.88, pp.10173-10177

L. J. Feldman, M. Mazighi, A. Scheuble, J. F. Deux, E. De-benedetti et al., Differential expression of matrix metalloproteinases after stent implantation and balloon angioplasty in the hypercholesterolemic rabbit, Circulation, vol.103, pp.3117-3122, 2001.

G. D. Ferguson and D. R. Storm, Why calcium-stimulated adenylyl cyclases?, Physiol. Bethesda Md, vol.19, pp.271-276, 2004.

E. E. Fesenko, S. S. Kolesnikov, and A. L. Lyubarsky, Induction by cyclic GMP of cationic conductance in plasma membrane of retinal rod outer segment, Nature, vol.313, pp.310-313, 1985.

K. M. Fetalvero, M. Shyu, A. P. Nomikos, Y. Chiu, R. J. Wagner et al., The prostacyclin receptor induces human vascular smooth muscle cell differentiation via the protein kinase A pathway, Am. J. Physiol. Heart Circ. Physiol, vol.290, pp.1337-1346, 2006.

A. V. Finn, G. Nakazawa, M. Joner, F. D. Kolodgie, E. K. Mont et al., Vascular responses to drug eluting stents: importance of delayed healing, Arterioscler. Thromb. Vasc. Biol, vol.27, pp.1500-1510, 2007.

R. D. Fons, B. A. Bogert, and R. S. Hegde, Substrate-specific function of the translocon-associated protein complex during translocation across the ER membrane, J. Cell Biol, vol.160, pp.529-539, 2003.

M. Frick, N. A. Bright, K. Riento, A. Bray, C. Merrified et al., Coassembly of flotillins induces formation of membrane microdomains, membrane curvature, and vesicle budding, Curr. Biol. CB, vol.17, pp.1151-1156, 2007.

M. G. Frid, B. V. Shekhonin, V. E. Koteliansky, and M. A. Glukhova, Phenotypic changes of human smooth muscle cells during development: late expression of heavy caldesmon and calponin, Dev. Biol, vol.153, pp.185-193, 1992.

M. G. Frid, O. Y. Printesva, A. Chiavegato, E. Faggin, M. Scatena et al., Myosin heavy-chain isoform composition and distribution in developing and adult human aortic smooth muscle, J. Vasc. Res, vol.30, pp.279-292, 1993.

M. G. Frid, A. A. Aldashev, E. C. Dempsey, and K. R. Stenmark, Smooth muscle cells isolated from discrete compartments of the mature vascular media exhibit unique phenotypes and distinct growth capabilities, Circ. Res, vol.81, pp.940-952, 1997.

M. G. Frid, V. A. Kale, and K. R. Stenmark, Mature vascular endothelium can give rise to smooth muscle cells via endothelial-mesenchymal transdifferentiation: in vitro analysis, Circ. Res, vol.90, pp.1189-1196, 2002.

A. Fujishige, K. Takahashi, and T. Tsuchiya, Altered mechanical properties in smooth muscle of mice with a mutated calponin locus, Zoolog. Sci, vol.19, pp.167-174, 2002.

S. Gahbauer and R. A. Böckmann, Membrane-Mediated Oligomerization of G Protein Coupled Receptors and Its Implications for GPCR Function, Front. Physiol, vol.7, p.494, 2016.

B. N. Gao and A. G. Gilman, Cloning and expression of a widely distributed (type IV) adenylyl cyclase, Proc. Natl. Acad. Sci. U. S. A, vol.88, pp.10178-10182, 1991.

T. Gao, T. S. Puri, B. L. Gerhardstein, A. J. Chien, R. D. Green et al., Identification and subcellular localization of the subunits of L-type calcium channels and adenylyl cyclase in cardiac myocytes, J. Biol. Chem, vol.272, pp.19401-19407, 1997.

U. C. Garg and A. Hassid, Nitric oxide-generating vasodilators and 8-bromo-cyclic guanosine monophosphate inhibit mitogenesis and proliferation of cultured rat vascular smooth muscle cells, J. Clin. Invest, vol.83, pp.1774-1777, 1989.

Y. J. Geng, Q. Wu, M. Muszynski, G. K. Hansson, L. et al., Apoptosis of vascular smooth muscle cells induced by in vitro stimulation with interferon-gamma, tumor necrosis factor-alpha, and interleukin-1 beta, Arterioscler. Thromb. Vasc. Biol, vol.16, pp.19-27, 1996.

L. Gesquière, N. Loreau, and D. Blache, Role of the cyclic AMP-dependent pathway in free radicalinduced cholesterol accumulation in vascular smooth muscle cells. Free Radic, Biol. Med, vol.29, pp.181-190, 2000.

B. S. Glick and A. Luini, Models for Golgi traffic: a critical assessment, Cold Spring Harb. Perspect. Biol, vol.3, p.5215, 2011.

N. Gomez-navarro and E. Miller, Protein sorting at the ER-Golgi interface, J. Cell Biol, vol.215, pp.769-778, 2016.

M. Göttle, J. Geduhn, B. König, A. Gille, K. Höcherl et al., Characterization of mouse heart adenylyl cyclase, J. Pharmacol. Exp. Ther, vol.329, pp.1156-1165, 2009.

T. Grodzicker, R. R. Arditti, and H. Eisen, Establishment of repression by lambdoid phage in catabolite activator protein and adenylate cyclase mutants of Escherichia coli, Proc. Natl. Acad. Sci. U. S. A, vol.69, pp.366-370, 1972.

R. Gros, Q. Ding, J. Chorazyczewski, J. G. Pickering, L. E. Limbird et al., Adenylyl cyclase isoform-selective regulation of vascular smooth muscle proliferation and cytoskeletal reorganization, Circ. Res, vol.99, pp.845-852, 2006.

C. Gu and D. M. Cooper, Calmodulin-binding sites on adenylyl cyclase type VIII, J. Biol. Chem, vol.274, pp.8012-8021, 1999.

C. Gu and D. M. Cooper, Sr(2+), and Ba(2+) identify distinct regulatory sites on adenylyl cyclase (AC) types VI and VIII and consolidate the apposition of capacitative cation entry channels and Ca(2+)-sensitive ACs, J. Biol. Chem, vol.275, pp.6980-6986, 2000.

C. Gu, A. Sorkin, and D. M. Cooper, Persistent interactions between the two transmembrane clusters dictate the targeting and functional assembly of adenylyl cyclase, Curr. Biol. CB, vol.11, pp.185-190, 2001.

C. Gu, J. J. Cali, and D. M. Cooper, Dimerization of mammalian adenylate cyclases, Eur. J. Biochem, vol.269, pp.413-421, 2002.

L. Gu, Y. Okada, S. K. Clinton, C. Gerard, G. K. Sukhova et al., Absence of monocyte chemoattractant protein-1 reduces atherosclerosis in low density lipoprotein receptor-deficient mice, Mol. Cell, vol.2, pp.275-281, 1998.

M. Gueguen, Z. Keuylian, V. Mateo, N. Mougenot, A. Lompré et al., Implication of adenylyl cyclase 8 in pathological smooth muscle cell migration occurring in rat and human vascular remodelling, J. Pathol, vol.221, pp.331-342, 2010.

M. Gueguen, B. Vallin, M. Glorian, R. Blaise, and I. Limon, Adénylyl cyclases et transdifférenciation des cellules musculaires lisses vasculaires&: rôle dans le remodelage vasculaire pathologique, Biol. Aujourdhui, vol.210, pp.153-166, 2016.

A. Guenifi, G. M. Portela-gomes, L. Grimelius, S. Efendi?, and S. M. Halim, Adenylyl cyclase isoform expression in non-diabetic and diabetic Goto-Kakizaki (GK) rat pancreas. Evidence for distinct overexpression of type-8 adenylyl cyclase in diabetic GK rat islets, Histochem. Cell Biol, vol.113, pp.81-89, 2000.

J. L. Guillou, H. Nakata, and D. M. Cooper, Inhibition by calcium of mammalian adenylyl cyclases, J. Biol. Chem, vol.274, pp.35539-35545, 1999.

R. Guo, L. Yang, M. Li, X. Pan, B. Liu et al., Stim1-and Orai1-mediated store-operated calcium entry is critical for angiotensin II-induced vascular smooth muscle cell proliferation, Cardiovasc. Res, vol.93, pp.360-370, 2012.

Y. Guo, E. Kotova, Z. Chen, K. Lee, E. Hopper-borge et al., MRP8, ATP-binding cassette C11 (ABCC11), is a cyclic nucleotide efflux pump and a resistance factor for fluoropyrimidines 2',3'-dideoxycytidine and 9'-(2'-phosphonylmethoxyethyl)adenine, J. Biol. Chem, vol.278, pp.29509-29514, 2003.

V. V. Gurevich and E. V. Gurevich, How and why do GPCRs dimerize?, Trends Pharmacol. Sci, vol.29, pp.234-240, 2008.

M. V. Gurjar, J. Deleon, R. V. Sharma, and R. C. Bhalla, Role of reactive oxygen species in IL-1 betastimulated sustained ERK activation and MMP-9 induction, Am. J. Physiol. Heart Circ. Physiol, vol.281, pp.2568-2574, 2001.

T. Haga, K. Haga, and A. G. Gilman, Hydrodynamic properties of the beta-adrenergic receptor and adenylate cyclase from wild type and varient S49 lymphoma cells, J. Biol. Chem, vol.252, pp.5776-5782, 1977.

D. K. Hahn, J. R. Tusell, S. R. Sprang, C. , and X. , Catalytic Mechanism of Mammalian Adenylyl Cyclase: A Computational Investigation, Biochemistry (Mosc.), vol.54, pp.6252-6262, 2015.

D. D. Hall, M. A. Davare, M. Shi, M. L. Allen, M. Weisenhaus et al., , 2007.

, Critical role of cAMP-dependent protein kinase anchoring to the L-type calcium channel Cav1.2 via A-kinase anchor protein 150 in neurons, Biochemistry (Mosc.), vol.46, pp.1635-1646

J. Hanoune and N. Defer, Regulation and role of adenylyl cyclase isoforms, Annu. Rev. Pharmacol. Toxicol, vol.41, pp.145-174, 2001.

J. Hanoune, Y. Pouille, E. Tzavara, T. Shen, L. Lipskaya et al., , 1997.

, Adenylyl cyclases: structure, regulation and function in an enzyme superfamily, Mol. Cell. Endocrinol, vol.128, pp.179-194

G. K. Hansson, Inflammation, atherosclerosis, and coronary artery disease, N. Engl. J. Med, vol.352, pp.1685-1695, 2005.

G. K. Hansson, P. Libby, U. Schönbeck, Y. , and Z. , Innate and adaptive immunity in the pathogenesis of atherosclerosis, Circ. Res, vol.91, pp.281-291, 2002.

M. Hanulová and M. Weiss, Protein sorting and membrane-mediated interactions, Biophys. Rev, vol.4, pp.117-124, 2012.

M. Hanyu, N. Kume, T. Ikeda, M. Minami, T. Kita et al., VCAM-1 expression precedes macrophage infiltration into subendothelium of vein grafts interposed into carotid arteries in hypercholesterolemic rabbits--a potential role in vein graft atherosclerosis, Atherosclerosis, vol.158, pp.313-319, 2001.

H. Hao, P. Ropraz, V. Verin, E. Camenzind, A. Geinoz et al., Heterogeneity of smooth muscle cell populations cultured from pig coronary artery, Arterioscler. Thromb. Vasc. Biol, vol.22, pp.1093-1099, 2002.

H. Hao, G. Gabbiani, and M. Bochaton-piallat, Arterial smooth muscle cell heterogeneity: implications for atherosclerosis and restenosis development, Arterioscler. Thromb. Vasc. Biol, vol.23, pp.1510-1520, 2003.

J. F. Harper and G. Brooker, Femtomole sensitive radioimmunoassay for cyclic AMP and cyclic GMP after 2'0 acetylation by acetic anhydride in aqueous solution, J. Cyclic Nucleotide Res, vol.1, pp.207-218, 1975.

A. Harry, Y. Chen, R. Magnusson, R. Iyengar, and G. Weng, Differential regulation of adenylyl cyclases by Galphas, J. Biol. Chem, vol.272, pp.19017-19021, 1997.

E. Hartmann, T. A. Rapoport, and H. F. Lodish, Predicting the orientation of eukaryotic membranespanning proteins, Proc. Natl. Acad. Sci. U. S. A, vol.86, pp.5786-5790, 1989.

D. R. Hathaway, M. V. Konicki, and S. A. Coolican, Phosphorylation of myosin light chain kinase from vascular smooth muscle by cAMP-and cGMP-dependent protein kinases, J. Mol. Cell. Cardiol, vol.17, pp.841-850, 1985.

O. Haugeto, K. Ullensvang, L. M. Levy, F. A. Chaudhry, T. Honoré et al., Brain glutamate transporter proteins form homomultimers, J. Biol. Chem, vol.271, pp.27715-27722, 1996.

A. Haunsø, J. Simpson, A. , and F. A. , Small ligands modulating the activity of mammalian adenylyl cyclases: a novel mode of inhibition by calmidazolium, Mol. Pharmacol, vol.63, pp.624-631, 2003.

S. Hayashi, R. Morishita, H. Matsushita, H. Nakagami, Y. Taniyama et al., Cyclic AMP inhibited proliferation of human aortic vascular smooth muscle cells, accompanied by induction of p53 and p21, Hypertens. Dallas Tex, vol.35, pp.237-243, 1979.

R. He, N. Komas, D. Ekholm, T. Murata, M. Taira et al., Expression and characterization of deletion recombinants of two cGMP-inhibited cyclic nucleotide phosphodiesterases (PDE-3), Cell Biochem. Biophys, vol.29, pp.89-111, 1998.

D. N. Hebert and A. Carruthers, Cholate-solubilized erythrocyte glucose transporters exist as a mixture of homodimers and homotetramers, Biochemistry (Mosc.), vol.30, pp.4654-4658, 1991.

K. Hellevuo, M. Yoshimura, M. Kao, P. L. Hoffman, D. M. Cooper et al., A novel adenylyl cyclase sequence cloned from the human erythroleukemia cell line, Biochem. Biophys. Res. Commun, vol.192, pp.311-318, 1993.

J. B. Helms and C. Zurzolo, Lipids as targeting signals: lipid rafts and intracellular trafficking, Traffic Cph. Den, vol.5, pp.247-254, 2004.
URL : https://hal.archives-ouvertes.fr/pasteur-00167026

R. C. Hewer, G. B. Sala-newby, Y. Wu, A. C. Newby, and M. Bond, PKA and Epac synergistically inhibit smooth muscle cell proliferation, J. Mol. Cell. Cardiol, vol.50, pp.87-98, 2011.

M. Higy, T. Junne, and M. Spiess, Topogenesis of membrane proteins at the endoplasmic reticulum, Biochemistry (Mosc.), vol.43, pp.12716-12722, 2004.

J. D. Hildebrandt, J. Hanoune, and L. Birnbaumer, Guanine nucleotide inhibition of cyc-S49 mouse lymphoma cell membrane adenylyl cyclase, J. Biol. Chem, vol.257, pp.14723-14725, 1982.

N. Hosokawa, I. Wada, K. Nagasawa, T. Moriyama, K. Okawa et al., Human XTP3-B forms an endoplasmic reticulum quality control scaffold with the HRD1-SEL1L ubiquitin ligase complex and BiP, J. Biol. Chem, vol.283, pp.20914-20924, 2008.

S. J. House, M. Potier, J. Bisaillon, H. A. Singer, and M. Trebak, The non-excitable smooth muscle: calcium signaling and phenotypic switching during vascular disease, Pflugers Arch, vol.456, pp.769-785, 2008.

M. D. Houslay, G. S. Baillie, M. , and D. H. , cAMP-Specific phosphodiesterase-4 enzymes in the cardiovascular system: a molecular toolbox for generating compartmentalized cAMP signaling, Circ. Res, vol.100, pp.950-966, 2007.

B. Hu, H. Nakata, C. Gu, T. De-beer, and D. M. Cooper, A critical interplay between Ca2+ inhibition and activation by Mg2+ of AC5 revealed by mutants and chimeric constructs, J. Biol. Chem, vol.277, pp.33139-33147, 2002.

J. E. Hungerford, G. K. Owens, W. S. Argraves, and C. D. Little, Development of the aortic vessel wall as defined by vascular smooth muscle and extracellular matrix markers, Dev. Biol, vol.178, pp.375-392, 1996.

T. Ichii, H. Koyama, S. Tanaka, S. Kim, A. Shioi et al., Fibrillar collagen specifically regulates human vascular smooth muscle cell genes involved in cellular responses and the pericellular matrix environment, Circ. Res, vol.88, pp.460-467, 2001.

C. Indolfi, E. Di-lorenzo, A. Rapacciuolo, A. M. Stingone, E. Stabile et al., 8-chloro-cAMP inhibits smooth muscle cell proliferation in vitro and neointima formation induced by balloon injury in vivo, J. Am. Coll. Cardiol, vol.36, pp.288-293, 2000.

Y. Inoue, K. Toga, T. Sudo, K. Tachibana, S. Tochizawa et al., Suppression of arterial intimal hyperplasia by cilostamide, a cyclic nucleotide phosphodiesterase 3 inhibitor, in a rat balloon double-injury model, Br. J. Pharmacol, vol.130, pp.231-241, 2000.

S. Ishibashi, J. L. Goldstein, M. S. Brown, J. Herz, and D. K. Burns, Massive xanthomatosis and atherosclerosis in cholesterol-fed low density lipoprotein receptor-negative mice, J. Clin. Invest, vol.93, pp.1885-1893, 1994.

Y. Ishikawa, S. Katsushika, L. Chen, N. J. Halnon, J. Kawabe et al., Isolation and characterization of a novel cardiac adenylylcyclase cDNA, J. Biol. Chem, vol.267, pp.13553-13557, 1992.

G. Iwami, J. Kawabe, T. Ebina, P. J. Cannon, C. J. Homcy et al., Regulation of adenylyl cyclase by protein kinase A, J. Biol. Chem, vol.270, pp.12481-12484, 1995.

T. Iwamoto, S. Okumura, K. Iwatsubo, J. Kawabe, K. Ohtsu et al., Motor dysfunction in type 5 adenylyl cyclase-null mice, J. Biol. Chem, vol.278, pp.16936-16940, 2003.

V. P. Iyemere, D. Proudfoot, P. L. Weissberg, and C. M. Shanahan, Vascular smooth muscle cell phenotypic plasticity and the regulation of vascular calcification, J. Intern. Med, vol.260, pp.192-210, 2006.

M. P. Jackson and E. W. Hewitt, Cellular proteostasis: degradation of misfolded proteins by lysosomes, Essays Biochem, vol.60, pp.173-180, 2016.

M. R. Jackson, T. Nilsson, and P. A. Peterson, Identification of a consensus motif for retention of transmembrane proteins in the endoplasmic reticulum, EMBO J, vol.9, pp.3153-3162, 1990.

R. K. Jain, Molecular regulation of vessel maturation, Nat. Med, vol.9, pp.685-693, 2003.

K. H. Jakobs, K. Aktories, and G. Schultz, A nucleotide regulatory site for somatostatin inhibition of adenylate cyclase in S49 lymphoma cells, Nature, vol.303, pp.177-178, 1983.

K. H. Jakobs, U. Gehring, B. Gaugler, T. Pfeuffer, and G. Schultz, Occurrence of an inhibitory guanine nucleotide-binding regulatory component of the adenylate cyclase system in cyc-variants of S49 lymphoma cells, Eur. J. Biochem, vol.130, pp.605-611, 1983.

K. Janakidevi, M. A. Fisher, P. J. Vecchio, C. Tiruppathi, J. Figge et al., Endothelin-1 stimulates DNA synthesis and proliferation of pulmonary artery smooth muscle cells, Am. J. Physiol, vol.263, pp.1295-1301, 1992.

A. Jaulmes, S. Thierry, B. Janvier, M. Raymondjean, and V. Maréchal, Activation of sPLA2-IIA and PGE2 production by high mobility group protein B1 in vascular smooth muscle cells sensitized by IL-1beta, 2006.

, FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol, vol.20, pp.1727-1729

H. D. Je and U. D. Sohn, SM22alpha is required for agonist-induced regulation of contractility: evidence from SM22alpha knockout mice, Mol. Cells, vol.23, pp.175-181, 2007.

S. Jiang, M. Naito, C. Kaizu, K. Kuwata, G. Hasegawa et al., , 2000.

, Lipopolysaccharide-induced cytokine and receptor expression and neutrophil infiltration in the liver of osteopetrosis (op/op) mutant mice, Liver, vol.20, pp.465-474

R. A. Johnson, R. Alvarez, and Y. Salomon, Determination of adenylyl cyclase catalytic activity using single and double column procedures, Methods Enzymol, vol.238, pp.31-56, 1994.

K. Johnson-mills, E. Arauz, R. G. Coffey, J. J. Krzanowski, and J. B. Polson, Effect of CI-930 [3-(2H)-pyridazinone-4,5-dihydro-6-[4-(1H-imidazolyl) phenyl]-5-methyl-monohydrochloride] and rolipram on human coronary artery smooth muscle cell proliferation, Biochem. Pharmacol, vol.56, pp.1065-1073, 1998.

C. A. Johnston, M. A. Beazely, M. L. Bilodeau, O. Andrisani, and V. J. Watts, Differentiation-induced alterations in cyclic AMP signaling in the Cath.a differentiated (CAD) neuronal cell line, J. Neurochem, vol.88, pp.1497-1508, 2004.

L. Jonasson, J. Holm, O. Skalli, G. Bondjers, and G. K. Hansson, Regional accumulations of T cells, macrophages, and smooth muscle cells in the human atherosclerotic plaque, Arterioscler. Dallas Tex, vol.6, pp.131-138, 1986.

K. B. Jourdan, N. A. Mason, L. Long, P. G. Philips, M. R. Wilkins et al., Characterization of adenylyl cyclase isoforms in rat peripheral pulmonary arteries, Am. J. Physiol. Lung Cell. Mol. Physiol, vol.280, pp.1359-1369, 2001.

C. Kaiser, S. Galatius, R. Jeger, N. Gilgen, J. Skov-jensen et al., Long-term efficacy and safety of biodegradable-polymer biolimus-eluting stents: main results of the Basel Stent Kosten-Effektivitäts Trial-PROspective Validation Examination II (BASKET-PROVE II), a randomized, vol.131, pp.74-81, 2015.

R. Kakkar, R. V. Raju, and R. K. Sharma, Calmodulin-dependent cyclic nucleotide phosphodiesterase (PDE1), Cell. Mol. Life Sci. CMLS, vol.55, pp.1164-1186, 1999.

. Kariv, . Stevens, and O. Behrens, High Throughput Quantitation of cAMP Production Mediated by Activation of Seven Transmembrane Domain Receptors, J. Biomol. Screen, vol.4, pp.27-32, 1999.

J. Kasuya, H. Goko, and Y. Fujita-yamaguchi, Multiple transcripts for the human cardiac form of the cGMP-inhibited cAMP phosphodiesterase, J. Biol. Chem, vol.270, pp.14305-14312, 1995.

N. Katakami, Y. Kim, R. Kawamori, Y. , and Y. , The phosphodiesterase inhibitor cilostazol induces regression of carotid atherosclerosis in subjects with type 2 diabetes mellitus: principal results of the Diabetic Atherosclerosis Prevention by Cilostazol (DAPC) study: a randomized trial, Circulation, vol.121, pp.2584-2591, 2010.

U. B. Kaupp and R. Seifert, Cyclic nucleotide-gated ion channels, Physiol. Rev, vol.82, pp.769-824, 2002.

J. Kawabe, G. Iwami, T. Ebina, S. Ohno, T. Katada et al., , 1994.

, Differential activation of adenylyl cyclase by protein kinase C isoenzymes, J. Biol. Chem, vol.269, pp.16554-16558

J. Kawabe, T. Ebina, Y. Toya, N. Oka, C. Schwencke et al., Regulation of type V adenylyl cyclase by PMA-sensitive and -insensitive protein kinase C isoenzymes in intact cells, FEBS Lett, vol.384, pp.273-276, 1996.

H. Kawasaki, G. M. Springett, N. Mochizuki, S. Toki, M. Nakaya et al., A family of cAMP-binding proteins that directly activate Rap1, Science, vol.282, pp.2275-2279, 1998.

R. J. Keenan, D. M. Freymann, R. M. Stroud, and P. Walter, The signal recognition particle, Annu. Rev. Biochem, vol.70, pp.755-775, 2001.

Z. Keuylian, J. H. De-baaij, M. Gueguen, M. Glorian, C. Rouxel et al., The Notch pathway attenuates interleukin 1? (IL1?)-mediated induction of adenylyl cyclase 8 (AC8) expression during vascular smooth muscle cell (VSMC) trans-differentiation, J. Biol. Chem, vol.287, pp.24978-24989, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01545434

F. Kilic and G. Rudnick, Oligomerization of serotonin transporter and its functional consequences, 2000.

, Proc. Natl. Acad. Sci. U. S. A, vol.97, pp.3106-3111

H. Kirii, T. Niwa, Y. Yamada, H. Wada, K. Saito et al., Lack of interleukin-1beta decreases the severity of atherosclerosis in ApoE-deficient mice, Arterioscler. Thromb. Vasc. Biol, vol.23, pp.656-660, 2003.

J. B. Klarenbeek, J. Goedhart, M. A. Hink, T. W. Gadella, J. et al., A mTurquoise-based cAMP sensor for both FLIM and ratiometric read-out has improved dynamic range, PloS One, vol.6, 2011.

R. D. Klausner, J. Lippincott-schwartz, and J. S. Bonifacino, The T cell antigen receptor: insights into organelle biology, Annu. Rev. Cell Biol, vol.6, pp.403-431, 1990.

S. Kleinboelting, J. Van-den-heuvel, and C. Steegborn, Structural analysis of human soluble adenylyl cyclase and crystal structures of its nucleotide complexes-implications for cyclase catalysis and evolution, FEBS J, vol.281, pp.4151-4164, 2014.

R. Kornfeld and S. Kornfeld, Assembly of asparagine-linked oligosaccharides, Annu. Rev. Biochem, vol.54, pp.631-664, 1985.

A. A. Korotaeva, S. I. Provatorov, E. V. Samo?lova, A. I. Kaminny?, A. B. Sumarokov et al., , 2002.

, Ter. Arkh, vol.74, pp.12-15

A. A. Korotaeva, E. V. Samoilova, A. I. Kaminny, A. A. Pirkova, T. J. Resink et al., The catalytically active secretory phospholipase A2 type IIA is involved in restenosis development after PTCA in human coronary arteries and generation of atherogenic LDL, Mol. Cell. Biochem, vol.270, pp.107-113, 2005.

M. Kotani, N. Fukuda, H. Ando, W. Hu, S. Kunimoto et al., Chimeric DNA-RNA hammerhead ribozyme targeting PDGF A-chain mRNA specifically inhibits neointima formation in rat carotid artery after balloon injury, Cardiovasc. Res, vol.57, pp.265-276, 2003.

O. Kovtun, V. A. Tillu, N. Ariotti, R. G. Parton, and B. M. Collins, Cavin family proteins and the assembly of caveolae, J. Cell Sci, vol.128, pp.1269-1278, 2015.

N. Koyama, M. G. Kinsella, T. N. Wight, U. Hedin, and A. W. Clowes, Heparan sulfate proteoglycans mediate a potent inhibitory signal for migration of vascular smooth muscle cells, Circ. Res, vol.83, pp.305-313, 1998.

G. Krishna, B. Weiss, and B. B. Brodie, A simple, sensitive method for the assay of adenyl cyclase, J. Pharmacol. Exp. Ther, vol.163, pp.379-385, 1968.

L. Z. Krsmanovic, N. Mores, C. E. Navarro, M. Tomi?, and K. J. Catt, Regulation of Ca2+-sensitive adenylyl cyclase in gonadotropin-releasing hormone neurons, Mol. Endocrinol. Baltim. Md, vol.15, pp.429-440, 2001.

J. Krupinski, F. Coussen, H. A. Bakalyar, W. J. Tang, P. G. Feinstein et al., Adenylyl cyclase amino acid sequence: possible channel-or transporter-like structure, Science, vol.244, pp.1558-1564, 1989.

J. Krupinski, T. C. Lehman, C. D. Frankenfield, J. C. Zwaagstra, and P. A. Watson, Molecular diversity in the adenylylcyclase family. Evidence for eight forms of the enzyme and cloning of type VI, J. Biol. Chem, vol.267, pp.24858-24862, 1992.

M. Kuro-o, R. Nagai, K. Nakahara, H. Katoh, R. C. Tsai et al., cDNA cloning of a myosin heavy chain isoform in embryonic smooth muscle and its expression during vascular development and in arteriosclerosis, J. Biol. Chem, vol.266, pp.3768-3773, 1991.

M. Kuzuya, Effect of inflammatory cytokines and oxidized low density lipoprotein on vascular endothelial growth factor expression in macrophage, 1998.

, Nihon Ronen Igakkai Zasshi Jpn. J. Geriatr, vol.35, pp.268-272

K. Lefkimmiatis, M. Srikanthan, I. Maiellaro, M. P. Moyer, S. Curci et al., Store-operated cyclic AMP signalling mediated by STIM1, Nat. Cell Biol, vol.11, pp.433-442, 2009.

F. Letourneur and R. D. Klausner, A novel di-leucine motif and a tyrosine-based motif independently mediate lysosomal targeting and endocytosis of CD3 chains, Cell, vol.69, pp.1143-1157, 1992.
URL : https://hal.archives-ouvertes.fr/hal-00314003

F. Letourneur, S. Hennecke, C. Démollière, C. , and P. , Steric masking of a dilysine endoplasmic reticulum retention motif during assembly of the human high affinity receptor for immunoglobulin E, J. Cell Biol, vol.129, pp.971-978, 1995.
URL : https://hal.archives-ouvertes.fr/hal-00313996

L. R. Levin and R. R. Reed, Identification of functional domains of adenylyl cyclase using in vivo chimeras, J. Biol. Chem, vol.270, pp.7573-7579, 1995.

C. Li, P. C. Krishnamurthy, H. Penmatsa, K. L. Marrs, X. Q. Wang et al., Spatiotemporal coupling of cAMP transporter to CFTR chloride channel function in the gut epithelia, Cell, vol.131, pp.940-951, 2007.

H. Li, L. M. Ayer, J. Lytton, and J. P. Deans, Store-operated cation entry mediated by CD20 in membrane rafts, J. Biol. Chem, vol.278, pp.42427-42434, 2003.

I. T. Li, K. R. Ranjith, and K. Truong, Sequence reversed peptide from CaMKK binds to calmodulin in reversible Ca2+ -dependent manner, Biochem. Biophys. Res. Commun, vol.352, pp.932-935, 2007.

L. Li, J. M. Miano, B. Mercer, and E. N. Olson, Expression of the SM22alpha promoter in transgenic mice provides evidence for distinct transcriptional regulatory programs in vascular and visceral smooth muscle cells, J. Cell Biol, vol.132, pp.849-859, 1996.

L. Li, J. M. Miano, P. Cserjesi, and E. N. Olson, SM22 alpha, a marker of adult smooth muscle, is expressed in multiple myogenic lineages during embryogenesis, Circ. Res, vol.78, pp.188-195, 1996.

R. Li, T. Cindrova-davies, J. N. Skepper, and L. A. Sellers, Prostacyclin induces apoptosis of vascular smooth muscle cells by a cAMP-mediated inhibition of extracellular signal-regulated kinase activity and can counteract the mitogenic activity of endothelin-1 or basic fibroblast growth factor, Circ. Res, vol.94, pp.759-767, 2004.

S. Li, M. L. Lee, M. R. Bruchas, G. C. Chan, D. R. Storm et al., Calmodulin-stimulated adenylyl cyclase gene deletion affects morphine responses, Mol. Pharmacol, vol.70, pp.1742-1749, 2006.

X. Li, V. Van-putten, F. Zarinetchi, M. E. Nicks, S. Thaler et al., Suppression of smooth-muscle alpha-actin expression by platelet-derived growth factor in vascular smoothmuscle cells involves Ras and cytosolic phospholipase A2, Biochem. J, vol.327, pp.709-716, 1997.

P. Libby, S. J. Warner, and G. B. Friedman, Interleukin 1: a mitogen for human vascular smooth muscle cells that induces the release of growth-inhibitory prostanoids, J. Clin. Invest, vol.81, pp.487-498, 1988.

T. Lin, H. Lai, Y. Kao, C. Sun, M. Hwang et al., Protein kinase C inhibits type VI adenylyl cyclase by phosphorylating the regulatory N domain and two catalytic C1 and C2 domains, J. Biol. Chem, vol.277, pp.15721-15728, 2002.

J. U. Linder and J. E. Schultz, The class III adenylyl cyclases: multi-purpose signalling modules, Cell. Signal, vol.15, pp.1081-1089, 2003.

L. Lipskaia, N. Defer, G. Esposito, I. Hajar, M. C. Garel et al., Enhanced cardiac function in transgenic mice expressing a Ca(2+)-stimulated adenylyl cyclase, Circ. Res, vol.86, pp.795-801, 2000.

N. Liu, X. Ren, and L. Cen, , 1996.

, Zhonghua Yi Xue Za Zhi, vol.76, pp.297-300

P. Liu, P. Wang, P. Michaely, M. Zhu, A. et al., Presence of oxidized cholesterol in caveolae uncouples active platelet-derived growth factor receptors from tyrosine kinase substrates, J. Biol. Chem, vol.275, pp.31648-31654, 2000.

E. Loukianov, T. Loukianova, and M. Periasamy, Myosin heavy chain isoforms in smooth muscle, Comp. Biochem. Physiol. B Biochem. Mol. Biol, vol.117, pp.13-18, 1997.

Y. Lu, X. Xiong, A. Helm, K. Kimani, A. Bragin et al., Co-and posttranslational translocation mechanisms direct cystic fibrosis transmembrane conductance regulator N terminus transmembrane assembly, J. Biol. Chem, vol.273, pp.568-576, 1998.

M. Ludwig and K. Seuwen, Characterization of the human adenylyl cyclase gene family: cDNA, gene structure, and tissue distribution of the nine isoforms, J. Recept. Signal Transduct. Res, vol.22, pp.79-110, 2002.

B. C. Lutters, M. A. Leeuwenburgh, C. C. Appeldoorn, T. J. Molenaar, T. J. Van-berkel et al., Blocking endothelial adhesion molecules: a potential therapeutic strategy to combat atherogenesis, Curr. Opin. Lipidol, vol.15, pp.545-552, 2004.

M. M. Lyles and H. F. Gilbert, Catalysis of the oxidative folding of ribonuclease A by protein disulfide isomerase: pre-steady-state kinetics and the utilization of the oxidizing equivalents of the isomerase, Biochemistry (Mosc.), vol.30, pp.619-625, 1991.

G. Ma, M. Wei, L. He, C. Liu, B. Wu et al., Inside-out Ca(2+) signalling prompted by STIM1 conformational switch, Nat. Commun, vol.6, p.7826, 2015.

J. W. Maas, S. K. Vogt, G. C. Chan, V. V. Pineda, D. R. Storm et al., Calcium-stimulated adenylyl cyclases are critical modulators of neuronal ethanol sensitivity, J. Neurosci. Off. J. Soc. Neurosci, vol.25, pp.4118-4126, 2005.

J. W. Maas, R. A. Indacochea, L. M. Muglia, T. T. Tran, S. K. Vogt et al., Calcium-stimulated adenylyl cyclases modulate ethanol-induced neurodegeneration in the neonatal brain, J. Neurosci. Off. J. Soc. Neurosci, vol.25, pp.2376-2385, 2005.

D. A. Macdougall, S. Wachten, A. Ciruela, A. Sinz, and D. M. Cooper, Separate elements within a single IQ-like motif in adenylyl cyclase type 8 impart ca2+/calmodulin binding and autoinhibition, J. Biol. Chem, vol.284, pp.15573-15588, 2009.

J. Machecourt, N. Danchin, J. M. Lablanche, J. M. Fauvel, J. L. Bonnet et al., Risk factors for stent thrombosis after implantation of sirolimuseluting stents in diabetic and nondiabetic patients: the EVASTENT Matched-Cohort Registry, J. Am. Coll. Cardiol, vol.50, pp.501-508, 2007.

S. J. Mackenzie, G. S. Baillie, I. Mcphee, G. B. Bolger, and M. D. Houslay, ERK2 mitogen-activated protein kinase binding, phosphorylation, and regulation of the PDE4D cAMP-specific phosphodiesterases. The involvement of COOH-terminal docking sites and NH2-terminal UCR regions, J. Biol. Chem, vol.275, pp.16609-16617, 2000.

S. J. Mackenzie, G. S. Baillie, I. Mcphee, C. Mackenzie, R. Seamons et al., Long PDE4 cAMP specific phosphodiesterases are activated by protein kinase A-mediated phosphorylation of a single serine residue in Upstream, 2002.

, J. Pharmacol, vol.136, pp.421-433

T. Maier, M. Güell, and L. Serrano, Correlation of mRNA and protein in complex biological samples, FEBS Lett, vol.583, pp.3966-3973, 2009.

V. C. Manganiello and E. Degerman, Cyclic nucleotide phosphodiesterases (PDEs): diverse regulators of cyclic nucleotide signals and inviting molecular targets for novel therapeutic agents, Thromb. Haemost, vol.82, pp.407-411, 1999.

A. Marjamaki, M. Sato, R. Bouet-alard, Q. Yang, I. Limon-boulez et al., Factors determining the specificity of signal transduction by guanine nucleotide-binding protein-coupled receptors. Integration of stimulatory and inhibitory input to the effector adenylyl cyclase, J. Biol. Chem, vol.272, pp.16466-16473, 1997.

A. C. Martin and D. M. Cooper, Capacitative and 1-oleyl-2-acetyl-sn-glycerol-activated Ca(2+) entry distinguished using adenylyl cyclase type 8, Mol. Pharmacol, vol.70, pp.769-777, 2006.

A. C. Martin, D. Willoughby, A. Ciruela, L. Ayling, M. Pagano et al., Capacitative Ca2+ entry via Orai1 and stromal interacting molecule 1 (STIM1) regulates adenylyl cyclase type 8, Mol. Pharmacol, vol.75, pp.830-842, 2009.

J. Martin, M. Gruber, and A. N. Lupas, Coiled coils meet the chaperone world, Trends Biochem. Sci, vol.29, pp.455-458, 2004.

N. Masada, A. Ciruela, D. A. Macdougall, and D. M. Cooper, Distinct mechanisms of regulation by Ca2+/calmodulin of type 1 and 8 adenylyl cyclases support their different physiological roles, J. Biol. Chem, vol.284, pp.4451-4463, 2009.

J. D. Matthew, A. S. Khromov, M. J. Mcduffie, A. V. Somlyo, A. P. Somlyo et al., Contractile properties and proteins of smooth muscles of a calponin knockout mouse, J. Physiol. 529 Pt, vol.3, pp.811-824, 2000.

P. Mattick, J. Parrington, E. Odia, A. Simpson, T. Collins et al., Ca2+-stimulated adenylyl cyclase isoform AC1 is preferentially expressed in guinea-pig sino-atrial node cells and modulates the I(f) pacemaker current, J. Physiol, vol.582, pp.1195-1203, 2007.

L. Mauri, W. Hsieh, J. M. Massaro, K. K. Ho, R. Agostino et al., Stent thrombosis in randomized clinical trials of drug-eluting stents, N. Engl. J. Med, vol.356, pp.1020-1029, 2007.

D. H. Maurice, H. Ke, F. Ahmad, Y. Wang, J. Chung et al., Advances in targeting cyclic nucleotide phosphodiesterases, Nat. Rev. Drug Discov, vol.13, pp.290-314, 2014.

J. S. Mckean, F. Murray, G. Gibson, D. A. Shewan, S. J. Tucker et al., The cAMPproducing agonist beraprost inhibits human vascular smooth muscle cell migration via exchange protein directly activated by cAMP, Cardiovasc. Res, vol.107, pp.546-555, 2015.

A. R. Means, I. C. Bagchi, M. F. Vanberkum, and B. E. Kemp, Regulation of smooth muscle myosin light chain kinase by calmodulin, Adv. Exp. Med. Biol, vol.304, pp.11-24, 1991.

A. Melnyk, H. Rieger, and R. Zimmermann, Co-chaperones of the mammalian endoplasmic reticulum, Subcell. Biochem, vol.78, pp.179-200, 2015.

F. Merhi-soussi, B. R. Kwak, D. Magne, C. Chadjichristos, M. Berti et al., Interleukin-1 plays a major role in vascular inflammation and atherosclerosis in male apolipoprotein E-knockout mice, Cardiovasc. Res, vol.66, pp.583-593, 2005.

S. Mhaouty-kodja, R. Bouet-alard, I. Limon-boulez, J. P. Maltier, and C. Legrand, Molecular diversity of adenylyl cyclases in human and rat myometrium. Correlation with global adenylyl cyclase activity during mid-and term pregnancy, J. Biol. Chem, vol.272, pp.31100-31106, 1997.

G. Milligan, Neurobiology. Receptors as kissing cousins, Science, vol.288, pp.65-67, 2000.

G. Milligan, G protein-coupled receptor dimerization: function and ligand pharmacology, Mol. Pharmacol, vol.66, pp.1-7, 2004.

A. Miyawaki, J. Llopis, R. Heim, J. M. Mccaffery, J. A. Adams et al., Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin, Nature, vol.388, pp.882-887, 1997.

N. Mons and D. M. Cooper, Adenylyl cyclase mRNA expression does not reflect the predominant Ca2+/calmodulin-stimulated activity in the hypothalamus, J. Neuroendocrinol, vol.6, pp.665-671, 1994.

A. J. De-mooij-van-malsen, H. A. Van-lith, H. Oppelaar, J. Hendriks, M. De-wit et al., Interspecies trait genetics reveals association of Adcy8 with mouse avoidance behavior and a human mood disorder, Biol. Psychiatry, vol.66, pp.1123-1130, 2009.

M. Morice, P. W. Serruys, J. E. Sousa, J. Fajadet, E. Ban-hayashi et al., A randomized comparison of a sirolimus-eluting stent with a standard stent for coronary revascularization, N. Engl. J. Med, vol.346, pp.1773-1780, 2002.

T. Mou, A. Gille, D. A. Fancy, R. Seifert, and S. R. Sprang, Structural basis for the inhibition of mammalian membrane adenylyl cyclase by 2 '(3')-O-(N-Methylanthraniloyl)-guanosine 5 '-triphosphate, J. Biol. Chem, vol.280, pp.7253-7261, 2005.

T. Mou, A. Gille, S. Suryanarayana, M. Richter, R. Seifert et al., Broad specificity of mammalian adenylyl cyclase for interaction with 2',3'-substituted purine-and pyrimidine nucleotide inhibitors, Mol. Pharmacol, vol.70, pp.878-886, 2006.

T. Mou, N. Masada, D. M. Cooper, and S. R. Sprang, Structural basis for inhibition of mammalian adenylyl cyclase by calcium, Biochemistry (Mosc.), vol.48, pp.3387-3397, 2009.

M. A. Movsesian, PDE3 cyclic nucleotide phosphodiesterases and the compartmentation of cyclic nucleotide-mediated signalling in cardiac myocytes, Basic Res. Cardiol. 97 Suppl, vol.1, pp.83-90, 2002.

L. M. Muglia, M. L. Schaefer, S. K. Vogt, G. Gurtner, A. Imamura et al., The 5'-flanking region of the mouse adenylyl cyclase type VIII gene imparts tissue-specific expression in transgenic mice, J. Neurosci. Off. J. Soc. Neurosci, vol.19, pp.2051-2058, 1999.

Y. Nakahashi, E. Nelson, K. Fagan, E. Gonzales, J. L. Guillou et al., Construction of a full-length Ca2+-sensitive adenylyl cyclase/aequorin chimera, J. Biol. Chem, vol.272, pp.18093-18097, 1997.

T. Nakaki, M. Ohta, and R. Kato, Inhibition by prostacyclin and carbacyclins of endothelin-induced DNA synthesis in cultured vascular smooth muscle cells, Prostaglandins Leukot. Essent. Fatty Acids, vol.44, pp.237-239, 1991.

Y. Nakashima, A. S. Plump, E. W. Raines, J. L. Breslow, R. et al., ApoE-deficient mice develop lesions of all phases of atherosclerosis throughout the arterial tree, Arterioscler. Thromb. J. Vasc. Biol, vol.14, pp.133-140, 1994.

K. Nakatsukasa and J. L. Brodsky, The recognition and retrotranslocation of misfolded proteins from the endoplasmic reticulum, Traffic Cph. Den, vol.9, pp.861-870, 2008.

C. Napoli, F. P. D'armiento, F. P. Mancini, A. Postiglione, J. L. Witztum et al., Fatty streak formation occurs in human fetal aortas and is greatly enhanced by maternal hypercholesterolemia. Intimal accumulation of low density lipoprotein and its oxidation precede monocyte recruitment into early atherosclerotic lesions, J. Clin. Invest, vol.100, pp.2680-2690, 1997.

M. Negishi, L. G. Pedersen, E. Petrotchenko, S. Shevtsov, A. Gorokhov et al., Structure and function of sulfotransferases, Arch. Biochem. Biophys, vol.390, pp.149-157, 2001.

C. P. Nelson, R. D. Rainbow, J. L. Brignell, M. D. Perry, J. M. Willets et al., Principal role of adenylyl cyclase 6 in K + channel regulation and vasodilator signalling in vascular smooth muscle cells, Cardiovasc. Res, vol.91, pp.694-702, 2011.

E. J. Nelson, K. Hellevuo, M. Yoshimura, and B. Tabakoff, Ethanol-induced phosphorylation and potentiation of the activity of type 7 adenylyl cyclase. Involvement of protein kinase C delta, J. Biol. Chem, vol.278, pp.4552-4560, 2003.

S. J. Netherton, S. L. Jimmo, D. Palmer, D. G. Tilley, H. A. Dunkerley et al., Altered phosphodiesterase 3-mediated cAMP hydrolysis contributes to a hypermotile phenotype in obese JCR:LA-cp rat aortic vascular smooth muscle cells: implications for diabetes-associated cardiovascular disease, Diabetes, vol.51, pp.1194-1200, 2002.

I. Nevo, T. Avidor-reiss, R. Levy, M. Bayewitch, E. Heldman et al., Regulation of adenylyl cyclase isozymes on acute and chronic activation of inhibitory receptors, Mol. Pharmacol, vol.54, pp.419-426, 1998.

A. C. Newby and A. B. Zaltsman, Fibrous cap formation or destruction--the critical importance of vascular smooth muscle cell proliferation, migration and matrix formation, Cardiovasc. Res, vol.41, pp.345-360, 1999.

W. H. Newman, L. M. Zhang, D. H. Lee, M. L. Dalton, D. J. Warejcka et al., Release of tumor necrosis factor-alpha from coronary smooth muscle: activation of NFkappaB and inhibition by elevated cyclic AMP, J. Surg. Res, vol.80, pp.129-135, 1998.

X. Nicol, A. Muzerelle, I. Bachy, A. Ravary, G. et al., Spatiotemporal localization of the calcium-stimulated adenylate cyclases, AC1 and AC8, during mouse brain development, J. Comp. Neurol, vol.486, pp.281-294, 2005.

M. D. Nielsen, G. C. Chan, S. W. Poser, and D. R. Storm, Differential regulation of type I and type VIII Ca2+-stimulated adenylyl cyclases by Gi-coupled receptors in vivo, J. Biol. Chem, vol.271, pp.33308-33316, 1996.

T. Nilsson, M. Jackson, and P. A. Peterson, Short cytoplasmic sequences serve as retention signals for transmembrane proteins in the endoplasmic reticulum, Cell, vol.58, pp.707-718, 1989.

Y. Nishizuka and S. Nakamura, Lipid mediators and protein kinase C for intracellular signalling, Clin. Exp. Pharmacol. Physiol. Suppl, vol.22, pp.202-203, 1995.

C. Nordstedt and B. B. Fredholm, A modification of a protein-binding method for rapid quantification of cAMP in cell-culture supernatants and body fluid, Anal. Biochem, vol.189, pp.231-234, 1990.

J. K. Northup, P. C. Sternweis, M. D. Smigel, L. S. Schleifer, E. M. Ross et al., Purification of the regulatory component of adenylate cyclase, Proc. Natl. Acad. Sci. U. S. A, vol.77, pp.6516-6520, 1980.

J. Z. Nowak and J. B. Zawilska, , 1999.

, Postepy Hig. Med. Dosw, vol.53, pp.147-172

N. Ogen-shtern, E. Avezov, M. Shenkman, R. Benyair, and G. Z. Lederkremer, Mannosidase IA is in Quality Control Vesicles and Participates in Glycoprotein Targeting to ERAD, J. Mol. Biol, vol.428, pp.3194-3205, 2016.

O. Ohara, T. Nakano, H. Teraoka, and H. Arita, cAMP negatively regulates mRNA levels of actin and tropomyosin in rat cultured vascular smooth muscle cells, J. Biochem. (Tokyo), vol.109, pp.834-839, 1991.

K. Omori and J. Kotera, Overview of PDEs and their regulation, Circ. Res, vol.100, pp.309-327, 2007.

S. N. Orlov, N. Thorin-trescases, N. O. Dulin, T. V. Dam, M. A. Fortuno et al., Activation of cAMP signaling transiently inhibits apoptosis in vascular smooth muscle cells in a site upstream of caspase-3, Cell Death Differ, vol.6, pp.661-672, 1999.

G. Ostlund and E. L. Sonnhammer, Quality criteria for finding genes with high mRNA-protein expression correlation and coexpression correlation, Gene, vol.497, pp.228-236, 2012.

R. S. Ostrom, J. D. Violin, S. Coleman, and P. A. Insel, Selective enhancement of beta-adrenergic receptor signaling by overexpression of adenylyl cyclase type 6: colocalization of receptor and adenylyl cyclase in caveolae of cardiac myocytes, Mol. Pharmacol, vol.57, pp.1075-1079, 2000.

R. S. Ostrom, X. Liu, B. P. Head, C. Gregorian, T. M. Seasholtz et al., Localization of adenylyl cyclase isoforms and G protein-coupled receptors in vascular smooth muscle cells: expression in caveolin-rich and noncaveolin domains, Mol. Pharmacol, vol.62, pp.983-992, 2002.

R. S. Ostrom, J. E. Naugle, M. Hase, C. Gregorian, J. S. Swaney et al.,

, Angiotensin II enhances adenylyl cyclase signaling via Ca2+/calmodulin. Gq-Gs cross-talk regulates collagen production in cardiac fibroblasts, J. Biol. Chem, vol.278, pp.24461-24468

G. K. Owens, Regulation of differentiation of vascular smooth muscle cells, Physiol. Rev, vol.75, pp.487-517, 1995.

G. K. Owens and M. M. Thompson, Developmental changes in isoactin expression in rat aortic smooth muscle cells in vivo. Relationship between growth and cytodifferentiation, J. Biol. Chem, vol.261, pp.13373-13380, 1986.

G. K. Owens and G. Wise, Regulation of differentiation/maturation in vascular smooth muscle cells by hormones and growth factors, Agents Actions. Suppl, vol.48, pp.3-24, 1997.

G. K. Owens, M. S. Kumar, and B. R. Wamhoff, Molecular regulation of vascular smooth muscle cell differentiation in development and disease, Physiol. Rev, vol.84, pp.767-801, 2004.

M. Pagano, M. A. Clynes, N. Masada, A. Ciruela, L. Ayling et al., Insights into the residence in lipid rafts of adenylyl cyclase AC8 and its regulation by capacitative calcium entry, Am. J. Physiol. Cell Physiol, vol.296, pp.607-619, 2009.

D. Palmer, M. , and D. H. , Dual expression and differential regulation of phosphodiesterase 3A and phosphodiesterase 3B in human vascular smooth muscle: implications for phosphodiesterase 3 inhibition in human cardiovascular tissues, Mol. Pharmacol, vol.58, pp.247-252, 2000.

D. Palmer, K. Tsoi, M. , and D. H. , Synergistic inhibition of vascular smooth muscle cell migration by phosphodiesterase 3 and phosphodiesterase 4 inhibitors, Circ. Res, vol.82, pp.852-861, 1998.

X. Pan, E. Arauz, J. J. Krzanowski, D. F. Fitzpatrick, and J. B. Polson, Synergistic interactions between selective pharmacological inhibitors of phosphodiesterase isozyme families PDE III and PDE IV to attenuate proliferation of rat vascular smooth muscle cells, Biochem. Pharmacol, vol.48, pp.827-835, 1994.

J. M. Paterson, S. M. Smith, A. J. Harmar, A. , and F. A. , Control of a novel adenylyl cyclase by calcineurin, Biochem. Biophys. Res. Commun, vol.214, pp.1000-1008, 1995.

J. M. Paterson, S. M. Smith, J. Simpson, O. C. Grace, A. A. Sosunov et al., , 2000.

, Characterisation of human adenylyl cyclase IX reveals inhibition by Ca(2+)/Calcineurin and differential mRNA plyadenylation, J. Neurochem, vol.75, pp.1358-1367

S. Pelletier, C. Julien, M. R. Popoff, N. Lamarche-vane, and S. Meloche, Cyclic AMP induces morphological changes of vascular smooth muscle cells by inhibiting a Rac-dependent signaling pathway, J. Cell. Physiol, vol.204, pp.412-422, 2005.

A. Persechini and P. M. Stemmer, Calmodulin is a limiting factor in the cell, Trends Cardiovasc. Med, vol.12, pp.32-37, 2002.

S. Petersen, Y. , and G. M. , Essential role for cyclic AMP and its receptor protein in Yersinia enterocolitica virulence, Infect. Immun, vol.70, pp.3665-3672, 2002.

N. Pfanner and A. Geissler, Versatility of the mitochondrial protein import machinery, Nat. Rev. Mol. Cell Biol, vol.2, pp.339-349, 2001.

C. Pinto, D. Papa, M. Hübner, T. Mou, G. H. Lushington et al., Activation and inhibition of adenylyl cyclase isoforms by forskolin analogs, J. Pharmacol. Exp. Ther, vol.325, pp.27-36, 2008.

L. M. Popescu, C. P. Foril, M. Hinescu, C. P?noiu, M. Cintez? et al., Nitroglycerin stimulates the sarcolemmal Ca++-extrusion ATPase of coronary smooth muscle cells, Biochem. Pharmacol, vol.34, pp.1857-1860, 1985.

R. T. Premont, Identification of adenylyl cyclases by amplification using degenerate primers, Methods Enzymol, vol.238, pp.116-127, 1994.

R. T. Premont, I. Matsuoka, M. G. Mattei, Y. Pouille, N. Defer et al., Identification and characterization of a widely expressed form of adenylyl cyclase, J. Biol. Chem, vol.271, pp.13900-13907, 1996.

D. O. Procopio, L. M. Saba, H. Walter, O. Lesch, K. Skala et al., Genetic markers of comorbid depression and alcoholism in women, Alcohol. Clin. Exp. Res, vol.37, pp.896-904, 2013.

L. Qi, B. Tsai, A. , and P. , New Insights into the Physiological Role of Endoplasmic ReticulumAssociated Degradation, Trends Cell Biol, vol.27, pp.430-440, 2017.

J. H. Qiao, J. Tripathi, N. K. Mishra, Y. Cai, S. Tripathi et al., Role of macrophage colony-stimulating factor in atherosclerosis: studies of osteopetrotic mice, Am. J. Pathol, vol.150, pp.1687-1699, 1997.

T. W. Rall and E. W. Sutherland, Formation of a cyclic adenine ribonucleotide by tissue particles, J. Biol. Chem, vol.232, pp.1065-1076, 1958.

J. Ramachandran, A new simple method for separation of adenosine 3',5'-cyclic monophosphate from other nucleotides and its use in the assay of adenyl cyclase, Anal. Biochem, vol.43, pp.227-239, 1971.

M. A. Ramos, M. Kuzuya, T. Esaki, S. Miura, S. Satake et al., Induction of macrophage VEGF in response to oxidized LDL and VEGF accumulation in human atherosclerotic lesions, Arterioscler. Thromb. Vasc. Biol, vol.18, pp.1188-1196, 1998.

M. Raoux, P. Vacher, J. Papin, A. Picard, E. Kostrzewa et al., Multilevel control of glucose homeostasis by adenylyl cyclase 8, Diabetologia, vol.58, pp.749-757, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01545427

P. J. Rapiejko and R. Gilmore, Empty site forms of the SRP54 and SR alpha GTPases mediate targeting of ribosome-nascent chain complexes to the endoplasmic reticulum, Cell, vol.89, pp.703-713, 1997.

M. Razzoli, M. Andreoli, G. Maraia, C. Di-francesco, A. et al., Functional role of Calciumstimulated adenylyl cyclase 8 in adaptations to psychological stressors in the mouse: implications for mood disorders, Neuroscience, vol.170, pp.429-440, 2010.

S. Rensen, G. Merkx, P. Doevendans, A. Geurts-van-kessel, and G. Van-eys, Structure and chromosome location of Smtn, the mouse smoothelin gene, Cytogenet. Cell Genet, vol.89, pp.225-229, 2000.

S. S. Rensen, P. A. Doevendans, and G. J. Van-eys, Regulation and characteristics of vascular smooth muscle cell phenotypic diversity, Neth. Heart J. Mon. J. Neth. Soc. Cardiol. Neth. Heart Found, vol.15, pp.100-108, 2007.

P. Reusch, H. Wagdy, R. Reusch, E. Wilson, and H. E. Ives, Mechanical strain increases smooth muscle and decreases nonmuscle myosin expression in rat vascular smooth muscle cells, Circ. Res, vol.79, pp.1046-1053, 1996.

M. H. Rhee, M. Bayewitch, T. Avidor-reiss, R. Levy, and Z. Vogel, Cannabinoid receptor activation differentially regulates the various adenylyl cyclase isozymes, J. Neurochem, vol.71, pp.1525-1534, 1998.

M. Ritter, C. Buechler, T. Langmann, E. Orso, J. Klucken et al., The scavenger receptor CD163: regulation, promoter structure and genomic organization, Pathobiol. J. Immunopathol. Mol. Cell. Biol, vol.67, pp.257-261, 1999.

M. Rodbell, The role of hormone receptors and GTP-regulatory proteins in membrane transduction, Nature, vol.284, pp.17-22, 1980.

D. M. Rodman, K. Reese, J. Harral, B. Fouty, S. Wu et al., Low-voltage-activated (T-type) calcium channels control proliferation of human pulmonary artery myocytes, Circ. Res, vol.96, pp.864-872, 2005.

J. De-rooij, F. J. Zwartkruis, M. H. Verheijen, R. H. Cool, S. M. Nijman et al., , 1998.

, Epac is a Rap1 guanine-nucleotide-exchange factor directly activated by cyclic AMP, Nature, vol.396, pp.474-477

E. M. Ross, A. C. Howlett, K. M. Ferguson, and A. G. Gilman, Reconstitution of hormone-sensitive adenylate cyclase activity with resolved components of the enzyme, J. Biol. Chem, vol.253, pp.6401-6412, 1978.

J. Roth and C. Zuber, Quality control of glycoprotein folding and ERAD: the role of N-glycan handling, EDEM1 and OS-9, Histochem. Cell Biol, vol.147, pp.269-284, 2017.

A. A. Roy, K. E. Lemberg, and P. Chidiac, Recruitment of RGS2 and RGS4 to the plasma membrane by G proteins and receptors reflects functional interactions, Mol. Pharmacol, vol.64, pp.587-593, 2003.

D. L. Ruzicka and R. J. Schwartz, Sequential activation of alpha-actin genes during avian cardiogenesis: vascular smooth muscle alpha-actin gene transcripts mark the onset of cardiomyocyte differentiation, J. Cell Biol, vol.107, pp.2575-2586, 1988.

S. D. Rybalkin, K. E. Bornfeldt, W. K. Sonnenburg, I. G. Rybalkina, K. S. Kwak et al., Calmodulin-stimulated cyclic nucleotide phosphodiesterase (PDE1C) is induced in human arterial smooth muscle cells of the synthetic, proliferative phenotype, J. Clin. Invest, vol.100, pp.2611-2621, 1997.

S. D. Rybalkin, I. Rybalkina, J. A. Beavo, and K. E. Bornfeldt, Cyclic nucleotide phosphodiesterase 1C promotes human arterial smooth muscle cell proliferation, Circ. Res, vol.90, pp.151-157, 2002.

V. O. Rybin, X. Xu, M. P. Lisanti, and S. F. Steinberg, Differential targeting of beta -adrenergic receptor subtypes and adenylyl cyclase to cardiomyocyte caveolae. A mechanism to functionally regulate the cAMP signaling pathway, J. Biol. Chem, vol.275, pp.41447-41457, 2000.

R. Sadana and C. W. Dessauer, Physiological roles for G protein-regulated adenylyl cyclase isoforms: insights from knockout and overexpression studies, Neurosignals, vol.17, pp.5-22, 2009.

H. Sadlish and W. R. Skach, Biogenesis of CFTR and other polytopic membrane proteins: new roles for the ribosome-translocon complex, J. Membr. Biol, vol.202, pp.115-126, 2004.

S. Salim, S. Sinnarajah, J. H. Kehrl, and C. W. Dessauer, Identification of RGS2 and type V adenylyl cyclase interaction sites, J. Biol. Chem, vol.278, pp.15842-15849, 2003.

Y. Salomon, Adenylate cyclase assay, Adv. Cyclic Nucleotide Res, vol.10, pp.35-55, 1979.

Y. Salomon, C. Londos, and M. Rodbell, A highly sensitive adenylate cyclase assay, Anal. Biochem, vol.58, pp.541-548, 1974.

C. Sanabra and G. Mengod, Neuroanatomical distribution and neurochemical characterization of cells expressing adenylyl cyclase isoforms in mouse and rat brain, J. Chem. Neuroanat, vol.41, pp.43-54, 2011.

S. Sartore, M. Scatena, A. Chiavegato, E. Faggin, L. Giuriato et al., Myosin isoform expression in smooth muscle cells during physiological and pathological vascular remodeling, J. Vasc. Res, vol.31, pp.61-81, 1994.

S. Sartore, A. Chiavegato, E. Faggin, R. Franch, M. Puato et al., Contribution of adventitial fibroblasts to neointima formation and vascular remodeling: from innocent bystander to active participant, Circ. Res, vol.89, pp.1111-1121, 2001.

Y. Sassi, L. Lipskaia, G. Vandecasteele, V. O. Nikolaev, S. N. Hatem et al., Multidrug resistance-associated protein 4 regulates cAMPdependent signaling pathways and controls human and rat SMC proliferation, J. Clin. Invest, vol.118, pp.2747-2757, 2008.

M. Sata, A. Saiura, A. Kunisato, A. Tojo, S. Okada et al., Hematopoietic stem cells differentiate into vascular cells that participate in the pathogenesis of atherosclerosis, Nat. Med, vol.8, pp.403-409, 2002.

J. Sato, M. Kinugasa, S. Satomi-kobayashi, K. Hatakeyama, A. J. Knox et al., Family with sequence similarity 5, member C (FAM5C) increases leukocyte adhesion molecules in vascular endothelial cells: implication in vascular inflammation, PloS One, vol.9, 2014.

M. Sato, R. Hresko, and M. Mueckler, Testing the charge difference hypothesis for the assembly of a eucaryotic multispanning membrane protein, J. Biol. Chem, vol.273, pp.25203-25208, 1998.

M. L. Schaefer, S. T. Wong, D. F. Wozniak, L. M. Muglia, J. A. Liauw et al., Altered stress-induced anxiety in adenylyl cyclase type VIII-deficient mice, J. Neurosci. Off. J. Soc. Neurosci, vol.20, pp.4809-4820, 2000.

E. Schallmach, D. Steiner, and Z. Vogel, Adenylyl cyclase type II activity is regulated by two different mechanisms: implications for acute and chronic opioid exposure, Neuropharmacology, vol.50, pp.998-1005, 2006.

P. Scheiffele, M. G. Roth, and K. Simons, Interaction of influenza virus haemagglutinin with sphingolipid-cholesterol membrane domains via its transmembrane domain, EMBO J, vol.16, pp.5501-5508, 1997.

K. Scholich, A. J. Barbier, J. B. Mullenix, and T. B. Patel, Characterization of soluble forms of nonchimeric type V adenylyl cyclases, Proc. Natl. Acad. Sci. U. S. A, vol.94, pp.2915-2920, 1997.

R. Schubert and M. T. Nelson, Protein kinases: tuners of the BKCa channel in smooth muscle, Trends Pharmacol. Sci, vol.22, pp.505-512, 2001.

S. M. Schwartz, Smooth muscle migration in vascular development and pathogenesis, Transpl. Immunol, vol.5, pp.255-260, 1997.

C. Schwencke, M. Yamamoto, S. Okumura, Y. Toya, S. J. Kim et al., Compartmentation of cyclic adenosine 3',5'-monophosphate signaling in caveolae, Mol. Endocrinol. Baltim. Md, vol.13, pp.1061-1070, 1999.

T. Seebacher, J. U. Linder, and J. E. Schultz, An isoform-specific interaction of the membrane anchors affects mammalian adenylyl cyclase type V activity, Eur. J. Biochem, vol.268, pp.105-110, 2001.

H. Seo, S. W. Kim, C. Y. Lee, K. H. Lim, J. Lee et al., 7-cyclopentyl-5-(4-phenoxyphenyl)-7H-pyrrolo[2,3-d] pyrimidin-4-ylamine inhibits the proliferation and migration of vascular smooth muscle cells by suppressing ERK and Akt pathways, Eur. J. Pharmacol, vol.798, pp.35-42, 2017.

C. Sette and M. Conti, Phosphorylation and activation of a cAMP-specific phosphodiesterase by the cAMP-dependent protein kinase. Involvement of serine 54 in the enzyme activation, J. Biol. Chem, vol.271, pp.16526-16534, 1996.

Y. Shakur, K. Takeda, Y. Kenan, Z. X. Yu, G. Rena et al., Membrane localization of cyclic nucleotide phosphodiesterase 3 (PDE3). Two Nterminal domains are required for the efficient targeting to, and association of, PDE3 with endoplasmic reticulum, J. Biol. Chem, vol.275, pp.38749-38761, 2000.

M. Shear, P. A. Insel, K. L. Melmon, and P. Coffino, Agonist-specific refractoriness induced by isoproterenol. Studies with mutant cells, J. Biol. Chem, vol.251, pp.7572-7576, 1976.

H. Shimizu, J. W. Daly, and C. R. Creveling, A radioisotopic method for measuring the formation of adenosine 3',5'-cyclic monophosphate in incubated slices of brain, J. Neurochem, vol.16, pp.1609-1619, 1969.

T. J. Shuttleworth and J. L. Thompson, Discriminating between capacitative and arachidonate-activated Ca(2+) entry pathways in HEK293 cells, J. Biol. Chem, vol.274, pp.31174-31178, 1999.

R. Siegert, M. R. Leroux, C. Scheufler, F. U. Hartl, and I. Moarefi, Structure of the molecular chaperone prefoldin: unique interaction of multiple coiled coil tentacles with unfolded proteins, Cell, vol.103, pp.621-632, 2000.

U. Sigwart, J. Puel, V. Mirkovitch, F. Joffre, and L. Kappenberger, Intravascular stents to prevent occlusion and restenosis after transluminal angioplasty, N. Engl. J. Med, vol.316, pp.701-706, 1987.

R. E. Simpson, A. Ciruela, and D. M. Cooper, The role of calmodulin recruitment in Ca2+ stimulation of adenylyl cyclase type 8, J. Biol. Chem, vol.281, pp.17379-17389, 2006.

M. Simsova, P. Sebo, and C. Leclerc, The adenylate cyclase toxin from Bordetella pertussis--a novel promising vehicle for antigen delivery to dendritic cells, Int. J. Med. Microbiol. IJMM, vol.293, pp.571-576, 2004.

C. B. Sindreu, Z. S. Scheiner, and D. R. Storm, Ca2+ -stimulated adenylyl cyclases regulate ERKdependent activation of MSK1 during fear conditioning, Neuron, vol.53, pp.79-89, 2007.

S. Sinnarajah, C. W. Dessauer, D. Srikumar, J. Chen, J. Yuen et al., RGS2 regulates signal transduction in olfactory neurons by attenuating activation of adenylyl cyclase III, Nature, vol.409, pp.1051-1055, 2001.

B. S. Skalhegg and K. Tasken, Specificity in the cAMP/PKA signaling pathway. Differential expression,regulation, and subcellular localization of subunits of PKA, Front. Biosci. J. Virtual Libr, vol.5, pp.678-693, 2000.

K. E. Smith, C. Gu, K. A. Fagan, B. Hu, and D. M. Cooper, Residence of adenylyl cyclase type 8 in caveolae is necessary but not sufficient for regulation by capacitative Ca(2+) entry, J. Biol. Chem, vol.277, pp.6025-6031, 2002.

M. Soler, M. Camacho, J. R. Escudero, M. A. Iñiguez, and L. Vila, Human vascular smooth muscle cells but not endothelial cells express prostaglandin E synthase, Circ. Res, vol.87, pp.504-507, 2000.

W. Song, D. Raden, E. C. Mandon, and R. Gilmore, Role of Sec61alpha in the regulated transfer of the ribosome-nascent chain complex from the signal recognition particle to the translocation channel, Cell, vol.100, pp.333-343, 2000.

J. E. Souness, G. A. Hassall, and D. P. Parrott, Inhibition of pig aortic smooth muscle cell DNA synthesis by selective type III and type IV cyclic AMP phosphodiesterase inhibitors, Biochem. Pharmacol, vol.44, pp.857-866, 1992.

M. Sperandio, C. A. Gleissner, and K. Ley, Glycosylation in immune cell trafficking, Immunol. Rev, vol.230, pp.97-113, 2009.

H. C. Stary, D. H. Blankenhorn, A. B. Chandler, S. Glagov, W. Insull et al., A definition of the intima of human arteries and of its atherosclerosis-prone regions. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation, vol.85, pp.391-405, 1992.

H. C. Stary, A. B. Chandler, S. Glagov, J. R. Guyton, W. Insull et al., A definition of initial, fatty streak, and intermediate lesions of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, Circulation, vol.89, pp.2462-2478, 1994.

H. C. Stary, A. B. Chandler, R. E. Dinsmore, V. Fuster, S. Glagov et al., A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, Arterioscler. Thromb. Vasc. Biol, vol.15, pp.1512-1531, 1995.

C. Staudt, E. Puissant, and M. Boonen, Subcellular Trafficking of Mammalian Lysosomal Proteins: An Extended View, Int. J. Mol. Sci, vol.18, 2016.

D. Steiner, T. Avidor-reiss, E. Schallmach, E. Butovsky, N. Lev et al., Regulation of adenylate cyclase type VIII splice variants by acute and chronic Gi/o-coupled receptor activation, Biochem. J, vol.386, pp.341-348, 2005.

D. Steiner, D. Saya, E. Schallmach, W. F. Simonds, and Z. Vogel, Adenylyl cyclase type-VIII activity is regulated by G(betagamma) subunits, Cell. Signal, vol.18, pp.62-68, 2006.

J. C. Stoclet, C. Boulanger-saunier, B. Lassegue, and C. Lugnier, Cyclic nucleotides and calcium regulation in heart and smooth muscle cells, Ann. N. Y. Acad. Sci, vol.522, pp.106-115, 1988.

M. Stornaiuolo, L. V. Lotti, N. Borgese, M. Torrisi, G. Mottola et al., KDEL and KKXX retrieval signals appended to the same reporter protein determine different trafficking between endoplasmic reticulum, intermediate compartment, and Golgi complex, Mol. Biol. Cell, vol.14, pp.889-902, 2003.

M. Strazzabosco, R. Fiorotto, S. Melero, S. Glaser, H. Francis et al., Differentially expressed adenylyl cyclase isoforms mediate secretory functions in cholangiocyte subpopulation, Hepatol. Baltim. Md, vol.50, pp.244-252, 2009.

R. Sugai, K. Takemae, H. Tokuda, and K. Nishiyama, Topology inversion of SecG is essential for cytosolic SecA-dependent stimulation of protein translocation, J. Biol. Chem, vol.282, pp.29540-29548, 2007.

R. K. Sunahara and R. Taussig, Isoforms of mammalian adenylyl cyclase: multiplicities of signaling, Mol. Interv, vol.2, pp.168-184, 2002.

R. K. Sunahara, C. W. Dessauer, and A. G. Gilman, Complexity and diversity of mammalian adenylyl cyclases, Annu. Rev. Pharmacol. Toxicol, vol.36, pp.461-480, 1996.

R. K. Sunahara, C. W. Dessauer, R. E. Whisnant, C. Kleuss, and A. G. Gilman, Interaction of Gsalpha with the cytosolic domains of mammalian adenylyl cyclase, J. Biol. Chem, vol.272, pp.22265-22271, 1997.

R. K. Sunahara, A. Beuve, J. J. Tesmer, S. R. Sprang, D. L. Garbers et al., Exchange of substrate and inhibitor specificities between adenylyl and guanylyl cyclases, J. Biol. Chem, vol.273, pp.16332-16338, 1998.

S. Supattapone, S. K. Danoff, A. Theibert, S. K. Joseph, J. Steiner et al., Cyclic AMPdependent phosphorylation of a brain inositol trisphosphate receptor decreases its release of calcium, Proc. Natl. Acad. Sci. U. S. A, vol.85, pp.8747-8750, 1988.

S. Suryanarayana, C. Pinto, T. Mou, M. Richter, G. H. Lushington et al., The C1 homodimer of adenylyl cyclase binds nucleotides with high affinity but possesses exceedingly low catalytic activity, Neurosci. Lett, vol.467, pp.1-5, 2009.

E. W. Sutherland and T. W. Rall, Fractionation and characterization of a cyclic adenine ribonucleotide formed by tissue particles, J. Biol. Chem, vol.232, pp.1077-1091, 1958.

E. W. Sutherland, T. W. Rall, and T. Menon, Adenyl cylase. I. Distribution, preparation, and properties, J. Biol. Chem, vol.237, pp.1220-1227, 1962.

Y. Suzuki, T. Shen, M. Poyard, M. Best-belpomme, J. Hanoune et al., Expression of adenylyl cyclase mRNAs in the denervated and in the developing mouse skeletal muscle, Am. J. Physiol, vol.274, pp.1674-1685, 1998.

B. Tabakoff, E. Nelson, M. Yoshimura, K. Hellevuo, and P. L. Hoffman, Phosphorylation cascades control the actions of ethanol on cell cAMP signalling, J. Biomed. Sci, vol.8, pp.44-51, 2001.

M. Tada and M. Inui, Regulation of calcium transport by the ATPase-phospholamban system, J. Mol. Cell. Cardiol, vol.15, pp.565-575, 1983.

M. S. Taha, K. Nouri, L. G. Milroy, J. M. Moll, C. Herrmann et al., Subcellular fractionation and localization studies reveal a direct interaction of the fragile X mental retardation protein (FMRP) with nucleolin, PloS One, vol.9, 2014.

K. Tanaka, M. Sata, Y. Hirata, and R. Nagai, Diverse contribution of bone marrow cells to neointimal hyperplasia after mechanical vascular injuries, Circ. Res, vol.93, pp.783-790, 2003.

W. J. Tang and A. G. Gilman, Type-specific regulation of adenylyl cyclase by G protein beta gamma subunits, Science, vol.254, pp.1500-1503, 1991.

W. J. Tang and A. G. Gilman, Construction of a soluble adenylyl cyclase activated by Gs alpha and forskolin, Science, vol.268, pp.1769-1772, 1995.

W. J. Tang, J. Krupinski, and A. G. Gilman, Expression and characterization of calmodulin-activated (type I) adenylylcyclase, J. Biol. Chem, vol.266, pp.8595-8603, 1991.

W. J. Tang, M. Stanzel, and A. G. Gilman, Truncation and alanine-scanning mutants of type I adenylyl cyclase, Biochemistry (Mosc.), vol.34, pp.14563-14572, 1995.

A. Tannous, G. B. Pisoni, D. N. Hebert, and M. Molinari, N-linked sugar-regulated protein folding and quality control in the ER, Semin. Cell Dev. Biol, vol.41, pp.79-89, 2015.

M. G. Tansey, K. Luby-phelps, K. E. Kamm, and J. T. Stull, Ca(2+)-dependent phosphorylation of myosin light chain kinase decreases the Ca2+ sensitivity of light chain phosphorylation within smooth muscle cells, J. Biol. Chem, vol.269, pp.9912-9920, 1994.

K. Taskén and E. M. Aandahl, Localized effects of cAMP mediated by distinct routes of protein kinase A, Physiol. Rev, vol.84, pp.137-167, 2004.

S. Taurin, G. G. Ryazhsky, N. V. Maximova, A. G. Chuchalin, P. Hamet et al., Suppression of programmed cell death by intracellular cAMP is not mediated by expression of genes encoding an inhibitor of apoptosis, Biochem. Biokhimiia, vol.67, pp.254-259, 2002.

R. Taussig and G. Zimmermann, Type-specific regulation of mammalian adenylyl cyclases by G protein pathways, Adv. Second Messenger Phosphoprotein Res, vol.32, pp.81-98, 1998.

R. Taussig, W. J. Tang, J. R. Hepler, and A. G. Gilman, Distinct patterns of bidirectional regulation of mammalian adenylyl cyclases, J. Biol. Chem, vol.269, pp.6093-6100, 1994.

S. S. Taylor, J. A. Buechler, Y. , and W. , cAMP-dependent protein kinase: framework for a diverse family of regulatory enzymes, Annu. Rev. Biochem, vol.59, pp.971-1005, 1990.

R. D. Teasdale, J. , and M. R. , Signal-mediated sorting of membrane proteins between the endoplasmic reticulum and the golgi apparatus, Annu. Rev. Cell Dev. Biol, vol.12, pp.27-54, 1996.

A. Tedgui and C. Bernard, Cytokines, immuno-inflammatory response and atherosclerosis, Eur. Cytokine Netw, vol.5, pp.263-270, 1994.

G. S. Tell, M. B. Mittelmark, and O. D. Vellar, Cholesterol, high density lipoprotein cholesterol and triglycerides during puberty: the Oslo Youth Study, Am. J. Epidemiol, vol.122, pp.750-761, 1985.

J. J. Tesmer, R. K. Sunahara, A. G. Gilman, and S. R. Sprang, Crystal structure of the catalytic domains of adenylyl cyclase in a complex with Gsalpha, GTPgammaS. Science, vol.278, pp.1907-1916, 1997.

J. J. Tesmer, R. K. Sunahara, R. A. Johnson, G. Gosselin, A. G. Gilman et al., Two-metalIon catalysis in adenylyl cyclase, Science, vol.285, pp.756-760, 1999.

J. J. Tesmer, C. W. Dessauer, R. K. Sunahara, L. D. Murray, R. A. Johnson et al., Molecular basis for P-site inhibition of adenylyl cyclase, Biochemistry (Mosc.), vol.39, pp.14464-14471, 2000.

K. R. Thomae, D. K. Nakayama, T. R. Billiar, R. L. Simmons, B. R. Pitt et al., The effect of nitric oxide on fetal pulmonary artery smooth muscle growth, J. Surg. Res, vol.59, pp.337-343, 1995.

G. Thomas, Furin at the cutting edge: from protein traffic to embryogenesis and disease, Nat. Rev. Mol. Cell Biol, vol.3, pp.753-766, 2002.

K. S. Thorneloe and M. T. Nelson, Ion channels in smooth muscle: regulators of intracellular calcium and contractility. Can, J. Physiol. Pharmacol, vol.83, pp.215-242, 2005.

D. G. Tilley, M. , and D. H. , Vascular smooth muscle cell phenotype-dependent phosphodiesterase 4D short form expression: role of differential histone acetylation on cAMP-regulated function, Mol. Pharmacol, vol.68, pp.596-605, 2005.

Y. Toya, C. Schwencke, J. Couet, M. P. Lisanti, and Y. Ishikawa, Inhibition of adenylyl cyclase by caveolin peptides, Endocrinology, vol.139, pp.2025-2031, 1998.

R. E. Tracy, K. Devaney, and G. Kissling, Characteristics of the plaque under a coronary thrombus, Virchows Arch. A Pathol. Anat. Histopathol, vol.405, pp.411-427, 1985.

P. Tran, K. Tran-lundmark, R. Soininen, K. Tryggvason, J. Thyberg et al., Increased intimal hyperplasia and smooth muscle cell proliferation in transgenic mice with heparan sulfate-deficient perlecan, Circ. Res, vol.94, pp.550-558, 2004.

A. E. Traynor, D. L. Cundiff, and G. A. Soff, cAMP influence on transcription of thrombomodulin is dependent on de novo synthesis of a protein intermediate: evidence for cohesive regulation of myogenic proteins in vascular smooth muscle, J. Lab. Clin. Med, vol.126, pp.316-323, 1995.

M. Tsugawa, S. Iida, H. Fujii, K. Moriwaki, S. Tarui et al., An enzyme-linked immunosorbent assay (ELISA) for adenosine 3',5'-cyclic monophosphate (cAMP) in human plasma and urine using monoclonal antibody, J. Immunoassay, vol.11, pp.49-61, 1990.

C. L. Tucker, J. H. Hurley, T. R. Miller, and J. B. Hurley, Two amino acid substitutions convert a guanylyl cyclase, RetGC-1, into an adenylyl cyclase, Proc. Natl. Acad. Sci. U. S. A, vol.95, pp.5993-5997, 1998.

P. K. Vadiveloo, E. L. Filonzi, H. R. Stanton, and J. A. Hamilton, G1 phase arrest of human smooth muscle cells by heparin, IL-4 and cAMP is linked to repression of cyclin D1 and cdk2, Atherosclerosis, vol.133, pp.61-69, 1997.

B. Van-den-berg, W. M. Clemons, I. Collinson, Y. Modis, E. Hartmann et al., X-ray structure of a protein-conducting channel, Nature, vol.427, pp.36-44, 2004.

N. R. Veillard, B. Kwak, G. Pelli, F. Mulhaupt, R. W. James et al., Antagonism of RANTES receptors reduces atherosclerotic plaque formation in mice, Circ. Res, vol.94, pp.253-261, 2004.

C. Viedt, J. Vogel, T. Athanasiou, W. Shen, S. R. Orth et al., Monocyte chemoattractant protein-1 induces proliferation and interleukin-6 production in human smooth muscle cells by differential activation of nuclear factor-kappaB and activator protein-1, Arterioscler. Thromb. Vasc. Biol, vol.22, pp.914-920, 2002.

M. J. Vincent, A. S. Martin, and R. W. Compans, Function of the KKXX motif in endoplasmic reticulum retrieval of a transmembrane protein depends on the length and structure of the cytoplasmic domain, J. Biol. Chem, vol.273, pp.950-956, 1998.

A. Visel, G. Alvarez-bolado, C. Thaller, and G. Eichele, Comprehensive analysis of the expression patterns of the adenylate cyclase gene family in the developing and adult mouse brain, J. Comp. Neurol, vol.496, pp.684-697, 2006.

H. Vitrac, M. Bogdanov, P. Heacock, and W. Dowhan, Lipids and topological rules of membrane protein assembly: balance between long and short range lipid-protein interactions, J. Biol. Chem, vol.286, pp.15182-15194, 2011.

S. Voigt, B. Jungnickel, E. Hartmann, and T. A. Rapoport, Signal sequence-dependent function of the TRAM protein during early phases of protein transport across the endoplasmic reticulum membrane, J. Cell Biol, vol.134, pp.25-35, 1996.

A. C. Van-der-wal, A. E. Becker, C. M. Van-der-loos, and P. K. Das, Site of intimal rupture or erosion of thrombosed coronary atherosclerotic plaques is characterized by an inflammatory process irrespective of the dominant plaque morphology, Circulation, vol.89, pp.36-44, 1994.

P. Walter and G. Blobel, Translocation of proteins across the endoplasmic reticulum. II. Signal recognition protein (SRP) mediates the selective binding to microsomal membranes of in-vitro-assembled polysomes synthesizing secretory protein, J. Cell Biol, vol.91, pp.551-556, 1981.

T. Wang and J. Voglmeir, PNGases as valuable tools in glycoprotein analysis, Protein Pept. Lett, vol.21, pp.976-985, 2014.

X. Wang and J. Robbins, Proteasomal and lysosomal protein degradation and heart disease, J. Mol. Cell. Cardiol, vol.71, pp.16-24, 2014.

H. Wang, V. V. Pineda, G. C. Chan, S. T. Wong, L. J. Muglia et al., Type 8 adenylyl cyclase is targeted to excitatory synapses and required for mossy fiber long-term potentiation, J. Neurosci. Off. J. Soc. Neurosci, vol.23, pp.9710-9718, 2003.

J. M. Wang, A. Sica, G. Peri, S. Walter, I. M. Padura et al., Expression of monocyte chemotactic protein and interleukin-8 by cytokine-activated human vascular smooth muscle cells, Arterioscler. Thromb. J. Vasc. Biol, vol.11, pp.1166-1174, 1991.

S. J. Warner, L. , and P. , Human vascular smooth muscle cells. Target for and source of tumor necrosis factor, J. Immunol. Baltim. Md, vol.142, pp.100-109, 1950.

E. L. Watson, Z. Wu, K. L. Jacobson, D. R. Storm, J. C. Singh et al., Capacitative Ca2+ entry is involved in cAMP synthesis in mouse parotid acini, Am. J. Physiol, vol.274, pp.557-565, 1998.

E. L. Watson, K. L. Jacobson, J. C. Singh, R. Idzerda, S. M. Ott et al., The type 8 adenylyl cyclase is critical for Ca2+ stimulation of cAMP accumulation in mouse parotid acini, J. Biol. Chem, vol.275, pp.14691-14699, 2000.

P. A. Watson, J. Krupinski, A. M. Kempinski, and C. D. Frankenfield, Molecular cloning and characterization of the type VII isoform of mammalian adenylyl cyclase expressed widely in mouse tissues and in S49 mouse lymphoma cells, J. Biol. Chem, vol.269, pp.28893-28898, 1994.

G. A. Wayman, S. Impey, and D. R. Storm, Ca2+ inhibition of type III adenylyl cyclase in vivo, J. Biol. Chem, vol.270, pp.21480-21486, 1995.

G. A. Wayman, J. Wei, S. Wong, and D. R. Storm, Regulation of type I adenylyl cyclase by calmodulin kinase IV in vivo, Mol. Cell. Biol, vol.16, pp.6075-6082, 1996.

J. G. Webb, P. W. Yates, Q. Yang, Y. V. Mukhin, and S. M. Lanier, Adenylyl cyclase isoforms and signal integration in models of vascular smooth muscle cells, Am. J. Physiol. Heart Circ. Physiol, vol.281, pp.1545-1552, 2001.

J. Wechsler, Y. Choi, J. Krall, F. Ahmad, V. C. Manganiello et al., Isoforms of cyclic nucleotide phosphodiesterase PDE3A in cardiac myocytes, J. Biol. Chem, vol.277, pp.38072-38078, 2002.

W. J. Wedemeyer, E. Welker, and H. A. Scheraga, Proline cis-trans isomerization and protein folding, Biochemistry (Mosc.), vol.41, pp.14637-14644, 2002.

J. Wei, G. Wayman, and D. R. Storm, Phosphorylation and inhibition of type III adenylyl cyclase by calmodulin-dependent protein kinase II in vivo, J. Biol. Chem, vol.271, pp.24231-24235, 1996.

W. S. Weintraub, The pathophysiology and burden of restenosis, Am. J. Cardiol, vol.100, pp.3-9, 2007.

P. L. Weissberg, N. R. Cary, and C. M. Shanahan, Gene expression and vascular smooth muscle cell phenotype, Blood Pressure. Supplement, vol.2, pp.68-73, 1995.

H. P. Wessels and M. Spiess, Insertion of a multispanning membrane protein occurs sequentially and requires only one signal sequence, Cell, vol.55, pp.61-70, 1988.

R. E. Whisnant, A. G. Gilman, and C. W. Dessauer, Interaction of the two cytosolic domains of mammalian adenylyl cyclase, Proc. Natl. Acad. Sci. U. S. A, vol.93, pp.6621-6625, 1996.

A. A. White and T. V. Zenser, Separation of cyclic 3',5'-nucleoside monophosphates from other nucleotides on aluminum oxide columns. Application to the assay of adenyl cyclase and guanyl cyclase, Anal. Biochem, vol.41, pp.372-396, 1971.

L. Wieczorek, J. W. Maas, L. M. Muglia, S. K. Vogt, and L. J. Muglia, Temporal and regional regulation of gene expression by calcium-stimulated adenylyl cyclase activity during fear memory, PloS One, vol.5, 2010.

P. Wiegn, J. Dutton, and K. G. Lurie, An enzymatic fluorometric assay for adenylate cyclase activity, Anal. Biochem, vol.208, pp.217-222, 1993.

P. R. Wielinga, I. Van-der-heijden, G. Reid, J. H. Beijnen, J. Wijnholds et al., Characterization of the MRP4-and MRP5-mediated transport of cyclic nucleotides from intact cells, J. Biol. Chem, vol.278, pp.17664-17671, 2003.

G. Wiemer, U. Hellwich, A. Wellstein, J. Dietz, M. Hellwich et al., Energy-dependent extrusion of cyclic 3',5'-adenosine-monophosphate. A drug-sensitive regulatory mechanism for the intracellular nucleotide concentration in rat erythrocytes, Naunyn. Schmiedebergs Arch. Pharmacol, vol.321, pp.239-246, 1982.

R. J. Williams, K. , and E. , Measurement of Adenylyl Cyclase Activity in Cell Membranes, Signal Transduction Protocols, pp.63-78, 1995.

D. Willoughby and D. M. Cooper, Ca2+ stimulation of adenylyl cyclase generates dynamic oscillations in cyclic AMP, J. Cell Sci, vol.119, pp.828-836, 2006.

D. Willoughby and D. M. Cooper, Organization and Ca2+ regulation of adenylyl cyclases in cAMP microdomains, Physiol. Rev, vol.87, pp.965-1010, 2007.

D. Willoughby, N. Masada, S. Wachten, M. Pagano, M. L. Halls et al., AKAP79/150 interacts with AC8 and regulates Ca2+-dependent cAMP synthesis in pancreatic and neuronal systems, J. Biol. Chem, vol.285, pp.20328-20342, 2010.

D. Willoughby, K. L. Everett, M. L. Halls, J. Pacheco, P. Skroblin et al., Direct binding between Orai1 and AC8 mediates dynamic interplay between Ca2+ and cAMP signaling, Sci. Signal, vol.5, p.29, 2012.

D. Willoughby, M. L. Halls, K. L. Everett, A. Ciruela, P. Skroblin et al., A key phosphorylation site in AC8 mediates regulation of Ca(2+)-dependent cAMP dynamics by an AC8-AKAP79-PKA signalling complex, J. Cell Sci, vol.125, pp.5850-5859, 2012.

D. Willoughby, H. L. Ong, L. B. De-souza, S. Wachten, I. S. Ambudkar et al., TRPC1 contributes to the Ca2+-dependent regulation of adenylate cyclases, Biochem. J, vol.464, pp.73-84, 2014.

S. Windecker, P. Kolh, F. Alfonso, J. Collet, J. Cremer et al., 2014 ESC/EACTS guidelines on myocardial revascularization, EuroIntervention J. Eur. Collab. Work. Group Interv. Cardiol. Eur. Soc. Cardiol, vol.10, pp.1024-1094, 2015.

E. J. Wolf, A. M. Rasmusson, K. S. Mitchell, M. W. Logue, C. T. Baldwin et al., A genome-wide association study of clinical symptoms of dissociation in a trauma-exposed sample, Depress. Anxiety, vol.31, pp.352-360, 2014.

S. T. Wong, J. Athos, X. A. Figueroa, V. V. Pineda, M. L. Schaefer et al., Calcium-stimulated adenylyl cyclase activity is critical for hippocampus-dependent long-term memory and late phase LTP, Neuron, vol.23, pp.787-798, 1999.

J. Woodcock-mitchell, J. J. Mitchell, R. B. Low, M. Kieny, P. Sengel et al., Alpha-smooth muscle actin is transiently expressed in embryonic rat cardiac and skeletal muscles, Differ. Res. Biol. Divers, vol.39, pp.161-166, 1988.

D. A. Woodrum and C. M. Brophy, The paradox of smooth muscle physiology, Mol. Cell. Endocrinol, vol.177, pp.135-143, 2001.

Z. Wu, S. T. Wong, and D. R. Storms, Modification of the calcium and calmodulin sensitivity of the type I adenylyl cyclase by mutagenesis of its calmodulin binding domain, J. Biol. Chem, vol.268, pp.23766-23768, 1993.

Z. L. Wu, S. A. Thomas, E. C. Villacres, Z. Xia, M. L. Simmons et al., Altered behavior and long-term potentiation in type I adenylyl cyclase mutant mice, Proc. Natl. Acad. Sci. U. S. A, vol.92, pp.220-224, 1995.

D. Xu, C. Isaacs, I. P. Hall, and C. W. Emala, Human airway smooth muscle expresses 7 isoforms of adenylyl cyclase: a dominant role for isoform V, Am. J. Physiol. Lung Cell. Mol. Physiol, vol.281, pp.832-843, 2001.

M. Yamabhai, A. , and R. G. , Second cysteine-rich region of epidermal growth factor receptor contains targeting information for caveolae/rafts, J. Biol. Chem, vol.277, pp.24843-24846, 2002.

Y. Yamada, T. Doi, T. Hamakubo, and T. Kodama, Scavenger receptor family proteins: roles for atherosclerosis, host defence and disorders of the central nervous system, Cell. Mol. Life Sci. CMLS, vol.54, pp.628-640, 1998.

Y. Yamamoto, K. Ikeda, M. Watanabe, A. Shimomura, H. Suzuki et al., Expression of adhesion molecules in cultured human nasal mucosal microvascular endothelial cells activated by interleukin-1 beta or tumor necrosis factor-alpha: effects of dexamethasone, Int. Arch. Allergy Immunol, vol.117, pp.68-77, 1998.

C. Yan, C. L. Miller, A. , and J. , Regulation of phosphodiesterase 3 and inducible cAMP early repressor in the heart, Circ. Res, vol.100, pp.489-501, 2007.

S. Z. Yan, D. Hahn, Z. H. Huang, and W. J. Tang, Two cytoplasmic domains of mammalian adenylyl cyclase form a Gs alpha-and forskolin-activated enzyme in vitro, J. Biol. Chem, vol.271, pp.10941-10945, 1996.

S. Z. Yan, J. A. Beeler, Y. Chen, R. K. Shelton, and W. J. Tang, The regulation of type 7 adenylyl cyclase by its C1b region and Escherichia coli peptidylprolyl isomerase, SlyD. J. Biol. Chem, vol.276, pp.8500-8506, 2001.

H. Yang, H. Kim, K. Park, H. You, S. Jeon et al., Celecoxib, a cyclooxygenase-2 inhibitor, reduces neointimal hyperplasia through inhibition of Akt signaling, Circulation, vol.110, pp.301-308, 2004.

Y. Yaniv, M. Juhaszova, A. E. Lyashkov, H. A. Spurgeon, S. J. Sollott et al., Ca2+-regulated-cAMP/PKA signaling in cardiac pacemaker cells links ATP supply to demand, J. Mol. Cell. Cardiol, vol.51, pp.740-748, 2011.

M. Yoshimura and D. M. Cooper, Cloning and expression of a Ca(2+)-inhibitable adenylyl cyclase from NCB-20 cells, Proc. Natl. Acad. Sci. U. S. A, vol.89, pp.6716-6720, 1992.

H. J. Yu, H. Ma, and R. D. Green, Calcium entry via L-type calcium channels acts as a negative regulator of adenylyl cyclase activity and cyclic AMP levels in cardiac myocytes, Mol. Pharmacol, vol.44, pp.689-693, 1993.

P. Yu, M. Sun, V. A. Villar, Y. Zhang, E. J. Weinman et al., Differential dopamine receptor subtype regulation of adenylyl cyclases in lipid rafts in human embryonic kidney and renal proximal tubule cells, Cell. Signal, vol.26, pp.2521-2529, 2014.

N. Zaarour, M. Berenguer, L. Marchand-brustel, Y. Govers, and R. , Deciphering the role of GLUT4 N-glycosylation in adipocyte and muscle cell models, Biochem. J, vol.445, pp.265-273, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01478346

V. Zachariou, R. Liu, Q. Laplant, G. Xiao, W. Renthal et al., Distinct roles of adenylyl cyclases 1 and 8 in opiate dependence: behavioral, electrophysiological, and molecular studies, Biol. Psychiatry, vol.63, pp.1013-1021, 2008.

N. Zerangue, B. Schwappach, Y. N. Jan, J. , and L. Y. , A new ER trafficking signal regulates the subunit stoichiometry of plasma membrane K(ATP) channels, Neuron, vol.22, pp.537-548, 1999.

K. Zhai, F. Hubert, V. Nicolas, G. Ji, R. Fischmeister et al., ?-Adrenergic cAMP signals are predominantly regulated by phosphodiesterase type 4 in cultured adult rat aortic smooth muscle cells, PloS One, vol.7, p.47826, 2012.

X. Zhang, W. , and Y. , Glycosylation Quality Control by the Golgi Structure, J. Mol. Biol, vol.428, pp.3183-3193, 2016.

G. Zhang, Y. Liu, A. E. Ruoho, and J. H. Hurley, Structure of the adenylyl cyclase catalytic core, Nature, vol.386, pp.247-253, 1997.

G. Zhang, Y. Liu, J. Qin, B. Vo, W. J. Tang et al., Characterization and crystallization of a minimal catalytic core domain from mammalian type II adenylyl cyclase, Protein Sci. Publ. Protein Soc, vol.6, pp.903-908, 1997.

J. Zhang, M. Sato, E. Duzic, S. W. Kubalak, S. M. Lanier et al., Adenylyl cyclase isoforms and vasopressin enhancement of agonist-stimulated cAMP in vascular smooth muscle cells, Am. J. Physiol, vol.273, pp.971-980, 1997.

M. Zhang, D. R. Storm, W. , and H. , Bidirectional synaptic plasticity and spatial memory flexibility require Ca2+-stimulated adenylyl cyclases, J. Neurosci. Off. J. Soc. Neurosci, vol.31, pp.10174-10183, 2011.

P. Zhang, N. Xiang, Y. Chen, E. Sliwerska, M. G. Mcinnis et al., Familybased association analysis to finemap bipolar linkage peak on chromosome 8q24 using 2,500 genotyped SNPs and 15,000 imputed SNPs, Bipolar Disord, vol.12, pp.786-792, 2010.

S. H. Zhang, R. L. Reddick, J. A. Piedrahita, and N. Maeda, Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E, Science, vol.258, pp.468-471, 1992.

W. Zhang, H. A. Campbell, S. C. King, and W. Dowhan, Phospholipids as determinants of membrane protein topology. Phosphatidylethanolamine is required for the proper topological organization of the gammaaminobutyric acid permease (GabP) of Escherichia coli, J. Biol. Chem, vol.280, pp.26032-26038, 2005.

Z. Zhao, G. J. Babu, H. Wen, N. Fefelova, R. Gordan et al., Overexpression of adenylyl cyclase type 5 (AC5) confers a proarrhythmic substrate to the heart, Am. J. Physiol. Heart Circ. Physiol, vol.308, pp.240-249, 2015.

, Annexe 1 : Le dosage de l'activité adenylyl cyclase par radio-détection

, Dans la plupart des cas, les dosages d'activité cyclase reposent sur l'isolement et la quantification de la radioactivité émise par un produit AMPc radiomarqué, l'AMPc, vol.32

(. Johnson, L'échantillon est incubé, pour un intervalle de temps fixé, 1974.

. P]-dilué, en quantité limitée dans une solution de substrat ATP froid

, ii) du cofacteur enzymatique Mg

K. , P] synthétisé ; iv) des couples creatine phosphate / creatine phosphokinase ou phosphoénolpyruvate / pyruvate kinase qui assurent la régénération continue de l'ADP en ATP, v) d'éventuels composés physiologiques ou pharmacologiques régulant l'activité cyclase. La réaction est stoppée par l'addition d'acide trichloroacétique puis une solution d'AMPc [ 3 H] est ajoutée au mélange réactionnel. Les molécules d'AMPc contenues dans l'échantillon sont ensuite séparées des autres nucléotides dérivés de l'adenine (ATP, ADP, AMP) par chromatographie séquentielle (Figure 34). L'échantillon est d'abord déposé sur une colonne DOWEX échangeuse de cations. Suite à l'addition d'un premier volume d'eau distillée, la majorité des composés dérivés de l'adénine sont éliminés tandis que les molécules d'AMPc sont sélectivement retenues dans la colonne DOWEX, ADP ou AMP résiduel est retenu tandis que les molécules d'AMPc sont éluées dans le tube à scintillation, 1968.

, H] récoltées sont mesurés grâce à un compteur à scintillation. En parallèle, on mesure également la radioactivité émise par les solutions stocks d'ATP

, La concentration de ces solutions étant connue, le rayonnement des molécules d'AMPc radiomarquées peut être converti en nombre de moles d'AMPc récoltées. Le calcul du rendement d

. P]-synthétisé, évaluer précisément l'activité cyclase en nombre de moles d'AMPc synthétisées / unité de temps / quantité d'échantillon testé

, Le dosage non-compétitif de l'accumulation d'AMPc Le dosage non-competitif de l'accumulation d'AMPc repose, dans la plupart des cas, sur l'isolement et la quantification de la radioactivité émise par un produit AMPc radiomarqué, Annexe, vol.3

, Celui-ci est synthétisé à partir d'un pool d'adenine

H. Evans, , 1984.

. Shimizu, L'échantillon est d'abord incubé dans une solution d'adenine, 1969.

, La réaction est initiée par l'ajout d'éventuels composés physiologiques ou pharmacologiques régulant l'activité cyclase. A l'issue d'un intervalle de temps fixé, la réaction est stoppée et l'échantillon lysé par l'addition d'acide trichloroacétique. Le mélange réactionnel est supplémenté par une solution d'AMPc [ 14 C] puis divisé en deux aliquots. Les molécules d'AMPc contenues dans le premier aliquot sont purifiées par chromatographie séquentielle sur colonne DOWEX échangeuse de cation et colonne d'aluminium activé. Les rayonnements émis par les molécules d'AMPc [ 3 H] et d'AMPc [ 14 C] ainsi récoltées sont mesurés grâce à un compteur à scintillation. La mesure de la radioactivité émise par la solution stock d, Après élimination du précurseur adénine en excès, l'échantillon est mis en présence d'IBMX et/ou de théophylline pour inhiber les PDE et/ou de probénécide pour inhiber les transporteurs MRP

, On mesure enfin la radioactivité émise par l'ensemble des molécules dérivées de l'adenine

, H] contenues dans l'aliquot du mélange réactionnel qui n'a pas été purifié. Ainsi, on peut évaluer l'accumulation d'AMPc

, Bien qu'il soit très sensible et présente un très bon ratio signal sur bruit, le dosage non-competitif de l'accumulation d'AMPc reste dépendant de la pénétration et de l

, Annexe 4 : Les dosages de l'accumulation d'AMPc par compétition de liaison

, Cette approche est moins sensible mais autorise une quantification rapide et absolue de l'AMPc accumulé sans ou avec peu d'étapes de purification préalable de l'échantillon. La réaction se fait exclusivement en présence i) d'inhibiteurs pharmacologiques des PDE et/ou des transporteurs MRP (IBMX, théophylline, probénécide) et ii) d'éventuels composés régulant l'activité des AC. A l'issue d'un intervalle de temps fixé, la réaction est stoppée et l'échantillon lysé. On ajoute successivement au mélange un traceur AMPc exogène puis un ligand doté d'une haute affinité pour l'AMPc. On évalue alors la capacité de l'AMPc endogène à déplacer la liaison du traceur sur le ligand. En parallèle, une gamme étalon est établie en répétant l'opération à partir de solutions d'AMPc de concentrations connues. Ainsi, l'accumulation d'AMPc peut être quantifiée, de façon absolue, en nombre de moles d'AMPc synthétisé / unité de temps / quantité d'échantillon. Diverses techniques de dosage par compétition de liaison ont été développées. Elles diffèrent par la nature du traceur AMPc et du ligand utilisé et par la méthode de détection associée

P. Lier-la and . Brown, Dans le cadre des immunoassays, le traceur est une molécule d'AMPc radio-marquée (RIA) ou couplée à la peroxydase de Raifort (EIA) et le ligand est un anticorps dirigé contre l'AMPc (Harper and Brooker, 1971.

. Kariv, On quantifie ainsi l'accumulation d'AMPc endogène en mesurant directement la lumière émise par l'échantillon. Une méthode dérivée du dosage RIA-SPA et reposant sur le principe du transfert d'énergie de fluorescence par résonnance (FRET) permet d'éviter l'utilisation de composés radioactifs. Le traceur utilisé est une molécule d'AMPc couplée au fluorophore d2 (donneur), le ligand est un anticorps anti-AMPc couplé au fluorophore cryptate d'europium (accepteur), Lorsque le dosage RIA est couplé à une méthode de « scintillation proximity assay » (SPA), il est possible de quantifier l'accumulation d'AMPc sans étape préalable de purification du complexe traceur-ligand, 1999.

M. Benjamin and V. Le, Formation à l'expérimentation animale de niveau 1, Master de Biologie Intégrative et Physiologie, spécialité Physiologie et Physiopathologie, Université Pierre et Marie Curie (UPMC), 1990.

, Situation actuelle Doctorant en sciences à l'ED394 Physiologie, Physiopathologie et Thérapeutique, équipe Contrôle phénotypique des cellules musculaires lisses vasculaires, Licence de Sciences et Technologies mention Sciences de la Vie, vol.8256, 2008.

I. Umr8256 and U. Encadrants, Biochimie (fractionnement cellulaire, immunoprécipitation, GST Pull-down, western-blot, zymographie, ELISA, promoteur-gène rapporteur Luciférase, Pr Isabelle Limon et Dr Régis Blaise. Sujet d'étude : Caractérisation fonctionnelle de nouvelles isoformes d'Adénylyl Cyclase 8 identifiées dans les cellules musculaires lisses vasculaires trans-différenciées. Compétences techniques : Biologie moléculaire (clonage, extraction d'ADN/ARN, PCR)

. Janvier--juillet, Sujet de stage : Etude de la régulation de l'expression de l'Adénylyl Cyclase 8 dans les cellules musculaires lisses vasculaires trans-différenciées, Stagiaire M2, équipe Contrôle phénotypique des cellules musculaires lisses vasculaires, vol.8256, 2013.

A. , Encadrant : Pr P. Le Rouzic, Stagiaire M1, équipe Maladies du tissu adipeux et du système respiratoire, 2012.

, Myriam Moumni, master Biologie Intégrative (UPMC). Intitulé du stage : « Etude des phosphodiestérases exprimées dans les cellules musculaires lisses vasculaires pathologiques, 2014.

, 11 ème congrès annuel de la Nouvelle Société Francophone d'Athérosclérose, ème Journées de Recherche Respiratoire (J2R), 2014.

P. Poster, 12 ème congrès annuel de la Nouvelle Société Francophone d'Athérosclérose, 2016.

&. Printemps-de-la-cardiologie--recherche-fondamentale and . Clinique, Communications orales Séminaire interne de l'UMR 8256 Adaptation biologique et vieillissement, ème congrès annuel du Latinorum Investigatorum de Arteriis Colloquium, vol.30, 2014.

, Séminaire du « club AMPc » à l'UPMC, campus Jussieu, 2016.

, Adénylyl cyclases et transdifférenciation des cellules musculaires lisses vasculaires : rôle dans le remodelage vasculaire pathologique

M. Gueguen, B. Vallin, M. Glorian, R. Blaise, and I. Limon, Revue de la Société de Biologie 05, 2016.

N. Mougenot, G. Czibik, S. Abid, A. Houssaini, B. Vallin et al.,

B. Vallin, Y. Legueux-cajgfinger, N. Clément, D. Mika, M. Glorian et al., Prochainement sousmis à, Nature Chemical Biology

, Creteil, 2017.

D. Prof, G. Karin-r.-;-nathalie-mougenot, S. Czibik, A. Abid, B. Houssaini et al., apparent beneficial effect of adenylyl cyclase overexpression in young mice (Enhanced cardiac function in transgenic mice expressing a Ca(2+)-stimulated adenylyl cyclase" by myself, Circ Res, vol.86, pp.795-801, 2000.

, This manuscript, or part of it, has neither been published nor is currently under consideration for publication by any other journal. All the co-authors have read the manuscript and approved its submission to Cardiovascular Research

I. Pecmv, U. , and P. 6. ,

U. Inserm and E. 8. ,

. Inserm-umr-s-770,

U. Inserm and U. Paris-sud,

, Taking into account the modifications of cAMP signaling in AC8TG, we can conclude that the modifications of cAMP signaling in AC8TG and old NTG mice described here enhance the stress-response of the heart. As expected, normal aging was accompanied by an alteration of cardiac function with a progressive increase in LVESD (Figure 3C) and a deterioration of LVEF (Figure 3D). However, LVEDD (Figure 3B) and LVFS (Figure 3E) were unaltered in old NTG mice. By contrast, in AC8TG mice, we observed a concentric pattern of hypertrophy (decrease in end-diastolic LV diameter and increase in wall thickness) in middle age followed by eccentric LV remodeling (increase in end-diastolic LV diameter) in old age (Figure 3B & C). LVEF and LVFS were lower in AC8TG than in NTG mice only for the oldest animals (Figure 3D & E). Taken together, conventional echocardiography parameters such as LVEF and LVFS did not reveal any alteration in basal cardiac function within young AC8TG and NTG, but accelerated deterioration of cardiac function in AC8TG with aging. The new Doppler-derived technique Tissue-Doppler Imaging (TDI) and its derived parameters strain and strain rate provide more accurate and sensitive information not only about regional and global LV function, but also about the current tissue condition (stiffness), indicating alterations in myocardial architecture (e.g. the degree of fibrosis) and molecular substructure (e.g. strain difference in the molecular structure of actin, myosin or titin). Particularly, systolic strain rate indicates how fast the myocardial tissue is shortening and is closely related to invasive parameters of contractility such as elastance and dP/dtmax. As previously shown 19 , normal aging was accompanied by decrease of myocardial systolic strain rate in NTG animals (Figure 4A & B). Surprisingly, strain rate imaging identified alteration in myocardial contractility in young AC8TG mice, and a progressive decline with age compared with NTG group (Figure 4A & B), title: Cardiac adenylyl cyclase overexpression and aging for AC8TG mice, by performing cross-sectional echocardiography in conscious mice from three age groups, young (2-4 months old)

, At 12 to 14 months, cardiac function further decreased, and mortality rates were already high in AC8TG mice. Finally, the LV thickness/radius ratio (h/r ratio) gradually decreased during aging in AC8TG mice, reflecting inadequate hypertrophic remodeling of the LV (Figure 5). We also performed in vivo hemodynamics studies in young and old NTG and AC8TG mice sedated with sodium pentobarbital (Figure 6), However, progressive LV parietal hypertrophy and LV cavity dilation became apparent in the AC8TG mice at 8 months (Figure 5), and led to the development of dilated cardiomyopathy, with decrease in LVFS (Figure 5)

, Whereas in NTG mice the RVSP slightly increased in the course of aging, in AC8TG the higher RVSP was maintained throughout life until the last measurement made at 12 to 14-month age. Consistent with the HF phenotype, we observed RV hypertrophy in old AC8TG mice (RV weight was 24±2 mg (n=7) in NTG vs. 31±2 mg (n=10) in AC8TG (P<0.01)) and a progressive muscularization of the distal pulmonary arteries in AC8TG mice between the ages of 2 to 14 months (Figure 7B & C). The degree of muscularization in old AC8TG animals was twice that of old NTG animals, NTG mice, ?-adrenergic stimulation (ISO) induced a classical dose-dependent stimulation of HR and LV contractility; however his effect was slightly blunted in old NTG animals (Figure 6A,C & D), vol.18

, P<0.05) weights were higher in the old AC8TG mice (n=10) than in the old NTG mice (n=10), suggesting respective dysfunction of both LV and RV. Thus, consistent with the HF phenotype, old AC8TG mice also developed an early trend towards pulmonary hypertension (PH), ± 98 mg, P<0.05) and lung (204 ± 11 vs. 257 ± 13 mg

E. G. Lakatta and D. Levy, Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: Part I: aging arteries: a "set up" for vascular disease, Circulation, vol.107, pp.139-146, 2003.

E. G. Lakatta and D. Levy, Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: Part II: the aging heart in health: links to heart disease, Circulation, vol.107, pp.346-354, 2003.

L. Lipskaia, E. R. Chemaly, L. Hadri, A. M. Lompre, and R. J. Hajjar, Sarcoplasmic reticulum Ca(2+) ATPase as a therapeutic target for heart failure, Expert Opin Biol Ther, vol.10, pp.29-41, 2010.

A. Guellich, H. Mehel, and R. Fischmeister, Cyclic AMP synthesis and hydrolysis in the normal and failing heart, Pflugers Arch, vol.466, pp.1163-1175, 2014.

Y. Sassi, A. Ahles, D. J. Truong, Y. Baqi, S. Y. Lee et al., Cardiac myocyte-secreted cAMP exerts paracrine action via adenosine receptor activation, J Clin Invest, vol.124, pp.5385-5397, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01329340

G. W. Dorn and J. D. Molkentin, Manipulating cardiac contractility in heart failure: data from mice and men, Circulation, vol.109, pp.150-158, 2004.

X. J. Du, X. M. Gao, B. Wang, G. L. Jennings, E. A. Woodcock et al., Age-dependent cardiomyopathy and heart failure phenotype in mice overexpressing beta(2)-adrenergic receptors in the heart, Cardiovasc Res, vol.48, pp.448-454, 2000.

S. Engelhardt, L. Hein, F. Wiesmann, and M. J. Lohse, Progressive hypertrophy and heart failure in beta1-adrenergic receptor transgenic mice, Proc Natl Acad Sci U S A, vol.96, pp.7059-7064, 1999.

S. B. Liggett, N. M. Tepe, J. N. Lorenz, A. M. Canning, T. D. Jantz et al., Early and delayed consequences of beta(2)-adrenergic receptor overexpression in mouse hearts: critical role for expression level, Circulation, vol.101, pp.1707-1714, 2000.

W. J. Koch, R. J. Lefkowitz, and H. A. Rockman, Functional consequences of altering myocardial adrenergic receptor signaling, Annu Rev Physiol, vol.62, pp.237-260, 2000.

X. M. Gao, A. Agrotis, D. J. Autelitano, E. Percy, E. A. Woodcock et al., Sex hormones and cardiomyopathic phenotype induced by cardiac beta 2-adrenergic receptor overexpression, Endocrinology, vol.144, pp.4097-4105, 2003.

M. Iwase, S. P. Bishop, M. Uechi, D. E. Vatner, R. P. Shannon et al., Adverse effects of chronic endogenous sympathetic drive induced by cardiac GS alpha overexpression, Circ Res, vol.78, pp.517-524, 1996.

K. Asai, G. P. Yang, Y. J. Geng, G. Takagi, S. Bishop et al., Beta-adrenergic receptor blockade arrests myocyte damage and preserves cardiac function in the transgenic G(salpha) mouse, J Clin Invest, vol.104, pp.551-558, 1999.

E. R. Chemaly, R. J. Hajjar, and L. Lipskaia, Molecular targets of current and prospective heart failure therapies, Heart, vol.99, pp.992-1003, 2013.

L. Lipskaia, C. Grepin, N. Defer, and J. Hanoune, Adenylyl cyclase activity and gene expression during mesodermal differentiation of the P19 embryonal carcinoma cells, J Cell Physiol, vol.176, pp.50-56, 1998.

M. Georget, P. Mateo, G. Vandecasteele, J. Jurevicius, L. Lipskaia et al., Augmentation of cardiac contractility with no change in L-type Ca2+ current in transgenic mice with a cardiac-directed expression of the human adenylyl cyclase type 8 (AC8), FASEB J, vol.16, pp.1636-1638, 2002.

M. Georget, P. Mateo, G. Vandecasteele, L. Lipskaia, N. Defer et al., Cyclic AMP compartmentation due to increased cAMP-phosphodiesterase activity in transgenic mice with a cardiac-directed expression of the human adenylyl cyclase type 8 (AC8), FASEB J, vol.17, pp.1380-1391, 2003.

L. Lipskaia, N. Defer, G. Esposito, I. Hajar, M. C. Garel et al., Enhanced cardiac function in transgenic mice expressing a Ca(2+)-stimulated adenylyl cyclase, Circ Res, vol.86, pp.795-801, 2000.

G. Derumeaux, F. Ichinose, M. J. Raher, J. G. Morgan, T. Coman et al., Myocardial alterations in senescent mice and effect of exercise training: a strain rate imaging study, Circ Cardiovasc Imaging, vol.1, pp.227-234, 2008.

W. J. Thompson, G. Brooker, and M. M. Appleman, Assay of cyclic nucleotide phosphodiesterases with radioactive substrates, Methods Enzymol, vol.38, pp.205-212, 1974.

A. J. Chruscinski, H. Singh, S. M. Chan, and P. J. Utz, Broad-scale phosphoprotein profiling of beta adrenergic receptor (beta-AR) signaling reveals novel phosphorylation and dephosphorylation events, PLoS One, vol.8, p.82164, 2013.

B. S. Cain, D. R. Meldrum, K. S. Joo, J. F. Wang, X. Meng et al., Human SERCA2a levels correlate inversely with age in senescent human myocardium, J Am Coll Cardiol, vol.32, pp.458-467, 1998.

Q. Jiao, H. Takeshima, Y. Ishikawa, and S. Minamisawa, Sarcalumenin plays a critical role in agerelated cardiac dysfunction due to decreases in SERCA2a expression and activity, Cell Calcium, vol.51, pp.31-39, 2012.

V. O. Nikolaev, A. Moshkov, A. R. Lyon, M. Miragoli, P. Novak et al., Beta2-adrenergic receptor redistribution in heart failure changes cAMP compartmentation, Science, vol.327, pp.1653-1657, 2010.

J. C. Fang, T. Demarco, M. M. Givertz, B. A. Borlaug, G. D. Lewis et al., World Health Organization Pulmonary Hypertension group 2: pulmonary hypertension due to left heart disease in the adult--a summary statement from the Pulmonary Hypertension Council of the International Society for Heart and Lung Transplantation, J Heart Lung Transplant, vol.31, pp.913-933, 2012.

M. Guazzi and B. A. Borlaug, Pulmonary hypertension due to left heart disease, Circulation, vol.126, pp.975-990, 2012.

J. L. Vachiery, Y. Adir, J. A. Barbera, H. Champion, J. G. Coghlan et al., Pulmonary hypertension due to left heart diseases, J Am Coll Cardiol, vol.62, pp.100-108, 2013.

H. He, F. J. Giordano, R. Hilal-dandan, D. J. Choi, H. A. Rockman et al., Overexpression of the rat sarcoplasmic reticulum Ca2+ ATPase gene in the heart of transgenic mice accelerates calcium transients and cardiac relaxation, J Clin Invest, vol.100, pp.380-389, 1997.

W. Luo, I. L. Grupp, J. Harrer, S. Ponniah, G. Grupp et al., Targeted ablation of the phospholamban gene is associated with markedly enhanced myocardial contractility and loss of beta-agonist stimulation, Circ Res, vol.75, pp.401-409, 1994.

B. M. Wolska, M. O. Stojanovic, W. Luo, E. G. Kranias, and R. J. Solaro, Effect of ablation of phospholamban on dynamics of cardiac myocyte contraction and intracellular Ca2+, Am J Physiol, vol.271, pp.391-397, 1996.

B. D. Hoit, S. F. Khoury, E. G. Kranias, N. Ball, and R. A. Walsh, In vivo echocardiographic detection of enhanced left ventricular function in gene-targeted mice with phospholamban deficiency, Circ Res, vol.77, pp.632-637, 1995.

L. Li, G. Chu, E. G. Kranias, and D. M. Bers, Cardiac myocyte calcium transport in phospholamban knockout mouse: relaxation and endogenous CaMKII effects, Am J Physiol, vol.274, pp.1335-1347, 1998.

S. Ronca-testoni and F. Borghini, Release of uric acid from perfused rat heart, Ital J Biochem, vol.31, pp.127-138, 1982.

M. E. Kleber, G. Delgado, T. B. Grammer, G. Silbernagel, J. Huang et al., Uric Acid and Cardiovascular Events: A Mendelian Randomization Study, J Am Soc Nephrol, vol.26, pp.2831-2838, 2015.

A. So and B. Thorens, Uric acid transport and disease, J Clin Invest, vol.120, pp.1791-1799, 2010.

, animals. B & C, Pulmonary vessel muscularization (B) and representative micrographs showing low-resistance pulmonary vessels stained with hematoxylin/eosin (C) in NTG ( ) and AC8TG ( ) animals. Bar=50 ?m. D, RV remodeling in old AC8TG mice: RV hypertrophy index, NTG ( ) and AC8TG (

, The horizontal line indicates the mean value for each group