K. Alfthan, L. Heiska, M. Grönholm, G. H. Renkema, and O. Carpén, Cyclic AMP-dependent protein kinase phosphorylates merlin at serine 518 independently of p21-activated kinase and promotes merlin-ezrin heterodimerization, J Biol Chem, vol.279, pp.18559-18566, 2004.

R. K. Assoian and M. A. Schwartz, Coordinate signaling by integrins and receptor tyrosine kinases in the regulation of G1 phase cell-cycle progression, Curr Opin Genet Dev, vol.11, pp.48-53, 2001.

N. Balasubramanian, D. W. Scott, J. D. Castle, J. E. Casanova, and M. A. Schwartz, Arf6 and microtubules in adhesion-dependent trafficking of lipid rafts, Nat Cell Biol, vol.9, pp.1381-1391, 2007.

A. Bentmann, N. Kawelke, D. Moss, H. Zentgraf, Y. Bala et al., Circulating fibronectin affects bone matrix, whereas osteoblast fibronectin modulates osteoblast function, J Bone Miner Res, vol.25, pp.706-715, 2009.

P. Bono, E. Cordero, K. Johnson, M. Borowsky, V. Ramesh et al., Layilin, a cell surface hyaluronan receptor, interacts with merlin and radixin, Exp Cell Res, vol.308, pp.177-187, 2005.

M. L. Borowsky and R. O. Hynes, Layilin, a novel talin-binding transmembrane protein homologous with C-type lectins, is localized in membrane ruffles, J Cell Biol, vol.143, pp.429-442, 1998.

R. L. Boshans, S. Szanto, L. Van-aelst, and C. D'souza-schorey, ADP-ribosylation factor 6 regulates actin cytoskeleton remodeling in coordination with Rac1 and RhoA, Mol Cell Biol, vol.20, pp.3685-3694, 2000.

D. Bouvard, A. Aszodi, G. Kostka, M. R. Block, C. Albiges-rizo et al., Defective osteoblast function in ICAP-1-deficient mice, Development, vol.134, pp.2615-2625, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-00166116

D. Bouvard, J. Pouwels, N. D. Franceschi, and J. Ivaska, Integrin inactivators: balancing cellular functions in vitro and in vivo, Nat Rev Mol Cell Biol, vol.14, pp.430-442, 2013.

C. Bouvier, N. Macagno, Q. Nguyen, A. Loundou, C. Jiguet-jiglaire et al., Prognostic value of the Hippo pathway transcriptional coactivators YAP/TAZ and ?1-integrin in conventional osteosarcoma, Oncotarget, vol.7, pp.64702-64710, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01482390

M. Brunner, A. Millon-fremillon, G. Chevalier, I. A. Nakchbandi, D. Mosher et al., Osteoblast mineralization requires beta1 integrin/ICAP-1-dependent fibronectin deposition, J Cell Biol, vol.194, pp.307-322, 2011.
URL : https://hal.archives-ouvertes.fr/inserm-00610020

N. O. Deakin and C. E. Turner, Paxillin inhibits HDAC6 to regulate microtubule acetylation, Golgi structure, and polarized migration, J Cell Biol, vol.206, pp.395-413, 2014.

K. Dib, F. Melander, L. Axelsson, M. C. Dagher, P. Aspenström et al., Downregulation of Rac activity during beta 2 integrin-mediated adhesion of human neutrophils, J Biol Chem, vol.278, pp.24181-24188, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00820751

S. Dupont, L. Morsut, M. Aragona, E. Enzo, S. Giulitti et al., Role of YAP/TAZ in mechanotransduction, Nature, vol.474, pp.179-183, 2011.

A. Elbediwy, Z. I. Vincent-mistiaen, B. Spencer-dene, R. K. Stone, S. Boeing et al., Integrin signalling regulates YAP and TAZ to control skin homeostasis, Development, vol.143, pp.1674-1687, 2016.

X. Feng, M. S. Degese, R. Iglesias-bartolome, J. P. Vaque, A. A. Molinolo et al., Hippo-independent activation of YAP by the GNAQ uveal melanoma oncogene through a trio-regulated rho GTPase signaling circuitry, Cancer Cell, vol.25, pp.831-845, 2014.

C. Gimond, A. Van-der-flier, S. Van-delft, C. Brakebusch, I. Kuikman et al., Induction of cell scattering by expression of beta1 integrins in beta1-deficient epithelial cells requires activation of members of the rho family of GTPases and downregulation of cadherin and catenin function, J Cell Biol, vol.147, pp.1325-1340, 1999.

C. Gonzalez-agosti, L. Xu, D. Pinney, R. Beauchamp, W. Hobbs et al., The merlin tumor suppressor localizes preferentially in membrane ruffles, Oncogene, vol.13, pp.1239-1247, 1996.

K. F. Harvey, C. M. Pfleger, and I. K. Hariharan, The Drosophila Mst ortholog, hippo, restricts growth and cell proliferation and promotes apoptosis, Cell, vol.114, pp.457-467, 2003.

E. Hirsch, L. Barberis, M. Brancaccio, O. Azzolino, D. Xu et al., Defective Rac-mediated proliferation and survival after targeted mutation of the beta1 integrin cytodomain, J Cell Biol, vol.157, pp.481-492, 2002.

A. K. Howe and R. L. Juliano, Regulation of anchorage-dependent signal transduction by protein kinase A and p21-activated kinase, Nat Cell Biol, vol.2, pp.593-600, 2000.

S. Huang and D. E. Ingber, Cell tension, matrix mechanics, and cancer development, Cancer Cell, vol.8, pp.175-176, 2005.

R. O. Hynes, Integrins: versatility, modulation, and signaling in cell adhesion, Cell, vol.69, pp.11-25, 1992.

E. L. Jackson, N. Willis, K. Mercer, R. T. Bronson, D. Crowley et al., Analysis of lung tumor initiation and progression using conditional expression of oncogenic K-ras, Genes Dev, vol.15, pp.3243-3248, 2001.

P. L. Joyce and A. D. Cox, Rac1 and Rac3 are targets for geranylgeranyltransferase I inhibitormediated inhibition of signaling, transformation, and membrane ruffling, Cancer Res, vol.63, pp.7959-7967, 2003.

F. Kanai, P. A. Marignani, D. Sarbassova, R. Yagi, R. A. Hall et al., TAZ: a novel transcriptional co-activator regulated by interactions with 14-3-3 and PDZ domain proteins, EMBO J, vol.19, pp.6778-6791, 2000.

I. Kaverina, K. Rottner, and J. V. Small, Targeting, capture, and stabilization of microtubules at early focal adhesions, J Cell Biol, vol.142, pp.181-190, 1998.

M. Kim, S. Lee, S. Kuninaka, H. Saya, H. Lee et al., 2013. cAMP/PKA signalling reinforces the LATS-YAP pathway to fully suppress YAP in response to actin cytoskeletal changes, EMBO J, vol.32, pp.1543-1555
URL : https://hal.archives-ouvertes.fr/in2p3-00804187

N. G. Kim and B. M. Gumbiner, Adhesion to fibronectin regulates Hippo signaling via the FAKSrc-PI3K pathway, J Cell Biol, vol.210, pp.503-515, 2015.

A. Kodama, I. Karakesisoglou, E. Wong, A. Vaezi, and E. Fuchs, ACF7: an essential integrator of microtubule dynamics, Cell, vol.115, pp.343-354, 2003.

N. Li, Y. Zhang, M. J. Naylor, F. Schatzmann, F. Maurer et al., Beta1 integrins regulate mammary gland proliferation and maintain the integrity of mammary alveoli, EMBO J, vol.24, pp.1942-1953, 2005.

Q. Li, A. Lau, T. J. Morris, L. Guo, C. B. Fordyce et al., A syntaxin 1, Galpha(o), and Ntype calcium channel complex at a presynaptic nerve terminal: analysis by quantitative immunocolocalization, J Neurosci, vol.24, pp.4070-4081, 2004.

Y. Li, H. Zhou, F. Li, S. W. Chan, Z. Lin et al., Angiomotin binding-induced activation of Merlin/NF2 in the Hippo pathway, Cell Res, vol.25, pp.801-817, 2015.

S. Matsumoto, S. Fujii, A. Sato, S. Ibuka, Y. Kagawa et al., A combination of Wnt and growth factor signaling induces Arl4c expression to form epithelial tubular structures, EMBO J, vol.33, pp.702-718, 2014.

Z. Meng, T. Moroishi, and K. L. Guan, Mechanisms of Hippo pathway regulation, Genes Dev, vol.30, pp.1-17, 2016.

J. P. Mira, V. Benard, J. Groffen, L. C. Sanders, and U. G. Knaus, Endogenous, hyperactive Rac3 controls proliferation of breast cancer cells by a p21-activated kinase-dependent pathway, Proc Natl Acad Sci, pp.185-189, 2000.

S. Miyamoto, H. Teramoto, J. S. Gutkind, and K. M. Yamada, Integrins can collaborate with growth factors for phosphorylation of receptor tyrosine kinases and MAP kinase activation: roles of integrin aggregation and occupancy of receptors, J Cell Biol, vol.135, pp.1633-1642, 1996.

D. I. Mundy, T. Machleidt, Y. S. Ying, R. G. Anderson, and G. S. Bloom, Dual control of caveolar membrane traffic by microtubules and the actin cytoskeleton, J Cell Sci, vol.115, pp.4327-4339, 2002.

S. Nada, A. Hondo, A. Kasai, M. Koike, K. Saito et al., The novel lipid raft adaptor p18 controls endosome dynamics by anchoring the MEK-ERK pathway to late endosomes, EMBO J, vol.28, pp.477-489, 2009.

T. Okada, M. Lopez-lago, and F. G. Giancotti, Merlin/NF-2 mediates contact inhibition of growth by suppressing recruitment of Rac to the plasma membrane, J Cell Biol, vol.171, pp.361-371, 2005.

D. Pan, The hippo signaling pathway in development and cancer, Dev Cell, vol.19, pp.491-505, 2010.

M. C. Parrini, J. Camonis, M. Matsuda, and J. De-gunzburg, Dissecting activation of the PAK1 kinase at protrusions in living cells, J Biol Chem, vol.284, pp.24133-24143, 2009.

A. J. Potocnik, C. Brakebusch, and R. Fassler, Fetal and adult hematopoietic stem cells require beta1 integrin function for colonizing fetal liver, spleen, and bone marrow, Immunity, vol.12, pp.653-663, 2000.

A. Reginensi, R. P. Scott, A. Gregorieff, M. Bagherie-lachidan, C. Chung et al., Yap-and Cdc42-dependent nephrogenesis and morphogenesis during mouse kidney development, PLoS Genet, vol.9, p.1003380, 2013.

S. J. Rodda and A. P. Mcmahon, Distinct roles for Hedgehog and canonical Wnt signaling in specification, differentiation and maintenance of osteoblast progenitors, Development, vol.133, pp.3231-3244, 2006.

N. Schiefermeier, J. M. Scheffler, M. E. De-araujo, T. Stasyk, T. Yordanov et al., The late endosomal p14-MP1 (LAMTOR2/3) complex regulates focal adhesion dynamics during cell migration, J Cell Biol, vol.205, pp.525-540, 2014.

K. Schlegelmilch, M. Mohseni, O. Kirak, J. Pruszak, J. R. Rodriguez et al., Yap1 acts downstream of alphacatenin to control epidermal proliferation, Cell, vol.144, pp.782-795, 2011.

M. A. Sells, A. Pfaff, and J. Chernoff, Temporal and spatial distribution of activated Pak1 in fibroblasts, J Cell Biol, vol.151, pp.1449-1458, 2000.

R. J. Shaw, J. G. Paez, M. Curto, A. Yaktine, W. M. Pruitt et al., The Nf2 tumor suppressor, merlin, functions in Rac-dependent signaling, Dev Cell, vol.1, pp.63-72, 2001.

M. Soleimani and S. Nadri, A protocol for isolation and culture of mesenchymal stem cells from mouse bone marrow, Nat Protoc, vol.4, pp.102-106, 2009.

G. Sorrentino, N. Ruggeri, V. Specchia, M. Cordenonsi, M. Mano et al., Metabolic control of YAP and TAZ by the mevalonate pathway, Nat Cell Biol, vol.16, pp.357-366, 2014.

G. J. Strous, A. Maine, J. E. Zijderhand-bleekemolen, J. W. Slot, and A. L. Schwartz, Effect of lysosomotropic amines on the secretory pathway and on the recycling of the asialoglycoprotein receptor in human hepatoma cells, J Cell Biol, vol.101, pp.531-539, 1985.

D. A. Tuveson, A. T. Shaw, N. A. Willis, D. P. Silver, E. L. Jackson et al., Endogenous oncogenic K-ras(G12D) stimulates proliferation and widespread neoplastic and developmental defects, Cancer Cell, vol.5, pp.375-387, 2004.

S. A. Wickstrom, A. Lange, M. W. Hess, J. Polleux, J. P. Spatz et al., Integrin-linked kinase controls microtubule dynamics required for plasma membrane targeting of caveolae, Dev Cell, vol.19, pp.574-588, 2010.

A. J. Woods, D. P. White, P. T. Caswell, and J. C. Norman, PKD1/PKCmu promotes alphavbeta3 integrin recycling and delivery to nascent focal adhesions, EMBO J, vol.23, pp.2531-2543, 2004.

F. Yin, J. Yu, Y. Zheng, Q. Chen, N. Zhang et al., Spatial organization of Hippo signaling at the plasma membrane mediated by the tumor suppressor Merlin/NF2, Cell, vol.154, pp.1342-1355, 2013.

F. X. Yu, Y. Zhang, H. W. Park, J. L. Jewell, Q. Chen et al., Protein kinase A activates the Hippo pathway to modulate cell proliferation and differentiation, Genes Dev, vol.27, pp.1223-1232, 2013.

B. Zhao, L. Li, L. Wang, C. Y. Wang, J. Yu et al., Cell detachment activates the Hippo pathway via cytoskeleton reorganization to induce anoikis, Genes Dev, vol.26, pp.54-68, 2012.

B. Zhao, K. Tumaneng, and K. L. Guan, The Hippo pathway in organ size control, tissue regeneration and stem cell self-renewal, Nat Cell Biol, vol.13, pp.877-883, 2011.

X. Zhu and R. K. Assoian, Integrin-dependent activation of MAP kinase: a link to shapedependent cell proliferation, Mol Biol Cell, vol.6, pp.273-282, 1995.

, Les cellules sont lavées avec du PBS (1X) et récupérées dans des tubes eppendorfs. Elles sont culotées par centrifugation pendant 5min à 2500rpm. Les cellules sont ensuite incubées dans la glace avec du tampon hypotonique, p.10

M. Ensuite, les cellules sont lysées au dounce

, Afin de récupérer la fraction membranaire totale : Le surnageant est ultracentrifugé

, Afin de séparer les fractions endo-lysosomale et endosome/membrane plasmique : Le

, Les cellules sont culotées par centrifugation pendant 5min à 2500rpm. Les cellules sont lysées avec le tampon de lyse (0,34M saccharose, Les cellules sont lavées avec du PBS (1X) et récupérées dans des tubes eppendorfs

%. Triton, 1mM DTT, 600mM KCl, 150mM NaCl, 150 mM pH 7

, ou non traitées) pendant une nuit avec la molécule d'IPA3 utilisé à une concentration finale de 20µM. Après l'incubation, les fractions cytoplasmique et membranaire sont séparées. La fraction membranaire est resolubilisée en tampon Tris HCl, Immunoprécipitation En utilisant l'épitope Flag: Les cellules sont traitées

, Sigma Aldrich M8823) pendant une nuit à 4°C sous rotation. Après plusieurs lavages en PBS les protéines sont éluées avec du tampon Laemmli sans agent réducteur, Chacune des fractions est incubée avec des billes magnétiques Anti-Flag M2

L. En and . Gfp, EDTA 0.5mM, NP-40 0.5% pendant 30 min dans la glace, puis centrifugées à 13200 rpm pendant 30 min. Le lysat cellulaire est ensuite incubé avec des billes magnétiques GFP-Trap (Chromotek) pendant une nuit à 4°C sur une roue, Les cellules sont lysées dans un tampon contenant du Tris 10mM pH 7.5, NaCl 150mM

, Production de protéines recombinantes en système bactérien et GST-Pull Down La production des protéines de fusion GST-PAKcrib et GST-Rhotekin est réalisée dans les 37°C jusqu'à l'obtention d'une DO de 0,6. La production de protéines recombinantes est induite par l'ajout d'IPTG à 1mM. Après une incubation d'une nuit à température ambiante sous agitation, la culture bactérienne est centrifugée à 5000rpm pendant 20min à 4°C

, En parallèle les cellules sont lysées dans un tampon contenant Tris-HCl 50mM pH 7

, MgCl 2 10mM, glycerol 5%, Na 3 VO 4 1mM. Les cellules sont centrifugées pendant 10 min à 13200 rpm à 4°C. Le lysat cellulaire était incubé pendant 1h avec du lysat bactérien contenant la protéine GST-PAKcrib ou la protéine GST-Rhotekin puis de nouveau 1h avec des billes glutathione-Sepharose. Après l'incubation, les billes sont collectées par centrifugation, NaCl, vol.100, p.1

, Triton X-100, 1mM dithiothréitol (DTT), 100mM NaCl et 30mM MgCl 2 . L'élution des protéines est réalisée avec du tampon Laemmli

T. A. Franz-odendaal, B. K. Hall, and P. E. Witten, Buried alive: How osteoblasts become osteocytes, Dev. Dyn, vol.235, issue.1, pp.176-190, 2006.

P. Marie, Différenciation, fonction et contrôle de l'ostéoblaste, médecine/sciences, vol.17, pp.1252-1259, 2001.

D. E. Discher, P. Janmey, and Y. Wang, Tissue cells feel and respond to the stiffness of their substrate, Science, vol.310, issue.5751, pp.1139-1143, 2005.

A. J. Engler, S. Sen, H. L. Sweeney, and D. E. Discher, Matrix elasticity directs stem cell lineage specification, Cell, vol.126, issue.4, pp.677-689, 2006.

A. S. Rowlands, P. A. George, and J. J. Cooper-white, Directing osteogenic and myogenic differentiation of MSCs: interplay of stiffness and adhesive ligand presentation, Am. J. Physiol. Cell Physiol, vol.295, issue.4, pp.1037-1044, 2008.

M. D. Deel, J. J. Li, L. E. Crose, and C. M. Linardic, A Review: Molecular Aberrations within Hippo Signaling in Bone and Soft-Tissue Sarcomas, Front. Oncol, vol.5, p.190, 2015.

M. Capulli, R. Paone, and N. Rucci, Osteoblast and osteocyte: games without frontiers, Arch. Biochem. Biophys, vol.561, pp.3-12, 2014.

T. Komori, Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts, Cell, vol.89, issue.5, pp.755-764, 1997.

W. S. Argraves, S. Suzuki, H. Arai, K. Thompson, M. D. Pierschbacher et al., Amino acid sequence of the human fibronectin receptor, J. Cell Biol, vol.105, issue.3, pp.1183-1190, 1987.

B. Luo, C. V. Carman, and T. A. Springer, Structural basis of integrin regulation and signaling, Annu. Rev. Immunol, vol.25, pp.619-647, 2007.

A. P. Mould, J. A. Askari, and M. J. Humphries, Molecular Basis of Ligand Recognition by Integrin 5 1: I. SPECIFICITY OF LIGAND BINDING IS DETERMINED BY AMINO ACID SEQUENCES IN THE SECOND AND THIRD NH2-TERMINAL REPEATS OF THE SUBUNIT, J. Biol. Chem, vol.275, issue.27, pp.20324-20336, 2000.

E. Ruoslahti and M. D. Pierschbacher, New perspectives in cell adhesion: RGD and integrins, Science, vol.238, issue.4826, pp.491-497, 1987.

A. Van-der-flier and A. Sonnenberg, Function and interactions of integrins, Cell Tissue Res, vol.305, issue.3, pp.285-298, 2001.

J. O. Lee, P. Rieu, M. A. Arnaout, and R. Liddington, Crystal structure of the A domain from the alpha subunit of integrin CR3 (CD11b/CD18), Cell, vol.80, issue.4, pp.631-638, 1995.

R. Pardi, G. Bossi, L. Inverardi, E. Rovida, and J. R. Bender, Conserved regions in the cytoplasmic domains of the leukocyte integrin alpha L beta 2 are involved in endoplasmic reticulum retention, dimerization, and cytoskeletal association, J. Immunol, vol.155, issue.3, pp.1252-1263, 1995.

S. Liu, D. A. Calderwood, and M. H. Ginsberg, Integrin cytoplasmic domain-binding proteins, J. Cell Sci, vol.113, issue.20, pp.3563-3571, 2000.

S. J. Shattil, C. Kim, and M. H. Ginsberg, The final steps of integrin activation: the end game, Nat. Rev. Mol. Cell Biol, vol.11, issue.4, pp.288-300, 2010.

D. Bouvard, J. Pouwels, N. D. Franceschi, and J. Ivaska, Integrin inactivators: balancing cellular functions in vitro and in vivo, Nat. Rev. Mol. Cell Biol, vol.14, issue.7, pp.430-442, 2013.

A. Hall, Rho GTPases and the actin cytoskeleton, Science, vol.279, issue.5350, pp.509-514, 1998.

B. L. Riggs and A. M. Parfitt, Drugs used to treat osteoporosis: the critical need for a uniform nomenclature based on their action on bone remodeling, J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res, vol.20, issue.2, pp.177-184, 2005.

P. J. Marie and M. Kassem, Osteoblasts in osteoporosis: past, emerging, and future anabolic targets, Eur. J. Endocrinol, vol.165, issue.1, pp.1-10, 2011.

V. Rosen, BMP2 signaling in bone development and repair, Cytokine Growth Factor Rev, vol.20, issue.5-6, pp.475-480, 2009.

P. V. Bodine and B. S. Komm, Wnt signaling and osteoblastogenesis, Rev. Endocr. Metab. Disord, vol.7, issue.1-2, pp.33-39, 2006.

P. J. Marie, Targeting integrins to promote bone formation and repair, Nat. Rev. Endocrinol, vol.9, issue.5, pp.288-295, 2013.

J. A. Phillips, Role for beta1 integrins in cortical osteocytes during acute musculoskeletal disuse, Matrix Biol. J. Int. Soc. Matrix Biol, vol.27, issue.7, pp.609-618, 2008.

A. M. Moursi, Fibronectin regulates calvarial osteoblast differentiation, J. Cell Sci, vol.109, pp.1369-1380, 1996.

R. K. Globus, S. B. Doty, J. C. Lull, E. Holmuhamedov, M. J. Humphries et al., Fibronectin is a survival factor for differentiated osteoblasts, J. Cell Sci, vol.111, pp.1385-1393, 1998.

D. Ili?, E. A. Almeida, D. D. Schlaepfer, P. Dazin, S. Aizawa et al., Extracellular matrix survival signals transduced by focal adhesion kinase suppress p53-mediated apoptosis, J. Cell Biol, vol.143, issue.2, pp.547-560, 1998.

D. Zimmerman, F. Jin, P. Leboy, S. Hardy, and C. Damsky, Impaired bone formation in transgenic mice resulting from altered integrin function in osteoblasts, Dev. Biol, vol.220, issue.1, pp.2-15, 2000.

D. Bouvard, A. Aszodi, G. Kostka, M. R. Block, C. Albigès-rizo et al., Defective osteoblast function in ICAP-1-deficient mice, Dev. Camb. Engl, vol.134, issue.14, pp.2615-2625, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-00166116

J. El-hoss, A. Arabian, S. Dedhar, and R. St-arnaud, Inactivation of the integrin-linked kinase (ILK) in osteoblasts increases mineralization, Gene, vol.533, issue.1, pp.246-252, 2014.

M. Larsen, V. V. Artym, J. A. Green, and K. M. Yamada, The matrix reorganized: extracellular matrix remodeling and integrin signaling, Curr. Opin. Cell Biol, vol.18, issue.5, pp.463-471, 2006.

K. R. Legate, S. A. Wickström, and R. Fässler, Genetic and cell biological analysis of integrin outside-in signaling, Genes Dev, vol.23, issue.4, pp.397-418, 2009.

V. Baldin, J. Lukas, M. J. Marcote, M. Pagano, and G. Draetta, Cyclin D1 is a nuclear protein required for cell cycle progression in G1, Genes Dev, vol.7, issue.5, pp.812-821, 1993.

C. H. Streuli, Integrins and cell-fate determination, J. Cell Sci, vol.122, issue.2, pp.171-177, 2009.

P. Moreno-layseca and C. H. Streuli, Signalling pathways linking integrins with cell cycle progression, Matrix Biol, vol.34, pp.144-153, 2014.

A. R. Grassian, Z. T. Schafer, and J. S. Brugge, ErbB2 Stabilizes Epidermal Growth Factor Receptor (EGFR) Expression via Erk and Sprouty2 in Extracellular Matrix-detached Cells, J. Biol. Chem, vol.286, issue.1, pp.79-90, 2011.

S. Kim, J. Turnbull, and S. Guimond, Extracellular matrix and cell signalling: the dynamic cooperation of integrin, proteoglycan and growth factor receptor, J. Endocrinol, vol.209, issue.2, pp.139-151, 2011.

A. P. Gilmore, Anoikis, Cell Death Differ, vol.12, pp.1473-1477, 2005.

M. Z. Gilcrease, Integrin signaling in epithelial cells, Cancer Lett, vol.247, issue.1, pp.1-25, 2007.

S. Pullan, Requirement of basement membrane for the suppression of programmed cell death in mammary epithelium, J. Cell Sci, vol.109, issue.3, pp.631-642, 1996.

D. Naci and F. Aoudjit, Alpha2beta1 integrin promotes T cell survival and migration through the concomitant activation of ERK/Mcl-1 and p38 MAPK pathways, Cell. Signal, vol.26, issue.9, 2008.

S. Cory and J. M. Adams, The bcl2 family: regulators of the cellular life-or-death switch, Nat. Rev. Cancer, vol.2, issue.9, pp.647-656, 2002.

A. P. Gilmore, A. D. Metcalfe, L. H. Romer, and C. H. Streuli, Integrin-mediated survival signals regulate the apoptotic function of Bax through its conformation and subcellular localization, J. Cell Biol, vol.149, issue.2, pp.431-446, 2000.

M. J. Reginato, Integrins and EGFR coordinately regulate the pro-apoptotic protein Bim to prevent anoikis, Nat. Cell Biol, vol.5, issue.8, pp.733-740, 2003.

T. Xu, W. Wang, S. Zhang, R. A. Stewart, and W. Yu, Identifying tumor suppressors in genetic mosaics: the Drosophila lats gene encodes a putative protein kinase, Development, vol.121, issue.4, pp.1053-1063, 1995.

R. W. Justice, O. Zilian, D. F. Woods, M. Noll, and P. J. Bryant, The Drosophila tumor suppressor gene warts encodes a homolog of human myotonic dystrophy kinase and is required for the control of cell shape and proliferation, Genes Dev, vol.9, issue.5, pp.534-546, 1995.

N. Tapon, salvador Promotes both cell cycle exit and apoptosis in Drosophila and is mutated in human cancer cell lines, Cell, vol.110, issue.4, pp.467-478, 2002.

S. Pantalacci, N. Tapon, and P. Léopold, The Salvador partner Hippo promotes apoptosis and cell-cycle exit in Drosophila, Nat. Cell Biol, vol.5, issue.10, pp.921-927, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00322343

Z. Lai, Control of Cell Proliferation and Apoptosis by Mob as Tumor Suppressor, Mats, Cell, vol.120, issue.5, pp.675-685, 2005.

S. Wu, J. Huang, J. Dong, and D. Pan, hippo encodes a Ste-20 family protein kinase that restricts cell proliferation and promotes apoptosis in conjunction with salvador and warts, Cell, vol.114, issue.4, pp.445-456, 2003.

J. Huang, S. Wu, J. Barrera, K. Matthews, and D. Pan, The Hippo Signaling Pathway Coordinately Regulates Cell Proliferation and Apoptosis by Inactivating Yorkie, the Drosophila Homolog of YAP, Cell, vol.122, issue.3, pp.421-434, 2005.

S. Wu, Y. Liu, Y. Zheng, J. Dong, and D. Pan, The TEAD/TEF Family Protein Scalloped Mediates Transcriptional Output of the Hippo Growth-Regulatory Pathway, Dev. Cell, vol.14, issue.3, pp.388-398, 2008.

B. A. Edgar, From Cell Structure to Transcription: Hippo Forges a New Path, Cell, vol.124, issue.2, pp.267-273, 2006.

E. H. Chan, M. Nousiainen, R. B. Chalamalasetty, A. Schäfer, E. A. Nigg et al., The Ste20-like kinase Mst2 activates the human large tumor suppressor kinase Lats1, Oncogene, vol.24, issue.12, pp.2076-2086, 2005.

J. Lee, A crucial role of WW45 in developing epithelial tissues in the mouse, EMBO J, vol.27, issue.8, pp.1231-1242, 2008.

M. Praskova, F. Xia, and J. Avruch, MOBKL1A/MOBKL1B Phosphorylation by MST1 and MST2 Inhibits Cell Proliferation, Curr. Biol, vol.18, issue.5, pp.311-321, 2008.

A. Chow, Y. Hao, and X. Yang, Molecular characterization of human homologs of yeast MOB1, Int. J. Cancer, pp.p. NA-NA, 2009.

J. Zhang, G. A. Smolen, and D. A. Haber, Negative Regulation of YAP by LATS1 Underscores Evolutionary Conservation of the Drosophila Hippo Pathway, Cancer Res, vol.68, issue.8, pp.2789-2794, 2008.

B. Zhao, L. Li, K. Tumaneng, C. Wang, and K. Guan, A coordinated phosphorylation by Lats and CK1 regulates YAP stability through SCF -TRCP, Genes Dev, vol.24, issue.1, pp.72-85, 2010.

B. Zhao, Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control, Genes Dev, vol.21, issue.21, pp.2747-2761, 2007.

Y. Hao, A. Chun, K. Cheung, B. Rashidi, and X. Yang, Tumor Suppressor LATS1 Is a Negative Regulator of Oncogene YAP, J. Biol. Chem, vol.283, issue.9, pp.5496-5509, 2007.

T. Oka, V. Mazack, and M. Sudol, Mst2 and Lats Kinases Regulate Apoptotic Function of Yes Kinase-associated Protein (YAP), J. Biol. Chem, vol.283, issue.41, pp.27534-27546, 2008.

L. Lu, Hippo signaling is a potent in vivo growth and tumor suppressor pathway in the mammalian liver, Proc. Natl. Acad. Sci, vol.107, issue.4, pp.1437-1442, 2010.

C. Liu, The Hippo Tumor Pathway Promotes TAZ Degradation by Phosphorylating a Phosphodegron and Recruiting the SCF -TrCP E3 Ligase, J. Biol. Chem, vol.285, issue.48, pp.37159-37169, 2010.

S. Piccolo, S. Dupont, and M. Cordenonsi, The Biology of YAP/TAZ: Hippo Signaling and Beyond, Physiol. Rev, vol.94, issue.4, pp.1287-1312, 2014.

A. Håkelien, The regulatory landscape of osteogenic differentiation, Stem Cells Dayt. Ohio, vol.32, issue.10, pp.2780-2793, 2014.

J. Hong, TAZ, a transcriptional modulator of mesenchymal stem cell differentiation, Science, vol.309, issue.5737, pp.1074-1078, 2005.

J. Yang, Osteoblast-targeted overexpression of TAZ increases bone mass in vivo, PloS One, vol.8, issue.2, p.56585, 2013.

S. Dupont, Role of YAP/TAZ in mechanotransduction, Nature, vol.474, issue.7350, pp.179-183, 2011.

S. K. Zaidi, Tyrosine phosphorylation controls Runx2-mediated subnuclear targeting of YAP to repress transcription, EMBO J, vol.23, issue.4, pp.790-799, 2004.

E. Seo, SOX2 regulates YAP1 to maintain stemness and determine cell fate in the osteo-adipo lineage, Cell Rep, vol.3, issue.6, pp.2075-2087, 2013.

J. Lee, Mst2 Controls Bone Homeostasis by Regulating Osteoclast and Osteoblast Differentiation, J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res, vol.30, issue.9, pp.1597-1607, 2015.

Y. Tang, T. Feinberg, E. T. Keller, X. Li, and S. J. Weiss, Snail/Slug binding interactions with YAP/TAZ control skeletal stem cell self-renewal and differentiation, Nat. Cell Biol, vol.18, issue.9, pp.917-929, 2016.

G. Halder, S. Dupont, and S. Piccolo, Transduction of mechanical and cytoskeletal cues by YAP and TAZ, Nat. Rev. Mol. Cell Biol, vol.13, issue.9, pp.591-600, 2012.

L. Sansores-garcia, Modulating F-actin organization induces organ growth by affecting the Hippo pathway, EMBO J, vol.30, issue.12, pp.2325-2335, 2011.

N. Kim and B. M. Gumbiner, Adhesion to fibronectin regulates Hippo signaling via the FAK-Src-PI3K pathway, J. Cell Biol, vol.210, issue.3, pp.503-515, 2015.

Y. Tang, MT1-MMP-dependent control of skeletal stem cell commitment via a ?1-integrin/YAP/TAZ signaling axis, Dev. Cell, vol.25, issue.4, pp.402-416, 2013.

K. Kaneko, M. Ito, Y. Naoe, A. Lacy-hulbert, and K. Ikeda, Integrin ?v in the mechanical response of osteoblast lineage cells, Biochem. Biophys. Res. Commun, vol.447, issue.2, pp.352-357, 2014.

I. Serrano, P. C. Mcdonald, F. Lock, W. J. Muller, and S. Dedhar, Inactivation of the Hippo tumour suppressor pathway by integrin-linked kinase, Nat. Commun, vol.4, p.2976, 2013.

H. Clevers, K. M. Loh, and R. Nusse, An integral program for tissue renewal and regeneration: Wnt signaling and stem cell control, Science, vol.346, issue.6205, pp.1248012-1248012, 2014.

M. Imajo, K. Miyatake, A. Iimura, A. Miyamoto, and E. Nishida, A molecular mechanism that links Hippo signalling to the inhibition of Wnt/?-catenin signalling, EMBO J, vol.31, issue.5, pp.1109-1122, 2012.

X. Varelas, The Hippo Pathway Regulates Wnt/?-Catenin Signaling, Dev. Cell, vol.18, issue.4, pp.579-591, 2010.

F. Cong, L. Schweizer, and H. Varmus, Casein Kinase I? Modulates the Signaling Specificities of Dishevelled, Mol. Cell. Biol, vol.24, issue.5, 2000.

J. Hao, Role of extracellular matrix and YAP/TAZ in cell fate determination, Cell. Signal, vol.26, issue.2, pp.186-191, 2014.

L. Azzolin, Role of TAZ as mediator of Wnt signaling, Cell, vol.151, issue.7, pp.1443-1456, 2012.

M. R. Byun, Canonical Wnt signalling activates TAZ through PP1A during osteogenic differentiation, Cell Death Differ, vol.21, issue.6, pp.854-863, 2014.

D. Javelaud and A. Mauviel, Mammalian transforming growth factor-?s: Smad signaling and physio-pathological roles, Int. J. Biochem. Cell Biol, vol.36, issue.7, pp.1161-1165, 2004.

X. Varelas, TAZ controls Smad nucleocytoplasmic shuttling and regulates human embryonic stem-cell self-renewal, Nat. Cell Biol, vol.10, issue.7, pp.837-848, 2008.

L. Zhao, S. Jiang, and B. M. Hantash, Transforming growth factor beta1 induces osteogenic differentiation of murine bone marrow stromal cells, Tissue Eng. Part A, vol.16, issue.2, pp.725-733, 2010.

K. Tumaneng, R. C. Russell, and K. Guan, Organ Size Control by Hippo and TOR Pathways, Curr. Biol, vol.22, issue.9, pp.368-379, 2012.

X. M. Ma and J. Blenis, Molecular mechanisms of mTOR-mediated translational control, Nat. Rev. Mol. Cell Biol, vol.10, issue.5, pp.307-318, 2009.

M. Laplante and D. M. Sabatini, mTOR Signaling in Growth Control and Disease, Cell, vol.149, issue.2, pp.274-293, 2012.

K. Tumaneng, YAP mediates crosstalk between the Hippo and PI3K-TOR pathways by suppressing PTEN via miR-29, Nat. Cell Biol, vol.14, issue.12, pp.1322-1329, 2012.

W. Zhang and H. T. Liu, MAPK signal pathways in the regulation of cell proliferation in mammalian cells, Cell Res, vol.12, issue.1, pp.9-18, 2002.

B. V. Reddy and K. D. Irvine, Regulation of Hippo Signaling by EGFR-MAPK Signaling through Ajuba Family Proteins, Dev. Cell, vol.24, issue.5, pp.459-471, 2013.

B. You, Inhibition of ERK1/2 down-regulates the Hippo/YAP signaling pathway in human NSCLC cells, Oncotarget, vol.6, issue.6, p.4357, 2015.

H. Song, Ablation of Rassf2 induces bone defects and subsequent haematopoietic anomalies in mice, EMBO J, vol.31, issue.5, pp.1147-1159, 2012.

F. Yu, Regulation of the Hippo-YAP pathway by G-protein coupled receptor signaling, Cell, vol.150, issue.4, pp.780-791, 2012.

E. Miller, Identification of Serum-Derived Sphingosine-1-Phosphate as a Small Molecule Regulator of YAP, Chem. Biol, vol.19, issue.8, pp.955-962, 2012.

J. Mo, F. Yu, R. Gong, J. H. Brown, and K. Guan, Regulation of the Hippo-YAP pathway by protease-activated receptors (PARs), Genes Dev, vol.26, issue.19, pp.2138-2143, 2012.

C. T. Walsh, Thrombin receptor and RhoA mediate cell proliferation through integrins and cysteine-rich protein 61, FASEB J, vol.22, issue.11, pp.4011-4021, 2008.

R. C. Chambers, P. Leoni, O. P. Blanc-brude, D. E. Wembridge, and G. J. Laurent, Thrombin Is a Potent Inducer of Connective Tissue Growth Factor Production via Proteolytic Activation of Protease-activated Receptor-1, J. Biol. Chem, vol.275, issue.45, pp.35584-35591, 2000.

F. Oury, Endocrine Regulation of Male Fertility by the Skeleton, Cell, vol.144, issue.5, pp.796-809, 2011.

C. D. Van-raamsdonk, Mutations in GNA11 in Uveal Melanoma, N. Engl. J. Med, vol.363, issue.23, pp.2191-2199, 2010.

C. Torre, S. J. Wang, W. Xia, and L. Y. Bourguignon, Reduction of Hyaluronan-CD44-Mediated Growth, Migration, and Cisplatin Resistance in Head and Neck Cancer Due to Inhibition of Rho Kinase and PI-3 Kinase Signaling, Arch. Otolaryngol. Neck Surg, vol.136, issue.5, p.493, 2010.

M. Tsuneki and J. A. Madri, CD44 Regulation of Endothelial Cell Proliferation and Apoptosis via Modulation of CD31 and VE-cadherin Expression, J. Biol. Chem, vol.289, issue.9, pp.5357-5370, 2014.

S. J. Goldie, K. W. Mulder, D. W. Tan, S. K. Lyons, A. H. Sims et al., FRMD4A Upregulation in Human Squamous Cell Carcinoma Promotes Tumor Growth and Metastasis and Is Associated with Poor Prognosis, Cancer Res, vol.72, issue.13, pp.3424-3436, 2012.

K. F. Harvey, X. Zhang, and D. M. Thomas, The Hippo pathway and human cancer, Nat. Rev. Cancer, vol.13, issue.4, pp.246-257, 2013.

N. Zhang, The Merlin/NF2 tumor suppressor functions through the YAP oncoprotein to regulate tissue homeostasis in mammals, Dev. Cell, vol.19, issue.1, pp.27-38, 2010.

F. Yin, J. Yu, Y. Zheng, Q. Chen, N. Zhang et al., Spatial Organization of Hippo Signaling at the Plasma Membrane Mediated by the Tumor Suppressor Merlin/NF2, Cell, vol.154, issue.6, pp.1342-1355, 2013.

W. Li, Merlin/NF2 Loss-Driven Tumorigenesis Linked to CRL4DCAF1-Mediated Inhibition of the Hippo Pathway Kinases Lats1 and 2 in the Nucleus, Cancer Cell, vol.26, issue.1, pp.48-60, 2014.

C. D. Wells, A Rich1/Amot Complex Regulates the Cdc42 GTPase and ApicalPolarity Proteins in Epithelial Cells, Cell, vol.125, issue.3, pp.535-548, 2006.

S. W. Chan, C. J. Lim, Y. F. Chong, A. V. Pobbati, C. Huang et al., Hippo Pathway-independent Restriction of TAZ and YAP by Angiomotin, J. Biol. Chem, vol.286, issue.9, pp.7018-7026, 2011.

W. Wang, J. Huang, and J. Chen, Angiomotin-like Proteins Associate with and Negatively Regulate YAP1, J. Biol. Chem, vol.286, issue.6, pp.4364-4370, 2011.

B. Zhao, Angiomotin is a novel Hippo pathway component that inhibits YAP oncoprotein, Genes Dev, vol.25, issue.1, pp.51-63, 2011.

Y. Hirate, Polarity-Dependent Distribution of Angiomotin Localizes Hippo Signaling in Preimplantation Embryos, Curr. Biol, vol.23, issue.13, pp.1181-1194, 2013.

Y. Li, Angiomotin binding-induced activation of Merlin/NF2 in the Hippo pathway, Cell Res, vol.25, issue.7, pp.801-817, 2015.

Y. Hirate and H. Sasaki, The role of angiomotin phosphorylation in the Hippo pathway during preimplantation mouse development, Tissue Barriers, vol.2, issue.1, p.28127, 2014.

M. Deran, Energy Stress Regulates Hippo-YAP Signaling Involving AMPKMediated Regulation of Angiomotin-like 1 Protein, Cell Rep, vol.9, issue.2, pp.495-503, 2014.

W. Wang, AMPK modulates Hippo pathway activity to regulate energy homeostasis, Nat. Cell Biol, vol.17, issue.4, pp.490-499, 2015.

I. K. Hariharan, Energy stress tames the Hippo pathway, Nat. Cell Biol, vol.17, issue.4, pp.362-363, 2015.

Z. Li, Structural insights into the YAP and TEAD complex, Genes Dev, vol.24, issue.3, pp.235-240, 2010.

J. Mo, Cellular energy stress induces AMPK-mediated regulation of YAP and the Hippo pathway, Nat. Cell Biol, vol.17, issue.4, pp.500-510, 2015.

J. Geng, The kinases Mst1 and Mst2 positively regulate phagocyte ROS induction and bactericidal activity, Nat. Immunol, vol.16, issue.11, pp.1142-1152, 2015.

T. Matsuda, NF2 Activates Hippo Signaling and Promotes Ischemia/Reperfusion Injury in the Heart, Circ. Res, vol.119, issue.5, pp.596-606, 2016.

B. Ma, Hypoxia regulates Hippo signalling through the SIAH2 ubiquitin E3 ligase, Nat. Cell Biol, vol.17, issue.1, pp.95-103, 2014.

B. Zhao, L. Li, L. Wang, C. Wang, J. Yu et al., Cell detachment activates the Hippo pathway via cytoskeleton reorganization to induce anoikis, Genes Dev, vol.26, issue.1, pp.54-68, 2012.

K. Wada, K. Itoga, T. Okano, S. Yonemura, and H. Sasaki, Hippo pathway regulation by cell morphology and stress fibers, Development, vol.138, issue.18, pp.3907-3914, 2011.

A. Kodama, I. Karakesisoglou, E. Wong, A. Vaezi, and E. Fuchs, ACF7, Cell, vol.115, issue.3, pp.343-354, 2003.

S. A. Wickström, Integrin-Linked Kinase Controls Microtubule Dynamics Required for Plasma Membrane Targeting of Caveolae, Dev. Cell, vol.19, issue.4, pp.574-588, 2010.

Z. Yang, Knockdown of YAP1 inhibits the proliferation of osteosarcoma cells in vitro and in vivo, Oncol. Rep, vol.32, issue.3, pp.1265-1272, 2014.

U. Basu-roy, Sox2 antagonizes the Hippo pathway to maintain stemness in cancer cells, Nat. Commun, vol.6, p.6411, 2015.

D. Wang, Hippo/YAP signaling pathway is involved in osteosarcoma chemoresistance, Chin. J. Cancer, vol.35, p.47, 2016.

C. Bouvier, Prognostic value of the Hippo pathway transcriptional coactivators YAP/TAZ and ?1-integrin in conventional osteosarcoma, Oncotarget, vol.7, issue.40, pp.64702-64710, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01482390

R. O. Hynes, Integrins: bidirectional, allosteric signaling machines, Cell, vol.110, issue.6, pp.673-687, 2002.

X. Zhu and R. K. Assoian, Integrin-dependent activation of MAP kinase: a link to shape-dependent cell proliferation, Mol. Biol. Cell, vol.6, issue.3, pp.273-282, 1995.

D. Bar-sagi and A. Hall, Ras and Rho GTPases: a family reunion, Cell, vol.103, issue.2, pp.227-238, 2000.

M. Radu, G. Semenova, R. Kosoff, and J. Chernoff, PAK signalling during the development and progression of cancer, Nat. Rev. Cancer, vol.14, issue.1, pp.13-25, 2014.

L. S. Price, J. Leng, M. A. Schwartz, and G. M. Bokoch, Activation of Rac and Cdc42 by integrins mediates cell spreading, Mol. Biol. Cell, vol.9, issue.7, pp.1863-1871, 1998.

S. Matsumoto, A combination of Wnt and growth factor signaling induces Arl4c expression to form epithelial tubular structures, EMBO J, vol.33, issue.7, pp.702-718, 2014.

N. Balasubramanian, D. W. Scott, J. D. Castle, J. E. Casanova, and M. A. Schwartz, Arf6 and microtubules in adhesion-dependent trafficking of lipid rafts, Nat. Cell Biol, vol.9, issue.12, pp.1381-1391, 2007.

P. L. Joyce and A. D. Cox, Rac1 and Rac3 are targets for geranylgeranyltransferase I inhibitor-mediated inhibition of signaling, transformation, and membrane ruffling, Cancer Res, vol.63, issue.22, pp.7959-7967, 2003.

G. Sorrentino, Metabolic control of YAP and TAZ by the mevalonate pathway, Nat. Cell Biol, vol.16, issue.4, pp.357-366, 2014.

N. Schiefermeier, The late endosomal p14-MP1 (LAMTOR2/3) complex regulates focal adhesion dynamics during cell migration, J. Cell Biol, vol.205, issue.4, pp.525-540, 2014.

T. A. Cook, T. Nagasaki, and G. G. Gundersen, Rho guanosine triphosphatase mediates the selective stabilization of microtubules induced by lysophosphatidic acid, J. Cell Biol, vol.141, issue.1, pp.175-185, 1998.

A. J. Ridley, Rho proteins: linking signaling with membrane trafficking, Traffic Cph. Den, vol.2, issue.5, pp.303-310, 2001.

Z. Smole, Tumor suppressor NF2/Merlin is a microtubule stabilizer, Cancer Res, vol.74, issue.1, pp.353-362, 2014.

K. Schlegelmilch, Yap1 Acts Downstream of ?-Catenin to Control Epidermal Proliferation, Cell, vol.144, issue.5, pp.782-795, 2011.