.. .. Ions,

, A predictive dynamic yeast model based on component, energy and electron carrier balances

, The yeast model

D. .. Results, 168 6.1.5.3 Simulation without limiting effects of NAD +

.. .. Conclusion,

, Yeast and microalgae model in mixed culture

, Chapter

A. References and E. Hom, Niche Engineering Demonstrates a Latent Capacity for Fungal-Algal Mutualism, Science (80-), vol.345, pp.94-98, 2015.

S. Abinandan and S. Shanthakumar, Evaluation of photosynthetic efficacy and CO2 removal of microalgae grown in an enriched bicarbonate medium, 3 Biotech, vol.6, pp.1-9, 2016.

M. Adamczyk, J. Lasek, and A. Skawi?ska, CO2 Biofixation and Growth Kinetics of Chlorella vulgaris and Nannochloropsis gaditana, Appl Biochem Biotechnol, vol.179, pp.1248-1261, 2016.

S. Aiba, M. Shoda, and M. Nagatani, Kinetics of product inhibition in alcohol fermentationtemperature effect in the "sake" brewing, Biotechnol Bioeng, vol.11, pp.1285-1287, 1969.

, References Saccharomyces cerevisiae Under Various Degrees of Glucose Limitation Enzyme Pattern and Aerobic Growth of Saccharomyces cerevisiae Under Various Degrees of Glucose Limitation, J Bacteriol, vol.96, pp.479-486

B. Amor-ben-ayed, H. Taidi, B. Ayadi, H. Pareau, D. Stambouli et al., Effect of magnesium ion concentration in autotrophic cultures of Chlorella vulgaris, Algal Res, vol.9, pp.291-296, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01237340

B. Amor-ben-ayed, H. Taidi, B. Ayadi, H. Pareau, D. Stambouli et al., The Use of Chlorella vulgaris to Accumulate Magnesium under Different Culture Conditions, J Appl Biotechnol Bioeng, vol.2, pp.180-185, 2017.

O. Bernard and B. Rémond, Validation of a simple model accounting for light and temperature effect on microalgal growth, Bioresour Technol, vol.123, pp.520-527, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00848389

V. Bhola, R. Desikan, S. K. Santosh, K. Subburamu, E. Sanniyasi et al., Effects of parameters affecting biomass yield and thermal behaviour of Chlorella vulgaris, J Biosci Bioeng, vol.111, pp.377-382, 2011.

L. F. Bisson, Stuck and Sluggish Fermentations, Am J Enol Vitic, vol.50, pp.107-119, 1999.

L. Blateyron and J. Sablayrolles, Stuck and Slow Fermentations in Enology: Statistical Study of Causes and Effectiveness of Combined Additions of Oxygen and Diammonium Phosphate, J Biosci Bioeng, vol.91, issue.01, pp.80063-80066, 2001.

C. Boulton and D. Quain, Brewing Yeast and Fermentation, The Instit, 2001.

J. P. Bovee, P. Strehaiano, G. Goma, and Y. Sevely, Alcoholic fermentation: Modelling based on sole substrate and product measurement, Biotechnol Bioeng, vol.26, pp.328-334, 1984.

N. R. Boyle and J. A. Morgan, Flux balance analysis of primary metabolism in Chlamydomonas reinhardtii, BMC Syst Biol, vol.3, pp.1-14, 2009.

S. Cai, C. Hu, and S. Du, Comparisons of growth and biochemical composition between mixed culture of alga and yeast and monocultures, J Biosci Bioeng, vol.104, pp.391-397, 2007.

D. Chaney, S. Rodriguez, K. Fugelsang, and R. Thornton, Managing high-density commercial scale wine fermentations, J Appl Microbiol, vol.100, pp.689-698, 2006.

H. X. Chang, Y. Huang, Q. Fu, Q. Liao, X. Zhu et al., Kinetic characteristics and modeling of microalgae Chlorella vulgaris growth and CO2 biofixation considering the coupled effects of light intensity and dissolved inorganic carbon, Appl Environ Microbiol, vol.82, pp.3121-3130, 2016.

B. Cheirsilp, S. Kitcha, and S. Torpee, Co-culture of an oleaginous yeast Rhodotorula glutinis and a microalga Chlorella vulgaris for biomass and lipid production using pure and crude glycerol as a sole carbon source, Ann Microbiol, vol.62, pp.987-993, 2011.

B. Cheirsilp, W. Suwannarat, and R. Niyomdecha, Mixed culture of oleaginous yeast Rhodotorula glutinis and microalga Chlorella vulgaris for lipid production from industrial wastes and its use as biodiesel feedstock, N Biotechnol, vol.28, pp.362-368, 2011.

C. Y. Chen, K. L. Yeh, R. Aisyah, D. J. Lee, and J. S. Chang, Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: A critical review, Bioresour Technol, vol.102, pp.71-81, 2011.

B. H. Cho, N. Sauer, E. Komor, and W. Tanner, Glucose induces two amino acid transport systems in Chlorella, Proc Natl Acad Sci U S A, vol.78, pp.3591-3595, 1981.

B. Clément-larosière, F. Lopes, B. Taidi, M. Benedetti, M. Minier et al., Carbon dioxide biofixation by Chlorella vulgaris at different CO2 concentrations and light intensities, Eng Life Sci, vol.14, 2014.

M. C. Coleman, R. Fish, and D. E. Block, Temperature-dependent kinetic model for nitrogenlimited wine fermentations, Appl Environ Microbiol, vol.73, pp.5875-5884, 2007.

A. Concas, A. Steriti, M. Pisu, and G. Cao, Comprehensive modeling and investigation of the effect of iron on the growth rate and lipid accumulation of Chlorella vulgaris cultured in batch photobioreactors, Bioresour Technol, vol.153, pp.340-350, 2014.

A. C. Cramer, S. Vlassides, and D. E. Block, Kinetic model for nitrogen-limited wine fermentations, Biotechnol Bioeng, vol.77, pp.49-60, 2002.

J. J. Cullen, X. Yang, and H. L. Macintyre, Nutrient limitation of marine photosynthesis, 1992.

V. Da-silva-ferreira and C. Sant'anna, Impact of culture conditions on the chlorophyll content of microalgae for biotechnological applications, World J Microbiol Biotechnol, vol.33, 2017.

S. Dashko, N. Zhou, C. Compagno, and J. Pi?kur, Why, when, and how did yeast evolve alcoholic fermentation?, FEMS Yeast Res, vol.14, pp.826-832, 2014.

L. E. De-bashan, Y. Bashan, M. Moreno, V. K. Lebsky, and J. J. Bustillos, Increased pigment and lipid content, lipid variety, and cell and population size of the microalgae Chlorella spp. when co-immobilized in alginate beads with the microalgae-growth-promoting bacterium Azospirillum brasilense, Can J Microbiol, vol.48, pp.514-521, 2002.

R. H. De-deken, The Crabtree Effect: A Regulatory System in Yeast, J Gen Microbiol References, vol.44, pp.149-156, 1966.

D. Freitas, J. Wintz, H. Kim, J. H. Poynton, H. Fox et al., Yeast, a model organism for iron and copper metabolism studies, BioMetals, vol.16, pp.185-197, 2003.

R. Dillschneider, I. Schulze, A. Neumann, C. Posten, and C. Syldatk, Combination of algae and yeast fermentation for an integrated process to produce single cell oils, Appl Microbiol Biotechnol, vol.98, pp.7793-7802, 2014.

Q. L. Dong and X. M. Zhao, In situ carbon dioxide fixation in the process of natural astaxanthin production by a mixed culture of Haematococcus pluvialis and Phaffia rhodozyma, Catal Today, vol.98, pp.537-544, 2004.

T. J. Edwards, G. Maurer, J. Newman, and J. M. Prausnitz, Vapor-liquid equilibria in multicomponent aqueous solutions of volatile weak electrolytes, AIChE J, vol.24, pp.966-976, 1978.

H. Endo, H. Sansawa, and K. Nakajima, Studies on Chlorella regularis Heterotrophic Fast Growing Strain Part 2 Mixotrophic Growth in Relation To Light Intensity and Acetate Concentration, Plant Cell Physiol, vol.18, pp.199-205, 1977.

P. G. Falkowski and J. A. Raven, An Introduction to Photosynthesis in Aquatic Systems, 2007.

A. Fiechter and W. Seghezzi, Regulation of glucose metabolism in growing yeast cells, J Biotechnol, vol.27, pp.27-45, 1992.

J. François, Reserve carbohydrates metabolism in the yeast Saccharomyces cerevisiae, FEMS Microbiol Rev, vol.25, pp.125-145, 2002.

C. J. Franzén, Metabolic flux analysis of RQ-controlled microaerobic ethanol production by Saccharomyces cerevisiae, Yeast, vol.20, pp.117-132, 2003.

C. Gancedo, J. M. Gancedo, and A. Sols, Glycerol metabolism in yeasts pathways of utilization and production, Can J Biochem, vol.5, pp.165-17214, 1968.

F. Garcia-ochoa, E. Gomez, V. E. Santos, and J. C. Merchuk, Oxygen uptake rate in microbial processes: An overview, Biochem Eng J, vol.49, pp.289-307, 2010.

A. Gargas, P. T. Depriest, M. Grube, and A. Tehler, Multiple origins of lichen symbioses in fungi suggested by SSU rDNA phylogeny, Science (80-), vol.268, pp.1492-1495, 1995.

P. Gervais and I. M. De-marañon, Effect of the kinetics of temperature variation on Saccharomyces cerevisiae viability and permeability, BBA -Biomembr, vol.1235, pp.52-56, 1995.

G. Giovanelli, C. Peri, and E. Parravicini, Kinetics of grape juice fermentation under aerobic and anaerobic conditions, Am J Enol Vitic, vol.47, pp.429-434, 1996.

J. M. Girard, M. L. Roy, M. Hafsa, . Ben, J. Gagnon et al.,

, , pp.241-248

A. G. Glaesener, S. S. Merchant, and C. E. Blaby-haas, Iron economy in Chlamydomonas reinhardtii, Front Plant Sci, vol.4, pp.1-12, 2013.

J. C. Goldman, Biomass production in mass cultures of marine phytoplankton at varying temperatures, J Exp Mar Bio Ecol, vol.27, pp.90136-90144, 1977.

J. A. Gomez, K. Höffner, and P. I. Barton, From sugars to biodiesel using microalgae and yeast, Green Chem, vol.18, pp.461-475, 2016.

D. J. Griffiths, C. L. Thresher, and H. E. Street, The heterotrophic nutrition of Chlorella vulgaris, Annu Bot, vol.2, pp.1-11, 1960.

T. Großkopf and O. S. Soyer, Synthetic microbial communities, Curr Opin Microbiol, vol.18, pp.72-77, 2014.

T. Hachiya, I. Terashima, and K. O. Noguchi, Increase in respiratory cost at high growth temperature is attributed to high protein turnover cost in Petunia ¥ hybrida petals, Plant, Cell Environ, vol.30, pp.1269-1283, 2007.

M. H. Haggstrom and M. Dostalek, Regulation of a mixed culture of Streptococcus lactis and Saccharomycopsis fibuliger, Eur J Appl Microbiol Biotechnol, vol.12, pp.216-219, 1981.

A. Hagman and J. Pi?kur, A study on the fundamental mechanism and the evolutionary driving forces behind aerobic fermentation in yeast, PLoS One, vol.10, pp.1-24, 2015.

A. Hagman, T. Säll, and J. Pi?kur, Analysis of the yeast short-term Crabtree effect and its origin, FEBS J, vol.281, pp.4805-4814, 2014.

P. A. Henschke, Stuck fermentation: causes, prevention and cure, Proc ASVO oenology Semin Melbourne, vol.41, pp.30-38, 1997.

P. K. Herman, Stationary phase in yeast, Curr Opin Microbiol, vol.5, pp.602-607, 2002.

G. P. Holmes-hampton, N. D. Jhurry, S. P. Mccormick, and P. A. Lindahl, Iron content of Saccharomyces cerevisiae cells grown under iron-deficient and iron-overload conditions, Biochemistry, vol.52, pp.105-114, 2013.

I. Holzberg, R. K. Finn, and K. H. Steinkraus, A kinetic study of the alcoholic fermentation of grape juice, Biotechnol Bioeng, vol.9, pp.413-427, 1967.

S. Hong and C. Lee, Evaluation of central metabolism based on a genomic database of Synechocystis PCC6803, Biotechnol Bioprocess Eng, vol.12, pp.165-173, 2007.

R. Hu, Z. C. Zheng, Y. G. Wang, Z. Shen, and Y. C. , Effect of sugar-feeding strategies on astaxanthin production by Xanthophyllomyces dendrorhous, World J Microbiol Biotechnol, vol.21, pp.771-775, 2005.

E. A. Johnson and G. H. An, Astaxanthin from microbial sources, Crit Rev Biotechnol, vol.11, pp.297-326, 1991.

P. Jouhten, E. Rintala, A. Huuskonen, A. Tamminen, M. Toivari et al., Oxygen requirements for formation and activity of the squalene epoxidase in <i>Saccharomyces cerevisiae/i>, BMC Syst Biol, vol.60, pp.1-19, 2008.

A. Julien, J. L. Roustan, L. Dulau, and J. M. Sablayrolles, Comparison of nitrogen and oxygen demands of enological yeasts: Technological consequences, Am J Enol Vitic, vol.51, pp.215-222, 2000.

J. Kaplan, M. Ward, D. Crisp, R. J. Philpott, and C. C. , Iron-dependent metabolic remodeling in S. cerevisiae, Biochim Biophys Acta -Mol Cell Res, vol.1763, pp.646-651, 2006.

O. Käppeli, M. Arreguin, and M. Rieger, The respirative breakdown of glucose by Saccharomyces cerevisiae: an assessment of a physiological state, J Gen Microbiol, vol.131, pp.1411-1417, 1985.

C. Klein, L. Olsson, and J. Nielsen, Glucose control in Saccharomyces cerevisiae : the role of M/G7 in metabolic functions, Int J Syst Evol Microbiol, pp.13-24, 1998.

M. Kobayashi, T. Kakizono, K. Yamaguchi, N. Nishio, and S. Nafai, Growth and Astaxanthin Formation of Haematococcus pluvialis in Heterotrophic and Mixotrophic Conditions, J Ferment Bioeng, vol.74, pp.17-20, 1992.

A. Koç, L. J. Wheeler, C. K. Mathews, and G. F. Merrill, Hydroxyurea Arrests DNA Replication by a Mechanism that Preserves Basal dNTP Pools, J Biol Chem, vol.279, pp.223-230, 2004.

E. Kojima and K. Zhang, Growth and hydrocarbon production of microalga Botryococcus braunii in bubble column photobioreactors, J Biosci Bioeng, vol.87, pp.811-815, 1999.

M. Kröger and F. Müller-langer, Impact of heterotrophic and mixotrophic growth of microalgae on the production of future biofuels, Biofuels, vol.2, pp.145-151, 2011.

A. Kumar, S. Ergas, X. Yuan, A. Sahu, Q. Zhang et al., Enhanced CO2 fixation and biofuel production via microalgae: Recent developments and future directions, Trends Biotechnol, vol.28, pp.371-380, 2010.

A. La, P. Perré, and B. Taidi, Process for symbiotic culture of Saccharomyces cerevisiae and Chlorella vulgaris for in situ CO2 mitigation, Appl Microbiol Biotechnol, vol.103, pp.731-745, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01959181

G. Lalibertè and J. De-la-noüie, Auto-, Hetero-, and Mixotrophic Growth of Chlamydomonas Humicola (Chlorophyceae) on Acetate, J. Phycol, vol.29, pp.612-620, 1993.

R. Lannig, Impact du dioxyde de carbone sur la levure Saccharomyces cerevisiae : caractérisation du transfert liquide/gaz et implications sur les métabolismes énergétiques, 2015.

C. Larsson and L. Axelsson, Bicarbonate uptake and utilization in marine macroalgae, Eur J Phycol, vol.34, pp.79-86, 1999.

V. K. Lebsky, L. E. Gonzalez-bashan, and Y. Bashan, Ultrastructure of interaction in alginate beads between the microalga Chlorella vulgaris with its natural associative bacterium Phyllobacterium myrsinacearum and with the plant growth-promoting bacterium Azospirillum brasilense, Can J Microbiol, vol.47, pp.1-8, 2001.

E. Lee, M. Jalalizadeh, and Q. Zhang, Growth kinetic models for microalgae cultivation: A review, Algal Res, vol.12, pp.497-512, 2015.

Y. K. Lee, B. S. Lim, and C. W. Kim, Influence of illuminating and viewing aperture size on the color of dental resin composites, Dent Mater, vol.20, pp.72-73, 2004.

R. Leesing, R. Baojungharn, and T. Papone, Microbial Oil Production by Mixed Culture of Microalgae Chlorella sp. KKU-S2 and Yeast Torulaspora maleeae Y30, Int J Biol Biomol Agric Food Biotechnol Eng, vol.6, pp.247-250, 2012.

Y. Liang, N. Sarkany, and Y. Cui, Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions, Biotechnol Lett, vol.31, pp.1043-1049, 2009.

Q. Liao, Y. Sun, Y. Huang, A. Xia, Q. Fu et al., Simultaneous enhancement of Chlorella vulgaris growth and lipid accumulation through the synergy effect between light and nitrate in a planar waveguide flat-plate photobioreactor, Bioresour Technol, vol.243, pp.528-538, 2017.

S. Lillie and J. R. Pringle, Reserve Carbohydrate Metabolism in Saccharomyces cerevisiae: Responses to Nutrient Limitation, J Bacteriol, vol.143, pp.1-11, 2006.

C. G. Liu, Y. H. Lin, and F. W. Bai, A kinetic growth model for Saccharomyces cerevisiae grown under redox potential-controlled very-high-gravity environment, Biochem Eng J, vol.56, pp.63-68, 2011.

Z. Y. Liu, G. C. Wang, and B. C. Zhou, Effect of iron on growth and lipid accumulation in Chlorella vulgaris, Bioresour Technol, vol.99, pp.4717-4722, 2008.

A. López and P. Secanell, A simple mathematical empirical model for estimating the rate of heat generation during fermentation in white-wine making, Int J Refrig, vol.15, pp.276-280, 1992.

J. M. Macy and M. W. Miller, Anaerobic growth of Saccharomyces cerevisiae in the absence of References oleic acid and ergosterol?, Arch Microbiol, vol.134, pp.64-67, 1983.

S. Magdouli, S. K. Brar, and J. F. Blais, Co-culture for lipid production: Advances and challenges, Biomass and Bioenergy, vol.92, pp.20-30, 2016.

F. J. Marquez, S. Ken, T. Kakizono, N. Nishio, and S. Nagap, Growth Characteristics of Spirulina platensis in Mixotrophic and Heterotrophic Conditions, J Ferment Bioeng, vol.76, pp.408-410, 1993.

F. Martinez, C. Ascaso, and M. I. Orus, Morphometric and Stereologic Analysis of Chlorella vulgaris under Heterotrophic Growth-Conditions, Ann Bot, vol.67, pp.239-245, 1991.

J. Masojídek, G. Torzillo, and M. Koblí?ek, Photosynthesis in Microalgae, Handb Microalgal Cult Appl Phycol Biotechnol, 2013.

Y. Matsuda, T. Hara, and B. Colman, Regulation of the induction of bicarbonate uptake by dissolved CO2 in the marine diatom, Phaeodactylum tricornutum. Plant, Cell Environ, vol.24, pp.611-620, 2001.

P. J. Mcauley, Planta Nitrogen limitation and amino-acid metabolism, Planta, vol.171, pp.532-538, 1987.

M. Meijer, J. Boonstra, A. J. Verkleij, and C. T. Verrips, Glucose repression in Saccharomyces cerevisiae is related to the glucose concentration rather than the glucose flux, J Biol Chem, vol.273, pp.24102-24107, 1998.

J. J. Milledge and S. Heaven, A review of the harvesting of micro-algae for biofuel production, Rev Environ Sci Biotechnol, vol.12, pp.165-178, 2013.

D. Mitra, J. Van-leeuwen, and . Hans, Lamsal B (2012) Heterotrophic/mixotrophic cultivation of oleaginous Chlorella vulgaris on industrial co-products, Algal Res, vol.1, pp.40-48

E. Molina-grima, G. Carnacho, F. , S. Perez-j-a, F. Sevilla et al., Light-Limited Chemostat Culture, J Chem Technol Biotechnol, vol.61, pp.167-173, 1994.

J. Muñoz-blanco, J. Hidalgo-martínez, and J. Cárdenas, Extracellular deamination of amino acids by Chlamydomonas reinhardtii cells, Planta, vol.182, pp.194-198, 1990.

C. A. Murphree, J. T. Dums, S. K. Jain, C. Zhao, D. Y. Young et al., Amino Acids Are an Ineffective Fertilizer for Dunaliella spp, Growth. Front Plant Sci, vol.8, p.847, 2017.

A. H. Neilson and R. A. Lewin, The uptake and utilization of organic carbon by algae : an essayin comparative biochemistry, Phycologia, vol.13, pp.227-264, 1974.

T. L. Nissen, U. Schulze, J. Nielsen, and J. Villadsen, Flux distributions in anaerobic, glucoselimited continuous cultures of Saccharomyces cerevisiae, Microbiology, vol.143, pp.203-218, 1997.

T. Ogawa and S. Aiba, Bioenergetic analysis of mixotrophic growth in Chlorella vulgaris and Scenedesmus acutus, Biotechnol Bioeng, vol.23, pp.1121-1132, 1981.

K. Otterstedt, C. Larsson, R. M. Bill, A. Ståhlberg, E. Boles et al., Switching the mode of metabolism in the yeast Saccharomyces cerevisiae, EMBO Rep, vol.5, pp.532-537, 2004.

N. Oulhen, B. J. Schulz, and T. J. Carrier, English translation of Heinrich Anton de Bary's 1878 speech, Symbiosis, vol.69, pp.131-139, 2016.

K. M. Overkamp, B. M. Bakker, P. Ko, P. Pronk, and J. T. , Vivo Analysis of the Mechanisms for Oxidation of Cytosolic NADH by Saccharomyces cerevisiae Mitochondria, vol.182, pp.2823-2830, 2000.

F. Pagnanelli, P. Altimari, F. Trabucco, and L. Toro, Mixotrophic growth of Chlorella vulgaris and Nannochloropsis oculata: Interaction between glucose and nitrate, J Chem Technol Biotechnol, vol.89, pp.652-661, 2014.

T. Papone, S. Kookkhunthod, M. Paungbut, and R. Leesing, Producing of Microbial Oil by Mixed Culture of Microalgae and Oleaginous Yeast Using Sugarcane Molasses as Carbon Substrate, J Clean Energy Technol, vol.4, pp.253-256, 2016.

T. Papone, S. Kookkhunthod, M. Paungbut, and R. Leesing, Microbial Oil Production by Monoculture and Mixed Cultures of Microalgae and Oleaginous Yeasts using Sugarcane Juice as Substrate, J Clean Energy Technol, vol.4, pp.253-256, 2016.

M. Pa?, B. Pi?kur, M. ?u?tari?, and P. Raspor, Iron enriched yeast biomass -A promising mineral feed supplement, Bioresour Technol, vol.98, pp.1622-1628, 2007.

A. Peña, H. Álvarez, M. Calahorra, and J. Ramírez, Effects of high medium pH on growth, metabolism and transport in Saccharomyces cerevisiae, FEMS Yeast Res, vol.15, pp.1-13, 2015.

O. Perez-garcia, L. E. De-bashan, J. P. Hernandez, and Y. Bashan, Efficiency of growth and nutrient uptake from wastewater by heterotrophic, autotrophic, and mixotrophic cultivation of Chlorella vulgaris immobilized with azospirillum brasilense, J Phycol, vol.46, pp.800-812, 2010.

C. E. Pfaffinger, D. Schöne, S. Trunz, H. Löwe, and D. Weuster-botz, Model-based optimization of microalgae areal productivity in flat-plate gas-lift photobioreactors, Algal Res, vol.20, pp.153-163, 2016.

T. Pfeiffer and A. Morley, An evolutionary perspective on the Crabtree effect, Front Mol Biosci, vol.1, pp.1-6, 2014.

T. I. Pisman and L. A. Somova, Interaction of a mixed yeast culture in an "autotrophheterotroph" system with a closed atmosphere cycle and spatially separated components, 2003.

, Adv Sp Res, vol.31, pp.1751-1756

R. Porra and R. J. , The assay of chlorophylls a and b converted to their respective magnesiumrhodochlorin derivatives by extraction from recalcitrant algal cells with aqueous alkaline methanol: Prevention of allomerization with reductants, BBA -Bioenerg, vol.1015, p.90083, 1990.

N. Pragya, K. K. Pandey, and P. K. Sahoo, A review on harvesting, oil extraction and biofuels production technologies from microalgae, Renew Sustain Energy Rev, vol.24, pp.159-171, 2013.

M. Puangbut and R. Leesing, Integrated Cultivation Technique for Microbial Lipid Production by Photosynthetic Microalgae and Locally Oleaginous Yeast, World Acad Sci Eng Technol, vol.64, pp.90089-90095, 2012.

H. Qiang and A. Richmond, Productivity and photosynthetic efficiency of Spirulina platensis as affected by light intensity, algal density and rate of mixing in a flat plate photobioreactor, J Appl Phycol, vol.8, pp.139-145, 1996.

E. D. Quéméner, . Le, and T. Bouchez, A thermodynamic theory of microbial growth, ISME J, vol.8, pp.1747-1751, 2014.

J. W. Rachlin and A. Grosso, The Effects of pH on the Growth of Chlorella vulgaris and its Interactions with Cadmium Toxicity, Arch Environ Contam Toxicol, vol.20, pp.505-508, 1991.

P. K. Rai, S. P. Singh, and R. K. Asthana, Biohydrogen production from cheese whey wastewater in a two-step anaerobic process, Appl Biochem Biotechnol, vol.167, pp.1540-1549, 2012.

A. Richmond, Handbook of Microalgae Culture: Biotechnology and Applied Phycology, 2017.

E. Rosenfeld, B. Beauvoit, B. Blondin, and J. Salmon, Oxygen Consumption by Anaerobic Saccharomyces cerevisiae under Enological Conditions: Effect on Fermentation Kinetics, 2003.

, Appl Environ Microbiol, vol.69, pp.113-121

J. M. Sablayrolles and . Bp, Evaluation des besoins en oxygène des fermentations alcooliques en conditions oenologiques simulées, Sci des Aliment, vol.6, pp.373-383, 1986.

J. M. Sablayrolles, C. Dubois, C. Manginot, J. L. Roustan, and P. Barre, Effectiveness of combined ammoniacal nitrogen and oxygen additions for completion of sluggish and stuck wine fermentations, J Ferment Bioeng, vol.82, pp.377-381, 1996.

C. Safi, B. Zebib, O. Merah, P. Y. Pontalier, and C. Vaca-garcia, Morphology, composition, production, processing and applications of Chlorella vulgaris: A review, Renew Sustain Energy Rev, vol.35, pp.265-278, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02064882

T. Sakai, T. Uchida, and I. Chibata, Accumulation of Nicotinamide Adenine Dinucleotide in Baker's Yeast by Secondary Culture, Agric Biol Chem, vol.37, pp.1049-1056, 1973.

J. M. Salmon, Interactions between yeast, oxygen and polyphenols during alcoholic References fermentations: Practical implications, LWT -Food Sci Technol, vol.39, pp.959-965, 2006.

C. A. Santos, M. L. Caldeira, T. Lopes-da-silva, J. M. Novais, and A. Reis, Enhanced lipidic algae biomass production using gas transfer from a fermentative Rhodosporidium toruloides culture to an autotrophic Chlorella protothecoides culture, Bioresour Technol, vol.138, pp.48-54, 2013.

C. A. Santos, M. E. Ferreira, T. Lopes-da-silva, L. Gouveia, J. M. Novais et al., A symbiotic gas exchange between bioreactors enhances microalgal biomass and lipid productivities: Taking advantage of complementary nutritional modes, J Ind Microbiol Biotechnol, vol.38, pp.909-917, 2011.

C. A. Santos and A. Reis, Microalgal symbiosis in biotechnology, Appl Microbiol Biotechnol, vol.98, pp.5839-5846, 2014.

E. Sanz-luque, A. Chamizo-ampudia, A. Llamas, A. Galvan, and E. Fernandez, Understanding nitrate assimilation and its regulation in microalgae, Front Plant Sci, vol.6, 2015.

K. Sato, Y. Yoshida, T. Hirahara, and T. Ohba, On-Line Measurement of Intracellular ATP of Saccharomyces cerevisiae and Pyruvate during Sake Mashing, J Biosci Bioeng, vol.90, pp.294-301, 2000.

N. Sauer, A general amino-acid permease is inducible in Chlorella vulgaris, Planta, vol.161, pp.425-431, 1984.

K. T. Scanes, S. Hohmann, and B. Prior, Glycerol Production by the Yeast Saccharomyces cerevisiae and its Relevance to Wine: A Review, South African J Enol Vitic, vol.19, pp.17-24, 1998.

M. L. Scherholz and W. R. Curtis, Achieving pH control in microalgal cultures through fedbatch addition of stoichiometrically-balanced growth media, BMC Biotechnol, vol.13, 2013.

A. J. Schifferdecker, S. Dashko, O. P. Ishchuk, and J. Pi?kur, The wine and beer yeast Dekkera bruxellensis, Yeast, vol.31, pp.323-332, 2014.

A. H. Scragg, A. M. Illman, A. Carden, and S. W. Shales, Growth of microalgae with increased calorific values in a tubular bioreactor, Biomass and Bioenergy, vol.23, pp.67-73, 2002.

X. Shi, H. Liu, X. Zhang, and F. Chen, Production of biomass and lutein by Chlorella protothecoides at various glucose concentrations in heterotrophic cultures, Process Biochem, vol.34, pp.341-347, 1999.

C. H. Shu, C. C. Tsai, K. Y. Chen, W. H. Liao, and H. C. Huang, Enhancing high quality oil accumulation and carbon dioxide fixation by a mixed culture of Chlorella sp. and Saccharomyces cerevisiae, J Taiwan Inst Chem Eng, vol.44, pp.936-942, 2013.

A. Silaban, R. Bai, M. T. Gutierrez-wing, I. I. Negulescu, and K. A. Rusch, Effect of organic References carbon, C:N ratio and light on the growth and lipid productivity of microalgae/cyanobacteria coculture, Eng Life Sci, vol.14, pp.47-56, 2014.

J. M. Siverio, Assimilation of nitrate by yeasts, FEMS Microbiol Rev, vol.26, pp.277-284, 2002.

R. T. Smith, K. Bangert, S. J. Wilkinson, and D. J. Gilmour, Synergistic carbon metabolism in a fast growing mixotrophic freshwater microalgal species Micractinium inermum, Biomass and Bioenergy, vol.82, pp.73-86, 2015.

S. R. Subashchandrabose, B. Ramakrishnan, M. Megharaj, K. Venkateswarlu, and R. Naidu, Consortia of cyanobacteria/microalgae and bacteria: Biotechnological potential, Biotechnol Adv, vol.29, pp.896-907, 2011.

S. Rao, D. V. Pan, Y. , A. , and F. , Growth and photosynthetic rates of Chlamydomonas plethora and Nitzschia frustula cultures isolated from Kuwait Bay, Arabian Gulf, and their potential as live algal food for tropical mariculture, Mar Ecol, vol.26, pp.63-71, 2005.

H. Suomalainen, A. Bjorklund, K. Vihervaara, and E. Oura, Nicotinic acid and nicotinamide adenine dinucleotide contents of baker's yeast in changing culture conditions, J Inst Brew, vol.71, pp.221-226, 1965.

P. J. Syrett and I. Morris, The inhibition of nitrate assimilation by ammonium in chlorella, Biochim Biophys Acta -Spec Sect Enzymol Subj, vol.67, issue.63, pp.90277-90280, 1963.

E. Thomsson, L. Gustafsson, and C. Larsson, Starvation response of Saccharomyces cerevisiae grown in anaerobic nitrogen-or carbon-limited chemostat cultures, Appl Environ Microbiol, vol.71, pp.3007-3013, 2005.

D. H. Turpin, I. R. Elrifi, D. G. Birch, H. G. Weger, and J. J. Holmes, Interactions between photosynthesis, respiration, and nitrogen assimilation in microalgae, Can J Bot, vol.66, pp.2083-2097, 1988.

J. P. Van-dijken, R. A. Weusthuis, and J. T. Pronk, Kinetics of growth and sugar consumption in yeasts, Antonie Van Leeuwenhoek, vol.63, pp.343-352, 1993.

C. Verduyn, E. Postma, A. Scheffers, and J. Dijken, Energetics of Saccharomyces cerevisiae in anaerobic glucose-limited chemostat cultures, Biotechnol Bioeng, pp.405-412, 1990.

C. Verduyn, E. Postma, W. A. Scheffers, and J. P. Van-dijken, Physiology of Saccharomyces cerevisiae in Anaerobic Glucose-Limited Chemostat Cultures, J Gen Microbiol, vol.136, pp.395-403, 1990.

C. Verduyn, T. Zomerdijk, J. P. Dijken, and W. A. Scheffers, Continuous measurement of ethanol production by aerobic yeast suspensions with an enzyme electrode, Appl Microbiol Biotechnol, vol.19, pp.181-185, 1984.

G. Walker and G. Stewart, Saccharomyces cerevisiae in the Production of Fermented Beverages, vol.2, p.30, 2016.

R. Wang, J. Yang, H. Wang, and F. , Mixotrophic cultivation of microalgae for biodiesel production: Status and prospects, Appl Biochem Biotechnol, vol.172, pp.3307-3329, 2014.

R. Wang, Y. Tian, S. Xue, D. Zhang, Q. Zhang et al., Enhanced microalgal biomass and lipid production via co-culture of Scenedesmus obliquus and Candida tropicalis in an autotrophic system, J Chem Technol Biotechnol, vol.91, pp.1387-1396, 2016.

F. J. Weber, J. Bont, and . De, Adaptation mechanisms of microorganisms to the toxic effects of organic solvents on membranes, Biochim Biophys Acta, vol.1286, pp.225-245, 1996.

M. Werner-washburne, E. Braun, G. C. Johnston, and R. A. Singer, Stationary phase in the yeast Saccharomyces cerevisiae, Microbiol Rev, vol.57, pp.383-401, 1993.

C. Wilhelm, C. Büchel, J. Fisahn, R. Goss, J. T. Laroche et al., The Regulation of Carbon and Nutrient Assimilation in Diatoms is Significantly Different from Green Algae, Protist, vol.157, pp.91-124, 2006.
URL : https://hal.archives-ouvertes.fr/hal-01094652

J. Xia, G. A. Oyler, G. Yu, M. Wan, J. N. Rosenberg et al., The effect of iron on growth, lipid accumulation, and gene expression profile of the freshwater microalga Chlorella sorokiniana, Appl Microbiol Biotechnol, vol.98, pp.9473-9481, 2014.

L. Xin, H. Hong-ying, G. Ke, Y. , and S. , Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp, Bioresour Technol, vol.101, pp.5494-5500, 2010.

W. Xiong, C. Gao, D. Yan, C. Wu, and Q. Wu, Double CO2 fixation in photosynthesisfermentation model enhances algal lipid synthesis for biodiesel production, Bioresour Technol, vol.101, pp.2287-2293, 2010.

Z. Xu, Y. Jiang, and G. Zhou, Response and adaptation of photosynthesis, respiration, and antioxidant systems to elevated CO2 with environmental stress in plants, Front Plant Sci, vol.6, pp.1-17, 2015.

F. Xue, J. Miao, X. Zhang, and T. Tan, A new strategy for lipid production by mix cultivation of Spirulina platensis and Rhodotorula glutinis, Appl Biochem Biotechnol, vol.160, pp.498-503, 2010.

S. K. Yalçin and Z. Y. Özbas, Effects of different substrates on growth and glycerol production kinetics of a wine yeast strain Saccharomyces cerevisiae Narince 3, Process Biochem, vol.39, pp.1285-1291, 2004.

M. Yamamoto, M. Fujishita, A. Hirata, and S. Kawano, Regeneration and maturation of daughter cell walls in the autospore-forming green alga Chlorella vulgaris (Chlorophyta, Trebouxiophyceae), J Plant Res, vol.117, pp.257-264, 2004.

R. Yang, C. Hua, Q. Shimizu, and K. , Integration of the information from gene expression and metabolic fluxes for the analysis of the regulatory mechanisms in Synechocystis, Appl Microbiol Biotechnol, vol.58, pp.813-822, 2002.

C. Yang, Q. Hua, and K. Shimizu, Energetics and carbon metabolism during growth of microalgal cells under photoautotrophic, mixotrophic and cyclic light-autotrophic/darkheterotrophic conditions, Biochem Eng J, vol.6, pp.87-102, 2000.

K. Zhang, S. Miyachi, and N. Kurano, Evaluation of a vertical flat-plate photobioreactor for outdoor biomass production and carbon dioxide bio-fixation: Effects of reactor dimensions, irradiation and cell concentration on the biomass productivity and irradiation utilization efficiency, Appl Microbiol Biotechnol, vol.55, pp.428-433, 2001.

Z. Zhang, H. Ji, G. Gong, X. Zhang, and T. Tan, Synergistic effects of oleaginous yeast Rhodotorula glutinis and microalga Chlorella vulgaris for enhancement of biomass and lipid yields, Bioresour Technol, vol.164, pp.93-99, 2014.

H. Zheng, Z. Gao, F. Yin, J. X. Huang, and H. , Effect of CO2 supply conditions on lipid production of Chlorella vulgaris from enzymatic hydrolysates of lipid-extracted microalgal biomass residues, Bioresour Technol, vol.126, pp.24-30, 2012.

G. Zuccaro, J. P. Steyer, and R. Van-lis, The algal trophic mode affects the interaction and oil production of a synergistic microalga-yeast consortium, Bioresour Technol, vol.273, pp.608-617, 2019.

Z. Zuo, Q. Rong, K. Chen, L. Yang, Z. Chen et al., Study of amino acids as nitrogen source in Chlamydomonas reinhardtii, Phycol Res, vol.60, pp.161-168, 2012.