, Les valeurs recommandées sont données par la moyenne pondérée des valeurs mesurées avec des incertitudes qui correspondent aussi à la moyenne pondérée des incertitudes issues de chaque mesure à condition que cette dernière ne soit pas plus petite que la plus faible incertitude mesurée

, Malgré ces diérentes études, la connaissance des intensités d'émission XL est limitée, car aucune information n'est fournie sur les intensités d'émission individuelles. SMX3 est également utilisée pour mesurer ces intensités et les résultats seront présentés par la suite

, Pu a été préparée au LNHB par électro-précipitation sur un disque en acier inoxydable de 1,04 mm avec un diamètre actif de 12 mm. Son activité mesurée par la technique ASD est égale à, vol.117, p.238

. Pu and . De, , p.241

. Am, L. Dans, and . Gure, 14 montre une distribution plutôt homogène de l'activité sur la surface du dépôt. Il faut noter que les intensités présentées ont été mesurées à l'aide d'une seule voie d'acquisition ne comportant que deux pixels après la perte de l'autre voie dans le détecteur. L'étalonnage du rendement ne pourra donc pas être utilisé sur une mesure par une seule voie

G. Kessedjian, Mesures de sections ecaces d'actinides mineurs d'intérêt pour la transmutation, 2008.

S. Feher, T. Reiss, and A. Wirth, Mox fuel eects on the isotope inventory in LWRs, Nuclear Engineering and Design, vol.252, 2012.

P. Thakur, H. Khaing, and S. Salminen-paatero, Plutonium in the atmosphere : A global perspective, Journal of Environmental Radioactivity, pp.39-51, 2017.

A. R. Date, An introduction to inductively coupled plasma source mass spectrometry, TrAC Trends in Analytical Chemistry, vol.2, pp.225-230, 1983.

O. T. Farmer, K. B. Olsen, M. L. Thomas, and S. J. Garofoli, Analysis of IAEA environmental samples for plutonium and uranium by ICP/MS in support of international safeguards, Journal of Radioanalytical and Nuclear Chemistry, vol.276, p.489492, 2008.

S. F. Boulyga, J. Becker, and . Sabine, Isotopic analysis of uranium and plutonium using ICP-MS and estimation of burn-up of spent uranium in contaminated environmental samples, J. Anal. At. Spectrom, vol.17, p.11431147, 2002.

S. Burger, L. R. Riciputi, D. A. Bostick, S. Turgeon1, E. H. Mcbay et al., Isotope ratio analysis of actinides, ssion products, and geolocators by high-eciency multicollector thermal ionization mass spectrometry, International Journal of Mass Spectrometry, vol.286, p.7082, 2009.

. Te-sampson, Plutonium isotopic composition by gamma-ray spectroscopy, 1980.

S. Pommé, J. Paepen, K. Perajarvi, J. Turunen, and R. Pollanen, Conversion electron spectrometry of Pu isotopes with a silicon drift detector, Proceedings of the 20th International Conference on Radionuclide Metrology and its Applications, vol.109, pp.183-188, 2016.

R. Pollanen, K. Ruotsalainen, and H. Toivonen, Determination of Pu-239 and Pu-240 isotope ratio for a nuclear bomb particle using X-ray spectrometry in conjunction with 166 BIBLIOGRAPHIE ?-ray spectrometry and non-destructive ?-particle spectrometry, Nucl. Instr. and Meth A, vol.610, pp.515-521, 2009.

D. Arnold, Improved determination of plutonium content and isotopic ratios in low activity samples by ?-particle and underground L X-ray measurement, Applied Radiation and Isotopes, vol.64, p.11371140, 2006.

M. M. Bé, E. Browne, V. P. Chechev, V. Chiste, R. Dersch et al., Table of radionuclides. Monographie BIPM 5 Tables Vol6, 2004.

D. Bennett, D. Horansky, . Schmidt, . Hoover, . Winkler et al., A high resolution gamma-ray spectrometer based on superconducting microcalorimeters, The Review of scientic instruments, 2012.

R. Winkler, A. S. Hoover, M. W. Rabin, D. A. Bennett, W. B. Doriese et al., 256-pixel microcalorimeter array for high-resolution gamma-ray spectroscopy of mixedactinide materials, Nucl. Instr. and Meth A, vol.770, pp.203-210, 2015.

C. Bates, C. Pies, S. Kempf, D. Hengstler, A. Fleischmann et al., Direct Detection of Pu-242 with a Metallic Magnetic Calorimeter Gma-Ray Detector, Low Temp Phys, vol.184, p.351355, 2015.

A. S. Hoover, R. Winkler, M. W. Rabin, D. T. Vo, J. N. Ullom et al.,

L. R. Schmidt, K. Vale, and . Schaer, Determination of plutonium isotopic content by microcalorimeter gamma-ray spectroscopy, IEEE TRANSACTIONS ON NUCLEAR SCIENCE, vol.60, p.681, 2013.

A. Hoover, . Scott, D. A. Bennett, C. M. Philip, R. Michael et al., Progress, performance, and prospects of ultra-high resolution microcalorimeter spectrometers, 2017.

M. A. Kellett and O. Bersillon, The decay data evaluation project DDEP and the JEFF-3.3 radioactive decay data library : Combining international collaborative eorts on evaluated decay data, EPJ Web Conf, vol.146, p.2009, 2017.
URL : https://hal.archives-ouvertes.fr/cea-01809227

C. Dulieu, M. A. Kellett, and X. Mougeot, Dissemination and visualisation of reference decay data from Decay Data Evaluation Project DDEP, EPJ Web Conf, vol.146, p.7004, 2017.
URL : https://hal.archives-ouvertes.fr/cea-01809229

G. Zschornack, Handbook of X-ray data, 2007.

W. Bambynek, B. Crasemann, R. W. Fink, H. U. Freund, H. Mark et al., Ray Fluorescence Yields, Auger, and Coster-Kronig Transition Probabilities, pp.1972-1982

J. L. Campbell and T. Papp, Widths of the atomic K N7 levels. Atomic Data and Nuclear Data Tables, vol.77, pp.156-2001

J. Cl, J. Dousse, C. Hoszowska, and . Rheme, Linewidths of photoinduced L X rays of uranium, Phys. Rev. A, vol.50, p.123131, 1994.

P. A. Raboud, D. Jcl, J. Hoszowska, and I. Savoy, L 1 to N 5 atomic level widths of thorium and uranium as inferred from measurements of L and M x-ray spectra, Phys. Rev. A, vol.61, p.12507, 1999.

S. T. Perkins, D. E. Cullen, M. H. Chen, J. Rathkopf, J. Scoeld et al., Tables and graphs of atomic subshell and relaxation data derived from the LLNL Evaluated Atomic Data Library (EADL), Z = 1 100, p.30, 1991.

J. H. Scoeld, Relativistic hartree-slater values for K and L X-ray emission rates. Atomic Data and Nuclear Data Tables, 1974.

J. H. Scoeld, Radiative Decay Rates of Vacancies in the K and L Shells, Phys. Rev, vol.179, pp.9-16, 1969.

B. Mau-hsiung-chen, H. Crasemann, and . Mark, Radiationless transitions to atomic M 1,2,3 shells : Results of relativistic theory, Phys. Rev. A, vol.27, p.29892994, 1983.

C. Mau-hsiung and B. Crasemann, M X-ray emission rates in dirac-fock approximation, Physical Review A, 1984.

B. Mau-hsiung-chen, H. Crasemann, and . Mark, Widths and uorescence yields of atomic L-shell vacancy states, Phys. Rev. A, vol.24, p.177182, 1981.

P. M. Grazia, S. Paolo, and S. Manju, Validation of K and L shell radiative transition probability calculations, IEEE Transactions on Nuclear Science, vol.56, 2009.

M. K. Bacrania, A. S. Hoover, P. J. Karpius, M. W. Rabin, C. R. Rudy et al., Large area microcalorimeter detectors for ultra high resolution X ray and gamma ray spectroscopy, IEEE Transactions on Nuclear Science, vol.56, 2009.

T. Kibedi, T. W. Burrows, M. B. Trzhaskovskaya, P. M. Davidson, and C. W. Nestor, Evaluation of theoretical conversion coecients using bricc, Nucl. Instr. and Meth. A, vol.589, p.202229, 2008.

V. M. Gorozhankin and M. M. Bé, Assessment of internal conversion coecients for anomalous electric dipole transitions, Applied Radiation and Isotopes, vol.66, p.722728, 2008.

S. Puri, D. Mehta, B. Chand, . Singh, J. H. Hubbell et al., Production of Li subshell and M shell vacancies following inner-shell vacancy production, Nucl. Instr. Meth. B, vol.83, p.21, 1993.

S. Puri, D. Mehta, B. Chand, and T. P. Singh, L shell Fluorescence yields and Coster Kronig transition probabilities for the elements with Z=25-96. X-Ray Spectrometry, vol.22, p.358, 1993.

E. Schönfeld and H. Jan?en, Calculation of emission probabilities of X-rays and Auger electrons emitted in radioactive disintegration processes, Applied Radiation and Isotopes, vol.52, p.595, 2000.

J. L. Campbell, Fluorescence yields and CosterKronig probabilities for the atomic L subshells. Atomic Data and Nuclear Data Tables, pp.2003-2014

M. H. Chen, X ray and inner shell processes, vol.215, pp.391-407, 1990.

M. C. Lépy, J. Plagnard, and L. Ferreux, Measurement of Am-241L X-ray emission probabilities, Applied Radiation and Isotopes, vol.66, pp.2008-2014

N. Peter, . Johnston, A. Peter, and . Burns, Absolute L X-ray intensities in the decays of Th-230,U-234, Pu-238 and Cm-244, Nucl. Instr. and Meth A, vol.361, p.229, 1995.

J. L. Campbell and L. A. Mcnelles, Americium-241 as a low-energy photon intensity standard, Nucl. Instr. and Meth A, vol.117, issue.2, pp.519-532, 1974.

M. J. Berger, J. H. Hubbell, S. M. Seltzer, J. Chang, J. S. Coursey et al., Xcom photon cross sections database, 2010.

F. Knoll-glenn, Radiation detection and measurement 2nd ed, 1989.

, Determination of the characteristic limits (decision threshold, detection limit and limits of the condence interval) for measurements of ionizing radiation Fundamentals and application, pp.11929-11932, 2010.

P. Valery, N. K. Chechev, and . Kuzmenko, Applied radiation and isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine, vol.68, p.157882, 2010.

D. D. Cohen, X-rays from an Am-241 source and their relative intensities, Nucl. Instr. and Meth A, vol.267, issue.2, pp.492498-1988

M. C. Lépy, B. Duchemin, and J. Morel, Comparison of experimental and theoretical L X-ray emission probabilities of Am-241, Pu-239 and Pu-240, Nucl. Instr. and Meth A, vol.353, p.1015, 1994.

. Sr and . Bandler, Performance of TES X-ray microcalorimeters with a novel absorber design, Journal Low Temp Phys, vol.151, p.400405, 2008.

K. Nakamura, Y. Morishita, K. Takasaki, K. Maehata, T. Sugimoto et al., Spectroscopic measurements of L Xrays with a TES microcalorimeter for a non-destructive assay of transuranium elements, Journal of Low Temperature Physics, vol.193, issue.3-4, p.314320, 2018.

C. Enss, Cryogenic Particle Detection, 2005.

L. Rocks, M. B. Anderson, N. Bilgri, R. Brekosky, S. G. Crowder et al., Thin absorbers for large-area soft X-ray microcalorimeters, Nucl. Instr. and Meth A, 2006.

R. L. Kelley, K. Mitsuda, C. A. Allen, P. Arsenovic, M. D. Audley et al., , 2007.

S. Kempf, A. Fleischmann, L. Gastaldo, and C. Enss, Physics and applications of metallic magnetic calorimeters, J. Low Temp. Phys, vol.193, p.365379, 2018.

J. E. Vaillancourta, C. A. Allenb, R. Brekoskyb, A. Dosaja, M. Galeazzic et al., Large area bismuth absorbers for X-ray microcalorimeters, Nucl. Instr. and Meth A, vol.520, 2004.

R. L. Kelley, S. H. Moseley, C. K. Stahle, A. E. Szymkowiak, M. Juda et al., Development of microcalorimeters for high resolution X-ray spectroscopy, Journal of Low Temperature Physics, vol.93, p.225230, 1993.

A. Lagendijk-rogier-h-m-groenveld and R. Sprik, Eet of a non-thermal electron distribution on the electron-phonon energy relaxation process in noble metal, Physical review B, 1992.

S. R. Blander, C. Enss, R. E. Lanou, H. J. Maris, T. More et al., Metallic magnetic bolometers for particle detection, Journal of low temperature physics, 1993.

A. Fleischmann, Low temperature properties of erbium in gold, Journal of low temperature physics, 2000.

L. Fleischmann, M. Linck, A. Burck, C. Domesle, S. Kempf et al., Metallic Magnetic Calorimeters for X-Ray Spectroscopy, IEEE Transactions on Applied Superconductivity, vol.19, 2009.

A. Burck, S. Kempf, S. Schaefer, H. Rotzinger, M. Rodrigues et al., Microstructured magnetic calorimeter with meander-shaped pickup coil, Journal of Low Temperature Physics, vol.151, p.337344, 2008.

R. Simon and . Bandler, Performance of High-Resolution, Micro-fabricated, X-ray Magnetic Calorimeters, AIP Conference Proceedings, vol.1185, p.579582, 2009.

M. Rodrigues, Development of large bismuth absorbers for magnetic calorimeters applied to hard X-ray spectrometry, Journal Low Temp Phys, vol.176, p.610616, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01863306

M. Rodrigues, R. Mariam, and M. Loidl, A metallic magnetic calorimeter dedicated to the spectrometry of L X-rays emitted by actinides, European Physical Journal Web of Conferences, vol.146, p.100112, 2017.
URL : https://hal.archives-ouvertes.fr/cea-01809230

, Gamma and Xray spectrometry with semiconductor detectors, p.109, 1988.

O. V. Lounasmaa, Experimental principles and methods below 1K, 1974.

J. Bouchard, A discriminator and dead-time module used in counting systems, Applied Radiation Isotopes, vol.52, p.441446, 2000.

J. W-b-doriese, J. Ullom, W. Beall, L. Duncan, G. Ferreira et al., 14-pixel, multiplexed array of gamma-ray microcalorimeters with 47 eV energy resolution at 103 keV, APPLIED PHYSICS LETTERS, vol.90, 2007.

T. Sugimoto, K. Maehata, N. Iyomoto, K. Ishibashi, K. Nakamura et al., Spectroscopic Measurement of Pu L X-rays Emitted by Cm-244 Source with a TES Microcalorimeter, Proceedings of International Symposium on Radiation Detectors and Their Uses, 2016.

A. E. Sh-moseley, R. L. Szymkowiak, C. K. Kelley, and . Stahlet, Signal processing for microcalorimeters, Journal of Low Temperature Physics, p.93, 1993.

R. D. Deslattes, E. G. Kessler, P. Indelicato, L. Billy, E. Lindroth et al., X-ray transition energies : new approach to a comprehensive evaluation, vol.75, 2003.

J. L. Campbell and P. L. Mcghee, State-of-the-art eciency determination for a Si(Li) X-ray detector in the 3-40 kev energy range, Nucl. Instr. and Meth A, vol.248, p.393404, 1986.

G. and U. F. Scholzc, Characterization of a windowless Si(Li) detector in the photon energy range 0.1-5 keV, Nucl. Instr. and Meth A, vol.339, p.4954, 1994.

M. C. Lépy, T. Altzitzogloub, D. Arnold, F. Bronsond, R. Noye et al., Intercomparison of eciency transfer software for gamma-ray spectrometry, Applied Radiation and Isotopes, vol.55, p.493503, 2001.

L. Moens, J. , D. Donder, L. Xi-lei, F. De-corte et al., Calculation of the absolute peak eciency of gamma-ray detectors for dierent counting geometries, Nucl. Instr. and Meth A, vol.187, p.451472, 1981.

M. C. Lépy, L. Brondeau, Y. Mnesguen, S. Pierre, and J. Riaud, Consistency of photon emission intensities for eciency calibration of gamma-ray spectrometers in the energy range from 20keV to 80keV, Applied Radiation and Isotopes, vol.134, p.131136, 2018.

M. Plagnard and C. Bobin, Accurate eciency calibration of a low energy HPGe detector using a monochromatic X ray source, X-Ray Spectrom, vol.36, 2007.

P. Dryak and P. Kovar, Experimental and MC determination of HPGe detector eciency in the 40-2754keV energy range for measuring point source geometry with the source-to-detector distance of 25cm, journal = Applied Radiation and Isotopes, vol.64, issue.10, p.13461349, 2006.

L. Venturini and V. R. Vanin, HPGe detector eciency calibration for extended sources in the 50-1400 keV energy range, Applied Radiation and Isotopes, vol.44, pp.999-1002, 1993.

J. Nikolic, T. Vidmar, D. Jokovic, M. Rajacic, and D. Todorovic, Calculation of HPGe eciency for environmental samples : comparison of EFFTRAN and GEANT4, Nucl. Instr. and Meth A, vol.763, p.347353, 2014.

R. Helmer, J. Hardy, V. E. Iacob, M. Sanchez-vega, R. Neilson et al., The use of Monte Carlo calculations in the determination of a Ge detector eciency curve, Nucl. Instr. and Meth A, vol.511, p.360381, 2003.

O. Sima and D. Arnold, On the Monte Carlo simulation of HPGe gammaspectrometry systems, Applied radiation and isotopes, vol.67, p.701705, 2009.

H. Ruellan, M. C. Lépy, M. Etcheverry, J. Plagnard, and J. Morel, A new spectra processing code applied to the analysis of U-235 and U-238 in the 60 to 200 keV energy range, Nucl. Instr. and Meth A, vol.369, pp.651-656, 1996.

W. B. Doriese, A practical superconducting-microcalorimeter X-ray spectrometer for beamline and laboratory science, Review of Scientic Instruments, vol.88, p.53108, 2017.

F. Porter and M. S. Freedman, Recommended Atomic Electron Binding Energies for the Heavy Elements Z=84 to 103, J. Phys. Chem. Ref. Data, vol.7, p.1267, 1978.

F. Parente, C. , M. Hsiung, B. Crasemann, and H. Mark, L X-ray satellite energies. Atomic Data and Nuclear Data Tables, pp.1981-1990

T. Mukoyama and S. Shimizu, Electron shakeo accompanying internal conversion, Phys. Rev. C, vol.11, p.13531363, 1975.

Y. Isozumi, Eects of nuclear decay on atomic electron rearrangements, Nucl. Instr. and Meth A, vol.280, pp.151-160, 1989.

M. S. Rapaport, F. Asaro, and I. Perlman, L -and M -shell electron shake-o accompanying alpha decay, Physical Review C, 1975.

B. Mau-hsiung-chen, H. Crasemann, and . Mark, Relativistic radiationless transition probabilities for atomic K-and L-shells. Atomic Data and Nuclear Data Tables, vol.24, pp.1979-1986

F. K. Richtmyer and E. G. Rambhrg, Satellite Structure of Lalpha, and L beta 2 of Au(79), Phys. Rev, vol.51, p.925929, 1937.

F. , Salvat and Nuclear Energy Agency Data-Bank. PENELOPE-2014 : A Code System for Monte Carlo Simulation of Electron and Photon Transport, Workshop Proceedings, 2015.

L. Ce-bemis-jnr and . Tubbs, Absolute L-series X-ray and low-energy gamma-ray yields for most transuranium nuclides in Chemistry Division Annual Progress Report ORNL-5297, 1977.

G. Bortels, B. Denecke, and R. Vaninbroukx, Alpha-particle and photon emission probabilities in the Pu-238 U-234 decay, Nucl. Instr. and Meth A, vol.223, p.329, 1984.

P. Oblozinsky and I. Ribansky, The solid angle substended at a disc source by a nonparallel disc detector, Nucl. Instr. and Meth A, vol.94, p.187188, 1971.

F. Asaro and I. Perlman, The alpha-and gamma-ray spectra of pu 238, Phys. Rev, vol.94, pp.381-385, 1954.

J. Halley, D. Woods, and . Engelkemeir, L uorescence yields in heavy elements, Phys. Rev, vol.134, pp.24-28, 1964.

J. Byrne, W. Gelletly, M. A. Ross, and F. Shaikh, L 2 -subshell yield measurements in 240 pu, 236 u, and 234 u, Phys. Rev, vol.170, p.8090, 1968.

K. L. Swinth, A Solid State X-Ray-Alpha Coincidence Counter, IEEE Transactions on Nuclear Science, vol.18, p.125130, 1971.

D. G. Vasiliki and . Martin, UL ? ? ? X-ray intensities from the alpha decay of Pu-238, Nucl. Instr. and Meth A, vol.135, p.405, 1976.

Y. Popov, Soviet Radiochemistry, vol.32, p.425427, 1990.

E. Etcheverry, C. J. Bland, J. Morel, and . Mc-lépy, Determination of Pu-239 and Am-241 LX ray intensities using a Simplex method for tting peaks, Nucl. Instr. and Meth A, vol.312, p.323333, 1992.

J. Morel, M. Etcheverry, and . Vallee, Emission probabilities of LX, KX and gamma rays in the 10-130 keV range following the decay of Pu-239, Nucl. Instr. and Meth A, vol.339, issue.1, pp.232-240, 1994.

M. Lépy and K. Debertin, Determination of Pu-239 and Pu-240 L X-ray emission probabilities, Nucl. Instr. and Meth A, vol.339, pp.218-225, 1994.