J. Rabinow, The magnetic fluid clutch, Electr. Eng, vol.67, issue.12, pp.1167-1167, 1948.

W. M. Winslow, Induced Fibration of Suspensions, J. Appl. Phys, vol.20, issue.12, pp.1137-1140, 1949.

H. See, Advances in modelling the mechanisms and rheology of electrorheological fluids, Korea-Aust. Rheol. J, vol.11, issue.3, pp.169-195, 1999.

H. Block and J. Kelly, Electro-rheology, J. Phys. Appl. Phys, vol.21, issue.12, p.1661, 1988.

T. C. Jordan and M. T. Shaw, Electrorheology, IEEE Trans. Electr. Insul, vol.24, issue.5, pp.849-878, 1989.

C. Zukoski, Material properties and the electrorheological response, Annu. Rev. Mater. Sci, vol.23, issue.1, pp.45-78, 1993.

K. Tanaka, K. Koyama, and T. Yoshida, Transient stress response of ER suspension, J. Rheol, vol.37, issue.3, pp.555-555, 1993.

R. W. Phillips, Engineering applications of fluids with a variable yield stress, 1969.

J. D. Carlson, What Makes a Good MR Fluid?, J. Intell. Mater. Syst. Struct, vol.13, issue.7-8, pp.431-435, 2002.

J. D. Carlson, D. M. Catanzarite, K. A. St, and . Clair, Commercial magneto-rheological fluid devices, Int. J. Mod. Phys. B, vol.10, issue.23n24, pp.2857-2865, 1996.

M. R. Jolly, J. W. Bender, and J. D. Carlson, Properties and Applications of Commercial Magnetorheological Fluids Properties and Applications of Commercial Magnetorheological Fluids, J. Intell. Mater. Syst. Struct, vol.10, issue.1, pp.5-13, 1999.

N. C. Kavlicoglu, Response time and performance of a high-torque magneto-rheological fluid limited slip differential clutch, Smart Mater. Struct, vol.16, issue.1, p.149, 2007.

H. Sahin, F. Gordaninejad, X. Wang, and Y. Liu, Response time of magnetorheological fluids and magnetorheological valves under various flow conditions, J. Intell. Mater. Syst. Struct, vol.23, issue.9, pp.949-957, 2012.

R. Nava, M. A. Ponce, L. Rejón, S. Víquez, and V. M. Castaño, Response time and viscosity of electrorheological fluids, Smart Mater. Struct, vol.6, issue.1, p.67, 1997.

W. A. Bullough, J. Makin, A. R. Johnson, A. Hosseini-sianaki, and R. Firoozian, ER Shear Characteristics: Volume Fraction, Shear Rate, Time Response, J. Dyn. Syst. Meas. Control, vol.118, issue.2, pp.221-225, 1996.

J. C. Ulicny, M. A. Golden, C. S. Namuduri, and D. J. Klingenberg, Transient response of magnetorheological fluids: Shear flow between concentric cylinders, J. Rheol, vol.49, issue.1, pp.87-104, 2005.

Y. T. Choi, J. U. Cho, S. B. Choi, and N. M. Wereley, Constitutive models of electrorheological and magnetorheological fluids using viscometers, Smart Mater. Struct, vol.14, issue.5, p.1025, 2005.

Y. Choi and N. M. Wereley, Comparative Analysis of the Time Response of Electrorheological and Magnetorheological Dampers Using Nondimensional Parameters , Comparative Analysis of the Time Response of Electrorheological and Magnetorheological Dampers Using Nondimensional Parameters, J. Intell. Mater. Syst. Struct, vol.13, issue.7-8, pp.443-451, 2002.

K. D. Weiss, J. D. Carlson, and D. A. Nixon, Viscoelastic Properties of Magneto-and ElectroRheological Fluids, J. Intell. Mater. Syst. Struct, vol.5, issue.6, pp.772-775, 1994.

M. Yalcintas and H. Dai, Magnetorheological and electrorheological materials in adaptive structures and their performance comparison, Smart Mater. Struct, vol.8, issue.5, p.560, 1999.

M. Ashtiani, S. H. Hashemabadi, and A. Ghaffari, A review on the magnetorheological fluid preparation and stabilization, J. Magn. Magn. Mater, vol.374, pp.716-730, 2015.

P. P. Phulé, Magnetorheological (MR) fluids: Principles and applications, Smart Mater. Bull, vol.2001, issue.2, pp.7-10, 2001.

S. Genç and P. P. Phulé, Rheological properties of magnetorheological fluids, Smart Mater. Struct, vol.11, issue.1, p.140, 2002.

C. Fang, B. Y. Zhao, L. S. Chen, Q. Wu, N. Liu et al., The effect of the green additive guar gum on the properties of magnetorheological fluid, Smart Mater. Struct, vol.14, issue.1, p.1, 2005.

R. Turczyn and M. Kciuk, Preparation and study of model magnetorheological fluids, J. Achiev. Mater. Manuf. Eng, vol.27, issue.2, pp.131-134, 2008.

B. K. Kumbhar, S. R. Patil, and S. M. Sawant, Synthesis and characterization of magneto-rheological (MR) fluids for MR brake application, Eng. Sci. Technol. Int. J, 2015.

A. Spaggiari, Properties and applications of Magnetorheological fluids, Fract. Struct. Integr, vol.23, pp.48-61, 2012.

J. M. Spinks, Dynamic simulation of particles in a magnetorheological fluid, 2008.

S. Odenbach and H. Störk, Shear dependence of field-induced contributions to the viscosity of magnetic fluids at low shear rates, J. Magn. Magn. Mater, vol.183, issue.1, pp.188-194, 1998.

R. C. Bell, J. O. Karli, A. N. Vavreck, D. T. Zimmerman, G. T. Ngatu et al., Magnetorheology of submicron diameter iron microwires dispersed in silicone oil, Smart Mater. Struct, vol.17, issue.1, p.15028, 2008.

, MRF-132DG Magneto-Rheological Fluid -1 Liter

, Explication technique : Électro-aimants de manoeuvre

Q. Sun, J. Zhou, and L. Zhang, An adaptive beam model and dynamic characteristics of magnetorheological materials, J. Sound Vib, vol.261, issue.3, pp.465-481, 2003.

M. Eshaghi, S. Rakheja, and R. Sedaghati, An accurate technique for pre-yield characterization of MR fluids, Smart Mater. Struct, vol.24, issue.6, p.65018, 2015.

W. Nassar, Pre-yield shearing regime of a magnetorheological fluid (MRF), 2012.
URL : https://hal.archives-ouvertes.fr/pastel-00843471

F. Gandhi and W. A. Bullough, On the Phenomenological Modeling of Electrorheological and Magnetorheological Fluid Preyield Behavior, J. Intell. Mater. Syst. Struct, vol.16, issue.3, pp.237-248, 2005.

M. T. Avraam, MR-fluide brake design and its application to a portable muscula rehabilitation device, 2009.

D. H. Wang and W. H. Liao, Magnetorheological fluid dampers: a review of parametric modelling, Smart Mater. Struct, vol.20, issue.2, p.23001, 2011.

B. F. Spencer, S. J. Dyke, M. K. Sain, and J. D. Carlson, Phenomenological Model for Magnetorheological Dampers, J. Eng. Mech, vol.123, issue.3, pp.230-238, 1997.

?. ?ahin, T. Engin, and ?. Çe?meci, Comparison of some existing parametric models for magnetorheological fluid dampers, Smart Mater. Struct, vol.19, issue.3, p.35012, 2010.

D. H. Wang and W. H. Liao, Modeling and control of magnetorheological fluid dampers using neural networks, Smart Mater. Struct, vol.14, issue.1, p.111, 2005.

X. Wang and F. Gordaninejad, Flow Analysis of Field-Controllable, Electro-and Magneto-Rheological Fluids Using Herschel-Bulkley Model, J. Intell. Mater. Syst. Struct, vol.10, issue.8, pp.601-608, 1999.

X. Wang and F. Gordaninejad, Study of magnetorheological fluids at high shear rates, Rheol. Acta, vol.45, issue.6, pp.899-908, 2006.

F. D. Goncalves, M. Ahmadian, and J. D. Carlson, Behavior of mr fluids at high velocities and high shear rates, Int. J. Mod. Phys. B, vol.19, issue.07n09, pp.1395-1401, 2005.

A. K. Garakani, Comparison between different models for rheological characterization of activated sludge, Iran. J. Environ. Health Sci. Eng, vol.8, issue.3, p.255, 2011.

E. Mitsoulis, Flows of viscoplastic materials: models and computations, Rheol. Rev, pp.135-178, 2007.

M. Kubík, D. Viscosity, . Commercially, and . Magnetorheological-fluids,

R. Ahamed, S. Choi, and M. M. Ferdaus, A state of art on magneto-rheological materials and their potential applications, J. Intell. Mater. Syst. Struct, vol.29, issue.10, pp.2051-2095, 2018.

N. M. Wereley and L. Pang, Nondimensional analysis of semi-active electrorheological and magnetorheological dampers using approximate parallel plate models, Smart Mater. Struct, vol.7, issue.5, p.732, 1998.

A. G. Olabi and A. Grunwald, Design and application of magneto-rheological fluid, Mater. Des, vol.28, issue.10, pp.2658-2664, 2007.

D. Wang, T. Wang, X. Bai, G. Yuan, and W. Liao, A self-sensing magnetorheological shock absorber for motorcycles, Proceedings of 19th International Conference on Adaptive Structures and Technologies, vol.6, 2008.

N. Q. Guo, H. Du, and W. H. Li, Finite Element Analysis and Simulation Evaluation of a Magnetorheological Valve, Int. J. Adv. Manuf. Technol, vol.21, issue.6, pp.438-445, 2003.

J. Yoo and N. M. Wereley, Design of a High-Efficiency Magnetorheological Valve , Design of a High-Efficiency Magnetorheological Valve, J. Intell. Mater. Syst. Struct, vol.13, issue.10, pp.679-685, 2002.

M. Mao, W. Hu, Y. Choi, and N. M. Wereley, A Magnetorheological Damper with Bifold Valves for Shock and Vibration Mitigation,A Magnetorheological Damper with Bifold Valves for Shock and Vibration Mitigation, J. Intell. Mater. Syst. Struct, vol.18, issue.12, pp.1227-1232, 2007.

N. M. Wereley, J. U. Cho, Y. T. Choi, and S. B. Choi, Magnetorheological dampers in shear mode, Smart Mater. Struct, vol.17, issue.1, p.15022, 2008.

P. J. Rankin, A. T. Horvath, and D. J. Klingenberg, Magnetorheology in viscoplastic media, Rheol. Acta, vol.38, issue.5, pp.471-477, 1999.

J. Ramos, D. J. Klingenberg, R. Hidalgo-alvarez, and J. De-vicente, Steady shear magnetorheology of inverse ferrofluids, J. Rheol, vol.55, issue.1, pp.127-152, 2010.

T. Tim and C. C. Chang, Shear-Mode Rotary Magnetorheological Damper for Small-Scale Structural Control Experiments, J. Struct. Eng, vol.130, issue.6, pp.904-911, 2004.

J. Engmann, C. Servais, and A. S. Burbidge, Squeeze flow theory and applications to rheometry: A review, J. Non-Newton. Fluid Mech, vol.132, issue.1, pp.1-27, 2005.

C. Guo, X. Gong, S. Xuan, Q. Yan, and X. Ruan, Squeeze behavior of magnetorheological fluids under constant volume and uniform magnetic field, Smart Mater. Struct, vol.22, issue.4, p.45020, 2013.

J. De-vicente, J. A. Ruiz-lópez, E. Andablo-reyes, J. P. Segovia-gutiérrez, and R. Hidalgo-alvarez, Squeeze flow magnetorheology, J. Rheol, vol.55, issue.4, pp.753-779, 2011.

X. Zhang, X. Gong, P. Zhang, and Q. Wang, Study on the mechanism of the squeeze-strengthen effect in magnetorheological fluids, Fac. Eng. Inf. Sci. -Pap. Part A, pp.2359-2364, 2004.

I. Ismail, S. A. Mazlan, H. Zamzuri, and A. G. Olabi, Fluid-Particle Separation of Magnetorheological Fluid in Squeeze Mode, Jpn. J. Appl. Phys, vol.51, p.67301, 2012.

N. Abhijeet, S. R. Kulkarni, and . Patil, magnetorheological (mr) and electro rheo fluid damper : a review parametric study of fluid behavior, J. Eng. Res. Appl, vol.3, pp.1879-188, 2013.

E. M. Furst and A. P. Gast, Micromechanics of magnetorheological suspensions, Phys. Rev. E, vol.61, issue.6, pp.6732-6739, 2000.

J. M. Ginder, L. C. Davis, and L. D. Elie, Rheology of magnetorheological fluids: models and measurements, Int. J. Mod. Phys. B, vol.10, issue.23n24, pp.3293-3303, 1996.

X. Peng and H. Li, Analysis of the magnetomechanical behavior of MRFs based on micromechanics incorporating a statistical approach, Smart Mater. Struct, vol.16, issue.6, p.2477, 2007.

A. Ghaffari, S. H. Hashemabadi, and M. Ashtiani, A review on the simulation and modeling of magnetorheological fluids, J. Intell. Mater. Syst. Struct, vol.26, issue.8, pp.881-904, 2015.

M. T. López-lópez, A. Zugaldía, F. González-caballero, and J. D. Durán, Sedimentation and redispersion phenomena in iron-based magnetorheological fluids, J. Rheol, vol.50, issue.4, pp.543-560, 2006.

G. T. Ngatu and N. M. Wereley, Viscometric and Sedimentation Characterization of Bidisperse Magnetorheological Fluids, IEEE Trans. Magn, vol.43, issue.6, pp.2474-2476, 2007.

J. C. Ulicny, M. P. Balogh, N. M. Potter, and R. A. Waldo, Magnetorheological fluid durability testIron analysis, Mater. Sci. Eng. A, vol.443, issue.1, pp.16-24, 2007.

F. Vereda, J. Vicente, J. P. Segovia-gutiérrez, and R. Hidalgo-alvarez, On the effect of particle porosity and roughness in magnetorheology, J. Appl. Phys, vol.110, issue.6, p.63520, 2011.

Y. Han, S. Kim, Y. Park, J. Kang, and S. Choi, Field-dependent characteristics of magnetorheological fluids containing corroded iron particles, Smart Mater. Struct, vol.24, issue.11, p.115016, 2015.

T. Plachy, E. Kutalkova, M. Sedlacik, A. Vesel, M. Masar et al., Impact of corrosion process of carbonyl iron particles on magnetorheological behavior of their suspensions, J. Ind. Eng. Chem, 2018.

H. Sahin, X. Wang, and F. Gordaninejad, Temperature Dependence of Magneto-rheological Materials, J. Intell. Mater. Syst. Struct, vol.20, issue.18, pp.2215-2222, 2009.

K. D. Weiss and T. G. Duclos, Controllable fluids: the temperature dependence of post-yield properties, Int. J. Mod. Phys. B, vol.08, issue.20n21, pp.3015-3032, 1994.

D. M. Wang, Y. F. Hou, and Z. Z. Tian, A novel high-torque magnetorheological brake with a water cooling method for heat dissipation, Smart Mater. Struct, vol.22, issue.2, p.25019, 2013.

M. T. López-lópez, P. Kuzhir, and G. Bossis, Magnetorheology of fiber suspensions. I. Experimental, J. Rheol, vol.53, issue.1, pp.115-126, 2008.

C. Ekwebelam and H. See, Microstructural investigations of the yielding behaviour of bidisperse magnetorheological fluids, Rheol. Acta, vol.48, issue.1, pp.19-32, 2008.

G. T. Ngatu, N. M. Wereley, J. O. Karli, and R. C. Bell, Dimorphic magnetorheological fluids: exploiting partial substitution of microspheres by nanowires, Smart Mater. Struct, vol.17, issue.4, p.45022, 2008.

J. De-vicente, F. Vereda, J. P. Segovia-gutiérrez, M. Del-puerto, R. Morales et al., Effect of particle shape in magnetorheology, J. Rheol, vol.54, issue.6, pp.1337-1362, 2010.

W. Jiang, Y. Zhang, S. Xuan, C. Guo, and X. Gong, Dimorphic magnetorheological fluid with improved rheological properties, J. Magn. Magn. Mater, vol.323, issue.24, pp.3246-3250, 2011.

C. Sarkar and H. Hirani, Effect of Particle Size on Shear Stress of Magnetorheological Fluids, Smart Sci, vol.3, issue.2, pp.65-73, 2015.

Q. H. Nguyen and S. B. Choi, Selection of magnetorheological brake types via optimal design considering maximum torque and constrained volume, Smart Mater. Struct, vol.21, issue.1, p.15012, 2012.

N. Najmaei, Design of a Haptic Interface for Medical Applications using Magneto-Rheological Fluid based Actuators, 2014.

D. Senkal and H. Gurocak, Serpentine flux path for high torque MRF brakes in haptics applications, Mechatronics, vol.20, issue.3, pp.377-383, 2010.

D. Güth, M. Schamoni, and J. Maas, Magnetic fluid control for viscous loss reduction of high-speed MRF brakes and clutches with well-defined fail-safe behavior, Smart Mater. Struct, vol.22, issue.9, p.94010, 2013.

M. Saleh, R. Sedaghati, and R. Bhat, Design Optimization of a Bi-Fold Magnetorheological Damper Subject to Impact Loads, pp.2-03, 2017.

C. C. Wei-zhou, Development of a compact double-disk magneto-rheological fluid brake, Robotica, vol.25, pp.493-500, 2007.

K. Karakoc, E. J. Park, and A. Suleman, Design considerations for an automotive magnetorheological brake, Mechatronics, vol.18, issue.8, pp.434-447, 2008.

F. D. Goncalves and J. D. Carlson, An alternate operation mode for MR fluids-magnetic gradient pinch, J. Phys. Conf. Ser, vol.149, issue.1, p.12050, 2009.

S. R. Hong, N. M. Wereley, Y. T. Choi, and S. B. Choi, Analytical and experimental validation of a nondimensional Bingham model for mixed-mode magnetorheological dampers, J. Sound Vib, vol.312, issue.3, pp.399-417, 2008.

T. H. Nam and K. K. Ahn, A new structure of MR brake with the waveform boundary of rotary disk, ICCAS-SICE, pp.2997-3002, 2009.

S. Choi, S. Hong, K. Sung, and J. Sohn, Optimal control of structural vibrations using a mixed-mode magnetorheological fluid mount, Int. J. Mech. Sci, vol.50, issue.3, pp.559-568, 2008.

S. J. Dyke, B. F. Jr, M. K. Sain, and J. D. Carlson, Modeling and control of magnetorheological dampers for seismic response reduction, Smart Mater. Struct, vol.5, issue.5, p.565, 1996.

L. M. Jansen and S. J. Dyke, Semiactive control strategies for MR dampers: comparative study, J. Eng. Mech, vol.126, issue.8, pp.795-803, 2000.

Y. Choi and N. M. Wereley, Drop-Induced Shock Mitigation Using Adaptive Magnetorheological Energy Absorbers Incorporating a Time Lag, J. Vib. Acoust, vol.137, issue.1, pp.11010-011010, 2015.

S. D. Bharti, S. M. Dumne, and M. K. Shrimali, Seismic response analysis of adjacent buildings connected with MR dampers, Eng. Struct, vol.32, issue.8, pp.2122-2133, 2010.

C. Y. Lai and W. H. Liao, Vibration Control of a Suspension System via a Magnetorheological Fluid Damper, Modal Anal, vol.8, issue.4, pp.527-547, 2002.

M. Romaszko, Free vibration control of a cantilever MR fluid based sandwich beam, Carpathian Control Conference (ICCC), pp.311-314, 2013.

A. Muhammad, X. Yao, and Z. Deng, Review of magnetorheological (MR) fluids and its applications in vibration control, J. Mar. Sci. Appl, vol.5, issue.3, pp.17-29, 2006.

Y. Nahmad-molinari, C. A. Arancibia-bulnes, and J. C. Ruiz-suárez, Sound in a Magnetorheological Slurry, Phys. Rev. Lett, vol.82, issue.4, pp.727-730, 1999.

J. Rodríguez-lópez, L. E. Segura, and F. Montero-de-espinosa-freijo, Ultrasonic velocity and amplitude characterization of magnetorheological fluids under magnetic fields, J. Magn. Magn. Mater, vol.324, issue.2, pp.222-230, 2012.

I. E. Ovchinnikov and V. V. Sokolov, Effect of an external magnetic field on the propagation velocities of magnetoacoustic waves in a magnetic fluid, Acoust. Phys, vol.55, issue.3, pp.359-364, 2009.

C. Cavozzi, F. Storti, Y. Nestola, F. Salvi, and G. Davoli, New materials for analogue experiments: Preliminary tests of magnetorheological fluids, Tectonophysics, vol.630, pp.131-136, 2014.

J. Ding, Novel reversible and switchable electrolytes based on magneto-rheology, Sci. Rep, vol.5, 2015.

S. Kim, P. Kim, C. Park, and S. Choi, A new tactile device using magneto-rheological sponge cells for medical applications: Experimental investigation, Sens. Actuators Phys, vol.239, pp.61-69, 2016.

N. Sgambelluri, R. Rizzo, E. P. Scilingo, M. Raugi, and A. Bicchi, Free Hand Haptic Interfaces Based on Magnetorheological Fluids, 2006 14th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, pp.367-371, 2006.

A. C. Becnel, S. G. Sherman, W. Hu, and N. M. Wereley, Squeeze strengthening of magnetorheological fluids using mixed mode operation, J. Appl. Phys, vol.117, issue.17, pp.17-708, 2015.

G. Z. Yao, F. F. Yap, G. Chen, W. H. Li, and S. H. Yeo, MR damper and its application for semi-active control of vehicle suspension system, Mechatronics, vol.12, issue.7, pp.963-973, 2002.

R. S. Prabakar, C. Sujatha, and S. Narayanan, Optimal semi-active preview control response of a half car vehicle model with magnetorheological damper, J. Sound Vib, vol.326, issue.3, pp.400-420, 2009.

H. Lee and S. Choi, Control and Response Characteristics of a Magneto-Rheological Fluid Damper for Passenger Vehicles, J. Intell. Mater. Syst. Struct, vol.11, issue.1, pp.80-87, 2000.

H. Janocha, Application potential of magnetic field driven new actuators, Sens. Actuators Phys, vol.91, issue.1, pp.126-132, 2001.

D. H. Wang and W. H. Liao, Semi-active suspension systems for railway vehicles using magnetorheological dampers. Part I: system integration and modelling, Veh. Syst. Dyn, vol.47, issue.11, pp.1305-1325, 2009.

M. Saleh, R. Sedaghati, and R. Bhat, Crashworthiness Study of Helicopter Skid Landing Gear System Equipped With a Magnetorheological Energy Absorber, pp.2-03, 2017.

H. J. Jung, B. F. Spencer, Y. Q. Ni, and I. W. Lee, State-of-the-art of semiactive control systems using MR fluid dampers in civil engineering applications, Struct. Eng. Mech, vol.17, issue.3-4, pp.493-526, 2004.

B. Spencer, M. Nathan, S. Newmark, and . Nagarajaiah, State of the Art of Structural Control, J. Struct. Eng.-Asce -J STRUCT ENG-ASCE, vol.129, 2003.

J. Lozada, M. Hafez, and X. Boutillon, A novel haptic interface for musical keyboards, 2007 IEEE/ASME international conference on advanced intelligent mechatronics, pp.1-6, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00170232

C. Rossa, M. Anastassova, A. Micaelli, and J. Lozada, Perceptual Evaluation of the Passive/Active Torque and Stiffness Asymmetry of a Hybrid Haptic Device, Haptics: Neuroscience, Devices, Modeling, and, pp.55-60, 2014.
URL : https://hal.archives-ouvertes.fr/cea-01813730

Y. Liu, J. D. Ngu, R. I. Davidson, and P. M. Taylor, Tactile display array based on magnetorheological fluid, vol.6173, pp.61730-61730, 2006.

B. Liu, W. H. Li, P. B. Kosasih, and X. Z. Zhang, Development of an MR-brake-based haptic device, Smart Mater. Struct, vol.15, issue.6, p.1960, 2006.

S. Ryu, J. Koo, T. Yang, D. Pyo, K. Kyung et al., Mechanical and psychophysical performance evaluation of a haptic actuator based on magnetorheological fluids, J. Intell. Mater. Syst. Struct, vol.27, issue.14, pp.1967-1975, 2016.

T. Yang, Development of a miniature tunable stiffness display using MR fluids for haptic application, Sens. Actuators Phys, vol.163, issue.1, pp.180-190, 2010.

S. H. Winter and M. Bouzit, Testing and Usability Evaluation of the MRAGES Force Feedback Glove, 2006 International Workshop on Virtual Rehabilitation, pp.82-87, 2006.

J. Park, G. Yoon, J. Kang, and S. Choi, Design and control of a prosthetic leg for above-knee amputees operated in semi-active and active modes, Smart Mater. Struct, vol.25, issue.8, p.85009, 2016.

K. Gudmundsson, Design of a Magnetorheological Fluid for an MR Prosthetic Knee Actuator with an Optimal Geometry, 2018.

J. D. Carlson, Critical factors for MR fluids in vehicle systems, Int. J. Veh. Des, vol.33, issue.1-3, pp.207-217, 2003.

J. Furusho, Development of Shear Type Compact MR Brake for the Intelligent Ankle-Foot Orthosis and Its Control; Research and Development in NEDO for Practical Application of Human Support Robot, 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp.89-94, 2007.

I. Díaz, J. J. Gil, and E. Sánchez, Lower-Limb Robotic Rehabilitation: Literature Review and Challenges, Journal of Robotics, 2011.

H. F. Van-der-loos, D. J. Reinkensmeyer, and E. Guglielmelli, Rehabilitation and Health Care Robotics, Springer Handbook of Robotics, pp.1685-1728, 2016.

X. Yin, S. Guo, H. Hirata, and H. Ishihara, Design and experimental evaluation of a teleoperated haptic robot-assisted catheter operating system, J. Intell. Mater. Syst. Struct, vol.27, issue.1, pp.3-16, 2016.

D. Senkal, H. Gurocak, and E. I. Konukseven, Passive Haptic Interface with MR-Brakes for Dental Implant Surgery, Presence Teleoperators Virtual Environ, vol.20, issue.3, pp.207-222, 2011.

S. Choi, S. Kim, P. Kim, J. Park, and S. Choi, A new visual feedback-based magnetorheological haptic master for robot-assisted minimally invasive surgery, Smart Mater. Struct, vol.24, issue.6, p.65015, 2015.

D. C. Harris, History of magnetorheological finishing, Window and Dome Technologies and Materials XII, vol.8016, p.80160, 2011.

M. S. Niranjan and S. Jha, Experimental investigation into tool aging effect in ball end magnetorheological finishing, Int. J. Adv. Manuf. Technol, vol.80, issue.9, pp.1895-1902, 2015.

D. Golini, Precision optics manufacturing using magnetorheological finishing (MRF), Optical Fabrication and Testing, vol.3739, pp.78-86, 1999.

S. Jha and V. K. Jain, Design and development of the magnetorheological abrasive flow finishing (MRAFF) process, Int. J. Mach. Tools Manuf, vol.44, issue.10, pp.1019-1029, 2004.

S. K. , S. Jha, and V. R. , Design of Parallel Plate Magnetorheometer for evaluating properties of Magnetorheological polishing fluid, Mater. Today Proc, vol.2, issue.4-5, pp.3251-3259, 2015.

M. Reiner, The Deborah Number, Physics Today, vol.17, p.62, 1964.

É. Guazzelli, Rhéologie des fluides complexes, 2001.

, Rheology, 2018.

P. Mongondry, Structure et comportement rhéologique des suspensions aqueuses de Laponite en présence de plusieurs additifs, phdthesis, Migration -université en cours d'affectation, 2003.

D. Feys, R. Cepuritis, S. Jacobsen, K. Lesage, E. Secrieru et al., Measuring rheological properties of cement pastes: most common techniques, procedures and challenges, Rilem Tech. Lett, vol.2, pp.129-135, 2018.

P. Banfill, The rheology of fresh cement and concrete-a review, 2003.

T. Gibaud, C. Barentin, N. Taberlet, and S. Manneville, Shear-induced fragmentation of laponite suspensions, Soft Matter, vol.5, issue.16, pp.3026-3037, 2009.
URL : https://hal.archives-ouvertes.fr/ensl-00371654


P. F. Banfill, X. Yongmo, and P. L. Domone, Relationship between the rheology of unvibrated fresh concrete and its flow under vibration in a vertical pipe apparatus, Mag. Concr. Res, vol.51, issue.3, pp.181-190, 1999.

P. F. Banfill, M. A. Teixeira, and R. J. Craik, Rheology and vibration of fresh concrete: Predicting the radius of action of poker vibrators from wave propagation, Cem. Concr. Res, vol.41, issue.9, pp.932-941, 2011.

A. Lassalle and C. Legrand, Évolution du comportement rhéologique d'une pâte de ciment fraîche suivant la distance à une source vibrante, Matér. Constr, vol.13, issue.2, pp.115-124, 1980.

S. Li, J. S. Marshall, G. Liu, and Q. Yao, Adhesive particulate flow: The discrete-element method and its application in energy and environmental engineering, Prog. Energy Combust. Sci, vol.37, issue.6, pp.633-668, 2011.

A. Nanda and M. A. Karami, One-way sound propagation via spatio-temporal modulation of magnetorheological fluid, J. Acoust. Soc. Am, vol.144, issue.1, pp.412-420, 2018.