Selective vehicle routing problem : cluster and synchronization constraints

Abstract : The Vehicle Routing Problem (VRP) is a family of Combinatorial Optimization Problems generally used to solve different issues related to transportation systems and logistics. In this thesis, we focused our attention on a variant of the VRP called the Team Orienteering Problem (TOP). In this family of problems, it is a priory impossible to visit all the customers due to travel time limitation on vehicles. Instead, a profit is associated with each customer to represent its value and it is collected once the customer is visited by one of the available vehicles. The objective function is then to maximize the total collected profit with respect to the maximum travel time. Firstly, we introduced a new generalization for the TOP that we called the Clustered TOP (CluTOP). In this variant, the customers are grouped into subsets called clusters to which we associate profits. To solve this variant, we proposed an exact scheme based on the cutting plane approach with additional valid inequalities and pre-processing techniques. We also designed a heuristic method based on the order first-cluster second approach for the CluTOP. This Hybrid Heuristic combines between an ANLS heuristic that explores the solutions space and a splitting procedure that explores the giant tours search space. In addition, the splitting procedure is enhanced by local search procedure in order to enhance its coverage of search space. The second problem treated in this work is called the Synchronized Team Orienteering Problem with Time Windows (STOPTW). This variant was initially proposed in order to model scenarios related to asset protection during escaped wildfires. It considers the case of a heterogeneous fleet of vehicles along with time windows and synchronized visits. To solve this problem, we proposed a heuristic method based on the GRASP×ILS approach that led to a very outstanding results compared to the literature. The last variant of the TOP tackled in this thesis called the Set Orienteering Problem (SOP). Customers in this variant are grouped into subsets called clusters. Each cluster is associated with a profit which is gained if at least one customer is served by the single available vehicle. We proposed a Branch-and-Cut with two separation procedures to separate subtours elimination constraints. We also proposed a Memetic Algorithm with an optimal splitting procedure based on dynamic programming.
Complete list of metadatas

Cited literature [92 references]  Display  Hide  Download
Contributor : Abes Star <>
Submitted on : Thursday, June 27, 2019 - 6:51:08 PM
Last modification on : Monday, July 8, 2019 - 2:21:25 PM


Version validated by the jury (STAR)


  • HAL Id : tel-02167442, version 1


Ala-Eddine Yahiaoui. Selective vehicle routing problem : cluster and synchronization constraints. Other. Université de Technologie de Compiègne, 2018. English. ⟨NNT : 2018COMP2449⟩. ⟨tel-02167442⟩



Record views


Files downloads