C. K. Anders and L. A. Carey, Biology, metastatic patterns, and treatment of patients with triple-negative breast cancer, Clin Breast Cancer, vol.9, pp.73-81, 2009.

A. Prat and C. M. Perou, Deconstructing the molecular portraits of breast cancer, Mol Oncol, vol.5, pp.5-23, 2011.

B. D. Lehmann, Refinement of Triple-Negative Breast Cancer Molecular Subtypes: Implications for Neoadjuvant Chemotherapy Selection, PloS One, vol.11, p.157368, 2016.

C. M. Perou, Molecular portraits of human breast tumours, Nature, vol.406, pp.747-752, 2000.

M. Banda, Metabotropic glutamate receptor-1 contributes to progression in triple negative breast cancer, PloS One, vol.9, p.81126, 2014.

W. D. Foulkes, I. E. Smith, and J. S. Reis-filho, Triple-negative breast cancer, N. Engl. J. Med, vol.363, pp.1938-1948, 2010.

B. D. Lehmann, Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies, J. Clin. Invest, vol.121, pp.2750-2767, 2011.

L. Fang, Z. Barekati, B. Zhang, Z. Liu, and X. Zhong, Targeted therapy in breast cancer: what's new?, Swiss Med. Wkly, vol.141, p.13231, 2011.

B. Haupt, J. Y. Ro, and M. R. Schwartz, Basal-like breast carcinoma: a phenotypically distinct entity, Arch. Pathol. Lab. Med, vol.134, pp.130-133, 2010.

J. R. Masters and G. N. Stacey, Changing medium and passaging cell lines, Nat. Protoc, vol.2, pp.2276-2284, 2007.

Z. Yang and H. Xiong, Culture Conditions and Types of Growth Media for Mammalian Cells, 2012.

D. Brunner, Serum-free cell culture: the serum-free media interactive online database, ALTEX, vol.27, pp.53-62, 2010.

C. Tekkatte, G. P. Gunasingh, K. M. Cherian, and K. Sankaranarayanan, Humanized' stem cell culture techniques: the animal serum controversy, Stem Cells Int, p.504723, 2011.

C. Fang, C. Wu, C. Fang, W. Chen, and C. Chen, Long-term growth comparison studies of FBS and FBS alternatives in six head and neck cell lines, PloS One, vol.12, p.178960, 2017.

E. C. Costa, D. De-melo-diogo, A. F. Moreira, M. P. Carvalho, and I. J. Correia, Spheroids Formation on Non-Adhesive Surfaces by Liquid Overlay Technique: Considerations and Practical Approaches, Biotechnol. J, 2017.

D. Lv, A three-dimensional collagen scaffold cell culture system for screening anti-glioma therapeutics, Oncotarget, vol.7, pp.56904-56914, 2016.

Q. Li, 3D models of epithelial-mesenchymal transition in breast cancer metastasis: highthroughput screening assay development, validation, and pilot screen, J. Biomol. Screen, vol.16, pp.141-154, 2011.

E. C. Costa, 3D tumor spheroids: an overview on the tools and techniques used for their analysis, Biotechnol. Adv, vol.34, pp.1427-1441, 2016.

M. Zanoni, 3D tumor spheroid models for in vitro therapeutic screening: a systematic approach to enhance the biological relevance of data obtained, Sci. Rep, vol.6, 2016.

C. Dubois, Development and cytotoxic response of two proliferative MDA-MB-231 and non-proliferative SUM1315 three-dimensional cell culture models of triple-negative basal-like breast cancer cell lines, Oncotarget, vol.8, pp.95316-95331, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01651313

P. J. Price, Best practices for media selection for mammalian cells, In Vitro Cell. Dev. Biol. Anim, vol.53, pp.673-681, 2017.

N. Mcgillicuddy, P. Floris, S. Albrecht, and J. Bones, Examining the sources of variability in cell culture media used for biopharmaceutical production, Biotechnol. Lett, 2017.

T. Yao and Y. Asayama, Animal-cell culture media: History, characteristics, and current issues, Reprod. Med. Biol, vol.16, pp.99-117, 2017.

D. C. Wilkinson, Development of a Three-Dimensional Bioengineering Technology to Generate Lung Tissue for Personalized Disease Modeling, Stem Cells Transl. Med, vol.6, pp.622-633, 2017.

A. Prat and C. M. Perou, Deconstructing the molecular portraits of breast cancer, Mol. Oncol, vol.5, pp.5-23, 2011.

M. Ravi, V. Paramesh, S. R. Kaviya, E. Anuradha, and F. D. Solomon, 3D cell culture systems: advantages and applications, J. Cell. Physiol, vol.230, pp.16-26, 2015.

G. Benton, I. Arnaoutova, J. George, H. K. Kleinman, and J. Koblinski, Matrigel: from discovery and ECM mimicry to assays and models for cancer research, Adv. Drug Deliv. Rev. 79, vol.80, pp.3-18, 2014.

A. Satelli and S. Li, Vimentin in cancer and its potential as a molecular target for cancer therapy, Cell. Mol. Life Sci. CMLS, vol.68, pp.3033-3046, 2011.

R. Lin, R. Lin, and H. Chang,

. G&gt; and . Kaf, D=KLJ9F< :J=9CK :Q L@= AF@A:ALAGF G> L@= "/ J=H9AJ KQKL=E L@MK <=?=F=J9LAF? AFLG !0K

A. 1@=f-9do9qk and . G&gt;,

=. G&gt;,

. L=kl-9f&lt;-&gt;j9,

. #gj-;=dd-na9:adalq-9f9dqkak, LAGF GF :GL@, vol.9, issue.9

=. =dd-na9,

=. G&gt;-[*-;geh9j=&lt;,

. Lg-[*-o9k-&gt;gd&lt;-&gt;gj-*!*-9f&lt; and . &gt;gd&lt;, >GJ, vol.02

. =dd-daf=-*gj=-af and . Hj=k=f,

=. G&gt;-[* and D. &gt;gj-*!*,

. =dd and . J=kh=,

. Lan=dq and . L@=, , 2009.

L. =dd-na9,

, LAGF<=H=F<=FL OAL@ 9 J9LAG $Q >J9

. Lagfk-g&gt;-$q&lt;9q-$q-&gt;j9;lagf, . G&gt;, and . &gt;gd&lt;-na9,

*. &gt;gj-*!*-9f&lt;-02 and . J=kh=,

A. F. Lan=dq-1@=f and . Hj=k=f,

=. G&gt;-l@=,

G. Oal@ and D. =&gt;&gt;=,

. Lan= and . Hj=k=f,

=. G&gt;, D. Oal@-[*, and . G&gt;,

G. Oal@,

. Lan=dq-1@=k= and . O=j=-;gf&gt;aje=&lt;-:q-l@=-+, , vol.3, pp.9-9


G. G&gt; and D. Hjg,

=. Al,

. L@= and . G&gt;, , 2009.

. =dd and . &gt;gje, , vol.9, 2009.

. Dmkl=j-g&gt;-9l-d=9kl-;gfla?mgmk-;=ddk-9&gt;l=j,

. Lj=9le=fl,

&. 9jja=&lt;-gml-af-log-kl9?=k-oal@-9 and . Kl=h-g&gt;,

. =dd-lj=9le=fl-9f&lt;,

K. Gf&lt;-kl=h-g&gt;-;=dd-j=k==&lt;af?-oal@-9 and . Jgo-1@=,

. Gdgfa=k and . L@=f,

G. Gj, , vol.9

. Geh9j=&lt;-lg-l@=aj-j=kh=;lan=-;gfljgdk-&lt;6, , pp.1-4

&. L@=k= and . L@=,

. Dgfg?=fa;-9kk9q-gf-:gl@,

. =dd-daf=k-&lt;=egfklj9l=&lt;-l@= and . =&gt;&gt;=,

L. Hj=k=f,

=. G&gt; and D. Oal@,

. Lan=dq-g&gt;-9f&lt;-&gt;gd&lt;-&gt;gj-*!*,

=. =&gt;&gt;=, GL@ NA9:ADALQ 9F< ;DGFG?=FA; L=KLK @A?@DA?@L=< 9

L. L@=,

. Glj=9le=fl-&amp;f&lt;==&lt;-*!*,

=. Daf= and . Lg,

, =LL=J HJ=<A

L. Lmegjhj=&lt;a,


*. Oal@, , vol.9, pp.9-9

. Gf,

. Geal9fldq-oal@-&gt;j9,

L. L@=,

. Hjgda&gt;=j9lan=-*!*-kh@=jga&lt; and . Eg&lt;=d,

L. L@=-aeh9,

L. G&gt;-l@=,

. Lan= and . Hj=k=f,

=. G&gt;, D. D9, and D. Oal@,

J. Hj=k=f,

=. G&gt;, , vol.9

. &gt;gj-l@=-02*-fgfhjgda&gt;=j9lan=-!-eg&lt;=d,

. Lanalq-*gj= and . L@=, , vol.9

A. =&gt;&gt;=,

L. @ldq, ML L@= KH@=JGA< E=L9:GDA; 9, LANALQ <=

. G&gt;, . Oal@-[*-,d9, ?. D9-$q-9, and . &lt;=l=,

. L=&lt;-gf-9dd,

. Kh@=jga&lt;-h9j9e=l=jk-o9k-af and . Hj=k=f,

=. G&gt;-l@=-[* and D. =&gt;&gt;=,

L. Gf-kh@=jga&lt;k-9l,

D. Hj=k=f,

=. G&gt;, L. D9h9ja:, . L@=, and . Ge,

K. G&gt;-;9f,

=. =&gt;&gt;a, , vol.9

G. L@=-aeh9,

L. G&gt; and . D9h9ja:-;ge:af=&lt;-oal@-&gt;j9,

L. Lmegj, JGOL@K #-69)

L. O@=j=-n=dah9ja,

. A9l=&lt;-oal@-$q-g&gt;-@qhg&gt;j9,

. Lagf=&lt;-5j9q,

. K=kkagf, , vol.157

. Kljgf?-;qlglgpa;-=&gt;&gt;=,

L. G&gt;-l@=,

. Lmegj and . Oal@-@qhg&gt;j9,

. Lagf=&lt; and . Lg-$q-9f&lt;-[*-g&gt;-9fla,

-. L@=,

=. =p@a,

/. 9f,

K. =j-&lt;=egfklj9l=&lt; and . =fa,

. Cadd-9&gt;l=j-@qhg&gt;j9,

L. Lg, , vol.9, pp.61-65

&. =f=gmk,

=. Daf=k and . &lt;=ha,

. L=&lt;-af-l@=-+ and . Af-:gl@-!-9f&lt;-!-;=dd,

. Mdlmj=-*!*,

. =dd-daf=-o9k,

, 8C E8 #:8D'KD' &' 7:&)6/CD/:8 (, p.8

, 9#*3;)&97*$ '9

*. 322&amp;$z-ceb-&amp;&apos;c, , vol.7

C. ). B@/&apos;-&apos;d-@6ec, , p.8

. Db8c#b/@d-;-c-#&apos;66e6/b&apos;c-d-dvwu-&apos;d-uwuy, 8 )I/&'8#' 6'EB &/I'B-'8#'] 'DD' .)D)B:-)8)/D) -)8)

^. and &. ,

&. and &. #de)&apos;c-ceb-#&apos;c, B)C/CD8#' i@B:D)/8'C j :8D )D), vol.7

#. ,

#. ,

*. , , vol.2, p.0

, /CD/:8 @B)#6/8/AE' &' 6^#D/:8 &'C 7:6)#E6'C #

, /8D/DE6) a 6d b )D) &)I'6:@@) #:77'

. Ceb-&amp;&apos;c-&apos;k@68dc-de7,

. Ceb-&amp;&apos;c-#e6deb&apos;c, , vol.8

*. and &. 2&lt;%*(&lt;,

$. , , vol.452

C. K. Anders and L. A. Carey, Biology, metastatic patterns, and treatment of patients with triplenegative breast cancer, Clin. Breast Cancer, vol.9, issue.2, pp.73-81, 2009.

D. Antoni, H. Burckel, E. Josset, and G. Noel, Three-dimensional cell culture: a breakthrough in vivo, Int. J. Mol. Sci, vol.16, pp.5517-5527, 2015.

M. H. Barcellos-hoff, J. Aggeler, T. G. Ram, and M. J. Bissell, Functional differentiation and alveolar morphogenesis of primary mammary cultures on reconstituted basement membrane, Dev. Camb. Engl, vol.105, pp.223-235, 1989.

N. Barnabas and D. Cohen, Phenotypic and Molecular Characterization of MCF10DCIS and SUM Breast Cancer Cell Lines, Int. J. Breast Cancer, p.872743, 2013.

M. J. Bissell, Goodbye flat biology -time for the 3rd and the 4th dimensions, J. Cell Sci, vol.130, pp.3-5, 2017.

F. Bray, J. Ren, E. Masuyer, and J. Ferlay, Global estimates of cancer prevalence for 27 sites in the adult population in 2008, Int. J. Cancer, vol.132, pp.1133-1145, 2013.

S. Breslin and L. Driscoll, The relevance of using 3D cell cultures, in addition to 2D monolayer cultures, when evaluating breast cancer drug sensitivity and resistance, Oncotarget, vol.7, pp.45745-45756, 2016.

H. E. Bryant, N. Schultz, H. D. Thomas, K. M. Parker, D. Flower et al., Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase, Nature, vol.434, pp.913-917, 2005.

B. Carney, S. Kossatz, B. H. Lok, V. Schneeberger, K. K. Gangangari et al., Target engagement imaging of PARP inhibitors in small-cell lung cancer, Nat. Commun, vol.9, p.176, 2018.

K. M. Charoen, B. Fallica, Y. L. Colson, M. H. Zaman, and M. W. Grinstaff, Embedded multicellular spheroids as a biomimetic 3D cancer model for evaluating drug and drug-device combinations, Biomaterials, vol.35, pp.2264-2271, 2014.

E. C. Costa, A. F. Moreira, D. De-melo-diogo, V. M. Gaspar, M. P. Carvalho et al., 3D tumor spheroids: an overview on the tools and techniques used for their analysis, Biotechnol. Adv, vol.34, pp.1427-1441, 2016.

E. C. Costa, D. De-melo-diogo, A. F. Moreira, M. P. Carvalho, and I. J. Correia, Spheroids Formation on Non-Adhesive Surfaces by Liquid Overlay Technique: Considerations and Practical Approaches, Biotechnol. J, 2017.

E. D. Deeks, Olaparib: first global approval, Drugs, vol.75, pp.231-240, 2015.

R. A. Dent, G. J. Lindeman, M. Clemons, H. Wildiers, A. Chan et al., Phase I trial of the oral PARP inhibitor olaparib in combination with paclitaxel for first-or second-line treatment of patients with metastatic triple-negative breast cancer, Breast Cancer Res. BCR, vol.15, p.88, 2013.

C. Dubois, R. Dufour, P. Daumar, C. Aubel, C. Szczepaniak et al., Development and cytotoxic response of two proliferative MDA-MB-231 and nonproliferative SUM1315 three-dimensional cell culture models of triple-negative basal-like breast cancer cell lines, Oncotarget, vol.8, pp.95316-95331, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01651313

N. Duma, K. C. Gast, G. M. Choong, R. A. Leon-ferre, and C. C. Sullivan, Where Do We Stand on the Integration of PARP Inhibitors for the Treatment of Breast Cancer?, Curr. Oncol. Rep, vol.20, p.63, 2018.

Y. Fang and R. M. Eglen, Three-Dimensional Cell Cultures in Drug Discovery and Development, SLAS Discov. Adv. Life Sci. RD, vol.22, pp.456-472, 2017.

L. Fang, Z. Barekati, B. Zhang, Z. Liu, and X. Zhong, Targeted therapy in breast cancer: what's new?, Swiss Med. Wkly, vol.141, p.13231, 2011.

H. Farmer, N. Mccabe, C. J. Lord, A. N. Tutt, D. A. Johnson et al., Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy, Nature, vol.434, pp.917-921, 2005.

J. Ferlay, I. Soerjomataram, R. Dikshit, S. Eser, C. Mathers et al., Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012, Int. J. Cancer, vol.136, pp.359-386, 2015.

W. D. Foulkes, I. E. Smith, and J. S. Reis-filho, Triple-negative breast cancer, N. Engl. J. Med, vol.363, pp.1938-1948, 2010.

S. Furuta and M. J. Bissell, Pathways Involved in Formation of Mammary Organoid Architecture Have Keys to Understanding Drug Resistance and to Discovery of Druggable Targets, Cold Spring Harb. Symp. Quant. Biol, vol.81, pp.207-217, 2016.

L. Gladieff, D. S. Lyonnet, A. Lortholary, A. Leary, C. Genestie et al., Cancers de l'ovaire BRCA muté : consultation d'oncogénétique et prescription des inhibiteurs de PARP, Bull. Cancer (Paris), vol.104, pp.16-23, 2017.

C. P. Irwin, Y. Portorreal, C. Brand, Y. Zhang, P. Desai et al., , 2014.

, PARPi-FL--a fluorescent PARP1 inhibitor for glioblastoma imaging, vol.16, pp.432-440

S. Kossatz, W. A. Weber, and T. Reiner, Optical Imaging of PARP1 in Response to Radiation in Oral Squamous Cell Carcinoma, PloS One, vol.11, p.147752, 2016.

S. Kossatz, B. Carney, C. Farley, C. M. Drain, W. A. Weber et al., Direct imaging of drug distribution and target engagement of the PARP inhibitor rucaparib, J. Nucl. Med. Off. Publ. Soc. Nucl. Med, 2018.

B. D. Lehmann, B. Jovanovi?, X. Chen, M. V. Estrada, K. N. Johnson et al., , pp.11-11

J. A. Pietenpol, Refinement of Triple-Negative Breast Cancer Molecular Subtypes: Implications for Neoadjuvant Chemotherapy Selection, PloS One, vol.11, 2016.

R. Lin, R. Lin, C. , and H. , Recent advances in three-dimensional multicellular spheroid culture for biomedical research, Biotechnol. J, vol.3, pp.1172-1184, 2008.

A. Llombart-cussac, B. Bermejo, C. Villanueva, S. Delaloge, S. Morales et al., SOLTI NeoPARP: a phase II randomized study of two schedules of iniparib plus paclitaxel versus paclitaxel alone as neoadjuvant therapy in patients with triplenegative breast cancer, Breast Cancer Res. Treat, vol.154, pp.351-357, 2015.

K. A. Menear, C. Adcock, R. Boulter, X. Cockcroft, L. Copsey et al., -ribose) polymerase-1, 2H-phthalazin-1-one: a novel bioavailable inhibitor of poly, vol.4, pp.6581-6591, 2008.

R. M. Neve, K. Chin, J. Fridlyand, J. Yeh, F. L. Baehner et al., A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes, Cancer Cell, vol.10, pp.515-527, 2006.

F. Penault-llorca and G. Viale, Pathological and molecular diagnosis of triple-negative breast cancer: a clinical perspective, Ann. Oncol. Off. J. Eur. Soc. Med. Oncol, vol.23, issue.6, pp.19-22, 2012.

V. Pernin, F. Mégnin-chanet, V. Pennaneach, A. Fourquet, Y. Kirova et al., Cancer Radiother. J. Soc. Francaise Radiother. Oncol, vol.18, pp.799-802, 2014.

E. Rass, A. Grabarz, P. Bertrand, and B. Lopez, , 2012.

, Cancer Radiother. J. Soc. Francaise Radiother. Oncol, vol.16, pp.1-10

T. Reiner, J. Lacy, E. J. Keliher, K. S. Yang, A. Ullal et al., Imaging therapeutic PARP inhibition in vivo through bioorthogonally developed companion imaging agents, vol.14, pp.169-177, 2012.

P. Tassone, P. Tagliaferri, A. Perricelli, S. Blotta, B. Quaresima et al., BRCA1 expression modulates chemosensitivity of BRCA1-defective HCC1937 human breast cancer cells, Br. J. Cancer, vol.88, pp.1285-1291, 2003.

M. L. Telli, D. G. Stover, S. Loi, S. Aparicio, L. A. Carey et al., Homologous recombination deficiency and host anti-tumor immunity in triple-negative breast cancer, Breast Cancer Res. Treat, 2018.

G. M. Thurber, K. S. Yang, T. Reiner, R. H. Kohler, P. Sorger et al., , 2013.

, Single-cell and subcellular pharmacokinetic imaging allows insight into drug action in vivo, Nat. Commun, vol.4, p.1504

G. M. Thurber, T. Reiner, K. S. Yang, R. H. Kohler, and R. Weissleder, Effect of small-molecule modification on single-cell pharmacokinetics of PARP inhibitors, Mol. Cancer Ther, vol.13, pp.986-995, 2014.

X. Wang, Y. Shi, D. Huang, and X. Guan, Emerging therapeutic modalities of PARP inhibitors in breast cancer, Cancer Treat. Rev, vol.68, pp.62-68, 2018.

, &)B/I) ,6E:B'C#'8D &' 6^6@B/" a 6d b

/. C-#&apos;66e6/b&apos;c-d-d-vwuz-uwuy-&apos;d-u}w{z-/8c/-ae&apos;-c and . Kd,

@. &amp;^, 8:D77'8D '8 @'B7'DD8D

&. Bb&apos;dd&apos;c-&amp;/:&amp;&apos;-ic-j,

D. @bd/, &^)#.8D/66:8 #'66E6/B' 'D &^)D@'C &' &)D'#D/:8] uy| &6&

$. , Journal of PharmaceuticalReferences

O. Dizdar, C. Arslan, and K. Altundag, Advances in PARP inhibitors for the treatment of breast cancer, Expert Opin. Pharmacother, vol.16, pp.2751-2758, 2015.

D. V. Ferraris, Evolution of poly(ADP-ribose) polymerase-1 (PARP-1) inhibitors From concept to clinic, J. Med. Chem, vol.53, pp.4561-4584, 2010.

B. Lupo and L. Trusolino, Inhibition of poly(ADP-ribosyl)ation in cancer: old and new paradigms revisited, Biochim. Biophys. Acta, vol.1846, pp.201-215, 2014.

V. Schreiber, F. Dantzer, J. C. Ame, and G. De-murcia, Poly(ADP-ribose): novel functions for an old molecule, Nat. Rev. Mol. Cell Biol, vol.7, pp.517-528, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00179861

J. S. Brown, S. B. Kaye, and T. A. Yap, PARP inhibitors: the race is on, Br. J. Cancer, vol.114, pp.713-715, 2016.

J. Murai, S. Y. Huang, B. B. Das, A. Renaud, Y. Zhang et al., Trapping of PARP1 and PARP2 by clinical PARP inhibitors, Cancer Res, vol.72, pp.5588-5599, 2012.

S. Tangutoori, P. Baldwin, and S. Sridhar, PARP inhibitors: a new era of targeted therapy, Maturitas, vol.81, pp.5-9, 2015.

S. Murata, C. Zhang, N. Finch, K. Zhang, L. Campo et al., Predictors and modulators of synthetic lethality: an update on PARP inhibitors and personalized medicine, Biomed. Res. Int, p.2346585, 2016.

E. D. Deeks, Olaparib: first global approval, Drugs, vol.75, pp.231-240, 2015.

M. J. O&apos;connor, Targeting the DNA damage response in cancer, Mol. Cell, vol.60, pp.547-560, 2015.

C. T. Dollery, Intracellular drug concentrations, Clin. Pharmacol. Ther, vol.93, pp.263-266, 2013.

T. Fojo and S. Bates, Mechanisms of resistance to PARP inhibitors-three and counting, Cancer Discov, vol.3, pp.20-23, 2013.

C. J. Lord and A. Ashworth, Mechanisms of resistance to therapies targeting BRCA-mutant cancers, Nat. Med, vol.19, pp.1381-1388, 2013.

R. Dufour, P. Daumar, E. Mounetou, C. Aubel, F. Kwiatkowski et al., BCRP and P-gp relay overexpression in triple negative basal-like breast cancer cell line: a prospective role in resistance to Olaparib, Sci. Rep, vol.5, p.12670, 2015.

Y. Zhou, C. Joubran, L. Miller-vedam, V. Isabella, A. Nayar et al., Thinking outside the bug: a unique assay to measure intracellular drug penetration in gram-negative bacteria, Anal. Chem, vol.87, pp.3579-3584, 2015.

L. M. Colletti, Y. Liu, G. Koev, P. L. Richardson, C. M. Chen et al., Methods to measure the intracellular concentration of unlabeled compounds within cultured cells using liquid chromatography/tandem mass spectrometry, Anal. Biochem, vol.383, pp.186-193, 2008.

A. Mateus, P. Matsson, and P. Artursson, Rapid measurement of intracellular unbound drug concentrations, Mol. Pharm, vol.10, pp.2467-2478, 2013.

D. Wu, C. Wang, J. Yang, H. Wang, H. Han et al., Improving the intracellular drug concentration in lung cancer treatment through the codelivery of doxorubicin and miR-519c mediated by porous PLGA microparticle, Mol. Pharm, vol.13, pp.3925-3933, 2016.

S. Durmus, R. W. Sparidans, A. Van-esch, E. Wagenaar, J. H. Beijnen et al., Breast cancer resistance protein (BCRP/ABCG2) and P-glycoprotein (P-GP/ABCB1) restrict oral availability and brain accumulation of the PARP inhibitor rucaparib (AG-014699), Pharm. Res, vol.32, pp.37-46, 2015.

C. M. Nijenhuis, L. Lucas, H. Rosing, J. H. Schellens, and J. H. Beijnen, Development and validation of a high-performance liquid chromatography-tandem mass spectrometry assay quantifying olaparib in human plasma, J. Chromatogr. B, vol.940, pp.121-125, 2013.

R. W. Sparidans, S. Durmus, A. H. Schinkel, J. H. Schellens, and J. H. Beijnen, Liquid chromatography-tandem mass spectrometric assay for the PARP inhibitor rucaparib in plasma, J. Pharm. Biomed. Anal, vol.88, pp.626-629, 2014.

R. W. Sparidans, I. Martens, L. B. Valkenburg-van-iersel, J. Hartigh, J. H. Schellens et al., Liquid chromatography-tandem mass spectrometric assay for the PARP-1 inhibitor olaparib in combination with the nitrogen mustard melphalan in human plasma, J. Chromatogr. B, vol.879, pp.1851-1856, 2011.

J. Roth, C. J. Peer, B. Mannargudi, H. Swaisland, J. Lee et al., A sensitive and robust Ultra HPLC assay with tandem mass spectrometric detection for the quantitation of the PARP inhibitor olaparib (AZD2281) in human plasma for pharmacokinetic application, Chromatography, vol.1, pp.82-95, 2014.

L. Oplustilova, K. Wolanin, M. Mistrik, G. Korinkova, D. Simkova et al., Evaluation of candidate biomarkers to predict cancer cell sensitivity or resistance to PARP-1 inhibitor treatment, ABBV Cell Cycle, vol.11, pp.3837-3850, 2012.

C. Bourgne, M. Bamdad, A. Janel, F. Libert, M. C. Gagnieu et al., Measurement of imatinib uptake by flow cytometry, vol.81, pp.996-1004, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00849687

B. Deng, Z. Wang, J. Song, Y. Xiao, D. Chen et al., Analysis of doxorubicin uptake in single human leukemia K562 cells using capillary electrophoresis coupled with laser-induced fluorescence detection, Anal. Bioanal. Chem, vol.401, pp.2143-2152, 2011.

C. Dubois, R. Dufour, P. Daumar, C. Aubel, C. Szczepaniak et al., Development and cytotoxic response of two proliferative MDA-MB-231 and non-proliferative SUM1315 three-dimensional cell culture models of triple-negative basal-like breast cancer cell lines, Oncotarget, vol.8, issue.56, pp.95316-95331, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01651313

, &3 42"6"58 'C DBIEK :8D @'B7/C 6 &)D'B7/8D/:8 &'C #:8&/D/:8C i/j &' @B)@BD/:8 &'C, vol.352

/. 8db#&apos;66e6/b&apos;-&amp;&apos;-6^6@b, , vol.6

C. &amp;8c-6&apos;c-#&apos;66e6&apos;c-de7, B6'CZ '8 #:BB)6D/:8 I'# 6'EB

T. =0&lt;;*,

*. 9&lt;(-$:*,

-. @b,

C. Db/d&apos;7&apos;8dc-8d/d, , p.8

. &amp;&apos;-dl@&apos;-b&apos;6/c-&amp;&apos;-&amp;&apos;ek and . @b, D)/8'C 74'EB'CZ, vol.6

, &EB8D vx.] 8C #' #:8D'KD'Z 8:EC I:8C :B/'8D) #'C DBIEK CEB 6 &)D'B7/8D/:8 &' 6 #:d 'K@B'CC/:8 &' 6

$. B6&lt;, G>: (DAQ8JA6>G: :I .IG6IQ<>:H /=QG6CDHI>FJ:H ! A:GBDCI !:GG6C9 !G6C8: $CHI>IJI 0C>K:GH>I6>G: 9: /:8=CDAD<>: QE6GI:B:CI "QC>: >DAD<>FJ: 0C>K:GH>IQ A:GBDCI JK:G<C: $)

/. =6k, , vol.8

G. Dei&gt;b&gt;o,

A. Ejbeh-i6g&lt;, 8JAIJG:9 >C 6C9 L>I= *A6E6G>7 IG:6IB:CI $C, vol.8

#. Page, , vol.2

. #!$#-g, 6HI 86C8:G >H 6 K:GN 8DBEA:M 6C9 =:I:GD<:C:DJH 9>H:6H: BDC< I=: H:K, p.6

, +9 '2 #'8854+ +9 '2

$. &gt;begdk, I=: E6I>:CIZH DJI8DB: H:K:G6A HE:8>;>8 I6G<:I:9 I=:G6E>:H HJ8= 6H +DAN + G>7DH: +DANB:G6H: >C=>7>IDGH +-+> :MEAD>I>C< I=: X-C:HH

. Bdc&lt;-i=,

, A6G<: E6C:A D; M:CD7>DI>8H EG>C8>E6AAN =N9GDE=D7>8 6C9 >DC>8 6BE=>E6I=>8 BDA:8JA:H HJ8= 6H 8=:BDI=:G6E:JI>8H .+4 +9 '2 599+83'4 +9, vol.6

$. 8dci,

. #!-#,

/. Ld-/g&gt;ea-;-/s-#/-l, AA A>C: L6H 8JAIJG:9 >C #6B H ! B:9>JB ">78DS HJEEA:B:CI:9 L>I= 9, vol.8

A. 8jaijg, A>C:H 8:AAH L:G: H::9:9 >C BA D; 8JAIJG: B:9>JB 6I 6 8DC8:CIG6I>DC D, vol.8

. Jci&gt;a-e6hh6&lt;-;-aah8b-&gt;c-v&apos;-d;-b, , vol.8

, AA A>C:H HE=:GD>9H ;DGB6I>DC I=: A>FJ>9 DK:GA6N I:8=C>FJ: L6H E:G;DGB:9 688DG9>C< ID EG:K>DJH LDG@H D; I=: I:6B :(5/8 +9 '2 :AAH L:G: H::9:9 >CID L:AA X0AIG6 'DL II68=B:CIY B>8GDEA6I:H DGC>C<S, vol.7

. Dg and . Dc, 6<>I6IDG 6C9 I=:C >C8J76I, vol.8, p.9

D. He=,

B. I=, HID8@ HDAJI>DC *A6E6G>7 L6H I=:C 9>AJI:9 >C I=: 8JAIJG: B:9>JB 6I


V. I=, >C6A 8DC8:CIG6I>DC D; (.* >C I=: 8JAIJG: B:9>JB L6H D; :AAH 8JAIJG:9 >C BDCDA6N:G L:G: IG:6I:9 L>I= 6C9 V( *A6E6G>7

D. =. E=,

. Dg-dg-96nh,

&. ,

I. Ig, >M:9 >C 8DA9 +6G6;DGB6A9:=N9: +! ;DG B>C L6H=:9 I=G:: I>B:H >C +. 6C9, vol.8, pp.9-15

. Dg-=-+,

/. , , pp.6-6

. Dg-+-&lt;e and . Bdjh,

. L6h-e:g;dgb, , p.9

;. #d, , p.8

. Dg and . Dcigdah,

. L&gt;i=-cd-h, AJDG:H8:C8: >B6<:G 6C9 I=: >B6<: 6C6ANH>H L6H E:G;DGB:9 L>I= $8NS HEDI 9, vol.9

I. Ig,

D. G. Dg and . He=, GD>9H L:G: L6H=:9 >C +. ;>M:9 L>I= +! 9

. L&gt;i=-+gdadc&lt;-&gt;6bdc9, , vol.6

I. , G:HE:8I>K:AN AA I=:H: G:HJAIH H=DL:9 I=6I I=: ADL 9DH: 6I ADC< I:GB *A6E6G>7 IG:6IB:CI >C9J8:9, vol.8, p.6

+. &lt;e-egdi, I:8I:9 6;I:G IG:6IB:CI "$

. #jb6c-e&gt;9:gb6a-&quot;gdli=-!68idg--,

. *+-!,

. Hj8=-6h-!ajdgdjg68&gt;a,

, 69GN6B>8>C 8N8ADE=DHE=6B>9: EGDID8DAH 6HHD8>6I:9 L>I= I6M6C:H G:<>B:C *, p.29

*. Ig,

$. &gt;begdk, I=: E6I>:CIZH DJI8DB: H:K:G6A HE:8>;>8 I6G<:I:9 I=:G6E>:H HJ8= 6H +DAN + G>7DH: +DANB:G6H: >C=>7>IDGH +-+> :MEAD>I>C< I=: X-C:HH HI6IJHY D; IJBDJGH 7N I=: HNCI=:I>8 A:I=6A>IN 8DC8:EI L:G: 9:K:ADE:9 >C EG:8A>C>86A 6C9 8A>C>86A HIJ9>:H %'4-+9, vol.8

*. L&gt;i=, AJDG:H8:CI 9:G>K6I>K: *A6E6G>7 BDA:8JA: *A6 !' =><=A><=I, pp.6-9

. &gt;868nidm&gt;8&gt;in-d;-i=&gt;h and . Ig, AA 8JAIJG:H /=, vol.8

$. 6&gt;b,

. Ild-8a&gt;c&gt;86aan-g,

$. I=, ME:G>B:CIH E:G;DGB:9 >C 8:AA 8JAIJG: I=: H=DGI I:GB >C9J8I>DC D

. 7di=-ejbeh-l6h-hij9&gt;, , p.9

. Daadl&gt;c&lt;-ild-9dh:h-d;-*a6e6g&gt;7 and . Ig,

&. Da9-9gde and . Ig, AJDG:H8:C8: >CI:CH>IN E:G 8:AA L6H 9:I:8I:9 6;I:G 6C9 V( G:HE:8I>K:AN $C 8DCIG6HI 6 ;DA9 >C8G:6H: >C + <E :MEG:HH>DC L6H 9:I:8I:9 DC I=>H, vol.8, p.9

. &gt;c-djg-g:h:6g8=-i,

+. &lt;e-6c9--+-l6h, , vol.9

. Gdb-=-id-=-$c-i=:h:-ldg@h-cd-&gt;c9j8i&gt;dc-d;-(-+-dk,

+. Egdi, :HH>DC L6H HIJ9>:9 6;I:G 6 ADC< I:GB 6C9 ADL 9DH: *A6E6G>7 IG:6IB:CI DC ( ( 6C9 .0( HE=:GD>9H $C9::9 DJG EG:K>DJH LDG@H, vol.9, p.9

*. I=, , vol.9, p.6

. &gt;c-+-&lt;e, , p.9

, ^86LC' &' 6 #:d'K@B'CC/:8 CEB 6'C #E6DEB'C v &' 6, vol.6

, EB 6 6/-8)' uwuyZ E#E8' 7:&/,/#D/:8 &' 6^'K@B'CC/:8 &' { 8^ )D) 7/C' '8 )I/&'8#' CE

. &amp;8c-6&apos;c-#&apos;66e6&apos;c-&amp;&apos;-#&apos;dd&apos;, &8C 6'C 7*7'C #:8&/D/:8C 'K@)B/7'8D6'CZ &), p.4

:. 8db)&apos;-e-#:ebc-&amp;&apos;c-dbiek-8d)b/&apos;ebc-&amp;&apos;-6^)ae/@&apos;-i-&lt;&apos;3&lt;9i,

. #&apos;66e6/b&apos;c-w-db/d)&apos;c-i&apos;#-y-&amp;^6@b,

, 6' &:C' &^6@B/"Z 6^'K@B'CC/:8 "C6' &' 6 { B'CD' /8#.8-)' 6:BC, DB/D'7'8D 6:8-dD'B7' I'# E8

^. ,

&. and ). B&apos;8d&apos;c-@,

. Db/d&apos;7&apos;8d-i&apos;#-6^6@b,

/. &amp;&apos;-#&apos;c-@:7@&apos;c-&apos;8-@b)c&apos;8#-;-d/d&apos;ebc-c@)#/ and . Ae&apos;c-@&apos;b7&apos;ddb,

. &lt;#$-#$,

. &amp;-#$, , 22379.

*. ,

, @BD/#E6'C C:8D &' @6EC '8 @6EC &)I'6:@@)'C &8C 6' &:7/8' &' 6, vol.88

. 8#)b-;-b*d-&amp;^*db, DZ 6'C 88:@BD/#E6'C &^:B a 8E'C b @B)C'8D'8D 6^/8D), vol.6

#. Eb, &E#D/:8 'D 6 #B#D)B/CD/:8 &' 88:@BD/#E6'C &^:B -L6)'C

. #8#&apos;b-&amp;e, 9=<? 79&0*1*2*, p.32

. #$&lt;?*%1$-&lt;,

$. &lt;9-7&lt;,

T. Ali, M. J. Kim, S. U. Rehman, A. Ahmad, and M. O. Kim, Anthocyanin-Loaded PEG-Gold Nanoparticles Enhanced the Neuroprotection of Anthocyanins in an A? 1?42 Mouse Model of Alzheimer's Disease, Molecular neurobiology, vol.5, pp.1-17, 2016.

A. S. Gupta, Nanomedicine Approaches in Vascular Disease: A Review. Nanomedicine: Nanotechnology, Biology and Medicine, p.7, 2011.

T. Prow, N. Dang, K. Nufer, L. Payne, H. P. Soyer et al., New Approach of Gold Nanoparticles for Treating Skin Disease, Journal of Dermatological Science, vol.8, 2016.

R. Ankri, D. Leshem-lev, E. I. Lev, M. Motiei, E. Hochhauser et al., Gold Nanoparticles Based Imaging Technique and Drug Delivery for the Detection and Treatment of Atherosclerotic Vascular Disease, International Society for Optics and Photonics, p.9, 2016.

N. S. Abadeer and C. J. Murphy, Recent Progress in Cancer Thermal Therapy Using Gold Nanoparticles, The Journal of Physical Chemistry C, vol.1, issue.120, pp.4691-4716, 2016.


P. Baptista, E. Pereira, P. Eaton, G. Doria, A. Miranda et al., Gold Nanoparticles for the Development of, Clinical Diagnosis Methods. Analytical and Bioanalytical Chemistry, vol.3, pp.943-950, 2008.


J. C. Kah, K. W. Kho, C. G. Lee, and C. J. Richard, Early Diagnosis of Oral Cancer Based on the Surface Plasmon Resonance of Gold Nanoparticles, International Journal of Nanomedicine, vol.2, issue.2, p.785, 2007.

W. Hou, F. Xia, G. Alfranca, H. Yan, X. Zhi et al., Nanoparticles for Multi-Modality Cancer Diagnosis: Simple Protocol for Self-Assembly of Gold Nanoclusters Mediated by Gadolinium Ions, Biomaterials, vol.1, issue.120, pp.103-114, 2017.


Y. Tan, B. Yan, L. Xue, Y. Li, X. Luo et al., Surface-Enhanced Raman Spectroscopy of Blood Serum Based on Gold Nanoparticles for the Diagnosis of the Oral Squamous Cell Carcinoma, Lipids in Health and Disease, pp.1-16, 2017.

X. Cheng, R. Sun, L. Yin, Z. Chai, H. Shi et al., Light-Triggered Assembly of Gold Nanoparticles for Photothermal Therapy and Photoacoustic Imaging of Tumors in Vivo, Advanced Materials, vol.2, p.6, 2017.

S. Cabana, C. S. Lecona-vargas, H. I. Meléndez-ortiz, A. Contreras-garcía, S. Barbosa et al., Silicone Rubber Films Func, 2017.

C. Massard, Acrylic Acid) Nanobrushes for Immobilization of Gold Nanoparticles and Photothermal Therapy, Journal of Biomaterials and Nanobiotechnology tionalized with Poly, vol.4, pp.245-254

S. Rajkumar and M. Prabaharan, Theranostics Based on Iron Oxide and Gold Nanoparticles for Imaging-Guided Photothermal and Photodynamic Therapy of Cancer, Current Topics in Medicinal Chemistry, vol.1, pp.1858-1871, 2017.


A. Neshastehriz, M. Tabei, S. Maleki, S. Eynali, and A. Shakeri-zadeh, Photothermal Therapy Using Folate Conjugated Gold Nanoparticles Enhances the Effects of 6MV X-Ray on Mouth Epidermal Carcinoma Cells, Journal of Photochemistry and Photobiology B: Biology, vol.1, pp.52-60, 2017.


M. Zhang, H. S. Kim, T. Jin, and W. K. Moon, Near-Infrared Photothermal Therapy Using EGFR-Targeted Gold Nanoparticles Increases Autophagic Cell Death in Breast Cancer, Journal of Photochemistry and Photobiology B: Biology, vol.1, pp.58-64, 2017.


A. B. Bucharskaya, G. N. Maslyakova, N. A. Navolokin, G. S. Terentyuk, B. N. Khlebtsov et al., The Assesment of Effectiveness of Plasmonic Resonance Photothermal Therapy in Tumor-Bearing Rats after Multiple Intravenous Administration of Gold Nanorods, International Society for Optics and Photonics, vol.1, issue.10336, p.103360, 2017.

W. Sung, S. J. Ye, A. L. Mcnamara, S. J. Mcmahon, J. Hainfeld et al., Dependence of Gold Nanoparticle Radiosensitization on Cell Geometry. Nanoscale, issue.9, 2017.

, , vol.9, pp.5843-5853

S. Rosa, C. Connolly, G. Schettino, K. T. Butterworth, and K. M. Prise, Biological Mechanisms of Gold Nanoparticle Radiosensitization, Cancer Nanotechnology, vol.8, 2017.


A. Zaki, A. Cormode, D. Tsourkas, A. Dorsey, and J. F. , Increasing the Therapeutic Efficacy of Radiotherapy Using Nanoparticles, pp.241-265, 2017.

A. Mulgaonkar, S. Moeendarbari, W. Silvers, G. Hassan, X. Sun et al., Hollow Gold Nanoparticles as Efficient in Vivo Radiosensitizing Agents for Radiation Therapy of, Breast Cancer. Journal of Biomedical Nanotechnology, issue.1, 2017.

, , vol.13, pp.566-574

N. Ma, F. G. Wu, X. Zhang, Y. W. Jiang, H. R. Jia et al., Shape-Dependent Radiosensitization Effect of Gold Nanostructures in Cancer Radiotherapy: Comparison of Gold Nanoparticles, Nanospikes, and Nanorods, ACS Applied Materials & Interfaces, p.9, 2017.


R. Kumar, W. Ngwa, V. Joshi, S. Kunjachan, R. Berbeco et al., Abstract B41: Gold Nanoparticles Based Platforms for Localized Radiosensitization in Cancer Radiation Therapy, Cancer Research, vol.7, 2017.

V. Ferrero, G. Visonà, F. Dalmasso, A. Gobbato, P. Cerello et al., Targeted Dose Enhancement in Radiotherapy for Breast Cancer Using Gold Nanoparticles, Part 1: A Radiobiological Model Study, Medical Physics, vol.4, issue.44, 1983.

A. Saberi, D. Shahbazi-gahrouei, M. Abbasian, M. Fesharaki, A. Baharlouei et al., Gold Nanoparticles in Combination with Megavoltage Radiation Energy Increased Radiosensitization and Apoptosis in Colon Cancer HT-29 Cells, Journal of Biomaterials and Nanobiotechnology Arab-Bafrani, vol.9, pp.315-323, 2017.


S. Soleymanifard, A. Rostami, S. A. Aledavood, M. M. Matin, and A. Sazgarnia, Increased Radiotoxicity in Two Cancerous Cell Lines Irradiated by Low and High Energy Photons in the Presence of Thio-Glucose Bound Gold Nanoparticles, International Journal of Radiation Biology, vol.9, pp.407-415, 2017.


S. M. Gadoue, D. Toomeh, P. Zygmanski, and E. Sajo, Angular Dose Anisotropy around Gold Nanoparticles Exposed to X-Rays, Nanomedicine: Nanotechnology, vol.1, pp.1653-1661, 2017.


C. R. Patra, R. Bhattacharya, D. Mukhopadhyay, and P. Mukherjee, Fabrication of Gold Nanoparticles for Targeted Therapy in Pancreatic Cancer, Advanced Drug Delivery Reviews, p.6, 2010.

, , vol.62, pp.346-361

T. Reuveni, M. Motiei, Z. Romman, A. Popovtzer, and R. Popovtzer, Targeted Gold Nanoparticles Enable Molecular CT Imaging of Cancer: An in Vivo Study, International Journal of Nanomedicine, p.6, 2011.

J. F. Hainfeld, D. N. Slatkin, and H. M. Smilowitz, The Use of Gold Nanoparticles to Enhance Radiotherapy in Mice, Physics in Medicine and Biology, vol.4, p.49, 2004.

M. Y. Chang, A. L. Shiau, Y. H. Chen, C. J. Chang, H. H. Chen et al., Increased Apoptotic Potential and Dose-Enhancing Effect of Gold Nanoparticles in Combination with Single-Dose Clinical Electron Beams on Tumor-Bearing Mice, Cancer Science, vol.9, pp.1479-1484, 2008.


R. R. Letfullin, C. Joenathan, T. F. George, and V. P. Zharov, Laser-Induced Explosion of Gold Nanoparticles: Potential Role for Nanophotothermolysis of Cancer, Nanomedicine, 1, vol.1, pp.473-480, 2006.

G. Von-maltzahn, J. H. Park, A. Agrawal, N. K. Bandaru, S. K. Das et al., Computationally Guided Photothermal Tumor Therapy Using Long-Circulating Gold Nanorod Antennas, Cancer Research, vol.6, pp.3892-3900, 2009.


C. K. Anders and L. A. Carey, Metastatic Patterns, and Treatment of Patients with Triple-Negative Breast Cancer, Clinical Breast Cancer, vol.9, pp.73-81, 2009.


A. Prat and C. M. Perou, Deconstructing the Molecular Portraits of Breast Cancer, Molecular Oncology, vol.5, pp.5-23, 2011.

M. Banda, C. L. Speyer, S. N. Semma, K. O. Osuala, N. Kounalakis et al., Metabotropic Glutamate Receptor-1 Contributes to Progression in Triple Negative Breast Cancer, PLoS ONE, vol.9, 2014.

M. J. Dufy, P. M. Mcgowan, and J. Crown, Targeted Therapy for Triple-Negative Breast Cancer: Where Are We?, International Journal of Cancer, vol.1, pp.2471-2477, 2012.


R. Dufour, P. Daumar, E. Mounetou, C. Aubel, F. Kwiatkowski et al., , 2015.

C. Massard, 25 Journal of Biomaterials and Nanobiotechnology pression in Triple Negative Basal-Like Breast Cancer Cell Line: A Prospective Role in Resistance to, Olaparib. Scientific Reports, p.5


A. El-guerrab, M. Bamdad, Y. J. Bignon, F. Penault-llorca, and C. Aubel, Anti-EGFR Monoclonal Antibodies Enhance Sensitivity to DNA-Damaging Agents in BRCA1-Mutated and PTEN-Wild-Type Triple-Negative Breast Cancer Cells, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01671367

, Molecular Carcinogenesis, vol.5, pp.1383-1394

A. El-guerrab, M. Bamdad, F. Kwiatkowski, Y. J. Bignon, F. Penault-llorca et al., Anti-EGFR Monoclonal Antibodies and EGFR Tyrosine Kinase Inhibitors as Combination Therapy for Triple-Negative Breast Cancer, Oncotarget, vol.7, pp.73618-73637, 2016.

C. Gani, C. Coackley, R. Kumareswaran, C. Schütze, M. Krause et al., AZD-2281, in Combination with Fractionated Radiotherapy: An Exploration of the Therapeutic Ratio, Vivo Studies of the PARP Inhibitor, vol.1, pp.486-494, 2015.


J. Lee, D. K. Chatterjee, M. H. Lee, and S. Krishnan, Gold Nanoparticles in Breast Cancer Treatment: Promise and Potential Pitfalls, Cancer Letters, vol.3, pp.46-53, 2014.


D. Clémence, D. Robin, D. Pierre, A. Corinne, S. Claire et al., Development and Cytotoxic Response of Two Proliferative MDA-MB-231 and Non-Proliferative SUM1315 ThreeDimensional Cell Culture Models of Triple-Negative Basal-Like Breast Cancer Cell Lines, Oncotarget, vol.8, pp.95316-95331, 2017.

, KALADRUG-R: Laboratory SOP#18. Simple Method and Tool for Calculation IC50-Values, 2010.

F. M. Veronese and G. Pasut, PEGylation, Successful Approach to Drug Delivery, Drug Discovery Today, p.1, 2005.

, , pp.3575-3575

J. V. Jokerst, T. Lobovkina, R. N. Zare, and S. S. Gambhir, Nanoparticle PEGylation for Imaging and Therapy, Nanomedicine, p.6, 2011.


H. Ghaznavi, Folic Acid Conjugated PEG Coated Gold-Iron Oxide Core-Shell Nanocomplex as a Potential Agent for Targeted Photothermal Therapy of Cancer, Nanomedicine, and Biotechnology, pp.1-11, 2017.


Z. Y. Ong, Multibranched Gold Nanoparticles with Intrinsic LAT-1 Targeting Capabilities for Selective Photothermal Therapy of Breast Cancer, ACS Applied Materials & Interfaces, p.9, 2017.


K. Y. Huang, H. L. Ma, and J. Liu, Size-Dependent Localization and Penetration of Ultrasmall Gold Nanoparticles in Cancer Cells, Multicellular Spheroids, and Tumors in Vivo, ACS Nano, p.6, 2012.

, , pp.4483-4493

. &amp;&apos;-#&apos;c, C CEB 6 6/-8)' \d^b, C )DE&'C #:7@6)7'8D, vol.88, p.8

#. , CEB 6' &)I'6:@@'7'8D &'C, vol.7

. De7&apos;ebc-&apos;d-@&apos;b7&apos;dd&apos;8d-e8&apos;-86lc,

/. 6^/&amp;&apos;8d/ and . #d,

. @6#&apos;-&apos;d-6^&amp;@dd,

). @bd/b-&amp;-;-/ and C. Bd/, @B:6/,)BD/,C] '@'8&8DZ 6'C 7:6)#E6'C #LD:CDD/AE'C 8' @'EI'8D *DB, vol.7, p.77

, :2&'C @@B1D #:77' E8' )D@' @B

, &)I'6:@@'7'8D &'C #E6DEB'C '8 w )-6'7'8D )D) B)6/C)Z &8C 6

, @B)C'8D/'8D )-6'7'8D E8 @B

. *-)d,

. &amp;@d)-#&apos;c-c@,

, C8D 6 7*7' 7)D.:&:6:-/' @B)#)&'77'8D &)I'6:@@)'Z ivj &' B)D"6/CC'7'8D &E @B:,/6 @B:6/,)BD/, &'C C@.)B:2&'C /CCEC &' 6, vol.6

, C w I/CddI/C &'C 7:6)#E6'C, vol.6

. &amp;^edb&apos;c, 'C C:8D #DE'66'7'8D '8 #:EBC &' &)I'6:@@'7'8D, vol.7

, 8C E8 &'EK/(7' D'7@CZ 6'C 7:&(6'C &' C@.)B:2&'C /8C/ &)I'6:@@)C :8D )D)

C. , 6' 'D &' CEBI/' #6:8:-)8/AE' B)6/C)C &8C E8 @B'7/'B D'7@C CEB 6'C 6/-8)'C #'66E6/B'C uwuy 'D

C. 86lc&apos;c-&apos;, and &. #de)&apos;c-@bd/b-&amp;&apos;c-&amp;, :77' )D8D &)@'8&8D' iuj &' 6 &:C' &' B&/:D.)B@/' 'D ivj &' 6 &EB, p.8

,. &apos;8dz-iwj-#&apos;d-&apos;,,&apos;d-@:d&apos;8d/6/cd&apos;eb-&amp;e-#-;-d/d-&apos; and &. #d/, @B)C'8#' &' &:C'C B'6D/I'7'8D

&. #d/i&apos;-&amp;&apos;c-#&apos;66e6&apos;c-de7:b6&apos;c-#&apos;-#,

/. Ceb-&amp;&apos;c-c@-;-/b7&apos;b-#&apos;c-b)ce6ddc-&apos;8-d&apos;b7&apos;c-&amp;&apos;-&amp;:c&apos;c-&apos;, and /. ##, CZ 6'C 'K@)B/'8#'C CEB 6'C #E6DEB'C w :8D )D) B)6/C)'C '8 @B)C'8#' &^E8' ,:BD' &:C' iyt j 'D &^E8

. I/&amp;&apos;8#&apos;-e8, /D/:8 &' #B:/CC8#' 'D 6^/8&E#D/:8 &' 6 7:BD6/D) &'C #'66E6'C, p.78

C. C@.)b:2&amp;&apos;c-ce/d&apos;-e-#,

. @bd/b-&amp;&apos;c-&amp;, 8D 7/C '8 )I/&'8#' E8' "C'8#' &' ")8),/#' DB/D'B 6'C C@.)B:2&'C, p.88

, )B@/' ,B#D/:88)'Z E8' .)D)B:-)8)/D) &' B)@:8C' '8DB' 6'C &'EK 6/-8)'C #'66E6/B'C )DE&/)'C

. @bd/b-&amp;&apos;c-&amp;, , p.88

. Uwuy-c&apos;b/d-/cce&apos;-&amp;^e8, , p.8

. &amp;^&apos;8i/c-&apos;b-e8-db8c, BD #6/8/AE' &' #'DD' 7)D.:&:6:-/' &' #

, /8/B 6 &:C' &^6@B/" 7K/76' D:6)B)

, $ 0*, vol.31

. *=$, , 2009.

. *!-2#-#*-;-$97@-*2-$#-2#, , vol.9

). Dcdc&apos;c-#)b)&quot;b6&apos;c-&amp;&apos;-de7&apos;ebc-777/b&apos;c-db/@6&apos;d8, B. Db(c, D. Ae&apos;8d&apos;c-#.&apos;m-#&apos;-c:ecd, and &. Bd-&amp;&apos;c-b)ce6ddc-&amp;&apos;-#&apos;-#,

. Dcdc&apos;c-#)b,

E. Db/d&apos;7&apos;8d-@b-6@b, ' :8D @:BD) CEB 6' &)I'6:@@'7'8D

Z. &amp;8c-&amp;&apos;c, 'C &' C@.)B:2&'C ] ' 7BAE'EB ,6E:B'C#'8D 6d &8C E8 @B'7, vol.7

D. #b#d)b/c)-@bd/b-&amp;&apos;-#e6deb&apos;c-v-@b, , p.8

@. Ceb-c-#, #:8,/B7'B 6 B@/&' @)8)DBD/:8 'D 6

. #&apos;66e6/b&apos;z-&apos;d-@, C )DE&/)'C i d dvwuZ uwuy 'D u}w{j] 8CE/D'Z 6^86LC' &' 6 @)8)DBD

, &^/8#E"D/:8 @'B7/C &' &)7:8D'B iuj E8' @)8)DBD/:8 B@/&' &' 6^6d &8C 6^/8D)-B6/D)

. @b)c&apos;8d8d-&amp;&apos;c--b&amp;/&apos;8dc-&amp;^, D)B:-)8)/D) #'66E6/B' iC@.)B:2&'C -)C &' @6EC &

^. ,

. 8c-e8-&amp;&apos;ek/,

/. Ae&apos;z-6-{-&apos;d-6-d-@z-)d)-&apos;, and &. #de, C DBIEK :8D )D) B)6/C)C CEB 6'C 6/-8)'C #'66E6/B'C

#. Ceb-&amp;&apos;c-;-&apos;c-&amp;&apos;-#e6deb&apos;-w-z-#&apos;c-)de&amp;&apos;c-:8d-)d)-&apos;, and &. #de, C @6EC 6:8-dD'B7'Z @B, vol.7

:. B&amp;z-ceb-6&apos;c-#e6deb&apos;c-v-z-e8&apos;-&apos;k@b&apos;cc,

, DZ E8' /8&E#D/:8 &^'K@B'CC/:8 &' 6 d-@ E &)@'8& &' 6 { )D) &)D'#D) '8 @B)C'8#'

. &amp;&apos;-6^6@b, EB 6 6/-8)' uwuyZ E#E8' /8&E#D/:8 &' 6 @:7@' { 8^ )D) /&'8D

. @b)c&apos;8#&apos;-&amp;&apos;-#&apos;c-&amp;&apos;ek-#,

, I/'8D &)4 &)7:8DB) E8' #:d'K@B'CC

. &amp;^/8#e, D/:8 'D '8 @B)C'8#' &' yt &^6@B

, C B)CE6DDC 7:8DB'8D 8:8 C'E6'7'8D 6^'K@B'CC

-. and #. Db/d&apos;, C 'K@)B/'8#'C &^86LC'C &' 6^#D/I/D) &' #'C '8 @B)C'8#, 6'7'8DZ 6' B<6' B'6'I8D &' 6

#. #e8&apos;-&amp;&apos;c-@:7@&apos;c-@&apos;b7&apos;ddb/d-&amp;,

@. C&apos;c-&amp;&apos;-db/d&apos;,

. &amp;&apos;c-c@.)b:2&amp;&apos;c-#:8db&lt;6&apos;c]-^&quot;c&apos;8#&apos;-&amp;&apos;-#&apos;66e6&apos;c-e-#&apos;8db&apos;-&amp;&apos;c-c@,

/. 8c/z-6^&apos;8c&apos;,

/. 8d/d-d)-;-b/d-&amp;&apos;-6^&apos;, and . ##/d)-&amp;&apos;-6^6@b/,

. B/@.)b/ae&apos;c-&amp;&apos;c-c@.)b:2&amp;&apos;c-@b,

^. , #:66":BD/:8 &' DL@' @E"6/#c@B/I) I'# &'EK @BD'8/B'C /8&ECDB/'6CZ 6

#. , BD/:8 6' @B:4'D ^ Z &:D) &^E8 ,/88#'7'8D &'C ,:8&C 'EB:@)'8C, p.66

. @6#&apos;-&amp;&apos;@e/c-c&apos;@d&apos;, 6E/d#/Z &^E8' &EB)' 'CD

. #&apos;66e6/b&apos;c-w-de7:bek-:e-c/8c-&apos;d-i, , p.750

@. and /. ##/d)-&amp;&apos;c-7, )#E6'C '8 &)I'6:@@'7'8D

, /8&ECDB/'66'C /8#6E'8D iuj 6' &)I'6:@@'7'8D 'D 6 #B#D)B/CD/:8 &'C 7:&(6'C w '8 #:d#E6DEB'C iI'# &'C #'66E6'C

, D'8/B &'C 7:&(6'C '8#:B' @6EC @B)&/#D/,C &' 6 B)@:8C' DE7:B6' (

. B6/cd,

/. 8c/-e8-;-c-)de&amp;&apos;c-&amp;&apos;-c#b-;-c-@bd/b-&amp;&apos;-#&apos;c, , vol.7

. @bd/#/@&apos;b-#&apos;-@b,

. 3p-p-&amp;8c-e8, BD:/B' '8 #:77E8 i@B:4'D &' j] vtv ! vtw ? &I8/Z ::4Z 'D 6IB: :B'8

, !67 /!5 M 09! ! (-5!66N z\ y} {u

. B/@6&apos;d&apos;-d/i&apos;-b&apos;cd-8#,

. Dd@c\cc&amp;,

;. Dd@c\ccjjj and . Ccvtu|c@@b, D/:8d&'Cd#:7@B/7'Cd 6L8@BMddd:6@B/"dd@:EBd6'dDB/D'7'8].D76] ? a @@B:I'& BE-C d @@B:I'C 6@B

, Ic BE-Cc8,:B7D/:88 BE-Cc @@B:I'& BE-CcE#7y}vwy{

?. D78z-]z-]-.&apos;e8-z-&apos;d,

?. &amp;i&apos;z-e8/6z-i/&amp;,

&. 0%,

. Dd@c\cc&amp;,

?. 7&amp;&amp;z-]z-]-b:ecc&apos;ez-&apos;d,

. Z-]-&apos;&amp;&apos;bz-]-]-b, @D5' 8& ,6EK :, :6L#L#6/# B:7D/# L&B:#B":8C "L 'DB.L7'8 LB

. B/@6&apos;-&apos;-d/i&apos;-b&apos;cd-8#&apos;b-b,

. Z. Ebci/# and . Dd, , vol.56

. Lcd&apos;7, DD@C\cc&:/]:B-cut]utw|cCB'@vyu|{] ? '8D:8Z "B/'6Z B/8 B8:ED:IZ L ':B-'Z L8& ] 6'/878Z 'D '88, 6\ B:7 /C#:I'BL 8& /7/#BL D: CCLC 8& :&'6C ,:B 8#'B 'C'B#. b] 9/! 58& !-(9!5< !9

B. &. B@l-8&amp;,

. Eb-/c, , vol.8

. Dd@c\cc&amp;,

/. Bcz-&apos;d-&quot;b/,

. E78-/c&apos;c&apos;-8&amp; and . Be-&apos;c@,

. Dd@c\cc&amp;,

/. Dd:8z-&apos;, and B. &apos;l-b&apos;&apos;8c@,

, 7CZ L8 ] B5'BZ 8 6:J'BZ 6'8 :@'MZ EM88' L6'Z B5 'ED

. ?-e-&amp;&apos;z-/lec.z-/l-/cjcz-&quot;b/#&apos;-&apos;b/&apos;8z and . Ez,

/. Dd, / %05 /!5 !6!5' uw i|j\ vwv} wx, vol.53

, DD@C\cc&:/]:B-cut]uuxzc88EB'Id @.B7D:Kdtuuzuwduwy}y}] ? :77/CC/:8'BZ

]. Dd@c\ccjjj and &. Ic, , p.6

. Dd@c\cc&amp;,

&. &amp;i/l&apos;.z-]-e6:c&apos;z-;-ddec and . E7, ' 085/-0% /!5 uuu ixj\ z}z {t{, vol.6

I. Cc, /8 B/@6' '-D/I' C6d6/5' B'CD 8#'B '66 /8'\ B:C@'#D/I' :6'

, B:I'BZ /dC/8 8Z :8-#

E. #. /&amp;-7&amp;&amp;z-i&apos;cd, 8Z B)&)B/AE' ', vol.8, p.0

E. #. /&amp;-7&amp;&amp;z-&quot;b/#&apos;-j/d5, JC5/Z I'Cd'8 /-8:8Z B)&)B/AE

. Dd@c\cc&amp;, , vol.6

, B@L i jd /8-6'd '8D'B B:C@'#D/I' 8&:7/M'& B/6 b] !850685&!5< |w iwj\ yzz {w

, DD@C\cc&:/]:B-cut]utw|c8DEB'twxxy] ? 'B6LZ #AE'CZ C"'66' :'B4:7DB7Z 4'C. /5C./DZ E6D8 C'BZ :6/8 D

?. 6&amp;/&apos;, and Z. Eb&apos;8#&apos;z-;-d/ae&apos;-&apos;d-@b&apos;c#b/@d, , vol.8

. Dd@c\cc&amp;,

, 8D'B8D/:86 K@'BD :8C'8CEC :8 D.' B/7BL .'B@L :, B6L B'CD 8#'B vtuu b

?. Ez,

E. and B. B\,

. Dd@c\cc&amp;,

?. Lb,

, 667B5C :, 8#'B b] !--utt iuj\ y{ {t] ? 8"LZ

. Dd@c\cc&amp;,

?. E@dz-/c,

?. Bc#, EC'BZ B8M/C5Z '/5' '88'Z 6E&/ /DD,'6&Z :8D.8 'CDZ :6,-8-E'66'Bd6

B. #b,

M. ,

. Dd@c\cc&amp;,

. Dd@c\cc&amp;,

?. C7/6d, , vol.8

?. D. J6z-/c,

, /!5 ww iyj\ vvw wt

. ?-/b5z, /C5 #D:BC] 8#:DL@' CCL B'&/#DC :#6 '#EBB'8#' /8 B'CD 8#'B b] 785! !9

. #d/i/dl-b]-!,

?. Jc5/z-&quot;b/#&apos;z-c#6, CC'88'Z 6/B' AE'DZ '8d/'BB' EB'CZ D./6&' Ld '66/6'Z 'D I'Cd

. ?-a-b-;-c-w-\-b)&amp;e/b&apos;z-b,

]. Dd@c\ccjjj and B. , CC/:88'6CdB'#.'B#.'cB'#.'B#.'d@B'd#6/8/AE'c'K@'B/7'8DD/:8d8/76'cB'-6'd wdBdB'&E/B'dB

?. 7z-d/z-/,

. ?-&apos;z-8z-&apos;d-b&apos;8,

. ?-&apos;&apos;z-/.l:e8z-&apos;i-e7b and . Dd&apos;b4,

, /!5 !77!56 wx{ iuj\ xz yw

, /D:BC ,:B ucv EDD/:8d CC:#/D'& 8& d6/5' 6/-88#

. Dd@c\cc&amp;,

?. B8%,

:. Bb]-u}}|]-a-8#b&apos;c&apos;&amp;-/cce&apos;-kl-&apos;8d, , vol.7

?. Fff,

?. E5,

?. 8c,

?. &. B# and . Dd/z-6e&amp;/z-e&amp;,

. Dd@c\ccjjj,

?. Dd,

, DD@C\cc&:/]:B-cut]utw|c8B#u|}w] ? ::Z B#Ld 88Z #, 6F /!5 z i|j\ y|w }v, vol.6

?. B#/z-/#, 66' '8&'BC:8Z /#.'66

/. Dcelz-/&apos;8d-./&apos;-e8-z-&apos;d-/b,

?. &amp;z-d&apos;i&apos;,

?. ,

?. Ddec,

C. #d, , vol.66

?. 8#, B7D/:88 BE-Cc @@B:I'&

, Ic BE-Cc8,:B7D/:88 BE-Cc @@B:I'& BE-CcE#7y}vwy{

?. 6z,

. ?-b&apos;##./z,

?. ^e66/i8z-/b, , pp.0-0

?. 8c#,

?. &amp;e6d-b&apos;d7&apos;8d-&amp;/d:b/, B&] vttv] a B'CD 8#'B B'D7'8D i pj\, vol.6

]. Dd@\ccjjj and . 8#,

. ?-&apos;8e6dd6-;-b/@6&apos;d&apos;-d/i&apos;-b&apos;cd-8#, 6:-/#6 8& :6'#E6B

. ?-&apos;b, 66#5Z 'D 6] vttt] a :6'#E6B :BDB/DC :, E78 B'CD E7:EBC b] 785! xtz iz{}{j\ {x{ yv

?. Bdz-6&apos;/kz-&apos;d-.b6&apos;c,

E. and B. 8#&apos;b-b,

/. 8z-&apos;d, , vol.6

. Dd@c\cc&amp;,

?. Ccz-]z-]-b&quot;bmz-]-&apos;bdb8&amp;z-&apos;d-]d, 6' CDB8& "B'5 B'@/BZ :8' 7'#.8/C7 #8 ./&' 8:D.'B\ 6D'B8D/I' 8:8d.:7:6:-:EC '8&, vol.4

. Dd@c\cc&amp;,

, !/! M!: 05,D FFN w i{vj\ {vz v}

B. ,

?. B5&amp;/z-6mcz-cm6, E78 E6D/&BE-'C/CD8#' 8&, vol.8

!. ,

?. ,

. Dd@c\cc&amp;,

. ?-/88z-8cd&apos;d&apos;bz-&apos;d-8c-b&apos;/@,

?. &gt;b6,

?. ,

. B/@6&apos;d&apos;-d/i&apos;-b&apos;cd-8#&apos;b,

?. Jb7z,

?. Dz-7c,

?. Eb,

Z. Bz,

?. E8-z-/d-.e8-z-7l-]-c/, D'I'8 ] 66'8Z EdCE5' :B/CJZ /D#, vol.66

?. Ebc,

. ?-#.&apos;z-.b/cd&apos;6z-6/i/&apos;b-7b&apos;cz-b/&apos;d-)6&apos;cd&apos;-b&amp;:c:d-&apos;bb&apos;/bz-&apos;b8b&amp;-cde-e&apos;z-c,

, /8/'6Z .8D6 EBLZ 'B-' '66/'BZ I

?. 6d,

. Dd@c\cc&amp;,

?. Ae,

?. 6d, 8Z 7'6/8'Z I8 JBML8/5Z .B/CD/8 7"6B&Z, vol.8

. Dd@c\cc&amp;,

?. Cc/#-]z-b/,

?. Ez-]z-]-d-]-&apos;b&apos;mz,

. /!5j,

. Dd@c\cc&amp;,

. ?-/8#,

. Dd@\cc,

?. Bz,

. B&apos;cd-8#&apos;b-b,

B. Cce&apos;-b,

?. &amp;z,

?. Ez-/,

. /8&amp;z-/#,

&. , %#4#%6>4+5>'5 2#4 70' #$5'0%' &G':24'55+10 &'5 4>%'26'745 #7: F5641)?0'5 = .# 241)'56>410' .G#$5'0%' &, vol.5, p.5106

, 06*>6+37' .'5 #06+ 5 %+$.'06 .'5 24124+>6>5 &'5 67/'745 #05 %' %106':6' %'5 64#8#7: &' 4'%*'4%*' 106 >6> 14+'06>5 574

%. &. ,

, 06*>6+37' +06+67.> #05 70

. #-&gt;6&gt;-/1&amp;&gt; and . +5&gt;&apos;-574,

, >4#06 510 14+)+0' />6#56#6+37' %>4>$4#

. %&gt;4&gt;$4#,

, * &G+0%7$#6+10 &#05 6176

. %&apos;064#,

, 10) 6'4/' 70' ':24'55+10 $#5#

, 5>47/ #06+ .#2#4+$ 4#&+16*>4#2+' (4#%6+100>' %1/$+0>' 7.6+47) '5+56#0%' )

#. #%-,

/. 1&amp;&apos;,

, *+)* &15'5 #0&

, #0& ! %7.674'& +0 #0& %10&+6+105 *'5

%. &. , +0'5 5*19'& # *'6'41)'0'175 5'05+6+8+6; 61 6*' %1 64

. 64#05%4+261/+%-#0#,

, 6#56#6+% 14+)+0 *'5' 241/+5+0) 4'57.65 %17, '56+0) +65 %'4'$4#

%. &. ,

, 56 +65 )4', vol.57

*. , , vol.6